301
|
Mirza N, Cornblath DR, Hasan S, Hussain U. Alpha-lipoic acid for diabetic peripheral neuropathy. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2005. [DOI: 10.1002/14651858.cd005492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
302
|
Lee WJ, Lee IK, Kim HS, Kim YM, Koh EH, Won JC, Han SM, Kim MS, Jo I, Oh GT, Park IS, Youn JH, Park SW, Lee KU, Park JY. Alpha-lipoic acid prevents endothelial dysfunction in obese rats via activation of AMP-activated protein kinase. Arterioscler Thromb Vasc Biol 2005; 25:2488-94. [PMID: 16224049 DOI: 10.1161/01.atv.0000190667.33224.4c] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Lipid accumulation in vascular endothelial cells may play an important role in the pathogenesis of atherosclerosis in obese subjects. We showed previously that alpha-lipoic acid (ALA) activates AMP-activated protein kinase (AMPK) and reduces lipid accumulation in skeletal muscle of obese rats. Here, we investigated whether ALA improves endothelial dysfunction in obese rats by activating AMPK in endothelial cells. METHODS AND RESULTS Endothelium-dependent vascular relaxation was impaired, and the number of apoptotic endothelial cells was higher in the aorta of obese rats compared with control rats. In addition, triglyceride and lipid peroxide levels were higher, and NO synthesis was lower. Administration of ALA improved all of these abnormalities. AMPK activity was lower in aortic endothelium of obese rats, and ALA normalized it. Incubation of human aortic endothelial cells with ALA activated AMPK and protected cells from linoleic acid-induced apoptosis. Dominant-negative AMPK inhibited the antiapoptotic effects of ALA. CONCLUSIONS Reduced AMPK activation may play an important role in the genesis of endothelial dysfunction in obese rats. ALA improves vascular dysfunction by normalizing lipid metabolism and activating AMPK in endothelial cells.
Collapse
Affiliation(s)
- Woo Je Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Lateef H, Aslam MN, Stevens MJ, Varani J. Pretreatment of diabetic rats with lipoic acid improves healing of subsequently-induced abrasion wounds. Arch Dermatol Res 2005; 297:75-83. [PMID: 15986218 DOI: 10.1007/s00403-005-0576-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 04/29/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
The etiology of delayed or impaired wound-healing in diabetic individuals is multifactoral, but peripheral vascular dysfunction is an underlying factor in the majority of cases. Recent studies have shown that lipoic acid improves vascular function in diabetic skin and reduces the symptoms associated with the diabetic peripheral neuropathy. In this study, rats were made diabetic with streptozotocin (STZ) and treated systemically on alternative days with lipoic acid (100 mg/kg given via intraperitoneal injection) for 8 weeks. Untreated STZ-diabetic rats and non-diabetic rats served as control. At the end of the 8-week period, rats from all the three groups were subjected to abrasion wound formation. Skin wounds healed more rapidly in untreated non-diabetic rats than in the untreated diabetic rats. Wounds in lipoic acid-treated diabetic rats healed more rapidly than wounds in untreated diabetic rats. Subsequent in vitro studies demonstrated that lipoic acid protected endothelial cells from oxidant injury. At the same time, lipoic acid had no apparent effect on endothelial cell proliferation and had no measurable effect on fibroblast function (proliferation, collagen synthesis and matrix metalloproteinase expression). These findings suggest that prophylactic use of lipoic acid might be useful in preventing the development of non-healing skin ulcers from minor traumas in at-risk skin.
Collapse
Affiliation(s)
- Humaira Lateef
- Department of Pathology, The University of Michigan, 1301 Catherine Road 0602, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
304
|
Ziegler D. Thioctic acid for patients with symptomatic diabetic polyneuropathy: a critical review. ACTA ACUST UNITED AC 2005; 3:173-89. [PMID: 16026113 DOI: 10.2165/00024677-200403030-00005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diabetic neuropathy represents a major health problem, as it is responsible for substantial morbidity, increased mortality, and impaired quality of life. Near-normoglycemia is now generally accepted as the primary approach to prevention of diabetic neuropathy, but is not achievable in a considerable number of patients. A growing body of evidence suggests that oxidative stress resulting from enhanced free-radical formation and/or defects in antioxidant defense is implicated in the pathogenesis of diabetic neuropathy. Markers of oxidative stress such as superoxide anion and peroxynitrite production are increased in diabetic patients in relation to the severity of polyneuropathy. In experimental diabetic neuropathy, oxygen free-radical activity in the sciatic nerve is increased, and treatment with thioctic acid, a potent lipophilic antioxidant, results in prevention or improvement of the diabetes-induced neurovascular and metabolic abnormalities in various organ systems. Pharmacodynamic studies have shown that thioctic acid favorably influences the vascular abnormalities of diabetic polyneuropathy such as impaired microcirculation, increased indices of oxidative stress, and increased levels of markers for vascular dysfunction, such as thrombomodulin, albuminuria, and nuclear factor-kappaB. Thus far, seven controlled randomized clinical trials of thioctic acid in patients with diabetic neuropathy have been completed (Alpha-Lipoic Acid in Diabetic Neuropathy [ALADIN I-III], Deutsche Kardiale Autonome Neuropathie [DEKAN], Oral Pilot [ORPIL], Symptomatic Diabetic Neuropathy [SYDNEY], Neurological Assessment of Thioctic Acid in Neuropathy [NATHAN] II) using different study designs, durations of treatment, doses, sample sizes, and patient populations. Recently, a comprehensive analysis was undertaken of trials with comparable designs that met specific eligibility criteria for a meta-analysis to obtain a more precise estimate of the efficacy and safety of thioctic acid (600mg intravenously for 3 weeks) in diabetic patients with symptomatic polyneuropathy. This meta-analysis included the largest sample of diabetic patients (n = 1258) ever to have been treated with a single drug or class of drugs to reduce neuropathic symptoms, and confirmed the favorable effects of thioctic acid based on the highest level of evidence (Class Ia: evidence from meta-analyses of randomized, controlled trials). The following conclusions can be drawn from these trials: (i) short-term treatment for 3 weeks using intravenous thioctic acid 600 mg/day reduces the chief symptoms of diabetic polyneuropathy to a clinically meaningful degree; (ii) this effect on neuropathic symptoms is accompanied by an improvement of neuropathic deficits, suggesting potential for the drug to favorably influence underlying neuropathy; (iii) oral treatment for 4-7 months tends to reduce neuropathic deficits and improve cardiac autonomic neuropathy; and (iv) clinical and postmarketing surveillance studies have revealed a highly favorable safety profile of the drug. Based on these findings, a pivotal long-term multicenter trial of oral treatment with thioctic acid (NATHAN I) is being conducted in North America and Europe to investigate effects on progression of diabetic polyneuropathy, using a clinically meaningful and reliable primary outcome measure that combines clinical and neurophysiological assessment.
Collapse
Affiliation(s)
- Dan Ziegler
- German Diabetes Clinic, German Diabetes Research Institute, Leibniz Institute at the Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
305
|
Sung MJ, Kim W, Ahn SY, Cho CH, Koh GY, Moon SO, Kim DH, Lee S, Kang KP, Jang KY, Park SK. Protective effect of alpha-lipoic acid in lipopolysaccharide-induced endothelial fractalkine expression. Circ Res 2005; 97:880-90. [PMID: 16166554 DOI: 10.1161/01.res.0000186522.89544.4d] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fractalkine is a unique chemokine that functions as a chemoattractant as well as an adhesion molecule on endothelial cells activated by proinflammatory cytokines. Alpha-lipoic acid (LA), a naturally occurring dithiol compound, is an essential cofactor for mitochondrial bioenergetic enzymes. LA improves glycemic control, reduces diabetic polyneuropathies, and mitigates toxicity associated with heavy metal poisoning. The effects of LA on processes associated with sepsis, however, are unknown. We evaluated the antiinflammatory effect of LA on fractalkine expression in a lipopolysaccharide-induced endotoxemia model. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) significantly induced fractalkine mRNA and protein expression in endothelial cells. LA strongly suppressed TNF-alpha- or IL-1beta-induced fractalkine expression in endothelial cells by suppressing the activities of nuclear factor-kappaB and specificity protein-1. LA also decreased TNF-alpha- or IL-1beta-stimulated monocyte adhesion to human umbilical vein endothelial cells. As shown by immunohistochemistry, fractalkine protein expression was markedly increased by treatment with lipopolysaccharide in arterial endothelial cells, endocardium, and endothelium of intestinal villi. LA suppressed lipopolysaccharide-induced fractalkine protein expression and infiltration of endothelin 1-positive cells into the heart and intestine in vivo. LA protected against lipopolysaccharide-induced myocardial dysfunction and improved survival in lipopolysaccharide-induced endotoxemia. These results suggest that LA could be an effective agent to reduce fractalkine-mediated inflammatory processes in endotoxemia.
Collapse
Affiliation(s)
- Mi Jeong Sung
- Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, 560-180, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Cakatay U. Pro-oxidant actions of alpha-lipoic acid and dihydrolipoic acid. Med Hypotheses 2005; 66:110-7. [PMID: 16165311 DOI: 10.1016/j.mehy.2005.07.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 07/29/2005] [Indexed: 11/25/2022]
Abstract
There is strong accumulating evidence that a alpha-lipoic acid (LA) supplement is good insurance, and would markedly improve human health. LA is readily absorbed from the diet, transported to cells and reduced to dihydrolipoic acid (DHLA). Of the two compounds, DHLA evidently has greater antioxidant activity. Much research has focused on the antioxidant properties of these compounds. Aside from its antioxidant role, in vitro and in vivo studies suggest that LA and its reduced form DHLA also act as a pro-oxidant properties. Limited number of studies concerning the pro-oxidant potential of LA and DHLA were performed only in recent years. The ability of LA and/or DHLA to function as either anti- or pro-oxidants, at least in part, is determined by the type of oxidant stress and the physiological circumstances. These pro-oxidant actions suggest that LA and DHLA act by multiple mechanisms, many of which are only now being explored. LA has been reported to have a number of potentially beneficial effects in both prevention and treatment of oxygen-related diseases. Selection of appropriate pharmacological doses of LA for use in oxygen-related diseases is critical. On the other hand, much of the discussion in clinical studies has been devoted to the pro-oxidant role of LA. This aspect remains to be elucidated. In further studies, careful evaluation will be necessary for the decision in the biological system whether LA administration is beneficial or harmful.
Collapse
Affiliation(s)
- Ufuk Cakatay
- Istanbul University, Istanbul Faculty of Medicine, Central Laboratory of Biochemistry, Capa 34390, Istanbul, Turkey.
| |
Collapse
|
307
|
Trujillo M, Folkes L, Bartesaghi S, Kalyanaraman B, Wardman P, Radi R. Peroxynitrite-derived carbonate and nitrogen dioxide radicals readily react with lipoic and dihydrolipoic acid. Free Radic Biol Med 2005; 39:279-88. [PMID: 15964519 DOI: 10.1016/j.freeradbiomed.2005.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 03/14/2005] [Accepted: 03/14/2005] [Indexed: 11/19/2022]
Abstract
Alpha-lipoic acid (LA) and dihydrolipoic acid (DHLA) may have a role as antioxidants against nitric oxide-derived oxidants. We previously reported that peroxynitrite reacts with LA and DHLA with second-order rate constants of 1400 and 500 M(-1) s(-1), respectively, but indicated that these direct reactions are not fast enough to protect against peroxynitrite-mediated damage in vivo. Moreover, the mechanism of the reaction of peroxynitrite with LA has been recently challenged (J. Biol. Chem.279:9693-9697; 2004). Pulse radiolysis studies indicate that LA and DHLA react with peroxynitrite-derived nitrogen dioxide (*NO2) (k2 = 1.3 x 10(6) and 2.9 x 10(7) M(-1) s(-1), respectively) and carbonate radicals (CO(3-)) (k2 = 1.6 x 10(9) and 1.7 x 10(8) M(-1) s(-1), respectively). Carbonate radical-mediated oxidation of LA led to the formation of the potent one-electron oxidant LA radical cation. LA inhibited peroxynitrite-mediated nitration of tyrosine and of a hydrophobic tyrosine analog, N-t-BOC L-tyrosine tert-butyl ester (BTBE), incorporated into liposomes but enhanced tyrosine dimerization. Moreover, while LA competitively inhibited the direct oxidation of glutathione by peroxynitrite, it was poorly effective against the radical-mediated thiol oxidation. The mechanisms of reaction defined herein allow to rationalize the biochemistry of peroxynitrite based on direct and free radical-mediated processes and contribute to the understanding of the antioxidant actions of LA and DHLA.
Collapse
Affiliation(s)
- Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
308
|
Konrad D. Utilization of the insulin-signaling network in the metabolic actions of alpha-lipoic acid-reduction or oxidation? Antioxid Redox Signal 2005; 7:1032-9. [PMID: 15998258 DOI: 10.1089/ars.2005.7.1032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alpha-lipoic acid is a naturally occurring cofactor of mitochondrial dehydrogenase complexes and a potent antioxidant. It can interchange between a reduced form and an oxidized form, thereby displaying reducing (antioxidant) and prooxidant properties, respectively. It is suggested that alpha-lipoic acid through its prooxidant properties acutely stimulates the insulin-signaling cascade, thereby increasing glucose uptake in muscle and fat cells. On the other hand, alpha-lipoic acid appears to protect the insulin-signaling cascade from oxidative stress-induced insulin resistance through its reducing capacities. In addition, alpha-lipoic acid seems to inhibit hepatic gluconeogenesis by interfering with fatty acid oxidation, as well as to increase peripheral glucose utilization by activating pyruvate dehydrogenase resulting in increased glucose oxidation. These different properties render alpha-lipoic acid a potentially attractive therapeutic agent for the treatment of insulin resistance. Moreover, given the potential role of oxidative stress in the pathogenesis of secondary complications in diabetes, alpha-lipoic acid might be beneficial in the prevention/treatment of these complications as was recently shown for diabetic neuropathy.
Collapse
Affiliation(s)
- Daniel Konrad
- Division of Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland.
| |
Collapse
|
309
|
Qiu L, List EO, Kopchick JJ. Differentially expressed proteins in the pancreas of diet-induced diabetic mice. Mol Cell Proteomics 2005; 4:1311-8. [PMID: 15961380 DOI: 10.1074/mcp.m500016-mcp200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The pancreas is a heterogeneous organ mixed with both exocrine and endocrine cells. The pancreas is involved in metabolic activities with the endocrine cells participating in the regulation of blood glucose, while the exocrine portion provides a compatible environment for the pancreatic islets and is responsible for secretion of digestive enzymes. The purpose of this study was to identify pancreatic proteins that are differentially expressed in normal mice and those with diet-induced type 2 diabetes (T2DM). In this study, C57BL/6J male mice fed a high fat diet became obese and developed T2DM. The pancreatic protein profiles were compared between control and diabetic mice using two-dimensional gel electrophoresis. Differentially expressed protein "spots" were identified by mass spectrometry. REG1 and REG2 proteins, which may be involved in the proliferation of pancreatic beta cells, were up-regulated very early in the progression of obese mice to T2DM. Glutathione peroxidase, which functions in the clearance of reactive oxidative species, was found to be down-regulated in the diabetic mice at later stages. The RNA levels encoding REG2 and glutathione peroxidase were compared by Northern blot analysis and were consistent to the changes in protein levels between diabetic and control mice. The up-regulation of REG1 and REG2 suggests the effort of the pancreas in trying to ameliorate the hyperglycemic condition by stimulating the proliferation of pancreatic beta cells and enhancing the subsequent insulin secretion. The down-regulation of glutathione peroxidase in pancreas could contribute to the progressive deterioration of beta cell function due to the hyperglycemia-induced oxidative stress.
Collapse
Affiliation(s)
- Linghua Qiu
- Department of Biological Sciences, College of Osteopathic Medicine, Ohio University, Athens 45701, USA
| | | | | |
Collapse
|
310
|
Stefek M, Kyselova Z, Rackova L, Krizanova L. Oxidative modification of rat eye lens proteins by peroxyl radicals in vitro: protection by the chain-breaking antioxidants stobadine and Trolox. Biochim Biophys Acta Mol Basis Dis 2005; 1741:183-90. [PMID: 15955460 DOI: 10.1016/j.bbadis.2005.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 01/03/2005] [Accepted: 01/20/2005] [Indexed: 02/02/2023]
Abstract
In an attempt to model the processes of free radical-mediated cataractogenesis, we investigated the oxidative modification of rat eye lens proteins by peroxyl radicals generated by thermal decomposition of 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH) under aerobic conditions. When incubated with AAPH, the soluble eye lens proteins precipitated in a time-dependent manner. The insolubilisation was accompanied by the accumulation of protein free carbonyls and the diminution of sulfhydryls, yet the processes were shifted in time. The SDS-PAGE analysis of the AAPH-treated proteins revealed the presence of high molecular weight cross-links and, to a lesser extent, fragments. The aggregation and cross-linking of proteins along with the generation of free carbonyls was significantly inhibited by the chain-breaking antioxidants stobadine and Trolox. On the other hand, the AAPH-initiated sulfhydryl consumption was much less sensitive to the antioxidants studied. The results point to a complex mechanism of peroxyl-radical-mediated modification of eye lens proteins with implications for cataract development and they indicate a potentially protective role of antioxidants.
Collapse
Affiliation(s)
- M Stefek
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia.
| | | | | | | |
Collapse
|
311
|
Al Ghafli MHM, Padmanabhan R, Kataya HH, Berg B. Effects of alpha-lipoic acid supplementation on maternal diabetes-induced growth retardation and congenital anomalies in rat fetuses. Mol Cell Biochem 2005; 261:123-35. [PMID: 15362495 DOI: 10.1023/b:mcbi.0000028747.92084.42] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanism of diabetic embryopathy is not known. Excessive reactive oxygen species (ROS) produced in diabetes may be causally related to foetal anomalies. The objective of this study was to determine whether supplementation with the antioxidant lipoic acid (LA) could prevent maternal diabetes-related foetal malformations and intrauterine growth retardation (IUGR) in rats. Pregnant rats were non-treated (Group I) or made diabetic on gestation day (GD) 2 by injecting streptozotocin (Group II). Group III was injected with 20 mg kg(-1) of LA daily starting on GD 6 and continued through GD 19. Group IV was administered only Tris buffer on the corresponding days. Group V was a set of STZ-treated animals, which were supplemented with a daily dose of 20 mg kg(-1) of LA from GD 6 through GD 19. All fetuses were collected on GD 20. Lipoic acid did not affect the blood sugar levels of diabetic animals significantly but improved their body weight gain and reduced food and water consumption. Diabetic group had a high incidence of embryonic resorption, IUGR, craniofacial malformations, supernumerary ribs and skeletal hypoplasia. Lipoic acid significantly reduced these abnormalities. These data support the hypothesis that ROS are causally related to fetal maldevelopment and IUGR associated with maternal diabetes in the rat. They also highlight the possible role of antioxidants in the normal processes of embryo survival, growth and development.
Collapse
Affiliation(s)
- M H M Al Ghafli
- Faculty of Science, UAE University, Al Ain, United Arab Emirates
| | | | | | | |
Collapse
|
312
|
Abstract
For most age-related disorders there is no cure, and treatment is expensive and often ineffective. Thus, disease prevention is an issue of increasing concern and importance. Nurses form the largest professional healthcare group in the world, and the professional code of the modern day nurse advocates health promotion as a primary role. Nurses, by virtue of their close, direct interaction with their community and clients, are in a strong position to disseminate and reinforce the message of health promotion with the aim of achieving functional longevity in our aging population. This requires that nurses themselves increase their awareness, knowledge and understanding of relevant interdisciplinary research findings. In the current review, the influence of diet on the risk of four of the most prevalent age-related diseases (cancer, cardiovascular disease, dementia and diabetes) is presented, and the underlying mechanisms of influence are discussed, with particular focus on antioxidant-rich foods.
Collapse
Affiliation(s)
- Mimi M Y Tse
- Aging and Health Section, School of Nursing, The Hong Kong Polytechnic University, Hong Kong.
| | | |
Collapse
|
313
|
Abstract
Disturbances of olfaction are a common occurrence in many neurological and neurosurgical patients and their correct diagnosis might be helpful in management and enhancement of quality of life. However, olfaction is seldom checked in most neurosurgical units and the "smell bottles" are often either absent or out of date. This chapter reviews systematically recent advances in our understanding of the anatomy, physiology (olfactory coding) and measurement of olfactory function in the human. The causes and symptoms of smell disorders, risk of damage to the olfactory system by various surgical procedures and, finally, the natural history of recovery and treatment of smell disorders, for example after trauma, are discussed.
Collapse
Affiliation(s)
- B N Landis
- Unité de Rhinologie-Olfactologie, Service d' Oto-Rhinologie-Laryngologie, Hopitaux Universitaires de Genève, Genève, Switzerland
| | | | | |
Collapse
|
314
|
Obrosova IG, Mabley JG, Zsengellér Z, Charniauskaya T, Abatan OI, Groves JT, Szabó C. Role for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst. FASEB J 2004; 19:401-3. [PMID: 15611153 DOI: 10.1096/fj.04-1913fje] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nitrosative stress, that is, enhanced peroxynitrite formation, has been documented in both experimental and clinical diabetic neuropathy (DN), but its pathogenetic role remains unexplored. This study evaluated the role for nitrosative stress in two animal models of type 1 diabetes: streptozotocin-diabetic mice and diabetic NOD mice. Control (C) and streptozotocin-diabetic (D) mice were treated with and without the potent peroxynitrite decomposition catalyst FP15 (5 mg kg(-1) d(-1)) for 1 wk after 8 wk without treatment. Sciatic nerve nitrotyrosine (a marker of peroxynitrite-induced injury) and poly(ADP-ribose) immunoreactivities were present in D and absent in C and D+FP15. FP15 treatment corrected sciatic motor and hind-limb digital sensory nerve conduction deficits and sciatic nerve energy state in D, without affecting those variables in C. Nerve glucose and sorbitol pathway intermediate concentrations were similarly elevated in D and D+FP15 vs C. In diabetic NOD mice, a 7-day treatment with either 1 or 3 mg kg(-1) d(-1) FP15 reversed increased tail-flick latency (a sign of reduced pain sensitivity); the effect of the higher dose was significant as early as 3 days after beginning of the treatment. In conclusion, nitrosative stress plays a major role in DN in, at least, type 1 diabetes. This provides the rationale for development of agents counteracting peroxynitrite formation and promoting peroxynitrite decomposition, and their evaluation in DN.
Collapse
Affiliation(s)
- Irina G Obrosova
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
315
|
Abstract
The many studies on oxidative stress, antioxidant treatment, and diabetic complications have shown that oxidative stress is increased and may accelerate the development of complications through the metabolism of excessive glucose and free fatty acids in diabetic and insulin-resistant states. However, the contribution of oxidative stress to diabetic complications may be tissue-specific, especially for microvascular disease that occurs only in diabetic patients but not in individuals with insulin resistance without diabetes, even though both groups suffer from oxidative stress. Although antioxidant treatments can show benefits in animal models of diabetes, negative evidence from large clinical trials suggests that new and more powerful antioxidants need to be studied to demonstrate whether antioxidants can be effective in treating complications. Furthermore, it appears that oxidative stress is only one factor contributing to diabetic complications; thus, antioxidant treatment would most likely be more effective if it were coupled with other treatments for diabetic complications.
Collapse
Affiliation(s)
- Joshua A Scott
- Research Division, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | | |
Collapse
|
316
|
Kowluru RA, Odenbach S. Effect of long-term administration of alpha-lipoic acid on retinal capillary cell death and the development of retinopathy in diabetic rats. Diabetes 2004; 53:3233-8. [PMID: 15561955 DOI: 10.2337/diabetes.53.12.3233] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidative stress is increased in the retina in diabetes, and it is considered to play an important role in the development of retinopathy. alpha-Lipoic acid, a thiol antioxidant, has been shown to have beneficial effects on polyneuropathy and on the parameters of oxidative stress in various tissues, including nerve, kidney, and retina. The purpose of this study was to examine the effect of alpha-lipoic acid on retinal capillary cell apoptosis and the development of pathology in diabetes. Retina was used from streptozotocin-induced diabetic rats receiving diets supplemented with or without alpha-lipoic acid (400 mg/kg) for 11 months of diabetes. Capillary cell apoptosis (by terminal transferase-mediated dUTP nick-end labeling) and formation of acellular capillaries were investigated in the trypsin-digested retinal microvessels. The effect of alpha-lipoic acid administration on retinal 8-hydroxy-2'deoxyguanosine (8-OHdG) and nitrotyrosine levels was determined by enzyme-linked immunosorbent assay. alpha-Lipoic acid administration for the entire duration of diabetes inhibited capillary cell apoptosis and the number of acellular capillaries in the retina, despite similar severity of hyperglycemia in the two diabetic groups (with and without alpha-lipoic acid). Retinal 8-OHdG and nitrotyrosine levels were increased by over twofold and 70%, respectively, in diabetes, and alpha-lipoic acid administration inhibited these increases. Our results demonstrate that the long-term administration of alpha-lipoic acid has beneficial effects on the development of diabetic retinopathy via inhibition of accumulation of oxidatively modified DNA and nitrotyrosine in the retina. alpha-Lipoic acid supplementation represents an achievable adjunct therapy to help prevent vision loss in diabetic patients.
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|
317
|
Song KH, Lee WJ, Koh JM, Kim HS, Youn JY, Park HS, Koh EH, Kim MS, Youn JH, Lee KU, Park JY. α-Lipoic acid prevents diabetes mellitus in diabetes-prone obese rats. Biochem Biophys Res Commun 2004; 326:197-202. [PMID: 15567171 DOI: 10.1016/j.bbrc.2004.10.213] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Indexed: 10/26/2022]
Abstract
Several lines of evidence have suggested that triglyceride accumulation in skeletal muscle and pancreatic islets is causally related to type 2 diabetes mellitus. We recently showed that alpha-lipoic acid (ALA), a potent antioxidant and cofactor of mitochondrial respiratory enzymes, reduces body weight of rodents by suppressing food intake and increasing energy expenditure. We sought to determine if ALA can prevent the development of diabetes mellitus in obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Most (78%) untreated OLETF rats showed glycosuria at 40 weeks of age, but this was completely prevented by ALA. Compared with untreated OLETF rats, ALA reduced body weight and protected pancreatic beta-cells from destruction. ALA also reduced triglyceride accumulation in skeletal muscle and pancreatic islets. These results indicate that ALA prevents diabetes mellitus in obese diabetes-prone rats by reducing lipid accumulation in non-adipose tissue as well as in adipose tissue.
Collapse
Affiliation(s)
- Kee-Ho Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Bonnefont-Rousselot D, Beaudeux JL, Thérond P, Peynet J, Legrand A, Delattre J. [Diabetes mellitus, oxidative stress and advanced glycation endproducts]. ANNALES PHARMACEUTIQUES FRANÇAISES 2004; 62:147-57. [PMID: 15243348 DOI: 10.1016/s0003-4509(04)94297-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic hyperglycemia in diabetes mellitus is an oxidative stress created by an imbalance of prooxidants over antioxidant defenses. The pathogenesis would involve several mechanisms including glucose autoxidation, protein glycation, the polyol pathway, and overproduction of superoxide radicals in mitochondria and via NAD(P)H oxidase. Glycemic equilibrium plays a very important role in the prooxidant/antioxidant balance. Macromolecules such as found in the extracellular matrix, lipoproteins, and deoxyribonucleic acid also constitute targets for free radicals in diabetes mellitus. This oxidative tress is involved in the pathophysiology of diabetes complications. The chronic hyperglycemic status also favors glycation reactions (irreversible glucose binding on protein amino groups), thereby leading to advanced glycation endproducts. Via their recognition by cell receptors, advanced glycation endproducts also participate in the development of oxidative stress and the inflammatory status. Involvement of oxidative stress and advanced glycation endproducts in diabetes complications is the basis of the development of adjunct therapies with antioxidant and/or anti)advanced glycation endproducts molecules.
Collapse
Affiliation(s)
- D Bonnefont-Rousselot
- Laboratoire de Biochimie métabolique et clinique (EA 3617), Faculté de Pharmacie Paris 5, 4, avenue de l'Observatoire, F75270 Paris Cedex 06
| | | | | | | | | | | |
Collapse
|
319
|
Alderson NL, Chachich ME, Frizzell N, Canning P, Metz TO, Januszewski AS, Youssef NN, Stitt AW, Baynes JW, Thorpe SR. Effect of antioxidants and ACE inhibition on chemical modification of proteins and progression of nephropathy in the streptozotocin diabetic rat. Diabetologia 2004; 47:1385-95. [PMID: 15309289 DOI: 10.1007/s00125-004-1474-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 04/30/2004] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS This study was designed to determine whether inhibition of formation of AGE and advanced lipoxidation end-products (ALE) is a mechanism of action common to a diverse group of therapeutic agents that limit the progress of diabetic nephropathy. We compared the effects of the ACE inhibitor enalapril, the antioxidant vitamin E, the thiol compound lipoic acid, and the AGE/ALE inhibitor pyridoxamine on the formation of AGE/ALE and protection against nephropathy in streptozotocin diabetic rats. METHODS Renal function and AGE/ALE formation were evaluated in rats treated with the agents listed above. Plasma was monitored monthly for triglycerides, cholesterol, creatinine and TNF-alpha, and 24-h urine samples were collected for measurement of albumin and total protein excretion. After 29 weeks, renal expression of mRNA for extracellular matrix proteins was measured, and AGE/ALE were quantified in skin and glomerular and tubular collagen. RESULTS Diabetic animals were both hyperglycaemic and dyslipidaemic, and showed evidence of early nephropathy (albuminuria, creatinaemia). All interventions limited the progression of nephropathy, without affecting glycaemia. The order of efficacy was: pyridoxamine (650 mg.kg(-1).day(-1)) > vitamin E (200 mg.kg(-1).day(-1)) > lipoic acid (93 mg.kg(-1).day(-1)) approximately enalapril (35 mg.kg(-1).day(-1)). Pyridoxamine also significantly inhibited AGE/ALE accumulation in tissues; effects of other agents were mixed, but the degree of renoprotection was consistent with their effects on AGE/ALE formation. CONCLUSIONS/INTERPRETATION All interventions inhibited the progression of nephropathy at the doses studied, but the maximal benefit was achieved with pyridoxamine, which also limited dyslipidaemia and AGE/ALE formation. These experiments indicate that the more effective the renoprotection, the greater the inhibition of AGE/ALE formation. For optimal protection of renal function, it would be beneficial to select drugs whose mechanism of action includes inhibition of AGE/ALE formation.
Collapse
Affiliation(s)
- N L Alderson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Abstract
Vascular complications of diabetes represent the leading cause of morbidity and mortality in affected patients. Production of reactive oxygen species is increased in diabetic patients, especially in those with poor glycemic control. Reactive oxygen species affect vascular smooth muscle cell growth and migration, endothelial function, including abnormal endothelium-dependent relaxation and expression of a proinflammatory phenotype, and modification of the extracellular matrix. All of these events contribute to the development of diabetic microvascular and macrovascular complications, suggesting that the sources of reactive oxygen species and the signaling pathways that they modify may represent important therapeutic targets.
Collapse
Affiliation(s)
- Seok Man Son
- Emory University School of Medicine, Division of Cardiology, 319 WMB, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
321
|
King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol 2004; 122:333-8. [PMID: 15257460 DOI: 10.1007/s00418-004-0678-9] [Citation(s) in RCA: 330] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 02/02/2023]
Abstract
Reactive oxygen species are increased by hyperglycemia. Hyperglycemia, which occurs during diabetes (both type 1 and type 2) and, to a lesser extent, during insulin resistance, causes oxidative stress. Free fatty acids, which may be elevated during inadequate glycemic control, may also be contributory. In this review, we will discuss the role of oxidative stress in diabetic complications. Oxidative stress may be important in diabetes, not just because of its role in the development of complications, but because persistent hyperglycemia, secondary to insulin resistance, may induce oxidative stress and contribute to beta cell destruction in type 2 diabetes. The focus of this review will be on the role of oxidative stress in the etiology of diabetic complications.
Collapse
Affiliation(s)
- George L King
- Section on Vascular Cell Biology and Complications, Joslin Diabetes Center, Boston, Massachusetts, USA
| | | |
Collapse
|
322
|
Dhaunsi GS, Bitar MS. Antioxidants attenuate diabetes-induced activation of peroxisomal functions in the rat kidney. J Biomed Sci 2004. [DOI: 10.1007/bf02256120] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
323
|
McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F, Lei XG. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci U S A 2004; 101:8852-7. [PMID: 15184668 PMCID: PMC428436 DOI: 10.1073/pnas.0308096101] [Citation(s) in RCA: 389] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Insulin resistance, a hallmark of type 2 diabetes, is associated with oxidative stress. However, the role of reactive oxygen species or specific antioxidant enzymes in its development has not been tested under physiological conditions. The objective of our study was to investigate the impact of overexpression of glutathione peroxidase 1 (GPX1), an intracellular selenoprotein that reduces hydrogen peroxide (H(2)O(2)) in vivo, on glucose metabolism and insulin function. The GPX1-overexpressing (OE) and WT male mice (n = 80) were fed a selenium-adequate diet (0.4 mg/kg) from 8 to 24 weeks of age. Compared with the WT, the OE mice developed (P < 0.05) hyperglycemia (117 vs. 149 mg/dl), hyperinsulinemia (419 vs. 1,350 pg/ml), and elevated plasma leptin (5 vs. 16 ng/ml) at 24 weeks of age. Meanwhile, these mice were heavier (37 vs. 27 g, P < 0.001) and fatter (37% vs. 17% fat, P < 0.01) than the WT mice. At 30-60 min after an insulin challenge, the OE mice had 25% less (P < 0.05) of a decrease in blood glucose than the WT mice. Their insulin resistance was associated with a 30-70% reduction (P < 0.05) in the insulin-stimulated phosphorylations of insulin receptor (beta-subunit) in liver and Akt (Ser(473) and Thr(308)) in liver and soleus muscle. Here we report the development of insulin resistance in mammals with elevated expression of an antioxidant enzyme and suggest that increased GPX1 activity may interfere with insulin function by overquenching intracellular reactive oxygen species required for insulin sensitizing.
Collapse
Affiliation(s)
- James P McClung
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
324
|
Bonnefont-Rousselot D. The Role of Antioxidant Micronutrients in the Prevention of Diabetic Complications. ACTA ACUST UNITED AC 2004; 3:41-52. [PMID: 15743112 DOI: 10.2165/00024677-200403010-00005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diabetes mellitus is associated with an increased production of reactive oxygen species and a reduction in antioxidant defenses. This leads to oxidative stress, which is partly responsible for diabetic complications. Tight glycemic control is the most effective way of preventing or decreasing these complications. Nevertheless, antioxidant micronutrients can be proposed as adjunctive therapy in patients with diabetes. Indeed, some minerals and vitamins are able to indirectly participate in the reduction of oxidative stress in diabetic patients by improving glycemic control and/or are able to exert antioxidant activity. This article reviews the use of minerals (vanadium, chromium, magnesium, zinc, selenium, copper) and vitamins or cofactors (tocopherol [vitamin E], ascorbic acid [vitamin C], ubidecarenone [ubiquinone; coenzyme Q], nicotinamide, riboflavin, thioctic acid [lipoic acid], flavonoids) in diabetes, with a particular focus on the prevention of diabetic complications. Results show that dietary supplementation with micronutrients may be a complement to classical therapies for preventing and treating diabetic complications. Supplementation is expected to be more effective when a deficiency in these micronutrients exists. Nevertheless, many clinical studies have reported beneficial effects in individuals without deficiencies, although several of these studies were short term and had small sample sizes. However, a randomized, double-blind, placebo-controlled, multicenter trial showed that thioctic acid at an oral dosage of 800 mg/day for 4 months significantly improved cardiac autonomic neuropathy in type 2 diabetic patients. Above all, individuals with diabetes should be educated about the importance of consuming adequate amounts of vitamins and minerals from natural food sources, within the constraints of recommended sugar and carbohydrate intake.
Collapse
|
325
|
Wessner B, Strasser EM, Spittler A, Roth E. Effect of single and combined supply of glutamine, glycine, N-acetylcysteine, and R,S-α-lipoic acid on glutathione content of myelomonocytic cells. Clin Nutr 2003; 22:515-22. [PMID: 14613752 DOI: 10.1016/s0261-5614(03)00053-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND & AIMS Several diseases are characterised by decreased glutathione (GSH) levels due to an enhanced formation of oxygen radicals. To increase GSH levels, the additional supply of GSH precursors was suggested. In this study we evaluated the potency of a single and combined administration of the GSH modulating substances glutamine (GLN), N-acetylcysteine (NAC), and glycine (GLY) as well as R,S-alpha-lipoic acid (LA) to enhance intracellular GSH content in a well-defined model system. RESULTS Exposure of myelomonocytic U937 cells for 24 h to GLN revealed a 1.5-fold enhancement of GSH levels with a concomitant decrease in the formation of reactive oxygen species and lipid peroxidation. Addition of NAC stimulated GSH formation only at subphysiological GLN levels. GLY enhanced GSH levels under GLN starvation, but caused a diminution of GSH content under optimal GLN supply. LA in combination with 2 mmol/l GLN evoked a 3.6-fold enhancement of GSH content compared to GLN starved cells. CONCLUSION These results demonstrate that the GSH content of U937 cells is dependent on the supply of GLN, NAC, LA, and GLY. Combinations of the single substances can enhance but also decrease the intracellular GSH content, which is of clinical importance when supplying GSH-modulating substances to patients.
Collapse
Affiliation(s)
- B Wessner
- Department of Surgery, Research Laboratories, University of Vienna, Austria
| | | | | | | |
Collapse
|
326
|
Abstract
Alpha-lipoic acid (ALA) has been identified as a powerful antioxidant found naturally in our diets, but appears to have increased functional capacity when given as a supplement in the form of a natural or synthetic isolate. ALA and its active reduced counterpart, dihydrolipoic acid (DHLA), have been shown to combat oxidative stress by quenching a variety of reactive oxygen species (ROS). Because this molecule is soluble in both aqueous and lipid portions of the cell, its biological functions are not limited solely to one environment. In addition to ROS scavenging, ALA has been shown to be involved in the recycling of other antioxidants in the body including vitamins C and E and glutathione. Not only have the antioxidant qualities of this molecule been studied, but there are also several reports pertaining to its blood lipid modulating characteristics, protection against LDL oxidation and modulation of hypertension. Therefore, ALA represents a possible protective agent against risk factors of cardiovascular disease (CVD). The objective of this review is to examine the literature pertaining to ALA in relation to CVD and describe the most powerful actions and potential uses of this naturally occurring antioxidant. Despite the numerous studies on ALA, many questions remain relating to the use of ALA as a supplement. There is no consensus on dosage, dose frequency, form of administration, and/or preferred form of ALA. However, collectively the literature increases our understanding of the potential uses for supplementation with ALA and identifies key areas for future research.
Collapse
Affiliation(s)
- Stephanie D Wollin
- School of Dietetics and Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Québec, Canada
| | | |
Collapse
|
327
|
Sharma M, Gupta YK. Effect of alpha lipoic acid on intracerebroventricular streptozotocin model of cognitive impairment in rats. Eur Neuropsychopharmacol 2003; 13:241-7. [PMID: 12888183 DOI: 10.1016/s0924-977x(03)00008-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, the effect of alpha lipoic acid, a potent free radical scavenger, was investigated against the intracerebroventricular streptozotocin model of cognitive impairment in rats, which is characterized by a progressive deterioration of memory, cerebral glucose and energy metabolism, and oxidative stress. Wistar rats were injected with intracerebroventricular streptozotocin bilaterally. The rats were treated chronically with alpha lipoic acid (50, 100 and 200 mg/kg) orally for 21 days starting from day 1 of streptozotocin injection in separate groups. The learning and memory behavior was evaluated and the rats were sacrificed for estimation of oxidative stress. The intracerebroventricular streptozotocin rats treated with alpha lipoic acid (200 mg/kg, p.o.) showed significantly less cognitive impairment as compared to the vehicle treated rats. There was also an insignificant increase in oxidative stress in the alpha lipoic acid treated groups. The study demonstrated the effectiveness of alpha lipoic acid in preventing cognitive impairment and oxidative stress induced by intracerebroventricular streptozotocin and its potential in dementia associated with age and age related neurodegenerative disorders where oxidative stress is involved such as Alzheimer's disease.
Collapse
Affiliation(s)
- Monisha Sharma
- Neuropharmacology Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | | |
Collapse
|
328
|
Kuroki T, Isshiki K, King GL. Oxidative stress: the lead or supporting actor in the pathogenesis of diabetic complications. J Am Soc Nephrol 2003; 14:S216-20. [PMID: 12874434 DOI: 10.1097/01.asn.0000077405.07888.07] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Tatsuya Kuroki
- Vascular Cell Biology and Complications, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
329
|
Ceriello A. New insights on oxidative stress and diabetic complications may lead to a "causal" antioxidant therapy. Diabetes Care 2003; 26:1589-96. [PMID: 12716823 DOI: 10.2337/diacare.26.5.1589] [Citation(s) in RCA: 495] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Evidence implicates hyperglycemia-derived oxygen free radicals as mediators of diabetic complications. However, intervention studies with classic antioxidants, such as vitamin E, failed to demonstrate any beneficial effect. Recent studies demonstrate that a single hyperglycemia-induced process of overproduction of superoxide by the mitochondrial electron-transport chain seems to be the first and key event in the activation of all other pathways involved in the pathogenesis of diabetic complications. These include increased polyol pathway flux, increased advanced glycosylation end product formation, activation of protein kinase C, and increased hexosamine pathway flux. Superoxide overproduction is accompanied by increased nitric oxide generation, due to an endothelial NOS and inducible NOS uncoupled state, a phenomenon favoring the formation of the strong oxidant peroxynitrite, which in turn damages DNA. DNA damage is an obligatory stimulus for the activation of the nuclear enzyme poly(ADP-ribose) polymerase. Poly(ADP-ribose) polymerase activation in turn depletes the intracellular concentration of its substrate NAD(+), slowing the rate of glycolysis, electron transport, and ATP formation, and produces an ADP-ribosylation of the GAPDH. These processes result in acute endothelial dysfunction in diabetic blood vessels that, convincingly, also contributes to the development of diabetic complications. These new findings may explain why classic antioxidants, such as vitamin E, which work by scavenging already-formed toxic oxidation products, have failed to show beneficial effects on diabetic complications and may suggest new and attractive "causal" antioxidant therapy. New low-molecular mass compounds that act as SOD or catalase mimetics or L-propionyl-carnitine and lipoic acid, which work as intracellular superoxide scavengers, improving mitochondrial function and reducing DNA damage, may be good candidates for such a strategy, and preliminary studies support this hypothesis. This "causal" therapy would also be associated with other promising tools such as LY 333531, PJ34, and FP15, which block the protein kinase beta isoform, poly(ADP-ribose) polymerase, and peroxynitrite, respectively. While waiting for these focused tools, we may have other options: thiazolinediones, statins, ACE inhibitors, and angiotensin 1 inhibitors can reduce intracellular oxidative stress generation, and it has been suggested that many of their beneficial effects, even in diabetic patients, are due to this property.
Collapse
Affiliation(s)
- Antonio Ceriello
- Department of Pathology and Medicine, Experimental and Clinical, University of Udine, Italy.
| |
Collapse
|
330
|
Laplante MA, Wu R, El Midaoui A, de Champlain J. NAD(P)H oxidase activation by angiotensin II is dependent on p42/44 ERK-MAPK pathway activation in rat's vascular smooth muscle cells. J Hypertens 2003; 21:927-36. [PMID: 12714867 DOI: 10.1097/00004872-200305000-00017] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine whether the activation of nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase and the increase of superoxide anion production by angiotensin II is dependent upon the activation of the ERK-MAPK pathway. METHODS Hypertension was induced in Sprague-Dawley rats by infusing angiotensin II (200 ng/kg per min) through osmotic pumps for 12 days. The effects of treatments including an angiotensin II type 1 (AT(1)) blocker losartan (20 mg/kg per day), a tyrosine kinase inhibitor genistein (1.6 microg/kg per min), a specific ERK-MAPK inhibitor, PD98059 (2 mg/kg per day) and an antioxidant alpha-lipoic acid (500 mg/kg of chow) were evaluated during angiotensin infusion. The aortic superoxide anion production, the ERK-MAPK pathway activity and the systolic blood pressure (SBP), were measured following those treatments. RESULTS Increases in the concentration of the superoxide anion (1622 to 3719 cpm), in NAD(P)H activity (107%) and in the ERK-MAPK activity (3.6-fold) in the aorta as well as a rise in the arterial pressure (136 to 184 mmHg) were observed 12 days after initiating the treatments (P < 0.05). When the angiotensin-treated rats were treated either with losartan, genistein, PD98059 or alpha-lipoic acid, increases in superoxide anion production, in NAD(P)H oxidase activity, in ERK-MAPK activity and in blood pressure were attenuated. A correlation between the superoxide anion production and the ERK-MAPK activity was also observed. CONCLUSIONS The present study suggests that the NAD(P)H-dependent increase of the superoxide anion production in the vascular tissue following a treatment with angiotensin II is dependent on the activation of the ERK-MAPK pathway.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Antihypertensive Agents/pharmacology
- Antioxidants/pharmacology
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Blood Pressure/drug effects
- Disease Models, Animal
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Enzyme Inhibitors/pharmacology
- Flavonoids/antagonists & inhibitors
- Genistein/antagonists & inhibitors
- Hypertension/metabolism
- Losartan/pharmacology
- Male
- Mitogen-Activated Protein Kinase 1/drug effects
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/drug effects
- Mitogen-Activated Protein Kinases/metabolism
- Models, Cardiovascular
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- NADPH Oxidases/drug effects
- NADPH Oxidases/metabolism
- Rats
- Rats, Sprague-Dawley
- Superoxides/metabolism
- Thioctic Acid/pharmacology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Marc-André Laplante
- Department of Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
331
|
|
332
|
Abiko T, Abiko A, Clermont AC, Shoelson B, Horio N, Takahashi J, Adamis AP, King GL, Bursell SE. Characterization of retinal leukostasis and hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase-C activation. Diabetes 2003; 52:829-37. [PMID: 12606527 DOI: 10.2337/diabetes.52.3.829] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increases in leukostasis/monocyte adhesion to the capillary endothelium (leukostasis) and decreases in retinal blood flow may be causally associated and are implicated in the pathogenesis of diabetic retinopathy. In this study, we demonstrate that increases in leukostasis are observed in insulin-resistant states without diabetes, whereas decreases in retinal blood flow require diabetes and hyperglycemia. Microimpaction studies using beads mimicking retinal capillary obstruction by leukocytes did not affect retinal blood flow. In diabetic rats, treatment with the antioxidant alpha-lipoic acid normalized the amount of leukostasis but not retinal blood flow. In contrast, treatment with D-alpha-tocopherol and protein kinase-C beta-isoform inhibition (LY333531) prevented the increases in leukostasis and decreases in retinal blood flow in diabetic rats. Serum hydroxyperoxide, a marker of oxidative stress, was increased in diabetic rats, but normalized by treatment with antioxidants alpha-lipoic acid and D-alpha-tocopherol and, surprisingly, PKC beta-isoform inhibition. These findings suggest that leukostasis is associated with endothelial dysfunction, insulin resistance, and oxidative stress but is not related to retinal blood flow and is not sufficient to cause diabetic-like retinopathy. Moreover, treatment with PKC beta inhibition is effective to normalize diabetes or hyperglycemia-induced PKC beta-isoform activation and oxidative stress.
Collapse
Affiliation(s)
- Toru Abiko
- Research Division, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Abstract
Diabetic neuropathy is common, related to increased morbidity and mortality, and has no effective treatment at present. Interventions based on putative pathways thought to contribute to damage and repair of nerve fibres have yielded little success to date. Pain is a potentially debilitating manifestation of diabetic neuropathy and has many potential sites of origin and, hence, modulation. Its cause is unclear and it does not respond well to traditional pain therapies, proposed to mediate their benefits via multiple peripheral and central mechanisms. A better understanding of the mechanisms leading to nerve fibre degeneration and regeneration as well as pain has recently resulted in the development of a more targeted approach to the treatment of diabetic neuropathy. Thus, specific NMDA receptor antagonists and more specific neuronal serotonin and norepinephrine (noradrenaline) uptake inhibitors offer promise in the treatment of painful diabetic neuropathy. A number of treatments which include the aldose reductase inhibitors and neurotrophins have failed to reach the clinical arena. However, the antioxidant alpha-lipoic acid, as well as compounds which correct vascular dysfunction and hence neuropathy, such as ACE inhibitors and protein kinase C-beta inhibitors, have demonstrated more success.
Collapse
Affiliation(s)
- Rayaz A Malik
- Department of Medicine, Manchester Royal Infirmary, Manchester, UK.
| |
Collapse
|
334
|
Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 2002; 30:620-50. [PMID: 12512863 DOI: 10.1080/01926230290166724] [Citation(s) in RCA: 1282] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) and other radicals are involved in a variety of biological phenomena, such as mutation, carcinogenesis, degenerative and other diseases, inflammation, aging, and development. ROS are well recognized for playing a dual role as deleterious and beneficial species. The objectives of this review are to describe oxidative stress phenomena, terminology, definitions, and basic chemical characteristics of the species involved; examine the biological targets susceptible to oxidation and the defense mechanisms of the organism against these reactive metabolites; and analyze methodologies, including immunohistochemical markers, used in toxicological pathology in the visualization of oxidative stress phenomena. Direct detection of ROS and other free radicals is difficult, because these molecules are short-lived and highly reactive in a nonspecific manner. Ongoing oxidative damage is, thus, generally analyzed by measurement of secondary products including derivatives of amino acids, nuclei acids, and lipid peroxidation. Attention has been focused on electrochemical methods based on voltammetry measurements for evaluating the total reducing power of biological fluids and tissues. This approach can function as a tool to assess the antioxidant-reducing profile of a biological site and follow changes in pathological situations. This review thus includes different topics essential for understanding oxidative stress phenomena and provides tools for those intending to conduct study and research in this field.
Collapse
Affiliation(s)
- Ron Kohen
- Department of Pharmaceutics, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel.
| | | |
Collapse
|
335
|
Hummel T, Heilmann S, Hüttenbriuk KB. Lipoic acid in the treatment of smell dysfunction following viral infection of the upper respiratory tract. Laryngoscope 2002; 112:2076-80. [PMID: 12439184 DOI: 10.1097/00005537-200211000-00031] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES/HYPOTHESIS The study aimed to investigate the potential therapeutic effects of alpha-lipoic acid in olfactory loss following infections of the upper respiratory tract. Possible mechanisms of actions include the release of nerve growth factor and antioxidative effects, both of which may be helpful in the regeneration of olfactory receptor neurons. STUDY DESIGN Unblinded, prospective clinical trial. METHODS A total of 23 patients participated (13 women, 10 men; mean age 57 y, age range 22-79 y; mean duration of olfactory loss, 14 mo; range, 4 to 33 mo); 19 of them were hyposmic and 4 had functional anosmia. Alpha-lipoic acid was used orally at a dose of 600 mg/day; it was prescribed for an average period of 4.5 months. Olfactory function was assessed using olfactory tests for phenyl ethyl alcohol odor threshold, odor discrimination, and odor identification. RESULTS Seven patients (30%) showed no change in olfactory function. Two patients (9%) exhibited a moderate decrease in olfactory function; in contrast, six patients (26%) showed moderate and eight patients (35%) remarkable increase in olfactory function. Two of the 4 patients with functional anosmia reached hyposmia; 5 of 19 hyposmic patients became normosmic. Overall, this resulted in a significant improvement in olfactory function following treatment (P =.002). At the end of treatment parosmias were less frequent (22%) than at the beginning of therapy (48%). Interestingly, recovery of olfactory function appeared to be more pronounced in younger patients than in patients above the age of 60 years (P =.018). CONCLUSIONS The results indicate that alpha-lipoic acid may be helpful in patients with olfactory loss after upper respiratory tract infection. However, to judge the true potential of this treatment, the outcome of double-blind, placebo-controlled studies in large groups of patients must be awaited, especially when considering the relatively high rate of spontaneous recovery in olfactory loss after upper respiratory tract infection.
Collapse
Affiliation(s)
- Thomas Hummel
- Department of Otorhinolaryngology, University of Dresden Medical School, Germany.
| | | | | |
Collapse
|
336
|
Abstract
PURPOSE OF REVIEW This review aims at presenting new concepts of glucose-induced damage in diabetes via an increased production of oxygen free radicals. RECENT FINDINGS Reactive oxygen species modulate various biological functions by stimulating transduction signals, some of which are involved in diabetes pathogenesis and complications. SUMMARY Diabetes is characterized by high glucose concentrations that lead, via several mechanisms (glucose autoxidation, stimulation of the polyol pathway, activation of the reduced form of nicotinamide adenine dinucleotide phosphate oxidase, and production of advanced glycation endproducts), to an increased production of reactive oxygen species. The resulting oxidative stress (the imbalance between reactive oxygen species production and the antioxidant defences) can play a key role in diabetes pathogenesis. Superoxide radicals generated by the reduced form of nicotinamide adenine dinucleotide phosphate oxidase may thus contribute to impaired endothelium-dependent vascular relaxation by the inactivation of nitric oxide, and more generally to vascular dysfunction, thereby contributing to accelerated atherosclerosis in diabetic patients. The increased production of reactive oxygen species induced by hyperglycaemia has also been suggested to be involved in platelet dysfunction, in tissue remodelling (via metalloproteinases), and in redox regulation of glucose transport in skeletal muscle. Beyond the classic treatments for diabetes, new therapeutic strategies involving antioxidants or anti-advanced glycation endproduct molecules are proposed. Future methods could take into account the signalling pathways and genes that are regulated by reactive oxygen species.
Collapse
Affiliation(s)
- Dominique Bonnefont-Rousselot
- Laboratoire de Biochimie Métabolique et Clinique, Faculté de Pharmacie; and Laboratoire de Biochimie B, Hôpital de la Salpêtrière, Paris, France.
| |
Collapse
|
337
|
Porras P, Pedrajas JR, Martínez-Galisteo E, Padilla CA, Johansson C, Holmgren A, Bárcena JA. Glutaredoxins catalyze the reduction of glutathione by dihydrolipoamide with high efficiency. Biochem Biophys Res Commun 2002; 295:1046-51. [PMID: 12135599 DOI: 10.1016/s0006-291x(02)00771-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutaredoxins (Grx) are small (approximately 12kDa) proteins which catalyze thiol disulfide oxidoreductions involving glutathione (GSH) and disulfides in proteins or small molecules. Here, we present data which demonstrate the ability of glutaredoxins to catalyze the reduction of oxidized glutathione (GSSG) by dihydrolipoamide (DHL), an important biological redox catalyst and synthetic antioxidant. We have designed a new assay method to quantify the rate of reduction of GSSG and other disulfides by reduced lipoamide and have tested a set of eight recombinant Grx from human, rat, yeast, and E. coli. Lipoamide dependent activity is highest with the large atypical E. coli Grx2 (k(cat)=3.235 min(-1)) and lowest for human mitochondrial Grx2a (k(cat)=96 min(-1)) covering a wider range than k(cat) for the standard reduction of hydroxyethyldisulfide (HED) by GSH (290-2.851 min(-1)). The lipoamide/HED activity ratio was highest for yeast Grx2 (1.25) and E. coli Grx2 and lowest for E. coli Grx1 (0.13). These results suggest a new role for Grxs as ancillary proteins that could shunt reducing equivalents from main catabolic pathways to recycling of GSSG via a lipoyl group, thus serving biochemical functions which involve GSH but without NAD(P)H consumption.
Collapse
Affiliation(s)
- Pablo Porras
- Department of Biochemistry and Molecular Biology, Campus de Rabanales, Edificio Severo Ochoa, 1(a) planta, University of Córdoba, 14071 Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
338
|
Moini H, Packer L, Saris NEL. Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid. Toxicol Appl Pharmacol 2002; 182:84-90. [PMID: 12127266 DOI: 10.1006/taap.2002.9437] [Citation(s) in RCA: 363] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Reactive oxygen (ROS) and nitrogen oxide (RNOS) species are produced as by-products of oxidative metabolism. A major function for ROS and RNOS is immunological host defense. Recent evidence indicate that ROS and RNOS may also function as signaling molecules. However, high levels of ROS and RNOS have been considered to potentially damage cellular macromolecules and have been implicated in the pathogenesis and progression of various chronic diseases. alpha-Lipoic acid and dihydrolipoic acid exhibit direct free radical scavenging properties and as a redox couple, with a low redox potential of -0.32 V, is a strong reductant. Several studies provided evidence that alpha-lipoic acid supplementation decreases oxidative stress and restores reduced levels of other antioxidants in vivo. However, there is also evidence indicating that alpha-lipoic acid and dihydrolipoic acid may exert prooxidant properties in vitro. alpha-Lipoic acid and dihydrolipoic acid were shown to promote the mitochondrial permeability transition in permeabilized hepatocytes and isolated rat liver mitochondria. Dihydrolipoic acid also stimulated superoxide anion production in rat liver mitochondria and submitochondrial particles. alpha-Lipoic acid was recently shown to stimulate glucose uptake into 3T3-L1 adipocytes by increasing intracellular oxidant levels and/or facilitating insulin receptor autophosphorylation presumably by oxidation of critical thiol groups present in the insulin receptor beta-subunit. Whether alpha-lipoic acid and/or dihydrolipoic acid-induced oxidative protein modifications contribute to their versatile effects observed in vivo warrants further investigation.
Collapse
Affiliation(s)
- Hadi Moini
- Department of Applied Chemistry and Microbiology, PB 56 Viikki Biocenter, FIN-00014, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
339
|
Johnson EA, Shvedova AA, Kisin E, O'Callaghan JP, Kommineni C, Miller DB. d-MDMA during vitamin E deficiency: effects on dopaminergic neurotoxicity and hepatotoxicity. Brain Res 2002; 933:150-63. [PMID: 11931860 DOI: 10.1016/s0006-8993(02)02313-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanism of 3,4-methylenedioxymethamphetamine (d-MDMA)-induced neurotoxicity may involve formation of toxic radical species. Endogenous defenses against toxic radical species include tissue stores of vitamin E, and thiols. We examined whether vitamin E deficiency could alter d-MDMA-induced neurotoxicity by administration of the drug to animals with diet induced vitamin E deficiency. Brain vitamin E levels in deficient mice were reduced 75% compared to sufficient animals. Animals received d-MDMA 5 or 10 mg/kg or saline (delivered every 2 hx4, s.c.). Diet slightly altered d-MDMA-induced temperature modulation. In brain, MDMA treatment reduced vitamin E, total antioxidant reserve and protein thiols 72 h after the first dose. In liver, MDMA treatment reduced glutathione and total antioxidant reserve at the same time point. The vitamin E-deficient group, treated with the low dose of d-MDMA, exhibited neurotoxic responses, including reduced striatal dopamine (47%) and elevated GFAP protein (3-fold): while the sufficient diet group was not altered. The higher d-MDMA dose caused neurotoxic responses in both diet groups. Liver toxicity was determined by histopathologic examination. d-MDMA caused hepatic necrosis that was more severe in vitamin E deficient than sufficient mice. These data indicate that (1) d-MDMA administration reduces antioxidant measures at a time coincident with d-MDMA-induced neuronal damage and (2) vitamin E deficiency increases susceptibility to d-MDMA-induced neurotoxicity and hepatic necrosis.
Collapse
Affiliation(s)
- Elizabeth Anne Johnson
- Chronic Stress Laboratory, Toxicology and Molecular Biology Branch, National Institute for Occupational Safety and Health/Centers for Disease Control, Mailstop 3014, 1095 Willowdale Road, 26505, Morgantown, WV, USA.
| | | | | | | | | | | |
Collapse
|