301
|
Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter. Sci Rep 2016; 6:29011. [PMID: 27363947 PMCID: PMC4929495 DOI: 10.1038/srep29011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/10/2016] [Indexed: 11/12/2022] Open
Abstract
Osteoporotic fractures present a significant social and economic burden, which is set to rise commensurately with the aging population. Greater understanding of the physicochemical differences between osteoporotic and normal conditions will facilitate the development of diagnostic technologies with increased performance and treatments with increased efficacy. Using coherent X-ray scattering we have evaluated a population of 108 ex vivo human bone samples comprised of non-fracture and fracture groups. Principal component fed linear discriminant analysis was used to develop a classification model to discern each condition resulting in a sensitivity and specificity of 93% and 91%, respectively. Evaluating the coherent X-ray scatter differences from each condition supports the hypothesis that a causal physicochemical change has occurred in the fracture group. This work is a critical step along the path towards developing an in vivo diagnostic tool for fracture risk prediction.
Collapse
|
302
|
Granjon D, Bonny O, Edwards A. A model of calcium homeostasis in the rat. Am J Physiol Renal Physiol 2016; 311:F1047-F1062. [PMID: 27358053 DOI: 10.1152/ajprenal.00230.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
We developed a model of calcium homeostasis in the rat to better understand the impact of dysfunctions such as primary hyperparathyroidism and vitamin D deficiency on calcium balance. The model accounts for the regulation of calcium intestinal uptake, bone resorption, and renal reabsorption by parathyroid hormone (PTH), vitamin D3, and Ca2+ itself. It is the first such model to incorporate recent findings regarding the role of the calcium-sensing receptor (CaSR) in the kidney, the presence of a rapidly exchangeable pool in bone, and the delayed response of vitamin D3 synthesis. Accounting for two (fast and slow) calcium storage compartments in bone allows the model to properly predict the effects of bisphophonates on the plasma levels of Ca2+ ([Ca2+]p), PTH, and vitamin D3 Our model also suggests that Ca2+ exchange rates between plasma and the fast pool vary with both sex and age, allowing [Ca2+]p to remain constant in spite of sex- and age-based hormonal and other differences. Our results suggest that the inconstant hypercalciuria that is observed in primary hyperparathyroidism can be attributed in part to counterbalancing effects of PTH and CaSR in the kidney. Our model also correctly predicts that calcimimetic agents such as cinacalcet bring down [Ca2+]p to within its normal range in primary hyperparathyroidism. In addition, the model provides a simulation of CYP24A1 inactivation that leads to a situation reminiscent of infantile hypercalcemia. In summary, our model of calcium handling can be used to decipher the complex regulation of calcium homeostasis.
Collapse
Affiliation(s)
- David Granjon
- Sorbonne Universités, UPMC Univ Paris 06, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and.,Department of Pharmacology and Toxicology, University of Lausanne, and Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, and Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland
| | - Aurélie Edwards
- Sorbonne Universités, UPMC Univ Paris 06, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and
| |
Collapse
|
303
|
Camci-Unal G, Laromaine A, Hong E, Derda R, Whitesides GM. Biomineralization Guided by Paper Templates. Sci Rep 2016; 6:27693. [PMID: 27277575 PMCID: PMC4899756 DOI: 10.1038/srep27693] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
This work demonstrates the fabrication of partially mineralized scaffolds fabricated in 3D shapes using paper by folding, and by supporting deposition of calcium phosphate by osteoblasts cultured in these scaffolds. This process generates centimeter-scale free-standing structures composed of paper supporting regions of calcium phosphate deposited by osteoblasts. This work is the first demonstration that paper can be used as a scaffold to induce template-guided mineralization by osteoblasts. Because paper has a porous structure, it allows transport of O2 and nutrients across its entire thickness. Paper supports a uniform distribution of cells upon seeding in hydrogel matrices, and allows growth, remodelling, and proliferation of cells. Scaffolds made of paper make it possible to construct 3D tissue models easily by tuning material properties such as thickness, porosity, and density of chemical functional groups. Paper offers a new approach to study mechanisms of biomineralization, and perhaps ultimately new techniques to guide or accelerate the repair of bone.
Collapse
Affiliation(s)
- Gulden Camci-Unal
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Catalunya, E-08193 Spain
| | - Estrella Hong
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
304
|
Abraham AC, Agarwalla A, Yadavalli A, Liu JY, Tang SY. Microstructural and compositional contributions towards the mechanical behavior of aging human bone measured by cyclic and impact reference point indentation. Bone 2016; 87:37-43. [PMID: 27021150 PMCID: PMC4862905 DOI: 10.1016/j.bone.2016.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 02/05/2023]
Abstract
The assessment of fracture risk often relies primarily on measuring bone mineral density, thereby accounting for only a single pathology: the loss of bone mass. However, bone's ability to resist fracture is a result of its biphasic composition and hierarchical structure that imbue it with high strength and toughness. Reference point indentation (RPI) testing is designed to directly probe bone mechanical behavior at the microscale in situ, although it remains unclear which aspects of bone composition and structure influence the results at this scale. Therefore, our goal in this study was to investigate factors that contribute to bone mechanical behavior measured by cyclic reference point indentation, impact reference point indentation, and three-point bending. Twenty-eight female cadavers (ages 57-97) were subjected to cyclic and impact RPI in parallel at the unmodified tibia mid-diaphysis. After RPI, the middiaphyseal tibiae were removed, scanned using micro-CT to obtain cortical porosity (Ct.Po.) and tissue mineral density (TMD), then tested using three-point bending, and lastly assayed for the accumulation of advanced glycation end-products (AGEs). Both the indentation distance increase from cyclic RPI (IDI) and bone material strength index from impact RPI (BMSi) were significantly correlated with TMD (r=-0.390, p=0.006; r=0.430, p=0.002; respectively). Accumulation of AGEs was significantly correlated with IDI (r=0.281, p=0.046), creep indentation distance (CID, r=0.396, p=0.004), and BMSi (r=-0.613, p<0.001). There were no significant relationships between tissue TMD or AGEs accumulation with the quasi-static material properties. Toughness decreased with increasing tissue Ct.Po. (r=-0.621, p<0.001). Other three-point bending measures also correlated with tissue Ct.Po. including the bending modulus (r=-0.50, p<0.001) and ultimate stress (r=-0.56, p<0.001). The effects of Ct.Po. on indentation were less pronounced with IDI (r=0.290, p=0.043) and BMSi (r=-0.299, p=0.037) correlated modestly with tissue Ct.Po. These results suggest that RPI may be sensitive to bone quality changes relating to collagen.
Collapse
Affiliation(s)
- Adam C Abraham
- Department of Orthopedic Surgery, Washington University in St. Louis, 660 S. Euclid, Campus Box 8233, St. Louis, MO 63103, USA
| | - Avinesh Agarwalla
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Whitaker Hall, Campus Box 1097, St. Louis, MO 63130, USA
| | - Aditya Yadavalli
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Whitaker Hall, Campus Box 1097, St. Louis, MO 63130, USA
| | - Jenny Y Liu
- Department of Orthopedic Surgery, Washington University in St. Louis, 660 S. Euclid, Campus Box 8233, St. Louis, MO 63103, USA
| | - Simon Y Tang
- Department of Orthopedic Surgery, Washington University in St. Louis, 660 S. Euclid, Campus Box 8233, St. Louis, MO 63103, USA; Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Whitaker Hall, Campus Box 1097, St. Louis, MO 63130, USA.
| |
Collapse
|
305
|
Pérez LM, Pareja-Galeano H, Sanchis-Gomar F, Emanuele E, Lucia A, Gálvez BG. 'Adipaging': ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. J Physiol 2016; 594:3187-207. [PMID: 26926488 DOI: 10.1113/jp271691] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/21/2016] [Indexed: 12/15/2022] Open
Abstract
The increasing ageing of our societies is accompanied by a pandemic of obesity and related cardiometabolic disorders. Progressive dysfunction of the white adipose tissue is increasingly recognized as an important hallmark of the ageing process, which in turn contributes to metabolic alterations, multi-organ damage and a systemic pro-inflammatory state ('inflammageing'). On the other hand, obesity, the paradigm of adipose tissue dysfunction, shares numerous biological similarities with the normal ageing process such as chronic inflammation and multi-system alterations. Accordingly, understanding the interplay between accelerated ageing related to obesity and adipose tissue dysfunction is critical to gain insight into the ageing process in general as well as into the pathophysiology of obesity and other related conditions. Here we postulate the concept of 'adipaging' to illustrate the common links between ageing and obesity and the fact that, to a great extent, obese adults are prematurely aged individuals.
Collapse
Affiliation(s)
- Laura M Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Helios Pareja-Galeano
- Universidad Europea de Madrid, Spain.,Research Institute Hospital 12 de Octubre ('i+12'), Madrid, Spain
| | | | | | - Alejandro Lucia
- Universidad Europea de Madrid, Spain.,Research Institute Hospital 12 de Octubre ('i+12'), Madrid, Spain
| | - Beatriz G Gálvez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Universidad Europea de Madrid, Spain
| |
Collapse
|
306
|
Singh AK, Gajiwala AL, Rai RK, Khan MP, Singh C, Barbhuyan T, Vijayalakshmi S, Chattopadhyay N, Sinha N, Kumar A, Bellare JR. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:574-84. [DOI: 10.1016/j.msec.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
|
307
|
Fisher E, Austin D, Werner HM, Chuang YJ, Bersu E, Vorperian HK. Hyoid bone fusion and bone density across the lifespan: prediction of age and sex. Forensic Sci Med Pathol 2016; 12:146-57. [PMID: 27114259 PMCID: PMC4859847 DOI: 10.1007/s12024-016-9769-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 11/26/2022]
Abstract
The hyoid bone supports the important functions of swallowing and speech. At birth, the hyoid bone consists of a central body and pairs of right and left lesser and greater cornua. Fusion of the greater cornua with the body normally occurs in adulthood, but may not occur at all in some individuals. The aim of this study was to quantify hyoid bone fusion across the lifespan, as well as assess developmental changes in hyoid bone density. Using a computed tomography imaging studies database, 136 hyoid bones (66 male, 70 female, ages 1-to-94) were examined. Fusion was ranked on each side and hyoid bones were classified into one of four fusion categories based on their bilateral ranks: bilateral distant non-fusion, bilateral non-fusion, partial or unilateral fusion, and bilateral fusion. Three-dimensional hyoid bone models were created and used to calculate bone density in Hounsfield units. Results showed a wide range of variability in the timing and degree of hyoid bone fusion, with a trend for bilateral non-fusion to decrease after age 20. Hyoid bone density was significantly lower in adult female scans than adult male scans and decreased with age in adulthood. In sex and age estimation models, bone density was a significant predictor of sex. Both fusion category and bone density were significant predictors of age group for adult females. This study provides a developmental baseline for understanding hyoid bone fusion and bone density in typically developing individuals. Findings have implications for the disciplines of forensics, anatomy, speech pathology, and anthropology.
Collapse
Affiliation(s)
- Ellie Fisher
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Rm 427, Madison, WI, 53705-2280, USA
| | - Diane Austin
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Rm 427, Madison, WI, 53705-2280, USA
| | - Helen M Werner
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Rm 427, Madison, WI, 53705-2280, USA
| | - Ying Ji Chuang
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Rm 427, Madison, WI, 53705-2280, USA
| | - Edward Bersu
- School of Medicine and Public Health, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
| | - Houri K Vorperian
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Rm 427, Madison, WI, 53705-2280, USA.
| |
Collapse
|
308
|
Ardura JA, Portal-Núñez S, Lozano D, Gutiérrez-Rojas I, Sánchez-Salcedo S, López-Herradón A, Mulero F, Villanueva-Peñacarrillo ML, Vallet-Regí M, Esbrit P. Local delivery of parathyroid hormone-related protein-derived peptides coated onto a hydroxyapatite-based implant enhances bone regeneration in old and diabetic rats. J Biomed Mater Res A 2016; 104:2060-70. [DOI: 10.1002/jbm.a.35742] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/06/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Juan A. Ardura
- Laboratorio de Metabolismo Mineral y Óseo; Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz and UAM; Madrid Spain
- RETICEF-Instituto de Salud Carlos III; Madrid Spain
| | - Sergio Portal-Núñez
- Laboratorio de Metabolismo Mineral y Óseo; Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz and UAM; Madrid Spain
- RETICEF-Instituto de Salud Carlos III; Madrid Spain
| | - Daniel Lozano
- Laboratorio de Metabolismo Mineral y Óseo; Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz and UAM; Madrid Spain
- RETICEF-Instituto de Salud Carlos III; Madrid Spain
- Departamento de Química Inorgánica y Bioinorgánica; Facultad de Farmacia, Universidad Complutense, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Madrid Spain
| | - Irene Gutiérrez-Rojas
- Instituto de Salud Carlos III; Centro de Investigaciones Biomédicas en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM); Madrid Spain
| | - Sandra Sánchez-Salcedo
- Departamento de Química Inorgánica y Bioinorgánica; Facultad de Farmacia, Universidad Complutense, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Madrid Spain
| | - Ana López-Herradón
- Laboratorio de Metabolismo Mineral y Óseo; Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz and UAM; Madrid Spain
| | - Francisca Mulero
- Unidad de Imagen Molecular, Centro Nacional de Investigaciones Oncológicas (CNIO); Madrid Spain
| | - María L. Villanueva-Peñacarrillo
- Instituto de Salud Carlos III; Centro de Investigaciones Biomédicas en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM); Madrid Spain
| | - María Vallet-Regí
- Departamento de Química Inorgánica y Bioinorgánica; Facultad de Farmacia, Universidad Complutense, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Madrid Spain
| | - Pedro Esbrit
- Laboratorio de Metabolismo Mineral y Óseo; Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz and UAM; Madrid Spain
- RETICEF-Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
309
|
Khurana S. The effects of proliferation and DNA damage on hematopoietic stem cell function determine aging. Dev Dyn 2016; 245:739-50. [PMID: 26813236 DOI: 10.1002/dvdy.24388] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/17/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022] Open
Abstract
In most of the mammalian tissues, homeostasis as well as injury repair depend upon a small number of resident adult stem cells. The decline in tissue/organ function in aged organisms has been directly linked with poorly functioning stem cells. Altered function of hematopoietic stem cells (HSCs) is at the center of an aging hematopoietic system, a tissue with high cellular turnover. Poorly engrafting, myeloid-biased HSCs with higher levels of DNA damage accumulation are the hallmark features of an aged hematopoietic system. These cells show a higher proliferation rate than their younger counterparts. It was proposed that quiescence of these cells over long period of time leads to accumulation of DNA damage, eventually resulting in poor function/pathological conditions in hematopoietic system. However, various mouse models with premature aging phenotype also show highly proliferative HSCs. This review examines the evidence that links proliferation of HSCs with aging, which leads to functional changes in the hematopoietic system. Developmental Dynamics 245:739-750, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Satish Khurana
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India, 695016
| |
Collapse
|
310
|
Borba-Pinheiro CJ, Dantas EHM, Vale RGDS, Drigo AJ, Carvalho MCGDA, Tonini T, Meza EIA, Figueiredo NMAD. Resistance training programs on bone related variables and functional independence of postmenopausal women in pharmacological treatment: A randomized controlled trial. Arch Gerontol Geriatr 2016; 65:36-44. [PMID: 26956618 DOI: 10.1016/j.archger.2016.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Osteoporosis is a chronic disease that leads to bone fragility and is associated with fracture risks and serious consequences for mobility. OBJECTIVE To verify the effects of two linear programs of resistance training (RT) on bone mineral density (BMD), functional autonomy (FA), muscular strength and quality of life (QoL) of postmenopausal women in pharmacological treatment. STUDY DESIGN Randomized controlled trial, code: RBR-6bqsw8. METHODS 52 volunteers were distributed into three groups, according to randomly parallel form: RT3times-per-week (RT3, n=20); RT2times-per-week (RT2, n=16) and control group (CG, n=16). The following assessment tools were used: bone mineral density (BMD) by dual X-ray absorptiometry, 'Latin America Group for maturity' (GDLAM) protocol for FA, 10RM test for leg exercises and the 'Osteoporosis Assessment Questionnaire' (OPAQ) for QoL. The physical activities were planned for 13 months in cycles with different intensities. A two-way ANOVA with Bonferroni post-hoc test were used. RESULTS The results showed that the RT3/week was significantly more efficient (p<0.05) compared with RT2/week, including: All BMD variables, FA (Δ%=29.3%), leg press at 45° (Δ%=24.97%) and OPAQ (Δ%=20.23%). In addition, both RT3 and RT2 groups were more efficient (p<0.05) compared with CG, including: total BMD (Δ%=0.09%) and (Δ%=0.06%); FA (Δ%=7.1%) and RT2 (Δ%=3.78%); Leg press at 45° (Δ%=84.1%) and (Δ%=59.1%); keen extension (Δ%=15.28%) and (Δ%=20.37%); OPAQ (Δ%=57.61%) and (Δ%=37.37%), respectively. CONCLUSION The study showed that both experimental groups presented favorable results for BMD, strength, FA and QoL. However, the RT3 showed the best results compared to other groups after 13 months of intervention.
Collapse
Affiliation(s)
- Claudio Joaquim Borba-Pinheiro
- Federal State University of Rio de Janeiro (UNIRIO/PPGEnfBio), Rio de Janeiro, Brazil; Federal Institute of Education, Science and Technology (IFPA), Campus de Tucuruí, Brazil; Pará State University (UEPA), Campus de Tucuruí, Brazil.
| | | | | | | | | | - Teresa Tonini
- Federal State University of Rio de Janeiro (UNIRIO/PPGEnfBio), Rio de Janeiro, Brazil
| | | | | |
Collapse
|
311
|
In vitro model of bone to facilitate measurement of adhesion forces and super-resolution imaging of osteoclasts. Sci Rep 2016; 6:22585. [PMID: 26935172 PMCID: PMC4776281 DOI: 10.1038/srep22585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/18/2016] [Indexed: 11/08/2022] Open
Abstract
To elucidate processes in the osteoclastic bone resorption, visualise resorption and related actin reorganisation, a combination of imaging technologies and an applicable in vitro model is needed. Nanosized bone powder from matching species is deposited on any biocompatible surface in order to form a thin, translucent, smooth and elastic representation of injured bone. Osteoclasts cultured on the layer expressed matching morphology to ones cultured on sawed cortical bone slices. Resorption pits were easily identified by reflectance microscopy. The coating allowed actin structures on the bone interface to be visualised with super-resolution microscopy along with a detailed interlinked actin networks and actin branching in conjunction with V-ATPase, dynamin and Arp2/3 at actin patches. Furthermore, we measured the timescale of an adaptive osteoclast adhesion to bone by force spectroscopy experiments on live osteoclasts with bone-coated AFM cantilevers. Utilising the in vitro model and the advanced imaging technologies we localised immunofluorescence signals in respect to bone with high precision and detected resorption at its early stages. Put together, our data supports a cyclic model for resorption in human osteoclasts.
Collapse
|
312
|
Bolt AM, Grant MP, Wu TH, Flores Molina M, Plourde D, Kelly ADR, Negro Silva LF, Lemaire M, Schlezinger JJ, Mwale F, Mann KK. Tungsten Promotes Sex-Specific Adipogenesis in the Bone by Altering Differentiation of Bone Marrow-Resident Mesenchymal Stromal Cells. Toxicol Sci 2016; 150:333-46. [PMID: 26865663 DOI: 10.1093/toxsci/kfw008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tungsten is a naturally occurring metal that increasingly is being incorporated into industrial goods and medical devices, and is recognized as an emerging contaminant. Tungsten preferentially and rapidly accumulates in murine bone in a concentration-dependent manner; however the effect of tungsten deposition on bone biology is unknown. Other metals alter bone homeostasis by targeting bone marrow-derived mesenchymal stromal cell (MSC) differentiation, thus, we investigated the effects of tungsten on MSCsin vitroandin vivoIn vitro, tungsten shifted the balance of MSC differentiation by enhancing rosiglitazone-induced adipogenesis, which correlated with an increase in adipocyte content in the bone of tungsten-exposed, young, male mice. Conversely, tungsten inhibited osteogenesis of MSCsin vitro; however, we found no evidence that tungsten inhibited osteogenesisin vivo Interestingly, two factors known to influence adipogenesis are sex and age of mice. Both female and older mice have enhanced adipogenesis. We extended our study and exposed young female and adult (9-month) male and female mice to tungsten for 4 weeks. Although tungsten accumulated to a similar extent in young female mice, it did not promote adipogenesis. Interestingly, tungsten did not accumulate in the bone of older mice; it was undetectable in adult male mice, and just above the limit of detect in adult female mice. Surprisingly, tungsten enhanced adipogenesis in adult female mice. In summary, we found that tungsten alters bone homeostasis by altering differentiation of MSCs, which could have significant implications for bone quality, but is highly dependent upon sex and age.
Collapse
Affiliation(s)
- Alicia M Bolt
- *Lady Davis Institute for Medical Research; Department of Oncology
| | | | - Ting Hua Wu
- *Lady Davis Institute for Medical Research; Division of Experimental Medicine
| | | | | | | | | | - Maryse Lemaire
- *Lady Davis Institute for Medical Research; Department of Oncology
| | - Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Fackson Mwale
- *Lady Davis Institute for Medical Research; Faculty of Medicine; Department of Surgery, McGill University, Montréal, Québec, Canada; and
| | - Koren K Mann
- *Lady Davis Institute for Medical Research; Department of Oncology; Division of Experimental Medicine;
| |
Collapse
|
313
|
Luo Y. A biomechanical sorting of clinical risk factors affecting osteoporotic hip fracture. Osteoporos Int 2016; 27:423-39. [PMID: 26361947 DOI: 10.1007/s00198-015-3316-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023]
Abstract
Osteoporotic fracture has been found associated with many clinical risk factors, and the associations have been explored dominantly by evidence-based and case-control approaches. The major challenges emerging from the studies are the large number of the risk factors, the difficulty in quantification, the incomplete list, and the interdependence of the risk factors. A biomechanical sorting of the risk factors may shed lights on resolving the above issues. Based on the definition of load-strength ratio (LSR), we first identified the four biomechanical variables determining fracture risk, i.e., the risk of fall, impact force, bone quality, and bone geometry. Then, we explored the links between the FRAX clinical risk factors and the biomechanical variables by looking for evidences in the literature. To accurately assess fracture risk, none of the four biomechanical variables can be ignored and their values must be subject-specific. A clinical risk factor contributes to osteoporotic fracture by affecting one or more of the biomechanical variables. A biomechanical variable represents the integral effect from all the clinical risk factors linked to the variable. The clinical risk factors in FRAX mostly stand for bone quality. The other three biomechanical variables are not adequately represented by the clinical risk factors. From the biomechanical viewpoint, most clinical risk factors are interdependent to each other as they affect the same biomechanical variable(s). As biomechanical variables must be expressed in numbers before their use in calculating LSR, the numerical value of a biomechanical variable can be used as a gauge of the linked clinical risk factors to measure their integral effect on fracture risk, which may be more efficient than to study each individual risk factor.
Collapse
Affiliation(s)
- Y Luo
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada.
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada.
- Department of Anatomy, South Medical University, Guangzhou, China.
| |
Collapse
|
314
|
Paschalis EP, Fratzl P, Gamsjaeger S, Hassler N, Brozek W, Eriksen EF, Rauch F, Glorieux FH, Shane E, Dempster D, Cohen A, Recker R, Klaushofer K. Aging Versus Postmenopausal Osteoporosis: Bone Composition and Maturation Kinetics at Actively-Forming Trabecular Surfaces of Female Subjects Aged 1 to 84 Years. J Bone Miner Res 2016; 31:347-57. [PMID: 26308158 DOI: 10.1002/jbmr.2696] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/10/2015] [Accepted: 08/22/2015] [Indexed: 11/11/2022]
Abstract
Bone strength depends on the amount of bone, typically expressed as bone mineral density (BMD), determined by dual-energy X-ray absorptiometry (DXA), and on bone quality. Bone quality is a multifactorial entity including bone structural and material compositional properties. The purpose of the present study was to examine whether bone material composition properties at actively-forming trabecular bone surfaces in health are dependent on subject age, and to contrast them with postmenopausal osteoporosis patients. To achieve this, we analyzed by Raman microspectroscopy iliac crest biopsy samples from healthy subjects aged 1.5 to 45.7 years, paired biopsy samples from females before and immediately after menopause aged 46.7 to 53.6 years, and biopsy samples from placebo-treated postmenopausal osteoporotic patients aged 66 to 84 years. The monitored parameters were as follows: the mineral/matrix ratio; the mineral maturity/crystallinity (MMC); nanoporosity; the glycosaminoglycan (GAG) content; the lipid content; and the pyridinoline (Pyd) content. The results indicate that these bone quality parameters in healthy, actively-forming trabecular bone surfaces are dependent on subject age at constant tissue age, suggesting that with advancing age the kinetics of maturation (either accumulation, or posttranslational modifications, or both) change. For most parameters, the extrapolation of models fitted to the individual age dependence of bone in healthy individuals was in rough agreement with their values in postmenopausal osteoporotic patients, except for MMC, lipid, and Pyd content. Among these three, Pyd content showed the greatest deviation between healthy aging and disease, highlighting its potential to be used as a discriminating factor.
Collapse
Affiliation(s)
- Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of Wiener Gebietskrankenkasse (WGKK), Vienna, Austria.,Allgemeine Unfallversicherungsanstalt (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of Wiener Gebietskrankenkasse (WGKK), Vienna, Austria.,Allgemeine Unfallversicherungsanstalt (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Norbert Hassler
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of Wiener Gebietskrankenkasse (WGKK), Vienna, Austria.,Allgemeine Unfallversicherungsanstalt (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Wolfgang Brozek
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of Wiener Gebietskrankenkasse (WGKK), Vienna, Austria.,Allgemeine Unfallversicherungsanstalt (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Erik F Eriksen
- Dept. of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Aker, Norway
| | - Frank Rauch
- Genetics Unit, Shriners Hospital for Children and McGill University, Montreal, QC, Canada
| | - Francis H Glorieux
- Genetics Unit, Shriners Hospital for Children and McGill University, Montreal, QC, Canada
| | - Elizabeth Shane
- Medicine and Pathology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - David Dempster
- Medicine and Pathology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Adi Cohen
- Medicine and Pathology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Robert Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of Wiener Gebietskrankenkasse (WGKK), Vienna, Austria.,Allgemeine Unfallversicherungsanstalt (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| |
Collapse
|
315
|
Dorozhkin SV. Calcium orthophosphates (CaPO 4): occurrence and properties. Prog Biomater 2015; 5:9-70. [PMID: 27471662 PMCID: PMC4943586 DOI: 10.1007/s40204-015-0045-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates (CaPO4). This type of materials is of the special significance for the human beings because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with CaPO4, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenorthophosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of CaPO4. Similarly, dental caries and osteoporosis might be considered as in vivo dissolution of CaPO4. In addition, natural CaPO4 are the major source of phosphorus, which is used to produce agricultural fertilizers, detergents and various phosphorus-containing chemicals. Thus, there is a great significance of CaPO4 for the humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
316
|
Dicken AJ, Evans JPO, Rogers KD, Stone N, Greenwood C, Godber SX, Prokopiou D, Clement JG, Lyburn ID, Martin RM, Zioupos P. X-ray diffraction from bone employing annular and semi-annular beams. Phys Med Biol 2015; 60:5803-12. [PMID: 26159892 DOI: 10.1088/0031-9155/60/15/5803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as 'bone quality' need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction.In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of 'bone quality'. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined.
Collapse
Affiliation(s)
- A J Dicken
- Imaging Science Group, Nottingham Trent University, Nottingham, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Complications and outcome of a new modified Maquet technique for treatment of cranial cruciate ligament rupture in 82 dogs. Vet Comp Orthop Traumatol 2015. [PMID: 26219544 DOI: 10.3415/vcot-14-10-0153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To describe the complications, short and long-term outcome and owner satisfaction of dogs with cranial cruciate ligament rupture treated with a recently described new osteotomy for the modified Maquet technique (N-MMT). MATERIALS AND METHODS Medical records and radiographs of 82 dogs (84 stifles) were reviewed. Details regarding short-term outcome and complications were recorded from the medical records. Long-term follow-up information was obtained by telephone interview. Historical data and complications were statistically analysed. RESULTS Major complications occurred in 34/84 stifles. Intra-operative complications occurred in 26/84 stifles, all of which were fissures or fractures of the cortical hinge. Twenty-one of these fractures or fissures were repaired with a figure-of-eight wire. The second most common major complication was late meniscal tears in 3/84 stifles. One dog sustained a complete tibial fracture. Non-displaced fracture of the cortical hinge was the most common postoperative minor complication, which occurred in 5/84 stifles. The median preoperative lameness score was 3 out of 6. Final in-hospital re-evaluation of limb function was available in 58 dogs. The median lameness score at that time was 0 out of 6. Development of osteotomy related complications was not associated with a significant change in the postoperative lameness score. CLINICAL SIGNIFICANCE Subjectively assessed clinical outcome with the N-MMT was good to excellent in this cohort of dogs. However, a high rate of intra- and postoperative complications of the N-MMT procedure was also present in these dogs.
Collapse
|
318
|
Lai X, Price C, Modla S, Thompson WR, Caplan J, Kirn-Safran CB, Wang L. The dependences of osteocyte network on bone compartment, age, and disease. Bone Res 2015; 3. [PMID: 26213632 PMCID: PMC4511381 DOI: 10.1038/boneres.2015.9] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteocytes, the most abundant bone cells, form an interconnected network in the lacunar-canalicular pore system (LCS) buried within the mineralized matrix, which allows osteocytes to obtain nutrients from the blood supply, sense external mechanical signals, and communicate among themselves and with other cells on bone surfaces. In this study, we examined key features of the LCS network including the topological parameter and the detailed structure of individual connections and their variations in cortical and cancellous compartments, at different ages, and in two disease conditions with altered mechanosensing (perlecan deficiency and diabetes). LCS network showed both topological stability, in terms of conservation of connectivity among osteocyte lacunae (similar to the "nodes" in a computer network), and considerable variability the pericellular annular fluid gap surrounding lacunae and canaliculi (similar to the "bandwidth" of individual links in a computer network). Age, in the range of our study (15-32 weeks), affected only the pericellular fluid annulus in cortical bone but not in cancellous bone. Diabetes impacted the spacing of the lacunae, while the perlecan deficiency had a profound influence on the pericellular fluid annulus. The LCS network features play important roles in osteocyte signaling and regulation of bone growth and adaptation.
Collapse
Affiliation(s)
- Xiaohan Lai
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Christopher Price
- Biomedical Engineering Program, University of Delaware, Newark, DE, USA
| | - Shannon Modla
- DBI Bioimaging Center, University of Delaware, Newark, DE, USA
| | - William R Thompson
- Department of Physical Therapy, Indiana University, Indianapolis, IN, USA
| | - Jeffrey Caplan
- DBI Bioimaging Center, University of Delaware, Newark, DE, USA
| | | | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
319
|
Kazama JJ, Matsuo K, Iwasaki Y, Fukagawa M. Chronic kidney disease and bone metabolism. J Bone Miner Metab 2015; 33:245-52. [PMID: 25653092 DOI: 10.1007/s00774-014-0639-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/07/2014] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease-related mineral and bone disease (CKD-MBD) is a syndrome defined as a systemic mineral metabolic disorder associated with CKD, and the term renal osteodystrophy indicates a pathomorphological concept of bone lesions associated with CKD-MBD. Cortical bone thinning, abnormalities in bone turnover and primary/secondary mineralization, elevated levels of circulating sclerostin, increased apoptosis in osteoblasts and osteocytes, disturbance of the coupling phenomenon, iatrogenic factors, accumulated micro-crackles, crystal/collagen disorientation, and chemical modification of collagen crosslinks are all possible candidates found in CKD that could promote osteopenia and/or bone fragility. Some of above factors are the consequences of abnormal systemic mineral metabolism but for others it seem unlikely. We have used the term uremic osteoporosis to describe the uremia-induced bone fragility which is not derived from abnormal systemic mineral metabolism. Interestingly, the disease aspect of uremic osteoporosis appears to be similar to that of senile osteoporosis.
Collapse
Affiliation(s)
- Junichiro James Kazama
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan,
| | | | | | | |
Collapse
|
320
|
Kumar A, Young C, Farina J, Witzl A, Marks ED. Novel nanocomposite biomaterial to differentiate bone marrow mesenchymal stem cells to the osteogenic lineage for bone restoration. J Orthop Translat 2015; 3:105-113. [PMID: 30035047 PMCID: PMC5982386 DOI: 10.1016/j.jot.2015.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/22/2015] [Accepted: 03/10/2015] [Indexed: 01/11/2023] Open
Abstract
Background/Objective As the bone engineering field moves away from nonviable implants to more biocompatible and natural structures, nanomedicine has emerged as a superior tool for developing implantable materials. Methods Here, we describe the fabrication and testing of a nanocomposite structure composed of chitosan and a biocompatible thermoplastic (PMMA). Results Our nanocomposite material displayed morphologically similar characteristics to an extracted murine femur during microscopic and spectroscopic analysis as seen through SEM and FTIR. Crosslinking our nanocomposite enhanced structural and strength characteristics significantly above the noncrosslinked sample, mimicking the strength of an extracted mammalian bone. When cocultured with bone marrow mesenchymal stem cells, the composite material proved to be osteoinductive and osteogenic via DAPI and actin staining, differentiating BMSCs into the osteogenic lineage and promoting mineral deposition. Nodule formation, indicative of mineralization during BMSC differentiation, was confirmed spectroscopically via FTIR and autofluorescence of the nodule. Conclusion These encouraging results show promise for in vivo implantation of our novel scaffold that is both biocompatible and biomimetic in strength and composition.
Collapse
Affiliation(s)
- Arun Kumar
- Nanomedicine Research Laboratory, Department of Medical Laboratory Sciences, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Chelsea Young
- Department of Chemical Engineering, College of Engineering, University of Delaware, Newark, DE, USA
| | - Juliana Farina
- Department of Biological Sciences, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Ashley Witzl
- Department of Biological Sciences, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Edward D Marks
- Nanomedicine Research Laboratory, Department of Medical Laboratory Sciences, College of Health Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
321
|
Sandino C, McErlain DD, Schipilow J, Boyd SK. The poro-viscoelastic properties of trabecular bone: a micro computed tomography-based finite element study. J Mech Behav Biomed Mater 2015; 44:1-9. [DOI: 10.1016/j.jmbbm.2014.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 11/29/2022]
|
322
|
Sasso GRDS, Florencio-Silva R, Santos MA, Teixeira CDP, Simões MDJ, Katchburian E, Reginato RD. Effects of early and late treatments of low-intensity, high-frequency mechanical vibration on bone parameters in rats. Gynecol Endocrinol 2015; 31:980-6. [PMID: 26291818 DOI: 10.3109/09513590.2015.1075198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Low-intensity, high-frequency mechanical vibration (LHMV) has shown to increase bone formation. However, studies comparing the effectiveness of early- and late-treatments of LHMV to counteract bone loss have not been documented. This study was designed to compare the effects of early- and late-treatments of LHMV (at 30 Hz/0.6 g, 20 min per day/five days per week, for 12 weeks) on bone parameters in ovariectomized (Ovx) rats. Thirty days after ovariectomy, 40 adult rats were randomly divided into four groups: GI (early control group); GII treated with LHMV 3 weeks after Ovx (early treatment); GIII (late control group) and GIV treated with LHMV twelve weeks after Ovx (late treatment). Bone mineral density (BMD) was analyzed before Ovx and after treatments. Then, animals were killed, and the femurs were collected and their length and diaphysis diameter were measured; the distal femurs were taken and processed for histomorphometry and polarized light microscopy for collagen fibers analysis or subjected to immunohistochemistry of cleaved caspase-3 in osteocytes. Statistical analysis was done by ANOVA followed by the Bonferroni post hoc test (p < 0.05). BMD was similar among the groups before Ovx, but after treatments, it was significantly higher in GII and GIV compared with their control groups (p < 0.05). Femur length and cortical bone thickness were similar among the groups, but the diaphysis diameter of GII was higher compared with GI. Trabecular bone area was higher in the vibrated groups, but it was greater in GII (p < 0.05). Also, the vibrated groups showed the higher content collagen fibers and lower presence apoptotic osteocytes (positive caspase-3 immunoreactivity) when compared with the other groups (p < 0.05). These results suggest that both early- and late-treatments with LHMV counteract bone loss, being the early treatment more effective than the late treatment.
Collapse
Affiliation(s)
| | - Rinaldo Florencio-Silva
- a Department of Morphology and Genetics , Federal University of São Paulo , São Paulo , Brazil
| | - Miriam Aparecida Santos
- a Department of Morphology and Genetics , Federal University of São Paulo , São Paulo , Brazil
| | | | | | | | | |
Collapse
|
323
|
Schröder R, Pohlit H, Schüler T, Panthöfer M, Unger RE, Frey H, Tremel W. Transformation of vaterite nanoparticles to hydroxycarbonate apatite in a hydrogel scaffold: relevance to bone formation. J Mater Chem B 2015; 3:7079-7089. [DOI: 10.1039/c5tb01032b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vaterite nanoparticles incorporated in a biodegradable PEG hydrogel transform to hydroxycarbonate apatite upon incubation in simulated body fluid. The vaterite-loaded hydrogels did not have inflammatory effects on endothelial cells.
Collapse
Affiliation(s)
- Romina Schröder
- Institute of Inorganic Chemistry and Analytical Chemistry
- Johannes Gutenberg-University of Mainz
- 55128 Mainz
- Germany
- Institute of Pathology
| | - Hannah Pohlit
- Institute of Organic Chemistry
- Johannes Gutenberg-University of Mainz
- 55128 Mainz
- Germany
- Graduate School Materials Science in Mainz
| | - Timo Schüler
- Institute of Inorganic Chemistry and Analytical Chemistry
- Johannes Gutenberg-University of Mainz
- 55128 Mainz
- Germany
| | - Martin Panthöfer
- Institute of Inorganic Chemistry and Analytical Chemistry
- Johannes Gutenberg-University of Mainz
- 55128 Mainz
- Germany
| | - Ronald E. Unger
- Institute of Pathology
- REPAIR Lab
- Johannes Gutenberg-University of Mainz
- 55131 Mainz
- Germany
| | - Holger Frey
- Institute of Organic Chemistry
- Johannes Gutenberg-University of Mainz
- 55128 Mainz
- Germany
| | - Wolfgang Tremel
- Institute of Inorganic Chemistry and Analytical Chemistry
- Johannes Gutenberg-University of Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
324
|
Knapik JJ, Reynolds K. Load Carriage-Related Injury Mechanisms, Risk Factors, and Prevention. STUDIES IN MECHANOBIOLOGY, TISSUE ENGINEERING AND BIOMATERIALS 2015. [DOI: 10.1007/8415_2014_182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
325
|
Importance of age on the dynamic mechanical behavior of intertubular and peritubular dentin. J Mech Behav Biomed Mater 2014; 42:229-42. [PMID: 25498296 DOI: 10.1016/j.jmbbm.2014.11.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/20/2014] [Accepted: 11/22/2014] [Indexed: 11/23/2022]
Abstract
An experimental evaluation of human coronal dentin was performed using nanoscopic dynamic mechanical analysis (nanoDMA). The primary objectives were to quantify any unique changes in mechanical behavior of intertubular and peritubular dentin with age, and to evaluate the microstructure and mechanical behavior of the mineral deposited within the lumens. Specimens of coronal dentin were evaluated by nanoDMA using single indents and in scanning mode via scanning probe microscopy. Results showed that there were no significant differences in the storage modulus or complex modulus between the two age groups (18-25 versus 54-83 yrs) for either the intertubular or peritubular tissue. However, there were significant differences in the dampening behavior between the young and old dentin, as represented in the loss modulus and tanδ responses. For both the intertubular and peritubular components, the capacity for dampening was significantly lower in the old group. Scanning based nanoDMA showed that the tubules of old dentin exhibit a gradient in elastic behavior, with decrease in elastic modulus from the cuff to the center of tubules filled with newly deposited mineral.
Collapse
|
326
|
Boskey AL. CORR Insights®: fractures in geriatric mice show decreased callus expansion and bone volume. Clin Orthop Relat Res 2014; 472:3533-5. [PMID: 25141847 PMCID: PMC4182377 DOI: 10.1007/s11999-014-3892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/11/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Adele L Boskey
- Research Division, Hospital for Special Surgery (affiliated with Weill Medical College of Cornell University), 535 E 70th Street, New York, NY, 10021, USA,
| |
Collapse
|
327
|
Matsuura T, Sasaki M, Katafuchi M, Tokutomi K, Mizumachi E, Makino M, Naito T, Sato H. Characterization of the bone matrix and its contribution to tooth loss in human cadaveric mandibles. Acta Odontol Scand 2014; 72:753-61. [PMID: 24694099 DOI: 10.3109/00016357.2014.903517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE It is uncertain as to what extent the major bone matrix constituents, mineral and collagen, show inter-individual variation and dependence on age and sex in jawbones. The purpose of this study was to clarify this uncertainty using cadaveric mandibles and investigate the association of bone matrix with the number of existing teeth. MATERIALS AND METHODS Cortical bone samples (1 × 1 cm) collected from the mental of 48 cadaveric mandibles (27 men and 21 women; age range = 56-93 years and 63-103 years, respectively) were used to quantify three bone matrix indices: mineral content, collagen content and extent of lysine hydroxylation of collagen. Associations with age and comparisons by sex were evaluated based on bone matrix indices and the numbers of existing teeth. The numbers of existing teeth were compared between the groups showing low and high bone matrix index values. RESULTS A great amount of inter-individual variation was seen in all bone matrix indices. No bone matrix indices were associated with age, while the number of existing teeth was negatively associated with age. The bone matrix indices and number of existing teeth did not differ by sex. The number of existing teeth was nearly twice as high in the group showing high collagen content as in the low collagen group; however, an analysis of covariance showed a significant inter-group difference not from bone matrix indices, but rather from age. Interestingly, in comparison to femoral collagen, mandibular collagen showed lower lysine hydroxylation, which can represent an aspect of bone quality. CONCLUSIONS Mandibular bone matrix shows great inter-individual variation and is independent of age and sex, but did not show as strong a relationship with tooth loss as age. Even so, mandibular collagen may represent a unique characteristic of bone matrix and deserves to be further investigated.
Collapse
Affiliation(s)
- Takashi Matsuura
- Section of Fixed Prosthodontics, Department of Oral Rehabilitation
| | | | | | | | | | | | | | | |
Collapse
|
328
|
Du Z, Ivanovski S, Hamlet SM, Feng JQ, Xiao Y. The Ultrastructural Relationship Between Osteocytes and Dental Implants Following Osseointegration. Clin Implant Dent Relat Res 2014; 18:270-80. [DOI: 10.1111/cid.12257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhibin Du
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Brisbane Qld Australia
| | - Saso Ivanovski
- School of Dentistry and Oral Health; Griffith University; Gold Coast Qld Australia
| | - Stephen M. Hamlet
- School of Dentistry and Oral Health; Griffith University; Gold Coast Qld Australia
| | - Jian Q. Feng
- Baylor College of Dentistry; Texas A&M Health Science Center; Dallas TX USA
| | - Yin Xiao
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Brisbane Qld Australia
| |
Collapse
|
329
|
Marie PJ. Bone cell senescence: mechanisms and perspectives. J Bone Miner Res 2014; 29:1311-21. [PMID: 24496911 DOI: 10.1002/jbmr.2190] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
Abstract
Age-related bone loss is in large part the consequence of senescence mechanisms that impact bone cell number and function. In recent years, progress has been made in the understanding of the molecular mechanisms underlying bone cell senescence that contributes to the alteration of skeletal integrity during aging. These mechanisms can be classified as intrinsic senescence processes, alterations in endogenous anabolic factors, and changes in local support. Intrinsic senescence mechanisms cause cellular dysfunctions that are not tissue specific and include telomere shortening, accumulation of oxidative damage, impaired DNA repair, and altered epigenetic mechanisms regulating gene transcription. Aging mechanisms that are more relevant to the bone microenvironment include alterations in the expression and signaling of local growth factors and altered intercellular communications. This review provides an integrated overview of the current concepts and interacting mechanisms underlying bone cell senescence during aging and how they could be targeted to reduce the negative impact of senescence in the aging skeleton.
Collapse
Affiliation(s)
- Pierre J Marie
- Inserm UMR-1132, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
330
|
Busse B, Bale HA, Zimmermann EA, Panganiban B, Barth HD, Carriero A, Vettorazzi E, Zustin J, Hahn M, Ager JW, Püschel K, Amling M, Ritchie RO. Vitamin D deficiency induces early signs of aging in human bone, increasing the risk of fracture. Sci Transl Med 2014; 5:193ra88. [PMID: 23843449 DOI: 10.1126/scitranslmed.3006286] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vitamin D deficiency is a widespread medical condition that plays a major role in human bone health. Fracture susceptibility in the context of low vitamin D has been primarily associated with defective mineralization of collagenous matrix (osteoid). However, bone's fracture resistance is due to toughening mechanisms at various hierarchical levels ranging from the nano- to the microstructure. Thus, we hypothesize that the increase in fracture risk with vitamin D deficiency may be triggered by numerous pathological changes and may not solely derive from the absence of mineralized bone. We found that the characteristic increase in osteoid-covered surfaces in vitamin D-deficient bone hampers remodeling of the remaining mineralized bone tissue. Using spatially resolved synchrotron bone mineral density distribution analyses and spectroscopic techniques, we observed that the bone tissue within the osteoid frame has a higher mineral content with mature collagen and mineral constituents, which are characteristic of aged tissue. In situ fracture mechanics measurements and synchrotron radiation micro-computed tomography of the crack path indicated that vitamin D deficiency increases both the initiation and propagation of cracks by 22 to 31%. Thus, vitamin D deficiency is not simply associated with diminished bone mass. Our analyses reveal the aged nature of the remaining mineralized bone and its greatly decreased fracture resistance. Through a combination of characterization techniques spanning multiple size scales, our study expands the current clinical understanding of the pathophysiology of vitamin D deficiency and helps explain why well-balanced vitamin D levels are essential to maintain bone's structural integrity.
Collapse
Affiliation(s)
- Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg, D-22529 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
331
|
Are we taking full advantage of the growing number of pharmacological treatment options for osteoporosis? Curr Opin Pharmacol 2014; 16:64-71. [PMID: 24747363 DOI: 10.1016/j.coph.2014.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 11/23/2022]
Abstract
We are becoming increasingly aware that the manner in which our skeleton ages is not uniform within and between populations. Pharmacological treatment options with the potential to combat age-related reductions in skeletal strength continue to become available on the market, notwithstanding our current inability to fully utilize these treatments by accounting for an individual's unique biomechanical needs. Revealing new molecular mechanisms that improve the targeted delivery of pharmaceuticals is important; however, this only addresses one part of the solution for differential age-related bone loss. To improve current treatment regimes, we must also consider specific biomechanical mechanisms that define how these molecular pathways ultimately impact whole bone fracture resistance. By improving our understanding of the relationship between molecular and biomechanical mechanisms, clinicians will be better equipped to take full advantage of the mounting pharmacological treatments available. Ultimately this will enable us to reduce fracture risk among the elderly more strategically, more effectively, and more economically. In this interest, the following review summarizes the biomechanical basis of current treatment strategies while defining how different biomechanical mechanisms lead to reduced fracture resistance. It is hoped that this may serve as a template for the identification of new targets for pharmacological treatments that will enable clinicians to personalize care so that fracture incidence may be globally reduced.
Collapse
|
332
|
Lim WH, Liu B, Cheng D, Hunter DJ, Zhong Z, Ramos DM, Williams BO, Sharpe PT, Bardet C, Mah SJ, Helms JA. Wnt signaling regulates pulp volume and dentin thickness. J Bone Miner Res 2014; 29:892-901. [PMID: 23996396 PMCID: PMC4541795 DOI: 10.1002/jbmr.2088] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/12/2013] [Accepted: 08/27/2013] [Indexed: 12/18/2022]
Abstract
Odontoblasts, cementoblasts, ameloblasts, and osteoblasts all form mineralized tissues in the craniofacial complex, and all these cell types exhibit active Wnt signaling during postnatal life. We set out to understand the functions of this Wnt signaling, by evaluating the phenotypes of mice in which the essential Wnt chaperone protein, Wntless was eliminated. The deletion of Wls was restricted to cells expressing Osteocalcin (OCN), which in addition to osteoblasts includes odontoblasts, cementoblasts, and ameloblasts. Dentin, cementum, enamel, and bone all formed in OCN-Cre;Wls(fl/fl) mice but their homeostasis was dramatically affected. The most notable feature was a significant increase in dentin volume and density. We attribute this gain in dentin volume to a Wnt-mediated misregulation of Runx2. Normally, Wnt signaling stimulates Runx2, which in turn inhibits dentin sialoprotein (DSP); this inhibition must be relieved for odontoblasts to differentiate. In OCN-Cre;Wls(fl/fl) mice, Wnt pathway activation is reduced and Runx2 levels decline. The Runx2-mediated repression of DSP is relieved and odontoblast differentiation is accordingly enhanced. This study demonstrates the importance of Wnt signaling in the homeostasis of mineralized tissues of the craniofacial complex.
Collapse
Affiliation(s)
- Won Hee Lim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA; Department of Orthodontics, School of Dentistry & Dental Research Institute, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Li Z, Pasteris JD. Tracing the pathway of compositional changes in bone mineral with age: preliminary study of bioapatite aging in hypermineralized dolphin's bulla. Biochim Biophys Acta Gen Subj 2014; 1840:2331-9. [PMID: 24650888 DOI: 10.1016/j.bbagen.2014.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Studies of mineral compositional effects during bone aging are complicated by the presence of collagen. METHODS Hypermineralized bullae of Atlantic bottlenose dolphins of <3months, 2.5years, and 20years underwent micrometer-scale point analysis by Raman spectroscopy and electron microprobe in addition to bulk analysis for carbon. RESULTS Bulla central areas have a mineral content of ~96wt.% and 9-10wt.% carbonate in their bioapatite, which is ~2wt.% more than edge areas. Ca/P atomic ratios (~1.8) and concentrations of Mg, S, and other minor/trace elements are almost constant in central areas over time. Maturity brings greater over-all homogeneity in mineral content, stoichiometry, and morphology throughout the central and edge areas of the bullae. During aging, edge areas become less porous, whereas the concentration of organics in the edge is reduced. Enhancement of coupled substitutions of CO3(2-) for PO4(3-) and Na for Ca during aging increases carbonate content up to ~10wt.% in the adult bulla. CONCLUSIONS 1) Changes in physical properties during aging did not occur simultaneously with changes in chemical properties of the bone mineral. 2) Compositional changes in bone mineral were minor during the neonatal to sub-adult stage, but significant during later maturity. 3) Na and CO3 concentrations co-vary in a 1:1 molar proportion during aging. 4) The mineral's crystallinity did not decrease as CO3 concentration increased during aging. GENERAL SIGNIFICANCE Hypermineralized dolphin's bulla, due to extreme depletion in collagen, is an ideal material for investigating mineralogical changes in bioapatite during bone aging.
Collapse
Affiliation(s)
- Zhen Li
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jill D Pasteris
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
334
|
Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BONEKEY REPORTS 2013; 2:447. [PMID: 24501681 DOI: 10.1038/bonekey.2013.181] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/27/2013] [Indexed: 02/06/2023]
Abstract
The composition of a bone can be described in terms of the mineral phase, hydroxyapatite, the organic phase, which consists of collagen type I, noncollagenous proteins, other components and water. The relative proportions of these various components vary with age, site, gender, disease and treatment. Any drug therapy could change the composition of a bone. This review, however, will only address those pharmaceuticals used to treat or prevent diseases of bone: fragility fractures in particular, and the way they can alter the composition. As bone is a heterogeneous tissue, its composition must be discussed in terms of the chemical makeup, properties of its chemical constituents and their distributions in the ever-changing bone matrix. Emphasis, in this review, is placed on changes in composition as a function of age and various diseases of bone, particularly osteoporosis. It is suggested that while some of the antiosteoporotic drugs can and do modify composition, their positive effects on bone strength may be balanced by negative ones.
Collapse
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, affiliated with Weill Medical College of Cornell University , New York, NY, USA ; Department of Biophysics and Systems Biology, Weill Medical College of Cornell University , New York, NY, USA
| |
Collapse
|
335
|
McKee MD, Hoac B, Addison WN, Barros NM, Millán JL, Chaussain C. Extracellular matrix mineralization in periodontal tissues: Noncollagenous matrix proteins, enzymes, and relationship to hypophosphatasia and X-linked hypophosphatemia. Periodontol 2000 2013; 63:102-22. [PMID: 23931057 PMCID: PMC3766584 DOI: 10.1111/prd.12029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 12/26/2022]
Abstract
As broadly demonstrated for the formation of a functional skeleton, proper mineralization of periodontal alveolar bone and teeth - where calcium phosphate crystals are deposited and grow within an extracellular matrix - is essential for dental function. Mineralization defects in tooth dentin and cementum of the periodontium invariably lead to a weak (soft or brittle) dentition in which teeth become loose and prone to infection and are lost prematurely. Mineralization of the extremities of periodontal ligament fibers (Sharpey's fibers) where they insert into tooth cementum and alveolar bone is also essential for the function of the tooth-suspensory apparatus in occlusion and mastication. Molecular determinants of mineralization in these tissues include mineral ion concentrations (phosphate and calcium), pyrophosphate, small integrin-binding ligand N-linked glycoproteins and matrix vesicles. Amongst the enzymes important in regulating these mineralization determinants, two are discussed at length here, with clinical examples given, namely tissue-nonspecific alkaline phosphatase and phosphate-regulating gene with homologies to endopeptidases on the X chromosome. Inactivating mutations in these enzymes in humans and in mouse models lead to the soft bones and teeth characteristic of hypophosphatasia and X-linked hypophosphatemia, respectively, where the levels of local and systemic circulating mineralization determinants are perturbed. In X-linked hypophosphatemia, in addition to renal phosphate wasting causing low circulating phosphate levels, phosphorylated mineralization-regulating small integrin-binding ligand N-linked glycoproteins, such as matrix extracellular phosphoglycoprotein and osteopontin, and the phosphorylated peptides proteolytically released from them, such as the acidic serine- and aspartate-rich-motif peptide, may accumulate locally to impair mineralization in this disease.
Collapse
Affiliation(s)
- Marc D. McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Betty Hoac
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - William N. Addison
- Department of Oral Medicine, Infection and Immunity, Harvard University School of Dental Medicine, Boston, MA, USA
| | - Nilana M.T. Barros
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brasil, and Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Catherine Chaussain
- EA 2496, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité; AP-HP: Odontology Department Bretonneau, Paris and Centre de Référence des Maladies Rares du Métabolisme du Phosphore et du Calcium, Kremlin Bicêtre, France
| |
Collapse
|
336
|
Romme EAPM, Smeenk FWJM, Rutten EPA, Wouters EFM. Osteoporosis in chronic obstructive pulmonary disease. Expert Rev Respir Med 2013; 7:397-410. [PMID: 23952337 DOI: 10.1586/17476348.2013.814402] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is being regarded as a heterogeneous disease with clinically significant pulmonary and extrapulmonary manifestations, such as emphysema, cardiovascular disease and osteoporosis. Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone tissue, leading to enhanced bone fragility and, consequently, an increased risk of fracture. Fractures resulting from osteoporosis might contribute to increased morbidity and mortality, particularly in COPD patients. The high prevalence of osteoporosis in COPD patients is assumed to be due to common risk factors, such as older age and tobacco smoking, and COPD-specific risk factors, such as systemic inflammation, vitamin D deficiency and the use of oral or inhaled corticosteroids. This review provides a state-of-the-art summary of the prevalence, pathophysiology, diagnosis, risk factors and treatment of osteoporosis in COPD patients. It also discusses potential mechanisms linking COPD with osteoporosis.
Collapse
Affiliation(s)
- Elisabeth A P M Romme
- Catharina Hospital, Department of Respiratory Medicine, PO Box 1350, 5602 ZA Eindhoven, The Netherlands.
| | | | | | | |
Collapse
|
337
|
Sadie-Van Gijsen H, Crowther NJ, Hough FS, Ferris WF. The interrelationship between bone and fat: from cellular see-saw to endocrine reciprocity. Cell Mol Life Sci 2013; 70:2331-49. [PMID: 23178849 PMCID: PMC11113730 DOI: 10.1007/s00018-012-1211-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/05/2012] [Accepted: 11/07/2012] [Indexed: 01/03/2023]
Abstract
The number of mature osteoblasts and marrow adipocytes in bone is influenced by the differentiation of the common mesenchymal progenitor cell towards one phenotype and away from the other. Consequently, factors which promote adipogenesis not only lead to fatty marrow but also inhibit osteoblastogenesis, resulting in decreased osteoblast numbers, diminished bone formation and, potentially, inadequate bone mass and osteoporosis. In addition to osteoblast and bone adipocyte numbers being influenced by this skewing of progenitor cell differentiation towards one phenotype, mature osteoblasts and adipocytes secrete factors which may evoke changes in the cell fate and function of each other. This review examines the endogenous factors, such as PPAR-γ2, Wnt, IGF-1, GH, FGF-2, oestrogen, the GP130 signalling cytokines, vitamin D and glucocorticoids, which regulate the selection between osteoblastogenesis and adipogenesis and the interrelationship between fat and bone. The role of adipokines on bone, such as adiponectin and leptin, as well as adipose-derived oestrogen, is reviewed and the role of bone as an energy regulating endocrine organ is discussed.
Collapse
Affiliation(s)
- H. Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505 South Africa
| | - N. J. Crowther
- Department of Chemical Pathology, National Health Laboratory Services, University of Witwatersrand Medical School, 7 York Road, Parktown, 2193 South Africa
| | - F. S. Hough
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505 South Africa
| | - W. F. Ferris
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505 South Africa
| |
Collapse
|
338
|
Mozzati M, Arata V, Gallesio G. Tooth extraction in osteoporotic patients taking oral bisphosphonates. Osteoporos Int 2013; 24:1707-12. [PMID: 23288026 DOI: 10.1007/s00198-012-2239-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/18/2012] [Indexed: 01/07/2023]
Abstract
UNLABELLED This prospective study compares two different surgical protocols with different degrees of invasiveness for tooth extraction in patients treated with oral bisphosphonates (BPs). No intraoperative complications were observed in either of the two groups, and there was no evidence of postoperative bisphosphonate-associated osteonecrosis of the jaw in any of the extractions in the study group at follow-up (1,480 extractions). According to our data, dental extraction seems to be safe in osteoporotic patients treated with oral bisphosphonates. INTRODUCTION Oral bisphosphonates are drugs commonly prescribed for the treatment of osteoporosis and other resorptive bone diseases. Since 2003, there have been numerous publications relating bisphosphonate-related osteonecrosis of the jaw (BRONJ) in patients using oral bisphosphonates, such as alendronate and risedronate. Most of the BRONJ cases reported in literature show a strong correlation with dental pathologies, dental extractions, and/or oral surgical procedures. METHODS This study was conducted on 700 consecutive patients treated with oral bisphosphonates who underwent dental extractions. A total of 1,480 extractions were involved: 864 in the mandible and 616 in the maxilla. The patients were assigned randomly to one of two groups: 334 were treated with delicate surgery and closure by primary intention (Protocol A), and the other 366 were treated with nontraumatic avulsion and closure by secondary intention (Protocol B). All patients were administered with antibiotics coverage. RESULTS Seven hundred patients with required removal of compromised teeth were included in the study. No intraoperative complications were observed in either of the two groups, and there was no evidence of postoperative bisphosphonate-associated osteonecrosis of the jaw in any of the extractions in the study group at follow-up (1,480 extractions). CONCLUSIONS The findings of this prospective study indicate that both suggested protocols for tooth extraction in patients treated with oral BPs can provide a predictable treatment outcome (100 % success). Therefore, because atraumatic surgery is more comfortable for patients, we suggest the adoption of Protocol B, which limits trauma to both the soft and hard tissues.
Collapse
Affiliation(s)
- M Mozzati
- Private Institute for Oral Surgery and Implantology, Turin 10126, Italy.
| | | | | |
Collapse
|
339
|
Lee K, Kim H, Park HS, Kim KJ, Song H, Shin HI, Kim HS, Seo D, Kook H, Ko JH, Jeong D. Targeting of the osteoclastogenic RANKL-RANK axis prevents osteoporotic bone loss and soft tissue calcification in coxsackievirus B3-infected mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:1623-30. [PMID: 23303667 DOI: 10.4049/jimmunol.1201479] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone mineralization is a normal physiological process, whereas ectopic calcification of soft tissues is a pathological process that leads to irreversible tissue damage. We have established a coxsackievirus B3 (CVB3)-infected mouse model that manifests both osteoporosis and ectopic calcification specifically in heart, pancreas, and lung. The CVB3-infected mice showed increased serum concentrations of both cytokines including IL-1β, TNF-α, and the receptor activator of NF-κB ligand (RANKL) that stimulate osteoclast formation and of the osteoclast-derived protein tartrate-resistant acid phosphatase 5b. They exhibited more osteoclasts in bone, with no change in the number of osteoblasts, and a decrease in bone formation and the serum concentration of osteoblast-produced osteocalcin. These results indicate that CVB3-induced osteoporosis is likely due to upregulation of osteoclast formation and function, in addition to decreased osteoblast activity. In addition, the serum in the CVB3-infected mice contained a high inorganic phosphate content, which causes ectopic calcification. RANKL treatment induced an increase in the in vitro cardiac fibroblast calcification by inorganic phosphate via the upregulation of osteogenic BMP2, SPARC, Runx2, Fra-1, and NF-κB signaling. We finally observed that i.p. administration of RANK-Fc, a recombinant antagonist of RANKL, prevented bone loss as well as ectopic calcification in CVB3-infected mice. Thus, our results indicate that RANKL may contribute to both abnormal calcium deposition in soft tissues and calcium depletion in bone. In addition, our animal model should provide a tool for the development of new therapeutic agents for calcium disturbance in soft and hard tissues.
Collapse
Affiliation(s)
- Kyunghee Lee
- Department of Microbiology, Yeungnam University College of Medicine, Daegu 705-717, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Alfred T, Ben-Shlomo Y, Cooper R, Hardy R, Cooper C, Deary IJ, Gunnell D, Harris SE, Kumari M, Martin RM, Sayer AA, Starr JM, Kuh D, Day INM. Genetic markers of bone and joint health and physical capability in older adults: the HALCyon programme. Bone 2013; 52:278-85. [PMID: 23072920 PMCID: PMC3526776 DOI: 10.1016/j.bone.2012.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/22/2012] [Accepted: 10/04/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Good bone and joint health is essential for the physical tasks of daily living and poorer indicators of physical capability in older adults have been associated with increased mortality rates. Genetic variants of indicators of bone and joint health may be associated with measures of physical capability. METHODS As part of the Healthy Ageing across the Life Course (HALCyon) programme, men and women aged between 52 and 90+ years from six UK cohorts were genotyped for a polymorphism associated with serum calcium (rs1801725, CASR), two polymorphisms associated with bone mineral density (BMD) (rs2941740, ESR1 and rs9594759, RANKL) and one associated with osteoarthritis risk rs3815148 (COG5). Meta-analysis was used to pool within-study effects of the associations between each of the polymorphisms and measures of physical capability: grip strength, timed walk or get up and go, chair rises and standing balance. RESULTS Few important associations were observed among the several tests. We found that carriers of the serum calcium-raising allele had poorer grip strength compared with non-carriers (pooled p=0.05, n=11,239) after adjusting for age and sex. Inconsistent results were observed for the two variants associated with BMD and we found no evidence for an association between rs3815148 (COG5) and any of the physical capability measures. CONCLUSION Our findings suggest elevated serum calcium levels may lead to lower grip strength, though this requires further replication. Our results do not provide evidence for a substantial influence of these variants in ESR1, RANKL and COG5 on physical capability in older adults.
Collapse
Key Words
- bmd, bone mineral density
- oa, osteoarthritis
- bmi, body mass index
- snp, single nucleotide polymorphism
- caps, caerphilly prospective study
- elsa, english longitudinal study of ageing
- has, hertfordshire ageing study
- hcs, hertfordshire cohort study
- lbc1921, the lothian birth cohort 1921
- nshd, national survey of health and development
- hwe, hardy–weinberg equilibrium
- whr, waist–hip ratio
- gwas, genome-wide association studies
- aging
- grip strength
- calcium
- bone mineral density
- osteoarthritis
Collapse
Affiliation(s)
- Tamuno Alfred
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2PS, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
341
|
Gamsjaeger S, Hofstetter B, Zwettler E, Recker R, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP. Effects of 3 years treatment with once-yearly zoledronic acid on the kinetics of bone matrix maturation in osteoporotic patients. Osteoporos Int 2013; 24:339-47. [PMID: 23229465 DOI: 10.1007/s00198-012-2202-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/26/2012] [Indexed: 11/29/2022]
Abstract
UNLABELLED Once-yearly administration of intravenous zoledronic acid for 3 years in humans affects the kinetics of matrix filling in by mineral, independent of bone turnover. INTRODUCTION Yearly 5-mg infusions of zoledronic acid (ZOL) for 3 years have shown pronounced antifracture efficacy. The purpose of the present study was to test whether ZOL affects the kinetics of forming bone material properties maturation. METHODS Iliac crest biopsies from the HORIZON-PFT clinical trial were analyzed by Raman microspectroscopy in actively bone-forming surfaces as a function of tissue age in trabecular and osteonal bone, to determine ZOL's effect on bone material quality indices maturation kinetics. RESULTS Mineral/matrix ratio increased in both groups as a function of tissue age, at both osteonal- and trabecular-forming surfaces; ZOL exhibiting the greatest increase in the trabecular surfaces only. The proteoglycan content showed a dependency on tissue age in both trabecular and osteonal surfaces, with ZOL exhibiting lower values in the tissue age 8-22 days in the trabecular surfaces. Mineral crystallinity (crystallite length and thickness) showed a dependence on tissue age, with ZOL exhibiting lower crystallite length compared with placebo only in the 8- to 22-day-old tissue at trabecular surfaces, while crystal thickness was lower in the 1- to 5-day-old tissue at both osteonal and trabecular surfaces. CONCLUSIONS The results of the present study suggest that once-yearly administration of intravenous ZOL for 3 years in humans does not exert any adverse effects on the evolution of bone material properties at actively forming osteonal and trabecular surfaces, while it may have a beneficial effect on the progression of the mineral-to-matrix ratio and mineral maturity bone quality indices.
Collapse
Affiliation(s)
- S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
342
|
Nasr S, Hunt S, Duncan NA. Effect of screw position on bone tissue differentiation within a fixed femoral fracture. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.612a009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
343
|
New insights into adhesion signaling in bone formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:1-68. [PMID: 23890379 DOI: 10.1016/b978-0-12-407695-2.00001-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mineralized tissues that are protective scaffolds in the most primitive species have evolved and acquired more specific functions in modern animals. These are as diverse as support in locomotion, ion homeostasis, and precise hormonal regulation. Bone formation is tightly controlled by a balance between anabolism, in which osteoblasts are the main players, and catabolism mediated by the osteoclasts. The bone matrix is deposited in a cyclic fashion during homeostasis and integrates several environmental cues. These include diffusible elements that would include estrogen or growth factors and physicochemical parameters such as bone matrix composition, stiffness, and mechanical stress. Therefore, the microenvironment is of paramount importance for controlling this delicate equilibrium. Here, we provide an overview of the most recent data highlighting the role of cell-adhesion molecules during bone formation. Due to the very large scope of the topic, we focus mainly on the role of the integrin receptor family during osteogenesis. Bone phenotypes of some deficient mice as well as diseases of human bones involving cell adhesion during this process are discussed in the context of bone physiology.
Collapse
|
344
|
Baldassarri M, Bonfante E, Suzuki M, Marin C, Granato R, Tovar N, Coelho PG. Mechanical properties of human bone surrounding plateau root form implants retrieved after 0.3-24 years of function. J Biomed Mater Res B Appl Biomater 2012; 100:2015-21. [DOI: 10.1002/jbm.b.32786] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/24/2012] [Accepted: 06/15/2012] [Indexed: 11/08/2022]
|
345
|
Hood WR. A Test of Bone Mobilization Relative to Reproductive Demand: Skeletal Quality Is Improved in Cannibalistic Females with Large Litters. Physiol Biochem Zool 2012; 85:385-96. [DOI: 10.1086/666057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
346
|
Raghavan M, Sahar ND, Kohn DH, Morris MD. Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone. Bone 2012; 50:942-53. [PMID: 22285889 PMCID: PMC3299845 DOI: 10.1016/j.bone.2011.12.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 01/22/2023]
Abstract
There is growing evidence that bone composition and tissue-level mechanical properties are significant determinants of skeletal integrity. In the current study, Raman spectroscopy and nanoindentation testing were co-localized to analyze tissue-level compositional and mechanical properties in skeletally mature young (4 or 5 months) and old (19 months) murine femora at similar spatial scales. Standard multivariate linear regression analysis revealed age-dependent patterns in the relationships between mechanical and compositional properties at the tissue scale. However, changes in bone material properties with age are often complex and nonlinear, and can be missed with linear regression and correlation-based methods. A retrospective data mining approach was implemented using non-linear multidimensional visualization and classification to identify spectroscopic and nanoindentation metrics that best discriminated bone specimens of different age-classes. The ability to classify the specimens into the correct age group increased by using combinations of Raman and nanoindentation variables (86-96% accuracy) as compared to using individual measures (59-79% accuracy). Metrics that best classified 4 or 5 month and 19 month specimens (2-age classes) were mineral to matrix ratio, crystallinity, modulus and plasticity index. Metrics that best distinguished between 4, 5 and 19 month specimens (3-age classes) were mineral to matrix ratio, crystallinity, modulus, hardness, cross-linking, carbonate to phosphate ratio, creep displacement and creep viscosity. These findings attest to the complexity of mechanisms underlying bone tissue properties and draw attention to the importance of considering non-linear interactions between tissue-level composition and mechanics that may work together to influence material properties with age. The results demonstrate that a few non-linearly combined compositional and mechanical metrics provide better discriminatory information than a single metric or a single technique.
Collapse
Affiliation(s)
| | | | - David H. Kohn
- Department of Biomedical Engineering, Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
347
|
Abstract
With an increase in the average life span especially in the Western hemisphere, there is renewed interest in treating maladies of old age including osteoporosis. Age-related bone loss and resultant osteoporosis substantially increase risk of fractures and morbidity in the geriatric population leading to both a decline in the quality of life for the elderly as well as a substantial burden on the health care system. Herein, we review recent research in murine and rodent models looking at how both extrinsic and intrinsic factors such as hormones, biochemicals, neuromodulators, inflammatory cytokines, oxidative stress, nutrition, and exercise influence the skeleton with age. Recent studies on the relationship between bone and fat in the marrow, and the fate of the marrow mesenchymal stromal cell population, which can give rise to either bone-forming osteoblasts or fat-forming adipocytic cells as a function of age, have also been highlighted. An appreciable range of studies using aging murine as well as cellular models are discussed, as these studies have broadened our understanding of the pathways and players in the aging bone. Impactful information regarding aging and the bone may then allow the application of better pharmacologic as well as nonpharmacologic regimens to alleviate bone loss due to aging.
Collapse
Affiliation(s)
- Farhan A Syed
- Abbott Bioresearch Center, Worcester, MA 01545, USA.
| | | |
Collapse
|
348
|
Dorozhkin SV. Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. BIOMATTER 2011; 1:121-164. [PMID: 23507744 PMCID: PMC3549886 DOI: 10.4161/biom.18790] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
349
|
Chung HY, Lee EK, Choi YJ, Kim JM, Kim DH, Zou Y, Kim CH, Lee J, Kim HS, Kim ND, Jung JH, Yu BP. Molecular inflammation as an underlying mechanism of the aging process and age-related diseases. J Dent Res 2011; 90:830-840. [PMID: 21447699 DOI: 10.1177/0022034510387794] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aging is a biological process characterized by time-dependent functional declines that are influenced by changes in redox status and by oxidative stress-induced inflammatory reactions. An organism's pro-inflammatory status may underlie the aging process and age-related diseases. In this review, we explore the molecular basis of low-grade, unresolved, subclinical inflammation as a major risk factor for exacerbating the aging process and age-related diseases. We focus on the redox-sensitive transcription factors, NF-κB and FOXO, which play essential roles in the expression of pro-inflammatory mediators and anti-oxidant enzymes, respectively. Major players in molecular inflammation are discussed with respect to the age-related up-regulation of pro-inflammatory cytokines and adhesion molecules, cyclo-oxygenase-2, lipoxygenase, and inducible nitric oxide synthase. The molecular inflammation hypothesis proposed by our laboratory is briefly described to give further molecular insights into the intricate interplay among redox balance, pro-inflammatory gene activation, and chronic age-related inflammatory diseases. The final section discusses calorie restriction as an aging-retarding intervention that also exhibits extraordinarily effective anti-inflammatory activity by modulating GSH redox, NF-κB, SIRT1, PPARs, and FOXOs.
Collapse
Affiliation(s)
- H Y Chung
- Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
350
|
Calton EF, Macleay J, Boskey AL. Fourier transform infrared imaging analysis of cancellous bone in alendronate- and raloxifene-treated osteopenic sheep. Cells Tissues Organs 2011; 194:302-6. [PMID: 21597262 DOI: 10.1159/000324236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fourier transform infrared imaging spectroscopy (FTIRI)-assessed bone composition parameters (mineral content, collagen maturity, crystal size and perfection, and carbonate content) describe bone quality and correlate to bone fracture risk. The challenge with studying bone quality in patients treated with antiresorptive drugs such as bisphosphonates (e.g., alendronate) and selective estrogen receptor modulators (SERMs) (e.g. raloxifene) is being able to test bone mechanical performance and material properties pre- and posttreatment. The purpose of this study was to evaluate the FTIRI changes in a large animal model of osteoporosis (female sheep with dietary induced metabolic acidosis; MA). Previous studies have investigated the relationship between bone material properties and bone strength in humans and smaller animals and have shown that changes in compositional properties influence fracture risk. Here we characterize the MA model at 6 and 12 months, demonstrate the loss of bone and changes in compositional properties, and show that 6 months of treatment with both antiresorptives ameliorate the bone loss as assessed by bone mineral density and FTIRI. This preliminary data suggest that the MA sheep model allows investigation of whether drug treatments preserve bone properties that exist at the time of treatment or if they induce further beneficial changes.
Collapse
Affiliation(s)
- Ericka F Calton
- Grove School of Engineering, City College and the Graduate Center of the City University of New York, New York, NY, USA
| | | | | |
Collapse
|