301
|
Nguyen THT, Clapham HE, Phung KL, Nguyen TK, DInh TT, Nguyen THQ, Tran VN, Whitehead S, Simmons C, Wolbers M, Wills B. Methods to discriminate primary from secondary dengue during acute symptomatic infection. BMC Infect Dis 2018; 18:375. [PMID: 30086716 PMCID: PMC6081805 DOI: 10.1186/s12879-018-3274-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dengue virus infection results in a broad spectrum of clinical outcomes, ranging from asymptomatic infection through to severe dengue. Although prior infection with another viral serotype, i.e. secondary dengue, is known to be an important factor influencing disease severity, current methods to determine primary versus secondary immune status during the acute illness do not consider the rapidly evolving immune response, and their accuracy has rarely been evaluated against an independent gold standard. METHODS Two hundred and ninety-three confirmed dengue patients were classified as experiencing primary, secondary or indeterminate infections using plaque reduction neutralisation tests performed 6 months after resolution of the acute illness. We developed and validated regression models to differentiate primary from secondary dengue on multiple acute illness days, using Panbio Indirect IgG and in-house capture IgG and IgM ELISA measurements performed on over 1000 serial samples obtained during acute illness. RESULTS Cut-offs derived for the various parameters demonstrated progressive change (positively or negatively) by day of illness. Using these time varying cut-offs it was possible to determine whether an infection was primary or secondary on single specimens, with acceptable performance. The model using Panbio Indirect IgG responses and including an interaction with illness day showed the best performance throughout, although with some decline in performance later in infection. Models based on in-house capture IgG levels, and the IgM/IgG ratio, also performed well, though conversely performance improved later in infection. CONCLUSIONS For all assays, the best fitting models estimated a different cut-off value for different days of illness, confirming how rapidly the immune response changes during acute dengue. The optimal choice of assay will vary depending on circumstance. Although the Panbio Indirect IgG model performs best early on, the IgM/IgG capture ratio may be preferred later in the illness course.
Collapse
Affiliation(s)
- Thi Hanh Tien Nguyen
- Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Hannah E. Clapham
- Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Khanh Lam Phung
- Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Thanh Kieu Nguyen
- Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - The Trung DInh
- Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Than Ha Quyen Nguyen
- Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Van Ngoc Tran
- Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - Stephen Whitehead
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, MD USA
| | - Cameron Simmons
- Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nossal Institute of Global Health, School of Population and Global Health, University of Melbourne, Parkville, VIC Australia
| | - Marcel Wolbers
- Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bridget Wills
- Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
302
|
Weaver SC. Prediction and prevention of urban arbovirus epidemics: A challenge for the global virology community. Antiviral Res 2018; 156:80-84. [PMID: 29906475 PMCID: PMC6082388 DOI: 10.1016/j.antiviral.2018.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Abstract
The recent emergence and rapid spread of Zika virus in tropical regions of the Western Hemisphere took arbovirologists and public health officials by surprise, and the earlier transfers of West Nile and chikungunya viruses from the Old to the New World were also unexpected. These pandemics underscore the increasing threat of zoonotic arboviruses, especially those that are capable of entering into human-amplified, urban transmission cycles transmitted by Aedes (Stegomyia) aegypti and sometimes other Aedes (Stegomyia) spp. mosquitoes. This review serves as an introduction to a World Health Organization-sponsored conference to be held on June 18-19, 2018 in Geneva, titled "From obscurity to urban epidemics: what are the next urban arboviruses?" It is intended to set the stage and fuel discussions of future urban arbovirus threats, how we can predict these risks from known and unknown viruses, and what factors may change these risks over time.
Collapse
Affiliation(s)
- Scott C Weaver
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
303
|
Manh DH, Mizukami S, Dumre SP, Raekiansyah M, Senju S, Nishimura Y, Karbwang J, Huy NT, Morita K, Hirayama K. iPS cell serves as a source of dendritic cells for in vitro dengue virus infection model. J Gen Virol 2018; 99:1239-1247. [PMID: 30058991 DOI: 10.1099/jgv.0.001119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The lack of an appropriate model has been a serious concern in dengue research pertinent to immune response and vaccine development. It remains a matter of impediment in dengue virus (DENV) studies when it comes to an in vitro model, which requires adequate quantity of dendritic cells (DC) with uniform characters. Other sources of DC, mostly monocyte derived DC (moDC), have been used despite their limitations such as quantity, proliferation, and donor dependent characters. Recent development of human iPS cells with consistent proliferation for long, stable, functional characteristics and desired HLA background has certainly offered added advantages. Therefore, we hypothesised that iPS derived cells would be a reliable alternative to the traditional DCs to be used with an in vitro DENV system. To develop a DENV infection and T cell activation model, we utilised iPS cells (HLA-A*24) as the source of DC. iPS-ML-DC was prepared and DENV infectivity was assessed apart from the major surface markers expression and cytokine production potential. Our iPS-ML-DC had major DC markers expression, DENV infection efficiency and cytokine production properties similar to that of moDC. Moreover, DENV infected iPS-ML-DC demonstrated the ability to activate HLA-matched T cell (but not mismatched) in vitro as evidenced by significantly higher proportion of IFN-γ+ CD69+ T cells compared to non-infected iPS-ML-DC. This affirmed the antigen-specific T cell activation by iPS-ML-DC as a function of antigen presenting cells. To conclude, maturation potential, DENV infection efficiency and T cell activation ability collectively suggest that iPS-ML-DC serves as an attractive option of DC for use in DENV studies in vitro.
Collapse
Affiliation(s)
- Dao Huy Manh
- 1Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,2Nagasaki University Graduate School of Biomedical Sciences Doctoral Leadership Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shusaku Mizukami
- 3Department of Clinical Product Development, NEKKEN, Nagasaki University, Nagasaki, Japan.,1Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Shyam Prakash Dumre
- 1Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | | | - Satoru Senju
- 5Department of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yasuharu Nishimura
- 5Department of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Juntra Karbwang
- 3Department of Clinical Product Development, NEKKEN, Nagasaki University, Nagasaki, Japan
| | - Nguyen Tien Huy
- 3Department of Clinical Product Development, NEKKEN, Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- 4Department of Virology, NEKKEN, Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- 1Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
304
|
Chen HR, Lai YC, Yeh TM. Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. J Biomed Sci 2018; 25:58. [PMID: 30037331 PMCID: PMC6057007 DOI: 10.1186/s12929-018-0462-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/13/2018] [Indexed: 02/05/2023] Open
Abstract
Dengue virus (DENV) infection is the most common mosquito-transmitted viral infection. DENV infection can cause mild dengue fever or severe dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS). Hemorrhage and vascular leakage are two characteristic symptoms of DHF/DSS. However, due to the limited understanding of dengue pathogenesis, no satisfactory therapies to treat nor vaccine to prevent dengue infection are available, and the mortality of DHF/DSS is still high. DENV nonstructural protein 1 (NS1), which can be secreted in patients’ sera, has been used as an early diagnostic marker for dengue infection for many years. However, the roles of NS1 in dengue-induced vascular leakage were described only recently. In this article, the pathogenic roles of DENV NS1 in hemorrhage and vascular leakage are reviewed, and the possibility of using NS1 as a therapeutic target and vaccine candidate is discussed.
Collapse
Affiliation(s)
- Hong-Ru Chen
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chung Lai
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
305
|
Karasov TL, Almario J, Friedemann C, Ding W, Giolai M, Heavens D, Kersten S, Lundberg DS, Neumann M, Regalado J, Neher RA, Kemen E, Weigel D. Arabidopsis thaliana and Pseudomonas Pathogens Exhibit Stable Associations over Evolutionary Timescales. Cell Host Microbe 2018; 24:168-179.e4. [PMID: 30001519 PMCID: PMC6054916 DOI: 10.1016/j.chom.2018.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/16/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022]
Abstract
Crop disease outbreaks are often associated with clonal expansions of single pathogenic lineages. To determine whether similar boom-and-bust scenarios hold for wild pathosystems, we carried out a multi-year, multi-site survey of Pseudomonas in its natural host Arabidopsis thaliana. The most common Pseudomonas lineage corresponded to a ubiquitous pathogenic clade. Sequencing of 1,524 genomes revealed this lineage to have diversified approximately 300,000 years ago, containing dozens of genetically identifiable pathogenic sublineages. There is differentiation at the level of both gene content and disease phenotype, although the differentiation may not provide fitness advantages to specific sublineages. The coexistence of sublineages indicates that in contrast to crop systems, no single strain has been able to overtake the studied A. thaliana populations in the recent past. Our results suggest that selective pressures acting on a plant pathogen in wild hosts are likely to be much more complex than those in agricultural systems.
Collapse
Affiliation(s)
- Talia L Karasov
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Juliana Almario
- Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, IMITP, University of Tübingen, 72076 Tübingen, Germany
| | - Claudia Friedemann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Wei Ding
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Michael Giolai
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Darren Heavens
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Sonja Kersten
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Derek S Lundberg
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Manuela Neumann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Julian Regalado
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Richard A Neher
- University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Eric Kemen
- Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, IMITP, University of Tübingen, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
306
|
Xue L, Fang X, Hyman JM. Comparing the effectiveness of different strains of Wolbachia for controlling chikungunya, dengue fever, and zika. PLoS Negl Trop Dis 2018; 12:e0006666. [PMID: 30059498 PMCID: PMC6085076 DOI: 10.1371/journal.pntd.0006666] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 08/09/2018] [Accepted: 07/06/2018] [Indexed: 11/19/2022] Open
Abstract
Once Aedes aegypti and Aedes albopictus mosquitoes that spread Chikungunya virus, dengue virus, and Zika virus are infected with Wolbachia, they have reduced egg laying rates, reduced transmission abilities, and shorter lifespans. Since most infected mosquitoes are only infectious in the last few days of their lives, shortening a mosquito's lifespan by a day or two can greatly reduce their abilities to spread mosquito-borne viral diseases, such as Chikungunya, dengue fever, and Zika. We developed a mathematical model to compare the effectiveness of the wMel and wAlbB strains of Wolbachia for controlling the spread of these viruses. The differences among the diseases, mosquitoes, and Wolbachia strains are captured by the model parameters for the mosquito-human transmission cycle. Moreover, the model accounts for the behavior changes of infectious population created by differences in the malaise caused by these viruses. We derived the effective and basic reproduction numbers for the model that are used to estimate the number of secondary infections from the infectious populations. In the same density of Wolbachia-free Aedes aegypti or Aedes albopictus mosquitoes, we observed that wMel and wAlbB strains of Wolbachia can reduce the transmission rates of these diseases effectively.
Collapse
Affiliation(s)
- Ling Xue
- Department of Mathematics, Harbin Engineering University, Harbin, China
- Department of Mathematics, University of Manitoba, Canada
| | - Xin Fang
- Department of Mathematics, Harbin Engineering University, Harbin, China
| | - James M. Hyman
- Department of Mathematics, Tulane University, New Orleans, United States of America
| |
Collapse
|
307
|
Saron WAA, Rathore APS, Ting L, Ooi EE, Low J, Abraham SN, St. John AL. Flavivirus serocomplex cross-reactive immunity is protective by activating heterologous memory CD4 T cells. SCIENCE ADVANCES 2018; 4:eaar4297. [PMID: 29978039 PMCID: PMC6031378 DOI: 10.1126/sciadv.aar4297] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/22/2018] [Indexed: 05/07/2023]
Abstract
How previous immunity influences immune memory recall and protection against related flaviviruses is largely unknown, yet encounter with multiple flaviviruses in a lifetime is increasingly likely. Using sequential challenges with dengue virus (DENV), yellow fever virus (YFV), and Japanese encephalitis virus (JEV), we induced cross-reactive cellular and humoral immunity among flaviviruses from differing serocomplexes. Antibodies against JEV enhanced DENV replication; however, JEV immunity was protective in vivo during secondary DENV1 infection, promoting rapid gains in antibody avidity. Mechanistically, JEV immunity activated dendritic cells and effector memory T cells, which developed a T follicular helper cell phenotype in draining lymph nodes upon secondary DENV1 infection. We identified cross-reactive epitopes that promote recall from a pool of flavivirus serocomplex cross-reactive memory CD4 T cells and confirmed that a similar serocomplex cross-reactive immunity occurs in humans. These results show that sequential immunizations for flaviviruses sharing CD4 epitopes should promote protection during a subsequent heterologous infection.
Collapse
Affiliation(s)
- Wilfried A. A. Saron
- Program in Emerging Infectious Diseases, Duke–National University of Singapore, Singapore, Singapore
| | - Abhay P. S. Rathore
- Program in Emerging Infectious Diseases, Duke–National University of Singapore, Singapore, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
| | - Lim Ting
- Program in Emerging Infectious Diseases, Duke–National University of Singapore, Singapore, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke–National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jenny Low
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Soman N. Abraham
- Program in Emerging Infectious Diseases, Duke–National University of Singapore, Singapore, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
| | - Ashley L. St. John
- Program in Emerging Infectious Diseases, Duke–National University of Singapore, Singapore, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
308
|
Masyeni S, Hadi U, Kuntaman K, Dewi Y. Profiling of Microrna Expression within the Cells of Peripheral Blood Mononuclear after an Infection with Serotype-2 of Dengue Virus: Preliminary Study. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2018; 11:923-927. [DOI: 10.13005/bpj/1449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
The role of microRiboNucleic Acids (miRNA), a small-non coding RNA has been associated with immune regulation in various viral infectionincluding dengue infection. The microRNA will bind a specific protein target in order to encourage an explosive expression of various cytokines, known as cytokines storm in Dengue infection.The objective of this study aimed to determine and evaluate themicroRNAs profile expression withinperipheral blood mononuclear cells having been infected with one of the dengue virus serotype.To obtained the PBMCs from a healthy donor, Ficoll density gradient centrifugation was used to isolate the PBMCs and then followed infecting it with a DENV-2 clinical isolate. Prior to PBMCs isolation, the virus has been propagated and having titration to get an optimal virus titer. We conducted the infection at the multiplication of infections 4 PFU/106 cells.MiRCURYLNATMExiqon was utilized on purpose to extract the RNA. Quantitative Real-Time PCR was applied in order for the miRNAs relative expression to be measured. The preliminary result reveals that miR-150, miR-146a, hsa-let-7e expression were increased 1.74 folds, 2 folds, and 1.49 foldsrespectively at 12 hours post-infection on PBMCs upon DENV-2 infection.The expression of microRNAswas discovered to behigher inPBMCsat the time of infection withDENV-2.ThemiRNAs expression in the uninfected PMBCs was lower than that of the miRNA. This high expression of miRNAsin dengue infection may proceedto dengue infection pathogenesis.
Collapse
Affiliation(s)
- Sri Masyeni
- Faculty of Medicine and Health Science, University of Warmadewa, JlTerompong 24, Denpasar-Bali,Indonesia
| | - Usman Hadi
- Faculty of Medicine, University of Airlangga, JlMayjen Prof. Dr. Moestopo 47, Pacar Kembang, Surabaya, Kota SBY, Jawa Timur, Indonesia
| | - K Kuntaman
- Faculty of Medicine, University of Airlangga, JlMayjen Prof. Dr. Moestopo 47, Pacar Kembang, Surabaya, Kota SBY, Jawa Timur, Indonesia
| | - Yorapermata Dewi
- Faculty of Medicine and Health Science, University of Warmadewa, JlTerompong 24, Denpasar-Bali,Indonesia
| |
Collapse
|
309
|
Barban V, Mantel N, De Montfort A, Pagnon A, Pradezynski F, Lang J, Boudet F. Improvement of the Dengue Virus (DENV) Nonhuman Primate Model via a Reverse Translational Approach Based on Dengue Vaccine Clinical Efficacy Data against DENV-2 and -4. J Virol 2018; 92:e00440-18. [PMID: 29593041 PMCID: PMC5974474 DOI: 10.1128/jvi.00440-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
Recent data obtained with the live-attenuated tetravalent dengue CYD-TDV vaccine showed higher protective efficacy against dengue virus type 4 (DENV-4) than against DENV-2. In contrast, results from previous studies in nonhuman primates predicted comparable high levels of protection against each serotype. Maximum viral loads achieved in macaques by subcutaneous inoculation of DENV are generally much lower than those observed in naturally dengue virus-infected humans. This may contribute to an overestimation of vaccine efficacy. Using more-stringent DENV infection conditions consisting of the intravenous inoculation of 107 50% cell culture infectious doses (CCID50) in CYD-TDV-vaccinated macaques, complete protection (i.e., undetectable viral RNA) was achieved in all 6 monkeys challenged with DENV-4 and in 6/18 of those challenged with DENV-2, including transiently positive animals. All other infected macaques (12/18) developed sustained DENV-2 RNAemia (defined as detection of viral RNA in serum samples) although 1 to 3 log10 units below the levels achieved in control animals. Similar results were obtained with macaques immunized with either CYD-TDV or monovalent (MV) CYD-2. This suggests that partial protection against DENV-2 was mediated mainly by CYD-2 and not by the other CYDs. Postchallenge induction of strong anamnestic responses, suggesting efficient vaccine priming, likely contributed to the reduction of DENV-2 RNAemia. Finally, an inverse correlation between DENV RNA titers postchallenge and vaccine-induced homotypic neutralizing antibody titers prechallenge was found, emphasizing the key role of these antibodies in controlling DENV infection. Collectively, these data show better agreement with reported data on CYD-TDV clinical vaccine efficacy against DENV-2 and DENV-4. Despite inherent limitations of the nonhuman primate model, these results reinforce its value in assessing the efficacy of dengue vaccines.IMPORTANCE The nonhuman primate (NHP) model is the most widely recognized tool for assessing the protective activity of dengue vaccine candidates, based on the prevention of postinfection DENV viremia. However, its use has been questioned after the recent CYD vaccine phase III trials, in which moderate protective efficacy against DENV-2 was reported, despite full protection against DENV-2 viremia previously being demonstrated in CYD-vaccinated monkeys. Using a reverse translational approach, we show here that the NHP model can be improved to achieve DENV-2 protection levels that show better agreement with clinical efficacy. With this new model, we demonstrate that the injection of the CYD-2 component of the vaccine, in either a monovalent or a tetravalent formulation, is able to reduce DENV-2 viremia in all immunized animals, and we provide clear statistical evidence that DENV-2-neutralizing antibodies are able to reduce viremia in a dose-dependent manner.
Collapse
Affiliation(s)
- Veronique Barban
- Research and Development Department, Sanofi Pasteur, Marcy L'Etoile, France
| | - Nathalie Mantel
- Research and Development Department, Sanofi Pasteur, Marcy L'Etoile, France
| | | | - Anke Pagnon
- Research and Development Department, Sanofi Pasteur, Marcy L'Etoile, France
| | | | - Jean Lang
- Research and Development Department, Sanofi Pasteur, Marcy L'Etoile, France
| | - Florence Boudet
- Research and Development Department, Sanofi Pasteur, Marcy L'Etoile, France
| |
Collapse
|
310
|
Transmission-clearance trade-offs indicate that dengue virulence evolution depends on epidemiological context. Nat Commun 2018; 9:2355. [PMID: 29907741 PMCID: PMC6003961 DOI: 10.1038/s41467-018-04595-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
An extensive body of theory addresses the topic of pathogen virulence evolution, yet few studies have empirically demonstrated the presence of fitness trade-offs that would select for intermediate virulence. Here we show the presence of transmission-clearance trade-offs in dengue virus using viremia measurements. By fitting a within-host model to these data, we further find that the interaction between dengue and the host immune response can account for the observed trade-offs. Finally, we consider dengue virulence evolution when selection acts on the virus’s production rate. By combining within-host model simulations with empirical findings on how host viral load affects human-to-mosquito transmission success, we show that the virus’s transmission potential is maximized at production rates associated with intermediate virulence and that the optimal production rate critically depends on dengue’s epidemiological context. These results indicate that long-term changes in dengue’s global distribution impact the invasion and spread of virulent dengue virus genotypes. Theory predicts that pathogens will evolve towards intermediate virulence, yet the necessary trade-offs invoked by this theory have rarely been demonstrated empirically. Here, the authors show that dengue virus dynamics exhibit a trade-off between transmission and clearance rates.
Collapse
|
311
|
Nunes PCG, Nogueira RMR, Heringer M, Chouin-Carneiro T, Damasceno Dos Santos Rodrigues C, de Filippis AMB, Lima MDRQ, Dos Santos FB. NS1 Antigenemia and Viraemia Load: Potential Markers of Progression to Dengue Fatal Outcome? Viruses 2018; 10:E326. [PMID: 29903980 PMCID: PMC6024368 DOI: 10.3390/v10060326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 01/29/2023] Open
Abstract
Dengue is a worldwide problem characterized by a multifactorial pathogenesis. Considering the viral components, it is known that high viremia or high levels of the secreted nonstructural protein 1 (NS1) may be associated with a more severe disease. We aimed to characterize the NS1 antigenemia and viremia in dengue fatal and non-fatal cases, as potential markers of progression to a fatal outcome. NS1 antigenemia and viremia were determined in Brazilian dengue fatal cases (n = 40) and non-fatal cases (n = 40), representative of the four dengue virus (DENV) serotypes. Overall, the fatal cases presented higher NS1 levels and viremia. Moreover, the fatal cases from secondary infections showed significantly higher NS1 levels than the non-fatal ones. Here, irrespective of the disease outcome, DENV-1 cases presented higher NS1 levels than the other serotypes. However, DENV-2 and DENV-4 fatal cases had higher NS1 antigenemia than the non-fatal cases with the same serotype. The viremia in the fatal cases was higher than in the non-fatal ones, with DENV-3 and DENV-4 presenting higher viral loads. Viral components, such as NS1 and viral RNA, may be factors influencing the disease outcome. However, the host immune status, comorbidities, and access to adequate medical support cannot be ruled out as interfering in the disease outcome.
Collapse
Affiliation(s)
- Priscila Conrado Guerra Nunes
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
| | - Rita Maria Ribeiro Nogueira
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
| | - Manoela Heringer
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
| | - Thaís Chouin-Carneiro
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
- Hematozoa Transmittors Mosquitoes Laboratory, Oswaldo Cruz Institute, Rio de Janeiro 21040-360, Brazil.
| | | | - Ana Maria Bispo de Filippis
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
| | - Monique da Rocha Queiroz Lima
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
| | - Flávia Barreto Dos Santos
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
| |
Collapse
|
312
|
Whitehead SS, Subbarao K. Which Dengue Vaccine Approach Is the Most Promising, and Should We Be Concerned about Enhanced Disease after Vaccination? The Risks of Incomplete Immunity to Dengue Virus Revealed by Vaccination. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028811. [PMID: 28716894 DOI: 10.1101/cshperspect.a028811] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Immune enhancement of dengue disease continues to be a concern for those with incomplete immunity in endemic areas. Advanced testing and follow-up of a newly available live attenuated dengue vaccine has recently shown the ability of vaccination to predispose some recipients for a severe outcome on subsequent infection. To improve safety, recommendations have been made to restrict use of the vaccine to those who are likely to have had prior exposure to dengue virus (DENV). Researchers continue to investigate dengue immunity and seek evidence that dengue vaccines can be safely administered to all populations needing protection.
Collapse
Affiliation(s)
- Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
313
|
Low GKK, Ogston SA, Yong MH, Gan SC, Chee HY. Global dengue death before and after the new World Health Organization 2009 case classification: A systematic review and meta-regression analysis. Acta Trop 2018; 182:237-245. [PMID: 29545158 DOI: 10.1016/j.actatropica.2018.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/22/2018] [Accepted: 03/10/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Since the introduction of 2009 WHO dengue case classification, no literature was found regarding its effect on dengue death. This study was to evaluate the effect of 2009 WHO dengue case classification towards dengue case fatality rate. METHODS Various databases were used to search relevant articles since 1995. Studies included were cohort and cross-sectional studies, all patients with dengue infection and must report the number of death or case fatality rate. The Joanna Briggs Institute appraisal checklist was used to evaluate the risk of bias of the full-texts. The studies were grouped according to the classification adopted: WHO 1997 and WHO 2009. Meta-regression was employed using a logistic transformation (log-odds) of the case fatality rate. The result of the meta-regression was the adjusted case fatality rate and odds ratio on the explanatory variables. RESULTS A total of 77 studies were included in the meta-regression analysis. The case fatality rate for all studies combined was 1.14% with 95% confidence interval (CI) of 0.82-1.58%. The combined (unadjusted) case fatality rate for 69 studies which adopted WHO 1997 dengue case classification was 1.09% with 95% CI of 0.77-1.55%; and for eight studies with WHO 2009 was 1.62% with 95% CI of 0.64-4.02%. The unadjusted and adjusted odds ratio of case fatality using WHO 2009 dengue case classification was 1.49 (95% CI: 0.52, 4.24) and 0.83 (95% CI: 0.26, 2.63) respectively, compared to WHO 1997 dengue case classification. There was an apparent increase in trend of case fatality rate from the year 1992-2016. Neither was statistically significant. CONCLUSIONS The WHO 2009 dengue case classification might have no effect towards the case fatality rate although the adjusted results indicated a lower case fatality rate. Future studies are required for an update in the meta-regression analysis to confirm the findings.
Collapse
|
314
|
Nikin-Beers R, Blackwood JC, Childs LM, Ciupe SM. Unraveling within-host signatures of dengue infection at the population level. J Theor Biol 2018. [DOI: 10.1016/j.jtbi.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
315
|
Kong L, Wang J, Li Z, Lai S, Liu Q, Wu H, Yang W. Modeling the Heterogeneity of Dengue Transmission in a City. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061128. [PMID: 29857503 PMCID: PMC6025315 DOI: 10.3390/ijerph15061128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/02/2018] [Accepted: 05/19/2018] [Indexed: 12/14/2022]
Abstract
Dengue fever is one of the most important vector-borne diseases in the world, and modeling its transmission dynamics allows for determining the key influence factors and helps to perform interventions. The heterogeneity of mosquito bites of humans during the spread of dengue virus is an important factor that should be considered when modeling the dynamics. However, traditional models generally assumed homogeneous mixing between humans and vectors, which is inconsistent with reality. In this study, we proposed a compartmental model with negative binomial distribution transmission terms to model this heterogeneity at the population level. By including the aquatic stage of mosquitoes and incorporating the impacts of the environment and climate factors, an extended model was used to simulate the 2014 dengue outbreak in Guangzhou, China, and to simulate the spread of dengue in different scenarios. The results showed that a high level of heterogeneity can result in a small peak size in an outbreak. As the level of heterogeneity decreases, the transmission dynamics approximate the dynamics predicted by the corresponding homogeneous mixing model. The simulation results from different scenarios showed that performing interventions early and decreasing the carrying capacity for mosquitoes are necessary for preventing and controlling dengue epidemics. This study contributes to a better understanding of the impact of heterogeneity during the spread of dengue virus.
Collapse
Affiliation(s)
- Lingcai Kong
- Department of Mathematics and Physics, North China Electric Power University; Baoding 071003, China.
| | - Jinfeng Wang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences; Beijing 100864, China.
- Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Zhongjie Li
- Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Shengjie Lai
- WorldPop, Department of Geography and Environment, University of Southampton, Southampton SO17 IBJ, UK.
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200433, China.
- Flowminder Foundation, Roslagsgatan 17, SE-11355 Stockholm, Sweden.
| | - Qiyong Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
- WHO Collaborating Center for Vector Surveillance and Management, Beijing 102206, China.
| | - Haixia Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Weizhong Yang
- Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
316
|
Schneider M, Al-Shareffi E, Haltiwanger RS. Biological functions of fucose in mammals. Glycobiology 2018; 27:601-618. [PMID: 28430973 DOI: 10.1093/glycob/cwx034] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022] Open
Abstract
Fucose is a 6-deoxy hexose in the l-configuration found in a large variety of different organisms. In mammals, fucose is incorporated into N-glycans, O-glycans and glycolipids by 13 fucosyltransferases, all of which utilize the nucleotide-charged form, GDP-fucose, to modify targets. Three of the fucosyltransferases, FUT8, FUT12/POFUT1 and FUT13/POFUT2, are essential for proper development in mice. Fucose modifications have also been implicated in many other biological functions including immunity and cancer. Congenital mutations of a Golgi apparatus localized GDP-fucose transporter causes leukocyte adhesion deficiency type II, which results in severe developmental and immune deficiencies, highlighting the important role fucose plays in these processes. Additionally, changes in levels of fucosylated proteins have proven as useful tools for determining cancer diagnosis and prognosis. Chemically modified fucose analogs can be used to alter many of these fucose dependent processes or as tools to better understand them. In this review, we summarize the known roles of fucose in mammalian physiology and pathophysiology. Additionally, we discuss recent therapeutic advances for cancer and other diseases that are a direct result of our improved understanding of the role that fucose plays in these systems.
Collapse
Affiliation(s)
- Michael Schneider
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Esam Al-Shareffi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Psychiatry, Georgetown University Hospital, Washington, DC 20007, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
317
|
Paemanee A, Hitakarun A, Roytrakul S, Smith DR. Screening of melatonin, α-tocopherol, folic acid, acetyl-L-carnitine and resveratrol for anti-dengue 2 virus activity. BMC Res Notes 2018; 11:307. [PMID: 29769094 PMCID: PMC5956857 DOI: 10.1186/s13104-018-3417-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Infections with the mosquito transmitted dengue virus (DENV) are a significant public health burden in many parts of the world. Despite the introduction of a commercial vaccine in some parts of the world, the majority of the populations at risk of infection remain unprotected against this disease, and there is currently no treatment for DENV infection. Natural compounds offer the prospect of cheap and sustainable therapeutics to reduce the disease burden during infection, and thus potentially alleviate the risk of more severe disease. This study evaluated the potential anti-DENV 2 activity of five natural compounds namely melatonin, α-tocopherol, folic acid, acetyl-L-carnitine and resveratrol in two different cell lines. RESULTS Screening of the compounds showed that one compound (acetyl-L-carnitine) showed no effect on DENV infection, three compounds (melatonin, α-tocopherol and folic acid) slightly increased levels of infection, while the 5th compound, resveratrol, showed some limited anti-DENV activity, with resveratrol reducing virus output with an EC50 of less than 25 μM. These results suggest that some commonly taken natural compounds may have beneficial effects on DENV infection, but that others may potentially add to the disease burden.
Collapse
Affiliation(s)
- Atchara Paemanee
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonthol Sai 4, Salaya, Nakorn Pathom, 73170, Thailand.,Proteomics Research Laboratory, Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| | - Atitaya Hitakarun
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonthol Sai 4, Salaya, Nakorn Pathom, 73170, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| | - Duncan R Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonthol Sai 4, Salaya, Nakorn Pathom, 73170, Thailand.
| |
Collapse
|
318
|
ten Bosch QA, Clapham HE, Lambrechts L, Duong V, Buchy P, Althouse BM, Lloyd AL, Waller LA, Morrison AC, Kitron U, Vazquez-Prokopec GM, Scott TW, Perkins TA. Contributions from the silent majority dominate dengue virus transmission. PLoS Pathog 2018; 14:e1006965. [PMID: 29723307 PMCID: PMC5933708 DOI: 10.1371/journal.ppat.1006965] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 03/09/2018] [Indexed: 02/07/2023] Open
Abstract
Despite estimates that, each year, as many as 300 million dengue virus (DENV) infections result in either no perceptible symptoms (asymptomatic) or symptoms that are sufficiently mild to go undetected by surveillance systems (inapparent), it has been assumed that these infections contribute little to onward transmission. However, recent blood-feeding experiments with Aedes aegypti mosquitoes showed that people with asymptomatic and pre-symptomatic DENV infections are capable of infecting mosquitoes. To place those findings into context, we used models of within-host viral dynamics and human demographic projections to (1) quantify the net infectiousness of individuals across the spectrum of DENV infection severity and (2) estimate the fraction of transmission attributable to people with different severities of disease. Our results indicate that net infectiousness of people with asymptomatic infections is 80% (median) that of people with apparent or inapparent symptomatic infections (95% credible interval (CI): 0–146%). Due to their numerical prominence in the infectious reservoir, clinically inapparent infections in total could account for 84% (CI: 82–86%) of DENV transmission. Of infections that ultimately result in any level of symptoms, we estimate that 24% (95% CI: 0–79%) of onward transmission results from mosquitoes biting individuals during the pre-symptomatic phase of their infection. Only 1% (95% CI: 0.8–1.1%) of DENV transmission is attributable to people with clinically detected infections after they have developed symptoms. These findings emphasize the need to (1) reorient current practices for outbreak response to adoption of pre-emptive strategies that account for contributions of undetected infections and (2) apply methodologies that account for undetected infections in surveillance programs, when assessing intervention impact, and when modeling mosquito-borne virus transmission. Most dengue virus infections result in either no perceptible symptoms or symptoms that are so mild that they go undetected by surveillance systems. It is unclear how much these infections contribute to the overall transmission and burden of dengue. At an individual level, we show that people with asymptomatic infections are approximately 80% as infectious to mosquitoes as their symptomatic counterparts. At a population level, we show that approximately 88% of infections result from people who display no apparent symptoms at the time of transmission. These results suggest that individuals undetected by surveillance systems may be the primary reservoir of dengue virus transmission and that policy for dengue control and prevention must be revised accordingly.
Collapse
Affiliation(s)
- Quirine A. ten Bosch
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
- * E-mail: (QAtB); (TAP)
| | - Hannah E. Clapham
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, United States
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2000, Paris, France
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Philippe Buchy
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- GlaxoSmithKline, Vaccines R&D, Singapore
| | - Benjamin M. Althouse
- Institute for Disease Modeling, Bellevue, WA, United States
- Information School, University of Washington, Seattle, WA, United States
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Alun L. Lloyd
- Department of Mathematics, Biomathematics Graduate Program and Center for Quantitative Sciences in Biomedicine, North Carolina State University, Raleigh, NC, United States
| | - Lance A. Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Amy C. Morrison
- Department of Entomology and Nematology, University of California, Davis, CA, United States
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA, United States
| | | | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, CA, United States
| | - T. Alex Perkins
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
- * E-mail: (QAtB); (TAP)
| |
Collapse
|
319
|
Coffman JE, Metz SW, Brackbill A, Paul M, Miley MJ, DeSimone J, Luft JC, de Silva A, Tian S. Optimization of Surface Display of DENV2 E Protein on a Nanoparticle to Induce Virus Specific Neutralizing Antibody Responses. Bioconjug Chem 2018; 29:1544-1552. [DOI: 10.1021/acs.bioconjchem.8b00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jason E. Coffman
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27607, United States
| | | | | | | | | | - Joseph DeSimone
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27607, United States
| | | | | | | |
Collapse
|
320
|
Fagbami AH, Onoja AB. Dengue haemorrhagic fever: An emerging disease in Nigeria, West Africa. J Infect Public Health 2018; 11:757-762. [PMID: 29706314 DOI: 10.1016/j.jiph.2018.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022] Open
Abstract
INTRODUCTION In Nigeria, dengue fever caused by dengue virus, types 1 and 2 has been diagnosed for many years. Although, seroepidemiological surveys have shown that dengue virus activity is, widespread in the country, there is scanty information on dengue, hemorrhagic fever with little attention paid to dengue fever largely, because it presents as classical dengue fever characterized by fever, myalgia, headache, arthralgia, retro-orbital pain, gastro intestinal, symptoms and skin rash. We are updating the current information of dengue, in Nigeria, as well as DHF which is an emerging disease in the west, African country. METHODS PUBMED, Google scholar, cross-reference databases and individual publications not publicly archived were used. All available literature on, dengue from Nigeria were identified. RESULTS Dengue virus 3 and 4 have been recently detected in Nigeria, with the emergence of dengue haemorrhagic fever for the first time. Poor, surveillance, underreporting, and misdiagnosis of the disease as malaria, are major problems. CONCLUSION Priority must be given to increasing surveillance activity to, detect more dengue haemorrhagic fever cases and determine the magnitude, of the dengue problem. It is important to enhance the capacity of, laboratories to diagnose dengue haemorrhagic fever by providing them with, modern equipment, reagents and new infrastructure.
Collapse
Affiliation(s)
- Ademola H Fagbami
- Ondo State University of Science and Technology, Okitipupa, Ondo State, Nigeria.
| | - Anyebe B Onoja
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
321
|
Borges MB, Marchevsky RS, Mendes YS, Mendes LG, Duarte AC, Cruz M, de Filippis AMB, Vasconcelos PFC, Freire M, Homma A, Mossman S, Lepine E, Vanloubbeeck Y, Lorin C, Malice MP, Caride E, Warter L. Characterization of recent and minimally passaged Brazilian dengue viruses inducing robust infection in rhesus macaques. PLoS One 2018; 13:e0196311. [PMID: 29694440 PMCID: PMC5919018 DOI: 10.1371/journal.pone.0196311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/10/2018] [Indexed: 11/22/2022] Open
Abstract
The macaque is widely accepted as a suitable model for preclinical characterization of dengue vaccine candidates. However, the only vaccine for which both preclinical and clinical efficacy results were reported so far showed efficacy levels that were substantially different between macaques and humans. We hypothesized that this model’s predictive capacity may be improved using recent and minimally passaged dengue virus isolates, and by assessing vaccine efficacy by characterizing not only the post-dengue virus challenge viremia/RNAemia but also the associated-cytokine profile. Ten recent and minimally passaged Brazilian clinical isolates from the four dengue virus serotypes were tested for their infectivity in rhesus macaques. For the strains showing robust replication capacity, the associated-changes in soluble mediator levels, and the elicited dengue virus-neutralizing antibody responses, were also characterized. Three isolates from dengue virus serotypes 1, 2 and 4 induced viremia of high magnitude and longer duration relative to previously reported viremia kinetics in this model, and robust dengue virus-neutralizing antibody responses. Consistent with observations in humans, increased MCP-1, IFN-γ and VEGF-A levels, and transiently decreased IL-8 levels were detected after infection with the selected isolates. These results may contribute to establishing a dengue macaque model showing a higher predictability for vaccine efficacy in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Cruz
- GSK, Rockville, Maryland, United States of America
| | | | | | | | | | | | - Edith Lepine
- GSK, Rockville, Maryland, United States of America
| | | | | | | | | | | |
Collapse
|
322
|
Khandia R, Munjal A, Dhama K, Karthik K, Tiwari R, Malik YS, Singh RK, Chaicumpa W. Modulation of Dengue/Zika Virus Pathogenicity by Antibody-Dependent Enhancement and Strategies to Protect Against Enhancement in Zika Virus Infection. Front Immunol 2018; 9:597. [PMID: 29740424 PMCID: PMC5925603 DOI: 10.3389/fimmu.2018.00597] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon in which preexisting poorly neutralizing antibodies leads to enhanced infection. It is a serious concern with mosquito-borne flaviviruses such as Dengue virus (DENV) and Zika virus (ZIKV). In vitro experimental evidences have indicated the preventive, as well as a pathogenicity-enhancing role, of preexisting DENV antibodies in ZIKV infections. ADE has been confirmed in DENV but not ZIKV infections. Principally, the Fc region of the anti-DENV antibody binds with the fragment crystallizable gamma receptor (FcγR), and subsequent C1q interactions and immune effector functions are responsible for the ADE. In contrast to normal DENV infections, with ADE in DENV infections, inhibition of STAT1 phosphorylation and a reduction in IRF-1 gene expression, NOS2 levels, and RIG-1 and MDA-5 expression levels occurs. FcγRIIA is the most permissive FcγR for DENV-ADE, and under hypoxic conditions, hypoxia-inducible factor-1 alpha transcriptionally enhances expression levels of FcγRIIA, which further enhances ADE. To produce therapeutic antibodies with broad reactivity to different DENV serotypes, as well as to ZIKV, bispecific antibodies, Fc region mutants, modified Fc regions, and anti-idiotypic antibodies may be engineered. An in-depth understanding of the immunological and molecular mechanisms of DENV-ADE of ZIKV pathogenicity will be useful for the design of common and safe therapeutics and prophylactics against both viral pathogens. The present review discusses the role of DENV antibodies in modulating DENV/ZIKV pathogenicity/infection and strategies to counter ADE to protect against Zika infection.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
323
|
Oliveira M, Saraiva DP, Cavadas B, Fernandes V, Pedro N, Casademont I, Koeth F, Alshamali F, Harich N, Cherni L, Sierra B, Guzman MG, Sakuntabhai A, Pereira L. Population genetics-informed meta-analysis in seven genes associated with risk to dengue fever disease. INFECTION GENETICS AND EVOLUTION 2018; 62:60-72. [PMID: 29673983 DOI: 10.1016/j.meegid.2018.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/02/2018] [Accepted: 04/13/2018] [Indexed: 12/30/2022]
Abstract
Population genetics theory predicted that rare frequent markers would be the main contributors for heritability of complex diseases, but meta-analyses of genome-wide association studies are revealing otherwise common markers, present in all population groups, as the identified candidate genes. In this work, we applied a population-genetics informed meta-analysis to 10 markers located in seven genes said to be associated with dengue fever disease. Seven markers (in PLCE1, CD32, CD209, OAS1 and OAS3 genes) have high-frequency and the other three (in MICB and TNFA genes) have intermediate frequency. Most of these markers have high discriminatory power between population groups, but their frequencies follow the rules of genetic drift, and seem to have not been under strong selective pressure. There was a good agreement in directional consistency across trans-ethnic association signals, in East Asian and Latin American cohorts, with heterogeneity generated by randomness between studies and especially by low sample sizes. This led to confirm the following significant associations: with DF, odds ratio of 0.67 for TNFA-rs1800629-A; with DHF, 0.82 for CD32-rs1801274-G; with DSS, 0.55 for OAS3-rs2285933-G, 0.80 for PLCE1-rs2274223-G and 1.32 for MICB-rs3132468-C. The overall genetic risks confirmed sub-Saharan African populations and descendants as the best protected against the severer forms of the disease, while Southeast and Northeast Asians are the least protected ones. European and close neighbours are the best protected against dengue fever, while, again, Southeast and Northeast Asians are the least protected ones. These risk scores provide important predictive information for the largely naïve European and North American regions, as well as for Africa where misdiagnosis with other hemorrhagic diseases is of concern.
Collapse
Affiliation(s)
- Marisa Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal; Institut Pasteur, Functional Genetics of Infectious Diseases Unit, 75724 Paris Cedex 15, France
| | - Diana P Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal; Institut Pasteur, Functional Genetics of Infectious Diseases Unit, 75724 Paris Cedex 15, France
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Verónica Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Nicole Pedro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Isabelle Casademont
- Institut Pasteur, Functional Genetics of Infectious Diseases Unit, 75724 Paris Cedex 15, France; Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
| | - Fanny Koeth
- Institut Pasteur, Functional Genetics of Infectious Diseases Unit, 75724 Paris Cedex 15, France; Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
| | - Farida Alshamali
- General Department of Forensic Sciences and Criminology, Dubai Police General Headquarters, PO Box 1493, Dubai, United Arab Emirates
| | - Nourdin Harich
- Laboratoire des Sciences Anthropogénétiques et Biotechnologies, Départment de Biologie, Université Chouaïb Doukkali, El Jadida 24000, Morocco
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia; Tunis and High Institute of Biotechnology, University of Monastir, 5000 Monastir, Tunisia
| | - Beatriz Sierra
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), 601 Havana, Cuba
| | - Maria G Guzman
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), 601 Havana, Cuba
| | - Anavaj Sakuntabhai
- Institut Pasteur, Functional Genetics of Infectious Diseases Unit, 75724 Paris Cedex 15, France; Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan; CNRS UMR2000: Génomique évolutive, modélisation et santé (GEMS), Paris, France
| | - Luisa Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal; Faculdade de Medicina da Universidade do Porto, Portugal.
| |
Collapse
|
324
|
Simulation Model for Dynamics of Dengue with Innate and Humoral Immune Responses. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:8798057. [PMID: 29849749 PMCID: PMC5925133 DOI: 10.1155/2018/8798057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/08/2018] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Dengue virus is a mosquito borne Flavivirus and the most prevalent arbovirus in tropical and subtropical regions around the world. The incidence of dengue has increased drastically over the last few years at an alarming rate. The clinical manifestation of dengue ranges from asymptomatic infection to severe dengue. Even though the viral kinetics of dengue infection is lacking, innate immune response and humoral immune response are thought to play a major role in controlling the virus count. Here, we developed a computer simulation mathematical model including both innate and adaptive immune responses to study the within-host dynamics of dengue virus infection. A sensitivity analysis was carried out to identify key parameters that would contribute towards severe dengue. A detailed stability analysis was carried out to identify relevant range of parameters that contributes to different outcomes of the infection. This study provides a qualitative understanding of the biological factors that can explain the viral kinetics during a dengue infection.
Collapse
|
325
|
Tan KK, Azizan NS, Yaacob CN, Che Mat Seri NAA, Samsudin NI, Teoh BT, Sam SS, AbuBakar S. Operational utility of the reverse-transcription recombinase polymerase amplification for detection of dengue virus. BMC Infect Dis 2018; 18:169. [PMID: 29642856 PMCID: PMC5896040 DOI: 10.1186/s12879-018-3065-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 03/26/2018] [Indexed: 02/02/2023] Open
Abstract
Background A method for rapid detection of dengue virus using the reverse-transcription recombinase polymerase amplification (RT-RPA) was recently developed, evaluated and made ready for deployment. However, reliance solely on the evaluation performed by experienced researchers in a well-structured and well-equipped reference laboratory may overlook the potential intrinsic problems that may arise during deployment of the assay into new application sites, especially for users unfamiliar with the test. Appropriate assessment of this newly developed assay by users who are unfamiliar with the assay is, therefore, vital. Methods An operational utility test to elucidate the efficiency and effectiveness of the dengue RT-RPA assay was conducted among a group of researchers new to the assay. Nineteen volunteer researchers with different research experience were recruited. The participants performed the RT-RPA assay and interpreted the test results according to the protocol provided. Deviation from the protocol was identified and tabulated by trained facilitators. Post-test questionnaires were conducted to determine the user satisfaction and acceptability of the dengue RT-RPA assay. Results All the participants completed the test and successfully interpreted the results according to the provided instructions, regardless of their research experience. Of the 19 participants, three (15.8%) performed the assay with no deviations and 16 (84.2%) performed the assay with only 1 to 5 deviations. The number of deviations from protocol, however, was not correlated with the user laboratory experience. The accuracy of the results was also not affected by user laboratory experience. The concordance of the assay results against that of the expected was at 89.3%. The user satisfaction towards the RT-RPA protocol and interpretation of results was 90% and 100%, respectively. Conclusions The dengue RT-RPA assay can be successfully performed by simply following the provided written instructions. Deviations from the written protocols did not adversely affect the outcome of the assay. These suggest that the RT-RPA assay is indeed a simple, robust and efficient laboratory method for detection of dengue virus. Furthermore, high new user acceptance of the RT-RPA assay suggests that this assay could be successfully deployed into new laboratories where RT-RPA was not previously performed. Electronic supplementary material The online version of this article (10.1186/s12879-018-3065-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim-Kee Tan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.,WHO Collaborating Centre for Arbovirus Research and Reference (Dengue and Severe Dengue), University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Noor Syahida Azizan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.,WHO Collaborating Centre for Arbovirus Research and Reference (Dengue and Severe Dengue), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Che Norainon Yaacob
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.,WHO Collaborating Centre for Arbovirus Research and Reference (Dengue and Severe Dengue), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurul Asma Anati Che Mat Seri
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.,WHO Collaborating Centre for Arbovirus Research and Reference (Dengue and Severe Dengue), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Izyan Samsudin
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.,WHO Collaborating Centre for Arbovirus Research and Reference (Dengue and Severe Dengue), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Boon-Teong Teoh
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.,WHO Collaborating Centre for Arbovirus Research and Reference (Dengue and Severe Dengue), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sing-Sin Sam
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.,WHO Collaborating Centre for Arbovirus Research and Reference (Dengue and Severe Dengue), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia. .,WHO Collaborating Centre for Arbovirus Research and Reference (Dengue and Severe Dengue), University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
326
|
de la Guardia C, Stephens DE, Dang HT, Quijada M, Larionov OV, Lleonart R. Antiviral Activity of Novel Quinoline Derivatives against Dengue Virus Serotype 2. Molecules 2018; 23:molecules23030672. [PMID: 29547522 PMCID: PMC5997395 DOI: 10.3390/molecules23030672] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Dengue virus causes dengue fever, a debilitating disease with an increasing incidence in many tropical and subtropical territories. So far, there are no effective antivirals licensed to treat this virus. Here we describe the synthesis and antiviral activity evaluation of two compounds based on the quinoline scaffold, which has shown potential for the development of molecules with various biological activities. Two of the tested compounds showed dose-dependent inhibition of dengue virus serotype 2 in the low and sub micromolar range. The compounds 1 and 2 were also able to impair the accumulation of the viral envelope glycoprotein in infected cells, while showing no sign of direct virucidal activity and acting possibly through a mechanism involving the early stages of the infection. The results are congruent with previously reported data showing the potential of quinoline derivatives as a promising scaffold for the development of new antivirals against this important virus.
Collapse
Affiliation(s)
- Carolina de la Guardia
- Institute of Scientific Research and High Technology Services (INDICASAT AIP), PO 0843-01103 City of Panama, Panama.
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, Andhra Pradesh, India.
| | - David E Stephens
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Hang T Dang
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Mario Quijada
- Institute of Scientific Research and High Technology Services (INDICASAT AIP), PO 0843-01103 City of Panama, Panama.
| | - Oleg V Larionov
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Ricardo Lleonart
- Institute of Scientific Research and High Technology Services (INDICASAT AIP), PO 0843-01103 City of Panama, Panama.
| |
Collapse
|
327
|
Dengue viruses and promising envelope protein domain III-based vaccines. Appl Microbiol Biotechnol 2018; 102:2977-2996. [PMID: 29470620 DOI: 10.1007/s00253-018-8822-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/13/2022]
Abstract
Dengue viruses are emerging mosquito-borne pathogens belonging to Flaviviridae family which are transmitted to humans via the bites of infected mosquitoes Aedes aegypti and Aedes albopictus. Because of the wide distribution of these mosquito vectors, more than 2.5 billion people are approximately at risk of dengue infection. Dengue viruses cause dengue fever and severe life-threatening illnesses as well as dengue hemorrhagic fever and dengue shock syndrome. All four serotypes of dengue virus can cause dengue diseases, but the manifestations are nearly different depending on type of the virus in consequent infections. Infection by any serotype creates life-long immunity against the corresponding serotype and temporary immunity to the others. This transient immunity declines after a while (6 months to 2 years) and is not protective against other serotypes, even may enhance the severity of a secondary heterotypic infection with a different serotype through a phenomenon known as antibody-depended enhancement (ADE). Although, it can be one of the possible explanations for more severe dengue diseases in individuals infected with a different serotype after primary infection. The envelope protein (E protein) of dengue virus is responsible for a wide range of biological activities, including binding to host cell receptors and fusion to and entry into host cells. The E protein, and especially its domain III (EDIII), stimulates host immunity responses by inducing protective and neutralizing antibodies. Therefore, the dengue E protein is an important antigen for vaccine development and diagnostic purposes. Here, we have provided a comprehensive review of dengue disease, vaccine design challenges, and various approaches in dengue vaccine development with emphasizing on newly developed envelope domain III-based dengue vaccine candidates.
Collapse
|
328
|
Bal J, Luong NN, Park J, Song KD, Jang YS, Kim DH. Comparative immunogenicity of preparations of yeast-derived dengue oral vaccine candidate. Microb Cell Fact 2018; 17:24. [PMID: 29452594 PMCID: PMC5815244 DOI: 10.1186/s12934-018-0876-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/09/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Dengue is listed as a neglected tropical disease by the Center for Disease Control and Preservation, as there are insufficient integrated surveillance strategies, no effective treatment, and limited licensed vaccines. Consisting of four genetically distinct serotypes, dengue virus (DENV) causes serious life-threatening infections due to its complexity. Antibody-dependent enhancement by pre-existing cross-reactive as well as homotypic antibodies further worsens the clinical symptoms of dengue. Thus, a vaccine conferring simultaneous and durable immunity to each of the four DENV serotypes is essential to restrict its escalation. In deeply affected resource-limited countries, oral vaccination using food-grade organisms is considered to be a beneficial approach in terms of costs, patient comfort, and simple logistics for mass immunization. The current study used a mouse model to explore the immunogenicity of an oral dengue vaccine candidate prepared using whole recombinant yeast cells (WC) and cell-free extracts (CFE) from cells expressing recombinant Escherichia coli heat-labile toxin protein B-subunit (LTB) fused to the consensus dengue envelope domain III (scEDIII). Mice were treated orally with recombinant WC and CFE vaccines in 2-week intervals for 4 weeks and changes in systemic and mucosal immune responses were monitored. RESULTS Both WC and CFE dosage applications of LTB-scEDIII stimulated a systemic humoral immune response in the form of dengue-specific serum IgG as well as mucosal immune response in the form of secretory sIgA. Antigen-specific B cell responses in isolated lymphoid cells from the spleen and Peyer's patches further indicated an elevated mucosal immune response. Cellular immune response estimated through lymphocyte proliferation assay indicated higher levels in CFE than WC dosage. Furthermore, sera obtained after both oral administrations successfully neutralized DENV-1, whereas CFE formulation only neutralized DENV-2 serotype, two representative serotypes which cause severe dengue infection. Sera from mice that were fed CFE preparations demonstrated markedly higher neutralizing titers compared to those from WC-fed mice. However, WC feeding elicited strong immune responses, which were similar to the levels induced by CFE feeding after intraperitoneal booster with purified scEDIII antigen. CONCLUSIONS CFE preparations of LTB-scEDIII produced strong immunogenicity with low processing requirements, signifying that this fusion protein shows promise as a potent oral vaccine candidate against dengue viral infection.
Collapse
Affiliation(s)
- Jyotiranjan Bal
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Nguyen Ngoc Luong
- Department of Biology, College of Sciences, Hue University, Hue, Vietnam
| | - Jisang Park
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, The Animal Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Yong-Suk Jang
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
329
|
Budigi Y, Ong EZ, Robinson LN, Ong LC, Rowley KJ, Winnett A, Tan HC, Hobbie S, Shriver Z, Babcock GJ, Alonso S, Ooi EE. Neutralization of antibody-enhanced dengue infection by VIS513, a pan serotype reactive monoclonal antibody targeting domain III of the dengue E protein. PLoS Negl Trop Dis 2018; 12:e0006209. [PMID: 29425203 PMCID: PMC5823465 DOI: 10.1371/journal.pntd.0006209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/22/2018] [Accepted: 01/04/2018] [Indexed: 01/13/2023] Open
Abstract
Dengue virus (DENV) infection imposes enormous health and economic burden worldwide with no approved treatment. Several small molecules, including lovastatin, celgosivir, balapiravir and chloroquine have been tested for potential anti-dengue activity in clinical trials; none of these have demonstrated a protective effect. Recently, based on identification and characterization of cross-serotype neutralizing antibodies, there is increasing attention on the potential for dengue immunotherapy. Here, we tested the ability of VIS513, an engineered cross-neutralizing humanized antibody targeting the DENV E protein domain III, to overcome antibody-enhanced infection and high but brief viremia, which are commonly encountered in dengue patients, in various in vitro and in vivo models. We observed that VIS513 efficiently neutralizes DENV at clinically relevant viral loads or in the presence of enhancing levels of DENV immune sera. Single therapeutic administration of VIS513 in mouse models of primary infection or lethal secondary antibody-enhanced infection, reduces DENV titers and protects from lethal infection. Finally, VIS513 administration does not readily lead to resistance, either in cell culture systems or in animal models of dengue infection. The findings suggest that rapid viral reduction during acute DENV infection with a monoclonal antibody is feasible.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Cell Line
- Chlorocebus aethiops
- Cross Reactions/immunology
- Dengue/immunology
- Dengue Virus/genetics
- Dengue Virus/immunology
- Dengue Virus/pathogenicity
- Disease Models, Animal
- Epitopes
- Female
- Humans
- Immune Sera
- Immunotherapy
- In Vitro Techniques
- Mice
- Models, Structural
- Mutation
- Neutralization Tests
- Protein Conformation
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Serogroup
- THP-1 Cells
- Vero Cells
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Plaque Assay
Collapse
Affiliation(s)
- Yadunanda Budigi
- Visterra Singapore International Pte Ltd, Singapore, Singapore
- Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- * E-mail: (YB); (EZO)
| | - Eugenia Z. Ong
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, Singapore, Singapore
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- * E-mail: (YB); (EZO)
| | - Luke N. Robinson
- Visterra Inc, Cambridge, Massachusetts, United States of America
| | - Li Ching Ong
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kirk J. Rowley
- Visterra Inc, Cambridge, Massachusetts, United States of America
| | | | - Hwee Cheng Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Sven Hobbie
- Visterra Singapore International Pte Ltd, Singapore, Singapore
| | - Zachary Shriver
- Visterra Inc, Cambridge, Massachusetts, United States of America
| | | | - Sylvie Alonso
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng Eong Ooi
- Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
330
|
Abstract
Corynebacterium diphtheriae, Corynebacterium pseudotuberculosis and Corynebacterium ulcerans share one distinctive feature: they are all putative carriers of the diphtheria toxin (DT), encoded by a β-corynephage integrated into the genome. Due to its medical relevance, C. diphtheriae may be the most highly investigated species of the genus Corynebacterium. Nevertheless, systemic infections caused by C. ulcerans are increasingly being reported indicating that this species is an emerging pathogen today. C. diphtheriae, C. pseudotuberculosis and C. ulcerans are able to colonize different types of epithelial cells in a strain-specific manner, independent of the presence of the tox gene. However, the molecular mechanisms contributing to host colonization are barely understood. This review gives a comprehensive update of recent data concerning the adhesion properties of toxigenic corynebacteria, demonstrating that adhesion is a multi-factorial process.
Collapse
Affiliation(s)
- Lisa Ott
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Professur für Mikrobiologie, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
331
|
Transcytosis Involvement in Transport System and Endothelial Permeability of Vascular Leakage during Dengue Virus Infection. Viruses 2018; 10:v10020069. [PMID: 29419739 PMCID: PMC5850376 DOI: 10.3390/v10020069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
The major role of endothelial cells is to maintain homeostasis of vascular permeability and to preserve the integrity of vascular vessels to prevent fluid leakage. Properly functioning endothelial cells promote physiological balance and stability for blood circulation and fluid components. A monolayer of endothelial cells has the ability to regulate paracellular and transcellular pathways for transport proteins, solutes, and fluid. In addition to the paracellular pathway, the transcellular pathway is another route of endothelial permeability that mediates vascular permeability under physiologic conditions. The transcellular pathway was found to be associated with an assortment of disease pathogeneses. The clinical manifestation of severe dengue infection in humans is vascular leakage and hemorrhagic diatheses. This review explores and describes the transcellular pathway, which is an alternate route of vascular permeability during dengue infection that corresponds with the pathologic finding of intact tight junction. This pathway may be the route of albumin transport that causes endothelial dysfunction during dengue virus infection.
Collapse
|
332
|
Tick-Borne Encephalitis Virus Vaccine-Induced Human Antibodies Mediate Negligible Enhancement of Zika Virus Infection InVitro and in a Mouse Model. mSphere 2018; 3:mSphere00011-18. [PMID: 29435494 PMCID: PMC5806211 DOI: 10.1128/mspheredirect.00011-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/13/2018] [Indexed: 12/30/2022] Open
Abstract
Recent reports in the scientific literature have suggested that anti-dengue virus (DENV) and anti-West Nile virus (WNV) immunity exacerbates Zika virus (ZIKV) pathogenesis in vitro and in vivo in mouse models. Large populations of immune individuals exist for a related flavivirus (tick-borne encephalitis virus [TBEV]), due to large-scale vaccination campaigns and endemic circulation throughout most of northern Europe and the southern Russian Federation. As a result, the question of whether anti-TBEV immunity can affect Zika virus pathogenesis is a pertinent one. For this study, we obtained 50 serum samples from individuals vaccinated with the TBEV vaccine FSME-IMMUN (Central European/Neudörfl strain) and evaluated their enhancement capacity in vitro using K562 human myeloid cells expressing CD32 and in vivo using a mouse model of ZIKV pathogenesis. Among the 50 TBEV vaccinee samples evaluated, 29 had detectable reactivity against ZIKV envelope (E) protein by enzyme-linked immunosorbent assay (ELISA), and 36 showed enhancement of ZIKV infection in vitro. A pool of the most highly reacting and enhanced samples resulted in no significant change in the morbidity/mortality of ZIKV disease in immunocompromised Stat2-/- mice. Our results suggest that humoral immunity against TBEV is unlikely to enhance Zika virus pathogenesis in humans. No clinical reports indicating that TBEV vaccinees experiencing enhanced ZIKV disease have been published so far, and though the epidemiological data are sparse, our findings suggest that there is little reason for concern. This study also displays a clear relationship between the phylogenetic distance between two flaviviruses and their capacity for pathogenic enhancement. IMPORTANCE The relationship between serial infections of two different serotypes of dengue virus and more severe disease courses is well-documented in the literature, driven by so-called antibody-dependent enhancement (ADE). Recently, studies have shown the possibility of ADE in cells exposed to anti-DENV human plasma and then infected with ZIKV and also in mouse models of ZIKV pathogenesis after passive transfer of anti-DENV human plasma. In this study, we evaluated the extent to which this phenomenon occurs using sera from individuals immunized against tick-borne encephalitis virus (TBEV). This is highly relevant, since large proportions of the European population are vaccinated against TBEV or otherwise seropositive.
Collapse
|
333
|
Corman VM, Rasche A, Baronti C, Aldabbagh S, Cadar D, Reusken CB, Pas SD, Goorhuis A, Schinkel J, Molenkamp R, Kümmerer BM, Bleicker T, Brünink S, Eschbach-Bludau M, Eis-Hübinger AM, Koopmans MP, Schmidt-Chanasit J, Grobusch MP, de Lamballerie X, Drosten C, Drexler JF. Assay optimization for molecular detection of Zika virus. Bull World Health Organ 2018; 94:880-892. [PMID: 27994281 PMCID: PMC5153932 DOI: 10.2471/blt.16.175950] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective To examine the diagnostic performance of real-time reverse transcription (RT)-polymerase chain reaction (PCR) assays for Zika virus detection. Methods We compared seven published real-time RT–PCR assays and two new assays that we have developed. To determine the analytical sensitivity of each assay, we constructed a synthetic universal control ribonucleic acid (uncRNA) containing all of the assays’ target regions on one RNA strand and spiked human blood or urine with known quantities of African or Asian Zika virus strains. Viral loads in 33 samples from Zika virus-infected patients were determined by using one of the new assays. Findings Oligonucleotides of the published real-time RT–PCR assays, showed up to 10 potential mismatches with the Asian lineage causing the current outbreak, compared with 0 to 4 mismatches for the new assays. The 95% lower detection limit of the seven most sensitive assays ranged from 2.1 to 12.1 uncRNA copies/reaction. Two assays had lower sensitivities of 17.0 and 1373.3 uncRNA copies/reaction and showed a similar sensitivity when using spiked samples. The mean viral loads in samples from Zika virus-infected patients were 5 × 104 RNA copies/mL of blood and 2 × 104 RNA copies/mL of urine. Conclusion We provide reagents and updated protocols for Zika virus detection suitable for the current outbreak strains. Some published assays might be unsuitable for Zika virus detection, due to the limited sensitivity and potential incompatibility with some strains. Viral concentrations in the clinical samples were close to the technical detection limit, suggesting that the use of insensitive assays will cause false-negative results.
Collapse
Affiliation(s)
- Victor M Corman
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud-Str. 25, 53127 Bonn, Germany
| | - Andrea Rasche
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud-Str. 25, 53127 Bonn, Germany
| | - Cecile Baronti
- UMR EPV Emergence des Pathologies Virales, Aix Marseille Université, Marseille, France
| | - Souhaib Aldabbagh
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud-Str. 25, 53127 Bonn, Germany
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | | | - Suzan D Pas
- Erasmus MC, Department of Viroscience, Rotterdam, Netherlands
| | - Abraham Goorhuis
- Department of Infectious Diseases, University of Amsterdam, Amsterdam, Netherlands
| | - Janke Schinkel
- Clinical Virology Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Richard Molenkamp
- Clinical Virology Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Beate M Kümmerer
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud-Str. 25, 53127 Bonn, Germany
| | - Tobias Bleicker
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud-Str. 25, 53127 Bonn, Germany
| | - Sebastian Brünink
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud-Str. 25, 53127 Bonn, Germany
| | - Monika Eschbach-Bludau
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud-Str. 25, 53127 Bonn, Germany
| | - Anna M Eis-Hübinger
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud-Str. 25, 53127 Bonn, Germany
| | | | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Martin P Grobusch
- Department of Infectious Diseases, University of Amsterdam, Amsterdam, Netherlands
| | - Xavier de Lamballerie
- UMR EPV Emergence des Pathologies Virales, Aix Marseille Université, Marseille, France
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud-Str. 25, 53127 Bonn, Germany
| | - Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud-Str. 25, 53127 Bonn, Germany
| |
Collapse
|
334
|
Abstract
IgG antibodies mediate a diversity of immune functions by coupling of antigen specificity through the Fab domain to signal transduction via Fc-Fc receptor interactions. Indeed, balanced IgG signaling through type I and type II Fc receptors is required for the control of proinflammatory, anti-inflammatory, and immunomodulatory processes. In this review, we discuss the mechanisms that govern IgG-Fc receptor interactions, highlighting the diversity of Fc receptor-mediated effector functions that regulate immunity and inflammation as well as determine susceptibility to infection and autoimmunity and responsiveness to antibody-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Taia T Wang
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Rony Dahan
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Jad Maamary
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| |
Collapse
|
335
|
Pabalan N, Chaisri S, Tabunhan S, Phumyen A, Jarjanazi H, Steiner TS. Associations of DC-SIGN (CD209) promoter -336G/A polymorphism (rs4804803) with dengue infection: A systematic review and meta-analysis. Acta Trop 2018; 177:186-193. [PMID: 29054571 DOI: 10.1016/j.actatropica.2017.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/02/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM Dengue virus entry into a host is associated with a cell surface protein, DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin). A common CD209-336G/A (rs4804803) polymorphism in DC-SIGN may affect severity of dengue virus infection (DEN) and incidence of dengue fever (DF) or the more severe dengue hemorrhagic fever (DHF). However, the reported associations of these two outcomes and CD-209 have been inconsistent, which prompted a meta-analysis to obtain more precise estimates. METHODS A literature search yielded seven case-control studies. We calculated pooled odds ratios (OR) and 95% confidence intervals using standard genetic models. Outlier treatment examined sources of potential heterogeneity. Subgroup analysis was performed for ethnicity and age. RESULTS All significant outcomes for association indicating reduced risk were pegged at P=0.007-0.05. In the homozygous and recessive models, these were observed in the overall analysis (OR 0.52-0.55), and subgroups of South/Central Americans (OR 0.30-0.32) and school-age children (OR 0.44) in the DHF analysis as well as the codominant model among Asians in DF (OR 0.59). These significant outcomes are strengthened by their non-heterogeneity (P>0.10) and robustness of the effects. Most pooled effects in DF and DEN were variable. CONCLUSIONS The DC-SIGN -336G/A polymorphism significantly affects DHF and DF incidence with the effect more pronounced in certain analyzed patient subgroups.
Collapse
Affiliation(s)
- Noel Pabalan
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand.
| | - Suwit Chaisri
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Sompong Tabunhan
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Achara Phumyen
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Hamdi Jarjanazi
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, Ontario, Canada
| | - Theodore S Steiner
- Division of Infectious Diseases, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
336
|
Immunology of viral infections with a high impact in Mexico: Dengue, Chikungunya, and Zika. MEDICINA UNIVERSITARIA 2018. [DOI: 10.1016/j.rmu.2017.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
337
|
Mazzon M, Castro C, Thaa B, Liu L, Mutso M, Liu X, Mahalingam S, Griffin JL, Marsh M, McInerney GM. Alphavirus-induced hyperactivation of PI3K/AKT directs pro-viral metabolic changes. PLoS Pathog 2018; 14:e1006835. [PMID: 29377936 PMCID: PMC5805360 DOI: 10.1371/journal.ppat.1006835] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/08/2018] [Accepted: 12/20/2017] [Indexed: 11/18/2022] Open
Abstract
Virus reprogramming of cellular metabolism is recognised as a critical determinant for viral growth. While most viruses appear to activate central energy metabolism, different viruses have been shown to rely on alternative mechanisms of metabolic activation. Whether related viruses exploit conserved mechanisms and induce similar metabolic changes is currently unclear. In this work we investigate how two alphaviruses, Semliki Forest virus and Ross River virus, reprogram host metabolism and define the molecular mechanisms responsible. We demonstrate that in both cases the presence of a YXXM motif in the viral protein nsP3 is necessary for binding to the PI3K regulatory subunit p85 and for activating AKT. This leads to an increase in glucose metabolism towards the synthesis of fatty acids, although additional mechanisms of metabolic activation appear to be involved in Ross River virus infection. Importantly, a Ross River virus mutant that fails to activate AKT has an attenuated phenotype in vivo, suggesting that viral activation of PI3K/AKT contributes to virulence and disease.
Collapse
Affiliation(s)
- Michela Mazzon
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Cecilia Castro
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Bastian Thaa
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE, Sweden
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Lifeng Liu
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE, Sweden
| | - Margit Mutso
- Institute of Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Xiang Liu
- Institute of Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Suresh Mahalingam
- Institute of Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE, Sweden
| |
Collapse
|
338
|
Nguyen MT, Ho TN, Nguyen VVC, Nguyen TH, Ha MT, Ta VT, Nguyen LDH, Phan L, Han KQ, Duong THK, Tran NBC, Wills B, Wolbers M, Simmons CP. An Evidence-Based Algorithm for Early Prognosis of Severe Dengue in the Outpatient Setting. Clin Infect Dis 2017; 64:656-663. [PMID: 28034883 PMCID: PMC5850639 DOI: 10.1093/cid/ciw863] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/22/2016] [Indexed: 11/13/2022] Open
Abstract
Background Early prediction of severe dengue could significantly assist patient triage and case management. Methods We prospectively investigated 7563 children with ≤3 days of fever recruited in the outpatient departments of 6 hospitals in southern Vietnam between 2010 and 2013. The primary endpoint of interest was severe dengue (2009 World Health Organization Guidelines), and predefined risk variables were collected at the time of enrollment to enable prognostic model development. Results The analysis population comprised 7544 patients, of whom 2060 (27.3%) had laboratory-confirmed dengue; nested among these were 117 (1.5%) severe cases. In the multivariate logistic model, a history of vomiting, lower platelet count, elevated aspartate aminotransferase (AST) level, positivity in the nonstructural protein 1 (NS1) rapid test, and viremia magnitude were all independently associated with severe dengue. The final prognostic model (Early Severe Dengue Identifier [ESDI]) included history of vomiting, platelet count, AST level. and NS1 rapid test status. Conclusions The ESDI had acceptable performance features (area under the curve = 0.95, sensitivity 87% (95% confidence interval [CI], 80%-92%), specificity 88% (95% CI, 87%-89%), positive predictive value 10% (95% CI, 9%-12%), and negative predictive value of 99% (95% CI, 98%-100%) in the population of all 7563 enrolled children. A score chart, for routine clinical use, was derived from the prognostic model and could improve triage and management of children presenting with fever in dengue-endemic areas.
Collapse
Affiliation(s)
| | - Thi Nhan Ho
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Oxford, England, UK
| | - Van Vinh Chau Nguyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Oxford, England, UK
| | | | - Manh Tuan Ha
- Children's Hospital No. 2, Ho Chi Minh City, Vietnam
| | - Van Tram Ta
- Tien Giang Provincial Hospital, My Tho, Vietnam
| | | | - Loi Phan
- Long An Provincial Hospital, Tan An, Vietnam
| | | | - Thi Hue Kien Duong
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Oxford, England, UK
| | - Nguyen Bich Chau Tran
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Oxford, England, UK
| | - Bridget Wills
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Oxford, England, UK.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Marcel Wolbers
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Oxford, England, UK.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Cameron P Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Oxford, England, UK.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| |
Collapse
|
339
|
Phumesin P, Junking M, Panya A, Yongpitakwattana P, Noisakran S, Limjindaporn T, Yenchitsomanus PT. Vivo-morpholino oligomers strongly inhibit dengue virus replication and production. Arch Virol 2017; 163:867-876. [PMID: 29260328 DOI: 10.1007/s00705-017-3666-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/16/2017] [Indexed: 01/07/2023]
Abstract
Dengue virus (DENV) infection is a worldwide public health problem, which can cause severe dengue hemorrhagic fever (DHF) and life-threatening dengue shock syndrome (DSS). There are currently no anti-DENV drugs available, and there has been an intensive search for effective anti-DENV agents that can inhibit all four DENV serotypes. In this study, we tested whether vivo-morpholino oligomers (vivo-MOs), whose effect on DENV infection has not previously been studied, can inhibit DENV infection. Vivo-MOs were designed to target the top of 3' stem-loop (3' SL) in the 3' UTR of the DENV genome and tested for inhibition of DENV infection in monkey kidney epithelial (Vero) cells and human lung epithelial carcinoma (A549) cells. The results showed that vivo-MOs could bind to a DENV RNA sequence and markedly reduce DENV-RNA, protein, and virus production in infected Vero and A549 cells. Vivo-MOs at a concentration of 4 µM could inhibit DENV production by more than 104-fold when compared to that of an untreated control. In addition, vivo-MOs also inhibited DENV production in U937 cells and primary human monocytes. Therefore, vivo-MOs targeting to the 3' SL in the 3' UTR of DENV genomes are effective and have the potential to be developed as anti-DENV agents.
Collapse
Affiliation(s)
- Patta Phumesin
- Siriraj Center of Research Excellence for Molecular Medicine (SiCORE-MM), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Molecular Medicine (SiCORE-MM), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Aussara Panya
- Siriraj Center of Research Excellence for Molecular Medicine (SiCORE-MM), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Petlada Yongpitakwattana
- Siriraj Center of Research Excellence for Molecular Medicine (SiCORE-MM), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sansanee Noisakran
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, 10700, Thailand
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Molecular Medicine (SiCORE-MM), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
340
|
Ma J, Zhang X, Soloveva V, Warren T, Guo F, Wu S, Lu H, Guo J, Su Q, Shen H, Solon E, Comunale MA, Mehta A, Guo JT, Bavari S, Du Y, Block TM, Chang J. Enhancing the antiviral potency of ER α-glucosidase inhibitor IHVR-19029 against hemorrhagic fever viruses in vitro and in vivo. Antiviral Res 2017; 150:112-122. [PMID: 29253498 DOI: 10.1016/j.antiviral.2017.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
Targeting host functions essential for viral replication has been considered as a broad spectrum and resistance-refractory antiviral approach. However, only a few host functions have, thus far, been validated as broad-spectrum antiviral targets in vivo. ER α-glucosidases I and II have been demonstrated to be essential for the morphogenesis of many enveloped viruses, including members from four families of viruses causing hemorrhagic fever. In vivo antiviral efficacy of various iminosugar-based ER α-glucosidase inhibitors has been reported in animals infected with Dengue, Japanese encephalitis, Ebola, Marburg and influenza viruses. Herein, we established Huh7.5-derived cell lines with ER α-glucosidase I or II knockout using CRISPR/Cas9 and demonstrated that the replication of Dengue, Yellow fever and Zika viruses was reduced by only 1-2 logs in the knockout cell lines. The results clearly indicate that only a partial suppression of viral replication can possibly be achieved with a complete inhibition of ER-α-glucosidases I or II by their inhibitors. We therefore explore to improve the antiviral efficacy of a lead iminosugar IHVR-19029 through combination with another broad-spectrum antiviral agent, favipiravir (T-705). Indeed, combination of IHVR-19029 and T-705 synergistically inhibited the replication of Yellow fever and Ebola viruses in cultured cells. Moreover, in a mouse model of Ebola virus infection, combination of sub-optimal doses of IHVR-19029 and T-705 significantly increased the survival rate of infected animals. We have thus proved the concept of combinational therapeutic strategy for the treatment of viral hemorrhagic fevers with broad spectrum host- and viral- targeting antiviral agents.
Collapse
Affiliation(s)
- Julia Ma
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Xuexiang Zhang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Veronica Soloveva
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Travis Warren
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Fang Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Shuo Wu
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Huagang Lu
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Jia Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Qing Su
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | | | | | | | - Anand Mehta
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Timothy M Block
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA.
| |
Collapse
|
341
|
Tissera H, Rathore APS, Leong WY, Pike BL, Warkentien TE, Farouk FS, Syenina A, Eong Ooi E, Gubler DJ, Wilder-Smith A, St. John AL. Chymase Level Is a Predictive Biomarker of Dengue Hemorrhagic Fever in Pediatric and Adult Patients. J Infect Dis 2017; 216:1112-1121. [PMID: 28968807 PMCID: PMC5853622 DOI: 10.1093/infdis/jix447] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
Background Most patients with dengue experience mild disease, dengue fever (DF), while few develop the life-threatening diseases dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). No laboratory tests predict DHF or DSS. We evaluated whether the serum chymase level can predict DHF or DSS in adult and pediatric patients and the influence of preexisting conditions (PECs) on chymase levels. Methods Serum chymase levels were measured in patients presenting with undifferentiated fever to hospitals in Colombo District, Sri Lanka. The value of serum the chymase concentration and clinical signs and symptoms as predictors of DHF and/or DSS was evaluated by multivariate analysis. We assessed the influence of age, PECs, and day after fever onset on the robustness of the chymase level as a biomarker for DHF and/or DSS. Results An elevated chymase level in acute phase blood samples was highly indicative of later diagnosis of DHF or DSS for pediatric and adult patients with dengue. No recorded PECs prevented an increase in the chymase level during DHF. However, certain PECs (obesity and cardiac or lung-associated diseases) resulted in a concomitant increase in chymase levels among adult patients with DHF. Conclusions These results show that patients with acute dengue who present with high levels of serum chymase consistently are at greater risk of DHF. The chymase level is a robust prognostic biomarker of severe dengue for adult and pediatric patients.
Collapse
Affiliation(s)
- Hasitha Tissera
- Epidemiology Unit, Ministry of Health
- National Dengue Control Unit, Colombo, Sri Lanka
| | - Abhay P S Rathore
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore
| | - Wei Yee Leong
- Lee Kong Chian School of Medicine, Nanyang Technological University
| | | | | | | | - Ayesa Syenina
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore
| | - Duane J Gubler
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore
| | - Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University
- Department of Public Health and Clinical Medicine, Epidemiology and Global Health, Umeå University, Sweden
| | - Ashley L St. John
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore
- Department of Microbiology and Immunology, Young Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pathology, Duke University Medical Center Durham, North Carolina
| |
Collapse
|
342
|
Abdul Ahmad SA, Palanisamy UD, Tejo BA, Chew MF, Tham HW, Syed Hassan S. Geraniin extracted from the rind of Nephelium lappaceum binds to dengue virus type-2 envelope protein and inhibits early stage of virus replication. Virol J 2017; 14:229. [PMID: 29162124 PMCID: PMC5698958 DOI: 10.1186/s12985-017-0895-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/13/2017] [Indexed: 01/17/2023] Open
Abstract
Background The rapid rise and spread in dengue cases, together with the unavailability of safe vaccines and effective antiviral drugs, warrant the need to discover and develop novel anti-dengue treatments. In this study the antiviral activity of geraniin, extracted from the rind of Nephelium lappaceum, against dengue virus type-2 (DENV-2) was investigated. Methods Geraniin was prepared from Nephelium lappaceum rind by reverse phase C-18 column chromatography. Cytotoxicity of geraniin towards Vero cells was evaluated using MTT assay while IC50 value was determined by plaque reduction assay. The mode-of-action of geraniin was characterized using the virucidal, attachment, penetration and the time-of-addition assays’. Docking experiments with geraniin molecule and the DENV envelope (E) protein was also performed. Finally, recombinant E Domain III (rE-DIII) protein was produced to physiologically test the binding of geraniin to DENV-2 E-DIII protein, through ELISA competitive binding assay. Results Cytotoxicity assay confirmed that geraniin was not toxic to Vero cells, even at the highest concentration tested. The compound exhibited DENV-2 plaque formation inhibition, with an IC50 of 1.75 μM. We further revealed that geraniin reduced viral infectivity and inhibited DENV-2 from attaching to the cells but had little effect on its penetration. Geraniin was observed to be most effective when added at the early stage of DENV-2 infection. Docking experiments showed that geraniin binds to DENV E protein, specifically at the DIII region, while the ELISA competitive binding assay confirmed geraniin’s interaction with rE-DIII with high affinity. Conclusions Geraniin from the rind of Nephelium lappaceum has antiviral activity against DENV-2. It is postulated that the compound inhibits viral attachment by binding to the E-DIII protein and interferes with the initial cell-virus interaction. Our results demonstrate that geraniin has the potential to be developed into an effective antiviral treatment, particularly for early phase dengue viral infection.
Collapse
Affiliation(s)
- Siti Aisyah Abdul Ahmad
- Virus-Host Interaction Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Uma D Palanisamy
- Virus-Host Interaction Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Bimo A Tejo
- Department of Chemistry, Universiti Putra Malaysia, 43400, Serdang, Malaysia.,Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000, Kuala Lumpur, Cheras, Malaysia
| | - Miaw Fang Chew
- Virus-Host Interaction Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.,Research Centre for Biomedical Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
| | - Hong Wai Tham
- Virus-Host Interaction Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.,Faculty of Pharmacy, SEGI University, 9 Jalan Teknologi, Taman Sains Selangor, PJU 5, Kota Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| | - Sharifah Syed Hassan
- Virus-Host Interaction Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia. .,Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia.
| |
Collapse
|
343
|
George JA, Kim SB, Choi JY, Patil AM, Hossain FMA, Uyangaa E, Hur J, Park SY, Lee JH, Kim K, Eo SK. TLR2/MyD88 pathway-dependent regulation of dendritic cells by dengue virus promotes antibody-dependent enhancement via Th2-biased immunity. Oncotarget 2017; 8:106050-106070. [PMID: 29285314 PMCID: PMC5739701 DOI: 10.18632/oncotarget.22525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022] Open
Abstract
Possible risk mediators in primary dengue virus (DenV) infection that favor secondary DenV infection to life-threatening dengue hemorrhagic fever (DHF) and shock syndrome (DSS) via antibody-dependent enhancement (ADE) have not yet been described. Here, DenV infection enhanced the expression of inflammatory mediators and activation molecules in dendritic cells (DCs) through TLR2/MyD88 pathway. TLR2 appeared to facilitate DenV infection in DCs that were less permissive than macrophages for viral replication. In experiments using separate evaluations of DenV-infected and uninfected bystander DCs, infected DCs showed impaired maturation accompanied with TLR2-dependent production of inflammatory cytokines, by which uninfected bystander DCs showed increased expression of co-stimulatory molecules. Differential phosphorylation of MAPK and STAT3 was also detected between DenV-infected and uninfected DCs. Furthermore, DenV infection stimulated Th2-polarized humoral and cellular immunity against foreign and DenV Ag via TLR2/MyD88 pathway, and DenV-infected DCs were revealed to facilitate Th2-biased immune responses in TLR2-dependent manner. TLR2/MyD88-mediated Th2-biased Ab responses to primary DenV infection increased the infectivity of secondary homotypic or heterotypic DenV via ADE. Collectively, these results indicate that TLR2/MyD88 pathway in DC-priming receptors can drive Th2-biased immune responses during primary DenV infection, which could favor secondary DenV infection to DHF/DSS via ADE.
Collapse
Affiliation(s)
- Junu Aleyas George
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Seong Bum Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Jin Hur
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Sang-Youel Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - John-Hwa Lee
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
344
|
Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuan G, Gordon A, Balmaseda A, Harris E. Antibody-dependent enhancement of severe dengue disease in humans. Science 2017; 358:929-932. [PMID: 29097492 PMCID: PMC5858873 DOI: 10.1126/science.aan6836] [Citation(s) in RCA: 790] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 09/29/2017] [Indexed: 01/09/2023]
Abstract
For dengue viruses 1 to 4 (DENV1-4), a specific range of antibody titer has been shown to enhance viral replication in vitro and severe disease in animal models. Although suspected, such antibody-dependent enhancement of severe disease has not been shown to occur in humans. Using multiple statistical approaches to study a long-term pediatric cohort in Nicaragua, we show that risk of severe dengue disease is highest within a narrow range of preexisting anti-DENV antibody titers. By contrast, we observe protection from all symptomatic dengue disease at high antibody titers. Thus, immune correlates of severe dengue must be evaluated separately from correlates of protection against symptomatic disease. These results have implications for studies of dengue pathogenesis and for vaccine development, because enhancement, not just lack of protection, is of concern.
Collapse
Affiliation(s)
- Leah C. Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Lionel Gresh
- Sustainable Sciences Institute, Managua, Nicaragua
| | - M. Elizabeth Halloran
- Department of Biostatistics, University of Washington, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Juan Carlos Mercado
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
345
|
Torresi J, Richmond PC, Heron LG, Qiao M, Marjason J, Starr-Spires L, van der Vliet D, Jin J, Wartel TA, Bouckenooghe A. Replication and Excretion of the Live Attenuated Tetravalent Dengue Vaccine CYD-TDV in a Flavivirus-Naive Adult Population: Assessment of Vaccine Viremia and Virus Shedding. J Infect Dis 2017; 216:834-841. [PMID: 28968794 DOI: 10.1093/infdis/jix314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/31/2017] [Indexed: 11/14/2022] Open
Abstract
Background We assessed replication and excretion of the live attenuated tetravalent dengue vaccine (CYD-TDV) into biological fluids following vaccination in dengue-naive adults in Australia. Methods Vaccinal viremia/shedding was assessed in a subset of participants enrolled in a lot-to-lot consistency study; 95 participants received 3 subcutaneous doses of CYD-TDV from phase 2/3 lots of the vaccine, and 8 received placebo; doses were administered 6 months apart. Quantitative reverse-transcription polymerase chain reaction (qR-PCR) analysis was used to initially detect the yellow fever virus (YFV) core protein gene in the backbone of CYD-TDV in serum, saliva and urine, followed by serotype-specific qRT-PCR analysis of samples positive for YFV by qRT-PCR (lower limit of detection, 5.16 GEq/mL). Results YFV viremia was detected by qRT-PCR in 69.5% of participants (66 of 95) who received CYD-TDV, mainly 6-14 days after injection 1. The serotypes detected were serotype 4 (in 68.2% of participants [45 of 95]), serotype 3 (in 19.7% [13 of 95]), and serotype 1 (in 12.1% [8 of 95]); serotype 2 was not detected. None of the placebo recipients had vaccinal viremia/shedding. No participants had detectable viral shedding into saliva at levels above the lower limit of quantitation. Two participants had low-level viral shedding (serotype 3) in urine (5.47 and 5.77 GEq/mL). None of the participants with viremia or shedding experienced concomitant fever. Conclusions Low-level vaccinal viremia may occur following vaccination with CYD-TDV, but this is not associated with any symptom or adverse event. Clinical Trials Registration NCT01134263.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne.,Department of Infectious Diseases, Austin Hospital, Heidelberg
| | - Peter C Richmond
- University of Western Australia School of Paediatrics and Child Health.,Vaccine Trials Group, Telethon Kids Institute, Subiaco
| | - Leon G Heron
- National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases, Children's Hospital at Westmead, Westmead
| | - Ming Qiao
- Royal Adelaide Hospital.,SA Pathology, Adelaide
| | | | | | | | - Jing Jin
- Clinical Sciences and Operations, Sanofi, Beijing, China
| | | | | |
Collapse
|
346
|
Lana RM, Gomes MFDC, de Lima TFM, Honório NA, Codeço CT. The introduction of dengue follows transportation infrastructure changes in the state of Acre, Brazil: A network-based analysis. PLoS Negl Trop Dis 2017; 11:e0006070. [PMID: 29149175 PMCID: PMC5693297 DOI: 10.1371/journal.pntd.0006070] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/25/2017] [Indexed: 11/19/2022] Open
Abstract
Human mobility, presence and passive transportation of Aedes aegypti mosquito, and environmental characteristics are a group of factors which contribute to the success of dengue spread and establishment. To understand this process, we assess data from dengue national and municipal basins regarding population and demographics, transportation network, human mobility, and Ae. aegypti monitoring for the Brazilian state of Acre since the first recorded dengue case in the year 2000 to the year 2015. During this period, several changes in Acre's transport infrastructure and urbanization have been started. To reconstruct the process of dengue introduction in Acre, we propose an analytic framework based on concepts used in malaria literature, namely vulnerability and receptivity, to inform risk assessments in dengue-free regions as well as network theory concepts for disease invasion and propagation. We calculate the probability of dengue importation to Acre from other Brazilian states, the evolution of dengue spread between Acrean municipalities and dengue establishment in the state. Our findings suggest that the landscape changes associated with human mobility have created favorable conditions for the establishment of dengue virus transmission in Acre. The revitalization of its major roads, as well as the increased accessibility by air to and within the state, have increased dengue vulnerability. Unplanned urbanization and population growth, as observed in Acre during the period of study, contribute to ideal conditions for Ae. aegypti mosquito establishment, increase the difficulty in mosquito control and consequently its local receptivity.
Collapse
Affiliation(s)
- Raquel Martins Lana
- Fiocruz, Pós-Graduação em Epidemiologia em Saúde Pública, Escola Nacional de Saúde Pública Sérgio Arouca (ENSP), Rio de Janeiro, RJ, Brazil
- Fiocruz, Programa de Computação Científica (PROCC), Rio de Janeiro, RJ, Brazil
| | | | - Tiago França Melo de Lima
- Laboratório de Engenharia e Desenvolvimento de Sistemas (LEDS), Departamento de Computação e Sistemas (DECSI), Instituto de Ciências Exatas e Aplicadas (ICEA), Universidade Federal de Ouro Preto (UFOP), João Monlevade, MG, Brazil
| | - Nildimar Alves Honório
- Fiocruz, Instituto Oswaldo Cruz (IOC), Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, RJ, Brazil
- Fiocruz, Núcleo Operacional Sentinela de Mosquitos Vetores (Nosmove), Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
347
|
Byrne AB, Gutierrez GF, Bruno A, Córdoba MT, Bono MM, Polack FP, Talarico LB, Quipildor MO. Age-associated differences in clinical manifestations and laboratory parameters during a dengue virus type 4 outbreak in Argentina. J Med Virol 2017; 90:197-203. [PMID: 28941278 DOI: 10.1002/jmv.24952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/12/2017] [Indexed: 11/07/2022]
Abstract
Infection by any of the four dengue virus (DENV) serotypes produces a wide spectrum of clinical illness in humans. Differences in clinical manifestation and severity have been associated with secondary heterologous infection, patient age, and virus serotype. In this context, this retrospective study sought to analyze the presentation of dengue in patients during the 2014 DENV-4 outbreak affecting the City of Orán, Salta Province, Argentina. Demographic data, clinical manifestations, and laboratory abnormalities of laboratory-confirmed dengue patients were compared between age groups and between patients with and without warning signs. Of 301 patients with laboratory-confirmed dengue, 37.9% presented dengue with warning signs. Although nearly half of all patients had secondary DENV infections, no severe dengue cases, or deaths were reported. Furthermore, no association was found between incidence of warning signs and pre-existing immunity to DENV. Pediatric patients were least likely to present warning signs and showed significantly decreased risk of fever, retro-orbital pain, arthalgia, diarrhea and thrombocytopenia, and higher risk of rash compared to older patients. Female patients of all ages were also at higher risk of developing several symptoms. The characterization of DENV-4 infection in humans, a DENV serotype recently reported in Argentina, revealed differences in clinical manifestations, laboratory parameters and the presence/absence of warning signs based on age group. Further investigation of these age-related differences should contribute to better assessment of dengue disease in at risk populations.
Collapse
Affiliation(s)
- Alana B Byrne
- Fundación INFANT, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermo F Gutierrez
- Hospital San Vicente de Paul, Orán, Salta, Argentina.,Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán, Argentina
| | | | | | - María M Bono
- Hospital San Vicente de Paul, Orán, Salta, Argentina
| | | | - Laura B Talarico
- Fundación INFANT, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
348
|
Wang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournazos S, Bhaumik SK, Pinsky BA, Chokephaibulkit K, Onlamoon N, Pattanapanyasat K, Taubenberger JK, Ahmed R, Ravetch JV. IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity. Science 2017; 355:395-398. [PMID: 28126818 DOI: 10.1126/science.aai8128] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
Dengue virus (DENV) infection in the presence of reactive, non-neutralizing immunoglobulin G (IgG) (RNNIg) is the greatest risk factor for dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Progression to DHF/DSS is attributed to antibody-dependent enhancement (ADE); however, because only a fraction of infections occurring in the presence of RNNIg advance to DHF/DSS, the presence of RNNIg alone cannot account for disease severity. We discovered that DHF/DSS patients respond to infection by producing IgGs with enhanced affinity for the activating Fc receptor FcγRIIIA due to afucosylated Fc glycans and IgG1 subclass. RNNIg enriched for afucosylated IgG1 triggered platelet reduction in vivo and was a significant risk factor for thrombocytopenia. Thus, therapeutics and vaccines restricting production of afucosylated, IgG1 RNNIg during infection may prevent ADE of DENV disease.
Collapse
Affiliation(s)
- Taia T Wang
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.,Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jaturong Sewatanon
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand 10700
| | - Matthew J Memoli
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jens Wrammert
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.,Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Siddhartha Kumar Bhaumik
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.,Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand 10700
| | - Nattawat Onlamoon
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand 10700
| | - Kovit Pattanapanyasat
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand 10700
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
349
|
Talarico LB, Byrne AB, Amarilla S, Lovera D, Vázquez C, Chamorro G, Acosta PL, Ferretti A, Caballero MT, Arbo A, Polack FP. Characterization of type I interferon responses in dengue and severe dengue in children in Paraguay. J Clin Virol 2017; 97:10-17. [PMID: 29078078 DOI: 10.1016/j.jcv.2017.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Infection with dengue virus (DENV) produces a wide spectrum of clinical illness ranging from asymptomatic infection to mild febrile illness, and to severe forms of the disease. Type I interferons (IFNs) represent an initial and essential host defense response against viruses. DENV has been reported to trigger a robust type I IFN response; however, IFN-α/β profile in the progression of disease is not well characterized. OBJECTIVES AND STUDY DESIGN In this context, we conducted a retrospective study assessing the circulating serum levels of type I IFNs and related cytokines at different phases of illness in children during the 2011 outbreak of DENV in Paraguay. Demographic, clinical, laboratory and virological data were analyzed. RESULTS During defervescence, significantly higher levels of IFN-β, IL-6 and MIP-1β, were detected in severe vs. non-severe dengue patients. Additionally, a significant positive correlation between INF-α and viremia was detected in children with severe dengue. A significant positive correlation was also observed between IFN-β serum levels and hematocrit during the febrile phase, whereas IFN-α levels negatively correlated with white blood cells during defervescence in severe dengue patients. Furthermore, previous serologic status of patients to DENV did not influence type I IFN production. CONCLUSIONS The distinct type I IFN profile in children with dengue and severe dengue, as well as its association with viral load, cytokine production and laboratory manifestations indicate differences in innate and adaptive immune responses that should be investigated further in order to unveil the association of immunological and physiological pathways that underlie in DENV infection.
Collapse
Affiliation(s)
- Laura B Talarico
- Fundación INFANT, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Alana B Byrne
- Fundación INFANT, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sara Amarilla
- Department of Pediatrics, Instituto de Medicina Tropical, Asunción, Paraguay; National University of Asunción, Asunción, Paraguay
| | - Dolores Lovera
- Department of Pediatrics, Instituto de Medicina Tropical, Asunción, Paraguay; National University of Asunción, Asunción, Paraguay
| | | | | | - Patricio L Acosta
- Fundación INFANT, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | | | - Antonio Arbo
- Department of Pediatrics, Instituto de Medicina Tropical, Asunción, Paraguay; National University of Asunción, Asunción, Paraguay
| | | |
Collapse
|
350
|
Chan CY, Chan KR, Chua CJ, Nur Hazirah S, Ghosh S, Ooi EE, Low JG. Early molecular correlates of adverse events following yellow fever vaccination. JCI Insight 2017; 2:96031. [PMID: 28978802 DOI: 10.1172/jci.insight.96031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/29/2017] [Indexed: 12/26/2022] Open
Abstract
The innate immune response shapes the development of adaptive immunity following infections and vaccination. However, it can also induce symptoms such as fever and myalgia, leading to the possibility that the molecular basis of immunogenicity and reactogenicity of vaccination are inseparably linked. To test this possibility, we used the yellow fever live-attenuated vaccine (YFLAV) as a model to study the molecular correlates of reactogenicity or adverse events (AEs). We analyzed the outcome of 68 adults who completed a YFLAV clinical trial, of which 43 (63.2%) reported systemic AEs. Through whole-genome profiling of blood collected before and after YFLAV dosing, we observed that activation of innate immune genes at day 1, but not day 3 after vaccination, was directly correlated with AEs. These findings contrast with the gene expression profile at day 3 that we and others have previously shown to be correlated with immunogenicity. We conclude that although the innate immune response is a double-edged sword, its expression that induces AEs is temporally distinct from that which engenders robust immunity. The use of genomic profiling thus provides molecular insights into the biology of AEs that potentially forms a basis for the development of safer vaccines.
Collapse
Affiliation(s)
- Candice Yy Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Camillus Jh Chua
- SingHealth Translational Immunology and Inflammation Centre (STIIC), Singapore
| | | | - Sujoy Ghosh
- Centre for Computational Biology, Duke-NUS Medical School, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research & Technology (SMART), Singapore
| | - Jenny G Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Department of Infectious Diseases, Singapore General Hospital, Singapore
| |
Collapse
|