301
|
Potter H, Boyd TD, Clarke P, Pelak VS, Tyler KL. Recruiting the innate immune system with GM-CSF to fight viral diseases, including West Nile Virus encephalitis and COVID-19. F1000Res 2020; 9:345. [PMID: 32704352 PMCID: PMC7359749 DOI: 10.12688/f1000research.23729.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 01/08/2023] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic grows throughout the world, it is imperative that all approaches to ameliorating its effects be investigated, including repurposing drugs that show promise in other diseases. We have been investigating an approach to multiple disorders that involves recruiting the innate immune system to aid the body's healing and regenerative mechanism(s). In the case of West Nile Virus encephalitis and potentially COVID-19, the proposed intervention to stimulate the innate immune system may give the adaptive immune response the necessary time to develop, finish clearing the virus, and provide future immunity. Furthermore, we have found that GM-CSF-induced recruitment of the innate immune system is also able to reverse brain pathology, neuroinflammation and cognitive deficits in mouse models of Alzheimer's disease and Down syndrome, as well as improving cognition in normal aging and in human patients with cognitive deficits due to chemotherapy, both of which exhibit neuroinflammation. Others have shown that GM-CSF is an effective treatment for both bacterial and viral pneumonias, and their associated inflammation, in animals and that it has successfully treated pneumonia-associated Acute Respiratory Distress Syndrome in humans. These and other data strongly suggest that GM-CSF may be an effective treatment for many viral infections, including COVID-19.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA
| | - Timothy D. Boyd
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA
| | - Penny Clarke
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Victoria S. Pelak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO, 80045, USA
| | - Kenneth L. Tyler
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
302
|
Karimi-Galougahi M, Raad N, Mikaniki N. Anosmia and the Need for COVID-19 Screening during the Pandemic. Otolaryngol Head Neck Surg 2020; 163:96-97. [PMID: 32366195 DOI: 10.1177/0194599820925056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this commentary, we briefly summarize the available data from Iran and other countries on the sudden increase in anosmia, hyposmia, and hypogeusia that has coincided with the COVID-19 pandemic. Alarmingly, a high proportion of patients with severe COVID-19 had isolated anosmia as the sole initial presenting symptom, which is likely due to the direct neuropathic effect of the virus rather than being secondary to nasal congestion and obstruction. Since isolated anosmia is not yet considered a prerequisite for screening for COVID-19, we wish to raise awareness on the association of anosmia with COVID-19, urging international and national health authorities to consider this association in their efforts for early detection and isolation of infected individuals and for breaking the chain of transmission. We urge our colleagues who assess patients with new-onset anosmia to strictly adhere to the safety guidelines to reduce the risk of exposure and infection during this nascent pandemic.
Collapse
Affiliation(s)
- Mahboobeh Karimi-Galougahi
- Chronic Respiratory Disease Research Center, National Research Institute for Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Otolaryngology, Head and Neck Surgery, Masih Daneshvari Hospital, Tehran, Iran
| | - Nasim Raad
- Chronic Respiratory Disease Research Center, National Research Institute for Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Otolaryngology, Head and Neck Surgery, Masih Daneshvari Hospital, Tehran, Iran
| | - Narges Mikaniki
- Department of Otolaryngology, Iranshahr University of Medical Sciences, Sistan and Baluchestan, Iran
| |
Collapse
|
303
|
Li Z, Liu T, Yang N, Han D, Mi X, Li Y, Liu K, Vuylsteke A, Xiang H, Guo X. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front Med 2020; 14:533-541. [PMID: 32367431 PMCID: PMC7197033 DOI: 10.1007/s11684-020-0786-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), has caused a global pandemic in only 3 months. In addition to major respiratory distress, characteristic neurological manifestations are also described, indicating that SARS-CoV-2 may be an underestimated opportunistic pathogen of the brain. Based on previous studies of neuroinvasive human respiratory coronaviruses, it is proposed that after physical contact with the nasal mucosa, laryngopharynx, trachea, lower respiratory tract, alveoli epithelium, or gastrointestinal mucosa, SARS-CoV-2 can induce intrinsic and innate immune responses in the host involving increased cytokine release, tissue damage, and high neurosusceptibility to COVID-19, especially in the hypoxic conditions caused by lung injury. In some immune-compromised individuals, the virus may invade the brain through multiple routes, such as the vasculature and peripheral nerves. Therefore, in addition to drug treatments, such as pharmaceuticals and traditional Chinese medicine, non-pharmaceutical precautions, including facemasks and hand hygiene, are critically important.
Collapse
Affiliation(s)
- Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Alain Vuylsteke
- Department of Anaesthesia and Intensive Care, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Hongbing Xiang
- Department of Anesthesiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
304
|
Scoppettuolo P, Borrelli S, Naeije G. Neurological involvement in SARS-CoV-2 infection: A clinical systematic review. Brain Behav Immun Health 2020; 5:100094. [PMID: 33521692 PMCID: PMC7832728 DOI: 10.1016/j.bbih.2020.100094] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Reports of neurological involvement during Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection course are increasingly described. The aim of this review is to provide a clinical approach of SARS-CoV-2 neurological complications based on the direct or indirect (systemic/immune-mediated) role of the SARS-CoV-2 in their genesis. METHODS A review of the current literature has been carried out up to May 20th 2020 according to the PRISMA guidelines. All case series and reports of adult neurological manifestations associated to SARS-CoV-2 published in English were considered. Review and fundamental research studies on Coronaviruses neuroinvasive potential were analyzed to support pathogenic hypothesis and possible underlying mechanisms. Clinical patterns were subdivided into three groups according to putative underlying mechanisms: direct invasion of central or peripheral nervous system, systemic disorders leading to acute CNS injuries and post-infectious neurological syndromes (PINS). RESULTS Sixteen case series and 26 case reports for a total of 903 patients were identified presenting with neurological involvement during SARS-CoV-2 infection. Hypo/anosmia and dys/ageusia were found in 826 patients and mainly attributed to direct viral invasion. Cerebrovascular complications occurred in 51 patients and related to viral infection associated systemic inflammation. PINS were described in only 26 patients. A wide heterogeneity of these reports emerged concerning the extension of the clinical examination and ancillary exams performed. CONCLUSIONS Neurological complications of SARS-CoV-2 are mainly related to olfactory and gustatory sensory perception disorders through possible direct nervous system invasion while cerebrovascular disease and PINS are rare and due to distinct and indirect pathophysiological mechanisms.
Collapse
Affiliation(s)
| | - Serena Borrelli
- Department of Neurology, CHU-Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Gilles Naeije
- Department of Neurology, CHU-Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
305
|
Ogier M, Andéol G, Sagui E, Dal Bo G. How to detect and track chronic neurologic sequelae of COVID-19? Use of auditory brainstem responses and neuroimaging for long-term patient follow-up. Brain Behav Immun Health 2020; 5:100081. [PMID: 32427134 PMCID: PMC7227537 DOI: 10.1016/j.bbih.2020.100081] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023] Open
Abstract
This review intends to provide an overview of the current knowledge on neurologic sequelae of COVID-19 and their possible etiology, and, based on available data, proposes possible improvements in current medical care procedures. We conducted a thorough review of the scientific literature on neurologic manifestations of COVID-19, the neuroinvasive propensity of known coronaviruses (CoV) and their possible effects on brain structural and functional integrity. It appears that around one third of COVID-19 patients admitted to intensive care units (ICU) for respiratory difficulties exhibit neurologic symptoms. This may be due to progressive brain damage and dysfunction triggered by severe hypoxia and hypoxemia, heightened inflammation and SARS-CoV-2 dissemination into brain parenchyma, as suggested by current reports and analyses of previous CoV outbreaks. Viral invasion of the brain may particularly target and alter brainstem and thalamic functions and, consequently, result in sensorimotor dysfunctions and psychiatric disorders. Moreover, data collected from other structurally homologous CoV suggest that SARS-CoV-2 infection may lead to brain cell degeneration and demyelination similar to multiple sclerosis (MS). Hence, current evidence warrants further evaluation and long-term follow-up of possible neurologic sequelae in COVID-19 patients. It may be particularly relevant to evaluate brainstem integrity in recovered patients, as it is suspected that this cerebral area may particularly be dysfunctional following SARS-CoV-2 infection. Because CoV infection can potentially lead to chronic neuroinflammation and progressive demyelination, neuroimaging features and signs of MS may also be evaluated in the long term in recovered COVID-19 patients.
Collapse
Affiliation(s)
- Michael Ogier
- French Armed Forces Biomedical Research Institute, 1 place Valérie André, 91220, Brétigny sur Orge, France
| | - Guillaume Andéol
- French Armed Forces Biomedical Research Institute, 1 place Valérie André, 91220, Brétigny sur Orge, France
| | - Emmanuel Sagui
- French Armed Forces Biomedical Research Institute, 1 place Valérie André, 91220, Brétigny sur Orge, France
- European Hospital of Marseille, 6 rue Désirée Clary, 13003, Marseille, France
| | - Gregory Dal Bo
- French Armed Forces Biomedical Research Institute, 1 place Valérie André, 91220, Brétigny sur Orge, France
| |
Collapse
|
306
|
Morris M, Zohrabian VM. Neuroradiologists, Be Mindful of the Neuroinvasive Potential of COVID-19. AJNR Am J Neuroradiol 2020; 41:E37-E39. [PMID: 32354715 DOI: 10.3174/ajnr.a6551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- M Morris
- Department of Radiology and Biomedical ImagingYale School of MedicineNew Haven, Connecticut
| | - V M Zohrabian
- Department of Radiology and Biomedical ImagingYale School of MedicineNew Haven, Connecticut
| |
Collapse
|
307
|
Yashavantha Rao HC, Jayabaskaran C. The emergence of a novel coronavirus (SARS-CoV-2) disease and their neuroinvasive propensity may affect in COVID-19 patients. J Med Virol 2020; 92:786-790. [PMID: 32320066 PMCID: PMC7264535 DOI: 10.1002/jmv.25918] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022]
Abstract
An outbreak of a novel coronavirus (SARS‐CoV‐2) infection has recently emerged and rapidly spreading in humans causing a significant threat to international health and the economy. Rapid assessment and warning are crucial for an outbreak analysis in response to serious public health. SARS‐CoV‐2 shares highly homological sequences with SARS‐CoVs causing highly lethal pneumonia with respiratory distress and clinical symptoms similar to those reported for SARS‐CoV and MERS‐CoV infections. Notably, some COVID‐19 patients also expressed neurologic signs like nausea, headache, and vomiting. Several studies have reported that coronaviruses are not only causing respiratory illness but also invade the central nervous system through a synapse‐connected route. SARS‐CoV infections are reported in both patients and experimental animals' brains. Interestingly, some COVID‐19 patients have shown the presence of SARS‐CoV‐2 virus in their cerebrospinal fluid. Considering the similarities between SARS‐CoV and SARS‐CoV‐2 in various aspects, it remains to clarify whether the potent invasion of SARS‐CoV‐2 may affect in COVID‐19 patients. All these indicate that more detailed criteria are needed for the treatment and the prevention of SARS‐CoV‐2 infected patients. In the absence of potential interventions for COVID‐19, there is an urgent need for an alternative strategy to control the spread of this disease.
Collapse
Affiliation(s)
- H C Yashavantha Rao
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Chelliah Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
308
|
Kotfis K, Williams Roberson S, Wilson JE, Dabrowski W, Pun BT, Ely EW. COVID-19: ICU delirium management during SARS-CoV-2 pandemic. Crit Care 2020; 24:176. [PMID: 32345343 PMCID: PMC7186945 DOI: 10.1186/s13054-020-02882-x] [Citation(s) in RCA: 312] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
The novel coronavirus, SARS-CoV-2-causing Coronavirus Disease 19 (COVID-19), emerged as a public health threat in December 2019 and was declared a pandemic by the World Health Organization in March 2020. Delirium, a dangerous untoward prognostic development, serves as a barometer of systemic injury in critical illness. The early reports of 25% encephalopathy from China are likely a gross underestimation, which we know occurs whenever delirium is not monitored with a valid tool. Indeed, patients with COVID-19 are at accelerated risk for delirium due to at least seven factors including (1) direct central nervous system (CNS) invasion, (2) induction of CNS inflammatory mediators, (3) secondary effect of other organ system failure, (4) effect of sedative strategies, (5) prolonged mechanical ventilation time, (6) immobilization, and (7) other needed but unfortunate environmental factors including social isolation and quarantine without family. Given early insights into the pathobiology of the virus, as well as the emerging interventions utilized to treat the critically ill patients, delirium prevention and management will prove exceedingly challenging, especially in the intensive care unit (ICU). The main focus during the COVID-19 pandemic lies within organizational issues, i.e., lack of ventilators, shortage of personal protection equipment, resource allocation, prioritization of limited mechanical ventilation options, and end-of-life care. However, the standard of care for ICU patients, including delirium management, must remain the highest quality possible with an eye towards long-term survival and minimization of issues related to post-intensive care syndrome (PICS). This article discusses how ICU professionals (e.g., physicians, nurses, physiotherapists, pharmacologists) can use our knowledge and resources to limit the burden of delirium on patients by reducing modifiable risk factors despite the imposed heavy workload and difficult clinical challenges posed by the pandemic.
Collapse
Affiliation(s)
- Katarzyna Kotfis
- Department Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Shawniqua Williams Roberson
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Bioengineering, Vanderbilt University, Nashville, TN, USA
| | - Jo Ellen Wilson
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatric Research, Education and Clinical Center (GRECC), Tennessee Valley Veterans Affairs Healthcare System, Nashville, TN, USA
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| | - Brenda T Pun
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - E Wesley Ely
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatric Research, Education and Clinical Center (GRECC), Tennessee Valley Veterans Affairs Healthcare System, Nashville, TN, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
309
|
Papa SM, Brundin P, Fung VSC, Kang UJ, Burn DJ, Colosimo C, Chiang HL, Alcalay RN, Trenkwalder C. Impact of the COVID-19 Pandemic on Parkinson's Disease and Movement Disorders. Mov Disord Clin Pract 2020; 7:357-360. [PMID: 32373651 DOI: 10.1002/mdc3.12953] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Stella M Papa
- Yerkes National Primate Research Center, Department of Neurology Emory University School of Medicine Atlanta Georgia USA
| | - Patrik Brundin
- Van Andel Institute, Center for Neurodegenerative Science Grand Rapids Michigan USA
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology Westmead Hospital and Sydney Medical School, University of Sydney Sydney NSW Australia
| | - Un Jung Kang
- Department of Neurology New York University Grossman School of Medicine New York New York USA
| | - David J Burn
- Department of Medical Sciences Newcastle University Medical School Newcastle United Kingdom
| | - Carlo Colosimo
- Department of Neurology Santa Maria University Hospital Terni Italy
| | - Han-Lin Chiang
- Department of Neurology Neurological Institute, Taipei Veterans General Hospital Taipei Taiwan
| | - Roy N Alcalay
- Department of Neurology Columbia University Irving Medical Center New York New York USA
| | - Claudia Trenkwalder
- Paracelsus-Elena Klinik, Kassel, Department of Neurosurgery University Medical Center Goettingen Goettingen Germany
| | | |
Collapse
|
310
|
Papa SM, Brundin P, Fung VSC, Kang UJ, Burn DJ, Colosimo C, Chiang HL, Alcalay RN, Trenkwalder C. Impact of the COVID-19 Pandemic on Parkinson's Disease and Movement Disorders. Mov Disord 2020; 35:711-715. [PMID: 32250460 DOI: 10.1002/mds.28067] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Stella M Papa
- Yerkes National Primate Research Center, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Patrik Brundin
- Van Andel Institute, Center for Neurodegenerative Science, Grand Rapids, Michigan, USA
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Un Jung Kang
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, USA
| | - David J Burn
- Department of Medical Sciences, Newcastle University Medical School, Newcastle, United Kingdom
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | - Han-Lin Chiang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Claudia Trenkwalder
- Paracelsus-Elena Klinik, Kassel, Department of Neurosurgery, University Medical Center, Goettingen, Goettingen, Germany
| | | |
Collapse
|
311
|
Li Y, Bai W, Hashikawa T. Response to Commentary on "The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients". J Med Virol 2020; 92:707-709. [PMID: 32246783 PMCID: PMC7228344 DOI: 10.1002/jmv.25824] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
In a recent review, we have suggested a neuroinvasive potential of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and its possible role in the causation of acute respiratory failure of coronavirus disease 2019 (COVID‐19) patients (J Med Viol doi: 10.1002/jmv.25728), based upon the clinical and experimental data available on the past SARS‐CoV‐1 and the recent SARS‐CoV‐2 pandemic. In this article, we provide new evidence recently reported regarding the neurotropic potential of SARS‐CoV‐2 and respond to several comments on our previously published article. In addition, we also discuss the peculiar manifestations of respiratory failure in COVID‐19 patients and the possible involvement of nervous system. New evidence has been available for the neurotropism of SARS‐CoV‐2. Muscular injuries and reduced sensitivity of nerves may play a role in the respiratory failure. Potential neuroinvasion of SARS‐CoV‐2 indicates a possible involvement of central factors.
Collapse
Affiliation(s)
- Yan‐Chao Li
- Department of Histology and Embryology, College of Basic Medical SciencesNorman Bethune College of Medicine, Jilin UniversityChangchunJilinChina
| | - Wan‐Zhu Bai
- Institute of Acupuncture and MoxibustionChina Academy of Chinese Medical ScienceBeijingChina
| | - Tsutomu Hashikawa
- Neural Architecture, Advanced Technology Development Group, RIKEN Brain Science InstituteSaitamaJapan
| |
Collapse
|
312
|
Kim J, Yang YL, Jeong Y, Jang YS. Middle East Respiratory Syndrome-Coronavirus Infection into Established hDPP4-Transgenic Mice Accelerates Lung Damage Via Activation of the Pro-Inflammatory Response and Pulmonary Fibrosis. J Microbiol Biotechnol 2020; 30:427-438. [PMID: 31838832 PMCID: PMC9728294 DOI: 10.4014/jmb.1910.10055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) infects the lower respiratory airway of humans, leading to severe acute respiratory failure. Unlike human dipeptidyl peptidase 4 (hDPP4), a receptor for MERS-CoV, mouse DPP4 (mDPP4) failed to support MERS-CoV infection. Consequently, diverse transgenic mouse models expressing hDPP4 have been developed using diverse methods, although some models show no mortality and/or only transient and mild-to-moderate clinical signs following MERS-CoV infection. Additionally, overexpressed hDPP4 is associated with neurological complications and breeding difficulties in some transgenic mice, resulting in impeding further studies. Here, we generated stable hDPP4-transgenic mice that were sufficiently susceptible to MERS-CoV infection. The transgenic mice showed weight loss, decreased pulmonary function, and increased mortality with minimal perturbation of overexpressed hDPP4 after MERS-CoV infection. In addition, we observed histopathological signs indicative of progressive pulmonary fibrosis, including thickened alveolar septa, infiltration of inflammatory monocytes, and macrophage polarization as well as elevated expression of profibrotic molecules and acute inflammatory response in the lung of MERS-CoV-infected hDPP4-transgenic mice. Collectively, we suggest that this hDPP4-transgenic mouse is useful in understanding the pathogenesis of MERS-CoV infection and for antiviral research and vaccine development against the virus.
Collapse
Affiliation(s)
- Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ye Lin Yang
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yongsu Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea,Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea,Corresponding author Phone: +82-63-270-3343 Fax: +82-63-270-4312 E-mail:
| |
Collapse
|
313
|
Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, Montgomery SA, Hogg A, Babusis D, Clarke MO, Spahn JE, Bauer L, Sellers S, Porter D, Feng JY, Cihlar T, Jordan R, Denison MR, Baric RS. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020. [PMID: 31924756 DOI: 10.1038/s41467-019-13940-6.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is the causative agent of a severe respiratory disease associated with more than 2468 human infections and over 851 deaths in 27 countries since 2012. There are no approved treatments for MERS-CoV infection although a combination of lopinavir, ritonavir and interferon beta (LPV/RTV-IFNb) is currently being evaluated in humans in the Kingdom of Saudi Arabia. Here, we show that remdesivir (RDV) and IFNb have superior antiviral activity to LPV and RTV in vitro. In mice, both prophylactic and therapeutic RDV improve pulmonary function and reduce lung viral loads and severe lung pathology. In contrast, prophylactic LPV/RTV-IFNb slightly reduces viral loads without impacting other disease parameters. Therapeutic LPV/RTV-IFNb improves pulmonary function but does not reduce virus replication or severe lung pathology. Thus, we provide in vivo evidence of the potential for RDV to treat MERS-CoV infections.
Collapse
Affiliation(s)
- Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John Won
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ariane J Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, CA, USA
| | | | | | - Mark R Denison
- Department of Pediatrics-Infectious Diseases, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
314
|
Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, Montgomery SA, Hogg A, Babusis D, Clarke MO, Spahn JE, Bauer L, Sellers S, Porter D, Feng JY, Cihlar T, Jordan R, Denison MR, Baric RS. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11:222. [PMID: 31924756 PMCID: PMC6954302 DOI: 10.1038/s41467-019-13940-6] [Citation(s) in RCA: 1136] [Impact Index Per Article: 227.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/07/2019] [Indexed: 01/13/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is the causative agent of a severe respiratory disease associated with more than 2468 human infections and over 851 deaths in 27 countries since 2012. There are no approved treatments for MERS-CoV infection although a combination of lopinavir, ritonavir and interferon beta (LPV/RTV-IFNb) is currently being evaluated in humans in the Kingdom of Saudi Arabia. Here, we show that remdesivir (RDV) and IFNb have superior antiviral activity to LPV and RTV in vitro. In mice, both prophylactic and therapeutic RDV improve pulmonary function and reduce lung viral loads and severe lung pathology. In contrast, prophylactic LPV/RTV-IFNb slightly reduces viral loads without impacting other disease parameters. Therapeutic LPV/RTV-IFNb improves pulmonary function but does not reduce virus replication or severe lung pathology. Thus, we provide in vivo evidence of the potential for RDV to treat MERS-CoV infections.
Collapse
Affiliation(s)
- Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John Won
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ariane J Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, CA, USA
| | | | | | - Mark R Denison
- Department of Pediatrics-Infectious Diseases, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
315
|
Abstract
Emergent coronaviruses such as MERS-CoV and SARS-CoV can cause significant morbidity and mortality in infected individuals. Lung infection is a common clinical feature and contributes to disease severity as well as viral transmission. Animal models are often required to study viral infections and therapies, especially during an initial outbreak. Histopathology studies allow for identification of lesions and affected cell types to better understand viral pathogenesis and clarify effective therapies. Use of immunostaining allows detection of presumed viral receptors and viral tropism for cells can be evaluated to correlate with lesions. In the lung, lesions and immunostaining can be qualitatively described to define the cell types, microanatomic location, and type of changes seen. These features are important and necessary, but this approach can have limitations when comparing treatment groups. Semiquantitative and quantitative tissue scores are more rigorous as these provide the ability to statistically compare groups and increase the reproducibility and rigor of the study. This review describes principles, approaches, and resources that can be useful to evaluate coronavirus lung infection, focusing on MER-CoV infection as the principal example.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
316
|
Liang Z. COVID-19’s Pathways to Human Central Nervous System and Relevant Drug Treatment. E3S WEB OF CONFERENCES 2020; 218:03009. [DOI: 10.1051/e3sconf/202021803009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
COVID-19, also known as Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV2), is a severe disease. It can cause different types of symptoms including shortness of breath, fever, cough, fatigue and sore throat. Older adults and people who have severe underlying medical conditions like heart or lung disease or diabetes seem to be at higher risk to develop more complex complications due to the infection. Until August 6th, 2020, COVID-19 has caused 700, 000 deaths across the Earth; however, the actual death number could be higher than 700,000. COVID-19’s origin is still remained unknown, but the speculation is targeted to bats or pangolins. Although COVID-19 is a disease target human’s respiratory system, based on the research and clinical cases of COVID-19, evidence shows that COVID-19 can also invade human’s central nervous system (CNS).
Collapse
|
317
|
|
318
|
Hao X, Lv Q, Li F, Xu Y, Gao H. The characteristics of hDPP4 transgenic mice subjected to aerosol MERS coronavirus infection via an animal nose-only exposure device. Animal Model Exp Med 2019; 2:269-281. [PMID: 31942559 PMCID: PMC6930991 DOI: 10.1002/ame2.12088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/12/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Middle East respiratory syndrome coronavirus (MERS-CoV), which is not fully understood in regard to certain transmission routes and pathogenesis and lacks specific therapeutics and vaccines, poses a global threat to public health. METHODS To simulate the clinical aerosol transmission route, hDPP4 transgenic mice were infected with MERS-CoV by an animal nose-only exposure device and compared with instillation-inoculated mice. The challenged mice were observed for 14 consecutive days and necropsied on days 3, 5, 7, and 9 to analyze viral load, histopathology, viral antigen distribution, and cytokines in tissues. RESULTS MERS-CoV aerosol-infected mice with an incubation period of 5-7 days showed weight loss on days 7-11, obvious lung lesions on day 7, high viral loads in the lungs on days 3-9 and in the brain on days 7-9, and 60% survival. MERS-CoV instillation-inoculated mice exhibited clinical signs on day 1, obvious lung lesions on days 3-5, continuous weight loss, 0% survival by day 5, and high viral loads in the lungs and brain on days 3-5. Viral antigen and high levels of proinflammatory cytokines and chemokines were detected in the aerosol and instillation groups. Disease, lung lesion, and viral replication progressions were slower in the MERS-CoV aerosol-infected mice than in the MERS-CoV instillation-inoculated mice. CONCLUSION hDPP4 transgenic mice were successfully infected with MERS-CoV aerosols via an animal nose-only exposure device, and aerosol- and instillation-infected mice simulated the clinical symptoms of moderate diffuse interstitial pneumonia. However, the transgenic mice exposed to aerosol MERS-CoV developed disease and lung pathology progressions that more closely resembled those observed in humans.
Collapse
Affiliation(s)
- Xin‐yan Hao
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Qi Lv
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Feng‐di Li
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Yan‐feng Xu
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Hong Gao
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| |
Collapse
|
319
|
Engineered amphiphilic peptides enable delivery of proteins and CRISPR-associated nucleases to airway epithelia. Nat Commun 2019; 10:4906. [PMID: 31659165 PMCID: PMC6817825 DOI: 10.1038/s41467-019-12922-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
The delivery of biologic cargoes to airway epithelial cells is challenging due to the formidable barriers imposed by its specialized and differentiated cells. Among cargoes, recombinant proteins offer therapeutic promise but the lack of effective delivery methods limits their development. Here, we achieve protein and SpCas9 or AsCas12a ribonucleoprotein (RNP) delivery to cultured human well-differentiated airway epithelial cells and mouse lungs with engineered amphiphilic peptides. These shuttle peptides, non-covalently combined with GFP protein or CRISPR-associated nuclease (Cas) RNP, allow rapid entry into cultured human ciliated and non-ciliated epithelial cells and mouse airway epithelia. Instillation of shuttle peptides combined with SpCas9 or AsCas12a RNP achieves editing of loxP sites in airway epithelia of ROSAmT/mG mice. We observe no evidence of short-term toxicity with a widespread distribution restricted to the respiratory tract. This peptide-based technology advances potential therapeutic avenues for protein and Cas RNP delivery to refractory airway epithelial cells. Delivering biological cargo to airway epithelial cells is very challenging. Here, the authors use engineered amphiphilic peptides to shuttle proteins and CRISPR RNPs into airway cells in vivo.
Collapse
|
320
|
Generation of a Nebulizable CDR-Modified MERS-CoV Neutralizing Human Antibody. Int J Mol Sci 2019; 20:ijms20205073. [PMID: 31614869 PMCID: PMC6829326 DOI: 10.3390/ijms20205073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) induces severe aggravating respiratory failure in infected patients, frequently resulting in mechanical ventilation. As limited therapeutic antibody is accumulated in lung tissue following systemic administration, inhalation is newly recognized as an alternative, possibly better, route of therapeutic antibody for pulmonary diseases. The nebulization process, however, generates diverse physiological stresses, and thus, the therapeutic antibody must be resistant to these stresses, remain stable, and form minimal aggregates. We first isolated a MERS-CoV neutralizing antibody that is reactive to the receptor-binding domain (RBD) of spike (S) glycoprotein. To increase stability, we introduced mutations into the complementarity-determining regions (CDRs) of the antibody. In the HCDRs (excluding HCDR3) in this clone, two hydrophobic residues were replaced with Glu, two residues were replaced with Asp, and four residues were replaced with positively charged amino acids. In LCDRs, only two Leu residues were replaced with Val. These modifications successfully generated a clone with significantly greater stability and equivalent reactivity and neutralizing activity following nebulization compared to the original clone. In summary, we generated a MERS-CoV neutralizing human antibody that is reactive to recombinant MERS-CoV S RBD protein for delivery via a pulmonary route by introducing stabilizing mutations into five CDRs.
Collapse
|
321
|
Leist SR, Cockrell AS. Genetically Engineering a Susceptible Mouse Model for MERS-CoV-Induced Acute Respiratory Distress Syndrome. Methods Mol Biol 2019; 2099:137-159. [PMID: 31883094 PMCID: PMC7123801 DOI: 10.1007/978-1-0716-0211-9_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since 2012, monthly cases of Middle East respiratory syndrome coronavirus (MERS-CoV) continue to cause severe respiratory disease that is fatal in ~35% of diagnosed individuals. The ongoing threat to global public health and the need for novel therapeutic countermeasures have driven the development of animal models that can reproducibly replicate the pathology associated with MERS-CoV in human infections. The inability of MERS-CoV to replicate in the respiratory tracts of mice, hamsters, and ferrets stymied initial attempts to generate small animal models. Identification of human dipeptidyl peptidase IV (hDPP4) as the receptor for MERS-CoV infection opened the door for genetic engineering of mice. Precise molecular engineering of mouse DPP4 (mDPP4) with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology maintained inherent expression profiles, and limited MERS-CoV susceptibility to tissues that naturally express mDPP4, notably the lower respiratory tract wherein MERS-CoV elicits severe pulmonary pathology. Here, we describe the generation of the 288-330+/+ MERS-CoV mouse model in which mice were made susceptible to MERS-CoV by modifying two amino acids on mDPP4 (A288 and T330), and the use of adaptive evolution to generate novel MERS-CoV isolates that cause fatal respiratory disease. The 288-330+/+ mice are currently being used to evaluate novel drug, antibody, and vaccine therapeutic countermeasures for MERS-CoV. The chapter starts with a historical perspective on the emergence of MERS-CoV and animal models evaluated for MERS-CoV pathogenesis, and then outlines the development of the 288-330+/+ mouse model, assays for assessing a MERS-CoV pulmonary infection in a mouse model, and describes some of the challenges associated with using genetically engineered mice.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
322
|
Xu J, Jia W, Wang P, Zhang S, Shi X, Wang X, Zhang L. Antibodies and vaccines against Middle East respiratory syndrome coronavirus. Emerg Microbes Infect 2019; 8:841-856. [PMID: 31169078 PMCID: PMC6567157 DOI: 10.1080/22221751.2019.1624482] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) has spread through 27 countries and infected more than 2,200 people since its first outbreak in Saudi Arabia in 2012. The high fatality rate (35.4%) of this novel coronavirus and its persistent wide spread infectiousness in animal reservoirs have generated tremendous global public health concern. However, no licensed therapeutic agents or vaccines against MERS-CoV are currently available and only a limited few have entered clinical trials. Among all the potential targets of MERS-CoV, the spike glycoprotein (S) has been the most well-studied due to its critical role in mediating viral entry and in inducing a protective antibody response in infected individuals. The most notable studies include the recent discoveries of monoclonal antibodies and development of candidate vaccines against the S glycoprotein. Structural characterization of MERS-CoV S protein bound with these monoclonal antibodies has provided insights into the mechanisms of humoral immune responses against MERS-CoV infection. The current review aims to highlight these developments and discuss possible hurdles and strategies to translate these discoveries into ultimate medical interventions against MERS-CoV infection.
Collapse
Affiliation(s)
- Jiuyang Xu
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| | - Wenxu Jia
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| | - Pengfei Wang
- b Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy , Tsinghua University School of Life Sciences , Beijing , People's Republic of China
| | - Senyan Zhang
- b Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy , Tsinghua University School of Life Sciences , Beijing , People's Republic of China
| | - Xuanling Shi
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| | - Xinquan Wang
- b Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy , Tsinghua University School of Life Sciences , Beijing , People's Republic of China
| | - Linqi Zhang
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| |
Collapse
|
323
|
Widjaja I, Wang C, van Haperen R, Gutiérrez-Álvarez J, van Dieren B, Okba NMA, Raj VS, Li W, Fernandez-Delgado R, Grosveld F, van Kuppeveld FJM, Haagmans BL, Enjuanes L, Drabek D, Bosch BJ. Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein. Emerg Microbes Infect 2019; 8:516-530. [PMID: 30938227 PMCID: PMC6455120 DOI: 10.1080/22221751.2019.1597644] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Middle-East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus that causes severe and often fatal respiratory disease in humans. Efforts to develop antibody-based therapies have focused on neutralizing antibodies that target the receptor binding domain of the viral spike protein thereby blocking receptor binding. Here, we developed a set of human monoclonal antibodies that target functionally distinct domains of the MERS-CoV spike protein. These antibodies belong to six distinct epitope groups and interfere with the three critical entry functions of the MERS-CoV spike protein: sialic acid binding, receptor binding and membrane fusion. Passive immunization with potently as well as with poorly neutralizing antibodies protected mice from lethal MERS-CoV challenge. Collectively, these antibodies offer new ways to gain humoral protection in humans against the emerging MERS-CoV by targeting different spike protein epitopes and functions.
Collapse
Affiliation(s)
- Ivy Widjaja
- a Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine , Utrecht University , Utrecht , Netherlands
| | - Chunyan Wang
- a Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine , Utrecht University , Utrecht , Netherlands
| | - Rien van Haperen
- b Department of Cell Biology , Erasmus MC , Rotterdam , Netherlands.,c Harbour Antibodies B.V. , Rotterdam , Netherlands
| | - Javier Gutiérrez-Álvarez
- d Department of Molecular and Cell Biology , National Center for Biotechnology-Spanish National Research Council (CNB-CSIC) , Madrid , Spain
| | - Brenda van Dieren
- a Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine , Utrecht University , Utrecht , Netherlands
| | - Nisreen M A Okba
- e Department of Viroscience , Erasmus Medical Center , Rotterdam , Netherlands
| | - V Stalin Raj
- e Department of Viroscience , Erasmus Medical Center , Rotterdam , Netherlands
| | - Wentao Li
- a Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine , Utrecht University , Utrecht , Netherlands
| | - Raul Fernandez-Delgado
- d Department of Molecular and Cell Biology , National Center for Biotechnology-Spanish National Research Council (CNB-CSIC) , Madrid , Spain
| | - Frank Grosveld
- b Department of Cell Biology , Erasmus MC , Rotterdam , Netherlands.,c Harbour Antibodies B.V. , Rotterdam , Netherlands
| | - Frank J M van Kuppeveld
- a Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine , Utrecht University , Utrecht , Netherlands
| | - Bart L Haagmans
- e Department of Viroscience , Erasmus Medical Center , Rotterdam , Netherlands
| | - Luis Enjuanes
- d Department of Molecular and Cell Biology , National Center for Biotechnology-Spanish National Research Council (CNB-CSIC) , Madrid , Spain
| | - Dubravka Drabek
- b Department of Cell Biology , Erasmus MC , Rotterdam , Netherlands.,c Harbour Antibodies B.V. , Rotterdam , Netherlands
| | - Berend-Jan Bosch
- a Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine , Utrecht University , Utrecht , Netherlands
| |
Collapse
|
324
|
Widagdo W, Sooksawasdi Na Ayudhya S, Hundie GB, Haagmans BL. Host Determinants of MERS-CoV Transmission and Pathogenesis. Viruses 2019; 11:E280. [PMID: 30893947 PMCID: PMC6466079 DOI: 10.3390/v11030280] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/01/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen that causes respiratory infection in humans, ranging from asymptomatic to severe pneumonia. In dromedary camels, the virus only causes a mild infection but it spreads efficiently between animals. Differences in the behavior of the virus observed between individuals, as well as between humans and dromedary camels, highlight the role of host factors in MERS-CoV pathogenesis and transmission. One of these host factors, the MERS-CoV receptor dipeptidyl peptidase-4 (DPP4), may be a critical determinant because it is variably expressed in MERS-CoV-susceptible species as well as in humans. This could partially explain inter- and intraspecies differences in the tropism, pathogenesis, and transmissibility of MERS-CoV. In this review, we explore the role of DPP4 and other host factors in MERS-CoV transmission and pathogenesis-such as sialic acids, host proteases, and interferons. Further characterization of these host determinants may potentially offer novel insights to develop intervention strategies to tackle ongoing outbreaks.
Collapse
Affiliation(s)
- W Widagdo
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | - Gadissa B Hundie
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
325
|
Abstract
Introduction: The highly pathogenic coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are lethal zoonotic viruses that have emerged into human populations these past 15 years. These coronaviruses are associated with novel respiratory syndromes that spread from person-to-person via close contact, resulting in high morbidity and mortality caused by the progression to Acute Respiratory Distress Syndrome (ARDS). Areas covered: The risks of re-emergence of SARS-CoV from bat reservoir hosts, the persistence of MERS-CoV circulation, and the potential for future emergence of novel coronaviruses indicate antiviral drug discovery will require activity against multiple coronaviruses. In this review, approaches that antagonize viral nonstructural proteins, neutralize structural proteins, or modulate essential host elements of viral infection with varying levels of efficacy in models of highly pathogenic coronavirus disease are discussed. Expert opinion: Treatment of SARS and MERS in outbreak settings has focused on therapeutics with general antiviral activity and good safety profiles rather than efficacy data provided by cellular, rodent, or nonhuman primate models of highly pathogenic coronavirus infection. Based on lessons learned from SARS and MERS outbreaks, lack of drugs capable of pan-coronavirus antiviral activity increases the vulnerability of public health systems to a highly pathogenic coronavirus pandemic.
Collapse
Affiliation(s)
- Allison L Totura
- a Division of Molecular and Translational Sciences , United States Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | - Sina Bavari
- a Division of Molecular and Translational Sciences , United States Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
326
|
Acute Respiratory Infection in Human Dipeptidyl Peptidase 4-Transgenic Mice Infected with Middle East Respiratory Syndrome Coronavirus. J Virol 2019; 93:JVI.01818-18. [PMID: 30626685 PMCID: PMC6401458 DOI: 10.1128/jvi.01818-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) infections are endemic in the Middle East and a threat to public health worldwide. Rodents are not susceptible to the virus because they do not express functional receptors; therefore, we generated a new animal model of MERS-CoV infection based on transgenic mice expressing human DPP4 (hDPP4). The pattern of hDPP4 expression in this model was similar to that in human tissues (except lymphoid tissue). In addition, MERS-CoV was limited to the respiratory tract. Here, we focused on host factors involved in immunopathology in MERS-CoV infection and clarified differences in antiviral immune responses between young and adult transgenic mice. This new small-animal model could contribute to more in-depth study of the pathology of MERS-CoV infection and aid development of suitable treatments. Middle East respiratory syndrome coronavirus (MERS-CoV) infection can manifest as a mild illness, acute respiratory distress, organ failure, or death. Several animal models have been established to study disease pathogenesis and to develop vaccines and therapeutic agents. Here, we developed transgenic (Tg) mice on a C57BL/6 background; these mice expressed human CD26/dipeptidyl peptidase 4 (hDPP4), a functional receptor for MERS-CoV, under the control of an endogenous hDPP4 promoter. We then characterized this mouse model of MERS-CoV. The expression profile of hDPP4 in these mice was almost equivalent to that in human tissues, including kidney and lung; however, hDPP4 was overexpressed in murine CD3-positive cells within peripheral blood and lymphoid tissues. Intranasal inoculation of young and adult Tg mice with MERS-CoV led to infection of the lower respiratory tract and pathological evidence of acute multifocal interstitial pneumonia within 7 days, with only transient loss of body weight. However, the immunopathology in young and adult Tg mice was different. On day 5 or 7 postinoculation, lungs of adult Tg mice contained higher levels of proinflammatory cytokines and chemokines associated with migration of macrophages. These results suggest that the immunopathology of MERS-CoV infection in the Tg mouse is age dependent. The mouse model described here will increase our understanding of disease pathogenesis and host mediators that protect against MERS-CoV infection. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) infections are endemic in the Middle East and a threat to public health worldwide. Rodents are not susceptible to the virus because they do not express functional receptors; therefore, we generated a new animal model of MERS-CoV infection based on transgenic mice expressing human DPP4 (hDPP4). The pattern of hDPP4 expression in this model was similar to that in human tissues (except lymphoid tissue). In addition, MERS-CoV was limited to the respiratory tract. Here, we focused on host factors involved in immunopathology in MERS-CoV infection and clarified differences in antiviral immune responses between young and adult transgenic mice. This new small-animal model could contribute to more in-depth study of the pathology of MERS-CoV infection and aid development of suitable treatments.
Collapse
|
327
|
Abstract
Half a decade after the contentious "gain-of-function" (GOF) debate of 2012 that followed experimentation showing that highly pathogenic avian influenza virus could become mammalian transmissible, it is possible to reflect on the arguments for and against this type of research. In this essay we argue that GOF-type experiments have already produced important information not available from any other source while also providing information on pathogenesis and the requirements for optimizing strains for vaccine production. We analyze the moral arguments against GOF and find them less compelling for a variety of reasons ranging from the uncertainty of risk-benefit analysis to the reduced likelihood of accidents given the enhanced biosafety and biosecurity protocols currently in place. In our view the most important consequence of the GOF debate is that it brought renewed attention to biosafety protocols and ushered innovation in answering the relevant biological questions with greater safety. We conclude that GOF experiments should go forward provided that necessary biosafety and biosecurity conditions are in place.
Collapse
|
328
|
Fan C, Wu X, Liu Q, Li Q, Liu S, Lu J, Yang Y, Cao Y, Huang W, Liang C, Ying T, Jiang S, Wang Y. A Human DPP4-Knockin Mouse's Susceptibility to Infection by Authentic and Pseudotyped MERS-CoV. Viruses 2018; 10:v10090448. [PMID: 30142928 PMCID: PMC6164841 DOI: 10.3390/v10090448] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 01/01/2023] Open
Abstract
Infection by the Middle East respiratory syndrome coronavirus (MERS-CoV) causes respiratory illness and has a high mortality rate (~35%). The requirement for the virus to be manipulated in a biosafety level three (BSL-3) facility has impeded development of urgently-needed antiviral agents. Here, we established anovel mouse model by inserting human dipeptidyl peptidase 4 (hDPP4) into the Rosa26 locus using CRISPR/Cas9, resulting in global expression of the transgene in a genetically stable mouse line. The mice were highly susceptible to infection by MERS-CoV clinical strain hCoV-EMC, which induced severe diffuse pulmonary disease in the animals, and could also be infected by an optimized pseudotyped MERS-CoV. Administration of the neutralizing monoclonal antibodies, H111-1 and m336, as well as a fusion inhibitor peptide, HR2P-M2, protected mice from challenge with authentic and pseudotyped MERS-CoV. These results confirmed that the hDPP4-knockin mouse is a novel model for studies of MERS-CoV pathogenesis and anti-MERS-CoV antiviral agents in BSL-3 and BSL-2facilities, respectively.
Collapse
Affiliation(s)
- Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Xi Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Qiang Liu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Qianqian Li
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Susu Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Jianjun Lu
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176, China.
| | - Yanwei Yang
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176, China.
| | - Yuan Cao
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Chunnan Liang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
329
|
Stalin Raj V, Okba NMA, Gutierrez-Alvarez J, Drabek D, van Dieren B, Widagdo W, Lamers MM, Widjaja I, Fernandez-Delgado R, Sola I, Bensaid A, Koopmans MP, Segalés J, Osterhaus ADME, Bosch BJ, Enjuanes L, Haagmans BL. Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection. SCIENCE ADVANCES 2018; 4:eaas9667. [PMID: 30101189 PMCID: PMC6082650 DOI: 10.1126/sciadv.aas9667] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/01/2018] [Indexed: 05/08/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) continues to cause outbreaks in humans as a result of spillover events from dromedaries. In contrast to humans, MERS-CoV-exposed dromedaries develop only very mild infections and exceptionally potent virus-neutralizing antibody responses. These strong antibody responses may be caused by affinity maturation as a result of repeated exposure to the virus or by the fact that dromedaries-apart from conventional antibodies-have relatively unique, heavy chain-only antibodies (HCAbs). These HCAbs are devoid of light chains and have long complementarity-determining regions with unique epitope binding properties, allowing them to recognize and bind with high affinity to epitopes not recognized by conventional antibodies. Through direct cloning and expression of the variable heavy chains (VHHs) of HCAbs from the bone marrow of MERS-CoV-infected dromedaries, we identified several MERS-CoV-specific VHHs or nanobodies. In vitro, these VHHs efficiently blocked virus entry at picomolar concentrations. The selected VHHs bind with exceptionally high affinity to the receptor binding domain of the viral spike protein. Furthermore, camel/human chimeric HCAbs-composed of the camel VHH linked to a human Fc domain lacking the CH1 exon-had an extended half-life in the serum and protected mice against a lethal MERS-CoV challenge. HCAbs represent a promising alternative strategy to develop novel interventions not only for MERS-CoV but also for other emerging pathogens.
Collapse
Affiliation(s)
- V. Stalin Raj
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nisreen M. A. Okba
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Javier Gutierrez-Alvarez
- Department of Molecular and Cell Biology, National Center for Biotechnology–Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Dubravka Drabek
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Brenda van Dieren
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - W. Widagdo
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Mart M. Lamers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ivy Widjaja
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Raul Fernandez-Delgado
- Department of Molecular and Cell Biology, National Center for Biotechnology–Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center for Biotechnology–Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Albert Bensaid
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal [CReSA, IRTA–Universitat Autònoma de Barcelona (UAB)], Campus de la UAB, 08193 Bellaterra, Spain
| | - Marion P. Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Joaquim Segalés
- UAB, CReSA (IRTA-UAB), Campus de la UAB, 08193 Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra, Spain
| | - Albert D. M. E. Osterhaus
- Artemis One Health, Utrecht, Netherlands
- Center for Infection Medicine and Zoonoses Research, University of Veterinary Medicine, Hannover, Germany
| | - Berend Jan Bosch
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center for Biotechnology–Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
330
|
Cockrell AS, Leist SR, Douglas MG, Baric RS. Modeling pathogenesis of emergent and pre-emergent human coronaviruses in mice. Mamm Genome 2018; 29:367-383. [PMID: 30043100 PMCID: PMC6132729 DOI: 10.1007/s00335-018-9760-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022]
Abstract
The emergence of highly pathogenic human coronaviruses (hCoVs) in the last two decades has illuminated their potential to cause high morbidity and mortality in human populations and disrupt global economies. Global pandemic concerns stem from their high mortality rates, capacity for human-to-human spread by respiratory transmission, and complete lack of approved therapeutic countermeasures. Limiting disease may require the development of virus-directed and host-directed therapeutic strategies due to the acute etiology of hCoV infections. Therefore, understanding how hCoV–host interactions cause pathogenic outcomes relies upon mammalian models that closely recapitulate the pathogenesis of hCoVs in humans. Pragmatism has largely been the driving force underpinning mice as highly effective mammalian models for elucidating hCoV–host interactions that govern pathogenesis. Notably, tractable mouse genetics combined with hCoV reverse genetic systems has afforded the concomitant manipulation of virus and host genetics to evaluate virus–host interaction networks in disease. In addition to assessing etiologies of known hCoVs, mouse models have clinically predictive value as tools to appraise potential disease phenotypes associated with pre-emergent CoVs. Knowledge of CoV pathogenic potential before it crosses the species barrier into the human population provides a highly desirable preclinical platform for addressing global pathogen preparedness, an overarching directive of the World Health Organization. Although we recognize that results obtained in robust mouse models require evaluation in non-human primates, we focus this review on the current state of hCoV mouse models, their use as tractable complex genetic organisms for untangling complex hCoV–host interactions, and as pathogenesis models for preclinical evaluation of novel therapeutic interventions.
Collapse
Affiliation(s)
- Adam S Cockrell
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Madeline G Douglas
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
331
|
Alsaad KO, Hajeer AH, Al Balwi M, Al Moaiqel M, Al Oudah N, Al Ajlan A, AlJohani S, Alsolamy S, Gmati GE, Balkhy H, Al-Jahdali HH, Baharoon SA, Arabi YM. Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection - clinicopathological and ultrastructural study. Histopathology 2017; 72:516-524. [PMID: 28858401 PMCID: PMC7165512 DOI: 10.1111/his.13379] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims The pathogenesis, viral localization and histopathological features of Middle East respiratory syndrome – coronavirus (MERS‐CoV) in humans are not described sufficiently. The aims of this study were to explore and define the spectrum of histological and ultrastructural pathological changes affecting various organs in a patient with MERS‐CoV infection and represent a base of MERS‐CoV histopathology. Methods and results We analysed the post‐mortem histopathological findings and investigated localisation of viral particles in the pulmonary and extrapulmonary tissue by transmission electron microscopic examination in a 33‐year‐old male patient of T cell lymphoma, who acquired MERS‐CoV infection. Tissue needle biopsies were obtained from brain, heart, lung, liver, kidney and skeletal muscle. All samples were collected within 45 min from death to reduce tissue decomposition and artefact. Histopathological examination showed necrotising pneumonia, pulmonary diffuse alveolar damage, acute kidney injury, portal and lobular hepatitis and myositis with muscle atrophic changes. The brain and heart were histologically unremarkable. Ultrastructurally, viral particles were localised in the pneumocytes, pulmonary macrophages, renal proximal tubular epithelial cells and macrophages infiltrating the skeletal muscles. Conclusion The results highlight the pulmonary and extrapulmonary pathological changes of MERS‐CoV infection and provide the first evidence of the viral presence in human renal tissue, which suggests tissue trophism for MERS‐CoV in kidney.
Collapse
Affiliation(s)
- Khaled O Alsaad
- Division of Anatomical Pathology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Ali H Hajeer
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Division of Immunopathology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Mohammed Al Balwi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Division of Molecular Genetics and Cytogenetics, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Mohammed Al Moaiqel
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Medical Imaging, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Nourah Al Oudah
- Division of Anatomical Pathology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Abdulaziz Al Ajlan
- Division of Anatomical Pathology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Sameera AlJohani
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Division of Microbiology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Sami Alsolamy
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Intensive Care, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Giamal E Gmati
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Division of Hematology, Department of Oncology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Hanan Balkhy
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Infection Prevention and Control and Division of Infectious Diseases, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Hamdan H Al-Jahdali
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Division of Pulmonology, Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Salim A Baharoon
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Intensive Care, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Yaseen M Arabi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Intensive Care, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
332
|
Zhou J, Li C, Zhao G, Chu H, Wang D, Yan HHN, Poon VKM, Wen L, Wong BHY, Zhao X, Chiu MC, Yang D, Wang Y, Au-Yeung RKH, Chan IHY, Sun S, Chan JFW, To KKW, Memish ZA, Corman VM, Drosten C, Hung IFN, Zhou Y, Leung SY, Yuen KY. Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. SCIENCE ADVANCES 2017; 3:eaao4966. [PMID: 29152574 PMCID: PMC5687858 DOI: 10.1126/sciadv.aao4966] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/20/2017] [Indexed: 05/08/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) has caused human respiratory infections with a high case fatality rate since 2012. However, the mode of virus transmission is not well understood. The findings of epidemiological and virological studies prompted us to hypothesize that the human gastrointestinal tract could serve as an alternative route to acquire MERS-CoV infection. We demonstrated that human primary intestinal epithelial cells, small intestine explants, and intestinal organoids were highly susceptible to MERS-CoV and can sustain robust viral replication. We also identified the evidence of enteric MERS-CoV infection in the stool specimen of a clinical patient. MERS-CoV was considerably resistant to fed-state gastrointestinal fluids but less tolerant to highly acidic fasted-state gastric fluid. In polarized Caco-2 cells cultured in Transwell inserts, apical MERS-CoV inoculation was more effective in establishing infection than basolateral inoculation. Notably, direct intragastric inoculation of MERS-CoV caused a lethal infection in human DPP4 transgenic mice. Histological examination revealed MERS-CoV enteric infection in all inoculated mice, as shown by the presence of virus-positive cells, progressive inflammation, and epithelial degeneration in small intestines, which were exaggerated in the mice pretreated with the proton pump inhibitor pantoprazole. With the progression of the enteric infection, inflammation, virus-positive cells, and live viruses emerged in the lung tissues, indicating the development of sequential respiratory infection. Taken together, these data suggest that the human intestinal tract may serve as an alternative infection route for MERS-CoV.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, China
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
- Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, China
| | - Cun Li
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, China
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
- Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, China
| | - Dong Wang
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Helen Hoi-Ning Yan
- Department of Pathology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Lei Wen
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Bosco Ho-Yin Wong
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Xiaoyu Zhao
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Man Chun Chiu
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Dong Yang
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Yixin Wang
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Rex K. H. Au-Yeung
- Department of Pathology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | | | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, China
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
- Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, China
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
- Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, China
| | - Ziad A. Memish
- Ministry of Health and College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Victor M. Corman
- Institute of Virology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Berlin, Germany
| | - Ivan Fan-Ngai Hung
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Suet Yi Leung
- Department of Pathology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, China
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
- Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, China
- Corresponding author.
| |
Collapse
|
333
|
Zhou J, Li C, Zhao G, Chu H, Wang D, Yan HHN, Poon VKM, Wen L, Wong BHY, Zhao X, Chiu MC, Yang D, Wang Y, Au-Yeung RKH, Chan IHY, Sun S, Chan JFW, To KKW, Memish ZA, Corman VM, Drosten C, Hung IFN, Zhou Y, Leung SY, Yuen KY. Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. SCIENCE ADVANCES 2017; 3:eaao4966. [PMID: 29152574 DOI: 10.1126/sciadv.aao49660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/20/2017] [Indexed: 05/26/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) has caused human respiratory infections with a high case fatality rate since 2012. However, the mode of virus transmission is not well understood. The findings of epidemiological and virological studies prompted us to hypothesize that the human gastrointestinal tract could serve as an alternative route to acquire MERS-CoV infection. We demonstrated that human primary intestinal epithelial cells, small intestine explants, and intestinal organoids were highly susceptible to MERS-CoV and can sustain robust viral replication. We also identified the evidence of enteric MERS-CoV infection in the stool specimen of a clinical patient. MERS-CoV was considerably resistant to fed-state gastrointestinal fluids but less tolerant to highly acidic fasted-state gastric fluid. In polarized Caco-2 cells cultured in Transwell inserts, apical MERS-CoV inoculation was more effective in establishing infection than basolateral inoculation. Notably, direct intragastric inoculation of MERS-CoV caused a lethal infection in human DPP4 transgenic mice. Histological examination revealed MERS-CoV enteric infection in all inoculated mice, as shown by the presence of virus-positive cells, progressive inflammation, and epithelial degeneration in small intestines, which were exaggerated in the mice pretreated with the proton pump inhibitor pantoprazole. With the progression of the enteric infection, inflammation, virus-positive cells, and live viruses emerged in the lung tissues, indicating the development of sequential respiratory infection. Taken together, these data suggest that the human intestinal tract may serve as an alternative infection route for MERS-CoV.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, China
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
- Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, China
| | - Cun Li
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, China
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
- Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, China
| | - Dong Wang
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Helen Hoi-Ning Yan
- Department of Pathology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Lei Wen
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Bosco Ho-Yin Wong
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Xiaoyu Zhao
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Man Chun Chiu
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Dong Yang
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Yixin Wang
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Rex K H Au-Yeung
- Department of Pathology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | | | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, China
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
- Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, China
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
- Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, China
| | - Ziad A Memish
- Ministry of Health and College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Berlin, Germany
| | - Ivan Fan-Ngai Hung
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Suet Yi Leung
- Department of Pathology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, China
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
- Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, China
| |
Collapse
|
334
|
Permissivity of Dipeptidyl Peptidase 4 Orthologs to Middle East Respiratory Syndrome Coronavirus Is Governed by Glycosylation and Other Complex Determinants. J Virol 2017; 91:JVI.00534-17. [PMID: 28747502 DOI: 10.1128/jvi.00534-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/13/2017] [Indexed: 12/30/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. While bat, camel, and human DPP4 support MERS-CoV infection, several DPP4 orthologs, including mouse, ferret, hamster, and guinea pig DPP4, do not. Previous work revealed that glycosylation of mouse DPP4 plays a role in blocking MERS-CoV infection. Here, we tested whether glycosylation also acts as a determinant of permissivity for ferret, hamster, and guinea pig DPP4. We found that, while glycosylation plays an important role in these orthologs, additional sequence and structural determinants impact their ability to act as functional receptors for MERS-CoV. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and better inform our understanding of virus-receptor interactions associated with disease emergence and host susceptibility.IMPORTANCE MERS-CoV is a recently emerged zoonotic virus that is still circulating in the human population with an ∼35% mortality rate. With no available vaccines or therapeutics, the study of MERS-CoV pathogenesis is crucial for its control and prevention. However, in vivo studies are limited because MERS-CoV cannot infect wild-type mice due to incompatibilities between the virus spike and the mouse host cell receptor, mouse DPP4 (mDPP4). Specifically, mDPP4 has a nonconserved glycosylation site that acts as a barrier to MERS-CoV infection. Thus, one mouse model strategy has been to modify the mouse genome to remove this glycosylation site. Here, we investigated whether glycosylation acts as a barrier to infection for other nonpermissive small-animal species, namely, ferret, guinea pig, and hamster. Understanding the virus-receptor interactions for these DPP4 orthologs will help in the development of additional animal models while also revealing species-specific differences impacting MERS-CoV host range.
Collapse
|
335
|
Goldstein SA, Weiss SR. Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus: recent advances. F1000Res 2017; 6:1628. [PMID: 29026532 PMCID: PMC5583735 DOI: 10.12688/f1000research.11827.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
Middle East respiratory syndrome-associated coronavirus (MERS-CoV) has been a significant research focus since its discovery in 2012. Since 2012, 2,040 cases and 712 deaths have been recorded (as of August 11, 2017), representing a strikingly high case fatality rate of 36%. Over the last several years, MERS-CoV research has progressed in several parallel and complementary directions. This review will focus on three particular areas: the origins and evolution of MERS-CoV, the challenges and achievements in the development of MERS-CoV animal models, and our understanding of how novel proteins unique to MERS-CoV counter the host immune response. The origins of MERS-CoV, likely in African bats, are increasingly clear, although important questions remain about the establishment of dromedary camels as a reservoir seeding human outbreaks. Likewise, there have been important advances in the development of animal models, and both non-human primate and mouse models that seem to recapitulate human disease are now available. How MERS-CoV evades and inhibits the host innate immune response remains less clear. Although several studies have identified MERS-CoV proteins as innate immune antagonists, little of this work has been conducted using live virus under conditions of actual infection, but rather with ectopically expressed proteins. Accordingly, considerable space remains for major contributions to understanding unique ways in which MERS-CoV interacts with and modulates the host response. Collectively, these areas have seen significant advances over the last several years but continue to offer exciting opportunities for discovery.
Collapse
Affiliation(s)
- Stephen A Goldstein
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
336
|
Abstract
Since the identification of the first patients with Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, over 1,600 cases have been reported as of February 2016. Most cases have occurred in Saudi Arabia or in other countries on or near the Arabian Peninsula, but travel-associated cases have also been seen in countries outside the Arabian Peninsula. MERS-CoV causes a severe respiratory illness in many patients, with a case fatality rate as high as 40%, although when contacts are investigated, a significant proportion of patients are asymptomatic or only have mild symptoms. At this time, no vaccines or treatments are available. Epidemiological and other data suggest that the source of most primary cases is exposure to camels. Person-to-person transmission occurs in household and health care settings, although sustained and efficient person-to-person transmission has not been observed. Strict adherence to infection control recommendations has been associated with control of previous outbreaks. Vigilance is needed because genomic changes in MERS-CoV could result in increased transmissibility, similar to what was seen in severe acute respiratory syndrome coronavirus (SARS-CoV).
Collapse
|
337
|
Zhang W, Bailey-Elkin BA, Knaap RCM, Khare B, Dalebout TJ, Johnson GG, van Kasteren PB, McLeish NJ, Gu J, He W, Kikkert M, Mark BL, Sidhu SS. Potent and selective inhibition of pathogenic viruses by engineered ubiquitin variants. PLoS Pathog 2017; 13:e1006372. [PMID: 28542609 PMCID: PMC5451084 DOI: 10.1371/journal.ppat.1006372] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/31/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022] Open
Abstract
The recent Middle East respiratory syndrome coronavirus (MERS-CoV), Ebola and Zika virus outbreaks exemplify the continued threat of (re-)emerging viruses to human health, and our inability to rapidly develop effective therapeutic countermeasures. Many viruses, including MERS-CoV and the Crimean-Congo hemorrhagic fever virus (CCHFV) encode deubiquitinating (DUB) enzymes that are critical for viral replication and pathogenicity. They bind and remove ubiquitin (Ub) and interferon stimulated gene 15 (ISG15) from cellular proteins to suppress host antiviral innate immune responses. A variety of viral DUBs (vDUBs), including the MERS-CoV papain-like protease, are responsible for cleaving the viral replicase polyproteins during replication, and are thereby critical components of the viral replication cycle. Together, this makes vDUBs highly attractive antiviral drug targets. However, structural similarity between the catalytic cores of vDUBs and human DUBs complicates the development of selective small molecule vDUB inhibitors. We have thus developed an alternative strategy to target the vDUB activity through a rational protein design approach. Here, we report the use of phage-displayed ubiquitin variant (UbV) libraries to rapidly identify potent and highly selective protein-based inhibitors targeting the DUB domains of MERS-CoV and CCHFV. UbVs bound the vDUBs with high affinity and specificity to inhibit deubiquitination, deISGylation and in the case of MERS-CoV also viral replicative polyprotein processing. Co-crystallization studies further revealed critical molecular interactions between UbVs and MERS-CoV or CCHFV vDUBs, accounting for the observed binding specificity and high affinity. Finally, expression of UbVs during MERS-CoV infection reduced infectious progeny titers by more than four orders of magnitude, demonstrating the remarkable potency of UbVs as antiviral agents. Our results thereby establish a strategy to produce protein-based inhibitors that could protect against a diverse range of viruses by providing UbVs via mRNA or protein delivery technologies or through transgenic techniques. Emerging viruses pose a tremendous challenge to human health. While vaccine-based approaches are desirable in terms of infection prevention in the longer term, alternative antiviral strategies are needed, especially when providing treatment options for infected patients during acute outbreaks. Here we applied protein engineering technology to target virus-encoded deubiquitinating enzymes of two viruses with significant impact on human health: Middle East respiratory syndrome coronavirus (MERS-CoV) and Crimean-Congo hemorrhagic fever virus (CCHFV). This resulted in the rapid identification of ubiquitin variant (UbV) inhibitors that bound with high affinity and specificity to the viral deubiquitinating enzymes. These proteins inhibited the catalytic activities of the deubiquitinating enzymes and almost completely blocked MERS-CoV infection. This work provides proof-of-principle that structurally diverse, virus-specific deubiquitinating enzymes can be selectively targeted through rational protein design technology, and therefore opens new avenues for quickly developed molecularly tailored therapy across a broad spectrum of viral pathogens that infect humans, livestock and plants.
Collapse
Affiliation(s)
- Wei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ben A. Bailey-Elkin
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert C. M. Knaap
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Baldeep Khare
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tim J. Dalebout
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Garrett G. Johnson
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Puck B. van Kasteren
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nigel J. McLeish
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jun Gu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Wenguang He
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail: (MK); (BLM); (SSS)
| | - Brian L. Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail: (MK); (BLM); (SSS)
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (MK); (BLM); (SSS)
| |
Collapse
|
338
|
Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proc Natl Acad Sci U S A 2017; 114:E3119-E3128. [PMID: 28348219 DOI: 10.1073/pnas.1619109114] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Middle East respiratory syndrome (MERS) emerged in Saudi Arabia in 2012, caused by a zoonotically transmitted coronavirus (CoV). Over 1,900 cases have been reported to date, with ∼36% fatality rate. Lack of autopsies from MERS cases has hindered understanding of MERS-CoV pathogenesis. A small animal model that develops progressive pulmonary manifestations when infected with MERS-CoV would advance the field. As mice are restricted to infection at the level of DPP4, the MERS-CoV receptor, we generated mice with humanized exons 10-12 of the mouse Dpp4 locus. Upon inoculation with MERS-CoV, human DPP4 knockin (KI) mice supported virus replication in the lungs, but developed no illness. After 30 serial passages through the lungs of KI mice, a mouse-adapted virus emerged (MERSMA) that grew in lungs to over 100 times higher titers than the starting virus. A plaque-purified MERSMA clone caused weight loss and fatal infection. Virus antigen was observed in airway epithelia, pneumocytes, and macrophages. Pathologic findings included diffuse alveolar damage with pulmonary edema and hyaline membrane formation associated with accumulation of activated inflammatory monocyte-macrophages and neutrophils in the lungs. Relative to the parental MERS-CoV, MERSMA viruses contained 13-22 mutations, including several within the spike (S) glycoprotein gene. S-protein mutations sensitized viruses to entry-activating serine proteases and conferred more rapid entry kinetics. Recombinant MERSMA bearing mutant S proteins were more virulent than the parental virus in hDPP4 KI mice. The hDPP4 KI mouse and the MERSMA provide tools to investigate disease causes and develop new therapies.
Collapse
|
339
|
Abstract
In 2012, a zoonotic coronavirus was identified as the causative agent of Middle East respiratory syndrome and was named MERS coronavirus (MERS-CoV). As of August 11, 2016, the virus has infected 1,791 patients, with a mortality rate of 35.6%. Although MERS-CoV generally causes subclinical or mild disease, infection can result in serious outcomes, including acute respiratory distress syndrome and multi-organ failure in patients with comorbidities. The virus is endemic in camels in the Arabian Peninsula and Africa and thus poses a consistent threat of frequent reintroduction into human populations. Disease prevalence will increase substantially if the virus mutates to increase human-to-human transmissibility. No therapeutics or vaccines are approved for MERS; thus, development of novel therapies is needed. Further, since many MERS cases are acquired in healthcare settings, public health measures and scrupulous attention to infection control are required to prevent additional MERS outbreaks.
Collapse
Affiliation(s)
| | | | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242;
| |
Collapse
|
340
|
CD8+ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model of Middle East Respiratory Syndrome. J Virol 2016; 91:JVI.01825-16. [PMID: 27795435 DOI: 10.1128/jvi.01825-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/18/2016] [Indexed: 01/02/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is an important emerging pathogen that was first described in 2012. While the cell surface receptor for MERS-CoV has been identified as dipeptidyl peptidase 4 (DPP4), the mouse DPP4 homologue does not allow virus entry into cells. Therefore, development of mouse models of MERS-CoV has been hampered by the fact that MERS-CoV does not replicate in commonly available mouse strains. We have previously described a mouse model in which mDPP4 was replaced with hDPP4 such that hDPP4 is expressed under the endogenous mDPP4 promoter. In this study, we used this mouse model to analyze the host response to MERS-CoV infection using immunological assays and transcriptome analysis. Depletion of CD4+ T cells, CD8+ T cells, or macrophages has no effect on MERS-CoV replication in the lungs of infected mice. However, we found that depletion of CD8+ T cells protects and depletion of macrophages exacerbates MERS-CoV-induced pathology and clinical symptoms of disease. Overall, we demonstrate an important role for the inflammatory response in regulating MERS-CoV pathogenesis in vivo IMPORTANCE: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic respiratory virus that emerged from zoonotic sources in 2012. Human infections are still occurring throughout Saudi Arabia at a 38% case fatality rate, with the potential for worldwide spread via air travel. In this work, we identify the host response to the virus and identify inflammatory pathways and cell populations that are critical for protection from severe lung disease. By understanding the immune response to MERS-CoV we can develop targeted therapies to inhibit pathogenesis in the future.
Collapse
|
341
|
A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat Microbiol 2016; 2:16226. [PMID: 27892925 PMCID: PMC5578707 DOI: 10.1038/nmicrobiol.2016.226] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR–Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS. Mice made susceptible to MERS-CoV, using CRISPR–Cas9 to alter the gene encoding the dipeptidyl peptidase 4 receptor, allow efficient viral replication in the lungs and display symptoms indicative of severe acute respiratory stress.
Collapse
|
342
|
Enjuanes L, Zuñiga S, Castaño-Rodriguez C, Gutierrez-Alvarez J, Canton J, Sola I. Molecular Basis of Coronavirus Virulence and Vaccine Development. Adv Virus Res 2016; 96:245-286. [PMID: 27712626 PMCID: PMC7112271 DOI: 10.1016/bs.aivir.2016.08.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Virus vaccines have to be immunogenic, sufficiently stable, safe, and suitable to induce long-lasting immunity. To meet these requirements, vaccine studies need to provide a comprehensive understanding of (i) the protective roles of antiviral B and T-cell-mediated immune responses, (ii) the complexity and plasticity of major viral antigens, and (iii) virus molecular biology and pathogenesis. There are many types of vaccines including subunit vaccines, whole-inactivated virus, vectored, and live-attenuated virus vaccines, each of which featuring specific advantages and limitations. While nonliving virus vaccines have clear advantages in being safe and stable, they may cause side effects and be less efficacious compared to live-attenuated virus vaccines. In most cases, the latter induce long-lasting immunity but they may require special safety measures to prevent reversion to highly virulent viruses following vaccination. The chapter summarizes the recent progress in the development of coronavirus (CoV) vaccines, focusing on two zoonotic CoVs, the severe acute respiratory syndrome CoV (SARS-CoV), and the Middle East respiratory syndrome CoV, both of which cause deadly disease and epidemics in humans. The development of attenuated virus vaccines to combat infections caused by highly pathogenic CoVs was largely based on the identification and characterization of viral virulence proteins that, for example, interfere with the innate and adaptive immune response or are involved in interactions with specific cell types, such as macrophages, dendritic and epithelial cells, and T lymphocytes, thereby modulating antiviral host responses and viral pathogenesis and potentially resulting in deleterious side effects following vaccination.
Collapse
Affiliation(s)
- L Enjuanes
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.
| | - S Zuñiga
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - C Castaño-Rodriguez
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - J Gutierrez-Alvarez
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - J Canton
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - I Sola
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
343
|
Lee HY, Nyon MP, Strych U. Vaccine Development Against Middle East Respiratory Syndrome. CURRENT TROPICAL MEDICINE REPORTS 2016; 3:80-86. [PMID: 32226714 PMCID: PMC7099997 DOI: 10.1007/s40475-016-0084-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Various types of vaccines are under pre-clinical and clinical development to address the recent appearance of Middle East respiratory syndrome or MERS, an emerging infectious disease that has already caused over 600 deaths and remains a threat to world health. The causative agent for this respiratory disease is a member of the betacoronavirus genus, phylogenetically closely related to the SARS coronavirus that caused an international health emergency in 2002. With lessons learned from the outbreak of severe acute respiratory syndrome, and with undeniable technological advances, vaccine development against MERS was initially fast-paced and has produced several DNA and protein vaccine candidates with promising results during early pre-clinical testing. At least one vaccine candidate has even entered first-in-humans clinical trials now. With the number of MERS cases declining though and other infectious diseases attracting increased attention, the question remains, whether, similar to the situation after the SARS pandemic, vaccine development is halted or remains the priority it rightfully should.
Collapse
Affiliation(s)
- Hai Yen Lee
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Houston, TX USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX USA
| | - Mun Peak Nyon
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Houston, TX USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX USA
| | - Ulrich Strych
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Houston, TX USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
344
|
Abstract
First identified in 2012, Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is listed as a new Category C Priority Pathogen. While the high mortality of MERS-CoV infection is further intensified by potential human-to-human transmissibility, no MERS vaccines are available for human use. This review explains immune responses resulting from MERS-CoV infection, describes MERS vaccine criteria, and presents available small animal models to evaluate the efficacy of MERS vaccines. Current advances in vaccine development are summarized, focusing on specific applications and limitations of each vaccine category. Taken together, this review provides valuable guidelines toward the development of an effective and safe MERS vaccine. This article is written for a Special Focus Issue of Expert Review of Vaccines on 'Vaccines for Biodefence'.
Collapse
Affiliation(s)
- Lanying Du
- a Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA
| | - Wanbo Tai
- a Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA.,b State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Yusen Zhou
- b State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Shibo Jiang
- a Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA.,c Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences , Fudan University , Shanghai , China
| |
Collapse
|
345
|
Meyerholz DK. Modeling Emergent Diseases: Lessons From Middle East Respiratory Syndrome. Vet Pathol 2016; 53:517-8. [PMID: 27000399 DOI: 10.1177/0300985816634811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- D K Meyerholz
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
346
|
Zhou J, Chu H, Chan JFW, Yuen KY. Middle East respiratory syndrome coronavirus infection: virus-host cell interactions and implications on pathogenesis. Virol J 2015; 12:218. [PMID: 26690369 PMCID: PMC4687146 DOI: 10.1186/s12985-015-0446-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/01/2015] [Indexed: 12/27/2022] Open
Abstract
Middle-East Respiratory Syndrome coronavirus (MERS-CoV) was identified to cause severe respiratory infection in humans since 2012. The continuing MERS epidemic with a case-fatality of more than 30 % poses a major threat to public health worldwide. Currently, the pathogenesis of human MERS-CoV infection remains poorly understood. We reviewed experimental findings from human primary cells and ex vivo human lung tissues, as well as those from animal studies, so as to understand the pathogenesis and high case-fatality of MERS. Human respiratory epithelial cells are highly susceptible to MERS-CoV and can support productive viral replication. However, the induction of antiviral cytokines and proinflammatory cytokines/chemokines are substantially dampened in the infected epithelial cells, due to the antagonistic mechanisms evolved by the virus. MERS-CoV can readily infect and robustly replicate in human macrophages and dendritic cells, triggering the aberrant production of proinflammatory cytokines/chemokines. MERS-CoV can also effectively infect human primary T cells and induce massive apoptosis in these cells. Although data from clinical, in vitro and ex vivo studies suggested the potential for virus dissemination, extrapulmonary involvement in MERS patients has not been ascertained due to the lack of autopsy study. In MERS-CoV permissive animal models, although viral RNA can be detected from multiple organs of the affected animals, the brain of human DPP4-transgenic mouse was the only extrapulmonary organ from which the infectious virus can be recovered. More research findings on the pathogenesis of MERS and the tissue tropisms of MERS-CoV may help to improve the treatment and infection control of MERS.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China. .,Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong Special Administrative Region, China. .,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China. .,Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong Special Administrative Region, China. .,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China. .,Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong Special Administrative Region, China. .,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China. .,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China. .,Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong Special Administrative Region, China. .,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China. .,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|