301
|
Abstract
Reactive oxygen species (ROS) have been implicated as mediators of cell-signaling responses, particularly in pathways involving protein tyrosine phosphorylation. One mechanism by which ROS are thought to exert their effects is through the reversible regulation of cysteine-based phosphatases (CBPs). The CBPs, which include protein tyrosine phosphatases (PTPs), dual-specificity phosphatases, low-molecular-weight PTPs, and the lipid phosphatase PTEN, all contain a nucleophilic catalytic cysteine within a conserved motif that enables these enzymes to dephosphorylate phosphoproteins or phospholipids. In addition to enabling phosphatase activity, the nucleophilic catalytic cysteines of CBPs are also highly susceptible to oxidation, a property that permits redox regulation of this enzyme family. In this review, we discuss the evidence implicating ROS as mediators of CBP activity within signaling pathways and discuss how specificity of ROS-dependent signaling involving CBPs may be achieved. We also discuss the molecular mechanisms that facilitate the stabilization of a reversibly oxidized form of the catalytic cysteine. These mechanisms include the formation of disulfide bonds or the formation of a sulfenamide bond, a novel mechanism that was identified for PTP1B. Formation of either type of covalent bond may be accompanied by dramatic structural rearrangements that can affect downstream signaling events and allow for multitiered enzyme regulation.
Collapse
Affiliation(s)
- Annette Salmeen
- Department of Molecular Pharmacology, Stanford University Medical School, Stanford, CA, USA
| | | |
Collapse
|
302
|
Wu X, Zhu L, Zilbering A, Mahadev K, Motoshima H, Yao J, Goldstein BJ. Hyperglycemia potentiates H(2)O(2) production in adipocytes and enhances insulin signal transduction: potential role for oxidative inhibition of thiol-sensitive protein-tyrosine phosphatases. Antioxid Redox Signal 2005; 7:526-37. [PMID: 15889998 PMCID: PMC1435729 DOI: 10.1089/ars.2005.7.526] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Insulin signal transduction in adipocytes is accompanied by a burst of cellular hydrogen peroxide (H(2)O(2)) that facilitates insulin signaling by inhibiting thiol-dependent protein-tyrosine phosphatases (PTPs) that are negative regulators of insulin action. As hyperglycemia is associated with increased cellular reactive oxygen species, we postulated that high glucose conditions might potentiate the H(2)O(2) generated by insulin and modulate insulin-stimulated protein phosphorylation. Basal H(2)O(2) generation was increased threefold in differentiated 3T3-L1 adipocytes by growth in 25 mM glucose versus 5 mM glucose. High glucose increased the sensitivity of the insulin-stimulated H(2)O(2) signal to lower concentrations of insulin. Basal endogenous total PTP activity and the activity of PTP1B, a PTP implicated in the negative regulation of insulin signaling, were reduced in high glucose conditions, and their further reduction by insulin stimulation was more enhanced in high versus low glucose medium. Phosphorylation of the insulin receptor, IRS-1, and Akt in response to insulin was also significantly enhanced in high glucose conditions, especially at submaximal insulin concentrations. In primary rat adipocytes, high glucose increased insulin-stimulated H(2)O(2) production and potentiated the oxidative inhibition of total PTP and PTP1B activity; however, insulin signaling was not enhanced in the primary cells in high glucose apparently due to cross-regulation of insulin-stimulated protein phosphorylation by activation of protein kinase C (PKC). These studies indicate that high glucose can enhance insulin stimulated H(2)O(2) generation and augment oxidative PTP inhibition in cultured and primary adipocytes, but the overall balance of insulin signal transduction is determined by additional signal effects in high glucose, including the activation of PKC.
Collapse
Affiliation(s)
- Xiangdong Wu
- Dorrance H. Hamilton Research Laboratories, Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
303
|
Rhee SG, Yang KS, Kang SW, Woo HA, Chang TS. Controlled elimination of intracellular H(2)O(2): regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal 2005; 7:619-26. [PMID: 15890005 DOI: 10.1089/ars.2005.7.619] [Citation(s) in RCA: 305] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The predominant enzymes responsible for elimination of hydrogen peroxide (H(2)O(2)) in cells are peroxiredoxins (Prxs), catalase, and glutathione peroxidases (GPxs). Evidence suggests that catalytic activities of certain isoforms of these H(2)O(2)-eliminating enzymes are extensively regulated via posttranslational modification. Prx I and Prx II become inactivated when phosphorylated on Thr(90) by cyclin B-dependent kinase Cdc2. In addition, the active-site cysteine of Prx I-IV undergoes a reversible sulfinylation (oxidation to cysteine sulfinic acid) in cells. Desulfinylation (reduction to cysteine) is achieved by a novel enzyme named sulfiredoxin. c-Abl and Arg nonreceptor protein tyrosine kinases associate with catalase in cells treated with H(2)O(2) by mechanisms involving the SH3 domains of the kinases and the Pro(293)PheAsnPro motif of catalase and activate catalase by phosphorylating it on Tyr(231) and Tyr(386). Similarily, GPx1 is activated by c-Abl- and Arg-mediated phosphorylation. The tyrosine phosphorylation is critical for ubiquitination-dependent degradation of catalase.
Collapse
Affiliation(s)
- Sue Goo Rhee
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
304
|
Piao YJ, Seo YH, Hong F, Kim JH, Kim YJ, Kang MH, Kim BS, Jo SA, Jo I, Jue DM, Kang I, Ha J, Kim SS. Nox 2 stimulates muscle differentiation via NF-kappaB/iNOS pathway. Free Radic Biol Med 2005; 38:989-1001. [PMID: 15780757 DOI: 10.1016/j.freeradbiomed.2004.11.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 07/06/2004] [Accepted: 11/05/2004] [Indexed: 11/26/2022]
Abstract
The NF-kappaB/iNOS pathway stimulates muscle differentiation downstream of the PI 3-kinase/p38 MAPK pathway and diverse antioxidants block muscle differentiation. Therefore, we here investigated whether Nox 2 links those two myogenic pathways in H9c2 and C2C12 myoblasts. Compared with the proliferation stage, ROS generation was enhanced from the early stage of differentiation and gradually increased as differentiation progressed. Antioxidants suppressed the activated NF-kappaB/iNOS pathway during muscle differentiation. Nox 2 activity was also increased during muscle differentiation. Treatment with DPI and apocynin, two inhibitors of NADPH oxidase, and suppression of Nox 2 expression using siRNA, but not Nox 1, inhibited NADPH oxidase activity, muscle differentiation, and the NF-kappaB/iNOS pathway. Inhibition of PI 3-kinase and p38 MAPK suppressed the Nox 2/NF-kappaB/iNOS pathway. Nitric oxide restored muscle differentiation blocked by treatment with antioxidants or suppression of the Nox 2/NF-kappaB/iNOS pathway. In conclusion, Nox 2 stimulates muscle differentiation downstream of the PI 3-kinase/p38 MAPK pathway by activating the NF-kappaB/iNOS pathway via ROS generation.
Collapse
Affiliation(s)
- Yu Ji Piao
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, #1, Hoegi-dong, Dongdaemoon-gu, Seoul 130-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 2005; 17:183-9. [PMID: 15780595 DOI: 10.1016/j.ceb.2005.02.004] [Citation(s) in RCA: 554] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrogen peroxide (H2O2) accumulates transiently in various cell types stimulated with peptide growth factors and participates in receptor signaling by oxidizing the essential cysteine residues of protein tyrosine phosphatases and the lipid phosphatase PTEN. The reversible inactivation of these phosphatases by H2O2 is likely required to prevent futile cycles of phosphorylation-dephosphorylation of proteins and phosphoinositides. The accumulation of H2O2 is possible even in the presence of large amounts of the antioxidant enzymes peroxiredoxin I and II in the cytosol, probably because of a built-in mechanism of peroxiredoxin inactivation that is mediated by H2O2 and reversed by an ATP-dependent reduction reaction catalyzed by sulfiredoxin.
Collapse
Affiliation(s)
- Sue Goo Rhee
- Laboratory of Cell Signaling, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
306
|
Galic S, Hauser C, Kahn BB, Haj FG, Neel BG, Tonks NK, Tiganis T. Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. Mol Cell Biol 2005; 25:819-29. [PMID: 15632081 PMCID: PMC543412 DOI: 10.1128/mcb.25.2.819-829.2005] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP-/- and PTP1B-/- immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR beta-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B-/- MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP-/- MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B-/- MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell.
Collapse
Affiliation(s)
- Sandra Galic
- Department of Biochemistry and Molecular Biology, P.O. Box 13D, Monash University, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
307
|
Ushio-Fukai M, Alexander RW. Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol Cell Biochem 2005; 264:85-97. [PMID: 15544038 DOI: 10.1023/b:mcbi.0000044378.09409.b5] [Citation(s) in RCA: 353] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiogenesis, a process of new blood vessel growth, contributes to various pathophysiologies such as cancer, diabetic retinopathy and atherosclerosis. Accumulating evidence suggests that cardiovascular diseases are associated with increased oxidative stress in blood vessels. Reactive oxygen species (ROS) such as superoxide and H2O2 cause blood vessels to thicken, produce inflammation in the vessel wall, and thus are regarded as "risk factors" for vascular disease, whereas ROS also act as signaling molecules in many aspects of growth factor-mediated physiological responses. Recent reports suggest that ROS play an important role in angiogenesis; however, its underlying molecular mechanisms remain unknown. Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell (EC) proliferation and migration primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). VEGF binding initiates tyrosine phosphorylation of KDR, which results in activation of downstream signaling enzymes including ERK1/2, Akt and eNOS, which contribute to angiogenic-related responses in EC. Importantly, the major source of ROS in EC is a NAD(P)H oxidase and EC express all the components of phagocytic NAD(P)H oxidase including gp91phox, p22phox, p47phox, p67phox and the small G protein Rac1. We have recently demonstrated that ROS derived from NAD(P)H oxidase are critically important for VEGF signaling in vitro and angiogenesis in vivo. Furthermore, a peptide hormone, angiotensin II, a major stimulus for vascular NAD(P)H oxidase, also plays an important role in angiogenesis. Because EC migration and proliferation are primary features of the process of myocardial angiogenesis, we would like to focus on the recent progress that has been made in the emerging area of NAD(P)H oxidase-derived ROS-dependent signaling in ECs, and discuss the possible roles in angiogenesis. Understanding these mechanisms may provide insight into the components of NAD(P)H oxidase as potential therapeutic targets for treatment of angiogenesis-dependent diseases such as cancer and atherosclerosis and for promoting myocardial angiogenesis in ischemic heart diseases.
Collapse
Affiliation(s)
- Masuko Ushio-Fukai
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
308
|
Williams KJ, Fisher EA. Oxidation, lipoproteins, and atherosclerosis: which is wrong, the antioxidants or the theory? Curr Opin Clin Nutr Metab Care 2005; 8:139-46. [PMID: 15716791 DOI: 10.1097/00075197-200503000-00006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Paradoxically, many well-established components of the heart-healthy lifestyle are pro-oxidant, including polyunsaturated fat and moderate alcohol consumption. Moreover, antioxidant supplements have failed to decrease cardiovascular risk in extensive human clinical trials to date. Recent progress in understanding the roles of oxidants in regulating VLDL secretion and as essential signaling molecules supports the concept that oxidation may be beneficial in certain circumstances but damaging in others. We summarize recent data on the roles played by oxidative metabolism in different tissues and pathways, and address whether it is currently advisable to use antioxidant supplements to reduce cardiovascular risk. RECENT FINDINGS Our recent study reported that in liver cells, polyunsaturated fatty acids increased reactive oxygen species, which in turn lowered the secretion of the atherogenic lipoprotein, VLDL, in vitro and in vivo. Antioxidant treatments prevented VLDL-lowering effects of polyunsaturated fatty acids in vitro, suggesting that supplemental antioxidants could either raise apolipoprotein-B-lipoprotein plasma levels in vivo, or impair the response to lipid-lowering therapies. The failure of antioxidants to decrease cardiovascular disease risk in many trials is also discussed in the context of current models for atherosclerosis progression and regression. SUMMARY Oxidation includes distinct biochemical reactions, and it is overly simplistic to lump them into a unitary process that affects all cell types and metabolic pathways adversely. Guidelines for diet should adhere closely to what has been clinically proved, and by this standard there is no basis to recommend antioxidant use, beyond what is inherent to the 'heart healthy' diet in order to benefit cardiovascular health.
Collapse
Affiliation(s)
- Kevin Jon Williams
- Division of Endocrinology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
309
|
Groen A, Lemeer S, van der Wijk T, Overvoorde J, Heck AJR, Ostman A, Barford D, Slijper M, den Hertog J. Differential Oxidation of Protein-tyrosine Phosphatases. J Biol Chem 2005; 280:10298-304. [PMID: 15623519 DOI: 10.1074/jbc.m412424200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidation is emerging as an important regulatory mechanism of protein-tyrosine phosphatases (PTPs). Here we report that PTPs are differentially oxidized, and we provide evidence for the underlying mechanism. The membrane-proximal RPTPalpha-D1 was catalytically active but not readily oxidized as assessed by immunoprobing with an antibody that recognized oxidized catalytic site cysteines in PTPs (oxPTPs). In contrast, the membrane-distal RPTPalpha-D2, a poor PTP, was readily oxidized. Oxidized catalytic site cysteines in PTP immunoprobing and mass spectrometry demonstrated that mutation of two residues in the Tyr(P) loop and the WPD loop that reverse catalytic activity of RPTPalpha-D1 and RPTPalpha-D2 also reversed oxidizability, suggesting that oxidizability and catalytic activity are coupled. However, catalytically active PTP1B and LAR-D1 were readily oxidized. Oxidizability was strongly dependent on pH, indicating that the microenvironment of the catalytic cysteine has an important role. Crystal structures of PTP domains demonstrated that the orientation of the absolutely conserved PTP loop arginine correlates with oxidizability of PTPs, and consistently, RPTPmu-D1, with a similar conformation as RPTPalpha-D1, was not readily oxidized. In conclusion, PTPs are differentially oxidized at physiological pH and H(2)O(2) concentrations, and the PTP loop arginine is an important determinant for susceptibility to oxidation.
Collapse
Affiliation(s)
- Arnoud Groen
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Jiang XC, Li Z, Liu R, Yang XP, Pan M, Lagrost L, Fisher EA, Williams KJ. Phospholipid transfer protein deficiency impairs apolipoprotein-B secretion from hepatocytes by stimulating a proteolytic pathway through a relative deficiency of vitamin E and an increase in intracellular oxidants. J Biol Chem 2005; 280:18336-40. [PMID: 15734742 DOI: 10.1074/jbc.m500007200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic deficiency of the plasma phospholipid transfer protein (PLTP) in mice unexpectedly causes a substantial impairment in liver secretion of apolipoprotein-B (apoB), the major protein of atherogenic lipoproteins. To explore the mechanism, we examined the three known pathways for hepatic apoB secretory control, namely endoplasmic reticulum (ER)/proteasome-associated degradation (ERAD), post-ER pre-secretory proteolysis (PERPP), and receptor-mediated degradation, also known as re-uptake. First, we found that ERAD and cell surface re-uptake were not active in PLTP-null hepatocytes. Moreover, ER-to-Golgi blockade by brefeldin A, which enhances ERAD, equalized total apoB recovery from PLTP-null and wild-type cells, indicating that the relevant process occurs post-ER. Second, because PERPP can be stimulated by intracellular reactive oxygen species (ROS), we examined hepatic redox status. Although we found previously that PLTP-null mice exhibit elevated plasma concentrations of vitamin E, a lipid anti-oxidant, we now discovered that their livers contain significantly less vitamin E and significantly more lipid peroxides than do livers of wild-type mice. Third, to establish a causal connection, the addition of vitamin E or treatment with an inhibitor of intracellular iron-dependent peroxidation, desferrioxamine, abolished the elevation in cellular ROS as well as the defect in apoB secretion from PLTP-null hepatocytes. Overall, we conclude that PLTP deficiency decreases liver vitamin E content, increases hepatic oxidant tone, and substantially enhances ROS-dependent destruction of newly synthesized apoB via a post-ER process. These findings are likely to be broadly relevant to hepatic apoB secretory control in vivo.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA.
| | | | | | | | | | | | | | | |
Collapse
|
311
|
Shanker G, Aschner JL, Syversen T, Aschner M. Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. ACTA ACUST UNITED AC 2005; 128:48-57. [PMID: 15337317 DOI: 10.1016/j.molbrainres.2004.05.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2004] [Indexed: 10/26/2022]
Abstract
Oxidative stress has been implicated in neurotoxic damage associated with various metals, including methylmercury (MeHg). Although the mechanism(s) of MeHg-induced neurotoxicity remains unclear, evidence supports a mediatory role for astrocytes, a cell type that preferentially accumulates MeHg. Using scanning confocal microscopy (LSCM), the present study was undertaken to examine the role of astrocytes as the site of reactive oxygen species (ROS). Three redox-sensitive fluorescent probes were used for ROS analysis, (a) CM-H2DCFDA (chloromethyl derivative of dichlorodihydrofluorescein diacetate), a probe for intracellular hydrogen peroxide (H2O2); (b) hydroethidine (HETH), a probe for superoxide anion (*O2-), and (c) CM-H2XRos (chloromethyl derivative of dihydro X-rosamine), and a probe that is selective for mitochondrial reactive oxygen intermediates. Astrocytes were treated with 10 microM MeHg for 30 min, following which the various fluorescent probes were added; 20 min later LSCM images were collected. Astrocytes loaded with CM-H2DCFDA and HE demonstrated a significant MeHg-induced increase in fluorescence intensity indicative of increased intracellular H2O2 and *O2-, respectively. Similar results were obtained with the mitotracker dye, CM-H2XRos. Additionally, exposure of astrocytes for 24 h to 100 microM buthionine-L-sulfoxane (BSO), a glutathione (GSH) synthesis inhibitor, caused a significant increase in ROS formation. Furthermore, BSO pretreatment significantly enhanced the MeHg-induced formation of *O2-, indicating an important role for GSH in the maintenance of optimal cellular redox status. Time-course experiments performed in the simultaneous presence of CM-H2XRos and CM-H2DCFDA demonstrated that the MeHg-induced CM-H2XRos fluorescence changes preceded those of CM-H2DCFDA, suggesting that the mitochondria represent an early primary site for ROS formation. Taken together, these studies illustrate that MeHg induces the generation of astrocyte-derived ROS and support a role for astrocytic ROS in MeHg-associated neurotoxic damage.
Collapse
Affiliation(s)
- Gouri Shanker
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | |
Collapse
|
312
|
Talior I, Tennenbaum T, Kuroki T, Eldar-Finkelman H. PKC-delta-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase. Am J Physiol Endocrinol Metab 2005; 288:E405-11. [PMID: 15507533 DOI: 10.1152/ajpendo.00378.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress is thought to be one of the causative factors contributing to insulin resistance and type 2 diabetes. Previously, we showed that reactive oxygen species (ROS) production is significantly increased in adipocytes from high-fat diet-induced obese and insulin-resistant mice (HF). ROS production was also associated with the increased activity of PKC-delta. In the present studies, we hypothesized that PKC-delta contributes to ROS generation and determined their intracellular source. NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) reduced ROS levels by 50% in HF adipocytes, and inhibitors of NO synthase (L-NAME, 1 mM), xanthine oxidase (allopurinol, 100 microM), AGE formation (aminoguanidine, 10 microM), or the mitochondrial uncoupler (FCCP, 10 microM) had no effect. Rottlerin, a selective PKC-delta inhibitor, suppressed ROS levels by approximately 50%. However, neither GO-6976 nor LY-333531, effective inhibitors toward conventional PKC or PKC-beta, respectively, significantly altered ROS levels in HF adipocytes. Subsequently, adenoviral-mediated expression of wild-type PKC-delta or its dominant negative mutant (DN-PKC-delta) in HF adipocytes resulted in either a twofold increase in ROS levels or their suppression by 20%, respectively. In addition, both ROS levels and PKC-delta activity were sharply reduced by glucose depletion. Taken together, these results suggest that PKC-delta is responsible for elevated intracellular ROS production in HF adipocytes, and this is mediated by high glucose and NADPH oxidase.
Collapse
Affiliation(s)
- Ilana Talior
- Dept. of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | |
Collapse
|
313
|
Goldstein BJ, Mahadev K, Kalyankar M, Wu X. Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 2005; 54:311-21. [PMID: 15677487 PMCID: PMC1464057 DOI: 10.2337/diabetes.54.2.311] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Propelled by the identification of a small family of NADPH oxidase (Nox) enzyme homologs that produce superoxide in response to cellular stimulation with various growth factors, renewed interest has been generated in characterizing the signaling effects of reactive oxygen species (ROS) in relation to insulin action. Two key observations made >30 years ago-that oxidants can facilitate or mimic insulin action and that H(2)O(2) is generated in response to insulin stimulation of its target cells-have led to the hypothesis that ROS may serve as second messengers in the insulin action cascade. Specific molecular targets of insulin-induced ROS include enzymes whose signaling activity is modified via oxidative biochemical reactions, leading to enhanced insulin signal transduction. These positive responses to cellular ROS may seem "paradoxical" because chronic exposure to relatively high levels of ROS have also been associated with functional beta-cell impairment and the chronic complications of diabetes. The best-characterized molecular targets of ROS are the protein-tyrosine phosphatases (PTPs) because these important signaling enzymes require a reduced form of a critical cysteine residue for catalytic activity. PTPs normally serve as negative regulators of insulin action via the dephosphorylation of the insulin receptor and its tyrosine-phosphorylated cellular substrates. However, ROS can rapidly oxidize the catalytic cysteine of target PTPs, effectively blocking their enzyme activity and reversing their inhibitory effect on insulin signaling. Among the cloned Nox homologs, we have recently provided evidence that Nox4 may mediate the insulin-stimulated generation of cellular ROS and is coupled to insulin action via the oxidative inhibition of PTP1B, a PTP known to be a major regulator of the insulin signaling cascade. Further characterization of the molecular components of this novel signaling cascade, including the mechanism of ROS generated by insulin and the identification of various oxidation-sensitive signaling targets in insulin-sensitive cells, may provide a novel means of facilitating insulin action in states of insulin resistance.
Collapse
Affiliation(s)
- Barry J Goldstein
- Dorrance Hamilton Research Laboratories, Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
314
|
Barrett DM, Black SM, Todor H, Schmidt-Ullrich RK, Dawson KS, Mikkelsen RB. Inhibition of protein-tyrosine phosphatases by mild oxidative stresses is dependent on S-nitrosylation. J Biol Chem 2005; 280:14453-61. [PMID: 15684422 DOI: 10.1074/jbc.m411523200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that a Ca(2+)-dependent nitric-oxide synthase (NOS) is activated as part of a cellular response to low doses of ionizing radiation. Genetic and pharmacological inhibitor studies linked this NO signaling to the radiation-induced activation of ERK1/2. Herein, a mechanism for the radiation-induced activation of Tyr phosphorylation-dependent pathways (e.g. ERK1/2) involving the inhibition of protein-Tyr phosphatases (PTPs) by S-nitrosylation is tested. The basis for this mechanism resides in the redox-sensitive active site Cys in PTPs. These studies also examined oxidative stress induced by low concentrations of H(2)O(2). S-Nitrosylation of total cellular PTP and immunopurified SHP-1 and SHP-2 was detected as protection of PTP enzymatic activity from alkylation by N-ethylmaleimide and reversal by ascorbate. Both radiation and H(2)O(2) protected PTP activity from alkylation by a mechanism reversible by ascorbate and inhibited by NOS inhibitors or expression of a dominant negative mutant of NOS-1. Radiation and H(2)O(2) stimulated a transient increase in cytoplasmic free [Ca(2+)]. Radiation, H(2)O(2), and the Ca(2+) ionophore, ionomycin, also stimulated NOS activity, and this was associated with an enhanced S-nitrosylation of the active site Cys(453) determined by isolation of S-nitrosylated wild type but not active site Cys(453) --> Ser SHP-1 mutant by the "biotin-switch" method. Thus, one consequence of oxidative stimulation of NO generation is S-nitrosylation and inhibition of PTPs critical in cellular signal transduction pathways. These results support the conclusion that a mild oxidative signal is converted to a nitrosative one due to the better redox signaling properties of NO.
Collapse
Affiliation(s)
- Daniel M Barrett
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298-0058, USA
| | | | | | | | | | | |
Collapse
|
315
|
Vodenicharov MD, Ghodgaonkar MM, Halappanavar SS, Shah RG, Shah GM. Mechanism of early biphasic activation of poly(ADP-ribose) polymerase-1 in response to ultraviolet B radiation. J Cell Sci 2005; 118:589-99. [PMID: 15657079 DOI: 10.1242/jcs.01636] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The damage to DNA caused by ultraviolet B radiation (280-320 nm) contributes significantly to development of sunlight-induced skin cancers. The susceptibility of mice to ultraviolet B-induced skin carcinogenesis is increased by an inhibitor of the DNA damage-activated nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP), hence PARP activation is likely to be associated with cellular responses that suppress carcinogenesis. To understand the role of activated PARP in these cellular functions, we need to first clearly identify the cause of PARP activation in ultraviolet B-irradiated cells. Ultraviolet B, like ultraviolet C, causes direct DNA damage of cyclobutane pyrimidine dimer and 6, 4-photoproduct types, which are subjected to the nucleotide excision repair. Moreover, ultraviolet B also causes oxidative DNA damage, which is subjected to base excision repair. To identify which of these two types of DNA damage activates PARP, we examined mechanism of early PARP activation in mouse fibroblasts exposed to ultraviolet B and C radiations. The ultraviolet B-irradiated cells rapidly activated PARP in two distinct phases, initially within the first 5 minutes and later between 60-120 minutes, whereas ultraviolet C-irradiated cells showed only the immediate PARP activation. Using antioxidants, local irradiation, chromatin immunoprecipitation and in vitro PARP assays, we identified that ultraviolet radiation-induced direct DNA damage, such as thymine dimers, cause the initial PARP activation, whereas ultraviolet B-induced oxidative damage cause the second PARP activation. Our results suggest that cells can selectively activate PARP for participation in different cellular responses associated with different DNA lesions.
Collapse
Affiliation(s)
- Momchil D Vodenicharov
- Laboratory for Skin Cancer Research, CHUL Research Center (CHUQ), Faculty of Medicine, Laval University, 2705, Laurier Boulevard, Québec, QC, G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
316
|
Giustarini D, Rossi R, Milzani A, Colombo R, Dalle-Donne I. S-glutathionylation: from redox regulation of protein functions to human diseases. J Cell Mol Med 2005; 8:201-12. [PMID: 15256068 PMCID: PMC6740303 DOI: 10.1111/j.1582-4934.2004.tb00275.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play an integral role in the modulation of several physiological functions but can also be potentially destructive if produced in excessive amounts. Protein cysteinyl thiols appear especially sensitive to ROS/RNS attack. Experimental evidence started to accumulate recently, documenting that S-glutathionylation occurs in a number of physiologically relevant situations, where it can produce discrete modulatory effects on protein function. The increasing evidence of functional changes resulting from this modification, and the growing number of proteins shown to be S-glutathionylated both in vitro and in vivo support this contention, and confirm this as an attractive area of research. S-glutathionylated proteins are now actively investigated with reference to problems of biological interest and as possible biomarkers of human diseases associated with oxidative/nitrosative stress.
Collapse
|
317
|
Babilonia E, Wei Y, Sterling H, Kaminski P, Wolin M, Wang WH. Superoxide anions are involved in mediating the effect of low K intake on c-Src expression and renal K secretion in the cortical collecting duct. J Biol Chem 2005; 280:10790-6. [PMID: 15644319 PMCID: PMC2825056 DOI: 10.1074/jbc.m414610200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously demonstrated that low K intake stimulated the expression of c-Src and that stimulation of protein tyrosine kinase inhibited ROMK channel activity (Wei, Y., Bloom, P., Lin, D. H., Gu, R. M., and Wang, W. H. (2001) Am. J. Physiol. 281, F206-F212). Decreases in dietary K content significantly increased O(2)(-) levels and the phosphorylation of c-Jun, a transcription factor, in renal cortex and outer medulla. The role of O(2)(-) and related products such as H(2)O(2) in stimulating the expression of protein tyrosine kinase is suggested by the observation that addition of 50-200 microm H(2)O(2) increased the phosphorylation of c-Jun and the expression of c-Src in M1 cells, a mouse collecting duct principal cell line. The effect of H(2)O(2) on c-Src expression was completely abolished with cyclohexamide or actinomycin D. The treatment of animals on a K-deficient (KD) diet with tempol for 7 days significantly decreased the production of O(2)(-), c-Jun phosphorylation, and c-Src expression. Moreover, low K intake decreased the activity of ROMK-like small conductance channels from 1.37 (control K diet) to 0.5 in the cortical collecting duct and increased the tyrosine phosphorylation of ROMK in the renal cortex and outer medulla. In contrast, the tempol treatment not only increased channel activity to 1.1 in the cortical collecting duct but also decreased the tyrosine phosphorylation of ROMK from rats on a KD diet. Finally, suppressing O(2)(-) production with tempol significantly increased renal K excretion measured with metabolic cage and lowered the plasma K concentration in comparison with those on a KD diet alone without tempol. We conclude that O(2)(-) and related products play a role in mediating the effect of low K intake on c-Src expression and in suppressing ROMK channel activity and renal K secretion.
Collapse
Affiliation(s)
- Elisa Babilonia
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - Yuan Wei
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - Hyacinth Sterling
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - Pawel Kaminski
- Department of Physiology, New York Medical College, Valhalla, New York 10595
| | - Michael Wolin
- Department of Physiology, New York Medical College, Valhalla, New York 10595
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
- To whom correspondence should be addressed: Dept. of Pharmacology, BSB Rm. 537, New York Medical College, Valhalla, NY 10595. Tel.: 914-594-4139; Fax: 914-347-4956;
| |
Collapse
|
318
|
Shepherd PR. Mechanisms regulating phosphoinositide 3-kinase signalling in insulin-sensitive tissues. ACTA ACUST UNITED AC 2005; 183:3-12. [PMID: 15654916 DOI: 10.1111/j.1365-201x.2004.01382.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A great deal of evidence has accumulated indicating that the activity of PI 3-kinase is necessary, and in some cases sufficient, for a wide range of insulin's actions in the cell. Most biochemical, genetic and pharmacological studies have focused on identifying potential roles for the class-Ia PI 3-kinases which are rapidly activated following insulin stimulation. However, recent evidence indicates the alpha isoform of class-II PI 3-kinase (PI3K-C2alpha) may also play a role as insulin causes a very rapid activation of this as well. The basic mechanisms by which insulin activates the various members of the PI 3-kinase family are increasingly well understood and these studies reveal multiple mechanisms for modulating the activity and functionality of PI 3-kinase and for down regulating the signals they generate. These include inhibitory phosphorylation events, lipid phosphatases such as PTEN and SHIP2 and inhibitor proteins of the suppressors of cytokine signalling (SOCS) family. The current review will focus on these mechanisms and how defects in these might contribute to the development of insulin resistance.
Collapse
Affiliation(s)
- P R Shepherd
- Department of Biochemistry and Molecular Biology, University College London, Gower St, London WC1E 6BT, UK
| |
Collapse
|
319
|
Rahman I, Biswas SK, Jimenez LA, Torres M, Forman HJ. Glutathione, stress responses, and redox signaling in lung inflammation. Antioxid Redox Signal 2005; 7:42-59. [PMID: 15650395 DOI: 10.1089/ars.2005.7.42] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Changes in the ratio of intracellular reduced and disulfide forms of glutathione (GSH/GSSG) can affect signaling pathways that participate in various physiological responses from cell proliferation to gene expression and apoptosis. It is also now known that many proteins have a highly conserved cysteine (sulfhydryl) sequence in their active/regulatory sites, which are primary targets of oxidative modifications and thus important components of redox signaling. However, the mechanism by which oxidants and GSH/protein-cysteine-thiols actually participate in redox signaling still remains to be elucidated. Initial studies involving the role of cysteine in various proteins have revealed that cysteine-SH may mediate redox signaling via reversible or irreversible oxidative modification to Cys-sulfenate or Cys-sulfinate and Cys-sulfonate species, respectively. Oxidative stress possibly via the modification of cysteine residues activates multiple stress kinase pathways and transcription factors nuclear factor-kappaB and activator protein-1, which differentially regulate the genes for proinflammatory cytokines as well as the protective antioxidant genes. Understanding the redox signaling mechanisms for differential gene regulation may allow for the development of novel pharmacological approaches that preferentially up-regulate key antioxidants genes, which, in turn, reduce or resolve inflammation and injury. This forum article features the current knowledge on the role of GSH in redox signaling, particularly the regulation of transcription factors and downstream signaling in lung inflammation.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Division of Lung Biology and Disease, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
320
|
Seo JH, Ahn Y, Lee SR, Yeol Yeo C, Chung Hur K. The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is phosphatase and tensin homolog and not phosphoinositide-3 kinase (PI-3 kinase) in the PI-3 kinase/Akt pathway. Mol Biol Cell 2005; 16:348-57. [PMID: 15537704 PMCID: PMC539178 DOI: 10.1091/mbc.e04-05-0369] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 10/22/2004] [Accepted: 10/27/2004] [Indexed: 12/22/2022] Open
Abstract
Phosphoinositide-3 kinase (PI-3 kinase) and its downstream signaling molecules PDK-1 and Akt were analyzed in SK-N-SH and SK-N-BE(2) human neuroblastoma cell lines. When cells were stimulated with insulin, PI-3 kinase was activated in both cell lines, whereas the translocation of PDK-1 to the membrane fraction and phosphorylated Akt were observed only in SK-N-SH cells. Analyses of the insulin-mediated reactive oxygen species (ROS) generation and Phosphatase and Tensin homolog (PTEN) oxidation indicate that PTEN oxidation occurred in SK-N-SH cells, which can produce ROS, but not in SK-N-BE(2) cells, which cannot increase ROS in response to insulin stimulation. When SK-N-SH cells were pretreated with the NADPH oxidase inhibitor diphenyleneiodonium chloride before insulin stimulation, insulin-mediated translocation of PDK-1 to the membrane fraction and phosphorylation of Akt were remarkably reduced, whereas PI-3 kinase activity was not changed significantly. These results indicate that not only PI-3 kinase activation but also inhibition of PTEN by ROS is needed to increase cellular level of phosphatidylinositol 3,4,5-trisphosphate for recruiting downstream signaling molecules such as PDK-1 and Akt in insulin-mediated signaling. Moreover, the ROS generated by insulin stimulation mainly contributes to the inactivation of PTEN and not to the activation of PI-3 kinase in the PI-3 kinase/Akt pathway.
Collapse
Affiliation(s)
- Ji Hae Seo
- Department of Biology, Ewha Women's University, Seoul 120-750, Korea
| | | | | | | | | |
Collapse
|
321
|
Matsunaga Y, Kawai Y, Kohda Y, Gemba M. INVOLVEMENT OF ACTIVATION OF NADPH OXIDASE AND EXTRACELLULAR SIGNAL-REGULATED KINASE (ERK) IN RENAL CELL INJURY INDUCED BY ZINC. J Toxicol Sci 2005; 30:135-44. [PMID: 15928461 DOI: 10.2131/jts.30.135] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Zinc is employed as a supplement; however, zinc-related nephropathy is not generally known. In this study, we investigated zinc-induced renal cell injury using a pig kidney-derived cultured renal epithelial cell line, LLC-PK(1), with proximal kidney tubule-like features, and examined the involvement of free radicals and extracellular signal-regulated kinase (ERK) in the cell injury. The LLC-PK(1) cells showed early uptake of zinc (30 microM), and the release of lactate dehydrogenase (LDH), an index of cell injury, was observed 24 hr after uptake. Three hours after zinc exposure, generation of reactive oxygen species (ROS) was increased. An antioxidant, N, N'-diphenyl-p-phenylenediamine (DPPD), inhibited a zinc-related increase in ROS generation and zinc-induced renal cell injury. An NADPH oxidase inhibitor, diphenyleneiodonium (DPI), inhibited a zinc-related increase in ROS generation and cell injury. We investigated translocation from the cytosol fraction of the p67(phox) subunit, which is involved in the activation of NADPH oxidase, to the membrane fraction, and translocation was induced 3 hr after zinc exposure. We examined the involvement of ERK1/2 in the deterioration of zinc-induced renal cell injury, and the association between ERK1/2 and an increase in ROS generation. Six hours after zinc exposure, the activation (phosphorylation) of ERK1/2 was observed. An antioxidant, DPPD, inhibited the zinc-related activation of ERK1/2. An MAPK/ERK kinase (MEK1/2) inhibitor, U0126, almost completely inhibited zinc-related cell injury (the release of LDH), but did not influence ROS generation. These results suggest that early intracellular uptake of zinc by LLC-PK(1) cells causes the activation of NADPH oxidase, and that ROS generation by the activation of the enzyme leads to the deterioration of renal cell injury via the activation of ERK1/2.
Collapse
Affiliation(s)
- Yoshiko Matsunaga
- Division of Pharmacology, Osaka University of Pharmaceutical Sciences, Nasahara, Takatsuki, Japan
| | | | | | | |
Collapse
|
322
|
Woo HA, Jeong W, Chang TS, Park KJ, Park SJ, Yang JS, Rhee SG. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J Biol Chem 2004; 280:3125-8. [PMID: 15590625 DOI: 10.1074/jbc.c400496200] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cysteine residues of certain peroxiredoxins (Prxs) undergo reversible oxidation to sulfinic acid (Cys-SO2H) and the reduction reaction is catalyzed by sulfiredoxin (Srx). Specific Cys residues of various other proteins are also oxidized to sulfinic acid, suggesting that formation of Cys-SO2H might be a novel posttranslational modification that contributes to regulation of protein function. To examine the susceptibility of sulfinic forms of proteins to reduction by Srx, we prepared such forms of all six mammalian Prx isoforms and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Purified sulfiredoxin reduced the sulfinic forms of the four 2-Cys members (Prx I to Prx IV) of the Prx family in vitro, but it did not affect those of Prx V, Prx VI, or GAPDH. Furthermore, Srx bound specifically to the four 2-Cys Prxs in vitro and in cells. Sulfinic forms of Prx I and Prx II, but not of Prx VI or GAPDH, present in H2O2-treated A549 cells were gradually reduced after removal of H2O2; overexpression of Srx increased the rate of the reduction of Prx I and Prx II but did not induce that of Prx VI or GAPDH. These results suggest that reduction of Cys-SO2H by Srx is specific to 2-Cys Prx isoforms. For proteins such as Prx VI and GAPDH, sulfinic acid formation might be an irreversible process that causes protein damage.
Collapse
Affiliation(s)
- Hyun Ae Woo
- Laboratory of Cell Signaling and Laboratory of Biophysical Chemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
323
|
Schmitt TL, Hotz-Wagenblatt A, Klein H, Dröge W. Interdependent regulation of insulin receptor kinase activity by ADP and hydrogen peroxide. J Biol Chem 2004; 280:3795-801. [PMID: 15563471 DOI: 10.1074/jbc.m410352200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin signaling requires autophosphorylation of the insulin receptor kinase (IRK) domain. Using purified recombinant IRK fragments and the isolated intact insulin receptor, we show here that autophosphorylation is inhibited by ADP and that this effect is essentially reversed by hydrogen peroxide. Autophosphorylation was inhibited by hydrogen peroxide (60 microM) in the absence of ADP but enhanced in the presence of inhibitory concentrations of ADP (67 microM). Enhancement by hydrogen peroxide required direct interaction of hydrogen peroxide with the kinase domain and was not seen in insulin receptor mutants C1245A and C1308A. A similar enhancement was obtained in intact cells in the absence of insulin upon treatment with 1-(2-chloroethyl)-3-(2-hydroxyethyl)-1-nitrosourea, indicating that IRK activity can be alternatively enhanced by a shift in the thiol/disulfide redox status. Molecular modeling of the IRK domain indicated that the ATP-binding site becomes distorted after releasing the nucleotide unless the IRK domain is oxidatively derivatized at Cys1245. Recent clinical studies suggest that these effects may play a role in obesity due to the fact that cytoplasmic creatine kinase in combination with phosphocreatine normally ensures rapid removal of ADP in muscle cells but not in fat cells.
Collapse
Affiliation(s)
- Thomas L Schmitt
- Division of Immunochemistry, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
324
|
Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ, Stadtman ER, Rhee SG. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci U S A 2004; 101:16419-24. [PMID: 15534200 PMCID: PMC534546 DOI: 10.1073/pnas.0407396101] [Citation(s) in RCA: 507] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stimulation of cells with various peptide growth factors induces the production of phosphatidylinositol 3,4,5-trisphosphate (PIP3) through activation of phosphatidylinositol 3-kinase. The action of this enzyme is reversed by that of the tumor suppressor PTEN. With the use of cells overexpressing NADPH oxidase 1 or peroxiredoxin II, we have now shown that H2O2 produced in response to stimulation of cells with epidermal growth factor or platelet-derived growth factor potentiates PIP3 generation and activation of the protein kinase Akt induced by these growth factors. We also show that a small fraction of PTEN molecules is transiently inactivated as a result of oxidation of the essential cysteine residue of this phosphatase in various cell types stimulated with epidermal growth factor, platelet-derived growth factor, or insulin. These results suggest that the activation of phosphatidylinositol 3-kinase by growth factors might not be sufficient to induce the accumulation of PIP3 because of the opposing activity of PTEN and that the concomitant local inactivation of PTEN by H2O2 might be needed to increase the concentration of PIP3 sufficiently to trigger downstream signaling events. Furthermore, together with previous observations, our data indicate that peroxiredoxin likely participates in PIP3 signaling by modulating the local concentration of H2O2.
Collapse
Affiliation(s)
- Jaeyul Kwon
- Laboratories of Cell Signaling and Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8015, USA
| | | | | | | | | | | | | |
Collapse
|
325
|
Humphries KM, Deal MS, Taylor SS. Enhanced dephosphorylation of cAMP-dependent protein kinase by oxidation and thiol modification. J Biol Chem 2004; 280:2750-8. [PMID: 15533936 DOI: 10.1074/jbc.m410242200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The catalytic subunit of cAMP-dependent protein kinase (PKA) is phosphorylated at threonine 197 and serine 338. Phosphorylation of threonine 197, located in the activation loop, is required for coordinating the active site conformation and optimal enzymatic activity. However, this phosphorylation has not been widely appreciated as a regulatory site because of the apparent constitutive nature of the phosphorylation and the general resistance of the kinase to phosphatase treatment. We demonstrate here that the observed resistance of the catalytic subunit to dephosphorylation is due, in part, to the presence of the highly nucleophilic cysteine 199 located proximal to the phosphate on threonine 197. Experiments performed in vitro demonstrated that mutation (cysteine 199 to alanine), oxidation, such as by glutathionylation or internal disulfide bond formation, or alkylation of the C-subunit enhanced its ability to be dephosphorylated. Furthermore, rephosphorylation of reduced C-subunit by PDK1 created a cycle whereby the inactive kinase could be reactivated. To demonstrate that thiol modification of PKA can lead to enhanced dephosphorylation in vivo, PC12 cells were treated with N-ethylmaleimide (NEM). Such treatment resulted in complete PKA inactivation and dephosphorylation of threonine 197. This effect of NEM was contingent upon prior treatment of the cells with PKA activators, demonstrating the resistance of the holoenzyme to thiol alkylation-mediated dephosphorylation. Our results also demonstrated that NEM treatment of PC12 cells enhanced the dephosphorylation of the protein kinase Calpha activation loop, suggesting a common mechanism of regulation among members of the AGC family of kinases.
Collapse
Affiliation(s)
- Kenneth M Humphries
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry and Department of Pharmacology, The University of California, San Diego, La Jolla, California 92093-0654, USA
| | | | | |
Collapse
|
326
|
Fiorentini D, Prata C, Maraldi T, Zambonin L, Bonsi L, Hakim G, Landi L. Contribution of reactive oxygen species to the regulation of Glut1 in two hemopoietic cell lines differing in cytokine sensitivity. Free Radic Biol Med 2004; 37:1402-11. [PMID: 15454279 DOI: 10.1016/j.freeradbiomed.2004.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 06/29/2004] [Accepted: 07/15/2004] [Indexed: 11/16/2022]
Abstract
Glucose transport activity and its possible regulation by reactive oxygen species in two Glut1-expressing megakaryocytic cell lines, MO7e and B1647, differing in cytokine sensitivity were compared. Results show that: (1) In MO7e cells, glucose transport rate increased in response to thrombopoietin, granulocyte-macrophage colony-stimulating factor, or stem cell factor, due to a decreased Km. (2) A higher Vmax value was determined in B1647 cells, owing to the relative higher abundance of Glut1 on the plasmalemma; in these cells no change in glucose transport rate was observed on cytokine treatment. (3) The basal level of intracellular ROS was higher in B1647 than in M07e cells, where ROS production was enhanced upon cytokine exposure. (4) Basal or stimulated ROS production and Glut1 activity were significantly reduced by pretreating both cell lines with EUK-134, a superoxide dismutase and catalase mimetic. (5) In MO7e cells, EUK-134 brought back to control levels the Km values obtained on cytokine treatment, whereas in B1647 cells the antioxidant drastically reduced Vmax by decreasing the Glut1 content of the plasma membrane. Our data suggest that differences in acute regulation of glucose transport activity in the two cell lines may be related to differences in amplitude and spatial organization of ROS production.
Collapse
Affiliation(s)
- Diana Fiorentini
- Dipartimento di Biochimica, Università di Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
327
|
Williams MS, Kwon J. T cell receptor stimulation, reactive oxygen species, and cell signaling. Free Radic Biol Med 2004; 37:1144-51. [PMID: 15451054 DOI: 10.1016/j.freeradbiomed.2004.05.029] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 05/28/2004] [Indexed: 10/26/2022]
Abstract
In the immune system, much of the focus on reactive oxygen species (ROS) has been regarding their role in antimicrobial defense as part of the innate immune system. In addition to this role, it is now becoming clear that ROS are used by cells of the adaptive immune system as regulators of signal transduction by cell surface receptors. The activation of T lymphocytes through their specific antigen receptor [T cell receptor (TCR)] is vital in regulating the immune response. Much experimental evidence has suggested that activation of T cells is redox dependent and recent studies have shown that engagement of the TCR induces rapid production of ROS. This review examines the evidence for TCR-stimulated generation of ROS and discusses the role(s) of receptor-stimulated ROS production in T cell signal transduction and gene expression.
Collapse
Affiliation(s)
- Mark S Williams
- Immunology Department, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, MD, USA.
| | | |
Collapse
|
328
|
van der Wijk T, Overvoorde J, den Hertog J. H2O2-induced Intermolecular Disulfide Bond Formation between Receptor Protein-tyrosine Phosphatases. J Biol Chem 2004; 279:44355-61. [PMID: 15294898 DOI: 10.1074/jbc.m407483200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor protein-tyrosine phosphatase alpha (RPTPalpha) belongs to the subfamily of receptor-like protein-tyrosine phosphatases that are characterized by two catalytic domains of which only the membrane-proximal one (D1) exhibits appreciable catalytic activity. The C-terminal catalytic domain (D2) regulates RPTPalpha catalytic activity by controlling rotational coupling within RPTPalpha dimers. RPTPalpha-D2 changes conformation and thereby rotational coupling within RPTPalpha dimers in response to changes in the cellular redox state. Here we report a decrease in motility of RPTPalpha from cells treated with H2O2 on non-reducing SDS-polyacrylamide gels to a position that corresponds to RPTPalpha dimers, indicating intermolecular disulfide bond formation. Using mutants of all individual cysteines in RPTPalpha and constructs encoding the individual protein-tyrosine phosphatase domains, we located the intermolecular disulfide bond to the catalytic Cys-723 in D2. Disulfide bond formation and dimer stabilization showed similar levels of concentration and time dependence. However, treatment of lysates with dithiothreitol abolished intermolecular disulfide bonds but not stable dimer formation. Intermolecular disulfide bond formation and rotational coupling were also found using a chimera of the extracellular domain of RPTPalpha fused to the transmembrane and intracellular domain of the leukocyte common antigen-related protein (LAR). These results suggest that H2O2 treatment leads to oxidation of the catalytic Cys in D2, which then rapidly forms a disulfide bond with the D2 catalytic Cys of the dyad-related monomer, rendering an inactive RPTP dimer. Recovery from oxidative stress first leads to the reduction of the disulfide bond followed by a slower refolding of the protein to the active conformation.
Collapse
Affiliation(s)
- Thea van der Wijk
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | |
Collapse
|
329
|
Bova MP, Mattson MN, Vasile S, Tam D, Holsinger L, Bremer M, Hui T, McMahon G, Rice A, Fukuto JM. The oxidative mechanism of action of ortho-quinone inhibitors of protein-tyrosine phosphatase α is mediated by hydrogen peroxide. Arch Biochem Biophys 2004; 429:30-41. [PMID: 15288807 DOI: 10.1016/j.abb.2004.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 05/11/2004] [Indexed: 01/06/2023]
Abstract
Here, we report the identification and characterization of five ortho-quinone inhibitors of PTPalpha. We observed that the potency of these compounds in biochemical assays was markedly enhanced by the presence of DTT. A kinetic analysis suggested that they were functioning as irreversible inhibitors and that the inhibition was targeted to the catalytic site of PTPalpha. The inhibition observed by these compounds was sensitive to superoxide dismutase and catalase, suggesting that reactive oxygen species may be mediators of their inhibition. We observed that in the presence of DTT, these compounds would produce up to 2.5mM hydrogen peroxide (H(2)O(2)). The levels of H(2)O(2) produced were sufficient to completely inactivate PTPalpha. In contrast, without a reducing agent the compounds did not generate H(2)O(2) and showed little activity towards PTPalpha. In addition, these compounds inhibited PTPalpha-dependent cell spreading in NIH 3T3 cells at concentrations that were similar to their activity in biochemical assays. The biological implications of these results are discussed as they support growing evidence that H(2)O(2) is a key regulator of PTPs.
Collapse
Affiliation(s)
- Michael P Bova
- Drug Discovery, SUGEN Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
330
|
Giri L, Mutalik VK, Venkatesh KV. A steady state analysis indicates that negative feedback regulation of PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation. Theor Biol Med Model 2004; 1:2. [PMID: 15291972 PMCID: PMC516236 DOI: 10.1186/1742-4682-1-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 08/03/2004] [Indexed: 01/17/2023] Open
Abstract
Background The phenomenon of switch-like response to graded input signal is the theme involved in various signaling pathways in living systems. Positive feedback loops or double negative feedback loops embedded with nonlinearity exhibit these switch-like bistable responses. Such feedback regulations exist in insulin signaling pathway as well. Methods In the current manuscript, a steady state analysis of the metabolic insulin-signaling pathway is presented. The threshold concentration of insulin required for glucose transporter GLUT4 translocation was studied with variation in system parameters and component concentrations. The dose response curves of GLUT4 translocation at various concentration of insulin obtained by steady state analysis were quantified in-terms of half saturation constant. Results We show that, insulin-stimulated GLUT4 translocation can operate as a bistable switch, which ensures that GLUT4 settles between two discrete, but mutually exclusive stable steady states. The threshold concentration of insulin required for GLUT4 translocation changes with variation in system parameters and component concentrations, thus providing insights into possible pathological conditions. Conclusion A steady state analysis indicates that negative feedback regulation of phosphatase PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation. The threshold concentration of insulin required for GLUT4 translocation and the corresponding bistable response at different system parameters and component concentrations was compared with reported experimental observations on specific defects in regulation of the system.
Collapse
Affiliation(s)
- Lopamudra Giri
- Department of Chemical Engineering and School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Vivek K Mutalik
- Department of Chemical Engineering and School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - KV Venkatesh
- Department of Chemical Engineering and School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
331
|
Lei T, Xie W, Han J, Corkey BE, Hamilton JA, Guo W. Medium-chain Fatty acids attenuate agonist-stimulated lipolysis, mimicking the effects of starvation. ACTA ACUST UNITED AC 2004; 12:599-611. [PMID: 15090627 DOI: 10.1038/oby.2004.69] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To test the hypothesis that incorporation of medium-chain fatty acids (FAs) into adipocyte triglycerides alters intracellular lipolysis. RESEARCH METHODS AND PROCEDURES 3T3-L1 adipocytes were pretreated with octanoate for various incubation periods. After the removal of exogenous FAs, cells were incubated with different lipolytic agonists. To determine the effects on lipolysis, we measured the following: the release of glycerol and FAs, lipase activity, protein levels of hormone-sensitive lipase (HSL), and perilipin A; translocation of HSL; phosphorylation of perilipin A; and levels of cellular adenosine triphosphate, cyclic adenosine monophosphate, and H2O2. To compare the effects of starvation with those caused by octanoate pretreatment, we measured glycerol release and H2O2 generation in rat adipocytes of starved donors. RESULTS Pretreatment of adipocytes with octanoate in vitro increased basal lipolysis but decreased the cellular response for agonists. The same effects were seen in starvation in vivo. Preincubation with octanoate for 48 hours did not affect basal lipase activity, HSL, and perilipin protein levels, but it reduced agonist-stimulated perilipin phosphorylation and HSL translocation toward fat droplets. This was associated with a reduction in basal cellular adenosine triphosphate levels and agonist-stimulated cyclic adenosine monophosphate generation. Starvation and octanoate pretreatment both increased intracellular H2O2 concentrations, which might also contribute to the inhibition on agonist-stimulated lipolysis. DISCUSSION Pretreatment with octanoate seems to induce changes in adipocyte lipolysis in a pattern mimicking the effects of starvation. Such changes could contribute, in part, to weight loss in animals and humans associated with dietary medium-chain FAs.
Collapse
Affiliation(s)
- Tianguang Lei
- Obesity Research Center, Boston University School of Medicine, Boston, Massachusetts. USA
| | | | | | | | | | | |
Collapse
|
332
|
Bernier M, He HJ, Kwon YK, Jang HJ. The roles of phospholipase C-gamma 1 and actin-binding protein filamin A in signal transduction of the insulin receptor. VITAMINS AND HORMONES 2004; 69:221-47. [PMID: 15196884 DOI: 10.1016/s0083-6729(04)69008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Michel Bernier
- Diabetes Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
333
|
Meng TC, Buckley DA, Galic S, Tiganis T, Tonks NK. Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J Biol Chem 2004; 279:37716-25. [PMID: 15192089 DOI: 10.1074/jbc.m404606200] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many studies have illustrated that the production of reactive oxygen species (ROS) is important for optimal tyrosine phosphorylation and signaling in response to diverse stimuli. Protein-tyrosine phosphatases (PTPs), which are important regulators of signal transduction, are exquisitely sensitive to inhibition after generation of ROS, and reversible oxidation is becoming recognized as a general physiological mechanism for regulation of PTP function. Thus, production of ROS facilitates a tyrosine phosphorylation-dependent cellular signaling response by transiently inactivating those PTPs that normally suppress the signal. In this study, we have explored the importance of reversible PTP oxidation in the signaling response to insulin. Using a modified ingel PTP assay, we show that stimulation of cells with insulin resulted in the rapid and transient oxidation and inhibition of two distinct PTPs, which we have identified as PTP1B and TC45, the 45-kDa spliced variant of the T cell protein-tyrosine phosphatase. We investigated further the role of TC45 as a regulator of insulin signaling by combining RNA interference and the use of substrate-trapping mutants. We have shown that TC45 is an inhibitor of insulin signaling, recognizing the beta-subunit of the insulin receptor as a substrate. The data also suggest that this strategy, using ligand-induced oxidation to tag specific PTPs and using interference RNA and substrate-trapping mutants to illustrate their role as regulators of particular signal transduction pathways, may be applied broadly across the PTP family to explore function.
Collapse
Affiliation(s)
- Tzu-Ching Meng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | |
Collapse
|
334
|
McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F, Lei XG. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci U S A 2004; 101:8852-7. [PMID: 15184668 PMCID: PMC428436 DOI: 10.1073/pnas.0308096101] [Citation(s) in RCA: 396] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Insulin resistance, a hallmark of type 2 diabetes, is associated with oxidative stress. However, the role of reactive oxygen species or specific antioxidant enzymes in its development has not been tested under physiological conditions. The objective of our study was to investigate the impact of overexpression of glutathione peroxidase 1 (GPX1), an intracellular selenoprotein that reduces hydrogen peroxide (H(2)O(2)) in vivo, on glucose metabolism and insulin function. The GPX1-overexpressing (OE) and WT male mice (n = 80) were fed a selenium-adequate diet (0.4 mg/kg) from 8 to 24 weeks of age. Compared with the WT, the OE mice developed (P < 0.05) hyperglycemia (117 vs. 149 mg/dl), hyperinsulinemia (419 vs. 1,350 pg/ml), and elevated plasma leptin (5 vs. 16 ng/ml) at 24 weeks of age. Meanwhile, these mice were heavier (37 vs. 27 g, P < 0.001) and fatter (37% vs. 17% fat, P < 0.01) than the WT mice. At 30-60 min after an insulin challenge, the OE mice had 25% less (P < 0.05) of a decrease in blood glucose than the WT mice. Their insulin resistance was associated with a 30-70% reduction (P < 0.05) in the insulin-stimulated phosphorylations of insulin receptor (beta-subunit) in liver and Akt (Ser(473) and Thr(308)) in liver and soleus muscle. Here we report the development of insulin resistance in mammals with elevated expression of an antioxidant enzyme and suggest that increased GPX1 activity may interfere with insulin function by overquenching intracellular reactive oxygen species required for insulin sensitizing.
Collapse
Affiliation(s)
- James P McClung
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
335
|
Liljebris C, Baranczewski P, Björkstrand E, Byström S, Lundgren B, Tjernberg A, Warolén M, James SR. Oxidation of protein tyrosine phosphatases as a pharmaceutical mechanism of action: a study using 4-hydroxy-3,3-dimethyl-2H-benzo[g]indole-2,5(3H)-dione. J Pharmacol Exp Ther 2004; 309:711-9. [PMID: 14747616 DOI: 10.1124/jpet.103.062745] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Growth factor and insulin signal transduction comprise series of protein kinases and protein phosphatases whose combined activities serve to propagate the growth factor signal in a regulated fashion. It was shown previously that such signaling cascades generate hydrogen peroxide inside cells. Recent work has implied that one function of this might be to enhance the feed-forward signal through the reversible oxidation and inhibition of protein tyrosine phosphatases (PTPs). We identified compound 4-hydroxy-3,3-dimethyl-2H-benzo[g]indole-2,5(3H)-dione (BVT.948) as an agent that is able to inhibit PTP activity in vitro noncompetitively, a mechanism involving oxidation of the catalytic cysteine residue. We investigated the pharmaceutical utility of this compound by examining its effects in a series of in vitro cellular and in vivo assays. Results showed that BVT.948 was able to enhance insulin signaling in cells, although it did not increase tyrosine phosphorylation globally. Furthermore, the compound was active in vivo, enhancing insulin tolerance tests in ob/ob mice, therefore apparently enhancing insulin sensitivity. BVT.948 was able to inhibit several other PTPs tested and also was efficient at inhibiting several cytochrome P450 (P450) isoforms in vitro. The data suggest that inhibitors of PTPs that display noncompetitive kinetics must be viewed with caution because they may oxidize the enzyme irreversibly. Furthermore, although such compounds display interesting biological effects in vitro and in vivo, their general pharmaceutical utility may be limited due to undesired effects on P450 enzymes.
Collapse
|
336
|
Cao W, Vrees MD, Kirber MT, Fiocchi C, Pricolo VE. Hydrogen peroxide contributes to motor dysfunction in ulcerative colitis. Am J Physiol Gastrointest Liver Physiol 2004; 286:G833-43. [PMID: 14670823 DOI: 10.1152/ajpgi.00414.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ulcerative colitis (UC) affects colonic motor function, but the mechanism responsible for this motor dysfunction is not well understood. We have shown that neurokinin A (NKA) may be an endogenous neurotransmitter mediating contraction of human sigmoid colonic circular muscle (HSCCM). To elucidate factors responsible for UC motor dysfunction, we examined the role of hydrogen peroxide (H(2)O(2)) in the decrease of NKA-induced response of HSCCM. As previously demonstrated, NKA-induced contraction or Ca(2+) increase of normal muscle cells is mediated by release of Ca(2+) from intracellular stores, because it was not affected by incubation in Ca(2+)-free medium (CFM) containing 200 microM BAPTA. In UC, however, CFM reduced both cell contraction and NKA-induced Ca(2+) increase, suggesting reduced Ca(2+) release from intracellular stores. In normal Ca(2+) medium, NKA and KCl caused normal Ca(2+) signal in UC cells but reduced cell shortening. The decreased Ca(2+) signal and contraction in response to NKA or thapsigargin were partly recovered in the presence of H(2)O(2) scavenger catalase, suggesting involvement of H(2)O(2) in UC-induced dysmotility. H(2)O(2) levels were higher in UC than in normal HSCCM, and enzymatically isolated UC muscle cells contained much higher levels of H(2)O(2) than normal cells, which were significantly reduced by catalase. H(2)O(2) treatment of normal cells in CFM reproduced the reduction of NKA-induced Ca(2+) release observed in UC cells. In addition, H(2)O(2) caused a measurable, direct release of Ca(2+) from intracellular stores. We conclude that H(2)O(2) may contribute to reduction of NKA-induced Ca(2+) release from intracellular Ca(2+) stores in UC and contribute to the observed colonic motor dysfunction.
Collapse
Affiliation(s)
- Weibiao Cao
- Dept. of Medicine, Brown Medical School and Rhode Island Hospital, 593 Eddy St., SWP-510, Providence, RI 02903, USA.
| | | | | | | | | |
Collapse
|
337
|
Motoshima H, Wu X, Mahadev K, Goldstein BJ. Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochem Biophys Res Commun 2004; 315:264-71. [PMID: 14766203 DOI: 10.1016/j.bbrc.2004.01.049] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Indexed: 11/29/2022]
Abstract
Adiponectin (also known as 30-kDa adipocyte complement-related protein or Acrp30) is an abundant adipocyte-derived plasma protein with anti-atherosclerotic and insulin-sensitizing properties. In order to investigate the potential mechanism(s) of the vascular protective effect of adiponectin, we used cultured bovine endothelial cells (BAECs) to study the effect of recombinant globular adiponectin (gAd) on cellular proliferation and the generation of reactive oxygen species (ROS) induced by oxidized LDL (oxLDL). By RT-PCR, we found that BAECs preferentially express AdipoR1, the high-affinity receptor for gAd. Treatment of BAECs with oxLDL (10 microg/ml) for 16h stimulated cell proliferation by approximately 60%, which was inhibited by co-incubation with gAd. Cell treatment with gAd also inhibited basal and oxLDL-induced superoxide release, and suppressed the activation of p42/p44 MAP kinase by oxLDL. The effects of gAd were blocked by a specific polyclonal anti-adiponectin antibody (TJ414). OxLDL-induced BAEC proliferation and superoxide release were inhibited by the NAD(P)H oxidase inhibitor diphenyleneiodonium (DPI), but not the eNOS inhibitor l-nitroarginine methyl ester (l-NAME). Finally, gAd ameliorated the suppression of eNOS activity by oxLDL. These data indicate that gAd inhibits oxLDL-induced cell proliferation and suppresses cellular superoxide generation, possibly through an NAD(P)H oxidase-linked mechanism.
Collapse
Affiliation(s)
- Hiroyuki Motoshima
- Dorrance Hamilton Research Laboratories, Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
338
|
Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G, Lambeth JD, Goldstein BJ. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 2004; 24:1844-54. [PMID: 14966267 PMCID: PMC350558 DOI: 10.1128/mcb.24.5.1844-1854.2004] [Citation(s) in RCA: 419] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Insulin stimulation of target cells elicits a burst of H(2)O(2) that enhances tyrosine phosphorylation of the insulin receptor and its cellular substrate proteins as well as distal signaling events in the insulin action cascade. The molecular mechanism coupling the insulin receptor with the cellular oxidant-generating apparatus has not been elucidated. Using reverse transcription-PCR and Northern blot analyses, we found that Nox4, a homolog of gp91phox, the phagocytic NAD(P)H oxidase catalytic subunit, is prominently expressed in insulin-sensitive adipose cells. Adenovirus-mediated expression of Nox4 deletion constructs lacking NAD(P)H or FAD/NAD(P)H cofactor binding domains acted in a dominant-negative fashion in differentiated 3T3-L1 adipocytes and attenuated insulin-stimulated H(2)O(2) generation, insulin receptor (IR) and IRS-1 tyrosine phosphorylation, activation of downstream serine kinases, and glucose uptake. Transfection of specific small interfering RNA oligonucleotides reduced Nox4 protein abundance and also inhibited the insulin signaling cascade. Overexpression of Nox4 also significantly reversed the inhibition of insulin-stimulated IR tyrosine phosphorylation induced by coexpression of PTP1B by inhibiting PTP1B catalytic activity. These data suggest that Nox4 provides a novel link between the IR and the generation of cellular reactive oxygen species that enhance insulin signal transduction, at least in part via the oxidative inhibition of cellular protein-tyrosine phosphatases (PTPases), including PTP1B, a PTPase that has been previously implicated in the regulation of insulin action.
Collapse
Affiliation(s)
- Kalyankar Mahadev
- Dorrance H. Hamilton Research Laboratories, Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-6799, USA
| | | | | | | | | | | | | | | |
Collapse
|
339
|
Wiernsperger NF. Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. DIABETES & METABOLISM 2004; 29:579-85. [PMID: 14707886 DOI: 10.1016/s1262-3636(07)70072-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidative stress has been repetitively shown to be a hallmark of many diseases linked with metabolic or vascular disorders. Therefore diabetes represents an ideal candidate for studying the consequences of oxidative stress and its treatment. Indeed diabetes constitutes a multiple source of free radicals, starting very early in the disease process and worsening over the course of disease. In view of the typical characteristics of diabetes, oxidative stress is expected to have a double impact, on both metabolic and vascular functions. It is therefore particularly disappointing to note the dramatic failure of clinical trials with antioxidants, although it must be pointed out that such studies have not been performed with only diabetic patients. This review describes the many different aspects of oxidative stress in diabetes and proposes possible explanations for the apparent lack of efficacy of antioxidant treatments in patients. Some verifications seem warranted before a definitive conclusion can be drawn about the validity of this therapeutic concept.
Collapse
Affiliation(s)
- N F Wiernsperger
- Diabetic Microangiopathy Research Unit, MERCK SANTE/INSERM U585, Bâtiment Louis Pasteur, 11 avenue J. Capelle, 69621 Villeurbanne, France.
| |
Collapse
|
340
|
Persson C, Sjöblom T, Groen A, Kappert K, Engström U, Hellman U, Heldin CH, den Hertog J, Ostman A. Preferential oxidation of the second phosphatase domain of receptor-like PTP-alpha revealed by an antibody against oxidized protein tyrosine phosphatases. Proc Natl Acad Sci U S A 2004; 101:1886-91. [PMID: 14762163 PMCID: PMC357022 DOI: 10.1073/pnas.0304403101] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) constitute a large enzyme family with important biological functions. Inhibition of PTP activity through reversible oxidation of the active-site cysteine residue is emerging as a general, yet poorly characterized, regulatory mechanism. In this study, we describe a generic antibody-based method for detection of oxidation-inactivated PTPs. Previous observations of oxidation of receptor-like PTP (RPTP) alpha after treatment of cells with H(2)O(2) were confirmed. Platelet-derived growth factor (PDGF)-induced oxidation of endogenous SHP-2, sensitive to treatment with the phosphatidylinositol 3-kinase inhibitor LY294002, was demonstrated. Furthermore, oxidation of RPTPalpha was shown after UV-irradiation. Interestingly, the catalytically inactive second PTP domain of RPTPalpha demonstrated higher susceptibility to oxidation. The experiments thus demonstrate previously unrecognized intrinsic differences between PTP domains to susceptibility to oxidation and suggest mechanisms for regulation of RPTPs with tandem PTP domains. The antibody strategy for detection of reversible oxidation is likely to facilitate further studies on regulation of PTPs and might be applicable to analysis of redox regulation of other enzyme families with active-site cysteine residues.
Collapse
Affiliation(s)
- Camilla Persson
- Ludwig Institute for Cancer Research, Box 595, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
341
|
Meng TC, Tonks NK. Analysis of the regulation of protein tyrosine phosphatases in vivo by reversible oxidation. Methods Enzymol 2004; 366:304-18. [PMID: 14674257 DOI: 10.1016/s0076-6879(03)66023-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Tzu-Ching Meng
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
342
|
Abstract
Perturbations of cell hydration as provoked by changes in ambient osmolarity or under isoosmotic conditions by hormones, second messengers, intracellular substrate accumulation, or reactive oxygen intermediates critically contribute to the physiological regulation of cell function. In general an increase in cell hydration stimulates anabolic metabolism and proliferation and provides cytoprotection, whereas cellular dehydration leads to a catabolic situation and sensitizes cells to apoptotic stimuli. Insulin produces cell swelling by inducing a net K+ and Na+ accumulation inside the cell, which results from a concerted activation of Na+/H+ exchange, Na+/K+/2Cl- symport, and the Na+/K(+)-ATPase. In the liver, insulin-induced cell swelling is critical for stimulation of glycogen and protein synthesis as well as inhibition of autophagic proteolysis. These insulin effects can largely be mimicked by hypoosmotic cell swelling, pointing to a role of cell swelling as a trigger of signal transduction. This article discusses insulin-induced signal transduction upstream of swelling and introduces the hypothesis that cell swelling as a signal amplifyer represents an essential component in insulin signaling, which contributes to the full response to insulin at the level of signal transduction and function. Cellular dehydration impairs insulin signaling and may be a major cause of insulin resistance, which develops in systemic hyperosmolarity, nutrient deprivation, uremia, oxidative challenges, and unbalanced production of insulin-counteracting hormones. Hydration changes affect cell functions at multiple levels (such as transcriptom, proteom, phosphoproteom, and the metabolom) and a system biological approach may allow us to develop a more holistic view on the hydration dependence of insulin signaling in the future.
Collapse
Affiliation(s)
- Freimut Schliess
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
343
|
Chiarugi P, Cirri P. Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci 2003; 28:509-14. [PMID: 13678963 DOI: 10.1016/s0968-0004(03)00174-9] [Citation(s) in RCA: 251] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In addition to protein phosphorylation, redox-dependent post-translational modification of proteins is emerging as a key signaling system that has been conserved throughout evolution and that influences many aspects of cellular homeostasis. Both systems exemplify dynamic regulation of protein function by reversible modification, which, in turn, regulates many cellular processes such as cell proliferation, differentiation and apoptosis. In this article we focus on the interplay between phosphorylation- and redox-dependent signaling at the level of phosphotyrosine phosphatase-mediated regulation of receptor tyrosine kinases (RTKs). We propose that signal transduction by oxygen species through reversible phosphotyrosine phosphatase inhibition, represents a widespread and conserved component of the biochemical machinery that is triggered by RTKs.
Collapse
Affiliation(s)
- Paola Chiarugi
- Dipartimento di Scienze Biochimiche, Università di Firenze, viale Morgagni 50, 50134 Florence, Italy.
| | | |
Collapse
|
344
|
Tischer C, Bastiaens PIH. Lateral phosphorylation propagation: an aspect of feedback signalling? Nat Rev Mol Cell Biol 2003; 4:971-4. [PMID: 14689967 DOI: 10.1038/nrm1258] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
345
|
Mueller AS, Pallauf J, Rafael J. The chemical form of selenium affects insulinomimetic properties of the trace element: investigations in type II diabetic dbdb mice. J Nutr Biochem 2003; 14:637-47. [PMID: 14629895 DOI: 10.1016/j.jnutbio.2003.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of the present study was to investigate the effects of oral selenate application in comparison to selenium deficiency and selenite treatment on the development of the diabetic status (glucose tolerance, insulin resistance and activities of glycolytic and gluconeogenic marker enzymes) in dbdb mice, representing a type II diabetic animal model. Therefore 21 adult male dbdb mice were assigned to 3 experimental groups of 7 animals each and put on a selenium deficient diet (< 0.03 mg/kg diet) based on torula yeast. Group 0Se was kept on selenium deficiency for 10 weeks while the mice of the groups SeIV and SeVI were supplemented daily with 15% of their individual LD(50) of sodium selenite or sodium selenate in addition to the diet. After 10 weeks a distinct melioration of the diabetic status indicated by a corrected glucose tolerance and a lowered insulin resistance was measured in selenate treated mice (group SeVI) in comparison to their selenium deficient and selenite treated companions and to their initial status. Activities of the glycolytic marker enzymes hexokinase, phosphofructokinase and pyruvate kinase were increased 1.7 to 3-fold in liver and/or adipose tissue by selenate treatment as compared to mice on selenium deficiency and mice with selenite administration. In contrast selenate treatment (SeVI) repressed the activity of liver pyruvate carboxylase the first enzyme in gluconeogenesis by about 33% in comparison to the selenium deficient (0Se) and selenite treated mice (SeIV). However the current study revealed an insulinomimetic role for selenate (selenium VI) also in type II diabetic animals due to a melioration of insulin resistance. In contrast selenium deficiency and especially selenite (selenium IV) impaired the diabetic status of dbdb mice, demonstrating the need for investigations on the insulinomimetic action of selenium due to the metabolism of different selenium compounds.
Collapse
Affiliation(s)
- Andreas S Mueller
- Biochemie Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany.
| | | | | |
Collapse
|
346
|
Dadke S, Chernoff J. Protein-tyrosine phosphatase 1B mediates the effects of insulin on the actin cytoskeleton in immortalized fibroblasts. J Biol Chem 2003; 278:40607-11. [PMID: 12902327 DOI: 10.1074/jbc.m306772200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin regulates diverse cellular responses including actin reorganization. The mechanism by which insulin induces formation of lamellipodia in cultured cells is not known but is likely to involve activation of Src family protein-tyrosine kinases. Here we show that protein-tyrosine phosphatase 1B (PTPIB) activates Src, thereby initiating the activation of a Rac-dependent pathway leading to cytoskeletal remodeling. Conversely, expression of a proline to alanine (P309,310A) PTP1B mutant, which cannot activate Src, fails to activate Rho GTPases or cause changes in actin organization. Rat fibroblasts lacking PTP1B expression do not activate Src or Rac in response to insulin and cannot reorganize actin. These results show that PTP1B, best known as a negative regulator of the metabolic effects of insulin, is required for the effects of insulin on actin organization in immortalized fibroblasts.
Collapse
|
347
|
Ragab A, Bodin S, Viala C, Chap H, Payrastre B, Ragab-Thomas J. The tyrosine phosphatase 1B regulates linker for activation of T-cell phosphorylation and platelet aggregation upon FcgammaRIIa cross-linking. J Biol Chem 2003; 278:40923-32. [PMID: 12857726 DOI: 10.1074/jbc.m303602200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human platelets express the receptor for immunoglobulin G, FcgammaRIIa, that triggers cell aggregation upon interaction with immune complexes. Here, we report that the rapid tyrosine phosphorylation of the Linker for Activation of T-cell (LAT) in human platelets stimulated by FcgammaRIIa cross-linking was followed by its complete dephosphorylation in an alphaIIb/beta3 integrin-dependent manner. Concomitant to LAT dephosphorylation, the protein tyrosine phosphatase 1B (PTP1B) was activated through a mechanism involving its proteolysis by calpains downstream of integrins. Both PTP1B and LAT were associated with the actin cytoskeleton complex formed during platelet aggregation. Moreover, phospho-LAT appeared as a good substrate of activated PTP1B in vitro and these two proteins interacted upon platelet activation by FcgammaRIIa cross-linking. The permeant substrate-trapping PTP1B (TAT-PTP1B D181A) partly inhibited LAT dephosphorylation in human platelets, strongly suggesting that this tyrosine phosphatase was involved in this regulatory pathway. Using a pharmacological inhibitor, we provide evidence that PTP1B activation and LAT dephosphorylation processes were required for irreversible platelet aggregation. Altogether, our results demonstrate that PTP1B plays an important role in the integrin-mediated dephosphorylation of LAT in human platelets and is involved in the control of irreversible aggregation upon FcgammaRIIa stimulation.
Collapse
Affiliation(s)
- Ashraf Ragab
- INSERM U563, Centre de Physiopathologie de Toulouse-Purpan, Institut Fédératif de Recherche 30, Universite Paul Sabatier, Hôpital Purpan, 31059 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
348
|
Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H, Schultz G, Harteneck C. Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol 2003; 286:C129-37. [PMID: 14512294 DOI: 10.1152/ajpcell.00331.2003] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microglial cells are the host macrophages in the central nervous system and respond to brain injury and various neurological diseases. In this process, microglial cells undergo multiple morphological and functional changes from the resting cell toward a fully activated, phagocyting tissue macrophage. In culture, bacterial lipopolysaccharide (LPS) is a frequently used tool to induce this activation. By using calcium-imaging and patch-clamp techniques, we investigated the effect of hydrogen peroxide (H2O2), which is released by macrophagic cells themselves, on the intracellular calcium concentration and ion currents in cultured rat microglia. Application of 0.1-5 mM H2O2 for several minutes induced small responses in untreated cells but a large calcium influx and cation current in LPS-treated cells. In both untreated and LPS-treated microglia, internal perfusion of ADP-ribose (ADPR) via the patch pipette elicited large cation currents. Both stimuli, H2O2 and ADPR, have been reported to activate the recently cloned nonselective cation channel TRPM2. RT-PCR analysis from cultured rat glial and neuronal cells confirmed a strong expression of TRPM2 in rat microglia but not in astrocytes and cerebellar granule cells. In situ hybridizations from mouse brain showed a distribution of TRPM2, which is compatible with the expression in microglial cells. In conclusion, we describe here a novel calcium influx pathway in microglia coupled to hydrogen peroxide and ADPR and provide evidence that this pathway involves TRPM2. The increased sensitivity to H2O2 in LPS-stimulated cells suggests a role for TRPM2 in the calcium signaling of activated microglia.
Collapse
Affiliation(s)
- Robert Kraft
- Institut für Pharmakologie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Thielallee 69-73, 14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
349
|
Guertin KR, Setti L, Qi L, Dunsdon RM, Dymock BW, Jones PS, Overton H, Taylor M, Williams G, Sergi JA, Wang K, Peng Y, Renzetti M, Boyce R, Falcioni F, Garippa R, Olivier AR. Identification of a novel class of orally active pyrimido[5,4-3][1,2,4]triazine-5,7-diamine-based hypoglycemic agents with protein tyrosine phosphatase inhibitory activity. Bioorg Med Chem Lett 2003; 13:2895-8. [PMID: 14611852 DOI: 10.1016/s0960-894x(03)00623-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel series of orally active pyrimido[5,4-3][1,2,4]triazine-5,7-diamine-based hypoglycemic agents have been identified. These compounds show non-selective inhibitory properties against a panel of protein tyrosine phosphatases including PTP1B. Compounds 12 and 13 display oral glucose lowering effects in ob/ob mice.
Collapse
Affiliation(s)
- Kevin R Guertin
- Roche Research Center, Hoffmann-LaRoche Inc., Nutley, NJ 07110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
350
|
Cho KJ, Moini H, Shon HK, Chung AS, Packer L. Alpha-lipoic acid decreases thiol reactivity of the insulin receptor and protein tyrosine phosphatase 1B in 3T3-L1 adipocytes. Biochem Pharmacol 2003; 66:849-58. [PMID: 12948866 DOI: 10.1016/s0006-2952(03)00395-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alpha-lipoic acid is known to increase insulin sensitivity in vivo and to stimulate glucose uptake into adipose and muscle cells in vitro. In this study, alpha-lipoic acid was demonstrated to stimulate the autophosphorylation of insulin receptor and glucose uptake into 3T3-L1 adipocytes by reducing the thiol reactivity of intracellular proteins. To elucidate mechanism of this effect, role of protein thiol groups and H(2)O(2) in insulin receptor autophosphorylation and glucose uptake was investigated in 3T3-L1 adipocytes following stimulation with alpha-lipoic acid. Alpha-lipoic acid or insulin treatment of adipocytes increased intracellular level of oxidants, decreased thiol reactivity of the insulin receptor beta-subunit, increased tyrosine phosphorylation of the insulin receptor, and enhanced glucose uptake. Alpha-lipoic acid or insulin-stimulated glucose uptake was inhibited (i) by alkylation of intracellular, but not extracellular, thiol groups downstream of insulin receptor activation, and (ii) by diphenylene iodonium at the level of the insulin receptor autophosphorylation. alpha-Lipoic acid also inhibited protein tyrosine phosphatase activity and decreased thiol reactivity of protein tyrosine phosphatase 1B. These findings indicate that oxidants produced by alpha-lipoic acid or insulin are involved in activation of insulin receptor and in inactivation of protein tyrosine phosphatases, which eventually result in elevated glucose uptake into 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Kyung-Joo Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-171, South Korea
| | | | | | | | | |
Collapse
|