301
|
Zhao J, Zhang Y, Sisler JD, Shaffer J, Leonard SS, Morris AM, Qian Y, Bello D, Demokritou P. Assessment of reactive oxygen species generated by electronic cigarettes using acellular and cellular approaches. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:549-557. [PMID: 29102637 PMCID: PMC5848214 DOI: 10.1016/j.jhazmat.2017.10.057] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/11/2017] [Accepted: 10/27/2017] [Indexed: 05/11/2023]
Abstract
Electronic cigarettes (e-cigs) have fast increased in popularity but the physico-chemical properties and toxicity of the generated emission remain unclear. Reactive oxygen species (ROS) are likely present in e-cig emission and can play an important role in e-cig toxicity. However, e-cig ROS generation is poorly documented. Here, we generated e-cig exposures using a recently developed versatile exposure platform and performed systematic ROS characterization on e-cig emissions using complementary acellular and cellular techniques: 1) a novel acellular Trolox-based mass spectrometry method for total ROS and hydrogen peroxide (H2O2) detection, 2) electron spin resonance (ESR) for hydroxyl radical detection in an acellular and cellular systems and 3) in vitro ROS detection in small airway epithelial cells (SAEC) using the dihydroethidium (DHE) assay. Findings confirm ROS generation in cellular and acellular systems and is highly dependent on the e-cig brand, flavor, puffing pattern and voltage. Trolox method detected a total of 1.2-8.9nmol H2O2eq./puff; H2O2 accounted for 12-68% of total ROS. SAEC cells exposed to e-cig emissions generated up to eight times more ROS compared to control. The dependency of e-cig emission profile on e-cig features and operational parameters should be taken into consideration in toxicological studies.
Collapse
Affiliation(s)
- Jiayuan Zhao
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Yipei Zhang
- Department of Public Health, University of Massachusetts Lowell, MA 01854, USA
| | - Jennifer D Sisler
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Justine Shaffer
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Stephen S Leonard
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Anna M Morris
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Dhimiter Bello
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA; Department of Public Health, University of Massachusetts Lowell, MA 01854, USA.
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
302
|
Rasche M, Walther M, Schiffner R, Kroegel N, Rupprecht S, Schlattmann P, Schulze PC, Franzke P, Witte OW, Schwab M, Rakers F. Rapid increases in nitrogen oxides are associated with acute myocardial infarction: A case-crossover study. Eur J Prev Cardiol 2018; 25:1707-1716. [PMID: 29446990 DOI: 10.1177/2047487318755804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims High concentrations of air pollutants are associated with increased risk for myocardial infarction. The European Union has defined statutory limits for air pollutants based on upper absolute concentrations. We evaluated the association between rapid changes in air pollutants and the risk of myocardial infarction independently of absolute concentrations. Methods and results Using a hospital-based case-crossover study, effects of 24h changes of nitrogen oxides (NOX/2), particulate matter (PM10), and ozone on the risk of myocardial infarction was assessed in 693 patients. In the overall population, increases of NOX of more than 20 µg/m3 within 24 h were associated with an increase in the risk of myocardial infarction by up to 121% (odds ratio (OR) 2.21, 95% confidence interval (CI) 1.19-4.08). Comparably, rapid increases of NO2 of more than 8 µg/m3 tended to increase myocardial infarction risk by 73% (OR 1.73, 95% CI 0.91-3.28) while myocardial infarction risk decreased by 60% after a decrease of NO2 concentration of more than 8 µg/m3 (OR 0.4, 95% CI 0.21-0.77), suggesting a close-to-linear association. While results for ozone concentrations were ambiguous, rapid change in PM10 was not associated with myocardial infarction risk. Conclusion Dynamics and extent of increase in nitrogen oxide concentrations may be an independent risk factor for myocardial infarction. As there are currently no European Union statutory limits reflecting this dynamic variation of air pollutants on a daily basis, the results urgently call for confirming studies in different geographical regions to verify the observations.
Collapse
Affiliation(s)
- Marius Rasche
- 1 Hans Berger Department of Neurology, University Hospital Jena, Germany
| | - Mario Walther
- 2 Institute of Medical Statistics, Computer Sciences and Documentation, University Hospital Jena, Germany.,3 Department of Fundamental Sciences, Ernst-Abbe-University of Applied Sciences, Jena, Germany
| | - Rene Schiffner
- 1 Hans Berger Department of Neurology, University Hospital Jena, Germany
| | - Nasim Kroegel
- 1 Hans Berger Department of Neurology, University Hospital Jena, Germany
| | - Sven Rupprecht
- 1 Hans Berger Department of Neurology, University Hospital Jena, Germany
| | - Peter Schlattmann
- 2 Institute of Medical Statistics, Computer Sciences and Documentation, University Hospital Jena, Germany
| | | | - Peter Franzke
- 5 Department of Neurology, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Otto W Witte
- 1 Hans Berger Department of Neurology, University Hospital Jena, Germany
| | - Matthias Schwab
- 1 Hans Berger Department of Neurology, University Hospital Jena, Germany
| | - Florian Rakers
- 1 Hans Berger Department of Neurology, University Hospital Jena, Germany.,6 Department of Psychiatry, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| |
Collapse
|
303
|
de F C Lichtenfels AJ, van der Plaat DA, de Jong K, van Diemen CC, Postma DS, Nedeljkovic I, van Duijn CM, Amin N, la Bastide-van Gemert S, de Vries M, Ward-Caviness CK, Wolf K, Waldenberger M, Peters A, Stolk RP, Brunekreef B, Boezen HM, Vonk JM. Long-term Air Pollution Exposure, Genome-wide DNA Methylation and Lung Function in the LifeLines Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:027004. [PMID: 29410382 PMCID: PMC6047358 DOI: 10.1289/ehp2045] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND Long-term air pollution exposure is negatively associated with lung function, yet the mechanisms underlying this association are not fully clear. Differential DNA methylation may explain this association. OBJECTIVES Our main aim was to study the association between long-term air pollution exposure and DNA methylation. METHODS We performed a genome-wide methylation study using robust linear regression models in 1,017 subjects from the LifeLines cohort study to analyze the association between exposure to nitrogen dioxide (NO2) and particulate matter (PM2.5, fine particulate matter with aerodynamic diameter ≤2.5 μm; PM10, particulate matter with aerodynamic diameter ≤10 μm) and PM2.5absorbance, indicator of elemental carbon content (estimated with land-use-regression models) with DNA methylation in whole blood (Illumina® HumanMethylation450K BeadChip). Replication of the top hits was attempted in two independent samples from the population-based Cooperative Health Research in the Region of Augsburg studies (KORA). RESULTS Depending on the p-value threshold used, we found significant associations between NO2 exposure and DNA methylation for seven CpG sites (Bonferroni corrected threshold p<1.19×10-7) or for 4,980 CpG sites (False Discovery Rate<0.05). The top associated CpG site was annotated to the PSMB9 gene (i.e., cg04908668). None of the seven Bonferroni significant CpG-sites were significantly replicated in the two KORA-cohorts. No associations were found for PM exposure. CONCLUSIONS Long-term NO2 exposure was genome-wide significantly associated with DNA methylation in the identification cohort but not in the replication cohort. Future studies are needed to further elucidate the potential mechanisms underlying NO2-exposure-related respiratory disease. https://doi.org/10.1289/EHP2045.
Collapse
Affiliation(s)
- Ana Julia de F C Lichtenfels
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Diana A van der Plaat
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Kim de Jong
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Cleo C van Diemen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Dirkje S Postma
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, Netherlands
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen , Netherlands
| | - Ivana Nedeljkovic
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sacha la Bastide-van Gemert
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maaike de Vries
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Cavin K Ward-Caviness
- Institute of Epidemiology II, Helmholtz Zentrum München , Neuherberg, Germany
- Environmental Public Health Division, U.S. Environmental Protection Agency , Chapel Hill, North Carolina, USA
| | - Kathrin Wolf
- Institute of Epidemiology II, Helmholtz Zentrum München , Neuherberg, Germany
| | | | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München , Neuherberg, Germany
| | - Ronald P Stolk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences , Utrecht University, Utrecht, Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht , Netherlands
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| |
Collapse
|
304
|
Tanaka M, Alvin AWL, Okochi M. Screening of peptide probe binding to particulate matter with a high metal content. RSC Adv 2018; 8:5953-5959. [PMID: 35539581 PMCID: PMC9078189 DOI: 10.1039/c7ra13290e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/26/2018] [Indexed: 11/21/2022] Open
Abstract
Particulate matter (PM) is becoming an increasing health concern and there is a need to develop detection methods to keep its harmful effects in check. Generation of reactive oxygen species (ROS) by PM is often associated with metal compounds, hence our aim is to screen for a peptide probe towards improved collection and the detection of PM having a high metal content. Peptides are putative recognition molecules due to their versatility and ease of modification to enhance their binding selectivities. PM binding peptides were screened using the peptide array and different binding behaviors in terms of different spot colors (yellow, mixed and gray), indicating the different composition of bound PMs, were observed. The strongest binding peptides were identified as follows: NHVNTNYYPTLH (gray), NGYYPHSHSYHQ (mixed) and HHLHWPHHHSYT (yellow), with relative binding ratios of 125%, 144% and 136%, in comparison with WQDFGAVRSTRS, a peptide screened from a phage display in our previous study. Inductively coupled plasma mass spectrometry (ICPMS) analyses revealed that Co, Ni and Zn content in the PM bound to the HHLHWPHHHSYT peptide spot were respectively 12.5, 15.8 and 7.8 times that of the PM bound to no peptide spot, suggesting this peptide probe is applicable to collect PM with a high metal content.
Collapse
Affiliation(s)
- Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku Tokyo 152-8552 Japan +81-3-5734-2116 +81-3-5734-2116
| | - Aw Wei Liang Alvin
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku Tokyo 152-8552 Japan +81-3-5734-2116 +81-3-5734-2116
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku Tokyo 152-8552 Japan +81-3-5734-2116 +81-3-5734-2116
| |
Collapse
|
305
|
Lei X, Muscat JE, Zhang B, Sha X, Xiu G. Differentially DNA methylation changes induced in vitro by traffic-derived nanoparticulate matter. Toxicology 2018; 395:54-62. [DOI: 10.1016/j.tox.2017.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
|
306
|
Agarwal P, Singh L, Anand M, Taneja A. Association Between Placental Polycyclic Aromatic Hydrocarbons (PAHS), Oxidative Stress, and Preterm Delivery: A Case-Control Study. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 74:218-227. [PMID: 28916946 DOI: 10.1007/s00244-017-0455-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 09/06/2017] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons are known to disturb the antioxidant defense system, which may indirectly contribute to induction of early pregnancy in women. Therefore, the present investigation was designed to offer preliminary information about exposure to PAHs by estimating their placental levels and its association with oxidative stress as well as with preterm birth. Placenta tissue samples were drawn after delivery from 84 healthy pregnant women, recruited at a local nursing home of Agra, India, and levels of PAHs were quantified by gas chromatograph equipped with flame ionization detector. To evaluate redox status biomarkers, malondialdehyde (MDA) and glutathione (GSH) were determined in placenta tissue. Significantly elevated levels of benzo(a)pyrene and MDA while decreasing trend of GSH was found in women with preterm delivery group (study) than women with a full-term delivery group (control). Results demonstrated higher, but statistically insignificant (p > 0.05), levels of naphthalene, anthracene, fluorene, pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno[1,2,3-cd]pyrene, dibenzo(ah)anthracene, and benzo(ghi)perylene in the study group than the control group. However, higher and lower molecular weight PAHs showed significant correlation for the depletion trend of GSH sights upon an example of oxidative stress mechanism. Because of limited statistical power and absence of controlled confounders, this study does not provide an ample involvement of PAHs with preterm delivery but increased MDA and decreased GSH in cases than controls gives the possible contribution of PAHs to early delivery.
Collapse
Affiliation(s)
- Priyanka Agarwal
- Department of Chemistry, Dr. B. R. Ambedkar University, Khandari Campus, Agra, 282002, India
| | - Laxmi Singh
- Department of Chemistry, Dr. B. R. Ambedkar University, Khandari Campus, Agra, 282002, India
| | - Madhu Anand
- Department of Chemistry, Dr. B. R. Ambedkar University, Khandari Campus, Agra, 282002, India
| | - Ajay Taneja
- Department of Chemistry, Dr. B. R. Ambedkar University, Khandari Campus, Agra, 282002, India.
| |
Collapse
|
307
|
Equol’s Anti-Aging Effects Protect against Environmental Assaults by Increasing Skin Antioxidant Defense and ECM Proteins While Decreasing Oxidative Stress and Inflammation. COSMETICS 2018. [DOI: 10.3390/cosmetics5010016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
308
|
Thurston GD, Newman JD. Walking to a pathway for cardiovascular effects of air pollution. Lancet 2018; 391:291-292. [PMID: 29221647 PMCID: PMC7944650 DOI: 10.1016/s0140-6736(17)33078-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/24/2017] [Indexed: 01/27/2023]
Affiliation(s)
- George D Thurston
- New York University School of Medicine, Department of Environmental Medicine, Tuxedo, NY 10987-5007, USA.
| | - Jonathan D Newman
- New York University School of Medicine, Department of Medicine, Division of Cardiology, New York, NY, USA
| |
Collapse
|
309
|
Phull AR, Nasir B, Haq IU, Kim SJ. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem Biol Interact 2017; 281:121-136. [PMID: 29258867 DOI: 10.1016/j.cbi.2017.12.024] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022]
Abstract
There are numerous extra- and intra-cellular processes involved in the production of reactive oxygen species (ROS). Augmented ROS generation can cause the damage of biomolecules such as proteins, nucleic acid and lipids. ROS act as an intracellular signaling component and is associated with various inflammatory responses, chronic arthropathies, including rheumatoid arthritis (RA). It is well documented that ROS can activate different signaling pathways having a vital importance in the patho-physiology of RA. Hence, understanding of the molecular pathways and their interaction might be advantageous in the development of novel therapeutic approaches for RA.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongju Daehak-Ro, Gongju-Si, Chungnam, 32588, Republic of Korea
| | - Bakht Nasir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongju Daehak-Ro, Gongju-Si, Chungnam, 32588, Republic of Korea.
| |
Collapse
|
310
|
Romani A, Cervellati C, Muresan XM, Belmonte G, Pecorelli A, Cervellati F, Benedusi M, Evelson P, Valacchi G. Keratinocytes oxidative damage mechanisms related to airbone particle matter exposure. Mech Ageing Dev 2017; 172:86-95. [PMID: 29103985 DOI: 10.1016/j.mad.2017.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/30/2017] [Accepted: 11/01/2017] [Indexed: 12/17/2022]
Abstract
Epidemiological evidences have correlated airbone particulate matter (PM) to adverse health effects, mainly linking to pulmonary and cardiovascular disease. Nevertheless, only recently, some studies reported detrimental effects of PM on other organs such as skin. In a recent work, we have reported increased oxidative and inflammatory responses in Reconstituted Human Epidermis (RHE) exposed to ambient particles (CAPs) and we also demonstrated the ability of CAPs to penetrate the skin tissue. The present study was aimed to better understand the cellular mechanisms beyond the oxidative changes induced by CAPs (5-10-25μg/mL) in human immortalized keratinocytes (HaCaT). After 24h of treatment, CAPs were able to enter the cells leading to a decrease in viability, increased levels of 4-hydroxinonenal products (4-HNE) and IL-1α release. Overall these data, suggest lipid and protein oxidative damage, as well as an increase of inflammatory response after being challenged with CAPs. In addition, 3h after CAPs exposure we found a significant increase in NF-kB and Nrf2 translocation into the nucleus. In contrast, no differences in gene expression and enzymatic activity of Nrf2 target genes were detected. This last finding could be explained by the ability of CAPs to possibly alter the binding of Nrf2 to the ARE DNA sequence.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara Italy
| | - Ximena M Muresan
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Belmonte
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Animal Science, North Carolina State University, Plants for Human Health Institute, NC Research Center, 28081, Kannapolis NC, USA
| | - Franco Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mascia Benedusi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Pablo Evelson
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - G Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Animal Science, North Carolina State University, Plants for Human Health Institute, NC Research Center, 28081, Kannapolis NC, USA.
| |
Collapse
|
311
|
Heßelbach K, Kim GJ, Flemming S, Häupl T, Bonin M, Dornhof R, Günther S, Merfort I, Humar M. Disease relevant modifications of the methylome and transcriptome by particulate matter (PM 2.5) from biomass combustion. Epigenetics 2017; 12:779-792. [PMID: 28742980 PMCID: PMC5739103 DOI: 10.1080/15592294.2017.1356555] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Exposure to particulate matter (PM) is recognized as a major health hazard, but molecular responses are still insufficiently described. We analyzed the epigenetic impact of ambient PM2.5 from biomass combustion on the methylome of primary human bronchial epithelial BEAS-2B cells using the Illumina HumanMethylation450 BeadChip. The transcriptome was determined by the Affymetrix HG-U133 Plus 2.0 Array. PM2.5 induced genome wide alterations of the DNA methylation pattern, including differentially methylated CpGs in the promoter region associated with CpG islands. Gene ontology analysis revealed that differentially methylated genes were significantly clustered in pathways associated with the extracellular matrix, cellular adhesion, function of GTPases, and responses to extracellular stimuli, or were involved in ion binding and shuttling. Differential methylations also affected tandem repeats. Additionally, 45 different miRNA CpG loci showed differential DNA methylation, most of them proximal to their promoter. These miRNAs are functionally relevant for lung cancer, inflammation, asthma, and other PM-associated diseases. Correlation of the methylome and transcriptome demonstrated a clear bias toward transcriptional activation by hypomethylation. Genes that exhibited both differential methylation and expression were functionally linked to cytokine and immune responses, cellular motility, angiogenesis, inflammation, wound healing, cell growth, differentiation and development, or responses to exogenous matter. Disease ontology of differentially methylated and expressed genes indicated their prominent role in lung cancer and their participation in dominant cancer related signaling pathways. Thus, in lung epithelial cells, PM2.5 alters the methylome of genes and noncoding transcripts or elements that might be relevant for PM- and lung-associated diseases.
Collapse
Affiliation(s)
- Katharina Heßelbach
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Gwang-Jin Kim
- b Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Stephan Flemming
- b Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Thomas Häupl
- c Department of Rheumatology and Clinical Immunology , Charité University Hospital Berlin , Germany
| | - Marc Bonin
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Regina Dornhof
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Stefan Günther
- d Pharmaceutical Bioinformatics and Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg , Freiburg , Germany
| | - Irmgard Merfort
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Matjaz Humar
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| |
Collapse
|
312
|
High Risk Subgroups Sensitive to Air Pollution Levels Following an Emergency Medical Admission. TOXICS 2017; 5:toxics5040027. [PMID: 29051459 PMCID: PMC5750555 DOI: 10.3390/toxics5040027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/16/2022]
Abstract
For three cohorts (the elderly, socially deprived, and those with chronic disabling disease), the relationship between the concentrations of particulate matter (PM10), sulphur dioxide (SO₂), or oxides of nitrogen (NOx) at the time of hospital admission and outcomes (30-day in-hospital mortality) were investigated All emergency admissions (90,423 episodes, recorded in 48,035 patients) between 2002 and 2015 were examined. PM10, SO₂, and NOx daily levels from the hospital catchment area were correlated with the outcomes for the older admission cohort (>70 years), those of lower socio-economic status (SES), and with more disabling disease. Adjusted for acuity and complexity, the level of each pollutant on the day of admission independently predicted the 30-day mortality: for PM10-OR 1.11 (95% CI: 1.08, 1.15), SO₂-1.20 (95% CI: 1.16, 1.24), and NOx-1.09 (1.06-1.13). For the older admission cohort (≥70 years), as admission day pollution increased (NOx quintiles) the 30-day mortality was higher in the elderly (14.2% vs. 11.3%: p < 0.001). Persons with a lower SES were at increased risk. Persons with more disabling disease also had worse outcomes on days with higher admission particulate matter (PM10 quintiles). Levels of pollutants on the day of admission of emergency medical admissions predicted 30-day hospital mortality.
Collapse
|
313
|
Calas A, Uzu G, Martins JMF, Voisin D, Spadini L, Lacroix T, Jaffrezo JL. The importance of simulated lung fluid (SLF) extractions for a more relevant evaluation of the oxidative potential of particulate matter. Sci Rep 2017; 7:11617. [PMID: 28912590 PMCID: PMC5599505 DOI: 10.1038/s41598-017-11979-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/29/2017] [Indexed: 11/29/2022] Open
Abstract
Particulate matter (PM) induces oxidative stress in vivo, leading to adverse health effects. Oxidative potential (OP) of PM is increasingly studied as a relevant metric for health impact (instead of PM mass concentration) as much of the ambient particle mass do not contribute to PM toxicity. Several assays have been developed to quantify PM oxidative potential and a widely used one is the acellular dithiothreitol (DTT) assay. However in such assays, particles are usually extracted with methanol or Milli-Q water which is unrepresentative of physiological conditions. For this purpose, OPDTT measurements after simulated lung fluids (SLF) extraction, in order to look at the impact of simulated lung fluid constituents, were compared to Milli-Q water extraction measurements. Our major finding is a significant decrease of the OPDTT when the artificial lysosomal fluid (ALF) solution was used. Indeed, ligand compounds are present in the SLF solutions and some induce a decrease of the OP when compared to water extraction. Our results suggest that the effect of ligands and complexation in lining fluids towards PM contaminants probably has been underestimated and should be investigated further.
Collapse
Affiliation(s)
- Aude Calas
- Univ. Grenoble Alpes, CNRS, IRD, IGE, Grenoble, F-38 000, France
| | - Gaëlle Uzu
- Univ. Grenoble Alpes, CNRS, IRD, IGE, Grenoble, F-38 000, France.
| | - Jean M F Martins
- Univ. Grenoble Alpes, CNRS, IRD, IGE, Grenoble, F-38 000, France
| | - Didier Voisin
- Univ. Grenoble Alpes, CNRS, IRD, IGE, Grenoble, F-38 000, France
| | - Lorenzo Spadini
- Univ. Grenoble Alpes, CNRS, IRD, IGE, Grenoble, F-38 000, France
| | - Thomas Lacroix
- Univ. Grenoble Alpes, CNRS, IRD, IGE, Grenoble, F-38 000, France
| | | |
Collapse
|
314
|
Peng H, Zhao XH, Bi TT, Yuan XY, Guo JB, Peng SQ. PM 2.5 obtained from urban areas in Beijing induces apoptosis by activating nuclear factor-kappa B. Mil Med Res 2017; 4:27. [PMID: 29502513 PMCID: PMC5577776 DOI: 10.1186/s40779-017-0136-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/08/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Particulate matter (PM), which has adverse effects on citizen health, is a major air pollutant in Beijing city. PM2.5 is an indicator of PM in urban areas and can cause serious damage to human health. Many epidemiological studies have shown that nuclear factor-kappa B (NF-κB) is involved in PM2.5-induced cell injury, but the exact mechanisms are not well understood. METHODS The cytotoxic effects of PM2.5 at 25-1600 μg/ml for 24 h were determined by MTT assay in Chinese hamster ovary cells (CHO) cells. Flow cytometry was used to determine the apoptosis rate induced by PM2.5. The destabilized enhanced green fluorescent protein (d2EGFP) green fluorescent protein reporter system was used to determine the NF-κB activity induced by PM2.5. The expression of pro-apoptotic Bcl-2-associated death promoter (BAD) proteins induced by PM2.5 was determined by western blotting to explore the relationship between PM2.5 and the NF-κB signaling pathway and to determine the toxicological mechanisms of PM2.5. RESULTS PM2.5 collected in Beijing urban districts induces cytotoxic effects in CHO cells according to MTT assay with 72.28% cell viability rates even at 200 μg/ml PM2.5 and flow cytometry assays with 26.97% apoptosis rates at 200 μg/ml PM2.5. PM2.5 increases the activation levels of NF-κB, which have maintained for 24 h. 200 μg/ml PM2.5 cause activation of NF-κB after exposure for 4 h, the activation peak appears after 13.5 h with a peak value of 25.41%. The average percentage of NF-κB activation in whole 24 h is up to 12.9% by 200 μg/ml PM2.5. In addition, PM2.5 decreases the expression level of the pro-apoptotic protein BAD in a concentration-dependent manner. CONCLUSIONS PM2.5 induces NF-κB activation, which persists for 24 h. The expression of pro-apoptotic protein BAD decreased with increased concentrations of PM2.5. These findings suggest that PM2.5 plays a major role in apoptosis by activating the NF-κB signaling pathway and reducing BAD protein expression.
Collapse
Affiliation(s)
- Hui Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xiao-Hong Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China.
| | - Ting-Ting Bi
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Xiao-Yan Yuan
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Jia-Bin Guo
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Shuang-Qing Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| |
Collapse
|
315
|
Interactions of GST Polymorphisms in Air Pollution Exposure and Respiratory Diseases and Allergies. Curr Allergy Asthma Rep 2017; 16:85. [PMID: 27878551 DOI: 10.1007/s11882-016-0664-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the evidence from recently published original studies investigating how glutathione S-transferase (GST) gene polymorphisms modify the impact of air pollution on asthma, allergic diseases, and lung function. RECENT FINDINGS Current studies in epidemiological and controlled human experiments found evidence to suggest that GSTs modify the impact of air pollution exposure on respiratory diseases and allergies. Of the nine articles included in this review, all except one identified at least one significant interaction with at least one of glutathione S-transferase pi 1 (GSTP1), glutathione S-transferase mu 1 (GSTM1), or glutathione S-transferase theta 1 (GSTT1) genes and air pollution exposure. The findings of these studies, however, are markedly different. This difference can be partially explained by regional variation in the exposure levels and oxidative potential of different pollutants and by other interactions involving a number of unaccounted environment exposures and multiple genes. Although there is evidence of an interaction between GST genes and air pollution exposure for the risk of respiratory disease and allergies, results are not concordant. Further investigations are needed to explore the reasons behind the discordancy.
Collapse
|
316
|
Wang T, Shimizu Y, Wu X, Kelly GT, Xu X, Wang L, Qian Z, Chen Y, Garcia JGN. Particulate matter disrupts human lung endothelial cell barrier integrity via Rho-dependent pathways. Pulm Circ 2017. [PMID: 28644070 PMCID: PMC5841899 DOI: 10.1086/689906] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Increased exposure to ambient particulate matter (PM) is associated with elevated morbidity and mortality in patients with cardiopulmonary diseases and cancer. We and others have shown that PM induces lung microvascular barrier dysfunction which potentially enhances the systemic toxicity of PM. However, the mechanisms by which PM disrupts vascular endothelial integrity remain incompletely explored. We hypothesize that PM induces endothelial cell (EC) cytoskeleton rearrangement via Rho GTPase-dependent pathways to facilitate vascular hyperpermeability. Fine PM induced time-dependent activation of cytoskeletal machinery with increases in myosin light chain (MLC) phosphorylation and EC barrier disruption measured by transendothelial electrical resistance (TER), events attenuated by the Rho-dependent kinase (ROCK) inhibitor Y-27632 or the reactive oxygen species (ROS) scavenger, N-acetylcysteine (NAC). Both Y-27632 and NAC prevented PM-induced stress fiber formation and phospho-MLC accumulation in human lung ECs. PM promotes rapid accumulation of Rho-GTP. This event is attenuated by NAC or knockdown of RhoA (siRNA). Consistent with ROCK activation, PM induced phosphorylation of myosin light chain phosphatase (MYPT) at Thr850, a post-translational modification known to inhibit phosphatase activity. Furthermore, PM activates the guanine nucleotide exchange factor (GEF) for Rho, p115, with p115 translocation to the cell periphery, in a ROS-dependent manner. Together these results demonstrate that fine PM induces EC cytoskeleton rearrangement via Rho-dependent pathways that are dependent upon the generation of oxidative stress. As the disruption of vascular integrity further contributes to cardiopulmonary physiologic derangements, these findings provide pharmacologic targets for prevention of PM-induced cardiopulmonary toxicity.
Collapse
Affiliation(s)
- Ting Wang
- 1 Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Yuka Shimizu
- 1 Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Xiaomin Wu
- 1 Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Gabriel T Kelly
- 1 Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Xiaoyan Xu
- 1 Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Lichun Wang
- 2 Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhongqing Qian
- 3 Key Laboratory of Anhui Province for Infection and Immunology, Bengbu Medical College, Anhui, China
| | - Yin Chen
- 4 Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Joe G N Garcia
- 1 Department of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
317
|
Winckelmans E, Vrijens K, Tsamou M, Janssen BG, Saenen ND, Roels HA, Kleinjans J, Lefebvre W, Vanpoucke C, de Kok TM, Nawrot TS. Newborn sex-specific transcriptome signatures and gestational exposure to fine particles: findings from the ENVIRONAGE birth cohort. Environ Health 2017; 16:52. [PMID: 28583124 PMCID: PMC5458481 DOI: 10.1186/s12940-017-0264-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/22/2017] [Indexed: 05/14/2023]
Abstract
BACKGROUND Air pollution exposure during pregnancy has been associated with adverse birth outcomes and health problems later in life. We investigated sex-specific transcriptomic responses to gestational long- and short-term exposure to particulate matter with a diameter < 2.5 μm (PM2.5) in order to elucidate potential underlying mechanisms of action. METHODS Whole genome gene expression was investigated in cord blood of 142 mother-newborn pairs that were enrolled in the ENVIRONAGE birth cohort. Daily PM2.5 exposure levels were calculated for each mother's home address using a spatial-temporal interpolation model in combination with a dispersion model to estimate both long- (annual average before delivery) and short- (last month of pregnancy) term exposure. We explored the association between gene expression levels and PM2.5 exposure, and identified modulated pathways by overrepresentation analysis and gene set enrichment analysis. RESULTS Some processes were altered in both sexes for long- (e.g. DNA damage) or short-term exposure (e.g. olfactory signaling). For long-term exposure in boys neurodevelopment and RhoA pathways were modulated, while in girls defensin expression was down-regulated. For short-term exposure we identified pathways related to synaptic transmission and mitochondrial function (boys) and immune response (girls). CONCLUSIONS This is the first whole genome gene expression study in cord blood to identify sex-specific pathways altered by PM2.5. The identified transcriptome pathways could provide new molecular insights as to the interaction pattern of early life PM2.5 exposure with the biological development of the fetus.
Collapse
Affiliation(s)
- Ellen Winckelmans
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium
| | - Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium
| | - Maria Tsamou
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium
| | - Bram G. Janssen
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium
| | - Nelly D. Saenen
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium
| | - Harry A. Roels
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université catholique de Louvain, Brussels, Belgium
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Wouter Lefebvre
- Environmental Risk and Health, Flemish Institute for Technical Research (VITO), Mol, Belgium
| | | | - Theo M. de Kok
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium
- Department of Public Health & Primary Care, Leuven University, Kapucijnenvoer 35, 3000 Leuven, Belgium
| |
Collapse
|
318
|
Solleiro-Villavicencio H, Rivas-Arancibia S. Systemic Th17/IL-17A response appears prior to hippocampal neurodegeneration in rats exposed to low doses of ozone. Neurologia 2017; 34:503-509. [PMID: 28587742 DOI: 10.1016/j.nrl.2017.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Exposure to low doses of O3 leads to a state of oxidative stress. Some studies show that oxidative stress can modulate both the CNS and systemic inflammation, which are important factors in the development of Alzheimer disease (AD). OBJECTIVE This study aims to evaluate changes in the frequency of Th17-like cells (CD3+CD4+IL-17A+), the concentration of IL-17A in peripheral blood, and hippocampal immunoreactivity to IL-17A in rats exposed to low doses of O3. METHODS One hundred eight male Wistar rats were randomly assigned to 6 groups (n=18) receiving the following treatments: control (O3 free) or O3 exposure (0.25ppm, 4hours daily) over 7, 15, 30, 60, and 90 days. Twelve animals from each group were decapitated and a peripheral blood sample was taken to isolate plasma and mononuclear cells. Plasma IL-17A was quantified using LUMINEX, while Th17-like cells were counted using flow cytometry. The remaining 6 rats were deeply anaesthetised and underwent transcardial perfusion for immunohistological study of the hippocampus. RESULTS Results show that exposure to O3 over 7 days resulted in a significant increase in the frequency of Th17-like cells and levels of IL-17A in peripheral blood. However, levels of Th17/IL-17A in peripheral blood were lower at day 15 of exposure. We also observed increased IL-17A in the hippocampus beginning at 30 days of exposure. CONCLUSION These results indicate that O3 induces a short-term, systemic Th17-like/IL-17A effect and an increase of IL-17A in the hippocampal tissue during the chronic neurodegenerative process.
Collapse
Affiliation(s)
- H Solleiro-Villavicencio
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - S Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
319
|
Goszcz K, Duthie GG, Stewart D, Leslie SJ, Megson IL. Bioactive polyphenols and cardiovascular disease: chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response? Br J Pharmacol 2017; 174:1209-1225. [PMID: 28071785 PMCID: PMC5429332 DOI: 10.1111/bph.13708] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Polyphenols are widely regarded to have a wide range of health-promoting qualities, including beneficial effects on cardiovascular disease. Historically, the benefits have been linked to their well-recognized powerful antioxidant activity. However, the concept that the beneficial effects are attributable to direct antioxidant activity in vivo does not pay sufficient heed to the fact that polyphenols degrade rapidly, are poorly absorbed and rapidly metabolized, resulting in very low bioavailability. This review explores alternative mechanisms by which polyphenols, or their metabolites, exert biological activity via mechanisms that can be activated by physiologically relevant concentrations. Evidence is presented to support the action of phenolic derivatives on receptors and signalling pathways to induce adaptive responses that drive changes in endogenous antioxidant, antiplatelet, vasodilatory and anti-inflammatory effects. The implications are that in vitro antioxidant measures as predictors of polyphenol protective activity in vivo hold little relevance and that closer attention needs to be paid to bioavailable metabolites to understand the mode of action of these diet-derived components. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Katarzyna Goszcz
- Department of Diabetes and Cardiovascular ScienceUniversity of the Highlands and Islands, Centre for Health ScienceInvernessUK
| | - Garry G Duthie
- Rowett Institute of Nutrition and HealthUniversity of AberdeenAberdeenUK
| | - Derek Stewart
- The James Hutton InstituteDundeeUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | - Stephen J Leslie
- Department of Diabetes and Cardiovascular ScienceUniversity of the Highlands and Islands, Centre for Health ScienceInvernessUK
- Cardiology UnitRaigmore HospitalInvernessUK
| | - Ian L Megson
- Department of Diabetes and Cardiovascular ScienceUniversity of the Highlands and Islands, Centre for Health ScienceInvernessUK
| |
Collapse
|
320
|
Wang Y, Xiong L, Tang M. Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease. J Appl Toxicol 2017; 37:644-667. [PMID: 28299803 DOI: 10.1002/jat.3451] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 12/22/2022]
Abstract
Particulate matter (PM) combined with meteorological factors cause the haze, which brings inconvenience to people's daily life and deeply endanger people's health. Accumulating literature, to date, reported that PM are closely related to cardiopulmonary disease. Outpatient visits and admissions as a result of asthma and heart attacks gradually increase with an elevated concentration of PM. Owing to its special physicochemical property, the brain could be a potential target beyond the cardiopulmonary system. Possible routes of PM to the brain via a direct route or stimulation of pro-inflammatory cytokines have been reported in several documents concerning toxicity of engineered nanoparticles in rodents. Recent studies have demonstrated that PM have implications in oxidative stress, inflammation, dysfunction of cellular organelles, as well as the disturbance of protein homeostasis, promoting neuron loss and exaggerating the burden of central nervous system (CNS). Moreover, the smallest particles (nano-sized particles), which were involved in inflammation, reactive oxygen species (ROS), microglial activation and neuron loss, may accelerate the process of the neurodevelopmental disorder and neurodegenerative disease. Potential or other undiscovered mechanisms are not mutually exclusive but complementary aspects of each other. Epidemiology studies have shown that exposure to PM could bring about neurotoxicity and play a significant role in the etiology of CNS disease, which has been gradually corroborated by in vivo and in vitro studies. This review highlights research advances on the health effects of PM with an emphasis on neurotoxicity. With the hope of enhancing awareness in the public and calling for prevention and protective measures, it is a critical topic that requires proceeding exploration. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lilin Xiong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
321
|
Lee EY, Lin J, Noth EM, Hammond SK, Nadeau KC, Eisen EA, Balmes JR. Traffic-Related Air Pollution and Telomere Length in Children and Adolescents Living in Fresno, CA: A Pilot Study. J Occup Environ Med 2017; 59:446-452. [PMID: 28486341 PMCID: PMC5424623 DOI: 10.1097/jom.0000000000000996] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The main objective of this pilot study was to gather preliminary information about how telomere length (TL) varies in relation to exposure to polycyclic aromatic hydrocarbons (PAHs) in children living in a highly polluted city. METHODS We conducted a cross-sectional study of children living in Fresno, California (n = 14). Subjects with and without asthma were selected based on their annual average PAH level in the 12-months prior to their blood draw. We measured relative telomere length from peripheral blood mononuclear cells (PBMC). RESULTS We found an inverse linear relationship between average PAH level and TL (R = 0.69), as well as between age and TL (R = 0.21). Asthmatics had shorter mean telomere length than non-asthmatics (TLasthmatic = 1.13, TLnon-asthmatic = 1.29). CONCLUSIONS These preliminary findings suggest that exposure to ambient PAH may play a role in telomere shortening.Become familiar with previous evidence suggesting that telomere length may be a biomarker of air pollution-induced cytotoxicity.Summarize the new findings on the association between polycyclic aromatic hydrocarbon (PAH) exposure and telomere length in adolescents, including those with asthma.Discuss the implications for recommendations and policies to mitigate the health and respiratory effects of traffic-related air pollution.
Collapse
Affiliation(s)
- Eunice Y. Lee
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Elizabeth M. Noth
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - S. Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Kari C. Nadeau
- Division of Immunology and Allergy, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Ellen A. Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - John R. Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Division of Occupational and Environmental Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
322
|
Kim HJ, Choi MG, Park MK, Seo YR. Predictive and Prognostic Biomarkers of Respiratory Diseases due to Particulate Matter Exposure. J Cancer Prev 2017; 22:6-15. [PMID: 28382281 PMCID: PMC5380184 DOI: 10.15430/jcp.2017.22.1.6] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
Air pollution is getting severe and concerns about its toxicity effects on airway and lung disease are also increasing. Particulate matter (PM) is major component of air pollutant. It causes respiratory diseases, such as asthma, chronic obstructive pulmonary disease, lung cancer, and so on. PM particles enter the airway and lung by inhalation, causing damages to them. Especially, PM2.5 can penetrate into the alveolus and pass to the systemic circulation. It can affect the cardiopulmonary system and cause cardiopulmonary disorders. In this review, we focused on PM-inducing toxicity mechanisms in the framework of oxidative stress, inflammation, and epigenetic changes. We also reviewed its correlation with respiratory diseases. In addition, we reviewed biomarkers related to PM-induced respiratory diseases. These biomarkers might be used for disease prediction and early diagnosis. With recent trend of using genomic analysis tools in the field of toxicogenomics, respiratory disease biomarkers associated with PM will be continuously investigated. Effective biomarkers derived from earlier studies and further studies might be utilized to reduce respiratory diseases.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Dongguk Bio-Med Campus, Dongguk University, Goyang, Korea
| | - Min Gi Choi
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Dongguk Bio-Med Campus, Dongguk University, Goyang, Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Young Rok Seo
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Dongguk Bio-Med Campus, Dongguk University, Goyang, Korea
| |
Collapse
|
323
|
Manigrasso M, Natale C, Vitali M, Protano C, Avino P. Pedestrians in Traffic Environments: Ultrafine Particle Respiratory Doses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E288. [PMID: 28282961 PMCID: PMC5369124 DOI: 10.3390/ijerph14030288] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 11/16/2022]
Abstract
Particulate matter has recently received more attention than other pollutants. PM10 and PM2.5 have been primarily monitored, whereas scientists are focusing their studies on finer granulometric sizes due both to their high number concentration and their high penetration efficiency into the respiratory system. The purpose of this study is to investigate the population exposure to UltraFine Particles (UFP, submicrons in general) in outdoor environments. The particle number doses deposited into the respiratory system have been compared between healthy individuals and persons affected by Chronic Obstructive Pulmonary Disease (COPD). Measurements were performed by means of Dust Track and Nanoscan analyzers. Forty minute walking trails through areas with different traffic densities in downtown Rome have been considered. Furthermore, particle respiratory doses have been estimated for persons waiting at a bus stop, near a traffic light, or along a high-traffic road, as currently occurs in a big city. Large differences have been observed between workdays and weekdays: on workdays, UFP number concentrations are much higher due to the strong contribution of vehicular exhausts. COPD-affected individuals receive greater doses than healthy individuals due to their higher respiratory rate.
Collapse
Affiliation(s)
- Maurizio Manigrasso
- Department of Technological Innovations, National Institute for Insurance against Accidents at Work, Research Area, via Roberto Ferruzzi 38/40, I-00143 Rome, Italy.
| | - Claudio Natale
- Department of Technological Innovations, National Institute for Insurance against Accidents at Work, Research Area, via Roberto Ferruzzi 38/40, I-00143 Rome, Italy.
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 5, I-00185 Rome, Italy.
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 5, I-00185 Rome, Italy.
| | - Pasquale Avino
- Department of Technological Innovations, National Institute for Insurance against Accidents at Work, Research Area, via Roberto Ferruzzi 38/40, I-00143 Rome, Italy.
- Department of Agriculture, Environment and Food, University of Molise, via de Sanctis, I-86100 Campobasso, Italy.
| |
Collapse
|
324
|
Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roqué PJ. Neurotoxicity of traffic-related air pollution. Neurotoxicology 2017; 59:133-139. [PMID: 26610921 PMCID: PMC4875879 DOI: 10.1016/j.neuro.2015.11.008] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/10/2015] [Accepted: 11/15/2015] [Indexed: 12/31/2022]
Abstract
The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer's disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300μg/m3 for 6h) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Neuroscience, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Pamela J Roqué
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
325
|
Pardo M, Katra I, Schaeur JJ, Rudich Y. Mitochondria-mediated oxidative stress induced by desert dust in rat alveolar macrophages. GEOHEALTH 2017; 1:4-16. [PMID: 32158977 PMCID: PMC7007135 DOI: 10.1002/2016gh000017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/25/2016] [Accepted: 01/18/2017] [Indexed: 05/10/2023]
Abstract
Exposure to ambient particulate matter (PM), including PM from resuspension of soils and dusts, increases the risk for respiratory diseases. However, the exact mechanism of PM-mediated damage to the lungs remains unclear. Due to recent increases in the frequency of dust storms in many areas, we examined the cytotoxic effects of soil-dust samples collected in an arid zone in Israel on rat lung macrophages. The desert soil contains soil crusts and low levels of toxic metal content. Exposure of cells to water extracts from the dust samples caused significant reduction in the concentration of live cells and overall cell viability. The dust samples induced cell death through apoptosis, mitochondrial dysfunction, and increased mitochondrial lipid peroxidation. The dust samples generated more reactive oxygen species (ROS) compared to control-treated samples and National Institute of Standards and Technology San Joaquin Valley standard reference material. To assess whether the oxidative imbalance induced by dust extract also interferes with the antioxidant defense, we evaluated phase II detoxifying and antioxidant enzymes, which are Nrf2 classical targets. The Nrf2 transcription factor is a master regulator of cellular adaptation to stress. The dust extracts produced a significant increase in phase II detoxifying genes. This work suggests that the health-related injury observed in rat lung cells exposed to dust extracts is associated with ROS generation, mitochondrial dysfunction, mitochondrial lipid peroxidation, and cellular antioxidant imbalance. Damage to lung mitochondria may be an important mechanism by which dust-containing bacterial material induces lung injury upon inhalation.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Itzhak Katra
- Department of Geography and Environmental DevelopmentBen‐Gurion University of the NegevBeershebaIsrael
| | - James J. Schaeur
- Environmental Chemistry and Technology ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yinon Rudich
- Department of Earth and Planetary SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
326
|
Priftis A, Papikinos K, Koukoulanaki M, Kerasioti E, Stagos D, Konstantinopoulos K, Spandidos DA, Kermenidou M, Karakitsios S, Sarigiannis D, Tsatsakis AM, Kouretas D. Development of an assay to assess genotoxicity by particulate matter extract. Mol Med Rep 2017; 15:1738-1746. [PMID: 28260086 PMCID: PMC5365018 DOI: 10.3892/mmr.2017.6171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/30/2017] [Indexed: 01/11/2023] Open
Abstract
The current study describes a method for assessing the oxidative potential of common environmental stressors (ambient air particulate matter), using a plasmid relaxation assay where the extract caused single-strand breaks, easily visualised through electrophoresis. This assay utilises a miniscule amount (11 µg) of particulate matter (PM) extract compared to other, cell-based methods (~3,000 µg). The negative impact of air pollution on human health has been extensively recognised. Among the air pollutants, PM plays an eminent role, as reflected in the broad scientific interest. PM toxicity highly depends on its composition (metals and organic compounds), which in turn has been linked to multiple health effects (such as cardiorespiratory diseases and cancer) through multiple toxicity mechanisms; the induction of oxidative stress is considered a major mechanism among these. In this study, the PM levels, oxidative potential, cytotoxicity and genotoxicity of PM in the region of Larissa, Greece were examined using the plasmid relaxation assay. Finally, coffee extracts from different varieties, derived from both green and roasted seeds, were examined for their ability to inhibit PM-induced DNA damage. These extracts also exerted an inhibitory effect on xanthine oxidase and catalase, but had no effect against superoxide dismutase. Overall, this study highlights the importance of assays for assessing the oxidative potential of widespread environmental stressors (PM), as well as the antioxidant capacity of beverages and food items, with the highlight being the development of a plasmid relaxation assay to assess the genotoxicity caused by PM using only a miniscule amount.
Collapse
Affiliation(s)
- Alexandros Priftis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Konstantinos Papikinos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Marina Koukoulanaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Efthalia Kerasioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71409, Greece
| | - Marianthi Kermenidou
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, Thessaloniki 54124, Greece
| | - Spyros Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, Thessaloniki 54124, Greece
| | - Dimosthenis Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, Thessaloniki 54124, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| |
Collapse
|
327
|
Wang Z, Pang W, He C, Li Y, Jiang Y, Guo C. Blueberry Anthocyanin-Enriched Extracts Attenuate Fine Particulate Matter (PM 2.5)-Induced Cardiovascular Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:87-94. [PMID: 27996266 DOI: 10.1021/acs.jafc.6b04603] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Blueberry anthocyanin-enriched extracts (BAE) at three doses (0.5, 1.0, and 2.0 g/kg) were administered by oral gavage to rats exposed to 10 mg/kg fine particulate matter (PM2.5) three times a week. A positive control group was exposed to PM2.5 without BAE treatment. We analyzed heart rate (HR), electrocardiogram (ECG), and histopathology, and biomarkers of cardiovascular system injuries, systemic inflammation, oxidative stress, endothelial function, and apoptosis. Results indicated that BAE, particularly at 1.0 g/kg, improved ECG and decreased cytokine levels in PM2.5-exposed rats. These changes were accompanied by an increase in interleukin 10 levels and superoxide dismutase activity in heart tissue and Bcl-2 protein expression, as well as a decrease in interleukin 6, malondialdehyde, endothelin 1, and angiotensin II levels and a reduction in Bax protein expression. This study demonstrates that BAE at certain doses can protect the cardiovascular system from PM2.5-induced damage.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Public Health, Guangxi Medical University , Nanning 530021, China
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| | - Wei Pang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| | - Congcong He
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| | - Yibo Li
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| | - Yugang Jiang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| | - Changjiang Guo
- School of Public Health, Guangxi Medical University , Nanning 530021, China
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| |
Collapse
|
328
|
Carbon monoxide pollution aggravates ischemic heart failure through oxidative stress pathway. Sci Rep 2017; 7:39715. [PMID: 28045070 PMCID: PMC5206643 DOI: 10.1038/srep39715] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
Risk of hospital readmission and cardiac mortality increases with atmospheric pollution for patients with heart failure. The underlying mechanisms are unclear. Carbon monoxide (CO) a ubiquitous environmental pollutant could be involved. We explored the effect of daily exposure of CO relevant to urban pollution on post-myocardial infarcted animals. Rats with ischemic heart failure were exposed 4 weeks to daily peaks of CO mimicking urban exposure or to standard filtered air. CO exposure worsened cardiac contractile dysfunction evaluated by echocardiography and at the cardiomyocyte level. In line with clinical reports, the animals exposed to CO also exhibited a severe arrhythmogenic phenotype with numerous sustained ventricular tachycardias as monitored by surface telemetric electrocardiograms. CO did not affect cardiac β-adrenergic responsiveness. Instead, mitochondrial dysfunction was exacerbated leading to additional oxidative stress and Ca2+ cycling alterations. This was reversed following acute antioxidant treatment of cardiomyocytes with N-acetylcysteine confirming involvement of CO-induced oxidative stress. Exposure to daily peaks of CO pollution aggravated cardiac dysfunction in rats with ischemic heart failure by specifically targeting mitochondria and generating ROS-dependent alterations. This pathway may contribute to the high sensibility and vulnerability of individuals with cardiac disease to environmental outdoor air quality.
Collapse
|
329
|
Barth A, Brucker N, Moro AM, Nascimento S, Goethel G, Souto C, Fracasso R, Sauer E, Altknecht L, da Costa B, Duarte M, Menezes CB, Tasca T, Arbo MD, Garcia SC. Association between inflammation processes, DNA damage, and exposure to environmental pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:353-362. [PMID: 27718115 DOI: 10.1007/s11356-016-7772-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Environmental exposure to pollutants, especially polycyclic aromatic hydrocarbons (PAHs), could lead to carcinogenesis development. However, there is a gap on the mechanisms involved in this effect. Therefore, the aim of this study was to investigate the potential relationship between exposure to environmental air pollution and inflammation process in DNA damage in taxi drivers. This study included 45 taxi drivers and 40 controls; non-smokers composed both groups. Biological monitoring was performed through quantification of urinary 1-hydroxypyrene (1-OHP). ICAM-1 (CD54) expression, NTPDase activity, inflammatory cytokine (IL-1β, IL-6, IL-10, TNF-α and IFN-γ) levels, and comet and micronucleus assays were evaluated. The results demonstrated that 1-OHP levels, ICAM-1 expression, NTPDase activity, and DNA damage biomarkers (% tail DNA and micronucleus frequency) were increased in taxi drivers compared to the control group (p < 0.01). Moreover, significant associations were found between 1-OHP levels and ICAM-1 expression, % tail DNA, and micronucleus frequency (p < 0.05). Besides, pro-inflammatory cytokine levels were positively correlated to % tail DNA and micronucleus frequency (p < 0.001). Our findings suggest an important association between environmental exposure to air pollution with increase of ICAM-1 expression and NTPDase activity in taxi drivers. Additionally, the multiple regression linear-analysis demonstrated association between IL-6 and DNA damage. Thus, the present study has provided important evidence that, in addition to environmental exposure to air pollutants, the inflammation process may contribute to DNA damage.
Collapse
Affiliation(s)
- Anelise Barth
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
| | - Natália Brucker
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
| | - Angela M Moro
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
| | - Sabrina Nascimento
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Goethel
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Souto
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
| | - Rafael Fracasso
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Louise Altknecht
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
| | - Bárbara da Costa
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
| | - Marta Duarte
- Department of Health Sciences, Lutheran University of Brazil, Santa Maria, RS, Brazil
| | - Camila B Menezes
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Research in Parasitology, Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Research in Parasitology, Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo D Arbo
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil.
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Institute of Cardiology, University Cardiology Foundation, Porto Alegre, RS, Brazil.
| |
Collapse
|
330
|
Traffic-Related Air Pollution and Neurodegenerative Diseases: Epidemiological and Experimental Evidence, and Potential Underlying Mechanisms. ADVANCES IN NEUROTOXICOLOGY 2017. [DOI: 10.1016/bs.ant.2017.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
331
|
Gruzieva O, Xu CJ, Breton CV, Annesi-Maesano I, Antó JM, Auffray C, Ballereau S, Bellander T, Bousquet J, Bustamante M, Charles MA, de Kluizenaar Y, den Dekker HT, Duijts L, Felix JF, Gehring U, Guxens M, Jaddoe VV, Jankipersadsing SA, Merid SK, Kere J, Kumar A, Lemonnier N, Lepeule J, Nystad W, Page CM, Panasevich S, Postma D, Slama R, Sunyer J, Söderhäll C, Yao J, London SJ, Pershagen G, Koppelman GH, Melén E. Epigenome-Wide Meta-Analysis of Methylation in Children Related to Prenatal NO2 Air Pollution Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:104-110. [PMID: 27448387 PMCID: PMC5226705 DOI: 10.1289/ehp36] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Prenatal exposure to air pollution is considered to be associated with adverse effects on child health. This may partly be mediated by mechanisms related to DNA methylation. OBJECTIVES We investigated associations between exposure to air pollution, using nitrogen dioxide (NO2) as marker, and epigenome-wide cord blood DNA methylation. METHODS We meta-analyzed the associations between NO2 exposure at residential addresses during pregnancy and cord blood DNA methylation (Illumina 450K) in four European and North American studies (n = 1,508) with subsequent look-up analyses in children ages 4 (n = 733) and 8 (n = 786) years. Additionally, we applied a literature-based candidate approach for antioxidant and anti-inflammatory genes. To assess influence of exposure at the transcriptomics level, we related mRNA expression in blood cells to NO2 exposure in 4- (n = 111) and 16-year-olds (n = 239). RESULTS We found epigenome-wide significant associations [false discovery rate (FDR) p < 0.05] between maternal NO2 exposure during pregnancy and DNA methylation in newborns for 3 CpG sites in mitochondria-related genes: cg12283362 (LONP1), cg24172570 (3.8 kbp upstream of HIBADH), and cg08973675 (SLC25A28). The associations with cg08973675 methylation were also significant in the older children. Further analysis of antioxidant and anti-inflammatory genes revealed differentially methylated CpGs in CAT and TPO in newborns (FDR p < 0.05). NO2 exposure at the time of biosampling in childhood had a significant impact on CAT and TPO expression. CONCLUSIONS NO2 exposure during pregnancy was associated with differential offspring DNA methylation in mitochondria-related genes. Exposure to NO2 was also linked to differential methylation as well as expression of genes involved in antioxidant defense pathways. Citation: Gruzieva O, Xu CJ, Breton CV, Annesi-Maesano I, Antó JM, Auffray C, Ballereau S, Bellander T, Bousquet J, Bustamante M, Charles MA, de Kluizenaar Y, den Dekker HT, Duijts L, Felix JF, Gehring U, Guxens M, Jaddoe VV, Jankipersadsing SA, Merid SK, Kere J, Kumar A, Lemonnier N, Lepeule J, Nystad W, Page CM, Panasevich S, Postma D, Slama R, Sunyer J, Söderhäll C, Yao J, London SJ, Pershagen G, Koppelman GH, Melén E. 2017. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect 125:104-110; http://dx.doi.org/10.1289/EHP36.
Collapse
Affiliation(s)
- Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Address corresponence to O. Gruzieva, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, SE-17177 Stockholm, Sweden. Telephone: 46852480022. E-mail:
| | - Cheng-Jian Xu
- Groningen Research Institute for Asthma and COPD (GRIAC), Department of Pulmonology, and
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Carrie V. Breton
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Isabella Annesi-Maesano
- Department of Epidemiology of Allergic and Respiratory Diseases, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Josep M. Antó
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, Université de Lyon, Lyon, France
| | - Stéphane Ballereau
- European Institute for Systems Biology and Medicine, Université de Lyon, Lyon, France
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Jean Bousquet
- CHU (Centre Hospitalier Universitaire) Montpellier, University of Montpellier, Montpellier, France
| | - Mariona Bustamante
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marie-Aline Charles
- Early Origin of the Child’s Health And Development (ORCHAD) team, Centre de Recherche Épidémiologie et Statistique Sorbonne Paris Cité (CRESS-UMR1153) Inserm, Université Paris Descartes, Villejuif, France
| | - Yvonne de Kluizenaar
- The Netherlands Organization for Applied Scientific Research (TNO), Delft, the Netherlands
| | - Herman T. den Dekker
- Generation R Study Group,
- Department of Epidemiology, and
- Department of Pediatrics, Erasmus MC (Medical Centre), University Medical Center, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- Generation R Study Group,
- Department of Epidemiology, and
- Department of Pediatrics, Erasmus MC (Medical Centre), University Medical Center, Rotterdam, the Netherlands
| | - Janine F. Felix
- Generation R Study Group,
- Department of Epidemiology, and
- Department of Pediatrics, Erasmus MC (Medical Centre), University Medical Center, Rotterdam, the Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Mònica Guxens
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre–Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Vincent V.W. Jaddoe
- Generation R Study Group,
- Department of Epidemiology, and
- Department of Pediatrics, Erasmus MC (Medical Centre), University Medical Center, Rotterdam, the Netherlands
| | - Soesma A. Jankipersadsing
- Groningen Research Institute for Asthma and COPD (GRIAC), Department of Pulmonology, and
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Simon Kebede Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Ashish Kumar
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Chronic Disease Epidemiology, Department of Public Health Epidemiology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nathanael Lemonnier
- European Institute for Systems Biology and Medicine, Université de Lyon, Lyon, France
| | - Johanna Lepeule
- Team of Environmental Epidemiology, Inserm and University Grenoble-Alpes, IAB (U1209), Grenoble, France
| | - Wenche Nystad
- Division for Physical and Mental health, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian Magnus Page
- Division for Physical and Mental health, Norwegian Institute of Public Health, Oslo, Norway
| | - Sviatlana Panasevich
- Division for Physical and Mental health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dirkje Postma
- Groningen Research Institute for Asthma and COPD (GRIAC), Department of Pulmonology, and
| | - Rémy Slama
- Team of Environmental Epidemiology, Inserm and University Grenoble-Alpes, IAB (U1209), Grenoble, France
| | - Jordi Sunyer
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Women´s and Children´s Health, Karolinska Institutet, Stockholm, Sweden
| | - Jin Yao
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Stephanie J. London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Gerard H. Koppelman
- Groningen Research Institute for Asthma and COPD (GRIAC), Beatrix Children’s Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
- Sachs Children’s Hospital, Stockholm, Sweden
| |
Collapse
|
332
|
Yang L, Wang WC, Lung SCC, Sun Z, Chen C, Chen JK, Zou Q, Lin YH, Lin CH. Polycyclic aromatic hydrocarbons are associated with increased risk of chronic obstructive pulmonary disease during haze events in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1649-1658. [PMID: 27614859 DOI: 10.1016/j.scitotenv.2016.08.211] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/28/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
Although exposure to particulate matter with a diameter of <2.5μm (PM2.5) is associated with chronic obstructive pulmonary disease (COPD), the major components of PM2.5 in COPD pathogenesis are controversial. Here we employed the human lung epithelial cell line BEAS-2B to elucidate the association between COPD and the organic and water-soluble components of PM2.5. We found that the PM2.5 organic extract was a potential major risk factor for pulmonary epithelial barrier dysfunction through the depletion of proteins from the zonula occludens. This extract induced severe oxidative stress that increased DNA damage and the production of proinflammatory cytokines by BEAS-2B cells as well as decreased α1-antitrypsin expression, suggesting a mechanism that increases the risk of COPD. These effects were mainly mediated by polycyclic aromatic hydrocarbons (PAHs) through the aryl hydrocarbon receptor pathway. PAHs with high benzo(a)pyrene (BaP)-equivalent concentrations, but not major PAH components, have an increased risk of causing COPD, suggesting that BaP-equivalent concentrations represent a PM2.5-induced COPD risk metric, which may contribute to provide a rationale for the remediation of air pollution.
Collapse
Affiliation(s)
- Lingyan Yang
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wen-Cheng Wang
- Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan
| | | | - Zhelin Sun
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jen-Kun Chen
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Qiang Zou
- Suzhou Environmental Monitor Center, Suzhou 215004, China
| | - Yu-Hsin Lin
- Department of Food and Beverage Management, Taipei College of Maritime Technology, Taipei 11174, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan.
| |
Collapse
|
333
|
Cole TB, Coburn J, Dao K, Roqué P, Chang YC, Kalia V, Guilarte TR, Dziedzic J, Costa LG. Sex and genetic differences in the effects of acute diesel exhaust exposure on inflammation and oxidative stress in mouse brain. Toxicology 2016; 374:1-9. [PMID: 27865893 PMCID: PMC5154914 DOI: 10.1016/j.tox.2016.11.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/28/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
In addition to increased morbidity and mortality caused by respiratory and cardiovascular diseases, air pollution may also contribute to central nervous system (CNS) diseases. Traffic-related air pollution is a major contributor to global air pollution, and diesel exhaust (DE) is its most important component. DE contains more than 40 toxic air pollutants and is a major constituent of ambient particulate matter (PM), particularly of ultrafine-PM. Limited information suggests that exposure to DE may cause oxidative stress and neuroinflammation in the CNS. We hypothesized that males may be more susceptible than females to DE neurotoxicity, because of a lower level of expression of paraoxonase 2 (PON2), an intracellular anti-oxidant and anti-inflammatory enzyme. Acute exposure of C57BL/6 mice to DE (250-300μg/m3 for 6h) caused significant increases in lipid peroxidation and of pro-inflammatory cytokines (IL-1α, IL-1β, IL-3, IL-6, TNF-α) in various brain regions (particularly olfactory bulb and hippocampus). In a number of cases the observed effects were more pronounced in male than in female mice. DE exposure also caused microglia activation, as measured by increased Iba1 (ionized calcium-binding adapter molecule 1) expression, and of TSPO (translocator protein) binding. Mice heterozygotes for the modifier subunit of glutamate cysteine ligase (the limiting enzyme in glutathione biosynthesis; Gclm+/- mice) appeared to be significantly more susceptible to DE-induced neuroinflammation than wild type mice. These findings indicate that acute exposure to DE causes neuroinflammation and oxidative stress in brain, and suggest that sex and genetic background may play important roles in modulating susceptibility to DE neurotoxicity.
Collapse
Affiliation(s)
- Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Pam Roqué
- Dept. of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Vrinda Kalia
- Dept. of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Tomas R Guilarte
- Dept. of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jennifer Dziedzic
- Dept. of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Dept. of Neuroscience, University of Parma, Italy.
| |
Collapse
|
334
|
Yuan X, Wang Y, Li L, Zhou W, Tian D, Lu C, Yu S, Zhao J, Peng S. PM 2.5 induces embryonic growth retardation: Potential involvement of ROS-MAPKs-apoptosis and G0/G1 arrest pathways. ENVIRONMENTAL TOXICOLOGY 2016; 31:2028-2044. [PMID: 26472167 DOI: 10.1002/tox.22203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
Airborne fine particulate matter (PM2.5 ) is an "invisible killer" to human health. There is increasing evidence revealing the adverse effects of PM2.5 on the early embryonic development and pregnancy outcome, but the molecular mechanism underlying PM2.5 -induced embryotoxicity is largely unknown. Previous studies have documented that exposure to PM triggers ROS generation, leads to subsequent activation of MAPKs signaling, and results in corresponding cell biological changes including enhanced apoptosis and altered cell cycle in the cardiopulmonary system. Here, we investigated whether ROS-MAPKs-apoptosis/cell cycle arrest pathways play an important role in PM2.5 -induced embryotoxicity using the rat whole embryo culture system. The results showed that PM2.5 treatment led to embryonic growth retardation at concentrations of 50 μg/ml and above, as evidenced by the reduced yolk sac diameter, crown-rump length, head length and somite number. PM2.5 -induced embryonic growth retardation was accompanied by cell apoptosis and G0/G1 phase arrest. Furthermore, ROS generation and subsequent activation of JNK and ERK might be involved in PM2.5 -induced apoptosis and G0/G1 phase arrest by downregulating Bcl-2/Bax protein ratio and upregulating p15INK4B , p16INK4A , and p21WAF1/CIP1 transcription level. In conclusion, our results indicate that ROS-JNK/ERK-apoptosis and G0/G1 arrest pathways are involved in PM2.5 -induced embryotoxicity, which not only provides insights into the molecular mechanism of PM2.5 -induced embryotoxicity, but also may help to identify specific interventions to improve adverse pregnancy outcomes of PM2.5 . © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 2028-2044, 2016.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Yimei Wang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Lizhong Li
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Wei Zhou
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Dongdong Tian
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Chunfeng Lu
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Shouzhong Yu
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Jun Zhao
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Shuangqing Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| |
Collapse
|
335
|
Hou J, Yang Y, Huang X, Song Y, Sun H, Wang J, Hou F, Liu C, Chen W, Yuan J. Aging with higher fractional exhaled nitric oxide levels are associated with increased urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine concentrations in elder females. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23815-23824. [PMID: 27628697 DOI: 10.1007/s11356-016-7491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Indoor air pollutants from environmental tobacco smoke and cooking fume can induce oxidative stress and inflammatory response, which generate oxidatively damaged DNA in human body. Among 2224 adults, levels of FENO and urinary 8-oxodG were measured using a nano coulomb nitric oxide analyzer and a high performance liquid chromatography system with electrochemical detector, respectively. Association between aging with higher FENO levels and urinary 8-oxodG levels were analyzed using multiple linear regression analysis. Nonsmoking women aged 64 years and over, with higher FENO (≥ 25 part per billion) and self-catering but without passive smoking had a higher risk of increased urinary 8-oxodG (△% of urinary 8-oxodG: 81.3 %, 95 % CI: 27.4-158.0 %) levels, particularly these elderly women with using liquefied petroleum gas for cooking, had a higher risk for increased urinary 8-oxodG levels (△% of urinary 8-oxodG: 100.2 %, 95 % CI: 95 % CI: 35.3-196.3 %), compared with those aged less than 64 years, with lower FENO (< 25 part per billion). Cooking activity aggravated aging-related the aging-induced in urinary 8-oxodG excretion among nonsmoking women aged 64 years and over but without passive smoking.
Collapse
Affiliation(s)
- Jian Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuqing Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
| | - Xiji Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuanchao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
| | - Huizhen Sun
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
| | - Jianshu Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
| | - Fan Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
| | - Chuanyao Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China.
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
336
|
León-Mejía G, Silva LFO, Civeira MS, Oliveira MLS, Machado M, Villela IV, Hartmann A, Premoli S, Corrêa DS, Da Silva J, Henriques JAP. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24019-24031. [PMID: 27638803 DOI: 10.1007/s11356-016-7623-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
Exposure to coal and coal ashes can cause harmful effects in in vitro and in vivo systems, mainly by the induction of oxidative damage. The aim of this work was to assess cytotoxic and genotoxic effects using the V79 cell line treated with coal and coal fly ash particles derived from a coal power plant located in Santa Catarina, Brazil. Two coal samples (COAL11 and COAL16) and two coal fly ash samples (CFA11 and CFA16) were included in this study. COAL16 was co-firing with a mixture of fuel oil and diesel oil. The comet assay data showed that exposure of V79 cells to coal and coal fly ash particles induced primary DNA lesions. Application of lesion-specific endonucleases (FPG and ENDO III) demonstrated increased DNA effects indicating the presence of high amounts of oxidative DNA lesions. The cytokinesis-block micronucleus cytome assay analysis showed that exposure of V79 cells to high concentrations of coal and coal fly ash particles induced cytotoxic effects (apoptosis and necrosis) and chromosomal instability (nucleoplasmic bridges, nuclear buds, and micronucleus (MN) formation). These results may be associated with compounds contained in the surface of the particles as hazardous elements, ultrafine/nanoparticles, and polycyclic aromatic hydrocarbons (PAHs) which were detected in the samples. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Unidad de Investigación, Desarrollo e Innovación en Genética y Biología Molecular, Universidad Simón Bolívar, Barranquilla, Colombia.
| | - Luis F O Silva
- Research group in Environmental Management and Sustainability, Faculty of Environmental Sciences, Universidad de la Costa, Barranquilla, Colombia
- Universidade do Sul de Santa Catarina, Pró-Reitoria de Ensino, de Pesquisa e de Extensão, UNISUL -Universidade do Sul de Santa Catarina Pedra Branca, Palhoça, SC, 88137900, Brazil
| | - Matheus S Civeira
- Universidade do Sul de Santa Catarina, Pró-Reitoria de Ensino, de Pesquisa e de Extensão, UNISUL -Universidade do Sul de Santa Catarina Pedra Branca, Palhoça, SC, 88137900, Brazil
| | - Marcos L S Oliveira
- Universidade do Sul de Santa Catarina, Pró-Reitoria de Ensino, de Pesquisa e de Extensão, UNISUL -Universidade do Sul de Santa Catarina Pedra Branca, Palhoça, SC, 88137900, Brazil
| | - Miriana Machado
- InnVitro Pesquisa e Desenvolvimento, Porto Alegre, RS, Brazil
| | | | | | - Suziane Premoli
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Dione Silva Corrêa
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Juliana Da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - João Antônio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
337
|
Visentin M, Pagnoni A, Sarti E, Pietrogrande MC. Urban PM 2.5 oxidative potential: Importance of chemical species and comparison of two spectrophotometric cell-free assays. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:72-79. [PMID: 27661730 DOI: 10.1016/j.envpol.2016.09.047] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 05/20/2023]
Abstract
Oxidative potential (OP) of particulate matter (PM) - defined as the capacity of PM to oxidize target molecules generating reactive oxygen species (ROS) - has been proposed as a more health relevant metric than PM mass. In this study two cell-free methods were used to assess the OP of PM filters collected at an urban site and to evaluate correlation with PM mass and PM composition. Among the different assays existing, two inexpensive and user-friendly methods were used both based on spectrophotometric measurements of depletion rate of target reagents oxidized by redox-active species present in PM. One assay measures the consumption of dithiothreitol (OPDTT) and the other the ascorbate (OPAA). Although both assays respond to the same redox-active species, i.e., quinones and transition metals, no correlations were found between OPDTT and OPAA responses to compounds standard solutions as well as to ambient samples. When expressed in relation to air volume, OPDTT m-3 strongly correlates with PM2.5 mass whereas no correlation was found for OPAA m-3 with PM2.5. When expressed on mass basis, both OPDTT μg-1 and OPAA μg-1 show a strong dependence on the sample composition, with higher OP for summer samples. OPDTT m-3 were highly correlated with the determined metals (Cu, Zn, Cr, Fe, Ni, Mn) whereas OPAA m-3 showed only moderate correlation with Cu and Mn. Thus, the two assays could potentially provide complementary information on oxidative potential characteristic of PM. Consequently, the combination of the two approaches can strengthen each other in giving insight into the contribution of chemical composition to oxidative properties of PM, which can subsequently be used to study health effects.
Collapse
Affiliation(s)
- Marco Visentin
- Department of Chemical and Pharmaceutical Sciences, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Antonella Pagnoni
- Department of Chemical and Pharmaceutical Sciences, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Elena Sarti
- Department of Chemical and Pharmaceutical Sciences, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Maria Chiara Pietrogrande
- Department of Chemical and Pharmaceutical Sciences, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy.
| |
Collapse
|
338
|
Leclercq B, Happillon M, Antherieu S, Hardy EM, Alleman LY, Grova N, Perdrix E, Appenzeller BM, Lo Guidice JM, Coddeville P, Garçon G. Differential responses of healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM 4. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:1074-1088. [PMID: 27593349 DOI: 10.1016/j.envpol.2016.08.059] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/24/2016] [Accepted: 08/24/2016] [Indexed: 05/25/2023]
Abstract
While the knowledge of the underlying mechanisms by which air pollution-derived particulate matter (PM) exerts its harmful health effects is still incomplete, detailed in vitro studies are highly needed. With the aim of getting closer to the human in vivo conditions and better integrating a number of factors related to pre-existing chronic pulmonary inflammatory, we sought to develop primary cultures of normal human bronchial epithelial (NHBE) cells and chronic obstructive pulmonary disease (COPD)-diseased human bronchial epithelial (DHBE) cells, grown at the air-liquid interface. Pan-cytokeratin and MUC5AC immunostaining confirmed the specific cell-types of both these healthy and diseased cell models and showed they are closed to human bronchial epithelia. Thereafter, healthy and diseased cells were repeatedly exposed to air pollution-derived PM4 at the non-cytotoxic concentration of 5 μg/cm2. The differences between the oxidative and inflammatory states in non-exposed NHBE and COPD-DHBE cells indicated that diseased cells conserved their specific physiopathological characteristics. Increases in both oxidative damage and cytokine secretion were reported in repeatedly exposed NHBE cells and particularly in COPD-DHBE cells. Diseased cells repeatedly exposed had lower capacities to metabolize the organic chemicals-coated onto the air-pollution-derived PM4, such as benzo[a]pyrene (B[a]P), but showed higher sensibility to the formation of OH-B[a]P DNA adducts, because their diseased state possibly affected their defenses. Differential profiles of epigenetic hallmarks (i.e., global DNA hypomethylation, P16 promoter hypermethylation, telomere length shortening, telomerase activation, and histone H3 modifications) occurred in repeatedly exposed NHBE and particularly in COPD-DHBE cells. Taken together, these results closely supported the highest responsiveness of COPD-DHBE cells to a repeated exposure to air pollution-derived PM4. The use of these innovative in vitro exposure systems such as NHBE and COPD-DHBE cells could therefore be consider as a very useful and powerful promising tool in the field of the respiratory toxicology, taking into account sensitive individuals.
Collapse
Affiliation(s)
- B Leclercq
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - M Happillon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - S Antherieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - E M Hardy
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - L Y Alleman
- Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - N Grova
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - E Perdrix
- Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - B M Appenzeller
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - P Coddeville
- Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - G Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France.
| |
Collapse
|
339
|
Abstract
Household air pollution is a leading cause of disability-adjusted life years in Southeast Asia and the third leading cause of disability-adjusted life years globally. There are at least sixty sources of household air pollution, and these vary from country to country. Indoor tobacco smoking, construction material used in building houses, fuel used for cooking, heating and lighting, use of incense and various forms of mosquito repellents, use of pesticides and chemicals used for cleaning at home, and use of artificial fragrances are some of the various sources that contribute to household air pollution. Household air pollution affects all stages of life with multi-systemic health effects, and its effects are evident right from pre-conception to old age.
In utero exposure to household air pollutants has been shown to have health effects which resonate over the entire lifetime. Exposures to indoor air pollutants in early childhood also tend to have repercussions throughout life. The respiratory system bears the maximum brunt, but effects on the cardiovascular system, endocrine system, and nervous system are largely underplayed. Household air pollutants have also been implicated in the development of various types of cancers. Identifying household air pollutants and their health implications helps us prepare for various health-related issues. However, the real challenge is adopting changes to reduce the health effects of household air pollution and designing innovative interventions to minimize the risk of further exposure. This review is an attempt to understand the various sources of household air pollution, the effects on health, and strategies to deal with this emergent risk factor of global mortality and morbidity.
Collapse
Affiliation(s)
| | - Sundeep Salvi
- Chest Research Foundation, Kalyaninagar, Pune, India
| |
Collapse
|
340
|
Gamon LF, Wille U. Oxidative Damage of Biomolecules by the Environmental Pollutants NO 2• and NO 3•. Acc Chem Res 2016; 49:2136-2145. [PMID: 27668965 DOI: 10.1021/acs.accounts.6b00219] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Air pollution is responsible for the premature death of about 7 million people every year. Ozone (O3) and nitrogen dioxide (NO2•) are the key gaseous pollutants in the troposphere, which predominantly result from combustion processes. Their inhalation leads to reactions with constituents in the airway surface fluids (ASF) of the respiratory tract and/or lungs. ASF contain small molecular-weight antioxidants, which protect the underlying epithelial cells against oxidative damage. When this defense system is overwhelmed, proteins and lipids present on cell surfaces or within the ASF become vulnerable to attack. The resulting highly reactive protein and lipid oxidation products could subsequently damage the epithelial cells through secondary reactions, thereby causing inflammation. While reactions of NO2• with biological molecules are considered to proceed through radical pathways, the biological effect of O3 is attributed to its high reactivity with π systems. Because O3 and NO2• always coexist in the polluted ambient atmosphere, synergistic effects resulting from in situ formed strongly oxidizing nitrate radicals (NO3•) may also require consideration. For example, in vitro product studies revealed that phenylalanine, which is inert not only to oxidants produced through biochemical processes, but also to NO2• or O3 in isolation, is damaged by NO3•. The reaction is initiated by oxidation of the aromatic ring and, depending on the availability of NO2•, leads to formation of nitrophenylalanine or β-nitrooxyphenylalanine, which could serve as marker for NO3•-induced oxidative damage in peptides. More easily oxidizable aromatic amino acids are directly attacked by NO2• and are converted to the same products independent of whether O3 is also present. Remarkably, NO2•-induced oxidative damage in peptides occurs not only through the well-established radical oxidation of peptide side chains, but also through an unprecedented fragmentation/rearrangement of the peptide backbone. This process is initiated by a nonradical N-nitrosation of a peptide bond involving the dimer of NO2•, i.e., N2O4, and contracts the peptide chain in the N → C direction by expelling one amino acid residue with simultaneous fusion of the remaining molecular termini, thereby forming a new peptide bond. This peptide cleavage could potentially be highly relevant for peptide segments with "nonvulnerable" side chains closer to the terminus that are not tied up in complex secondary and tertiary structures and therefore accessible for environmental oxidants. Likewise, NO2• reacts with cholesterol at the C═C moiety through an ionic mechanism, which leads to formation of 6-nitrocholesterol in the presence of moisture. Contrary to common belief, this clearly shows that ionic chemistry, in particular nitrosation reactions by intermediately formed NO+, requires consideration when assessing NO2• toxicity. This conclusion is supported by recent work by Colussi et al. (Enami, S.; Hoffmann, M. R.; Colussi, A. J. Absorption of inhaled NO2. J. Phys. Chem. B. 2009, 113, 7977-7981), who showed that anions in the airway surfaces fluids mediate NO2• absorption by catalyzing its hydrolytic disproportionation into NO2-/HNO2 and NO3-. These findings could be the key to our understanding why NO2•, despite its low water solubility, has such pronounced biological effects in vivo.
Collapse
Affiliation(s)
- Luke F. Gamon
- School of Chemistry and Bio21
Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Uta Wille
- School of Chemistry and Bio21
Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
341
|
Birch-Machin MA, Bowman A. Oxidative stress and ageing. Br J Dermatol 2016; 175 Suppl 2:26-29. [PMID: 27667312 DOI: 10.1111/bjd.14906] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 12/27/2022]
Abstract
Oxidative stress is the resultant damage due to redox imbalances (increase in destructive free radicals [reactive oxygen species (ROS)] and reduction in antioxidant protection/pathways) and is linked to ageing in many tissues including skin. In ageing skin there are bioenergetic differences between keratinocytes and fibroblasts which provide a potential ageing biomarker. The differences in skin bioenergy are part of the mitochondrial theory of ageing which remains one of the most widely accepted ageing theories describing subsequent increasing free radical generation. Mitochondria are the major source of cellular oxidative stress and form part of the vicious cycle theory of ageing. External and internal sources of oxidative stress include UVR/IR, pollution (environment), lifestyle (exercise and diet), alcohol and smoking all of which may potentially impact on skin although many exogenous actives and endogenous antioxidant defence systems have been described to help abrogate the increased stress. This also links to differences in skin cell types in terms of the UVR action spectrum for nuclear and mitochondrial DNA damage (the latter a previously described UVR biomarker in skin). Recent work associates bioenergy production and oxidative stress with pigment production thereby providing another additional potential avenue for targeted anti-ageing intervention in skin. This new data supporting the detrimental effects of the numerous wavelengths of UVR may aid in the development of cosmetic/sunscreen design to reduce the effects of photoageing. Recently, complex II of the mitochondrial electron transport chain appears to be more important than previously thought in the generation of free radicals (suggested predominantly by non-human studies). We investigated the relationship between complex II and ageing using human skin as a model tissue. The rate of complex II activity per unit of mitochondria was determined in fibroblasts and keratinocytes cultured from skin covering a wide age range. Complex II activity significantly decreased with age in fibroblasts (P = 0·015), but not in keratinocytes. This was associated with a significant decline in transcript expression (P = 0·008 and P = 0·001) and protein levels (P = 0·0006 and P = 0·005) of the SDHA and SDHB catalytic subunits of complex II respectively. In addition there was a significant decrease in complex II activity with age (P = 0·029) that was specific to senescent skin cells, our study being the first to investigate these differences with senescence and skin age. There was no decrease in complex IV activity with increasing age, suggesting possible locality to complex II. Our study provides a future potential biomarker for monitoring the progression of skin ageing.
Collapse
Affiliation(s)
- M A Birch-Machin
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University (medical school), Newcastle upon Tyne, NE24HH, U.K.
| | - A Bowman
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University (medical school), Newcastle upon Tyne, NE24HH, U.K
| |
Collapse
|
342
|
Saenen ND, Vrijens K, Janssen BG, Madhloum N, Peusens M, Gyselaers W, Vanpoucke C, Lefebvre W, Roels HA, Nawrot TS. Placental Nitrosative Stress and Exposure to Ambient Air Pollution During Gestation: A Population Study. Am J Epidemiol 2016; 184:442-9. [PMID: 27601048 DOI: 10.1093/aje/kww007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022] Open
Abstract
The placenta plays a crucial role in fetal growth and development through adaptive responses to perturbations of the maternal environment. We investigated the association between placental 3-nitrotyrosine (3-NTp), a biomarker of oxidative stress, and exposure to air pollutants during various time windows of pregnancy. We measured the placental 3-NTp levels of 330 mother-newborn pairs enrolled in the Environmental Influence on Ageing in Early Life (ENVIRONAGE) Study, a Belgian birth cohort study (2010-2013). Daily concentrations of particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5), black carbon (BC), and nitrogen dioxide were interpolated for each mother's residence using a spatiotemporal interpolation method. Placental 3-NTp levels, adjusted for covariates, increased by 35.0% (95% confidence interval (CI): 13.9, 60.0) for each interquartile-range increment in entire-pregnancy PM2.5 exposure. The corresponding estimate for BC exposure was 13.9% (95% CI: -0.21, 29.9). These results were driven by the first (PM2.5: 29.0% (95% CI: 4.9, 58.6); BC: 23.6% (95% CI: 4.4, 46.4)) and second (PM2.5: 39.3% (95% CI: 12.3, 72.7)) gestational exposure windows. This link between placental nitrosative stress and exposure to fine particle air pollution during gestation is in line with experimental evidence on cigarette smoke and diesel exhaust exposure. Further research is needed to elucidate potential health consequences experienced later in life through particle-mediated nitrosative stress incurred during fetal life.
Collapse
|
343
|
Roqué PJ, Dao K, Costa LG. Microglia mediate diesel exhaust particle-induced cerebellar neuronal toxicity through neuroinflammatory mechanisms. Neurotoxicology 2016; 56:204-214. [PMID: 27543421 DOI: 10.1016/j.neuro.2016.08.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
In addition to the well-established effects of air pollution on the cardiovascular and respiratory systems, emerging evidence has implicated it in inducing negative effects on the central nervous system. Diesel exhaust particulate matter (DEP), a major component of air pollution, is a complex mixture of numerous toxicants. Limited studies have shown that DEP-induced dopaminergic neuron dysfunction is mediated by microglia, the resident immune cells of the brain. Here we show that mouse microglia similarly mediate primary cerebellar granule neuron (CGN) death in vitro. While DEP (0, 25, 50, 100μg/2cm2) had no effect on CGN viability after 24h of treatment, in the presence of primary cortical microglia neuronal cell death increased by 2-3-fold after co-treatment with DEP, suggesting that microglia are important contributors to DEP-induced CGN neurotoxicity. DEP (50μg/2cm2) treatment of primary microglia for 24h resulted in morphological changes indicative of microglia activation, suggesting that DEP may induce the release of cytotoxic factors. Microglia-conditioned medium after 24h treatment with DEP, was also toxic to CGNs. DEP caused a significant increase in reactive oxygen species in microglia, however, antioxidants failed to protect neurons from DEP/microglia-induced toxicity. DEP increased mRNA levels of the pro-inflammatory cytokines IL-6 and IL1-β, and the release of IL-6. The antibiotic minocycline (50μM) and the peroxisome proliferator-activated receptor-γ agonist pioglitazone (50μM) attenuated DEP-induced CGN death in the co-culture system. Microglia and CGNs from male mice appeared to be somewhat more susceptible to DEP neurotoxicity than cells from female mice possibly because of lower paraoxonase-2 expression. Together, these results suggest that microglia-induced neuroinflammation may play a critical role in modulating the effect of DEP on neuronal viability. .
Collapse
Affiliation(s)
- Pamela J Roqué
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Neuroscience, University of Parma, Italy.
| |
Collapse
|
344
|
Lee CW, Lin ZC, Hsu LF, Fang JY, Chiang YC, Tsai MH, Lee MH, Li SY, Hu SCS, Lee IT, Yen FL. Eupafolin ameliorates COX-2 expression and PGE2 production in particulate pollutants-exposed human keratinocytes through ROS/MAPKs pathways. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:300-309. [PMID: 27180879 DOI: 10.1016/j.jep.2016.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 03/31/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eupafolin is a major bioactive compound derived from the methanolic extract of the medicinal herb Phyla nodiflora, which has been used in traditional Chinese medicine to treat various inflammatory diseases. Recently, particulate air pollutants have been shown to induce inflammation of the skin. In this study, we seek to determine whether eupafolin can inhibit the production of inflammatory mediators in a human skin keratinocyte cell line exposed to particulate air pollutants (particulate matter, PM), and determine the molecular mechanisms involved. MATERIALS AND METHODS Human keratinocyte HaCaT cells were treated with PM in the presence or absence of eupafolin. Cyclooxygenase-2 (COX-2) protein and gene expression levels were determined by Western blotting, RT-PCR and luciferase activity assay. Prostaglandin E2 (PGE2) production was evaluated by the enzyme immunoassay method. Generation of intracellular reactive oxygen species (ROS) was measured by the dichlorofluorescin (DCFH) oxidation assay, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was determined by a chemiluminescence assay. For in vivo studies, COX-2 expression in the skin of BALB/c nude mice was analyzed by immunohistochemistry. RESULTS Eupafolin inhibited PM-induced COX-2 protein and gene expression and PGE2 production in HaCaT cells. In addition, eupafolin suppressed PM-induced intracellular ROS generation, NADPH oxidase activity, MAPK (ERK, JNK and p38) activation and NK-κB activation. In vivo studies showed that topical treatment with eupafolin inhibited COX-2 expression in the epidermal keratinocytes of PM-treated mice. CONCLUSIONS Eupafolin exerts anti-inflammatory and antioxidant effects on skin keratinocytes exposed to particulate air pollutants, and may have potential use in the treatment or prevention of air pollutant-induced inflammatory skin diseases in the future.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung Institute of Technology and Chronic Diseases and Health Promotion Research Center, Chiayi, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan Taiwan
| | - Zih-Chan Lin
- Graduate Institute of BioMedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Lee-Fen Hsu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi, Taiwan
| | - Jia-You Fang
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan Taiwan; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Yao-Chang Chiang
- Center for Drug Abuse and Addiction, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ming-Horng Tsai
- Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan
| | - Ming-Hsueh Lee
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chia-Yi 613 Taiwan
| | - Shu-Yu Li
- Department of Pharmacy, College of Pharmacy & Health Care, Tajen University, Taiwan
| | - Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - I-Ta Lee
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| | - Feng-Lin Yen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, No. 100, Tzyou 1st Road, Kaohsiung 807, Taiwan; Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
345
|
Ezejimofor MC, Uthman OA, Maduka O, Ezeabasili AC, Onwuchekwa AC, Ezejimofor BC, Asuquo E, Chen YF, Stranges S, Kandala NB. The Burden of Hypertension in an Oil- and Gas-Polluted Environment: A Comparative Cross-Sectional Study. Am J Hypertens 2016; 29:925-33. [PMID: 26884135 DOI: 10.1093/ajh/hpw009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Evidence of positive association between traffic-related air pollution and elevated blood pressure has been published widely. However, the risk of hypertension and prolonged exposure to crude oil pollution and gas flares remains unexplored. METHODS We recruited 2,028 residents (aged 18-80) in a cross-sectional survey of both oil/gas polluted and nonpolluted communities in the Niger Delta region of Nigeria. Prevalence and risk of hypertension, anthropometric indices, lifestyle and sociodemographic factors, and cardiovascular comorbidities were examined and compared between the 2 groups. Hypertension was defined as blood pressure ≥140/90mm Hg or on antihypertensive medication. Both univariate and multivariate logistic regression models were used to examine factors associated with hypertension. Model fits statistics were used to assess the parsimonious model and predictive power. RESULTS More than one-third of participants were hypertensive (37.4%). Half of the participants were from oil-polluted areas (51%). Only 15% of participants reported family history of hypertension. In the adjusted model, participants living in oil-polluted areas were almost 5 times as likely to have developed hypertension (adjusted odds ratio (aOR) = 4.85, 95% confidence interval (CI): 1.84-12.82) compared to participants in unpolluted areas. Age modifies the association between pollution status and risk of hypertension. For every 10 years increase in the age of the participants, the odds of developing hypertension increased by 108% (aOR = 2.08, 95% CI: 1.77-2.43). CONCLUSION The results suggested that exposure to oil/gas pollution may be associated with an increased risk of hypertension. Our findings need to be further investigated in longitudinal studies.
Collapse
Affiliation(s)
| | | | - Omosivie Maduka
- Department of Preventive and Social Medicine, University of Port Harcourt, Port Harcourt, Nigeria
| | | | - Arthur C Onwuchekwa
- Department of Internal Medicine, University of Port Harcourt, Port Harcourt, Nigeria
| | | | - Eme Asuquo
- Department of Preventive and Social Medicine, University of Port Harcourt, Port Harcourt, Nigeria
| | - Yen-Fu Chen
- Division of Health Sciences, University of Warwick Medical School, Coventry, UK; Warwick Centre for Applied Health Research and Delivery (WCAHRD), Division of Health Sciences, University of Warwick Medical School, Coventry, UK
| | - Saverio Stranges
- Division of Health Sciences, University of Warwick Medical School, Coventry, UK; Department of Population Health, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Ngianga-Bakwin Kandala
- Division of Health Sciences, University of Warwick Medical School, Coventry, UK; Department of Population Health, Luxembourg Institute of Health (LIH), Strassen, Luxembourg; Department of Mathematics and Information Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
346
|
Thiering E, Markevych I, Brüske I, Fuertes E, Kratzsch J, Sugiri D, Hoffmann B, von Berg A, Bauer CP, Koletzko S, Berdel D, Heinrich J. Associations of Residential Long-Term Air Pollution Exposures and Satellite-Derived Greenness with Insulin Resistance in German Adolescents. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1291-8. [PMID: 26863688 PMCID: PMC4977044 DOI: 10.1289/ehp.1509967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/20/2015] [Accepted: 01/14/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Epidemiological studies have identified associations between air pollution and green space access with type 2 diabetes in adults. However, it remains unclear to what extent associations with greenness are attributable to air pollution exposure. OBJECTIVES We aimed to investigate associations between long-term exposure to air pollution and satellite-derived greenness with insulin resistance in adolescents. METHODS A total of 837 participants of two German birth cohorts (LISAplus and GINIplus) were included in the analysis. Generalized additive models were used to determine the association of individual satellite-derived greenness defined by the Normalized Difference Vegetation Index (NDVI), long-term air pollution exposure estimated by land-use regression (LUR) models with insulin resistance (HOMA-IR) in 15-year-old adolescents. Models were adjusted for study area, cohort, socioeconomic, and individual characteristics such as body mass index, physical activity, and smoking. RESULTS Increases of 2 SDs in nitrogen dioxide (NO2; 8.9 μg/m3) and particulate matter ≤ 10 μm in diameter (PM10; 6.7 μg/m3) were significantly associated with 11.4% (95% CI: 4.4, 18.9) and 11.4% (95% CI: 0.4, 23.7) higher HOMA-IR. A 2-SD increase in NDVI in a 1,000-m buffer (0.2 units) was significantly associated with a lower HOMA-IR (-7.4%; 95% CI: -13.3, -1.1). Associations tended to be stronger in adolescents who spent more time outside and in those with lower socioeconomic status. In combined models including both air pollution and greenness, only NO2 remained significantly associated with HOMA-IR, whereas effect estimates for all other exposures attenuated after adjustment for NO2. CONCLUSIONS NO2, often considered as a marker of traffic, was independently associated with insulin resistance. The observed association between higher greenness exposure and lower HOMA-IR in adolescents might thus be attributable mainly to the lower co-exposure to traffic-related air pollution. CITATION Thiering E, Markevych I, Brüske I, Fuertes E, Kratzsch J, Sugiri D, Hoffmann B, von Berg A, Bauer CP, Koletzko S, Berdel D, Heinrich J. 2016. Associations of residential long-term air pollution exposures and satellite-derived greenness with insulin resistance in German adolescents. Environ Health Perspect 124:1291-1298; http://dx.doi.org/10.1289/ehp.1509967.
Collapse
Affiliation(s)
- Elisabeth Thiering
- Institute of Epidemiology I, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, University of Munich Medical Center, Munich, Germany
- Address correspondence to E. Thiering, Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology I, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany. Telephone: 49 89 3187 3632. E-mail:
| | - Iana Markevych
- Institute of Epidemiology I, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, University of Munich Medical Center, Munich, Germany
| | - Irene Brüske
- Institute of Epidemiology I, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Elaine Fuertes
- Institute of Epidemiology I, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Dorothea Sugiri
- IUF Leibniz Research Institute for Environmental Medicine at the University of Düsseldorf, Düsseldorf, Germany
| | - Barbara Hoffmann
- IUF Leibniz Research Institute for Environmental Medicine at the University of Düsseldorf, Düsseldorf, Germany
- Medical School, the Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Andrea von Berg
- Department of Pediatrics, Research Institute, Marien-Hospital Wesel, Wesel, Germany
| | - Carl-Peter Bauer
- Department of Pediatrics, Technical University of Munich, Munich, Germany
| | - Sibylle Koletzko
- Division of Paediatric Gastroenterology and Hepatology, Dr. von Hauner Children’s Hospital, University of Munich Medical Center, Munich, Germany
| | - Dietrich Berdel
- Department of Pediatrics, Research Institute, Marien-Hospital Wesel, Wesel, Germany
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital Munich, Ludwig Maximilians University Munich, Munich, Germany
| |
Collapse
|
347
|
Zeliger HI. Predicting disease onset in clinically healthy people. Interdiscip Toxicol 2016; 9:39-54. [PMID: 28652846 PMCID: PMC5458104 DOI: 10.1515/intox-2016-0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/12/2016] [Accepted: 04/17/2016] [Indexed: 11/17/2022] Open
Abstract
Virtually all human disease is induced by oxidative stress. Oxidative stress, which is caused by toxic environmental exposure, the presence of disease, lifestyle choices, stress, chronic inflammation or combinations of these, is responsible for most disease. Oxidative stress from all sources is additive and it is the total oxidative stress from all sources that induces the onset of most disease. Oxidative stress leads to lipid peroxidation, which in turn produces Malondialdehyde. Serum malondialdehyde level is an additive parameter resulting from all sources of oxidative stress and, therefore, is a reliable indicator of total oxidative stress which can be used to predict the onset of disease in clinically asymptomatic individuals and to suggest the need for treatment that can prevent much human disease.
Collapse
|
348
|
Li N, Georas S, Alexis N, Fritz P, Xia T, Williams MA, Horner E, Nel A. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol 2016; 138:386-96. [PMID: 27130856 DOI: 10.1016/j.jaci.2016.02.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/30/2016] [Accepted: 02/24/2016] [Indexed: 01/08/2023]
Abstract
Ultrafine particles (UFPs) are airborne particulates of less than 100 nm in aerodynamic diameter. Examples of UFPs are diesel exhaust particles, products of cooking, heating, and wood burning in indoor environments, and, more recently, products generated through the use of nanotechnology. Studies have shown that ambient UFPs have detrimental effects on both the cardiovascular and respiratory systems, including a higher incidence of atherosclerosis and exacerbation rate of asthma. UFPs have been found to alter in vitro and in vivo responses of the immune system to allergens and can also play a role in allergen sensitization. The inflammatory properties of UFPs can be mediated by a number of different mechanisms, including the ability to produce reactive oxygen species, leading to the generation of proinflammatory cytokines and airway inflammation. In addition, because of their small size, UFPs also have unique distribution characteristics in the respiratory tree and circulation and might be able to alter cellular function in ways that circumvent normal signaling pathways. Additionally, UFPs can penetrate intracellularly and potentially cause DNA damage. The recent advances in nanotechnology, although opening up new opportunities for the advancement of technology and medicine, could also lead to unforeseen adverse health effects in exposed human subjects. Further research is needed to clarify the safety of nanoscale particles, as well as the elucidation of the possible beneficial use of these particulates to treat disease.
Collapse
Affiliation(s)
- Ning Li
- Department of Pathology & Diagnostic Investigation, CVM, Michigan State University, East Lansing, Mich.
| | - Steve Georas
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY
| | - Neil Alexis
- Center for Environmental Medicine and Lung Biology, University of North Carolina, Chapel Hill, NC
| | | | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, Calif
| | - Marc A Williams
- US Army Public Health Command, Toxicology Portfolio, Health Effects Research Program, Aberdeen Proving Ground, Aberdeen, Md
| | | | - Andre Nel
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, Calif.
| |
Collapse
|
349
|
Ferlazzo N, Visalli G, Cirmi S, Lombardo GE, Laganà P, Di Pietro A, Navarra M. Natural iron chelators: Protective role in A549 cells of flavonoids-rich extracts of Citrus juices in Fe(3+)-induced oxidative stress. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:248-256. [PMID: 27037654 DOI: 10.1016/j.etap.2016.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Exogenous iron in particulate matter and imbalanced iron homeostasis cause deleterious effects on health. Natural and synthetic iron chelators may be of therapeutic benefit, therefore we evaluated the protective effect of Citrus flavonoids-rich extracts from bergamot and orange juices in iron overloaded human lung epithelial cells. Cytofluorimetric, biochemical and genotoxic analyses were performed in Fe2(SO4)3 exposed A549, pretreated with each extract whose chemical composition was previously detected. Chelating activity was assessed in cells by a calcein ester. Both extracts reduced the generation of reactive oxygen species and membrane lipid peroxidation, improved mitochondrial functionality, and prevented DNA-oxidative damage in iron-exposed cells. Antioxidant effects were attributed to the chelating property, blocking upstream the redox activity of iron. Flavonoid-rich extracts also induced antioxidant catalase. The bergamot and orange juice extracts had a broad-spectrum protective effect. Their use prevents iron oxidative injury and these natural iron chelators could be used as therapeutic agents.
Collapse
Affiliation(s)
- Nadia Ferlazzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, I-98168 Messina, Italy.
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via C. Valeria, I-98100 Messina, Italy.
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, I-98168 Messina, Italy.
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, I-98168 Messina, Italy.
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via C. Valeria, I-98100 Messina, Italy.
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via C. Valeria, I-98100 Messina, Italy.
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, I-98168 Messina, Italy.
| |
Collapse
|
350
|
Shuster-Meiseles T, Shafer MM, Heo J, Pardo M, Antkiewicz DS, Schauer JJ, Rudich A, Rudich Y. ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment. ENVIRONMENTAL RESEARCH 2016; 146:252-62. [PMID: 26775006 DOI: 10.1016/j.envres.2016.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/23/2015] [Accepted: 01/06/2016] [Indexed: 05/25/2023]
Abstract
In this study we investigated the possible causal role for soluble metal species extracted from roadway traffic emissions in promoting particulate matter (PM)-induced reactive oxygen species (ROS) production and antioxidant response element (ARE) promoter activation. To this end, these responses have been evaluated in alveolar macrophage and epithelial lung cells that have been exposed to 'Unfiltered', 'Filtered' and 'Filtered+Chelexed' water extracts of PM samples collected from the roadway urban environments of Thessaloniki, Milan and London. Except for Thessaloniki, our results demonstrate that filtration resulted in a minor decrease in ROS activity of the fine PM fraction, suggesting that ROS activity is attributed mainly to water-soluble PM species. In contrast to ROS, ARE activity was mediated predominantly by the water-soluble component of PM present in both the fine and coarse extracts. Further removal of metals by Chelex treatment from filtered water extracts showed that soluble metal species are the major factors mediating ROS and ARE activities of the soluble fraction, especially in the London PM extracts. Finally, utilizing step-wise multiple-regression analysis, we show that 87% and 78% of the total variance observed in ROS and ARE assays, respectively, is accounted for by changes in soluble metal concentration. Using a statistical analysis we find that As, Zn and Fe best predict the ROS-generating/ARE-activating capacity of the near roadway particulate matter in the pulmonary cells studied. Collectively, our findings imply that soluble metals present in roadside PM are potential drivers of both pro- and anti-oxidative effects of PM in respiratory tract.
Collapse
Affiliation(s)
- Timor Shuster-Meiseles
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Martin M Shafer
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, WI, USA
| | - Jongbae Heo
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - James J Schauer
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, WI, USA
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|