301
|
Liu Y, Chen S, Li Z, Morrison AC, Boerwinkle E, Lin X. ACAT: A Fast and Powerful p Value Combination Method for Rare-Variant Analysis in Sequencing Studies. Am J Hum Genet 2019; 104:410-421. [PMID: 30849328 PMCID: PMC6407498 DOI: 10.1016/j.ajhg.2019.01.002] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
Set-based analysis that jointly tests the association of variants in a group has emerged as a popular tool for analyzing rare and low-frequency variants in sequencing studies. The existing set-based tests can suffer significant power loss when only a small proportion of variants are causal, and their powers can be sensitive to the number, effect sizes, and effect directions of the causal variants and the choices of weights. Here we propose an aggregated Cauchy association test (ACAT), a general, powerful, and computationally efficient p value combination method for boosting power in sequencing studies. First, by combining variant-level p values, we use ACAT to construct a set-based test (ACAT-V) that is particularly powerful in the presence of only a small number of causal variants in a variant set. Second, by combining different variant-set-level p values, we use ACAT to construct an omnibus test (ACAT-O) that combines the strength of multiple complimentary set-based tests, including the burden test, sequence kernel association test (SKAT), and ACAT-V. Through analysis of extensively simulated data and the whole-genome sequencing data from the Atherosclerosis Risk in Communities (ARIC) study, we demonstrate that ACAT-V complements the SKAT and the burden test, and that ACAT-O has a substantially more robust and higher power than those of the alternative tests.
Collapse
Affiliation(s)
- Yaowu Liu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sixing Chen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zilin Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
302
|
Denny JC, Mosley JD. Disease Heritability Studies Harness the Healthcare System to Achieve Massive Scale. Cell 2019; 173:1568-1570. [PMID: 29906443 DOI: 10.1016/j.cell.2018.05.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heritability studies are essential for defining genetic influences on disease risk and trait variability. Polubriaginof et al. show how massive amounts of data contained in electronic health records can be used for heritability studies on hundreds of phenotypes. Mining emergency contact information with comparison to existing gold standards showcases the broad utility of the approach.
Collapse
Affiliation(s)
- Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Jonathan D Mosley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
303
|
Justice AE, Karaderi T, Highland HM, Young KL, Graff M, Lu Y, Turcot V, Auer PL, Fine RS, Guo X, Schurmann C, Lempradl A, Marouli E, Mahajan A, Winkler TW, Locke AE, Medina-Gomez C, Esko T, Vedantam S, Giri A, Lo KS, Alfred T, Mudgal P, Ng MCY, Heard-Costa NL, Feitosa MF, Manning AK, Willems SM, Sivapalaratnam S, Abecasis G, Alam DS, Allison M, Amouyel P, Arzumanyan Z, Balkau B, Bastarache L, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bottinger EP, Bowden DW, Brandslund I, Broer L, Burt AA, Butterworth AS, Caulfield MJ, Cesana G, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Collins FS, Cook JP, Cox AJ, Crosslin DS, Danesh J, de Bakker PIW, Denus SD, Mutsert RD, Dedoussis G, Demerath EW, Dennis JG, Denny JC, Di Angelantonio E, Dörr M, Drenos F, Dubé MP, Dunning AM, Easton DF, Elliott P, Evangelou E, Farmaki AE, Feng S, Ferrannini E, Ferrieres J, Florez JC, Fornage M, Fox CS, Franks PW, Friedrich N, Gan W, Gandin I, Gasparini P, Giedraitis V, Girotto G, Gorski M, Grallert H, Grarup N, Grove ML, Gustafsson S, Haessler J, Hansen T, Hattersley AT, et alJustice AE, Karaderi T, Highland HM, Young KL, Graff M, Lu Y, Turcot V, Auer PL, Fine RS, Guo X, Schurmann C, Lempradl A, Marouli E, Mahajan A, Winkler TW, Locke AE, Medina-Gomez C, Esko T, Vedantam S, Giri A, Lo KS, Alfred T, Mudgal P, Ng MCY, Heard-Costa NL, Feitosa MF, Manning AK, Willems SM, Sivapalaratnam S, Abecasis G, Alam DS, Allison M, Amouyel P, Arzumanyan Z, Balkau B, Bastarache L, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bottinger EP, Bowden DW, Brandslund I, Broer L, Burt AA, Butterworth AS, Caulfield MJ, Cesana G, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Collins FS, Cook JP, Cox AJ, Crosslin DS, Danesh J, de Bakker PIW, Denus SD, Mutsert RD, Dedoussis G, Demerath EW, Dennis JG, Denny JC, Di Angelantonio E, Dörr M, Drenos F, Dubé MP, Dunning AM, Easton DF, Elliott P, Evangelou E, Farmaki AE, Feng S, Ferrannini E, Ferrieres J, Florez JC, Fornage M, Fox CS, Franks PW, Friedrich N, Gan W, Gandin I, Gasparini P, Giedraitis V, Girotto G, Gorski M, Grallert H, Grarup N, Grove ML, Gustafsson S, Haessler J, Hansen T, Hattersley AT, Hayward C, Heid IM, Holmen OL, Hovingh GK, Howson JMM, Hu Y, Hung YJ, Hveem K, Ikram MA, Ingelsson E, Jackson AU, Jarvik GP, Jia Y, Jørgensen T, Jousilahti P, Justesen JM, Kahali B, Karaleftheri M, Kardia SLR, Karpe F, Kee F, Kitajima H, Komulainen P, Kooner JS, Kovacs P, Krämer BK, Kuulasmaa K, Kuusisto J, Laakso M, Lakka TA, Lamparter D, Lange LA, Langenberg C, Larson EB, Lee NR, Lee WJ, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin LA, Lin X, Lind L, Lindström J, Linneberg A, Liu CT, Liu DJ, Luan J, Lyytikäinen LP, MacGregor S, Mägi R, Männistö S, Marenne G, Marten J, Masca NGD, McCarthy MI, Meidtner K, Mihailov E, Moilanen L, Moitry M, Mook-Kanamori DO, Morgan A, Morris AP, Müller-Nurasyid M, Munroe PB, Narisu N, Nelson CP, Neville M, Ntalla I, O'Connell JR, Owen KR, Pedersen O, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JRB, Pers TH, Ewing A, Polasek O, Raitakari OT, Rasheed A, Raulerson CK, Rauramaa R, Reilly DF, Reiner AP, Ridker PM, Rivas MA, Robertson NR, Robino A, Rudan I, Ruth KS, Saleheen D, Salomaa V, Samani NJ, Schreiner PJ, Schulze MB, Scott RA, Segura-Lepe M, Sim X, Slater AJ, Small KS, Smith BH, Smith JA, Southam L, Spector TD, Speliotes EK, Stefansson K, Steinthorsdottir V, Stirrups KE, Strauch K, Stringham HM, Stumvoll M, Sun L, Surendran P, Swart KMA, Tardif JC, Taylor KD, Teumer A, Thompson DJ, Thorleifsson G, Thorsteinsdottir U, Thuesen BH, Tönjes A, Torres M, Tsafantakis E, Tuomilehto J, Uitterlinden AG, Uusitupa M, van Duijn CM, Vanhala M, Varma R, Vermeulen SH, Vestergaard H, Vitart V, Vogt TF, Vuckovic D, Wagenknecht LE, Walker M, Wallentin L, Wang F, Wang CA, Wang S, Wareham NJ, Warren HR, Waterworth DM, Wessel J, White HD, Willer CJ, Wilson JG, Wood AR, Wu Y, Yaghootkar H, Yao J, Yerges-Armstrong LM, Young R, Zeggini E, Zhan X, Zhang W, Zhao JH, Zhao W, Zheng H, Zhou W, Zillikens MC, Rivadeneira F, Borecki IB, Pospisilik JA, Deloukas P, Frayling TM, Lettre G, Mohlke KL, Rotter JI, Kutalik Z, Hirschhorn JN, Cupples LA, Loos RJF, North KE, Lindgren CM. Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nat Genet 2019; 51:452-469. [PMID: 30778226 PMCID: PMC6560635 DOI: 10.1038/s41588-018-0334-2] [Show More Authors] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/17/2018] [Indexed: 02/02/2023]
Abstract
Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
Collapse
Affiliation(s)
- Anne E Justice
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Weis Center for Research, Geisinger Health System, Danville, PA, USA
| | - Tugce Karaderi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valérie Turcot
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Rebecca S Fine
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adelheid Lempradl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Adam E Locke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carolina Medina-Gomez
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tõnu Esko
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Sailaja Vedantam
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Ayush Giri
- Department of Obstetrics and Gynecology, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Ken Sin Lo
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Tamuno Alfred
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Poorva Mudgal
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maggie C Y Ng
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nancy L Heard-Costa
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alisa K Manning
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard University Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Suthesh Sivapalaratnam
- Massachusetts General Hospital, Boston, MA, USA
- Department of Vascular Medicine, AMC, Amsterdam, The Netherlands
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Goncalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Dewan S Alam
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Canada
| | - Matthew Allison
- Department of Family Medicine & Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Philippe Amouyel
- INSERM U1167, Lille, France
- Institut Pasteur de Lille, U1167, Lille, France
- U1167-RID-AGE, Universite de Lille - Risk factors and molecular determinants of aging-related diseases, Lille, France
| | - Zorayr Arzumanyan
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Beverley Balkau
- INSERM U1018, Centre de recherche en Épidemiologie et Sante des Populations (CESP), Villejuif, France
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Blüher
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Jette Bork-Jensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald W Bowden
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Linda Broer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Amber A Burt
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Giancarlo Cesana
- Research Centre on Public Health, University of Milano-Bicocca, Monza, Italy
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Daniel I Chasman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women's and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rajiv Chowdhury
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's and Harvard Medical School, Boston, MA, USA
| | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Amanda J Cox
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - David S Crosslin
- Department of Biomedical Infomatics and Medical Education, University of Washington, Seattle, WA, USA
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
- British Heart Foundation Cambridge Centre of Excellence, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Paul I W de Bakker
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Simon de Denus
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Faculty of Pharmacy, Universite de Montreal, Montreal, Quebec, Canada
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Ellen W Demerath
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Joe G Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Josh C Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Emanuele Di Angelantonio
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cambridge Centre of Excellence, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Fotios Drenos
- Institute of Cardiovascular Science, University College London, London, UK
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
- Department of Life Sciences, Brunel University London, Uxbridge, UK
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Shuang Feng
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ele Ferrannini
- CNR Institute of Clinical Physiology, Pisa, Italy
- Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Jean Ferrieres
- Toulouse University School of Medicine, Toulouse, France
| | - Jose C Florez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard University Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmo, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
- Department of Public Health and Clinical Medicine, Unit of Medicine, Umeå University, Umeå, Sweden
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Wei Gan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ilaria Gandin
- Ilaria Gandin, Research Unit, AREA Science Park, Trieste, Italy
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Giorgia Girotto
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Harald Grallert
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jeff Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle WA, USA
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Oddgeir L Holmen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - G Kees Hovingh
- Department of Vascular Medicine, AMC, Amsterdam, The Netherlands
| | - Joanna M M Howson
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Yao Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health, Norwegian University of Science and Technology, Levanger, Norway
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Yucheng Jia
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Torben Jørgensen
- Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
| | | | - Johanne M Justesen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bratati Kahali
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Frank Kee
- UKCRC Centre of Excellence for Public Health Research, Queens University Belfast, Belfast, UK
| | - Hidetoshi Kitajima
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Jaspal S Kooner
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Peter Kovacs
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Bernhard K Krämer
- University Medical Centre Mannheim, 5th Medical Department, University of Heidelberg, Mannheim, Germany
| | - Kari Kuulasmaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - David Lamparter
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Verge Genomics, San Fransico, CA, USA
| | - Leslie A Lange
- Division of Biomedical and Personalized Medicine, Department of Medicine, University of Colorado-Denver, Aurora, CO, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Eric B Larson
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Nanette R Lee
- Department of Anthropology, Sociology, and History, University of San Carlos, Cebu City, Philippines
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Cora E Lewis
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huaixing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Li-An Lin
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Jaana Lindström
- National Institute for Health and Welfare, Helsinki, Finland
| | - Allan Linneberg
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, Finland
| | | | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Nicholas G D Masca
- Department of Cardiovascular Sciences, Univeristy of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Karina Meidtner
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | | | - Leena Moilanen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Marie Moitry
- Department of Epidemiology and Public Health, University of Strasbourg, Strasbourg, France
- Department of Public Health, University Hospital of Strasbourg, Strasbourg, France
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Morgan
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universitat, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Narisu Narisu
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, Univeristy of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Matt Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jeffrey R O'Connell
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katharine R Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Craig E Pennell
- Division of Obstetric and Gynaecology, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine (FIMM) and Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland
| | - James A Perry
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Tune H Pers
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ailith Ewing
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ozren Polasek
- School of Medicine, University of Split, Split, Croatia
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Asif Rasheed
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | | | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Dermot F Reilly
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Neil R Robertson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Antonietta Robino
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Katherine S Ruth
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Danish Saleheen
- Centre for Non-Communicable Diseases, Karachi, Pakistan
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, Univeristy of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Pamela J Schreiner
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Matthias B Schulze
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Marcelo Segura-Lepe
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Xueling Sim
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore
| | - Andrew J Slater
- Genetics, Target Sciences, GlaxoSmithKline, Research Triangle Park, NC, USA
- OmicSoft a QIAGEN Company, Cary, NC, USA
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Blair H Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lorraine Southam
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Elizabeth K Speliotes
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Kathleen E Stirrups
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Germany
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael Stumvoll
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Liang Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Praveen Surendran
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Karin M A Swart
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jean-Claude Tardif
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Betina H Thuesen
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
| | - Anke Tönjes
- Center for Pediatric Research, Department for Women's and Child Health, University of Leipzig, Leipzig, Germany
| | - Mina Torres
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | - Jaakko Tuomilehto
- National Institute for Health and Welfare, Helsinki, Finland
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
- Dasman Diabetes Institute, Dasman, Kuwait
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Matti Uusitupa
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | | | - Mauno Vanhala
- Central Finland Central Hospital, Jyvaskyla, Finland
- University of Eastern Finland, Kuopio, Finland
| | - Rohit Varma
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Sita H Vermeulen
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henrik Vestergaard
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Thomas F Vogt
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Dragana Vuckovic
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Walker
- Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle, UK
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology, Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Feijie Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Carol A Wang
- Division of Obstetric and Gynaecology, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Shuai Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | | | - Jennifer Wessel
- Departments of Epidemiology & Medicine, Diabetes Translational Research Center, Fairbanks School of Public Health & School of Medicine, Indiana University, Indiana, IN, USA
| | - Harvey D White
- Green Lane Cardiovascular Service, Auckland City Hospital and University of Auckland, Auckland, New Zealand
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ying Wu
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Laura M Yerges-Armstrong
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- GlaxoSmithKline, King of Prussia, PA, USA
| | - Robin Young
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- University of Glasgow, Glasgow, UK
| | | | - Xiaowei Zhan
- Department of Clinical Sciences, Quantitative Biomedical Research Center, Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weihua Zhang
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Wei Zhao
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - He Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - M Carola Zillikens
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ingrid B Borecki
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Guillaume Lettre
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Joel N Hirschhorn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | - L Adrienne Cupples
- NHLBI Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari E North
- Department of Epidemiology and Carolina Center of Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Li Ka Shing Centre for Health Information and Discovery, The Big Data Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
304
|
Yue S, Whalen P, Jee YH. Genetic regulation of linear growth. Ann Pediatr Endocrinol Metab 2019; 24:2-14. [PMID: 30943674 PMCID: PMC6449614 DOI: 10.6065/apem.2019.24.1.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Linear growth occurs at the growth plate. Therefore, genetic defects that interfere with the normal function of the growth plate can cause linear growth disorders. Many genetic causes of growth disorders have already been identified in humans. However, recent genome-wide approaches have broadened our knowledge of the mechanisms of linear growth, not only providing novel monogenic causes of growth disorders but also revealing single nucleotide polymorphisms in genes that affect height in the general population. The genes identified as causative of linear growth disorders are heterogeneous, playing a role in various growth-regulating mechanisms including those involving the extracellular matrix, intracellular signaling, paracrine signaling, endocrine signaling, and epigenetic regulation. Understanding the underlying genetic defects in linear growth is important for clinicians and researchers in order to provide proper diagnoses, management, and genetic counseling, as well as to develop better treatment approaches for children with growth disorders.
Collapse
Affiliation(s)
- Shanna Yue
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Philip Whalen
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Youn Hee Jee
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA,Address for correspondence: Youn Hee Jee, MD Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive MSC 1103, Bethesda, MD 20892-1103, USA Tel: +1-301-435-5834 Fax: +1-301-402-0574 E-mail:
| |
Collapse
|
305
|
Hauer NN, Popp B, Taher L, Vogl C, Dhandapany PS, Büttner C, Uebe S, Sticht H, Ferrazzi F, Ekici AB, De Luca A, Klinger P, Kraus C, Zweier C, Wiesener A, Jamra RA, Kunstmann E, Rauch A, Wieczorek D, Jung AM, Rohrer TR, Zenker M, Doerr HG, Reis A, Thiel CT. Evolutionary conserved networks of human height identify multiple Mendelian causes of short stature. Eur J Hum Genet 2019; 27:1061-1071. [PMID: 30809043 PMCID: PMC6777496 DOI: 10.1038/s41431-019-0362-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/14/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Height is a heritable and highly heterogeneous trait. Short stature affects 3% of the population and in most cases is genetic in origin. After excluding known causes, 67% of affected individuals remain without diagnosis. To identify novel candidate genes for short stature, we performed exome sequencing in 254 unrelated families with short stature of unknown cause and identified variants in 63 candidate genes in 92 (36%) independent families. Based on systematic characterization of variants and functional analysis including expression in chondrocytes, we classified 13 genes as strong candidates. Whereas variants in at least two families were detected for all 13 candidates, two genes had variants in 6 (UBR4) and 8 (LAMA5) families, respectively. To facilitate their characterization, we established a clustered network of 1025 known growth and short stature genes, which yielded 29 significantly enriched clusters, including skeletal system development, appendage development, metabolic processes, and ciliopathy. Eleven of the candidate genes mapped to 21 of these clusters, including CPZ, EDEM3, FBRS, IFT81, KCND1, PLXNA3, RASA3, SLC7A8, UBR4, USP45, and ZFHX3. Fifty additional growth-related candidates we identified await confirmation in other affected families. Our study identifies Mendelian forms of growth retardation as an important component of idiopathic short stature.
Collapse
Affiliation(s)
- Nadine N Hauer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Bernt Popp
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Leila Taher
- Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carina Vogl
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India.,The Knight Cardiovascular Institute, Departments of Medicine, Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Alessandro De Luca
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Patrizia Klinger
- Department of Orthopedic Rheumatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Antje Wiesener
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Erdmute Kunstmann
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Dagmar Wieczorek
- Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany.,Institute of Human-Genetics, Medical Faculty of University Düsseldorf, Düsseldorf, Germany
| | - Anna-Marie Jung
- Division of Pediatric Endocrinology, Department of General Pediatrics and Neonatology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Tilman R Rohrer
- Division of Pediatric Endocrinology, Department of General Pediatrics and Neonatology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Helmuth-Guenther Doerr
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Christian T Thiel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany.
| |
Collapse
|
306
|
Collett-Solberg PF, Jorge AAL, Boguszewski MCS, Miller BS, Choong CSY, Cohen P, Hoffman AR, Luo X, Radovick S, Saenger P. Growth hormone therapy in children; research and practice - A review. Growth Horm IGF Res 2019; 44:20-32. [PMID: 30605792 DOI: 10.1016/j.ghir.2018.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/24/2018] [Indexed: 01/15/2023]
Abstract
Short stature remains the most common reason for referral to a pediatric Endocrinologist and its management remains a challenge. One of the main controversies is the diagnosis of idiopathic short stature and the role of new technologies for genetic investigation of children with inadequate growth. Complexities in management of children with short stature includes selection of who should receive interventions such as recombinant human growth hormone, and how should this agent dose be adjusted during treatment. Should anthropometrical data be the primary determinant or should biochemical and genetic data be used to improve growth response and safety? Furthermore, what is considered a suboptimal response to growth hormone therapy and how should this be managed? Treatment of children with short stature remains a "hot" topic and more data is needed in several areas. These issues are reviewed in this paper.
Collapse
Affiliation(s)
- Paulo Ferrez Collett-Solberg
- Pediatric Endocrinology, Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil.
| | - Alexander A L Jorge
- Faculdade de Medicina, Universidade de São Paulo (FMUSP), the Endocrinology Division/Genetic Endocrinology Unit (LIM 25), Brazil.
| | | | - Bradley S Miller
- Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, USA.
| | - Catherine Seut Yhoke Choong
- Division of Pediatrics School of Medicine, Perth Childrens Hospital, University of Western Australia, Australia.
| | - Pinchas Cohen
- Dean, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Andrew R Hoffman
- Senior Vice Chair for Academic Affairs, Department of Medicine, Stanford University, USA.
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Sally Radovick
- Department of Pediatrics, Senior Associate Dean for Clinical and Translational Research, Robert Wood Johnson Medical School, USA.
| | - Paul Saenger
- New York University Winthrop Hospital, 101 Mineola Boulevard, Mineola, NY 11201, USA.
| |
Collapse
|
307
|
Sallis H, Davey Smith G, Munafò MR. Genetics of biologically based psychological differences. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0162. [PMID: 29483347 PMCID: PMC5832687 DOI: 10.1098/rstb.2017.0162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2017] [Indexed: 01/21/2023] Open
Abstract
In recent years, substantial effort has gone into disentangling the genetic contribution to individual differences in behaviour (such as personality and temperament traits). Heritability estimates from twin and family studies, and more recently using whole genome approaches, suggest a substantial genetic component to these traits. However, efforts to identify the genes that influence these traits have had relatively little success. Here, we review current work investigating the heritability of individual differences in behavioural traits and provide an overview of the results from genome-wide association analyses of these traits to date. In addition, we discuss the implications of these findings for the potential applications of Mendelian randomization.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'.
Collapse
Affiliation(s)
- Hannah Sallis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK .,UK Centre for Tobacco and Alcohol Studies, School of Experimental Psychology, University of Bristol, Bristol, UK.,Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,UK Centre for Tobacco and Alcohol Studies, School of Experimental Psychology, University of Bristol, Bristol, UK
| |
Collapse
|
308
|
Timmers PR, Mounier N, Lall K, Fischer K, Ning Z, Feng X, Bretherick AD, Clark DW, Shen X, Esko T, Kutalik Z, Wilson JF, Joshi PK. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. eLife 2019; 8:39856. [PMID: 30642433 PMCID: PMC6333444 DOI: 10.7554/elife.39856] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
We use a genome-wide association of 1 million parental lifespans of genotyped subjects and data on mortality risk factors to validate previously unreplicated findings near CDKN2B-AS1, ATXN2/BRAP, FURIN/FES, ZW10, PSORS1C3, and 13q21.31, and identify and replicate novel findings near ABO, ZC3HC1, and IGF2R. We also validate previous findings near 5q33.3/EBF1 and FOXO3, whilst finding contradictory evidence at other loci. Gene set and cell-specific analyses show that expression in foetal brain cells and adult dorsolateral prefrontal cortex is enriched for lifespan variation, as are gene pathways involving lipid proteins and homeostasis, vesicle-mediated transport, and synaptic function. Individual genetic variants that increase dementia, cardiovascular disease, and lung cancer - but not other cancers - explain the most variance. Resulting polygenic scores show a mean lifespan difference of around five years of life across the deciles. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Paul Rhj Timmers
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Ninon Mounier
- Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kristi Lall
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.,Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Krista Fischer
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.,Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Zheng Ning
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Xiao Feng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Andrew D Bretherick
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David W Clark
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Xia Shen
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.,Broad Institute of Harvard and MIT, Cambridge, United States
| | - Zoltán Kutalik
- Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - James F Wilson
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom.,Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
309
|
Karanth S, Schlegel A. The Monocarboxylate Transporter SLC16A6 Regulates Adult Length in Zebrafish and Is Associated With Height in Humans. Front Physiol 2019; 9:1936. [PMID: 30692937 PMCID: PMC6339906 DOI: 10.3389/fphys.2018.01936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/21/2018] [Indexed: 02/04/2023] Open
Abstract
When fasted as larvae or fed ketogenic diets as adults, homozygous zebrafish slc16a6a mutants develop hepatic steatosis because their livers cannot export the major ketone body β-hydroxybutyrate, diverting liver-trapped ketogenic carbon atoms to triacylglycerol. Here, we find that slc16a6a mutants are longer than their wild-type siblings. This effect is largely not sexually dimorphic, nor is it affected by dietary fat content on a pure genetic background. A mixed genetic background alters the proportionality of mass to length modestly. We also observe that non-coding variations in the 5′-untranslated region and first intron, and coding variations within the fifth exon of the orthologous human gene locus SLC16A6 are highly significantly associated with human height. Since both zebrafish and human orthologs of SLC16A6 are expressed in multiple locations, this gene likely regulates height through modulating transport of monocarboxylic acids in several tissues.
Collapse
Affiliation(s)
- Santhosh Karanth
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, United States.,Division of Endocrinology, Metabolism & Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Amnon Schlegel
- University of Utah Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, United States.,Division of Endocrinology, Metabolism & Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States.,Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
310
|
Deleterious Mutation Burden and Its Association with Complex Traits in Sorghum ( Sorghum bicolor). Genetics 2019; 211:1075-1087. [PMID: 30622134 PMCID: PMC6404259 DOI: 10.1534/genetics.118.301742] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/22/2018] [Indexed: 11/18/2022] Open
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is a major staple food cereal for millions of people worldwide. Valluru et al. identify putative deleterious mutations among ∼5.5M segregating variants of 229 diverse sorghum... Sorghum (Sorghum bicolor L.) is a major food cereal for millions of people worldwide. The sorghum genome, like other species, accumulates deleterious mutations, likely impacting its fitness. The lack of recombination, drift, and the coupling with favorable loci impede the removal of deleterious mutations from the genome by selection. To study how deleterious variants impact phenotypes, we identified putative deleterious mutations among ∼5.5 M segregating variants of 229 diverse biomass sorghum lines. We provide the whole-genome estimate of the deleterious burden in sorghum, showing that ∼33% of nonsynonymous substitutions are putatively deleterious. The pattern of mutation burden varies appreciably among racial groups. Across racial groups, the mutation burden correlated negatively with biomass, plant height, specific leaf area (SLA), and tissue starch content (TSC), suggesting that deleterious burden decreases trait fitness. Putatively deleterious variants explain roughly one-half of the genetic variance. However, there is only moderate improvement in total heritable variance explained for biomass (7.6%) and plant height (average of 3.1% across all stages). There is no advantage in total heritable variance for SLA and TSC. The contribution of putatively deleterious variants to phenotypic diversity therefore appears to be dependent on the genetic architecture of traits. Overall, these results suggest that incorporating putatively deleterious variants into genomic models slightly improves prediction accuracy because of extensive linkage. Knowledge of deleterious variants could be leveraged for sorghum breeding through either genome editing and/or conventional breeding that focuses on the selection of progeny with fewer deleterious alleles.
Collapse
|
311
|
Argente J, Tatton-Brown K, Lehwalder D, Pfäffle R. Genetics of Growth Disorders-Which Patients Require Genetic Testing? Front Endocrinol (Lausanne) 2019; 10:602. [PMID: 31555216 PMCID: PMC6742727 DOI: 10.3389/fendo.2019.00602] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
The second 360° European Meeting on Growth Hormone Disorders, held in Barcelona, Spain, in June 2017, included a session entitled Pragmatism vs. Curiosity in Genetic Diagnosis of Growth Disorders, which examined current concepts of genetics and growth in the clinical setting, in terms of both growth failure and overgrowth. For patients with short stature, multiple genes have been identified that result in GH deficiency, which may be isolated or associated with additional pituitary hormone deficiencies, or in growth hormone resistance, primary insulin-like growth factor (IGF) acid-labile subunit deficiency, IGF-I deficiency, IGF-II deficiency, IGF-I resistance, and primary PAPP-A2 deficiency. While genetic causes of short stature were previously thought to primarily be associated with the GH-IGF-I axis, it is now established that multiple genetic anomalies not associated with the GH-IGF-I axis can result in short stature. A number of genetic anomalies have also been shown to be associated with overgrowth, some of which involve the GH-IGF-I axis. In patients with overgrowth in combination with an intellectual disability, two predominant gene families, the epigenetic regulator genes, and PI3K/AKT pathway genes, have now been identified. Specific processes should be followed for decisions on which patients require genetic testing and which genes should be examined for anomalies. The decision to carry out genetic testing should be directed by the clinical process, not merely for research purposes. The intention of genetic testing should be to direct the clinical options for management of the growth disorder.
Collapse
Affiliation(s)
- Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III and IMDEA Institute, Madrid, Spain
- *Correspondence: Jesús Argente
| | - Katrina Tatton-Brown
- Institute of Cancer Research, St George's University Hospital NHS Foundation Trust, London and St George's University of London, London, United Kingdom
| | - Dagmar Lehwalder
- Global Medical Affairs, Merck Healthcare KGaA, Darmstadt, Germany
| | - Roland Pfäffle
- Department of Pediatrics, University of Leipzig, Leipzig, Germany
- Roland Pfäffle
| |
Collapse
|
312
|
Gong H, Xiao S, Li W, Huang T, Huang X, Yan G, Huang Y, Qiu H, Jiang K, Wang X, Zhang H, Tang J, Li L, Li Y, Wang C, Qiao C, Ren J, Huang L, Yang B. Unravelling the genetic loci for growth and carcass traits in Chinese Bamaxiang pigs based on a 1.4 million SNP array. J Anim Breed Genet 2019; 136:3-14. [PMID: 30417949 DOI: 10.1111/jbg.12365] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/29/2018] [Accepted: 09/22/2018] [Indexed: 12/21/2022]
Abstract
Bamaxiang pig is from Guangxi province in China, characterized by its small body size and two-end black coat colour. It is an important indigenous breed for local pork market and excellent animal model for biomedical research. In this study, we performed genomewide association studies (GWAS) on 43 growth and carcass traits in 315 purebred Bamaxiang pigs based on a 1.4 million SNP array. We observed considerable phenotypic variability in the growth and carcass traits in the Bamaxiang pigs. The corresponding SNP based heritability varied greatly across the 43 traits and ranged from 9.0% to 88%. Through a conditional GWAS, we identified 53 significant associations for 35 traits at p value threshold of 10-6 . Among which, 26 associations on chromosome 3, 7, 14 and X passed a genomewide significance threshold of 5 × 10-8 . The most remarkable loci were at around 30.6 Mb on chromosome 7, which had growth stage-dependent effects on body lengths and cannon circumferences and showed large effects on multiple carcass traits. We discussed HMGA1 NUDT3, EIF2AK1, TMEM132C and AFF2 that near the lead SNP of significant loci as plausible candidate genes for corresponding traits. We also showed that including phenotypic covariate in GWAS can help to reveal additional significant loci for the target traits. The results provide insight into the genetic architecture of growth and carcass traits in Bamaxiang pigs.
Collapse
Affiliation(s)
- Huanfa Gong
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wanbo Li
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tao Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaochang Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guorong Yan
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yizhong Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Hengqing Qiu
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Kai Jiang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaopeng Wang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Hui Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jianhong Tang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lin Li
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yiping Li
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chenbin Wang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chuanmin Qiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jun Ren
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bin Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
313
|
|
314
|
Dobolyi A, Lékó AH. The insulin-like growth factor-1 system in the adult mammalian brain and its implications in central maternal adaptation. Front Neuroendocrinol 2019; 52:181-194. [PMID: 30552909 DOI: 10.1016/j.yfrne.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/04/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Our knowledge on the bioavailability and actions of insulin-like growth factor-1 (IGF-1) has markedly expanded in recent years as novel mechanisms were discovered on IGF binding proteins (IGFBPs) and their ability to release IGF-1. The new discoveries allowed a better understanding of the endogenous physiological actions of IGF-1 and also its applicability in therapeutics. The focus of the present review is to summarize novel findings on the neuronal, neuroendocrine and neuroplastic actions of IGF-1 in the adult brain. As most of the new regulatory mechanisms were described in the periphery, their implications on brain IGF system will also be covered. In addition, novel findings on the effects of IGF-1 on lactation and maternal behavior are described. Based on the enormous neuroplastic changes related to the peripartum period, IGF-1 has great but largely unexplored potential in maternal adaptation of the brain, which is highlighted in the present review.
Collapse
Affiliation(s)
- Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| | - András H Lékó
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
315
|
Al-Khersan H, Kwong A, Grassi MA. Mutations in MERTK are not associated with age-related macular degeneration. Int Ophthalmol 2019; 39:63-67. [PMID: 29299721 PMCID: PMC6092259 DOI: 10.1007/s10792-017-0789-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE To assess whether mutations in Mer tyrosine kinase (MERTK) are associated with age-related macular degeneration (AMD). METHODS An association study using whole-genome sequencing was performed to determine whether rare variants in MERTK are associated with AMD. The data set included 4787 propensity score-matched case-control samples: 2394 AMD cases and 2393 controls. Whole-genome sequencing was performed and variants in MERTK were identified. Combined annotation-dependent depletion (CADD) scores and allele frequencies were calculated for each variant identified in MERTK. Student's t-test was used to assess the mean number of MERTK variants per subject between case and control cohorts (Bonferroni adjusted α = 0.0125). The number of subjects carrying at least one high CADD score loss-of-function or nonsynonymous mutation in each cohort was compared using Fisher's exact test (p < 0.05). RESULTS No significant difference was found in the mean number of MERTK variants in AMD versus control subjects (p = 0.0502). Additionally, there was no significant difference between cohorts in the number of subjects with at least one high CADD score loss-of-function or nonsynonymous variant (p = 0.15 at CADD > 10 and p = 0.91 at CADD > 20). CONCLUSIONS The present study provides a meaningfully negative result demonstrating that rare variants in MERTK are not associated with AMD. The study also demonstrates the role of large sample size genetic studies utilizing whole-genome sequencing as a powerful tool that can resolve clinically relevant questions regarding the genetic basis of ophthalmic disease.
Collapse
Affiliation(s)
- Hasenin Al-Khersan
- Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
| | - Alan Kwong
- Department of Biostatistics and the Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael A Grassi
- Grassi Retina, 1012 95th St., Suite 9, Naperville, IL, 60564, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
316
|
Abstract
A genome-wide association study (GWAS) seeks to identify genetic variants that contribute to the development and progression of a specific disease. Over the past 10 years, new approaches using mixed models have emerged to mitigate the deleterious effects of population structure and relatedness in association studies. However, developing GWAS techniques to accurately test for association while correcting for population structure is a computational and statistical challenge. Using laboratory mouse strains as an example, our review characterizes the problem of population structure in association studies and describes how it can cause false positive associations. We then motivate mixed models in the context of unmodeled factors.
Collapse
Affiliation(s)
- Jae Hoon Sul
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lana S. Martin
- Department of Computer Science, University of California, Los Angeles, California, United States of America
| | - Eleazar Eskin
- Department of Computer Science, University of California, Los Angeles, California, United States of America
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
317
|
Lokau J, Garbers C. Activating mutations of the gp130/JAK/STAT pathway in human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:283-309. [PMID: 31036294 DOI: 10.1016/bs.apcsb.2018.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytokines of the interleukin-6 (IL-6) family are involved in numerous physiological and pathophysiological processes. Dysregulated and increased activities of its members can be found in practically all human inflammatory diseases including cancer. All cytokines activate several intracellular signaling cascades, including the Jak/STAT, MAPK, PI3K, and Src/YAP signaling pathways. Additionally, several mutations in proteins involved in these signaling cascades have been identified in human patients, which render these proteins constitutively active and result in a hyperactivation of the signaling pathway. Interestingly, some of these mutations are associated with or even causative for distinct human diseases, making them interesting targets for therapy. This chapter describes the basic biology of the gp130/Jak/STAT pathway, summarizes what is known about the molecular mechanisms of the activating mutations, and gives an outlook how this knowledge can be exploited for targeted therapy in human diseases.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
318
|
Mitrovič M, Patsopoulos NA, Beecham AH, Dankowski T, Goris A, Dubois B, D’hooghe MB, Lemmens R, Van Damme P, Søndergaard HB, Sellebjerg F, Sorensen PS, Ullum H, Thørner LW, Werge T, Saarela J, Cournu-Rebeix I, Damotte V, Fontaine B, Guillot-Noel L, Lathrop M, Vukusik S, Gourraud PA, Andlauer TF, Pongratz V, Buck D, Gasperi C, Bayas A, Heesen C, Kümpfel T, Linker R, Paul F, Stangel M, Tackenberg B, Bergh FT, Warnke C, Wiendl H, Wildemann B, Zettl U, Ziemann U, Tumani H, Gold R, Grummel V, Hemmer B, Knier B, Lill CM, Luessi F, Dardiotis E, Agliardi C, Barizzone N, Mascia E, Bernardinelli L, Comi G, Cusi D, Esposito F, Ferrè L, Comi C, Galimberti D, Leone MA, Sorosina M, Mescheriakova J, Hintzen R, van Duijn C, Teunissen CE, Bos SD, Myhr KM, Celius EG, Lie BA, Spurkland A, Comabella M, Montalban X, Alfredsson L, Stridh P, Hillert J, Jagodic M, Piehl F, Jelčić I, Martin R, Sospedra M, Ban M, Hawkins C, Hysi P, Kalra S, Karpe F, Khadake J, Lachance G, Neville M, Santaniello A, Caillier SJ, Calabresi PA, Cree BA, Cross A, Davis MF, Haines JL, de Bakker PI, Delgado S, Dembele M, Edwards K, Fitzgerald KC, Hakonarson H, et alMitrovič M, Patsopoulos NA, Beecham AH, Dankowski T, Goris A, Dubois B, D’hooghe MB, Lemmens R, Van Damme P, Søndergaard HB, Sellebjerg F, Sorensen PS, Ullum H, Thørner LW, Werge T, Saarela J, Cournu-Rebeix I, Damotte V, Fontaine B, Guillot-Noel L, Lathrop M, Vukusik S, Gourraud PA, Andlauer TF, Pongratz V, Buck D, Gasperi C, Bayas A, Heesen C, Kümpfel T, Linker R, Paul F, Stangel M, Tackenberg B, Bergh FT, Warnke C, Wiendl H, Wildemann B, Zettl U, Ziemann U, Tumani H, Gold R, Grummel V, Hemmer B, Knier B, Lill CM, Luessi F, Dardiotis E, Agliardi C, Barizzone N, Mascia E, Bernardinelli L, Comi G, Cusi D, Esposito F, Ferrè L, Comi C, Galimberti D, Leone MA, Sorosina M, Mescheriakova J, Hintzen R, van Duijn C, Teunissen CE, Bos SD, Myhr KM, Celius EG, Lie BA, Spurkland A, Comabella M, Montalban X, Alfredsson L, Stridh P, Hillert J, Jagodic M, Piehl F, Jelčić I, Martin R, Sospedra M, Ban M, Hawkins C, Hysi P, Kalra S, Karpe F, Khadake J, Lachance G, Neville M, Santaniello A, Caillier SJ, Calabresi PA, Cree BA, Cross A, Davis MF, Haines JL, de Bakker PI, Delgado S, Dembele M, Edwards K, Fitzgerald KC, Hakonarson H, Konidari I, Lathi E, Manrique CP, Pericak-Vance MA, Piccio L, Schaefer C, McCabe C, Weiner H, Goldstein J, Olsson T, Hadjigeorgiou G, Taylor B, Tajouri L, Charlesworth J, Booth DR, Harbo HF, Ivinson AJ, Hauser SL, Compston A, Stewart G, Zipp F, Barcellos LF, Baranzini SE, Martinelli-Boneschi F, D’Alfonso S, Ziegler A, Oturai A, McCauley JL, Sawcer SJ, Oksenberg JR, De Jager PL, Kockum I, Hafler DA, Cotsapas C. Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell 2018; 175:1679-1687.e7. [PMID: 30343897 PMCID: PMC6269166 DOI: 10.1016/j.cell.2018.09.049] [Show More Authors] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis is a complex neurological disease, with ∼20% of risk heritability attributable to common genetic variants, including >230 identified by genome-wide association studies. Multiple strands of evidence suggest that much of the remaining heritability is also due to additive effects of common variants rather than epistasis between these variants or mutations exclusive to individual families. Here, we show in 68,379 cases and controls that up to 5% of this heritability is explained by low-frequency variation in gene coding sequence. We identify four novel genes driving MS risk independently of common-variant signals, highlighting key pathogenic roles for regulatory T cell homeostasis and regulation, IFNγ biology, and NFκB signaling. As low-frequency variants do not show substantial linkage disequilibrium with other variants, and as coding variants are more interpretable and experimentally tractable than non-coding variation, our discoveries constitute a rich resource for dissecting the pathobiology of MS.
Collapse
|
319
|
Abstract
Sample automation and management is increasingly important as the number and size of population-scale and high-throughput projects grow. This is particularly the case in large-scale population studies where sample size is far outpacing the commonly used 96-well plate format. To facilitate management and transfer of samples in this format, we present Samasy, a web-based application for the construction of a sample database, intuitive display of sample and batch information, and facilitation of automated sample transfer or subset. Samasy is designed with ease-of-use in mind, can be quickly set up, and runs in any web browser.
Collapse
|
320
|
Polygenic adaptation and convergent evolution on growth and cardiac genetic pathways in African and Asian rainforest hunter-gatherers. Proc Natl Acad Sci U S A 2018; 115:E11256-E11263. [PMID: 30413626 DOI: 10.1073/pnas.1812135115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Different human populations facing similar environmental challenges have sometimes evolved convergent biological adaptations, for example, hypoxia resistance at high altitudes and depigmented skin in northern latitudes on separate continents. The "pygmy" phenotype (small adult body size), characteristic of hunter-gatherer populations inhabiting both African and Asian tropical rainforests, is often highlighted as another case of convergent adaptation in humans. However, the degree to which phenotypic convergence in this polygenic trait is due to convergent versus population-specific genetic changes is unknown. To address this question, we analyzed high-coverage sequence data from the protein-coding portion of the genomes of two pairs of populations: Batwa rainforest hunter-gatherers and neighboring Bakiga agriculturalists from Uganda and Andamanese rainforest hunter-gatherers and Brahmin agriculturalists from India. We observed signatures of convergent positive selection between the rainforest hunter-gatherers across the set of genes with "growth factor binding" functions ([Formula: see text]). Unexpectedly, for the rainforest groups, we also observed convergent and population-specific signatures of positive selection in pathways related to cardiac development (e.g., "cardiac muscle tissue development"; [Formula: see text]). We hypothesize that the growth hormone subresponsiveness likely underlying the adult small body-size phenotype may have led to compensatory changes in cardiac pathways, in which this hormone also plays an essential role. Importantly, in the agriculturalist populations, we did not observe similar patterns of positive selection on sets of genes associated with growth or cardiac development, indicating our results most likely reflect a history of convergent adaptation to the similar ecology of rainforests rather than a more general evolutionary pattern.
Collapse
|
321
|
Klarin D, Damrauer SM, Cho K, Sun YV, Teslovich TM, Honerlaw J, Gagnon DR, DuVall SL, Li J, Peloso GM, Chaffin M, Small AM, Huang J, Tang H, Lynch JA, Ho YL, Liu DJ, Emdin CA, Li AH, Huffman JE, Lee JS, Natarajan P, Chowdhury R, Saleheen D, Vujkovic M, Baras A, Pyarajan S, Di Angelantonio E, Neale BM, Naheed A, Khera AV, Danesh J, Chang KM, Abecasis G, Willer C, Dewey FE, Carey DJ, Concato J, Gaziano JM, O'Donnell CJ, Tsao PS, Kathiresan S, Rader DJ, Wilson PWF, Assimes TL. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat Genet 2018; 50:1514-1523. [PMID: 30275531 PMCID: PMC6521726 DOI: 10.1038/s41588-018-0222-9] [Citation(s) in RCA: 447] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023]
Abstract
The Million Veteran Program (MVP) was established in 2011 as a national research initiative to determine how genetic variation influences the health of US military veterans. Here we genotyped 312,571 MVP participants using a custom biobank array and linked the genetic data to laboratory and clinical phenotypes extracted from electronic health records covering a median of 10.0 years of follow-up. Among 297,626 veterans with at least one blood lipid measurement, including 57,332 black and 24,743 Hispanic participants, we tested up to around 32 million variants for association with lipid levels and identified 118 novel genome-wide significant loci after meta-analysis with data from the Global Lipids Genetics Consortium (total n > 600,000). Through a focus on mutations predicted to result in a loss of gene function and a phenome-wide association study, we propose novel indications for pharmaceutical inhibitors targeting PCSK9 (abdominal aortic aneurysm), ANGPTL4 (type 2 diabetes) and PDE3B (triglycerides and coronary disease).
Collapse
Affiliation(s)
- Derek Klarin
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Boston VA Healthcare System, Boston, MA, USA
| | - Scott M Damrauer
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Jacqueline Honerlaw
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - David R Gagnon
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Scott L DuVall
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jin Li
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Mark Chaffin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aeron M Small
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jie Huang
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie A Lynch
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- University of Massachusetts College of Nursing and Health Sciences, Boston, MA, USA
| | - Yuk-Lam Ho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Institute of Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Connor A Emdin
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jennifer E Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Jennifer S Lee
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajiv Chowdhury
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Danish Saleheen
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marijana Vujkovic
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Saiju Pyarajan
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emanuele Di Angelantonio
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Benjamin M Neale
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aliya Naheed
- Initiative for Noncommunicable Diseases, Health Systems and Population Studies Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Amit V Khera
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John Danesh
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyong-Mi Chang
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gonçalo Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Cristen Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | | | - John Concato
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Clinical Epidemiology Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Christopher J O'Donnell
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Philip S Tsao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter W F Wilson
- Atlanta VA Medical Center, Decatur, GA, USA
- Emory Clinical Cardiovascular Research Institute, Atlanta, GA, USA
| | - Themistocles L Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
322
|
Gazal S, Loh PR, Finucane HK, Ganna A, Schoech A, Sunyaev S, Price AL. Functional architecture of low-frequency variants highlights strength of negative selection across coding and non-coding annotations. Nat Genet 2018; 50:1600-1607. [PMID: 30297966 PMCID: PMC6236676 DOI: 10.1038/s41588-018-0231-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/07/2018] [Indexed: 12/26/2022]
Abstract
Common variant heritability has been widely reported to be concentrated in variants within cell-type-specific non-coding functional annotations, but little is known about low-frequency variant functional architectures. We partitioned the heritability of both low-frequency (0.5%≤ minor allele frequency <5%) and common (minor allele frequency ≥5%) variants in 40 UK Biobank traits across a broad set of functional annotations. We determined that non-synonymous coding variants explain 17 ± 1% of low-frequency variant heritability ([Formula: see text]) versus 2.1 ± 0.2% of common variant heritability ([Formula: see text]). Cell-type-specific non-coding annotations that were significantly enriched for [Formula: see text] of corresponding traits were similarly enriched for [Formula: see text] for most traits, but more enriched for brain-related annotations and traits. For example, H3K4me3 marks in brain dorsolateral prefrontal cortex explain 57 ± 12% of [Formula: see text] versus 12 ± 2% of [Formula: see text] for neuroticism. Forward simulations confirmed that low-frequency variant enrichment depends on the mean selection coefficient of causal variants in the annotation, and can be used to predict effect size variance of causal rare variants (minor allele frequency <0.5%).
Collapse
Affiliation(s)
- Steven Gazal
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hilary K Finucane
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Schmidt Fellows Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrea Ganna
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Armin Schoech
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shamil Sunyaev
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Alkes L Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
323
|
Campbell RF, McGrath PT, Paaby AB. Analysis of Epistasis in Natural Traits Using Model Organisms. Trends Genet 2018; 34:883-898. [PMID: 30166071 PMCID: PMC6541385 DOI: 10.1016/j.tig.2018.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/06/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022]
Abstract
The ability to detect and understand epistasis in natural populations is important for understanding how biological traits are influenced by genetic variation. However, identification and characterization of epistasis in natural populations remains difficult due to statistical issues that arise as a result of multiple comparisons, and the fact that most genetic variants segregate at low allele frequencies. In this review, we discuss how model organisms may be used to manipulate genotypic combinations to power the detection of epistasis as well as test interactions between specific genes. Findings from a number of species indicate that statistical epistasis is pervasive between natural genetic variants. However, the properties of experimental systems that enable analysis of epistasis also constrain extrapolation of these results back into natural populations.
Collapse
Affiliation(s)
- Richard F Campbell
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| | - Patrick T McGrath
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332 USA; Department of Physics, Georgia Institute of Technology, Atlanta, GA, 30332 USA.
| | - Annalise B Paaby
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| |
Collapse
|
324
|
Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis. Nat Genet 2018; 50:1681-1687. [PMID: 30374069 DOI: 10.1038/s41588-018-0247-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
Osteoarthritis has a highly negative impact on quality of life because of the associated pain and loss of joint function. Here we describe the largest meta-analysis so far of osteoarthritis of the hip and the knee in samples from Iceland and the UK Biobank (including 17,151 hip osteoarthritis patients, 23,877 knee osteoarthritis patients, and more than 562,000 controls). We found 23 independent associations at 22 loci in the additive meta-analyses, of which 16 of the loci were novel: 12 for hip and 4 for knee osteoarthritis. Two associations are between rare or low-frequency missense variants and hip osteoarthritis, affecting the genes SMO (rs143083812, frequency 0.11%, odds ratio (OR) = 2.8, P = 7.9 × 10-12, p.Arg173Cys) and IL11 (rs4252548, frequency 2.08%, OR = 1.30, P = 2.1 × 10-11, p.Arg112His). A common missense variant in the COL11A1 gene also associates with hip osteoarthritis (rs3753841, frequency 61%, P = 5.2 × 10-10, OR = 1.08, p.Pro1284Leu). In addition, using a recessive model, we confirm an association between hip osteoarthritis and a variant of CHADL1 (rs117018441, P = 1.8 × 10-25, OR = 5.9). Furthermore, we observe a complex relationship between height and risk of osteoarthritis.
Collapse
|
325
|
Zhao Y, Liang X, Zhu F, Wen Y, Xu J, Yang J, Ding M, Cheng B, Ma M, Zhang L, Cheng S, Wu C, Wang S, Wang X, Ning Y, Guo X, Zhang F. A large-scale integrative analysis of GWAS and common meQTLs across whole life course identifies genes, pathways and tissue/cell types for three major psychiatric disorders. Neurosci Biobehav Rev 2018; 95:347-352. [PMID: 30339835 DOI: 10.1016/j.neubiorev.2018.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/25/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD), bipolar disorder (BP) and schizophrenia (SCZ) are complex psychiatric disorders. We conducted a large-scale integrative analysis of genome-wide association studies (GWAS) and life course consistent methylation quantitative trait loci (meQTLs) datasets. The GWAS data of ADHD (including 20,183 cases and 35,191 controls), BP (including 7481 cases and 9250 controls) and SCZ (including 36,989 cases and 113,075 controls) were derived from published GWAS. Life course consistent meQTLs dataset was obtained from a longitudinal meQTLs analysis of 1018 mother-child pairs. Gene prioritization, pathway and tissue/cell type enrichment analysis were conducted by DEPICT. We identified multiple genes and pathways with common or disease specific effects, such as NISCH (P = 9.87 × 10-3 for BP and 2.49 × 10-6 for SCZ), ST3GAL3 (P = 1.19 × 10-2 for ADHD), and KEGG_MAPK_SIGNALING_PATHWAY (P = 1.56 × 10-3 for ADHD, P = 4.71 × 10-2 for BP, P = 4.60 × 10-4 for SCZ). Our study provides novel clues for understanding the genetic mechanism of ADHD, BP and SCZ.
Collapse
Affiliation(s)
- Yan Zhao
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Xiao Liang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Feng Zhu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Yan Wen
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Jiawen Xu
- Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Jian Yang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Miao Ding
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Bolun Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Mei Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Lu Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Shiqiang Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Cuiyan Wu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Sen Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Xi Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Yujie Ning
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
326
|
Large-scale whole-exome sequencing association studies identify rare functional variants influencing serum urate levels. Nat Commun 2018; 9:4228. [PMID: 30315176 PMCID: PMC6185909 DOI: 10.1038/s41467-018-06620-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/13/2018] [Indexed: 02/08/2023] Open
Abstract
Elevated serum urate levels can cause gout, an excruciating disease with suboptimal treatment. Previous GWAS identified common variants with modest effects on serum urate. Here we report large-scale whole-exome sequencing association studies of serum urate and kidney function among ≤19,517 European ancestry and African-American individuals. We identify aggregate associations of low-frequency damaging variants in the urate transporters SLC22A12 (URAT1; p = 1.3 × 10−56) and SLC2A9 (p = 4.5 × 10−7). Gout risk in rare SLC22A12 variant carriers is halved (OR = 0.5, p = 4.9 × 10−3). Selected rare variants in SLC22A12 are validated in transport studies, confirming three as loss-of-function (R325W, R405C, and T467M) and illustrating the therapeutic potential of the new URAT1-blocker lesinurad. In SLC2A9, mapping of rare variants of large effects onto the predicted protein structure reveals new residues that may affect urate binding. These findings provide new insights into the genetic architecture of serum urate, and highlight molecular targets in SLC22A12 and SLC2A9 for lowering serum urate and preventing gout. Elevated serum urate levels are a risk factor for gout. Here, Tin et al. perform whole-exome sequencing in 19,517 individuals and detect low-frequency genetic variants in urate transporter genes, SLC22A12 and SLC2A9, associated with serum urate levels and confirm their damaging nature in vitro and in silico.
Collapse
|
327
|
Reis A, Spinath FM. Genetik der allgemeinen kognitiven Fähigkeit. MED GENET-BERLIN 2018. [DOI: 10.1007/s11825-018-0201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zusammenfassung
Intelligenz ist eines der bestuntersuchten Konstrukte der empirischen Verhaltenswissenschaften und stellt eine allgemeine geistige Kapazität dar, die unter anderem die Fähigkeit zum schlussfolgernden Denken, zum Lösen neuartiger Probleme, zum abstrakten Denken sowie zum schnellen Lernen umfasst. Diese kognitiven Fähigkeiten spielen eine große Rolle in der Erklärung und Vorhersage individueller Unterschiede in zentralen Bereichen des gesellschaftlichen Lebens, wie Schul- und Bildungserfolg, Berufserfolg, sozioökonomischer Status und Gesundheitsverhalten. Verhaltensgenetische Studien zeigen konsistent, dass genetische Einflüsse einen substanziellen Beitrag zur Erklärung individueller Unterschiede leisten, die über 60 % der Intelligenzunterschiede im Erwachsenenalter erklären. In den letzten Jahren konnten in großen genomweiten Assoziationsstudien mit häufigen genetischen Varianten Hunderte mit Intelligenz assoziierte Loci identifiziert werden sowie über 1300 assoziierte Gene mit differentieller Expression überwiegend im Gehirn. Mehrere Signalwege waren angereichert, vor allen für Neurogenese, Regulation der Entwicklung des Nervensystems sowie der synaptischen Struktur und Aktivität. Die Mehrzahl der assoziierten Loci betraf regulatorische Regionen und interessanterweise lag die Hälfte intronisch. Von den über 1300 Genen überlappen nur 9,2 % mit solchen, die mit monogenen neurokognitiven Störungen assoziiert sind. Insgesamt bestätigen die Befunde ein polygenes Modell Tausender additiver Faktoren, wobei die einzelnen Loci eine sehr geringe Effektstärke aufweisen. Insgesamt erklären die jetzigen Befunde ca. 10 % der Gesamtvarianz des Merkmals. Diese Ergebnisse sind ein wichtiger Ausgangspunkt für zukünftige Forschung sowohl in der Genetik als auch den Verhaltenswissenschaften.
Collapse
Affiliation(s)
- André Reis
- Aff1 0000 0001 2107 3311 grid.5330.5 Humangenetisches Institut, Universitätsklinikum Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Schwabachanlage 10 91054 Erlangen Deutschland
| | - Frank M. Spinath
- Aff2 0000 0001 2167 7588 grid.11749.3a Fachbereich Psychologie Universität des Saarlandes Saarbrücken Deutschland
| |
Collapse
|
328
|
Wojcik GL, Fuchsberger C, Taliun D, Welch R, Martin AR, Shringarpure S, Carlson CS, Abecasis G, Kang HM, Boehnke M, Bustamante CD, Gignoux CR, Kenny EE. Imputation-Aware Tag SNP Selection To Improve Power for Large-Scale, Multi-ethnic Association Studies. G3 (BETHESDA, MD.) 2018; 8:3255-3267. [PMID: 30131328 PMCID: PMC6169386 DOI: 10.1534/g3.118.200502] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/03/2018] [Indexed: 01/26/2023]
Abstract
The emergence of very large cohorts in genomic research has facilitated a focus on genotype-imputation strategies to power rare variant association. These strategies have benefited from improvements in imputation methods and association tests, however little attention has been paid to ways in which array design can increase rare variant association power. Therefore, we developed a novel framework to select tag SNPs using the reference panel of 26 populations from Phase 3 of the 1000 Genomes Project. We evaluate tag SNP performance via mean imputed r2 at untyped sites using leave-one-out internal validation and standard imputation methods, rather than pairwise linkage disequilibrium. Moving beyond pairwise metrics allows us to account for haplotype diversity across the genome for improve imputation accuracy and demonstrates population-specific biases from pairwise estimates. We also examine array design strategies that contrast multi-ethnic cohorts vs. single populations, and show a boost in performance for the former can be obtained by prioritizing tag SNPs that contribute information across multiple populations simultaneously. Using our framework, we demonstrate increased imputation accuracy for rare variants (frequency < 1%) by 0.5-3.1% for an array of one million sites and 0.7-7.1% for an array of 500,000 sites, depending on the population. Finally, we show how recent explosive growth in non-African populations means tag SNPs capture on average 30% fewer other variants than in African populations. The unified framework presented here will enable investigators to make informed decisions for the design of new arrays, and help empower the next phase of rare variant association for global health.
Collapse
Affiliation(s)
- Genevieve L Wojcik
- Department of Genetics, Stanford University School of Medicine, 365 Lasuen Street, Littlefield Center MC2069, Stanford, CA 94305
| | - Christian Fuchsberger
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109
- Center for Biomedicine, European Academy of Bolzano/Bozen (EURAC), affiliated with the University of Lübeck, Bolzano, Bozen, 39100, Italy
| | - Daniel Taliun
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109
| | - Ryan Welch
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109
| | - Alicia R Martin
- Department of Genetics, Stanford University School of Medicine, 365 Lasuen Street, Littlefield Center MC2069, Stanford, CA 94305
| | - Suyash Shringarpure
- Department of Genetics, Stanford University School of Medicine, 365 Lasuen Street, Littlefield Center MC2069, Stanford, CA 94305
| | - Christopher S Carlson
- Fred Hutchinson Cancer Center, University of Washington, 1100 Fairview Ave. N., Seattle, WA 98109
| | - Goncalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109
| | - Carlos D Bustamante
- Department of Genetics, Stanford University School of Medicine, 365 Lasuen Street, Littlefield Center MC2069, Stanford, CA 94305
- Department of Biomedical Data Science, Stanford University School of Medicine, 365 Lasuen Street, Littlefield Center MC2069, Stanford, CA 94305
| | - Christopher R Gignoux
- Department of Genetics, Stanford University School of Medicine, 365 Lasuen Street, Littlefield Center MC2069, Stanford, CA 94305
| | - Eimear E Kenny
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029
- The Icahn Institute of Multiscale Biology and Genomics, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029
- The Center for Statistical Genetics, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
329
|
Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, Ng FL, Evangelou M, Witkowska K, Tzanis E, Hellwege JN, Giri A, Velez Edwards DR, Sun YV, Cho K, Gaziano JM, Wilson PWF, Tsao PS, Kovesdy CP, Esko T, Mägi R, Milani L, Almgren P, Boutin T, Debette S, Ding J, Giulianini F, Holliday EG, Jackson AU, Li-Gao R, Lin WY, Luan J, Mangino M, Oldmeadow C, Prins BP, Qian Y, Sargurupremraj M, Shah N, Surendran P, Thériault S, Verweij N, Willems SM, Zhao JH, Amouyel P, Connell J, de Mutsert R, Doney ASF, Farrall M, Menni C, Morris AD, Noordam R, Paré G, Poulter NR, Shields DC, Stanton A, Thom S, Abecasis G, Amin N, Arking DE, Ayers KL, Barbieri CM, Batini C, Bis JC, Blake T, Bochud M, Boehnke M, Boerwinkle E, Boomsma DI, Bottinger EP, Braund PS, Brumat M, Campbell A, Campbell H, Chakravarti A, Chambers JC, Chauhan G, Ciullo M, Cocca M, Collins F, Cordell HJ, Davies G, de Borst MH, de Geus EJ, Deary IJ, Deelen J, Del Greco M F, Demirkale CY, Dörr M, Ehret GB, Elosua R, Enroth S, Erzurumluoglu AM, Ferreira T, Frånberg M, Franco OH, Gandin I, et alEvangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, Ng FL, Evangelou M, Witkowska K, Tzanis E, Hellwege JN, Giri A, Velez Edwards DR, Sun YV, Cho K, Gaziano JM, Wilson PWF, Tsao PS, Kovesdy CP, Esko T, Mägi R, Milani L, Almgren P, Boutin T, Debette S, Ding J, Giulianini F, Holliday EG, Jackson AU, Li-Gao R, Lin WY, Luan J, Mangino M, Oldmeadow C, Prins BP, Qian Y, Sargurupremraj M, Shah N, Surendran P, Thériault S, Verweij N, Willems SM, Zhao JH, Amouyel P, Connell J, de Mutsert R, Doney ASF, Farrall M, Menni C, Morris AD, Noordam R, Paré G, Poulter NR, Shields DC, Stanton A, Thom S, Abecasis G, Amin N, Arking DE, Ayers KL, Barbieri CM, Batini C, Bis JC, Blake T, Bochud M, Boehnke M, Boerwinkle E, Boomsma DI, Bottinger EP, Braund PS, Brumat M, Campbell A, Campbell H, Chakravarti A, Chambers JC, Chauhan G, Ciullo M, Cocca M, Collins F, Cordell HJ, Davies G, de Borst MH, de Geus EJ, Deary IJ, Deelen J, Del Greco M F, Demirkale CY, Dörr M, Ehret GB, Elosua R, Enroth S, Erzurumluoglu AM, Ferreira T, Frånberg M, Franco OH, Gandin I, Gasparini P, Giedraitis V, Gieger C, Girotto G, Goel A, Gow AJ, Gudnason V, Guo X, Gyllensten U, Hamsten A, Harris TB, Harris SE, Hartman CA, Havulinna AS, Hicks AA, Hofer E, Hofman A, Hottenga JJ, Huffman JE, Hwang SJ, Ingelsson E, James A, Jansen R, Jarvelin MR, Joehanes R, Johansson Å, Johnson AD, Joshi PK, Jousilahti P, Jukema JW, Jula A, Kähönen M, Kathiresan S, Keavney BD, Khaw KT, Knekt P, Knight J, Kolcic I, Kooner JS, Koskinen S, Kristiansson K, Kutalik Z, Laan M, Larson M, Launer LJ, Lehne B, Lehtimäki T, Liewald DCM, Lin L, Lind L, Lindgren CM, Liu Y, Loos RJF, Lopez LM, Lu Y, Lyytikäinen LP, Mahajan A, Mamasoula C, Marrugat J, Marten J, Milaneschi Y, Morgan A, Morris AP, Morrison AC, Munson PJ, Nalls MA, Nandakumar P, Nelson CP, Niiranen T, Nolte IM, Nutile T, Oldehinkel AJ, Oostra BA, O'Reilly PF, Org E, Padmanabhan S, Palmas W, Palotie A, Pattie A, Penninx BWJH, Perola M, Peters A, Polasek O, Pramstaller PP, Nguyen QT, Raitakari OT, Ren M, Rettig R, Rice K, Ridker PM, Ried JS, Riese H, Ripatti S, Robino A, Rose LM, Rotter JI, Rudan I, Ruggiero D, Saba Y, Sala CF, Salomaa V, Samani NJ, Sarin AP, Schmidt R, Schmidt H, Shrine N, Siscovick D, Smith AV, Snieder H, Sõber S, Sorice R, Starr JM, Stott DJ, Strachan DP, Strawbridge RJ, Sundström J, Swertz MA, Taylor KD, Teumer A, Tobin MD, Tomaszewski M, Toniolo D, Traglia M, Trompet S, Tuomilehto J, Tzourio C, Uitterlinden AG, Vaez A, van der Most PJ, van Duijn CM, Vergnaud AC, Verwoert GC, Vitart V, Völker U, Vollenweider P, Vuckovic D, Watkins H, Wild SH, Willemsen G, Wilson JF, Wright AF, Yao J, Zemunik T, Zhang W, Attia JR, Butterworth AS, Chasman DI, Conen D, Cucca F, Danesh J, Hayward C, Howson JMM, Laakso M, Lakatta EG, Langenberg C, Melander O, Mook-Kanamori DO, Palmer CNA, Risch L, Scott RA, Scott RJ, Sever P, Spector TD, van der Harst P, Wareham NJ, Zeggini E, Levy D, Munroe PB, Newton-Cheh C, Brown MJ, Metspalu A, Hung AM, O'Donnell CJ, Edwards TL, Psaty BM, Tzoulaki I, Barnes MR, Wain LV, Elliott P, Caulfield MJ. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet 2018; 50:1412-1425. [PMID: 30224653 PMCID: PMC6284793 DOI: 10.1038/s41588-018-0205-x] [Show More Authors] [Citation(s) in RCA: 922] [Impact Index Per Article: 131.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 07/09/2018] [Indexed: 02/07/2023]
Abstract
High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
Collapse
Affiliation(s)
- Evangelos Evangelou
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Center, Queen Mary University of London, London, UK
| | - David Mosen-Ansorena
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Borbala Mifsud
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Raha Pazoki
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - He Gao
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Georgios Ntritsos
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Niki Dimou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Claudia P Cabrera
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Center, Queen Mary University of London, London, UK
| | - Ibrahim Karaman
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Fu Liang Ng
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Marina Evangelou
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Mathematics, Imperial College London, London, UK
| | - Katarzyna Witkowska
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Evan Tzanis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jacklyn N Hellwege
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Ayush Giri
- Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center; Tennessee Valley Health Systems VA, Nashville, TN, USA
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center; Tennessee Valley Health Systems VA, Nashville, TN, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Peter W F Wilson
- Atlanta VAMC and Emory Clinical Cardiovascular Research Institute, Atlanta, GA, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Csaba P Kovesdy
- Nephrology Section, Memphis VA Medical Center and University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tonu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Peter Almgren
- Department Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Thibaud Boutin
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Stéphanie Debette
- Department of Neurology, Bordeaux University Hospital, Bordeaux, France
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, CHU Bordeaux, Bordeaux, France
| | - Jun Ding
- Laboratory of Genetics and Genomics, NIA/NIH, Baltimore, MD, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Elizabeth G Holliday
- Hunter Medical Research Institute and Faculty of Health, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Wei-Yu Lin
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | - Christopher Oldmeadow
- Hunter Medical Research Institute and Faculty of Health, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | | | - Yong Qian
- Laboratory of Genetics and Genomics, NIA/NIH, Baltimore, MD, USA
| | | | - Nabi Shah
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Praveen Surendran
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Sébastien Thériault
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Niek Verweij
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jing-Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Philippe Amouyel
- University of Lille, Inserm, Centre Hosp. Univ. Lille, Institut Pasteur de Lille, UMR1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Epidemiology and Public Health Department, Lille, France
| | - John Connell
- University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alex S F Doney
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Martin Farrall
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Andrew D Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Raymond Noordam
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Guillaume Paré
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Denis C Shields
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Alice Stanton
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Simon Thom
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Gonçalo Abecasis
- Center for Statistical Genetics, Department of Biostatistics, SPH II, Washington Heights, Ann Arbor, MI, USA
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Dan E Arking
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristin L Ayers
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Sema4, a Mount Sinai venture, Stamford, CT, USA
| | - Caterina M Barbieri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Batini
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Tineka Blake
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Murielle Bochud
- Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston and Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, EMGO+ Institute, VU University Medical Center, Amsterdam, the Netherlands
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Marco Brumat
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Archie Campbell
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Ganesh Chauhan
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Marina Ciullo
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Napoli, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Massimiliano Cocca
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Francis Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eco J de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, EMGO+ Institute, VU University Medical Center, Amsterdam, the Netherlands
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Joris Deelen
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fabiola Del Greco M
- Institute for Biomedicine, Eurac Research, Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Cumhur Yusuf Demirkale
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Georg B Ehret
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cardiology, Department of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Roberto Elosua
- CIBERCV & Cardiovascular Epidemiology and Genetics, IMIM, Barcelona, Spain
- Faculty of Medicine, Universitat de Vic-Central de Catalunya, Vic, Spain
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Uppsala, Sweden
| | | | - Teresa Ferreira
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute, Li Ka Shing Center for Health for Health Information and Discovery, Oxford University, Oxford, UK
| | - Mattias Frånberg
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, L8:03, Karolinska Universitetsjukhuset, Solna, Sweden
- Department of Numerical Analysis and Computer Science, Stockholm University, Stockholm, Sweden
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Ilaria Gandin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Paolo Gasparini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Giorgia Girotto
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Anuj Goel
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Alan J Gow
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh, UK
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Uppsala, Sweden
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, L8:03, Karolinska Universitetsjukhuset, Solna, Sweden
| | - Tamara B Harris
- Intramural Research Program, Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, MD, USA
| | - Sarah E Harris
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Catharina A Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aki S Havulinna
- Department of Public Health Solutions, National Institute for Health and Welfare (THL), Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, EMGO+ Institute, VU University Medical Center, Amsterdam, the Netherlands
| | - Jennifer E Huffman
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- The Population Science Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shih-Jen Hwang
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- The Population Science Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alan James
- Department of Pulmonary Physiology and Sleep, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Rick Jansen
- Department of Psychiatry, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Center For Life-course Health Research, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Oulu, Finland
| | - Roby Joehanes
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Uppsala, Sweden
| | - Andrew D Johnson
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| | - Pekka Jousilahti
- Department of Public Health Solutions, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Antti Jula
- Department of Public Health Solutions, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Division of Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Paul Knekt
- Department of Public Health Solutions, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Joanne Knight
- Data Science Institute and Lancaster Medical School, Lancaster, UK
| | - Ivana Kolcic
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
| | - Jaspal S Kooner
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Seppo Koskinen
- Department of Public Health Solutions, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Kati Kristiansson
- Department of Public Health Solutions, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Zoltan Kutalik
- Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Marty Larson
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Lenore J Launer
- Intramural Research Program, Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, MD, USA
| | - Benjamin Lehne
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - David C M Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Li Lin
- Cardiology, Department of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute, Li Ka Shing Center for Health for Health Information and Discovery, Oxford University, Oxford, UK
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - YongMei Liu
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ruth J F Loos
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lorna M Lopez
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
- University College Dublin, UCD Conway Institute, Centre for Proteome Research, UCD, Belfield, Dublin, Ireland
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Jaume Marrugat
- CIBERCV & Cardiovascular Epidemiology and Genetics, IMIM, Barcelona, Spain
| | - Jonathan Marten
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, VU University Medical Center/GGZ inGeest, Amsterdam, the Netherlands
| | - Anna Morgan
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter J Munson
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Data Tecnica International, Glen Echo, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Priyanka Nandakumar
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Teemu Niiranen
- Department of Public Health Solutions, National Institute for Health and Welfare (THL), Helsinki, Finland
- Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Teresa Nutile
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Napoli, Italy
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ben A Oostra
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Paul F O'Reilly
- SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Elin Org
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Sandosh Padmanabhan
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Walter Palmas
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, VU University Medical Center/GGZ inGeest, Amsterdam, the Netherlands
| | - Markus Perola
- Department of Public Health Solutions, National Institute for Health and Welfare (THL), Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- University of Tartu, Tartu, Estonia
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- German Center for Cardiovascular Disease Research (DZHK), partner site Munich, Neuherberg, Germany
| | - Ozren Polasek
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
- Psychiatric Hospital "Sveti Ivan", Zagreb, Croatia
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
- Department of Neurology, General Central Hospital, Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Quang Tri Nguyen
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Meixia Ren
- Fujian Key Laboratory of Geriatrics, Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Rainer Rettig
- Institute of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Janina S Ried
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Harriëtte Riese
- Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antonietta Robino
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Lynda M Rose
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Napoli, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Yasaman Saba
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Cinzia F Sala
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Veikko Salomaa
- Department of Public Health Solutions, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Antti-Pekka Sarin
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Helena Schmidt
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Albert V Smith
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Siim Sõber
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Rossella Sorice
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Napoli, Italy
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, Glasgow, UK
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, UK
| | - Rona J Strawbridge
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, L8:03, Karolinska Universitetsjukhuset, Solna, Sweden
| | - Johan Sundström
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Morris A Swertz
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alexander Teumer
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Division of Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jaakko Tuomilehto
- Dasman Diabetes Institute, Dasman, Kuwait
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Christophe Tzourio
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, CHU Bordeaux, Bordeaux, France
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Ahmad Vaez
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Anne-Claire Vergnaud
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | | | - Veronique Vitart
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Peter Vollenweider
- Department of Internal Medicine, University Hospital, CHUV, Lausanne, Switzerland
| | - Dragana Vuckovic
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Experimental Genetics Division, Sidra Medical and Research Center, Doha, Qatar
| | - Hugh Watkins
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah H Wild
- Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, EMGO+ Institute, VU University Medical Center, Amsterdam, the Netherlands
| | - James F Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| | - Alan F Wright
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Tatijana Zemunik
- Department of Biology, Faculty of Medicine, University of Split, Split, Croatia
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
| | - John R Attia
- Hunter Medical Research Institute and Faculty of Health, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David Conen
- Division of Cardiology, University Hospital, Basel, Switzerland
- Division of Cardiology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Francesco Cucca
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Monserrato, Cagliari, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Joanna M M Howson
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Olle Melander
- Department Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Colin N A Palmer
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Lorenz Risch
- Labormedizinisches Zentrum Dr. Risch, Schaan, Liechtenstein
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Rodney J Scott
- Hunter Medical Research Institute and Faculty of Health, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Daniel Levy
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Center, Queen Mary University of London, London, UK
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Morris J Brown
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Center, Queen Mary University of London, London, UK
| | | | - Adriana M Hung
- Tennessee Valley Healthcare System (Nashville VA) & Vanderbilt University, Nashville, TN, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare, Section of Cardiology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Center, Queen Mary University of London, London, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK.
- National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare NHS Trust and Imperial College London, London, UK.
- UK Dementia Research Institute (UK DRI) at Imperial College London, London, UK.
- Health Data Research-UK London substantive site, London, UK.
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Center, Queen Mary University of London, London, UK.
| |
Collapse
|
330
|
Lello L, Avery SG, Tellier L, Vazquez AI, de Los Campos G, Hsu SDH. Accurate Genomic Prediction of Human Height. Genetics 2018; 210:477-497. [PMID: 30150289 PMCID: PMC6216598 DOI: 10.1534/genetics.118.301267] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/01/2018] [Indexed: 01/08/2023] Open
Abstract
We construct genomic predictors for heritable but extremely complex human quantitative traits (height, heel bone density, and educational attainment) using modern methods in high dimensional statistics (i.e., machine learning). The constructed predictors explain, respectively, ∼40, 20, and 9% of total variance for the three traits, in data not used for training. For example, predicted heights correlate ∼0.65 with actual height; actual heights of most individuals in validation samples are within a few centimeters of the prediction. The proportion of variance explained for height is comparable to the estimated common SNP heritability from genome-wide complex trait analysis (GCTA), and seems to be close to its asymptotic value (i.e., as sample size goes to infinity), suggesting that we have captured most of the heritability for SNPs. Thus, our results close the gap between prediction R-squared and common SNP heritability. The ∼20k activated SNPs in our height predictor reveal the genetic architecture of human height, at least for common variants. Our primary dataset is the UK Biobank cohort, comprised of almost 500k individual genotypes with multiple phenotypes. We also use other datasets and SNPs found in earlier genome-wide association studies (GWAS) for out-of-sample validation of our results.
Collapse
Affiliation(s)
- Louis Lello
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
| | - Steven G Avery
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
| | - Laurent Tellier
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
- Cognitive Genomics Laboratory, Shenzhen Key Laboratory of Neurogenomics, China National GeneBank, BGI-Shenzhen, 518083, China
- Department of Biology, Functional Genetics, University of Copenhagen, DK-2200, Denmark
| | - Ana I Vazquez
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824
| | - Gustavo de Los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824
| | - Stephen D H Hsu
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
- Cognitive Genomics Laboratory, Shenzhen Key Laboratory of Neurogenomics, China National GeneBank, BGI-Shenzhen, 518083, China
| |
Collapse
|
331
|
Zhu B, Mirabello L, Chatterjee N. A subregion-based burden test for simultaneous identification of susceptibility loci and subregions within. Genet Epidemiol 2018; 42:673-683. [PMID: 29931698 PMCID: PMC6185783 DOI: 10.1002/gepi.22134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/14/2018] [Accepted: 05/04/2018] [Indexed: 01/08/2023]
Abstract
In rare variant association studies, aggregating rare and/or low frequency variants, may increase statistical power for detection of the underlying susceptibility gene or region. However, it is unclear which variants, or class of them, in a gene contribute most to the association. We proposed a subregion-based burden test (REBET) to simultaneously select susceptibility genes and identify important underlying subregions. The subregions are predefined by shared common biologic characteristics, such as the protein domain or functional impact. Based on a subset-based approach considering local correlations between combinations of test statistics of subregions, REBET is able to properly control the type I error rate while adjusting for multiple comparisons in a computationally efficient manner. Simulation studies show that REBET can achieve power competitive to alternative methods when rare variants cluster within subregions. In two case studies, REBET is able to identify known disease susceptibility genes, and more importantly pinpoint the unreported most susceptible subregions, which represent protein domains essential for gene function. R package REBET is available at https://dceg.cancer.gov/tools/analysis/rebet.
Collapse
Affiliation(s)
- Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
332
|
Combined linkage and association analysis identifies rare and low frequency variants for blood pressure at 1q31. Eur J Hum Genet 2018; 27:269-277. [PMID: 30262922 DOI: 10.1038/s41431-018-0277-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/12/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022] Open
Abstract
High blood pressure (BP) is a major risk factor for cardiovascular disease (CVD) and is more prevalent in African Americans as compared to other US groups. Although large, population-based genome-wide association studies (GWAS) have identified over 300 common polymorphisms modulating inter-individual BP variation, largely in European ancestry subjects, most of them do not localize to regions previously identified through family-based linkage studies. This discrepancy has remained unexplained despite the statistical power differences between current GWAS and prior linkage studies. To address this issue, we performed genome-wide linkage analysis of BP traits in African-American families from the Family Blood Pressure Program (FBPP) and genotyped on the Illumina Human Exome BeadChip v1.1. We identified a genomic region on chromosome 1q31 with LOD score 3.8 for pulse pressure (PP), a region we previously implicated in DBP studies of European ancestry families. Although no reported GWAS variants map to this region, combined linkage and association analysis of PP identified 81 rare and low frequency exonic variants accounting for the linkage evidence. Replication analysis in eight independent African ancestry cohorts (N = 16,968) supports this specific association with PP (P = 0.0509). Additional association and network analyses identified multiple potential candidate genes in this region expressed in multiple tissues and with a strong biological support for a role in BP. In conclusion, multiple genes and rare variants on 1q31 contribute to PP variation. Beyond producing new insights into PP, we demonstrate how family-based linkage and association studies can implicate specific rare and low frequency variants for complex traits.
Collapse
|
333
|
Wang T, Xue X, Xie X, Ye K, Zhu X, Elston RC. Adjustment for covariates using summary statistics of genome-wide association studies. Genet Epidemiol 2018; 42:812-825. [PMID: 30238496 DOI: 10.1002/gepi.22148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 01/09/2023]
Abstract
Linear regression is a standard approach to identify genetic variants associated with continuous traits in genome-wide association studies (GWAS). In a standard epidemiology study, linear regression is often performed with adjustment for covariates to estimate the independent effect of a predictor variable or to improve statistical power by reducing residual variability. However, it is problematic to adjust for heritable covariates in genetic association analysis. Here, we propose a new method that utilizes summary statistics of the covariate from additional samples for reducing the residual variability and hence improves statistical power. Our simulation study showed that the proposed methodology can maintain a good control of Type I error and can achieve much higher power than a simple linear regression. The method is illustrated by an application to the GWAS results from the Genetic Investigation of Anthropometric Traits consortium.
Collapse
Affiliation(s)
- Tao Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, New York, New York
| | - Xiaonan Xue
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, New York, New York
| | - Xianhong Xie
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, New York, New York
| | - Kenny Ye
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, New York, New York
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Robert C Elston
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
334
|
Troth A, Puzey JR, Kim RS, Willis JH, Kelly JK. Selective trade-offs maintain alleles underpinning complex trait variation in plants. SCIENCE (NEW YORK, N.Y.) 2018; 361:475-478. [PMID: 30072534 DOI: 10.1126/science.aat5760] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/22/2018] [Indexed: 11/02/2022]
Abstract
To understand evolutionary factors that maintain complex trait variation, we sequenced genomes from a single population of the plant Mimulus guttatus, identifying hundreds of nucleotide variants associated with morphological and life history traits. Alleles that delayed flowering also increased size at reproduction, which suggests pervasive antagonistic pleiotropy in this annual plant. The "large and slow" alleles, which were less common in small, rapidly flowering populations, became more abundant in populations with greater plant size. Furthermore, natural selection within the field population favored alternative alleles from year to year. Our results suggest that environmental fluctuations and selective trade-offs maintain polygenic trait variation within populations and also contribute to the geographic divergence in this wildflower species.
Collapse
Affiliation(s)
- Ashley Troth
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Joshua R Puzey
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Rebecca S Kim
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Environmental Medicine, NYU Langone, New York, NY 10016, USA
| | - John H Willis
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - John K Kelly
- Department of Ecology and Evolution, University of Kansas, Lawrence, KS 27708, USA.
| |
Collapse
|
335
|
Morin A, Madore AM, Kwan T, Ban M, Partanen J, Rönnblom L, Syvänen AC, Sawcer S, Stunnenberg H, Lathrop M, Pastinen T, Laprise C. Exploring rare and low-frequency variants in the Saguenay-Lac-Saint-Jean population identified genes associated with asthma and allergy traits. Eur J Hum Genet 2018; 27:90-101. [PMID: 30206357 PMCID: PMC6303288 DOI: 10.1038/s41431-018-0266-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 12/13/2022] Open
Abstract
The Saguenay–Lac-Saint-Jean (SLSJ) region is located in northeastern Quebec and is known for its unique demographic history and founder effect. As founder populations are enriched with population-specific variants, we characterized the variants distribution in SLSJ and compared it with four European populations (Finnish, Sweden, United Kingdom and France), of which the Finnish population is another founder population. Targeted sequencing of the coding and non-coding immune regulatory regions of the SLSJ asthma familial cohort and the four European populations were performed. Rare and low-frequency coding and non-coding regulatory variants identified in the SLSJ population were then investigated for variant- and gene-level associations with asthma and allergy-related traits (eosinophil percentage, immunoglobulin (Ig) E levels and lung function). Our data showed that (1) rare or deleterious variants were not enriched in the two founder populations as compared with the three non-founder European populations; (2) a larger proportion of founder population-specific variants occurred with higher frequencies; and (3) low-frequency variants appeared to be more deleterious. Furthermore, a rare variant, rs1386931, located in the 3ʹ-UTR of CXCR6 and intron of FYCO1 was found to be associated with eosinophil percentage. Gene-based analyses identified NRP2, MRPL44 and SERPINE2 to be associated with various asthma and allergy-related traits. Our study demonstrated the usefulness of using a founder population to identify new genes associated with asthma and allergy-related traits; thus better understand the genes and pathways implicated in pathophysiology.
Collapse
Affiliation(s)
- Andréanne Morin
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,McGill University and Genome Québec Innovation Centre, Montréal, QC, Canada.,Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Anne-Marie Madore
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Tony Kwan
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,McGill University and Genome Québec Innovation Centre, Montréal, QC, Canada
| | - Maria Ban
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jukka Partanen
- Research & Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Lars Rönnblom
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stephen Sawcer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Hendrik Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Mark Lathrop
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,McGill University and Genome Québec Innovation Centre, Montréal, QC, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,McGill University and Genome Québec Innovation Centre, Montréal, QC, Canada.,Center for Pediatric Genomic Medicine, Kansas City, MO, USA
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada. .,Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Saguenay, QC, Canada.
| |
Collapse
|
336
|
Guo MH, Hirschhorn JN, Dauber A. Insights and Implications of Genome-Wide Association Studies of Height. J Clin Endocrinol Metab 2018; 103:3155-3168. [PMID: 29982553 PMCID: PMC7263788 DOI: 10.1210/jc.2018-01126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/27/2018] [Indexed: 01/24/2023]
Abstract
CONTEXT In the last decade, genome-wide association studies (GWASs) have catalyzed our understanding of the genetics of height and have identified hundreds of regions of the genome associated with adult height and other height-related body measurements. EVIDENCE ACQUISITION GWASs related to height were identified via PubMed search and a review of the GWAS catalog. EVIDENCE SYNTHESIS The GWAS results demonstrate that height is highly polygenic: that is, many thousands of genetic variants distributed across the genome each contribute to an individual's height. These height-associated regions of the genome are enriched for genes in known biological pathways involved in growth, such as fibroblast growth factor signaling, as well as for genes expressed in relevant tissues, such as the growth plate. GWASs can also uncover previously unappreciated biological pathways, such as the STC2/PAPPA/IGFBP4 pathway. The genes implicated by GWASs are often the same genes that are the genetic causes of Mendelian growth disorders or skeletal dysplasias, and GWAS results can provide complementary information about these disorders. CONCLUSIONS Here, we review the rationale behind GWASs and what we have learned from GWASs for height, including how it has enhanced our understanding of the underlying biology of human growth. We also highlight the implications of GWASs in terms of prediction of adult height and our understanding of Mendelian growth disorders.
Collapse
Affiliation(s)
- Michael H Guo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- College of Medicine, University of Florida, Gainesville, Florida
| | - Joel N Hirschhorn
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Correspondence and Reprint Requests: Andrew Dauber, MD, MMSc, Division of Endocrinology, Children’s National Medical Center, 111 Michigan Avenue NW, West Wing Floor 3.5, Suite 200, Room 1215, Washington, DC 20010. E-mail:
| |
Collapse
|
337
|
Pośpiech E, Chen Y, Kukla-Bartoszek M, Breslin K, Aliferi A, Andersen JD, Ballard D, Chaitanya L, Freire-Aradas A, van der Gaag KJ, Girón-Santamaría L, Gross TE, Gysi M, Huber G, Mosquera-Miguel A, Muralidharan C, Skowron M, Carracedo Á, Haas C, Morling N, Parson W, Phillips C, Schneider PM, Sijen T, Syndercombe-Court D, Vennemann M, Wu S, Xu S, Jin L, Wang S, Zhu G, Martin NG, Medland SE, Branicki W, Walsh S, Liu F, Kayser M. Towards broadening Forensic DNA Phenotyping beyond pigmentation: Improving the prediction of head hair shape from DNA. Forensic Sci Int Genet 2018; 37:241-251. [PMID: 30268682 DOI: 10.1016/j.fsigen.2018.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/18/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
Abstract
Human head hair shape, commonly classified as straight, wavy, curly or frizzy, is an attractive target for Forensic DNA Phenotyping and other applications of human appearance prediction from DNA such as in paleogenetics. The genetic knowledge underlying head hair shape variation was recently improved by the outcome of a series of genome-wide association and replication studies in a total of 26,964 subjects, highlighting 12 loci of which 8 were novel and introducing a prediction model for Europeans based on 14 SNPs. In the present study, we evaluated the capacity of DNA-based head hair shape prediction by investigating an extended set of candidate SNP predictors and by using an independent set of samples for model validation. Prediction model building was carried out in 9674 subjects (6068 from Europe, 2899 from Asia and 707 of admixed European and Asian ancestries), used previously, by considering a novel list of 90 candidate SNPs. For model validation, genotype and phenotype data were newly collected in 2415 independent subjects (2138 Europeans and 277 non-Europeans) by applying two targeted massively parallel sequencing platforms, Ion Torrent PGM and MiSeq, or the MassARRAY platform. A binomial model was developed to predict straight vs. non-straight hair based on 32 SNPs from 26 genetic loci we identified as significantly contributing to the model. This model achieved prediction accuracies, expressed as AUC, of 0.664 in Europeans and 0.789 in non-Europeans; the statistically significant difference was explained mostly by the effect of one EDAR SNP in non-Europeans. Considering sex and age, in addition to the SNPs, slightly and insignificantly increased the prediction accuracies (AUC of 0.680 and 0.800, respectively). Based on the sample size and candidate DNA markers investigated, this study provides the most robust, validated, and accurate statistical prediction models and SNP predictor marker sets currently available for predicting head hair shape from DNA, providing the next step towards broadening Forensic DNA Phenotyping beyond pigmentation traits.
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa st. 9, 30-387, Kraków, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa st. 7A, 30-387, Kraków, Poland
| | - Yan Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beichen West Road 1-104, Chaoyang, Beijing, 100101, PR China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing, 100049, PR China
| | - Magdalena Kukla-Bartoszek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa st. 7, 30-387, Kraków, Poland
| | - Krystal Breslin
- Department of Biology, Indiana University Purdue University Indianapolis (IUPUI), IN, USA
| | - Anastasia Aliferi
- King's Forensics, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London, United Kingdom
| | - Jeppe D Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, DK-2100, Copenhagen, Denmark
| | - David Ballard
- King's Forensics, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London, United Kingdom
| | - Lakshmi Chaitanya
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Ana Freire-Aradas
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Melatengürtel 60/62, D-50823, Cologne, Germany; Forensic Genetics Unit, Institute of Forensic Sciences, R/ San Francisco s/n, Faculty of Medicine, 15782, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Kristiaan J van der Gaag
- Division of Biological Traces, Netherlands Forensic Institute, P.O. Box 24044, 2490 AA, The Hague, The Netherlands
| | - Lorena Girón-Santamaría
- Forensic Genetics Unit, Institute of Forensic Sciences, R/ San Francisco s/n, Faculty of Medicine, 15782, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Theresa E Gross
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Melatengürtel 60/62, D-50823, Cologne, Germany
| | - Mario Gysi
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstrasse 44, 6020, Innsbruck, Austria
| | - Ana Mosquera-Miguel
- Forensic Genetics Unit, Institute of Forensic Sciences, R/ San Francisco s/n, Faculty of Medicine, 15782, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Charanya Muralidharan
- Department of Biology, Indiana University Purdue University Indianapolis (IUPUI), IN, USA
| | - Małgorzata Skowron
- Department of Dermatology, Collegium Medicum of the Jagiellonian University, Skawińska st. 8, 31-066, Kraków, Poland
| | - Ángel Carracedo
- Forensic Genetics Unit, Institute of Forensic Sciences, R/ San Francisco s/n, Faculty of Medicine, 15782, University of Santiago de Compostela, Santiago de Compostela, Spain; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, KSA, Saudi Arabia
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, DK-2100, Copenhagen, Denmark
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstrasse 44, 6020, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, 13 Thomas Building, University Park, PA, 16802, USA
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, R/ San Francisco s/n, Faculty of Medicine, 15782, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Peter M Schneider
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Melatengürtel 60/62, D-50823, Cologne, Germany
| | - Titia Sijen
- Division of Biological Traces, Netherlands Forensic Institute, P.O. Box 24044, 2490 AA, The Hague, The Netherlands
| | - Denise Syndercombe-Court
- King's Forensics, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London, United Kingdom
| | - Marielle Vennemann
- Institute of Legal Medicine, University of Münster, Röntgenstr. 23, 48149, Münster, Germany
| | - Sijie Wu
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing, 100049, PR China; Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road Shanghai, 200031, PR China
| | - Shuhua Xu
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing, 100049, PR China; Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road Shanghai, 200031, PR China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road Shanghai, 200438, PR China; School of Life Science and Technology, Shanghai-Tech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, PR China
| | - Li Jin
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road Shanghai, 200031, PR China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road Shanghai, 200438, PR China
| | - Sijia Wang
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing, 100049, PR China; Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road Shanghai, 200031, PR China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road Shanghai, 200438, PR China
| | - Ghu Zhu
- Queensland Institute of Medical Research, Royal Brisbane Hospital, QLD 4029, Brisbane, Australia
| | - Nick G Martin
- Queensland Institute of Medical Research, Royal Brisbane Hospital, QLD 4029, Brisbane, Australia
| | - Sarah E Medland
- Queensland Institute of Medical Research, Royal Brisbane Hospital, QLD 4029, Brisbane, Australia
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa st. 7A, 30-387, Kraków, Poland
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis (IUPUI), IN, USA
| | - Fan Liu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beichen West Road 1-104, Chaoyang, Beijing, 100101, PR China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing, 100049, PR China; Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands.
| | | |
Collapse
|
338
|
Rotwein P. The insulin-like growth factor 2 gene and locus in nonmammalian vertebrates: Organizational simplicity with duplication but limited divergence in fish. J Biol Chem 2018; 293:15912-15932. [PMID: 30154247 DOI: 10.1074/jbc.ra118.004861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/16/2018] [Indexed: 01/28/2023] Open
Abstract
The small, secreted peptide, insulin-like growth factor 2 (IGF2), is essential for fetal and prenatal growth in humans and other mammals. Human IGF2 and mouse Igf2 genes are located within a conserved linkage group and are regulated by parental imprinting, with IGF2/Igf2 being expressed from the paternally derived chromosome, and H19 from the maternal chromosome. Here, data retrieved from genomic and gene expression repositories were used to examine the Igf2 gene and locus in 8 terrestrial vertebrates, 11 ray-finned fish, and 1 lobe-finned fish representing >500 million years of evolutionary diversification. The analysis revealed that vertebrate Igf2 genes are simpler than their mammalian counterparts, having fewer exons and lacking multiple gene promoters. Igf2 genes are conserved among these species, especially in protein-coding regions, and IGF2 proteins also are conserved, although less so in fish than in terrestrial vertebrates. The Igf2 locus in terrestrial vertebrates shares additional genes with its mammalian counterparts, including tyrosine hydroxylase (Th), insulin (Ins), mitochondrial ribosomal protein L23 (Mrpl23), and troponin T3, fast skeletal type (Tnnt3), and both Th and Mrpl23 are present in the Igf2 locus in fish. Taken together, these observations support the idea that a recognizable Igf2 was present in the earliest vertebrate ancestors, but that other features developed and diversified in the gene and locus with speciation, especially in mammals. This study also highlights the need for correcting inaccuracies in genome databases to maximize our ability to accurately assess contributions of individual genes and multigene families toward evolution, physiology, and disease.
Collapse
Affiliation(s)
- Peter Rotwein
- From the Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
339
|
Herrfurth N, Volckmar AL, Peters T, Kleinau G, Müller A, Cetindag C, Schonnop L, Föcker M, Dempfle A, Wudy SA, Grant SFA, Reinehr T, Cousminer DL, Hebebrand J, Biebermann H, Hinney A. Relevance of polymorphisms in MC4R and BDNF in short normal stature. BMC Pediatr 2018; 18:278. [PMID: 30134862 PMCID: PMC6106737 DOI: 10.1186/s12887-018-1245-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Background Variation in genes of the leptinergic-melanocortinergic system influence both body weight and height. Because short normal stature (SNS) is characterized by reduced body height, delayed maturation and leanness, allelic variation of genes in this pathway are hypothesized to affect this common condition. Methods We analyzed the coding regions of LEP, MC4R, MRAP2 and BDNF in 185 children with SNS (height < 5th percentile) to search for non-synonymous and frameshift variants. For association studies (two-sided χ2-tests) population-based data sets (ExAC, EVS and KORA) were used. Cyclic AMP accumulation, cell surface expression, central expression and MAP kinase activation were assayed in vitro to determine the functional implications of identified variants. Results We detected eleven variants predicted to be protein-altering, four in MC4R, four in BDNF, and three in MRAP2. No variants were found in LEP. In vitro analysis implied reduced function for the MC4R variant p.Met215Ile. Loss-of-function is contrary to expectations based on obesity studies, and thus does not support that this variant is relevant for SNS. The minor SNP alleles at MC4R p.Val103Ile and BDNF p.Val66Met were nominally associated with SNS. Conclusion Taken together, although genes of the leptinergic-melanocortinergic system are important for normal growth, our data do not support the involvement of rare mutations in LEP, MC4R, MRAP2 or BDNF in short normal stature. Electronic supplementary material The online version of this article (10.1186/s12887-018-1245-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikolas Herrfurth
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna-Lena Volckmar
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Present Address: Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anne Müller
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cigdem Cetindag
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Laura Schonnop
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Christian-Albrechts University Kiel, Kiel, Germany
| | - Stefan A Wudy
- Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Giessen, Germany
| | - Struan F A Grant
- Divisions of Human Genetics and Endocrinology, Children's Hospital of Philadelphia Research Institute, Philadelphia, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, USA
| | - Thomas Reinehr
- Department of Pediatric Endocrinology, Diabetes and Nutrition Medicine, Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Datteln, Germany
| | - Diana L Cousminer
- Divisions of Human Genetics and Endocrinology, Children's Hospital of Philadelphia Research Institute, Philadelphia, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, USA
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
340
|
Butkiewicz M, Blue EE, Leung YY, Jian X, Marcora E, Renton AE, Kuzma A, Wang LS, Koboldt DC, Haines JL, Bush WS. Functional annotation of genomic variants in studies of late-onset Alzheimer's disease. Bioinformatics 2018; 34:2724-2731. [PMID: 29590295 PMCID: PMC6084586 DOI: 10.1093/bioinformatics/bty177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/17/2018] [Accepted: 03/23/2018] [Indexed: 01/01/2023] Open
Abstract
Motivation Annotation of genomic variants is an increasingly important and complex part of the analysis of sequence-based genomic analyses. Computational predictions of variant function are routinely incorporated into gene-based analyses of rare-variants, though to date most studies use limited information for assessing variant function that is often agnostic of the disease being studied. Results In this work, we outline an annotation process motivated by the Alzheimer's Disease Sequencing Project, illustrate the impact of including tissue-specific transcript sets and sources of gene regulatory information and assess the potential impact of changing genomic builds on the annotation process. While these factors only impact a small proportion of total variant annotations (∼5%), they influence the potential analysis of a large fraction of genes (∼25%). Availability and implementation Individual variant annotations are available via the NIAGADS GenomicsDB, at https://www.niagads.org/genomics/ tools-and-software/databases/genomics-database. Annotations are also available for bulk download at https://www.niagads.org/datasets. Annotation processing software is available at http://www.icompbio.net/resources/software-and-downloads/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mariusz Butkiewicz
- Department of Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Elizabeth E Blue
- Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xueqiu Jian
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Edoardo Marcora
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan E Renton
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda Kuzma
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
341
|
O'Mara TA, Glubb DM, Amant F, Annibali D, Ashton K, Attia J, Auer PL, Beckmann MW, Black A, Bolla MK, Brauch H, Brenner H, Brinton L, Buchanan DD, Burwinkel B, Chang-Claude J, Chanock SJ, Chen C, Chen MM, Cheng THT, Clarke CL, Clendenning M, Cook LS, Couch FJ, Cox A, Crous-Bous M, Czene K, Day F, Dennis J, Depreeuw J, Doherty JA, Dörk T, Dowdy SC, Dürst M, Ekici AB, Fasching PA, Fridley BL, Friedenreich CM, Fritschi L, Fung J, García-Closas M, Gaudet MM, Giles GG, Goode EL, Gorman M, Haiman CA, Hall P, Hankison SE, Healey CS, Hein A, Hillemanns P, Hodgson S, Hoivik EA, Holliday EG, Hopper JL, Hunter DJ, Jones A, Krakstad C, Kristensen VN, Lambrechts D, Marchand LL, Liang X, Lindblom A, Lissowska J, Long J, Lu L, Magliocco AM, Martin L, McEvoy M, Meindl A, Michailidou K, Milne RL, Mints M, Montgomery GW, Nassir R, Olsson H, Orlow I, Otton G, Palles C, Perry JRB, Peto J, Pooler L, Prescott J, Proietto T, Rebbeck TR, Risch HA, Rogers PAW, Rübner M, Runnebaum I, Sacerdote C, Sarto GE, Schumacher F, Scott RJ, Setiawan VW, Shah M, Sheng X, Shu XO, Southey MC, Swerdlow AJ, Tham E, et alO'Mara TA, Glubb DM, Amant F, Annibali D, Ashton K, Attia J, Auer PL, Beckmann MW, Black A, Bolla MK, Brauch H, Brenner H, Brinton L, Buchanan DD, Burwinkel B, Chang-Claude J, Chanock SJ, Chen C, Chen MM, Cheng THT, Clarke CL, Clendenning M, Cook LS, Couch FJ, Cox A, Crous-Bous M, Czene K, Day F, Dennis J, Depreeuw J, Doherty JA, Dörk T, Dowdy SC, Dürst M, Ekici AB, Fasching PA, Fridley BL, Friedenreich CM, Fritschi L, Fung J, García-Closas M, Gaudet MM, Giles GG, Goode EL, Gorman M, Haiman CA, Hall P, Hankison SE, Healey CS, Hein A, Hillemanns P, Hodgson S, Hoivik EA, Holliday EG, Hopper JL, Hunter DJ, Jones A, Krakstad C, Kristensen VN, Lambrechts D, Marchand LL, Liang X, Lindblom A, Lissowska J, Long J, Lu L, Magliocco AM, Martin L, McEvoy M, Meindl A, Michailidou K, Milne RL, Mints M, Montgomery GW, Nassir R, Olsson H, Orlow I, Otton G, Palles C, Perry JRB, Peto J, Pooler L, Prescott J, Proietto T, Rebbeck TR, Risch HA, Rogers PAW, Rübner M, Runnebaum I, Sacerdote C, Sarto GE, Schumacher F, Scott RJ, Setiawan VW, Shah M, Sheng X, Shu XO, Southey MC, Swerdlow AJ, Tham E, Trovik J, Turman C, Tyrer JP, Vachon C, VanDen Berg D, Vanderstichele A, Wang Z, Webb PM, Wentzensen N, Werner HMJ, Winham SJ, Wolk A, Xia L, Xiang YB, Yang HP, Yu H, Zheng W, Pharoah PDP, Dunning AM, Kraft P, De Vivo I, Tomlinson I, Easton DF, Spurdle AB, Thompson DJ. Identification of nine new susceptibility loci for endometrial cancer. Nat Commun 2018; 9:3166. [PMID: 30093612 PMCID: PMC6085317 DOI: 10.1038/s41467-018-05427-7] [Show More Authors] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 07/02/2018] [Indexed: 01/01/2023] Open
Abstract
Endometrial cancer is the most commonly diagnosed cancer of the female reproductive tract in developed countries. Through genome-wide association studies (GWAS), we have previously identified eight risk loci for endometrial cancer. Here, we present an expanded meta-analysis of 12,906 endometrial cancer cases and 108,979 controls (including new genotype data for 5624 cases) and identify nine novel genome-wide significant loci, including a locus on 12q24.12 previously identified by meta-GWAS of endometrial and colorectal cancer. At five loci, expression quantitative trait locus (eQTL) analyses identify candidate causal genes; risk alleles at two of these loci associate with decreased expression of genes, which encode negative regulators of oncogenic signal transduction proteins (SH2B3 (12q24.12) and NF1 (17q11.2)). In summary, this study has doubled the number of known endometrial cancer risk loci and revealed candidate causal genes for future study.
Collapse
Affiliation(s)
- Tracy A O'Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, 4006, QLD, Australia.
| | - Dylan M Glubb
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, 4006, QLD, Australia
| | - Frederic Amant
- Department of Obstetrics and Gynecology, University Hospitals KU Leuven, University of Leuven, Division of Gynecologic Oncology, Leuven, 3000, Belgium
| | - Daniela Annibali
- Department of Obstetrics and Gynecology, University Hospitals KU Leuven, University of Leuven, Division of Gynecologic Oncology, Leuven, 3000, Belgium
| | - Katie Ashton
- John Hunter Hospital, Hunter Medical Research Institute, Newcastle, 2305, NSW, Australia
- University of Newcastle, Centre for Information Based Medicine, Callaghan, 2308, NSW, Australia
- University of Newcastle, Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, Faculty of Health, Callaghan, 2308, NSW, Australia
| | - John Attia
- John Hunter Hospital, Hunter Medical Research Institute, Newcastle, 2305, NSW, Australia
- University of Newcastle, Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, Callaghan, 2308, NSW, Australia
| | - Paul L Auer
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA, USA
- University of Wisconsin-Milwaukee, Zilber School of Public Health, Milwaukee, 53205, WI, USA
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center ER-EMN, Erlangen, 91054, Germany
| | - Amanda Black
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, 20892, MD, USA
| | - Manjeet K Bolla
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, CB1 8RN, UK
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, 70376, Germany
- University of Tübingen, Tübingen, 72074, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, 69120, Germany
| | - Hermann Brenner
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, 69120, Germany
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, 69120, Germany
| | - Louise Brinton
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, 20892, MD, USA
| | - Daniel D Buchanan
- Department of Clinical Pathology, The University of Melbourne, Melbourne, 3010, VIC, Australia
- The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, 3010, VIC, Australia
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, 3010, VIC, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, 3010, VIC, Australia
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, 69120, Germany
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
- University Medical Center Hamburg-Eppendorf, Cancer Epidemiology, University Cancer Center Hamburg (UCCH), Hamburg, 20246, Germany
| | - Stephen J Chanock
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, 20892, MD, USA
| | - Chu Chen
- Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA, USA
| | - Maxine M Chen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Timothy H T Cheng
- University of Oxford, Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Christine L Clarke
- University of Sydney, Westmead Institute for Medical Research, Sydney, 2145, NSW, Australia
| | - Mark Clendenning
- Department of Clinical Pathology, The University of Melbourne, Melbourne, 3010, VIC, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, 3010, VIC, Australia
| | - Linda S Cook
- University of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, 87131, NM, USA
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, T2N 4N2, AB, Canada
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, 55905, MN, USA
| | - Angela Cox
- Department of Oncology and Metabolism, University of Sheffield, Sheffield Institute for Nucleic Acids (SInFoNiA), Sheffield, S10 2TN, UK
| | - Marta Crous-Bous
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
- Department of Medicine, Harvard Medical School, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, 02115, MA, USA
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 65, Sweden
| | - Felix Day
- University of Cambridge, MRC Epidemiology Unit, School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Joe Dennis
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, CB1 8RN, UK
| | - Jeroen Depreeuw
- Department of Obstetrics and Gynecology, University Hospitals KU Leuven, University of Leuven, Division of Gynecologic Oncology, Leuven, 3000, Belgium
- VIB, Vesalius Research Center, Leuven, 3000, Belgium
- Department of Human Genetics, University of Leuven, Laboratory for Translational Genetics, Leuven, 3000, Belgium
| | - Jennifer Anne Doherty
- Cancer Research Huntsman Cancer Institute Department of Population Health Sciences, University of Utah, Salt Lake City, 84112, UT, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, 30625, Germany
| | - Sean C Dowdy
- Department of Obstetrics and Gynecology, Mayo Clinic, Division of Gynecologic Oncology, Rochester, 55905, MN, USA
| | - Matthias Dürst
- Department of Gynaecology, Jena University Hospital - Friedrich Schiller University, Jena, 07743, Germany
| | - Arif B Ekici
- Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Institute of Human Genetics, University Hospital Erlangen, Erlangen, 91054, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center ER-EMN, Erlangen, 91054, Germany
- Department of Medicine, University of California at Los Angeles, David Geffen School of Medicine, Division of Hematology and Oncology, Los Angeles, 90095, CA, USA
| | - Brooke L Fridley
- Department of Biostatistics, Kansas University Medical Center, Kansas City, 66160, KS, USA
| | - Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, T2N 4N2, AB, Canada
| | - Lin Fritschi
- Curtin University, School of Public Health, Perth, 6102, WA, Australia
| | - Jenny Fung
- University of Queensland, Institute for Molecular Bioscience, Brisbane, 4072, QLD, Australia
| | - Montserrat García-Closas
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, 20892, MD, USA
- Institute of Cancer Research, Division of Genetics and Epidemiology, London, SM2 5NG, UK
| | - Mia M Gaudet
- American Cancer Society, Epidemiology Research Program, Atlanta, 30303, GA, USA
| | - Graham G Giles
- The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, 3010, VIC, Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, 3004, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, 3004, VIC, Australia
| | - Ellen L Goode
- Department of Health Science Research, Mayo Clinic, Division of Epidemiology, Rochester, 55905, MN, USA
| | - Maggie Gorman
- University of Oxford, Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Christopher A Haiman
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, 90033, CA, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 65, Sweden
- Department of Oncology, South General Hospital, Stockholm, 118 83, Sweden
| | - Susan E Hankison
- Department of Medicine, Harvard Medical School, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, 02115, MA, USA
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Amherst, 01003, MA, USA
| | - Catherine S Healey
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, CB1 8RN, UK
| | - Alexander Hein
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center ER-EMN, Erlangen, 91054, Germany
| | - Peter Hillemanns
- Gynaecology Research Unit, Hannover Medical School, Hannover, 30625, Germany
| | - Shirley Hodgson
- Department of Clinical Genetics, St George's, University of London, London, SW17 0RE, UK
| | - Erling A Hoivik
- Department of Clinical Science, University of Bergen, Centre for Cancer Biomarkers, Bergen, 5020, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, 5021, Norway
| | - Elizabeth G Holliday
- John Hunter Hospital, Hunter Medical Research Institute, Newcastle, 2305, NSW, Australia
- University of Newcastle, Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, Callaghan, 2308, NSW, Australia
| | - John L Hopper
- The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, 3010, VIC, Australia
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Angela Jones
- University of Oxford, Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Camilla Krakstad
- Department of Clinical Science, University of Bergen, Centre for Cancer Biomarkers, Bergen, 5020, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, 5021, Norway
| | - Vessela N Kristensen
- Department of Cancer Genetics, Oslo University Hospital, Radiumhospitalet, Institute for Cancer Research, Oslo, 0379, Norway
- University of Oslo, Institute of Clinical Medicine, Faculty of Medicine, Oslo, 0450, Norway
- Department of Clinical Molecular Biology, University of Oslo, Oslo University Hospital, Oslo, 0450, Norway
| | - Diether Lambrechts
- Department of Human Genetics, University of Leuven, Laboratory for Translational Genetics, Leuven, 3000, Belgium
- VIB, VIB Center for Cancer Biology, Leuven, 3001, Belgium
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Xiaolin Liang
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, 10065, NY, USA
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, 171 76, Sweden
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Cancer Center-Oncology Institute, Warsaw, 02-034, Poland
| | - Jirong Long
- Department of Medicine, Vanderbilt University School of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, 37232, TN, USA
| | - Lingeng Lu
- Chronic Disease Epidemiology, Yale School of Public Health, New Haven, 06510, CT, USA
| | - Anthony M Magliocco
- Department of Anatomic Pathology, Moffitt Cancer Center and Research Institute, Tampa, 33612, FL, USA
| | - Lynn Martin
- University of Birmingham, Institute of Cancer and Genomic Sciences, Birmingham, B15 2TT, UK
| | - Mark McEvoy
- University of Newcastle, Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, Callaghan, 2308, NSW, Australia
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, Ludwig-Maximilians University of Munich, Munich, 80336, Germany
| | - Kyriaki Michailidou
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, CB1 8RN, UK
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Roger L Milne
- The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, 3010, VIC, Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, 3004, VIC, Australia
| | - Miriam Mints
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, 171 76, Sweden
| | - Grant W Montgomery
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, 4006, QLD, Australia
- University of Queensland, Institute for Molecular Bioscience, Brisbane, 4072, QLD, Australia
| | - Rami Nassir
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, 95817, CA, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, 222 42, Sweden
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, 10065, NY, USA
| | - Geoffrey Otton
- University of Newcastle, School of Medicine and Public Health, Callaghan, 2308, NSW, Australia
| | - Claire Palles
- University of Oxford, Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - John R B Perry
- University of Cambridge, MRC Epidemiology Unit, School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Loreall Pooler
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, 90033, CA, USA
| | - Jennifer Prescott
- Department of Medicine, Harvard Medical School, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, 02115, MA, USA
| | - Tony Proietto
- University of Newcastle, School of Medicine and Public Health, Callaghan, 2308, NSW, Australia
| | - Timothy R Rebbeck
- Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
- Dana-Farber Cancer Institute, Boston, 02115, MA, USA
| | - Harvey A Risch
- Chronic Disease Epidemiology, Yale School of Public Health, New Haven, 06510, CT, USA
| | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women's Hospital, Gynaecology Research Centre, Parkville, 3052, VIC, Australia
| | - Matthias Rübner
- Department of Gynaecology and Obstetrics, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Erlangen, 91054, Germany
| | - Ingo Runnebaum
- Department of Gynaecology, Jena University Hospital - Friedrich Schiller University, Jena, 07743, Germany
| | - Carlotta Sacerdote
- Center for Cancer Prevention (CPO-Peimonte), Turin, 10126, Italy
- Human Genetics Foundation (HuGeF), Turino, 10126, Italy
| | - Gloria E Sarto
- Department of Obstetrics and Gynecology, University of Wisconsin, School of Medicine and Public Health, Madison, 53715, WI, USA
| | - Fredrick Schumacher
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Rodney J Scott
- John Hunter Hospital, Hunter Medical Research Institute, Newcastle, 2305, NSW, Australia
- University of Newcastle, Centre for Information Based Medicine, Callaghan, 2308, NSW, Australia
- University of Newcastle, Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, Faculty of Health, Callaghan, 2308, NSW, Australia
- John Hunter Hospital, Division of Molecular Medicine, Pathology North, Newcastle, 2308, NSW, Australia
| | - V Wendy Setiawan
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, 90033, CA, USA
| | - Mitul Shah
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, CB1 8RN, UK
| | - Xin Sheng
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, 90033, CA, USA
| | - Xiao-Ou Shu
- Department of Medicine, Vanderbilt University School of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, 37232, TN, USA
| | - Melissa C Southey
- Department of Clinical Pathology, The University of Melbourne, Melbourne, 3010, VIC, Australia
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, 3168, VIC, Australia
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, 171 76, Sweden
- Karolinska Institutet, Clinical Genetics, Stockholm, 171 76, Sweden
| | - Jone Trovik
- Department of Clinical Science, University of Bergen, Centre for Cancer Biomarkers, Bergen, 5020, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, 5021, Norway
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Jonathan P Tyrer
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, CB1 8RN, UK
| | - Celine Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, 55905, MN, USA
| | - David VanDen Berg
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, 90033, CA, USA
| | - Adriaan Vanderstichele
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Division of Gynecologic Oncology, Leuven Cancer Institute, Leuven, 3000, Belgium
| | - Zhaoming Wang
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, 20892, MD, USA
| | - Penelope M Webb
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, 4006, QLD, Australia
| | - Nicolas Wentzensen
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, 20892, MD, USA
| | - Henrica M J Werner
- Department of Clinical Science, University of Bergen, Centre for Cancer Biomarkers, Bergen, 5020, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, 5021, Norway
| | - Stacey J Winham
- Department of Health Science Research, Mayo Clinic, Division of Biomedical Statistics and Informatics, Rochester, 55905, MN, USA
| | - Alicja Wolk
- Department of Environmental Medicine, Karolinska Institutet, Division of Nutritional Epidemiology, Stockholm, 171 77, Sweden
| | - Lucy Xia
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, 90033, CA, USA
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, State Key Laboratory of Oncogene and Related Genes, Shanghai, China
| | - Hannah P Yang
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, 20892, MD, USA
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Wei Zheng
- Department of Medicine, Vanderbilt University School of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, 37232, TN, USA
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, CB1 8RN, UK
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, CB1 8RN, UK
| | - Alison M Dunning
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, CB1 8RN, UK
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
- Department of Medicine, Harvard Medical School, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, 02115, MA, USA
| | - Ian Tomlinson
- University of Oxford, Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
- University of Birmingham, Institute of Cancer and Genomic Sciences, Birmingham, B15 2TT, UK
| | - Douglas F Easton
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, CB1 8RN, UK
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, CB1 8RN, UK
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, 4006, QLD, Australia.
| | - Deborah J Thompson
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, CB1 8RN, UK.
| |
Collapse
|
342
|
Wang Y, Zhang J, Zhao Y, Wang S, Zhang J, Han Q, Zhang R, Guo R, Li H, Li L, Wang T, Tang X, He C, Teng G, Gu W, Liu F. COL4A3 Gene Variants and Diabetic Kidney Disease in MODY. Clin J Am Soc Nephrol 2018; 13:1162-1171. [PMID: 30012629 PMCID: PMC6086715 DOI: 10.2215/cjn.09100817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 04/27/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Despite advances in identifying genetic factors of diabetic kidney disease (DKD), much of the heritability remains unexplained. Nine maturity-onset diabetes in young (MODY) probands with kidney biopsy-proven DKD were selected and included in this study. The probands had more severe DKD compared with their parents with MODY, with overt proteinuria or rapid progression to ESKD. We aimed to explore the contribution of the variants in susceptibility genes of DKD to the severity of kidney phenotype between the probands and their parents. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Whole-exome sequencing was performed to identify suspected MODY probands and their families. Known DKD susceptibility genes were reviewed. Variants reported to be associated with DKD, or those with minor allele frequency <0.05 and predicted to be pathogenic, were selected and analyzed. Immunofluorescence staining of COL4α3 was performed in kidney specimens of patients with DKD with or without R408H and M1209I of COL4A3 variants. RESULTS HNF1B-MODY, CEL-MODY, PAX4-MODY, and WFS1-MODY were diagnosed among nine families. We identified 196 selected variants of 25 DKD susceptibility genes among the participants. Analysis of phenotype between probands and parents, gene function, and protein-protein interaction networks revealed that COL4A3 variants were involved in the progression of DKD. Weak granular staining of COL4α3 was observed in the glomerular basement membrane of patients with the R408H and M1209I variants, whereas strong consecutive staining was observed in patients without these variants. Moreover, more number of DKD variants were identified in probands than in their parents with MODY. CONCLUSIONS The genetic effect of more pathogenic variants in various DKD susceptibility genes, especially variants in the COL4A3 gene, partially explained the more severe kidney phenotype in probands with kidney biopsy-proven DKD.
Collapse
Affiliation(s)
- Yiting Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yingwang Zhao
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shanshan Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, Chengdu, China
| | - Qianqian Han
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ruikun Guo
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hanyu Li
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tingli Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xi Tang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | | | - Geer Teng
- Institute of Social Development and Western China Development Studies, Sichuan University, Chengdu, Sichuan, China; and
| | - Weiyue Gu
- Joy Orient Translational Medicine Research Center Co., Ltd., Beijing, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
343
|
Sesia M, Sabatti C, Candès EJ. Gene hunting with hidden Markov model knockoffs. Biometrika 2018; 106:1-18. [PMID: 30799875 DOI: 10.1093/biomet/asy033] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 12/26/2022] Open
Abstract
Modern scientific studies often require the identification of a subset of explanatory variables. Several statistical methods have been developed to automate this task, and the framework of knockoffs has been proposed as a general solution for variable selection under rigorous Type I error control, without relying on strong modelling assumptions. In this paper, we extend the methodology of knockoffs to problems where the distribution of the covariates can be described by a hidden Markov model. We develop an exact and efficient algorithm to sample knockoff variables in this setting and then argue that, combined with the existing selective framework, this provides a natural and powerful tool for inference in genome-wide association studies with guaranteed false discovery rate control. We apply our method to datasets on Crohn's disease and some continuous phenotypes.
Collapse
Affiliation(s)
- M Sesia
- Department of Statistics, Stanford University, 390 Serra Mall, Stanford, California, USA
| | - C Sabatti
- Department of Statistics, Stanford University, 390 Serra Mall, Stanford, California, USA
| | - E J Candès
- Department of Statistics, Stanford University, 390 Serra Mall, Stanford, California, USA
| |
Collapse
|
344
|
Hjortebjerg R. IGFBP-4 and PAPP-A in normal physiology and disease. Growth Horm IGF Res 2018; 41:7-22. [PMID: 29864720 DOI: 10.1016/j.ghir.2018.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/15/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
Abstract
Insulin-like growth factor (IGF) binding protein-4 (IGFBP-4) is a modulator of the IGF system, exerting both inhibitory and stimulatory effects on IGF-induced cellular growth. IGFBP-4 is the principal substrate for the enzyme pregnancy-associated plasma protein-A (PAPP-A). Through IGF-dependent cleavage of IGFBP-4 in the vicinity of the IGF receptor, PAPP-A is able to increase IGF bioavailability and stimulate IGF-mediated growth. Recently, the stanniocalcins (STCs) were identified as novel inhibitors of PAPP-A proteolytic activity, hereby adding additional members to the seemingly endless list of proteins belonging to the IGF family. Our understanding of these proteins has advanced throughout recent years, and there is evidence to suggest that the role of IGFBP-4 and PAPP-A in defining the relationship between total IGF and IGF bioactivity can be linked to a number of pathological conditions. This review provides an overview of the experimental and clinical findings on the IGFBP-4/PAPP-A/STC axis as a regulator of IGF activity and examines the conundrum surrounding extrapolation of circulating concentrations to tissue action of these proteins. The primary focus will be on the biological significance of IGFBP-4 and PAPP-A in normal physiology and in pathophysiology with emphasis on metabolic disorders, cardiovascular diseases, and cancer. Finally, the review assesses current new trajectories of IGFBP-4 and PAPP-A research.
Collapse
Affiliation(s)
- Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark; The Danish Diabetes Academy, Odense, Denmark.
| |
Collapse
|
345
|
Abstract
Human growth is a very complex phenomenon influenced by genetic, hormonal, nutritional and environmental factors, from fetal life to puberty. Although the GH-IGF axis has a central role with specific actions on growth, numerous genes are involved in the control of stature. Genome-wide association studies have identified >600 variants associated with human height, still explaining only a small fraction of phenotypic variation. Since short stature in childhood is a common reason for referral, pediatric endocrinologists must be aware of the multifactorial and polygenic contributions to height. Multiple disorders characterized by growth failure of prenatal and/or postnatal onset due to single gene defects have been described. Their early diagnosis, facilitated by advances in genomic technologies, is of upmost importance for their clinical management and to provide genetic counseling. Here we review the current clinical and genetic information regarding different syndromes and hormone abnormalities with proportionate short stature as the main feature, and provide an update of the approach for diagnosis and management.
Collapse
Affiliation(s)
- Jesús Argente
- Full Professor of Pediatrics & Pediatric Endocrinology, Director, Department of Pediatrics, Universidad Autónoma de Madrid, Spain, Chairman, Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain, Centro de Investigación Biomédica en Red de fisiopatología de la obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain, IMDEA Food Institute,CEIUAM+CSIC, Madrid, Spain.
| | - Luis A Pérez-Jurado
- Full Professor of Genetics. Genetics Unit, Universitat Pompeu Fabra, Barcelona, Spain, Hospital del Mar Research Institute (IMIM), Barcelona, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain, SA Clinical Genetics, Women's and Children's Hospital, North Adelaide, SA, Australia, Clinical Professor, University of Adelaide, SA, Australia
| |
Collapse
|
346
|
Abstract
PURPOSE OF REVIEW Genome-wide approaches including genome-wide association studies as well as exome and genome sequencing represent powerful new approaches that have improved our ability to identify genetic causes of human disorders. The purpose of this review is to describe recent advances in the genetic causes of short stature. RECENT FINDINGS In addition to SHOX deficiency which is one of the most common causes of isolated short stature, PAPPA2, ACAN, NPPC, NPR2, PTPN11 (and other rasopathies), FBN1, IHH and BMP2 have been identified in isolated growth disorders with or without other mild skeletal findings. In addition, novel genetic causes of syndromic short stature have been discovered, including pathogenic variants in BRCA1, DONSON, AMMECR1, NFIX, SLC25A24, and FN1. SUMMARY Isolated growth disorders are often monogenic. Specific genetic causes typically have specific biochemical and/or phenotype characteristics which are diagnostically helpful. Identification of additional subjects with a specific genetic cause of short stature often leads to a broadening of the known clinical spectrum for that condition. The identification of novel genetic causes of short stature has provided important insights into the underlying molecular mechanisms of growth failure.
Collapse
|
347
|
Kim SK. Identification of 613 new loci associated with heel bone mineral density and a polygenic risk score for bone mineral density, osteoporosis and fracture. PLoS One 2018; 13:e0200785. [PMID: 30048462 PMCID: PMC6062019 DOI: 10.1371/journal.pone.0200785] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/03/2018] [Indexed: 01/03/2023] Open
Abstract
Low bone mineral density (BMD) leads to osteoporosis, and is a risk factor for bone fractures, including stress fractures. Using data from UK Biobank, a genome-wide association study identified 1,362 independent SNPs that clustered into 899 loci of which 613 are new. These data were used to train a genetic algorithm using 22,886 SNPs as predictors and showing a correlation with heel bone mineral density of 0.415. Combining this genetic algorithm with height, weight, age and sex resulted in a correlation with heel bone mineral density of 0.496. Individuals with low scores (2.2% of total) showed a change in BMD of -1.16 T-score units, an increase in risk for osteoporosis of 17.4 fold and an increase in risk for fracture of 1.87 fold. Genetic predictors could assist in the identification of individuals at risk for osteoporosis or fractures.
Collapse
Affiliation(s)
- Stuart K. Kim
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| |
Collapse
|
348
|
Jiang Y, Chen S, McGuire D, Chen F, Liu M, Iacono WG, Hewitt JK, Hokanson JE, Krauter K, Laakso M, Li KW, Lutz SM, McGue M, Pandit A, Zajac GJM, Boehnke M, Abecasis GR, Vrieze SI, Zhan X, Jiang B, Liu DJ. Proper conditional analysis in the presence of missing data: Application to large scale meta-analysis of tobacco use phenotypes. PLoS Genet 2018; 14:e1007452. [PMID: 30016313 PMCID: PMC6063450 DOI: 10.1371/journal.pgen.1007452] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 07/27/2018] [Accepted: 05/25/2018] [Indexed: 11/19/2022] Open
Abstract
Meta-analysis of genetic association studies increases sample size and the power for mapping complex traits. Existing methods are mostly developed for datasets without missing values, i.e. the summary association statistics are measured for all variants in contributing studies. In practice, genotype imputation is not always effective. This may be the case when targeted genotyping/sequencing assays are used or when the un-typed genetic variant is rare. Therefore, contributed summary statistics often contain missing values. Existing methods for imputing missing summary association statistics and using imputed values in meta-analysis, approximate conditional analysis, or simple strategies such as complete case analysis all have theoretical limitations. Applying these approaches can bias genetic effect estimates and lead to seriously inflated type-I or type-II errors in conditional analysis, which is a critical tool for identifying independently associated variants. To address this challenge and complement imputation methods, we developed a method to combine summary statistics across participating studies and consistently estimate joint effects, even when the contributed summary statistics contain large amounts of missing values. Based on this estimator, we proposed a score statistic called PCBS (partial correlation based score statistic) for conditional analysis of single-variant and gene-level associations. Through extensive analysis of simulated and real data, we showed that the new method produces well-calibrated type-I errors and is substantially more powerful than existing approaches. We applied the proposed approach to one of the largest meta-analyses to date for the cigarettes-per-day phenotype. Using the new method, we identified multiple novel independently associated variants at known loci for tobacco use, which were otherwise missed by alternative methods. Together, the phenotypic variance explained by these variants was 1.1%, improving that of previously reported associations by 71%. These findings illustrate the extent of locus allelic heterogeneity and can help pinpoint causal variants. It is of great interest to estimate the joint effects of multiple variants from large scale meta-analyses, in order to fine-map causal variants and understand the genetic architecture for complex traits. The summary association statistics from participating studies in a meta-analysis often contain missing values at some variant sites, as the imputation methods may not work well and the variants with low imputation quality will be filtered out. Missingness is especially likely when the underlying genetic variant is rare or the participating studies use targeted genotyping array that is not suitable for imputation. Existing methods for conditional meta-analysis do not properly handle missing data, and can incorrectly estimate correlations between score statistics. As a result, they can produce highly inflated type-I errors for conditional analysis, which will result in overestimated phenotypic variance explained and incorrect identification of causal variants. We systematically evaluated this bias and proposed a novel partial correlation based score statistic. The new statistic has valid type-I errors for conditional analysis and much higher power than the existing methods, even when the contributed summary statistics contain a large fraction of missing values. We expect this method to be highly useful in the sequencing age for complex trait genetics.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Sai Chen
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daniel McGuire
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Fang Chen
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William G. Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - John K. Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - John E. Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kenneth Krauter
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kevin W. Li
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sharon M. Lutz
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Matthew McGue
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Anita Pandit
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gregory J. M. Zajac
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael Boehnke
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Goncalo R. Abecasis
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Scott I. Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Xiaowei Zhan
- Department of Clinical Science, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Bibo Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail: (DJL); (BJ)
| | - Dajiang J. Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail: (DJL); (BJ)
| |
Collapse
|
349
|
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellular space, (ii) interaction with and modulation of other growth factor pathways including EGF, TGF-β and VEGF, and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.
Collapse
Affiliation(s)
- L A Bach
- Department of Medicine (Alfred)Monash University, Melbourne, Australia
- Department of Endocrinology and DiabetesAlfred Hospital, Melbourne, Australia
| |
Collapse
|
350
|
Abstract
The zinc metalloproteinase, PAPP-A, enhances local insulin-like growth factor (IGF) action through cleavage of inhibitory IGF-binding proteins, thereby increasing IGF available for IGF receptor-mediated cell proliferation, migration and survival. In many tumors, enhanced IGF receptor signaling is associated with tumor growth, invasion and metastasis. We will first discuss PAPP-A structure and function, and post-translational inhibitors of PAPP-A expression or proteolytic activity. We will then review the evidence supporting an important role for PAPP-A in many cancers, including breast, ovarian and lung cancer, and Ewing sarcoma.
Collapse
Affiliation(s)
- Cheryl A Conover
- From the Division of Endocrinology Mayo ClinicRochester, Minnesota, USA
| | - Claus Oxvig
- Department of Molecular Biology and GeneticsAarhus University, Aarhus, Denmark
| |
Collapse
|