351
|
Bernanke J, Luna A, Chang L, Bruno E, Dworkin J, Posner J. Structural brain measures among children with and without ADHD in the Adolescent Brain and Cognitive Development Study cohort: a cross-sectional US population-based study. Lancet Psychiatry 2022; 9:222-231. [PMID: 35143759 DOI: 10.1016/s2215-0366(21)00505-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Structural neuroimaging research has identified a variety of abnormalities in cortical and subcortical structures in children with ADHD. However, studies to date have not employed large, non-referred samples, complete with data on potential confounding variables. Here, we tested for differences in structural MRI measures among children with and without ADHD using data from the Adolescent Brain and Cognitive Development (ABCD) Study, the largest paediatric brain imaging study in the USA. METHODS In this cross-sectional study, we used baseline demographic, clinical, and neuroimaging data from the ABCD Study, which recruited children aged 9-10 years between Sept 1, 2016, and Aug 31, 2018, representative of the sociodemographic features of the US population. ADHD was diagnosed by parent report of symptoms. Neuroimaging data underwent centralised quality control and processing by the ABCD team. Linear mixed effects models were used to estimate Cohen's d values associated with ADHD for 79 brain measures of cortical thickness, cortical area, and subcortical volume. We used a novel simulation strategy to assess the ability to detect significant effects despite potential diagnostic misclassification. FINDINGS Our sample included 10 736 participants (5592 boys, 5139 girls; 5692 White, 2165 Hispanic, 1543 Black, 221 Asian, and 1100 of other race or ethnicity), of whom, 949 met the criteria for ADHD and 9787 did not. In the full model, which included potential confounding variables selected a priori, we found only 11 significant differences across the 79 brain measures after false discovery rate correction, all indicating reductions in brain measures among participants with ADHD. Cohen's d values were small, ranging from -0·11 to -0·06, and were not meaningfully changed by using a more restrictive comparison group or alternative diagnostic methods. Simulations indicated adequate statistical power to detect differences even if there was substantial diagnostic misclassification. INTERPRETATION In a sample representative of the general population, children aged 9-10 years with ADHD differed only modestly on structural brain measures from their unaffected peers. Future studies might need to incorporate other MRI modalities, novel statistical approaches, or alternative diagnostic classifications, particularly for research aimed at developing ADHD diagnostic biomarkers. FUNDING Edwin S Webster Foundation and Duke University, NC, USA.
Collapse
Affiliation(s)
- Joel Bernanke
- New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Alex Luna
- New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Le Chang
- New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Elizabeth Bruno
- New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jordan Dworkin
- New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jonathan Posner
- Department of Psychiatry and Behavioral Health, Duke University, Durham, NC, USA.
| |
Collapse
|
352
|
Buchsbaum MS, Mitelman SA, Christian BT, Merrill BM, Buchsbaum BR, Mitelman D, Mukherjee J, Lehrer DS. Four-modality imaging of unmedicated subjects with schizophrenia: 18F-fluorodeoxyglucose and 18F-fallypride PET, diffusion tensor imaging, and MRI. Psychiatry Res Neuroimaging 2022; 320:111428. [PMID: 34954446 DOI: 10.1016/j.pscychresns.2021.111428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022]
Abstract
Diminished prefrontal function, dopaminergic abnormalities in the striatum and thalamus, reductions in white matter integrity and frontotemporal gray matter deficits are the most replicated findings in schizophrenia. We used four imaging modalities (18F-fluorodeoxyglucose and 18F-fallypride PET, diffusion tensor imaging, structural MRI) in 19 healthy and 25 schizophrenia subjects to assess the relationship between functional (dopamine D2/D3 receptor binding potential, glucose metabolic rate) and structural (fractional anisotropy, MRI) correlates of schizophrenia and their additive diagnostic prediction potential. Multivariate ANOVA was used to compare structural and functional image sets for identification of schizophrenia. Integration of data from all four modalities yielded better predictive power than less inclusive combinations, specifically in the thalamus, left dorsolateral prefrontal and temporal regions. Among the modalities, fractional anisotropy showed highest discrimination in white matter whereas 18F-fallypride binding showed highest discrimination in gray matter. Structural and functional modalities displayed comparable discriminative power but different topography, with higher sensitivity of structural modalities in the left prefrontal region. Combination of functional and structural imaging modalities with inclusion of both gray and white matter appears most effective in diagnostic discrimination. The highest sensitivity of 18F-fallypride PET to gray matter changes in schizophrenia supports the primacy of dopaminergic abnormalities in its pathophysiology.
Collapse
Affiliation(s)
- Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, Irvine and San Diego, 11388 Sorrento Valley Road, San Diego, CA 92121, United States
| | - Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, United States.
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI 53705, United States
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St., Toronto, Ontario, Canada, M6A 2E1
| | - Danielle Mitelman
- The Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, United States
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| |
Collapse
|
353
|
Hribkova H, Svoboda O, Bartecku E, Zelinkova J, Horinkova J, Lacinova L, Piskacek M, Lipovy B, Provaznik I, Glover JC, Kasparek T, Sun YM. Clozapine Reverses Dysfunction of Glutamatergic Neurons Derived From Clozapine-Responsive Schizophrenia Patients. Front Cell Neurosci 2022; 16:830757. [PMID: 35281293 PMCID: PMC8904748 DOI: 10.3389/fncel.2022.830757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
The cellular pathology of schizophrenia and the potential of antipsychotics to target underlying neuronal dysfunctions are still largely unknown. We employed glutamatergic neurons derived from induced pluripotent stem cells (iPSC) obtained from schizophrenia patients with known histories of response to clozapine and healthy controls to decipher the mechanisms of action of clozapine, spanning from molecular (transcriptomic profiling) and cellular (electrophysiology) levels to observed clinical effects in living patients. Glutamatergic neurons derived from schizophrenia patients exhibited deficits in intrinsic electrophysiological properties, synaptic function and network activity. Deficits in K+ and Na+ currents, network behavior, and glutamatergic synaptic signaling were restored by clozapine treatment, but only in neurons from clozapine-responsive patients. Moreover, neurons from clozapine-responsive patients exhibited a reciprocal dysregulation of gene expression, particularly related to glutamatergic and downstream signaling, which was reversed by clozapine treatment. Only neurons from clozapine responders showed return to normal function and transcriptomic profile. Our results underscore the importance of K+ and Na+ channels and glutamatergic synaptic signaling in the pathogenesis of schizophrenia and demonstrate that clozapine might act by normalizing perturbances in this signaling pathway. To our knowledge this is the first study to demonstrate that schizophrenia iPSC-derived neurons exhibit a response phenotype correlated with clinical response to an antipsychotic. This opens a new avenue in the search for an effective treatment agent tailored to the needs of individual patients.
Collapse
Affiliation(s)
- Hana Hribkova
- Department of Biology, Masaryk University, Brno, Czechia
| | - Ondrej Svoboda
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Elis Bartecku
- Department of Psychiatry, Faculty of Medicine and University Hospital Brno, Brno, Czechia
| | - Jana Zelinkova
- Department of Biology, Masaryk University, Brno, Czechia
| | - Jana Horinkova
- Department of Psychiatry, Faculty of Medicine and University Hospital Brno, Brno, Czechia
| | - Lubica Lacinova
- Center of Bioscience, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Piskacek
- Department of Pathological Physiology, Masaryk University, Brno, Czechia
| | - Bretislav Lipovy
- Department of Burns and Plastic Surgery, Faculty of Medicine and University Hospital Brno, Brno, Czechia
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Joel C. Glover
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Tomas Kasparek
- Department of Psychiatry, Faculty of Medicine and University Hospital Brno, Brno, Czechia
- *Correspondence: Tomas Kasparek,
| | - Yuh-Man Sun
- Department of Biology, Masaryk University, Brno, Czechia
| |
Collapse
|
354
|
Chilla GS, Yeow LY, Chew QH, Sim K, Prakash KNB. Machine learning classification of schizophrenia patients and healthy controls using diverse neuroanatomical markers and Ensemble methods. Sci Rep 2022; 12:2755. [PMID: 35177708 PMCID: PMC8854385 DOI: 10.1038/s41598-022-06651-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a major psychiatric disorder that imposes enormous clinical burden on patients and their caregivers. Determining classification biomarkers can complement clinical measures and improve understanding of the neural basis underlying schizophrenia. Using neuroanatomical features, several machine learning based investigations have attempted to classify schizophrenia from healthy controls but the range of neuroanatomical measures employed have been limited in range to date. In this study, we sought to classify schizophrenia and healthy control cohorts using a diverse set of neuroanatomical measures (cortical and subcortical volumes, cortical areas and thickness, cortical mean curvature) and adopted Ensemble methods for better performance. Additionally, we correlated such neuroanatomical features with Quality of Life (QoL) assessment scores within the schizophrenia cohort. With Ensemble methods and diverse neuroanatomical measures, we achieved classification accuracies ranging from 83 to 87%, sensitivities and specificities varying between 90-98% and 65-70% respectively. In addition to lower QoL scores within schizophrenia cohort, significant correlations were found between specific neuroanatomical measures and psychological health, social relationship subscale domains of QoL. Our results suggest the utility of inclusion of subcortical and cortical measures and Ensemble methods to achieve better classification performance and their potential impact of parsing out neurobiological correlates of quality of life in schizophrenia.
Collapse
Affiliation(s)
- Geetha Soujanya Chilla
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore, 138667.
| | - Ling Yun Yeow
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore, 138667
| | - Qian Hui Chew
- Institute of Mental Health, Singapore, Singapore, 539747
| | - Kang Sim
- Institute of Mental Health, Singapore, Singapore, 539747
| | - K N Bhanu Prakash
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore, 138667.
| |
Collapse
|
355
|
Chen Y, Womer FY, Feng R, Zhang X, Zhang Y, Duan J, Chang M, Yin Z, Jiang X, Wei S, Wei Y, Tang Y, Wang F. A Real-World Observation of Antipsychotic Effects on Brain Volumes and Intrinsic Brain Activity in Schizophrenia. Front Neurosci 2022; 15:749316. [PMID: 35221884 PMCID: PMC8863862 DOI: 10.3389/fnins.2021.749316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe confounding effects of antipsychotics that led to the inconsistencies of neuroimaging findings have long been the barriers to understanding the pathophysiology of schizophrenia (SZ). Although it is widely accepted that antipsychotics can alleviate psychotic symptoms during the early most acute phase, the longer-term effects of antipsychotics on the brain have been unclear. This study aims to look at the susceptibility of different imaging measures to longer-term medicated status through real-world observation.MethodsWe compared gray matter volume (GMV) with amplitude of low-frequency fluctuations (ALFFs) in 89 medicated-schizophrenia (med-SZ), 81 unmedicated-schizophrenia (unmed-SZ), and 235 healthy controls (HC), and the differences were explored for relationships between imaging modalities and clinical variables. We also analyzed age-related effects on GMV and ALFF values in the two patient groups (med-SZ and unmed-SZ).ResultsMed-SZ demonstrated less GMV in the prefrontal cortex, temporal lobe, cingulate gyri, and left insula than unmed-SZ and HC (p < 0.05, family-wise error corrected). Additionally, GMV loss correlated with psychiatric symptom relief in all SZ. However, medicated status did not influence ALFF values: all SZ showed increased ALFF in the anterior cerebrum and decreased ALFF in posterior visual cortices compared with HC (p < 0.05, family-wise error corrected). Age-related GMV effects were seen in all regions, which showed group-level differences except fusiform gyrus. No significant correlation was found between ALFF values and psychiatric symptoms.ConclusionGMV loss appeared to be pronounced to longer-term antipsychotics, whereby imbalanced alterations in regional low-frequency fluctuations persisted unaffected by antipsychotic treatment. Our findings may help to understand the disease course of SZ and potentially identify a reliable neuroimaging feature for diagnosis.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fay Y. Womer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Ruiqi Feng
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xizhe Zhang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yanbo Zhang
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Jia Duan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Miao Chang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Zhiyang Yin
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shengnan Wei
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yange Wei
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yanqing Tang,
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Fei Wang,
| |
Collapse
|
356
|
Ryan MC, Hong LE, Hatch KS, Gao S, Chen S, Haerian K, Wang J, Goldwaser EL, Du X, Adhikari BM, Bruce H, Hare S, Kvarta MD, Jahanshad N, Nichols TE, Thompson PM, Kochunov P. The additive impact of cardio-metabolic disorders and psychiatric illnesses on accelerated brain aging. Hum Brain Mapp 2022; 43:1997-2010. [PMID: 35112422 PMCID: PMC8933252 DOI: 10.1002/hbm.25769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/28/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022] Open
Abstract
Severe mental illnesses (SMI) including major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia spectrum disorder (SSD) elevate accelerated brain aging risks. Cardio‐metabolic disorders (CMD) are common comorbidities in SMI and negatively impact brain health. We validated a linear quantile regression index (QRI) approach against the machine learning “BrainAge” index in an independent SSD cohort (N = 206). We tested the direct and additive effects of SMI and CMD effects on accelerated brain aging in the N = 1,618 (604 M/1,014 F, average age = 63.53 ± 7.38) subjects with SMI and N = 11,849 (5,719 M/6,130 F; 64.42 ± 7.38) controls from the UK Biobank. Subjects were subdivided based on diagnostic status: SMI+/CMD+ (N = 665), SMI+/CMD− (N = 964), SMI−/CMD+ (N = 3,765), SMI−/CMD− (N = 8,083). SMI (F = 40.47, p = 2.06 × 10−10) and CMD (F = 24.69, p = 6.82 × 10−7) significantly, independently impacted whole‐brain QRI in SMI+. SSD had the largest effect (Cohen’s d = 1.42) then BD (d = 0.55), and MDD (d = 0.15). Hypertension had a significant effect on SMI+ (d = 0.19) and SMI− (d = 0.14). SMI effects were direct, independent of MD, and remained significant after correcting for effects of antipsychotic medications. Whole‐brain QRI was significantly (p < 10−16) associated with the volume of white matter hyperintensities (WMH). However, WMH did not show significant association with SMI and was driven by CMD, chiefly hypertension (p < 10−16). We used a simple and robust index, QRI, the demonstrate additive effect of SMI and CMD on accelerated brain aging. We showed a greater effect of psychiatric illnesses on QRI compared to cardio‐metabolic illness. Our findings suggest that subjects with SMI should be among the targets for interventions to protect against age‐related cognitive decline.
Collapse
Affiliation(s)
- Meghann C Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kathryn S Hatch
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Division of Biostatistics and Bioinformatics, Department of Public Health and Epidemiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Krystl Haerian
- Department of Clinical Research and Leadership, School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia, USA
| | - Jingtao Wang
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Eric L Goldwaser
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bhim M Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Heather Bruce
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie Hare
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mark D Kvarta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Thomas E Nichols
- Nuffield Department of Population Health of the University of Oxford, Oxford, UK
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
357
|
Guxens M, Lubczynska MJ, Perez-Crespo L, Muetzel RL, El Marroun H, Basagana X, Hoek G, Tiemeier H. Associations of Air Pollution on the Brain in Children: A Brain Imaging Study. Res Rep Health Eff Inst 2022; 2022:1-61. [PMID: 36106707 PMCID: PMC9476146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction Epidemiological studies are highlighting the negative effects of the exposure to air pollution on children's neurodevelopment. However, most studies assessed children's neurodevelopment using neuropsychological tests or questionnaires. Using magnetic resonance imaging (MRI) to precisely measure global and region-specific brain development would provide details of brain morphology and connectivity. This would help us understand the observed cognitive and behavioral changes related to air pollution exposure. Moreover, most studies assessed only a few air pollutants. This project investigates whether air pollution exposure to many pollutants during pregnancy and childhood is associated with the morphology and connectivity of the brain in school-age children and pre-adolescents. Methods We used data from the Generation R Study, a population-based birth cohort set up in Rotterdam, the Netherlands in 2002-2006 (n = 9,610). We used land-use regression (LUR) models to estimate the levels of 14 air pollutants at participant's homes during pregnancy and childhood: nitrogen oxides (NOx), nitrogen dioxide (NO2), particulate matter with aerodynamic diameter ≤10 μm (PM10) or ≤2.5 μm (PM2.5), PM between 10 μm and 2.5 μm (PMCOARSE), absorbance of the PM2.5 fraction - a measure of soot (PM2.5absorbance), the composition of PM2.5 such as polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), copper (Cu), iron (Fe), silicon (Si), zinc (Zn), and the oxidative potential of PM2.5 evaluated using two acellular methods: dithiothreitol (OPDTT) and electron spin resonance (OPESR). We performed MRI measurements of structural morphology (i.e., brain volumes, cortical thickness, and cortical surface area) using T1-weighted images in 6- to 10-year-old school-age children and 9- to 12-year-old pre-adolescents, structural connectivity (i.e., white matter microstructure) using diffusion tensor imaging (DTI) in pre-adolescents, and functional connectivity (i.e., connectivity score between brain areas) using resting-state functional MRI (rs-fMRI) in pre-adolescents. We assessed cognitive function using the Developmental Neuropsychological Assessment test (NEPSY-II) in school-age children. For each outcome, we ran regression analysis adjusted for several socioeconomic and lifestyle characteristics. We performed single-pollutant analyses followed by multipollutant analyses using the deletion/substitution/addition (DSA) approach. Results The project has air pollution and brain MRI data for 783 school-age children and 3,857 pre-adolescents. First, exposure to air pollution during pregnancy or childhood was not associated with global brain volumes (e.g., total brain, cortical gray matter, and cortical white matter) in school-age children or pre-adolescents. However, higher pregnancy or childhood exposure to several air pollutants was associated with a smaller corpus callosum and hippocampus, and a larger amygdala, nucleus accumbens, and cerebellum in pre-adolescents, but not in school-age children. Second, higher exposure to several air pollutants during pregnancy was associated with a thinner cortex in various regions of the brain in both school-age children and pre-adolescents. Higher exposure to air pollution during childhood was also associated with a thinner cortex in a single region in pre-adolescents. A thinner cortex in two regions mediated the association between higher exposure to air pollution during pregnancy and an impaired inhibitory control in school-age children. Third, higher exposure to air pollution during childhood was associated with smaller cortical surface areas in various regions of the brain except in a region where we observed a larger cortical surface area in pre-adolescents. In relation to brain structural connectivity, higher exposure to air pollution during pregnancy and childhood was associated with an alteration in white matter microstructure in pre-adolescents. In relation to brain functional connectivity, a higher exposure to air pollution, mainly during pregnancy and early childhood, was associated with a higher brain functional connectivity among several brain regions in pre-adolescents. Overall, we identified several air pollutants associated with brain structural morphology, structural connectivity, and functional connectivity, such as NOx, NO2, PM of various size fractions (i.e., PM10, PMCOARSE, and PM2.5), PM2.5absorbance, PAHs, OC, three elemental components of PM2.5 (i.e., Cu, Si, Zn), and the oxidative potential of PM2.5. Conclusions The results of this project suggest that exposure to air pollution during pregnancy and childhood play an adverse role in brain development. We observed this relationship even at levels of exposure that were below the European Union legislations. We acknowledge that identifying the independent effects of specific pollutants was particularly challenging. Most of our conclusions generally refer to traffic-related air pollutants. However, we did identify pollutants specifically originating from brake linings, tire wear, and tailpipe emissions from diesel combustion. The current direction toward innovative solutions for cleaner energy vehicles is a step in the right direction. However, our findings indicate that these measures might not be completely adequate to mitigate health problems attributable to traffic-related air pollution, as we also observed associations with markers of brake linings and tire wear.
Collapse
Affiliation(s)
- Monica Guxens
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Malgorzata J Lubczynska
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Laura Perez-Crespo
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Xavier Basagana
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
358
|
Hoang D, Xu Y, Lutz O, Bannai D, Zeng V, Bishop JR, Keshavan M, Lizano P. Inflammatory Subtypes in Antipsychotic-Naïve First-Episode Schizophrenia are Associated with Altered Brain Morphology and Topological Organization. Brain Behav Immun 2022; 100:297-308. [PMID: 34875344 PMCID: PMC8767408 DOI: 10.1016/j.bbi.2021.11.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/01/2021] [Accepted: 11/26/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Peripheral inflammation is implicated in schizophrenia, however, not all individuals demonstrate inflammatory alterations. Recent studies identified inflammatory subtypes in chronic psychosis with high inflammation having worse cognitive performance and displaying neuroanatomical enlargement compared to low inflammation subtypes. It is unclear if inflammatory subtypes exist earlier in the disease course, thus, we aim to identify inflammatory subtypes in antipsychotic naïve First-Episode Schizophrenia (FES). METHODS 12 peripheral inflammatory markers, clinical, cognitive, and neuroanatomical measures were collected from a naturalistic study of antipsychotic-naïve FES patients. A combination of unsupervised principal component analysis and hierarchical clustering was used to categorize inflammatory subtypes from their cytokine data (17 FES High, 30 FES Low, and 33 healthy controls (HCs)). Linear regression analysis was used to assess subtype differences. Neuroanatomical correlations with clinical and cognitive measures were performed using partial Spearman correlations. Graph theoretical analyses were performed to assess global and local network properties across inflammatory subtypes. RESULTS The FES High group made up 36% of the FES group and demonstrated significantly greater levels of IL1β, IL6, IL8, and TNFα compared to FES Low, and higher levels of IL1β and IL8 compared to HCs. FES High had greater right parahippocampal, caudal anterior cingulate, and bank superior sulcus thicknesses compared to FES Low. Compared to HCs, FES Low showed smaller bilateral amygdala volumes and widespread cortical thickness. FES High and FES Low groups demonstrated less efficient topological organization compared to HCs. Individual cytokines and/or inflammatory signatures were positively associated with cognition and symptom measures. CONCLUSIONS Inflammatory subtypes are present in antipsychotic-naïve FES and are associated with inflammation-mediated cortical expansion. These findings support our previous findings in chronic psychosis and point towards a connection between inflammation and blood-brain barrier disruption. Thus, identifying inflammatory subtypes may provide a novel therapeutic avenue for biomarker-guided treatment involving anti-inflammatory medications.
Collapse
Affiliation(s)
- Dung Hoang
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yanxun Xu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Olivia Lutz
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Victor Zeng
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
359
|
Adachi N, Ito M. Epilepsy in patients with schizophrenia: Pathophysiology and basic treatments. Epilepsy Behav 2022; 127:108520. [PMID: 34999502 DOI: 10.1016/j.yebeh.2021.108520] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 11/03/2022]
Abstract
Schizophrenia is a chronic psychiatric disorder that may lead to epilepsy. However, there are limited findings on the issues. This narrative review aimed to provide a practical perspective on epilepsy in patients with schizophrenia using the current treatment systems for epilepsy. While there has been a debate on the relationship between epilepsy and schizophrenia, i.e., antagonism, affinity, and coincidence, recent large cohort studies have revealed a high frequency of epilepsy in patients with schizophrenia (4-5 times higher than that of general population). The high incidence observed is likely to be due to the bidirectionality between epilepsy and schizophrenia and additional schizophrenia-related conditions, e.g., antipsychotic drugs (APD), substance abuse, and head injury. As for symptomatology of epilepsy, only one small-size study showed that seizures of patients with schizophrenia are equivalent to those of patients without schizophrenia. Patients with schizophrenia exhibit the first seizure in their twenties or later, which are mostly focal seizures. Most of seizures in patients with schizophrenia can be controlled with conventional antiepileptic drugs. Few patients with schizophrenia develop treatment-resistant epilepsy. However, since drug interactions can be more complicated due to multiple conditions, such as pre-existing polypharmacy, heavy smoking, irregular eating, and comorbid metabolic disorders, cautious monitoring for clinical symptoms is required. To improve seizure control and adherence, non-pharmacological approaches are also recommended. Thus far, for seizure treatments in patients with schizophrenia, we have to use many empirical findings or substitute certain findings from population without schizophrenia because evidence is insufficient. The accumulation of clinical findings may contribute to the development of efficient treatment systems.
Collapse
Affiliation(s)
- Naoto Adachi
- Adachi Mental Clinic, Sapporo, Japan; Jozen Clinic, Sapporo, Japan.
| | | |
Collapse
|
360
|
Prasad K, Rubin J, Mitra A, Lewis M, Theis N, Muldoon B, Iyengar S, Cape J. Structural covariance networks in schizophrenia: A systematic review Part I. Schizophr Res 2022; 240:1-21. [PMID: 34906884 PMCID: PMC8917984 DOI: 10.1016/j.schres.2021.11.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/02/2021] [Accepted: 11/23/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Schizophrenia is proposed as a disorder of dysconnectivity. However, examination of complexities of dysconnectivity has been challenging. Structural covariance networks (SCN) provide important insights into the nature of dysconnectivity. This systematic review examines the SCN studies that employed statistical approaches to elucidate covariation of regional morphometric variations. METHODS A systematic search of literature was conducted for peer-reviewed publications using different keywords and keyword combinations for schizophrenia. Fifty-two studies met the criteria. RESULTS Early SCN studies began using correlational structure of selected regions. Over the last 3 decades, methodological approaches have grown increasingly sophisticated from examining selected brain regions using correlation tests on small sample sizes to recent approaches that use advanced statistical methods to examine covariance structure of whole-brain parcellations on larger samples. Although the results are not fully consistent across all studies, a pattern of fronto-temporal, fronto-parietal and fronto-thalamic covariation is reported. Attempts to associate SCN alterations with functional connectivity, to differentiate between disease-related and neurodevelopment-related morphometric changes, and to develop "causality-based" models are being reported. Clinical correlation with outcome, psychotic symptoms, neurocognitive and social cognitive performance are also reported. CONCLUSIONS Application of advanced statistical methods are beginning to provide insights into interesting patterns of regional covariance including correlations with clinical and cognitive data. Although these findings appear similar to morphometric studies, SCNs have the advantage of highlighting topology of these regions and their relationship to the disease and associated variables. Further studies are needed to investigate neurobiological underpinnings of shared covariance, and causal links to clinical domains.
Collapse
Affiliation(s)
- Konasale Prasad
- University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara St, Pittsburgh, PA 15213, United States of America; University of Pittsburgh Swanson School of Engineering, 3700 O'Hara St, Pittsburgh, PA 15213, United States of America; VA Pittsburgh Healthcare System, University Dr C, Pittsburgh, PA 15240, United States of America.
| | - Jonathan Rubin
- Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh PA 15260
| | - Anirban Mitra
- Department of Statistics, University of Pittsburgh, 1826 Wesley W. Posvar Hall, Pittsburgh PA 15260
| | - Madison Lewis
- University of Pittsburgh Swanson School of Engineering, 3700 O’Hara St, Pittsburgh PA 15213
| | - Nicholas Theis
- University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O’Hara St, Pittsburgh PA 15213
| | - Brendan Muldoon
- University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O’Hara St, Pittsburgh PA 15213
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, 1826 Wesley W. Posvar Hall, Pittsburgh PA 15260
| | - Joshua Cape
- Department of Statistics, University of Pittsburgh, 1826 Wesley W. Posvar Hall, Pittsburgh PA 15260
| |
Collapse
|
361
|
Abstract
Schizophrenia, characterised by psychotic symptoms and in many cases social and occupational decline, remains an aetiological and therapeutic challenge. Contrary to popular belief, the disorder is modestly more common in men than in women. Nor is the outcome uniformly poor. A division of symptoms into positive, negative, and disorganisation syndromes is supported by factor analysis. Catatonic symptoms are not specific to schizophrenia and so-called first rank symptoms are no longer considered diagnostically important. Cognitive impairment is now recognised as a further clinical feature of the disorder. Lateral ventricular enlargement and brain volume reductions of around 2% are established findings. Brain functional changes occur in different subregions of the frontal cortex and might ultimately be understandable in terms of disturbed interaction among large-scale brain networks. Neurochemical disturbance, involving dopamine function and glutamatergic N-methyl-D-aspartate receptor function, is supported by indirect and direct evidence. The genetic contribution to schizophrenia is now recognised to be largely polygenic. Birth and early life factors also have an important aetiological role. The mainstay of treatment remains dopamine receptor-blocking drugs; a psychological intervention, cognitive behavioural therapy, has relatively small effects on symptoms. The idea that schizophrenia is better regarded as the extreme end of a continuum of psychotic symptoms is currently influential. Other areas of debate include cannabis and childhood adversity as causative factors, whether there is progressive brain change after onset, and the long-term success of early intervention initiatives.
Collapse
Affiliation(s)
- Sameer Jauhar
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - Mandy Johnstone
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK; National Psychosis Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Peter J McKenna
- FIDMAG Hermanas Hospitalarias Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.
| |
Collapse
|
362
|
Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, Gurina O, Chekhonin V. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int J Mol Sci 2022; 23:1217. [PMID: 35163141 PMCID: PMC8835608 DOI: 10.3390/ijms23031217] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
This review is focused on several psychiatric disorders in which cognitive impairment is a major component of the disease, influencing life quality. There are plenty of data proving that cognitive impairment accompanies and even underlies some psychiatric disorders. In addition, sources provide information on the biological background of cognitive problems associated with mental illness. This scientific review aims to summarize the current knowledge about neurobiological mechanisms of cognitive impairment in people with schizophrenia, depression, mild cognitive impairment and dementia (including Alzheimer's disease).The review provides data about the prevalence of cognitive impairment in people with mental illness and associated biological markers.
Collapse
Affiliation(s)
- Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Maria Volkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Polina Alekseeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Alisa Andryshchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Georgiy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
363
|
Ochi R, Plitman E, Patel R, Tarumi R, Iwata Y, Tsugawa S, Kim J, Honda S, Noda Y, Uchida H, Devenyi GA, Mimura M, Graff-Guerrero A, Chakravarty MM, Nakajima S. Investigating structural subdivisions of the anterior cingulate cortex in schizophrenia, with implications for treatment resistance and glutamatergic levels. J Psychiatry Neurosci 2022; 47:E1-E10. [PMID: 35027443 PMCID: PMC8842685 DOI: 10.1503/jpn.210113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Abnormalities in the anterior cingulate cortex (ACC) are thought to play an important role in the pathophysiology of schizophrenia. Given regional variations in ACC structure, the present study aimed to examine ACC structural subdivisions and their relationships to treatment resistance and glutamatergic levels in schizophrenia. METHODS This study included 100 patients with schizophrenia and 52 healthy controls from 2 cohorts. We applied non-negative matrix factorization to identify accurate and stable spatial components of ACC structure. Between groups, we compared ACC structural indices in each spatial component based on treatment resistance or response and tested relationships with ACC glutamate + glutamine levels. RESULTS We detected reductions in cortical thickness and increases in mean diffusivity in the spatial components on the surface of the cingulate sulcus, especially in patients with treatment-resistant and clozapine-resistant schizophrenia. Notably, mean diffusivity in these components was higher in patients who did not respond to clozapine compared to those who did. Furthermore, these ACC structural alterations were related to elevated ACC glutamate + glutamine levels but not related to symptomatology or antipsychotic dose. LIMITATIONS Sample sizes, cross-sectional findings and mixed antipsychotic status were limitations of this study. CONCLUSION This study identified reproducible abnormalities in ACC structures in patients with treatment-resistant and clozapine-resistant schizophrenia. Given that these spatial components play a role in inhibitory control, the present study strengthens the notion that glutamate-related disinhibition is a common biological feature of treatment resistance in schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shinichiro Nakajima
- From the Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan (Ochi, Tarumi, Tsugawa, Honda, Noda, Uchida, Mimura, Nakajima); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Que., Canada (Plitman, Patel, Devenyi, Chakravarty); the Department of Psychiatry, McGill University, Montreal, Que., Canada (Plitman, Devenyi, Chakravarty); the Department of Biological and Biomedical Engineering, McGill University, Montreal, Que., Canada (Patel, Chakravarty); the Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Iwata, Kim, Graff-Guerrero, Nakajima); and the Institute of Medical Science, University of Toronto, Toronto, Ont., Canada (Kim, Graff-Guerrero)
| |
Collapse
|
364
|
Li C, Yang T, Ou R, Shang H. Overlapping Genetic Architecture Between Schizophrenia and Neurodegenerative Disorders. Front Cell Dev Biol 2022; 9:797072. [PMID: 35004692 PMCID: PMC8740133 DOI: 10.3389/fcell.2021.797072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Epidemiological and clinical studies have suggested comorbidity between schizophrenia and several neurodegenerative disorders. However, little is known whether there exists shared genetic architecture. To explore their relationship from a genetic and transcriptomic perspective, we applied polygenic and linkage disequilibrium-informed methods to examine the genetic correlation between schizophrenia and amyotrophic lateral sclerosis (ALS), Parkinson’s disease, Alzheimer’s disease and frontotemporal dementia. We further combined genome-wide association summary statistics with large-scale transcriptomic datasets, to identify putative shared genes and explore related pathological tissues. We identified positive and significant correlation between schizophrenia and ALS at genetic (correlation 0.22; 95% CI: 0.16–0.28; p = 4.00E-04) and transcriptomic (correlation 0.08; 95% CI: 0.04–0.11; p = 0.034) levels. We further demonstrated that schizophrenia- and ALS-inferred gene expression overlap significantly in four tissues including skin, small intestine, brain cortex and lung, and highlighted three genes, namely GLB1L3, ZNHIT3 and TMEM194A as potential mediators of the correlation between schizophrenia and ALS. Our findings revealed overlapped gene expression profiles in specific tissues between schizophrenia and ALS, and identified novel potential shared genes. These results provided a better understanding for the pleiotropy of schizophrenia, and paved way for future studies to further elucidate the molecular drivers of schizophrenia.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
365
|
Present and future antipsychotic drugs: a systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacol Res 2022; 176:106078. [PMID: 35026403 DOI: 10.1016/j.phrs.2022.106078] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Antipsychotics represent the mainstay of schizophrenia pharmacological therapy, and their role has been expanded in the last years to mood disorders treatment. Although introduced in 1952, many years of research were required before an accurate picture of how antipsychotics work began to emerge. Despite the well-recognized characterization of antipsychotics in typical and atypical based on their liability to induce motor adverse events, their main action at dopamine D2R to elicit the "anti-psychotic" effect, as well as the multimodal action at other classes of receptors, their effects on intracellular mechanisms starting with receptor occupancy is still not completely understood. Significant lines of evidence converge on the impact of these compounds on multiple molecular signaling pathways implicated in the regulation of early genes and growth factors, dendritic spine shape, brain inflammation, and immune response, tuning overall the function and architecture of the synapse. Here we present, based on PRISMA approach, a comprehensive and systematic review of the above mechanisms under a translational perspective to disentangle those intracellular actions and signaling that may underline clinically relevant effects and represent potential targets for further innovative strategies in antipsychotic therapy.
Collapse
|
366
|
Ning Y, Zheng S, Feng S, Zhang B, Jia H. Potential Locations for Non-Invasive Brain Stimulation in Treating Schizophrenia: A Resting-State Functional Connectivity Analysis. Front Neurol 2022; 12:766736. [PMID: 34975725 PMCID: PMC8715096 DOI: 10.3389/fneur.2021.766736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction: Non-invasive brain stimulation (NIBS) techniques have been widely used for the purpose of improving clinical symptoms of schizophrenia. However, the ambiguous stimulation targets may limit the efficacy of NIBS for schizophrenia. Exploring effective stimulation targets may improve the clinical efficacy of NIBS in schizophrenia. Methods: We first conducted a neurosynth-based meta-analysis of 715 functional magnetic resonance imaging studies to identify schizophrenia-related brain regions as regions of interest. Then, we performed the resting-state functional connectivity analysis in 32 patients with first-episode schizophrenia to find brain surface regions correlated with the regions of interest in three pipelines. Finally, the 10–20 system coordinates corresponding to the brain surface regions were considered as potential targets for NIBS. Results: We identified several potential targets of NIBS, including the bilateral dorsal lateral prefrontal cortex, supplementary motor area, bilateral inferior parietal lobule, temporal pole, medial prefrontal cortex, precuneus, superior and middle temporal gyrus, and superior and middle occipital gyrus. Notably, the 10-20 system location of the bilateral dorsal lateral prefrontal cortex was posterior to F3 (F4), not F3 (F4). Conclusion: Conclusively, our findings suggested that the stimulation locations corresponding to these potential targets might help clinicians optimize the application of NIBS therapy in individuals with schizophrenia.
Collapse
Affiliation(s)
- Yanzhe Ning
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sisi Zheng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sitong Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Binlong Zhang
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongxiao Jia
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
367
|
Meller T, Schmitt S, Ettinger U, Grant P, Stein F, Brosch K, Grotegerd D, Dohm K, Meinert S, Förster K, Hahn T, Jansen A, Dannlowski U, Krug A, Kircher T, Nenadić I. Brain structural correlates of schizotypal signs and subclinical schizophrenia nuclear symptoms in healthy individuals. Psychol Med 2022; 52:342-351. [PMID: 32578531 PMCID: PMC8842196 DOI: 10.1017/s0033291720002044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/23/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Subclinical psychotic-like experiences (PLE), resembling key symptoms of psychotic disorders, are common throughout the general population and possibly associated with psychosis risk. There is evidence that such symptoms are also associated with structural brain changes. METHODS In 672 healthy individuals, we assessed PLE and associated distress with the symptom-checklist-90R (SCL-90R) scales 'schizotypal signs' (STS) and 'schizophrenia nuclear symptoms' (SNS) and analysed associations with voxel- and surfaced-based brain structural parameters derived from structural magnetic resonance imaging at 3 T with CAT12. RESULTS For SNS, we found a positive correlation with the volume in the left superior parietal lobule and the precuneus, and a negative correlation with the volume in the right inferior temporal gyrus [p < 0.05 cluster-level Family Wise Error (FWE-corrected]. For STS, we found a negative correlation with the volume of the left and right precentral gyrus (p < 0.05 cluster-level FWE-corrected). Surface-based analyses did not detect any significant clusters with the chosen statistical threshold of p < 0.05. However, in exploratory analyses (p < 0.001, uncorrected), we found a positive correlation of SNS with gyrification in the left insula and rostral middle frontal gyrus and of STS with the left precuneus and insula, as well as a negative correlation of STS with gyrification in the left temporal pole. CONCLUSIONS Our results show that brain structures in areas implicated in schizophrenia are also related to PLE and its associated distress in healthy individuals. This pattern supports a dimensional model of the neural correlates of symptoms of the psychotic spectrum.
Collapse
Affiliation(s)
- Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111Bonn, Germany
| | - Phillip Grant
- Psychology School, Fresenius University of Applied Sciences, Marienburgstr. 6, 60528Frankfurt am Main, Germany
- Faculty of Life Science Engineering, Technische Hochschule Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Dominik Grotegerd
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149Münster, Germany
| | - Katharina Dohm
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149Münster, Germany
| | - Susanne Meinert
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149Münster, Germany
| | - Katharina Förster
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149Münster, Germany
| | - Tim Hahn
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
- Core-Facility BrainImaging, Faculty of Medicine, Philipps-Universität, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149Münster, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
- Marburg University Hospital – UKGM, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
- Marburg University Hospital – UKGM, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
- Marburg University Hospital – UKGM, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
| |
Collapse
|
368
|
Kirschner M, Hodzic-Santor B, Antoniades M, Nenadic I, Kircher T, Krug A, Meller T, Grotegerd D, Fornito A, Arnatkeviciute A, Bellgrove MA, Tiego J, Dannlowski U, Koch K, Hülsmann C, Kugel H, Enneking V, Klug M, Leehr EJ, Böhnlein J, Gruber M, Mehler D, DeRosse P, Moyett A, Baune BT, Green M, Quidé Y, Pantelis C, Chan R, Wang Y, Ettinger U, Debbané M, Derome M, Gaser C, Besteher B, Diederen K, Spencer TJ, Fletcher P, Rössler W, Smigielski L, Kumari V, Premkumar P, Park HRP, Wiebels K, Lemmers-Jansen I, Gilleen J, Allen P, Kozhuharova P, Marsman JB, Lebedeva I, Tomyshev A, Mukhorina A, Kaiser S, Fett AK, Sommer I, Schuite-Koops S, Paquola C, Larivière S, Bernhardt B, Dagher A, Grant P, van Erp TGM, Turner JA, Thompson PM, Aleman A, Modinos G. Cortical and subcortical neuroanatomical signatures of schizotypy in 3004 individuals assessed in a worldwide ENIGMA study. Mol Psychiatry 2022; 27:1167-1176. [PMID: 34707236 PMCID: PMC9054674 DOI: 10.1038/s41380-021-01359-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 02/04/2023]
Abstract
Neuroanatomical abnormalities have been reported along a continuum from at-risk stages, including high schizotypy, to early and chronic psychosis. However, a comprehensive neuroanatomical mapping of schizotypy remains to be established. The authors conducted the first large-scale meta-analyses of cortical and subcortical morphometric patterns of schizotypy in healthy individuals, and compared these patterns with neuroanatomical abnormalities observed in major psychiatric disorders. The sample comprised 3004 unmedicated healthy individuals (12-68 years, 46.5% male) from 29 cohorts of the worldwide ENIGMA Schizotypy working group. Cortical and subcortical effect size maps with schizotypy scores were generated using standardized methods. Pattern similarities were assessed between the schizotypy-related cortical and subcortical maps and effect size maps from comparisons of schizophrenia (SZ), bipolar disorder (BD) and major depression (MDD) patients with controls. Thicker right medial orbitofrontal/ventromedial prefrontal cortex (mOFC/vmPFC) was associated with higher schizotypy scores (r = 0.067, pFDR = 0.02). The cortical thickness profile in schizotypy was positively correlated with cortical abnormalities in SZ (r = 0.285, pspin = 0.024), but not BD (r = 0.166, pspin = 0.205) or MDD (r = -0.274, pspin = 0.073). The schizotypy-related subcortical volume pattern was negatively correlated with subcortical abnormalities in SZ (rho = -0.690, pspin = 0.006), BD (rho = -0.672, pspin = 0.009), and MDD (rho = -0.692, pspin = 0.004). Comprehensive mapping of schizotypy-related brain morphometry in the general population revealed a significant relationship between higher schizotypy and thicker mOFC/vmPFC, in the absence of confounding effects due to antipsychotic medication or disease chronicity. The cortical pattern similarity between schizotypy and schizophrenia yields new insights into a dimensional neurobiological continuity across the extended psychosis phenotype.
Collapse
Affiliation(s)
- Matthias Kirschner
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada ,grid.7400.30000 0004 1937 0650Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Benazir Hodzic-Santor
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Mathilde Antoniades
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK
| | - Igor Nenadic
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany
| | - Tilo Kircher
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany
| | - Axel Krug
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany ,grid.10388.320000 0001 2240 3300Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Tina Meller
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany
| | - Dominik Grotegerd
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Alex Fornito
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Aurina Arnatkeviciute
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Mark A. Bellgrove
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Jeggan Tiego
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Udo Dannlowski
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Koch
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Carina Hülsmann
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- grid.5949.10000 0001 2172 9288University Clinic for Radiology, University of Münster, Münster, Germany
| | - Verena Enneking
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Melissa Klug
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J. Leehr
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Joscha Böhnlein
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Marius Gruber
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - David Mehler
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Pamela DeRosse
- grid.416477.70000 0001 2168 3646Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY USA ,grid.250903.d0000 0000 9566 0634The Feinstein Institutes for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Ashley Moyett
- grid.416477.70000 0001 2168 3646Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY USA
| | - Bernhard T. Baune
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany ,grid.1008.90000 0001 2179 088XDepartment of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, VIC Australia
| | - Melissa Green
- grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW Australia ,grid.250407.40000 0000 8900 8842Neuroscience Research Australia (NeuRA), Randwick, NSW Australia
| | - Yann Quidé
- grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW Australia ,grid.250407.40000 0000 8900 8842Neuroscience Research Australia (NeuRA), Randwick, NSW Australia
| | - Christos Pantelis
- grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, VIC Australia
| | - Raymond Chan
- grid.9227.e0000000119573309Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- grid.9227.e0000000119573309Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Ulrich Ettinger
- grid.10388.320000 0001 2240 3300University of Bonn, Bonn, Germany
| | - Martin Debbané
- grid.8591.50000 0001 2322 4988University of Geneva, Geneva, Switzerland
| | - Melodie Derome
- grid.8591.50000 0001 2322 4988University of Geneva, Geneva, Switzerland
| | - Christian Gaser
- grid.275559.90000 0000 8517 6224Jena University Hospital, Jena, Germany
| | - Bianca Besteher
- grid.275559.90000 0000 8517 6224Jena University Hospital, Jena, Germany
| | - Kelly Diederen
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK
| | - Tom J. Spencer
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK
| | - Paul Fletcher
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Wulf Rössler
- grid.412004.30000 0004 0478 9977Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany ,grid.11899.380000 0004 1937 0722Institute of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lukasz Smigielski
- grid.412004.30000 0004 0478 9977Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Veena Kumari
- grid.7728.a0000 0001 0724 6933Brunel University London, Uxbridge, UK
| | - Preethi Premkumar
- grid.7728.a0000 0001 0724 6933Brunel University London, Uxbridge, UK
| | - Haeme R. P. Park
- grid.9654.e0000 0004 0372 3343School of Psychology, University of Auckland, Auckland, New Zealand
| | - Kristina Wiebels
- grid.9654.e0000 0004 0372 3343School of Psychology, University of Auckland, Auckland, New Zealand
| | | | - James Gilleen
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK ,grid.35349.380000 0001 0468 7274University of Roehampton, London, UK
| | - Paul Allen
- grid.35349.380000 0001 0468 7274University of Roehampton, London, UK
| | - Petya Kozhuharova
- grid.35349.380000 0001 0468 7274University of Roehampton, London, UK
| | - Jan-Bernard Marsman
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Irina Lebedeva
- grid.466467.10000 0004 0627 319XMental Health Research Center, Moscow, Russian Federation
| | - Alexander Tomyshev
- grid.466467.10000 0004 0627 319XMental Health Research Center, Moscow, Russian Federation
| | - Anna Mukhorina
- grid.466467.10000 0004 0627 319XMental Health Research Center, Moscow, Russian Federation
| | - Stefan Kaiser
- grid.150338.c0000 0001 0721 9812Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - Anne-Kathrin Fett
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK ,grid.28577.3f0000 0004 1936 8497City, University London, London, UK
| | - Iris Sommer
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sanne Schuite-Koops
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Casey Paquola
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Sara Larivière
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Boris Bernhardt
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Alain Dagher
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Phillip Grant
- grid.440934.e0000 0004 0593 1824Fresenius University of Applied Sciences, Frankfurt am Main, Germany
| | - Theo G. M. van Erp
- grid.266093.80000 0001 0668 7243Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA USA
| | - Jessica A. Turner
- grid.256304.60000 0004 1936 7400Imaging Genetics and Neuroinformatics Lab, Georgia State University, Atlanta, GA USA
| | - Paul M. Thompson
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - André Aleman
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gemma Modinos
- Department of Psychosis Studies, King's College London, London, UK. .,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
369
|
Ching CRK, Hibar DP, Gurholt TP, Nunes A, Thomopoulos SI, Abé C, Agartz I, Brouwer RM, Cannon DM, de Zwarte SMC, Eyler LT, Favre P, Hajek T, Haukvik UK, Houenou J, Landén M, Lett TA, McDonald C, Nabulsi L, Patel Y, Pauling ME, Paus T, Radua J, Soeiro‐de‐Souza MG, Tronchin G, van Haren NEM, Vieta E, Walter H, Zeng L, Alda M, Almeida J, Alnæs D, Alonso‐Lana S, Altimus C, Bauer M, Baune BT, Bearden CE, Bellani M, Benedetti F, Berk M, Bilderbeck AC, Blumberg HP, Bøen E, Bollettini I, del Mar Bonnin C, Brambilla P, Canales‐Rodríguez EJ, Caseras X, Dandash O, Dannlowski U, Delvecchio G, Díaz‐Zuluaga AM, Dima D, Duchesnay É, Elvsåshagen T, Fears SC, Frangou S, Fullerton JM, Glahn DC, Goikolea JM, Green MJ, Grotegerd D, Gruber O, Haarman BCM, Henry C, Howells FM, Ives‐Deliperi V, Jansen A, Kircher TTJ, Knöchel C, Kramer B, Lafer B, López‐Jaramillo C, Machado‐Vieira R, MacIntosh BJ, Melloni EMT, Mitchell PB, Nenadic I, Nery F, Nugent AC, Oertel V, Ophoff RA, Ota M, Overs BJ, Pham DL, Phillips ML, Pineda‐Zapata JA, Poletti S, Polosan M, Pomarol‐Clotet E, Pouchon A, Quidé Y, Rive MM, Roberts G, Ruhe HG, Salvador R, Sarró S, Satterthwaite TD, Schene AH, Sim K, et alChing CRK, Hibar DP, Gurholt TP, Nunes A, Thomopoulos SI, Abé C, Agartz I, Brouwer RM, Cannon DM, de Zwarte SMC, Eyler LT, Favre P, Hajek T, Haukvik UK, Houenou J, Landén M, Lett TA, McDonald C, Nabulsi L, Patel Y, Pauling ME, Paus T, Radua J, Soeiro‐de‐Souza MG, Tronchin G, van Haren NEM, Vieta E, Walter H, Zeng L, Alda M, Almeida J, Alnæs D, Alonso‐Lana S, Altimus C, Bauer M, Baune BT, Bearden CE, Bellani M, Benedetti F, Berk M, Bilderbeck AC, Blumberg HP, Bøen E, Bollettini I, del Mar Bonnin C, Brambilla P, Canales‐Rodríguez EJ, Caseras X, Dandash O, Dannlowski U, Delvecchio G, Díaz‐Zuluaga AM, Dima D, Duchesnay É, Elvsåshagen T, Fears SC, Frangou S, Fullerton JM, Glahn DC, Goikolea JM, Green MJ, Grotegerd D, Gruber O, Haarman BCM, Henry C, Howells FM, Ives‐Deliperi V, Jansen A, Kircher TTJ, Knöchel C, Kramer B, Lafer B, López‐Jaramillo C, Machado‐Vieira R, MacIntosh BJ, Melloni EMT, Mitchell PB, Nenadic I, Nery F, Nugent AC, Oertel V, Ophoff RA, Ota M, Overs BJ, Pham DL, Phillips ML, Pineda‐Zapata JA, Poletti S, Polosan M, Pomarol‐Clotet E, Pouchon A, Quidé Y, Rive MM, Roberts G, Ruhe HG, Salvador R, Sarró S, Satterthwaite TD, Schene AH, Sim K, Soares JC, Stäblein M, Stein DJ, Tamnes CK, Thomaidis GV, Upegui CV, Veltman DJ, Wessa M, Westlye LT, Whalley HC, Wolf DH, Wu M, Yatham LN, Zarate CA, Thompson PM, Andreassen OA, ENIGMA Bipolar Disorder Working Group. What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group. Hum Brain Mapp 2022; 43:56-82. [PMID: 32725849 PMCID: PMC8675426 DOI: 10.1002/hbm.25098] [Show More Authors] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
Collapse
Affiliation(s)
- Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Tiril P. Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
| | - Abraham Nunes
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
- Faculty of Computer ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Christoph Abé
- Faculty of Computer ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Center for Psychiatric Research, Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Rachel M. Brouwer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | - Sonja M. C. de Zwarte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Lisa T. Eyler
- Department of PsychiatryUniversity of CaliforniaLa JollaCaliforniaUSA
- Desert‐Pacific MIRECCVA San Diego HealthcareSan DiegoCaliforniaUSA
| | - Pauline Favre
- INSERM U955, team 15 “Translational Neuro‐Psychiatry”CréteilFrance
- Neurospin, CEA Paris‐Saclay, team UNIACTGif‐sur‐YvetteFrance
| | - Tomas Hajek
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
- National Institute of Mental HealthKlecanyCzech Republic
| | - Unn K. Haukvik
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University HospitalOsloNorway
| | - Josselin Houenou
- INSERM U955, team 15 “Translational Neuro‐Psychiatry”CréteilFrance
- Neurospin, CEA Paris‐Saclay, team UNIACTGif‐sur‐YvetteFrance
- APHPMondor University Hospitals, DMU IMPACTCréteilFrance
| | - Mikael Landén
- Department of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Tristram A. Lett
- Department for Psychiatry and PsychotherapyCharité Universitätsmedizin BerlinBerlinGermany
- Department of Neurology with Experimental NeurologyCharité Universitätsmedizin BerlinBerlinGermany
| | - Colm McDonald
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Leila Nabulsi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Yash Patel
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
| | - Melissa E. Pauling
- Desert‐Pacific MIRECCVA San Diego HealthcareSan DiegoCaliforniaUSA
- INSERM U955, team 15 “Translational Neuro‐Psychiatry”CréteilFrance
| | - Tomas Paus
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Departments of Psychology and PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Joaquim Radua
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Early Psychosis: Interventions and Clinical‐detection (EPIC) lab, Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - Marcio G. Soeiro‐de‐Souza
- Mood Disorders Unit (GRUDA), Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloSPBrazil
| | - Giulia Tronchin
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Neeltje E. M. van Haren
- Department of Child and Adolescent Psychiatry/PsychologyErasmus Medical CenterRotterdamThe Netherlands
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| | - Henrik Walter
- Department for Psychiatry and PsychotherapyCharité Universitätsmedizin BerlinBerlinGermany
| | - Ling‐Li Zeng
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaChina
| | - Martin Alda
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
| | - Jorge Almeida
- Dell Medical SchoolThe University of Texas at AustinAustinTexasUSA
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
| | - Silvia Alonso‐Lana
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Cara Altimus
- Milken Institute Center for Strategic PhilanthropyWashingtonDistrict of ColumbiaUSA
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, Medical FacultyTechnische Universität DresdenDresdenGermany
| | - Bernhard T. Baune
- Department of PsychiatryUniversity of MünsterMünsterGermany
- Department of PsychiatryThe University of MelbourneMelbourneVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of PsychologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Marcella Bellani
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Francesco Benedetti
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Michael Berk
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- IMPACT Institute – The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon HealthDeakin UniversityGeelongVictoriaAustralia
| | - Amy C. Bilderbeck
- The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of MelbourneOrygenMelbourneVictoriaAustralia
- P1vital LtdWallingfordUK
| | | | - Erlend Bøen
- Mood Disorders Research ProgramYale School of MedicineNew HavenConnecticutUSA
| | - Irene Bollettini
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Caterina del Mar Bonnin
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| | - Paolo Brambilla
- Psychosomatic and CL PsychiatryOslo University HospitalOsloNorway
- Department of Neurosciences and Mental HealthFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Erick J. Canales‐Rodríguez
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
- Department of RadiologyCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
| | - Orwa Dandash
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of Melbourne and Melbourne HealthMelbourneVictoriaAustralia
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Udo Dannlowski
- Department of PsychiatryUniversity of MünsterMünsterGermany
| | | | - Ana M. Díaz‐Zuluaga
- Research Group in Psychiatry GIPSI, Department of PsychiatryFaculty of Medicine, Universidad de AntioquiaMedellínColombia
| | - Danai Dima
- Department of Psychology, School of Social Sciences and ArtsCity, University of LondonLondonUK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | | | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University HospitalOsloNorway
- Department of NeurologyOslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Scott C. Fears
- Center for Neurobehavioral GeneticsLos AngelesCaliforniaUSA
- Greater Los Angeles Veterans AdministrationLos AngelesCaliforniaUSA
| | - Sophia Frangou
- Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Janice M. Fullerton
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - David C. Glahn
- Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jose M. Goikolea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| | - Melissa J. Green
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | | | - Oliver Gruber
- Department of General PsychiatryHeidelberg UniversityHeidelbergGermany
| | - Bartholomeus C. M. Haarman
- Department of Psychiatry, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Chantal Henry
- Department of PsychiatryService Hospitalo‐Universitaire, GHU Paris Psychiatrie & NeurosciencesParisFrance
- Université de ParisParisFrance
| | - Fleur M. Howells
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | | | - Andreas Jansen
- Core‐Facility Brainimaging, Faculty of MedicineUniversity of MarburgMarburgGermany
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Tilo T. J. Kircher
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Christian Knöchel
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyGoethe University FrankfurtFrankfurtGermany
| | - Bernd Kramer
- Department of General PsychiatryHeidelberg UniversityHeidelbergGermany
| | - Beny Lafer
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão PauloSPBrazil
| | - Carlos López‐Jaramillo
- Research Group in Psychiatry GIPSI, Department of PsychiatryFaculty of Medicine, Universidad de AntioquiaMedellínColombia
- Mood Disorders ProgramHospital Universitario Trastorno del ÁnimoMedellínColombia
| | - Rodrigo Machado‐Vieira
- Experimental Therapeutics and Molecular Pathophysiology Program, Department of PsychiatryUTHealth, University of TexasHoustonTexasUSA
| | - Bradley J. MacIntosh
- Hurvitz Brain SciencesSunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Elisa M. T. Melloni
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Philip B. Mitchell
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Igor Nenadic
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Fabiano Nery
- University of CincinnatiCincinnatiOhioUSA
- Universidade de São PauloSão PauloSPBrazil
| | | | - Viola Oertel
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyGoethe University FrankfurtFrankfurtGermany
| | - Roel A. Ophoff
- UCLA Center for Neurobehavioral GeneticsLos AngelesCaliforniaUSA
- Department of PsychiatryErasmus Medical Center, Erasmus UniversityRotterdamThe Netherlands
| | - Miho Ota
- Department of Mental Disorder ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | | | - Daniel L. Pham
- Milken Institute Center for Strategic PhilanthropyWashingtonDistrict of ColumbiaUSA
| | - Mary L. Phillips
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Sara Poletti
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Mircea Polosan
- University of Grenoble AlpesCHU Grenoble AlpesGrenobleFrance
- INSERM U1216 ‐ Grenoble Institut des NeurosciencesLa TroncheFrance
| | - Edith Pomarol‐Clotet
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Arnaud Pouchon
- University of Grenoble AlpesCHU Grenoble AlpesGrenobleFrance
| | - Yann Quidé
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Maria M. Rive
- Department of PsychiatryAmsterdam UMC, location AMCAmsterdamThe Netherlands
| | - Gloria Roberts
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Henricus G. Ruhe
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Theodore D. Satterthwaite
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Aart H. Schene
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
| | - Kang Sim
- West Region, Institute of Mental HealthSingaporeSingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Jair C. Soares
- Center of Excellent on Mood DisordersUTHealth HoustonHoustonTexasUSA
- Department of Psychiatry and Behavioral SciencesUTHealth HoustonHoustonTexasUSA
| | - Michael Stäblein
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyGoethe University FrankfurtFrankfurtGermany
| | - Dan J. Stein
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- SAMRC Unit on Risk & Resilience in Mental DisordersUniversity of Cape TownCape TownSouth Africa
| | - Christian K. Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| | - Georgios V. Thomaidis
- Papanikolaou General HospitalThessalonikiGreece
- Laboratory of Mechanics and MaterialsSchool of Engineering, Aristotle UniversityThessalonikiGreece
| | - Cristian Vargas Upegui
- Research Group in Psychiatry GIPSI, Department of PsychiatryFaculty of Medicine, Universidad de AntioquiaMedellínColombia
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam UMCAmsterdamThe Netherlands
| | - Michèle Wessa
- Department of Neuropsychology and Clinical PsychologyJohannes Gutenberg‐University MainzMainzGermany
| | - Lars T. Westlye
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and AddictionOslo University HospitalOsloNorway
| | | | - Daniel H. Wolf
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Mon‐Ju Wu
- Department of Psychiatry and Behavioral SciencesUTHealth HoustonHoustonTexasUSA
| | - Lakshmi N. Yatham
- Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Carlos A. Zarate
- Chief Experimental Therapeutics & Pathophysiology BranchBethesdaMarylandUSA
- Intramural Research ProgramNational Institute of Mental HealthBethesdaMarylandUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
| | | |
Collapse
|
370
|
Smucny J, Dienel SJ, Lewis DA, Carter CS. Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacology 2022; 47:292-308. [PMID: 34285373 PMCID: PMC8617156 DOI: 10.1038/s41386-021-01089-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Kraepelin, in his early descriptions of schizophrenia (SZ), characterized the illness as having "an orchestra without a conductor." Kraepelin further speculated that this "conductor" was situated in the frontal lobes. Findings from multiple studies over the following decades have clearly implicated pathology of the dorsolateral prefrontal cortex (DLPFC) as playing a central role in the pathophysiology of SZ, particularly with regard to key cognitive features such as deficits in working memory and cognitive control. Following an overview of the cognitive mechanisms associated with DLPFC function and how they are altered in SZ, we review evidence from an array of neuroscientific approaches addressing how these cognitive impairments may reflect the underlying pathophysiology of the illness. Specifically, we present evidence suggesting that alterations of the DLPFC in SZ are evident across a range of spatial and temporal resolutions: from its cellular and molecular architecture, to its gross structural and functional integrity, and from millisecond to longer timescales. We then present an integrative model based upon how microscale changes in neuronal signaling in the DLPFC can influence synchronized patterns of neural activity to produce macrocircuit-level alterations in DLPFC activation that ultimately influence cognition and behavior. We conclude with a discussion of initial efforts aimed at targeting DLPFC function in SZ, the clinical implications of those efforts, and potential avenues for future development.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA
- Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Samuel J Dienel
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA.
- Center for Neuroscience, University of California Davis, Davis, CA, USA.
| |
Collapse
|
371
|
Sprooten E, Franke B, Greven CU. The P-factor and its genomic and neural equivalents: an integrated perspective. Mol Psychiatry 2022; 27:38-48. [PMID: 33526822 PMCID: PMC8960404 DOI: 10.1038/s41380-021-01031-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/01/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
Different psychiatric disorders and symptoms are highly correlated in the general population. A general psychopathology factor (or "P-factor") has been proposed to efficiently describe this covariance of psychopathology. Recently, genetic and neuroimaging studies also derived general dimensions that reflect densely correlated genomic and neural effects on behaviour and psychopathology. While these three types of general dimensions show striking parallels, it is unknown how they are conceptually related. Here, we provide an overview of these three general dimensions, and suggest a unified interpretation of their nature and underlying mechanisms. We propose that the general dimensions reflect, in part, a combination of heritable 'environmental' factors, driven by a dense web of gene-environment correlations. This perspective calls for an update of the traditional endophenotype framework, and encourages methodological innovations to improve models of gene-brain-environment relationships in all their complexity. We propose concrete approaches, which by taking advantage of the richness of current large databases will help to better disentangle the complex nature of causal factors underlying psychopathology.
Collapse
Affiliation(s)
- Emma Sprooten
- Departments of Cognitive Neuroscience and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN, Nijmegen, The Netherlands.
| | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corina U Greven
- Departments of Cognitive Neuroscience and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Center, 6525 GC, Nijmegen, The Netherlands
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| |
Collapse
|
372
|
Ivanova E, Panayotova T, Grechenliev I, Peshev B, Kolchakova P, Milanova V. A Complex Combination Therapy for a Complex Disease-Neuroimaging Evidence for the Effect of Music Therapy in Schizophrenia. Front Psychiatry 2022; 13:795344. [PMID: 35370834 PMCID: PMC8964524 DOI: 10.3389/fpsyt.2022.795344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
Schizophrenia is a disease characterized by clinical polymorphism: a combination of diverse syndromes defined by differences in structure, course and outcome. The etiology and pathogenesis of this mental disorder is still not completely understood, in spite of the achievements in the fields of neuroscience, genetics, neuroimaging and others. Different treatment strategies have been developed for patients with schizophrenia, but the search for new pharmacological agents continues with the mission of achieving a more effective control over the disease manifestations (positive and negative symptoms), improvement of the patients' social functioning and quality of life. The accumulated clinical experience has revealed that drug treatment and the inclusion in various rehabilitation programs and social skills training shows promising results in these patients. In recent years a plethora of evidence has been compiled regarding the role of music therapy as a possible alternative in the combination treatment of patients with mental disorders, schizophrenia included. Thus, the purpose of this review is to present the reader with a more detailed and science-based account of the beneficial effect of music therapy on the general wellbeing of patients diagnosed with schizophrenia. To fulfill our goal, we will focus mainly on the evidence provided by modern neuroimaging research.
Collapse
Affiliation(s)
- Elena Ivanova
- Psychiatric Clinic, Alexandrovska University Hospital, Sofia, Bulgaria.,Department of Psychiatry and Medical Psychology, Medical University, Sofia, Bulgaria
| | | | - Ivan Grechenliev
- Psychiatric Clinic, Alexandrovska University Hospital, Sofia, Bulgaria
| | - Bogomil Peshev
- Psychiatric Clinic, Alexandrovska University Hospital, Sofia, Bulgaria
| | | | - Vihra Milanova
- Psychiatric Clinic, Alexandrovska University Hospital, Sofia, Bulgaria
| |
Collapse
|
373
|
Brakowski J, Manoliu A, Homan P, Bosch OG, Herdener M, Seifritz E, Kaiser S, Kirschner M. Aberrant striatal coupling with default mode and central executive network relates to self-reported avolition and anhedonia in schizophrenia. J Psychiatr Res 2022; 145:263-275. [PMID: 33187692 DOI: 10.1016/j.jpsychires.2020.10.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Avolition and anhedonia are common symptoms in schizophrenia and are related to poor long-term prognosis. There is evidence for aberrant cortico-striatal function and connectivity as neural substrate of avolition and anhedonia. However, it remains unclear how both relate to shared or distinct striatal coupling with large-scale intrinsic networks. Using resting state functional magnetic resonance imaging (rs-fMRI) this study investigated the association of large-scale cortico-striatal functional connectivity with self-reported and clinician-rated avolition and anhedonia in subjects with schizophrenia. METHODS Seventeen subjects with schizophrenia (SZ) and 28 healthy controls (HC) underwent rs-fMRI. Using Independent Component Analysis (ICA), we assessed Independent Components (ICs) reflecting intrinsic connectivity networks (ICNs), intra intrinsic functional connectivity within the ICs (intra-iFC), and intrinsic functional connectivity between different ICs (inter-iFC). Avolition and anhedonia were assessed using the Self Evaluation Scale for Negative Symptoms and the Brief Negative Symptom Scale. RESULTS ICA revealed three striatal components and six cortical ICNs. Both self-rated avolition and anhedonia correlated with increased inter-iFC between the caudate and posterior Default Mode Network (pDMN) and between the caudate and Central Executive Network (CEN). In contrast, clinician-rated avolition and anhedonia were not correlated with cortico-striatal connectivity. Group comparison revealed trend-wise decreased inter-iFC between the caudate and Salience Network (SN) in schizophrenia patients compared to HC. DISCUSSION Self-rated, but not clinician-rated, avolition and anhedonia was associated with aberrant striatal coupling with the default mode and the central executive network. These findings suggest that self-reported and clinician-rated scores might capture different aspects of motivational and hedonic deficits in schizophrenia and therefore relate to different cortico-striatal functional abnormalities.
Collapse
Affiliation(s)
- Janis Brakowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland.
| | - Andrei Manoliu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Russell Square House, 10-12, Russell Square London, WC1B 5EH, United Kingdom
| | - Philipp Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland
| | - Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland
| | - Marcus Herdener
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Chemin Du Petit-Bel-Air, 1226, Thônex, Switzerland
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland; Montreal Neurological Institute, McGill University, 3801 University St, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
374
|
Kochunov P, Ma Y, Hatch KS, Schmaal L, Jahanshad N, Thompson PM, Adhikari BM, Bruce H, Chiappelli J, Van der Vaart A, Goldwaser EL, Sotiras A, Ma T, Chen S, Nichols TE, Hong LE. Separating Clinical and Subclinical Depression by Big Data Informed Structural Vulnerability Index and Its impact on Cognition: ENIGMA Dot Product. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2022; 27:133-143. [PMID: 34890143 PMCID: PMC8719281 DOI: 10.1142/9789811250477_0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Big Data neuroimaging collaborations including Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) integrated worldwide data to identify regional brain deficits in major depressive disorder (MDD). We evaluated the sensitivity of translating ENIGMA-defined MDD deficit patterns to the individual level. We treated ENIGMA MDD deficit patterns as a vector to gauge the similarity between individual and MDD patterns by calculating ENIGMA dot product (EDP). We analyzed the sensitivity and specificity of EDP in separating subjects with (1) subclinical depressive symptoms without a diagnosis of MDD, (2) single episode MDD, (3) recurrent MDD, and (4) controls free of neuropsychiatric disorders. We compared EDP to the Quantile Regression Index (QRI; a linear alternative to the brain age metric) and the global gray matter thickness and subcortical volumes and fractional anisotropy (FA) of water diffusion. We performed this analysis in a large epidemiological sample of UK Biobank (UKBB) participants (N=17,053/19,265 M/F). Group-average increases in depressive symptoms from controls to recurrent MDD was mirrored by EDP (r2=0.85), followed by FA (r2=0.81) and QRI (r2=0.56). Subjects with MDD showed worse performance on cognitive tests than controls with deficits observed for 3 out of 9 cognitive tests administered by the UKBB. We calculated correlations of EDP and other brain indices with measures of cognitive performance in controls. The correlation pattern between EDP and cognition in controls was similar (r2=0.75) to the pattern of cognitive differences in MDD. This suggests that the elevation in EDP, even in controls, is associated with cognitive performance - specifically in the MDD-affected domains. That specificity was missing for QRI, FA or other brain imaging indices. In summary, translating anatomically informed meta-analytic indices of similarity using a linear vector approach led to better sensitivity to depressive symptoms and cognitive patterns than whole-brain imaging measurements or an index of accelerated aging.
Collapse
Affiliation(s)
- Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Sønderby IE, Ching CRK, Thomopoulos SI, van der Meer D, Sun D, Villalon‐Reina JE, Agartz I, Amunts K, Arango C, Armstrong NJ, Ayesa‐Arriola R, Bakker G, Bassett AS, Boomsma DI, Bülow R, Butcher NJ, Calhoun VD, Caspers S, Chow EWC, Cichon S, Ciufolini S, Craig MC, Crespo‐Facorro B, Cunningham AC, Dale AM, Dazzan P, de Zubicaray GI, Djurovic S, Doherty JL, Donohoe G, Draganski B, Durdle CA, Ehrlich S, Emanuel BS, Espeseth T, Fisher SE, Ge T, Glahn DC, Grabe HJ, Gur RE, Gutman BA, Haavik J, Håberg AK, Hansen LA, Hashimoto R, Hibar DP, Holmes AJ, Hottenga J, Hulshoff Pol HE, Jalbrzikowski M, Knowles EEM, Kushan L, Linden DEJ, Liu J, Lundervold AJ, Martin‐Brevet S, Martínez K, Mather KA, Mathias SR, McDonald‐McGinn DM, McRae AF, Medland SE, Moberget T, Modenato C, Monereo Sánchez J, Moreau CA, Mühleisen TW, Paus T, Pausova Z, Prieto C, Ragothaman A, Reinbold CS, Reis Marques T, Repetto GM, Reymond A, Roalf DR, Rodriguez‐Herreros B, Rucker JJ, Sachdev PS, Schmitt JE, Schofield PR, Silva AI, Stefansson H, Stein DJ, Tamnes CK, Tordesillas‐Gutiérrez D, Ulfarsson MO, Vajdi A, van 't Ent D, van den Bree MBM, Vassos E, Vázquez‐Bourgon J, Vila‐Rodriguez F, Walters GB, Wen W, Westlye LT, Wittfeld K, Zackai EH, Stefánsson K, Jacquemont S, et alSønderby IE, Ching CRK, Thomopoulos SI, van der Meer D, Sun D, Villalon‐Reina JE, Agartz I, Amunts K, Arango C, Armstrong NJ, Ayesa‐Arriola R, Bakker G, Bassett AS, Boomsma DI, Bülow R, Butcher NJ, Calhoun VD, Caspers S, Chow EWC, Cichon S, Ciufolini S, Craig MC, Crespo‐Facorro B, Cunningham AC, Dale AM, Dazzan P, de Zubicaray GI, Djurovic S, Doherty JL, Donohoe G, Draganski B, Durdle CA, Ehrlich S, Emanuel BS, Espeseth T, Fisher SE, Ge T, Glahn DC, Grabe HJ, Gur RE, Gutman BA, Haavik J, Håberg AK, Hansen LA, Hashimoto R, Hibar DP, Holmes AJ, Hottenga J, Hulshoff Pol HE, Jalbrzikowski M, Knowles EEM, Kushan L, Linden DEJ, Liu J, Lundervold AJ, Martin‐Brevet S, Martínez K, Mather KA, Mathias SR, McDonald‐McGinn DM, McRae AF, Medland SE, Moberget T, Modenato C, Monereo Sánchez J, Moreau CA, Mühleisen TW, Paus T, Pausova Z, Prieto C, Ragothaman A, Reinbold CS, Reis Marques T, Repetto GM, Reymond A, Roalf DR, Rodriguez‐Herreros B, Rucker JJ, Sachdev PS, Schmitt JE, Schofield PR, Silva AI, Stefansson H, Stein DJ, Tamnes CK, Tordesillas‐Gutiérrez D, Ulfarsson MO, Vajdi A, van 't Ent D, van den Bree MBM, Vassos E, Vázquez‐Bourgon J, Vila‐Rodriguez F, Walters GB, Wen W, Westlye LT, Wittfeld K, Zackai EH, Stefánsson K, Jacquemont S, Thompson PM, Bearden CE, Andreassen OA. Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs. Hum Brain Mapp 2022; 43:300-328. [PMID: 33615640 PMCID: PMC8675420 DOI: 10.1002/hbm.25354] [Show More Authors] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 01/21/2023] Open
Abstract
The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.
Collapse
Affiliation(s)
- Ida E. Sønderby
- Department of Medical GeneticsOslo University HospitalOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Christopher R. K. Ching
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Daqiang Sun
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and PsychologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Mental HealthVeterans Affairs Greater Los Angeles Healthcare System, Los AngelesCaliforniaUSA
| | - Julio E. Villalon‐Reina
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Ingrid Agartz
- NORMENT, Institute of Clinical PsychiatryUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Cecile and Oskar Vogt Institute for Brain Research, Medical FacultyUniversity Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Celso Arango
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, IsSGM, Universidad Complutense, School of MedicineMadridSpain
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | | | - Rosa Ayesa‐Arriola
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of PsychiatryMarqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL)SantanderSpain
| | - Geor Bakker
- Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands
- Department of Radiology and Nuclear MedicineVU University Medical CenterAmsterdamThe Netherlands
| | - Anne S. Bassett
- Clinical Genetics Research ProgramCentre for Addiction and Mental HealthTorontoOntarioCanada
- Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, Toronto General HospitalUniversity Health NetworkTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Dorret I. Boomsma
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Public Health (APH) Research InstituteAmsterdam UMCAmsterdamThe Netherlands
| | - Robin Bülow
- Institute of Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Nancy J. Butcher
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
- Child Health Evaluative SciencesThe Hospital for Sick Children Research InstituteTorontoOntarioCanada
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Institute for Anatomy IMedical Faculty & University Hospital Düsseldorf, University of DüsseldorfDüsseldorfGermany
| | - Eva W. C. Chow
- Clinical Genetics Research ProgramCentre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Simone Ciufolini
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Michael C. Craig
- Department of Forensic and Neurodevelopmental SciencesThe Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's CollegeLondonUnited Kingdom
| | | | - Adam C. Cunningham
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Anders M. Dale
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoLa JollaCaliforniaUSA
- Department RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Paola Dazzan
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Greig I. de Zubicaray
- Faculty of HealthQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Srdjan Djurovic
- Department of Medical GeneticsOslo University HospitalOsloNorway
- NORMENT, Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Joanne L. Doherty
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
- Cardiff University Brain Research Imaging Centre (CUBRIC)CardiffUnited Kingdom
| | - Gary Donohoe
- Center for Neuroimaging, Genetics and GenomicsSchool of Psychology, NUI GalwayGalwayIreland
| | - Bogdan Draganski
- LREN, Centre for Research in Neuroscience, Department of NeuroscienceUniversity Hospital Lausanne and University LausanneLausanneSwitzerland
- Neurology DepartmentMax‐Planck Institute for Human Brain and Cognitive SciencesLeipzigGermany
| | - Courtney A. Durdle
- MIND Institute and Department of Psychiatry and Behavioral SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental NeurosciencesFaculty of Medicine, TU DresdenDresdenGermany
| | - Beverly S. Emanuel
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Thomas Espeseth
- Department of PsychologyUniversity of OsloOsloNorway
- Department of PsychologyBjørknes CollegeOsloNorway
| | - Simon E. Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics UnitCenter for Genomic Medicine, Massachusetts General HospitalBostonMassachusettsUSA
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - David C. Glahn
- Tommy Fuss Center for Neuropsychiatric Disease ResearchBoston Children's HospitalBostonMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Hans J. Grabe
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
| | - Raquel E. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Youth Suicide Prevention, Intervention and Research CenterChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Boris A. Gutman
- Medical Imaging Research Center, Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
| | - Jan Haavik
- Department of BiomedicineUniversity of BergenBergenNorway
- Division of PsychiatryHaukeland University HospitalBergenNorway
| | - Asta K. Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
- Department of Radiology and Nuclear MedicineSt. Olavs HospitalTrondheimNorway
| | - Laura A. Hansen
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ryota Hashimoto
- Department of Pathology of Mental DiseasesNational Institute of Mental Health, National Center of Neurology and PsychiatryTokyoJapan
- Department of PsychiatryOsaka University Graduate School of MedicineOsakaJapan
| | - Derrek P. Hibar
- Personalized Healthcare AnalyticsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Avram J. Holmes
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Jouke‐Jan Hottenga
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | | | - Emma E. M. Knowles
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBoston Children's HospitalBostonMassachusettsUSA
| | - Leila Kushan
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - David E. J. Linden
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUnited Kingdom
| | - Jingyu Liu
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
- Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Astri J. Lundervold
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
| | - Sandra Martin‐Brevet
- LREN, Centre for Research in Neuroscience, Department of NeuroscienceUniversity Hospital Lausanne and University LausanneLausanneSwitzerland
| | - Kenia Martínez
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, IsSGM, Universidad Complutense, School of MedicineMadridSpain
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Facultad de PsicologíaUniversidad Autónoma de MadridMadridSpain
| | - Karen A. Mather
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
| | - Samuel R. Mathias
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBoston Children's HospitalBostonMassachusettsUSA
| | - Donna M. McDonald‐McGinn
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Division of Human Genetics and 22q and You CenterChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Allan F. McRae
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Sarah E. Medland
- Psychiatric GeneticsQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Torgeir Moberget
- Department of Psychology, Faculty of Social SciencesUniversity of OsloOsloNorway
| | - Claudia Modenato
- LREN, Centre for Research in Neuroscience, Department of NeuroscienceUniversity Hospital Lausanne and University LausanneLausanneSwitzerland
- University of LausanneLausanneSwitzerland
| | - Jennifer Monereo Sánchez
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Clara A. Moreau
- Sainte Justine Hospital Research CenterUniversity of Montreal, MontrealQCCanada
| | - Thomas W. Mühleisen
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Cecile and Oskar Vogt Institute for Brain Research, Medical FacultyUniversity Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Tomas Paus
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Departments of Psychology and PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Zdenka Pausova
- Translational Medicine, The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Carlos Prieto
- Bioinformatics Service, NucleusUniversity of SalamancaSalamancaSpain
| | | | - Céline S. Reinbold
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Centre for Lifespan Changes in Brain and Cognition, Department of PsychologyUniversity of OsloOsloNorway
| | - Tiago Reis Marques
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith HospitalImperial College LondonLondonUnited Kingdom
| | - Gabriela M. Repetto
- Center for Genetics and GenomicsFacultad de Medicina, Clinica Alemana Universidad del DesarrolloSantiagoChile
| | - Alexandre Reymond
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - David R. Roalf
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - James J. Rucker
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Neuropsychiatric InstituteThe Prince of Wales HospitalSydneyNew South WalesAustralia
| | - James E. Schmitt
- Department of Radiology and PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Peter R. Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Medical SciencesUNSW SydneySydneyNew South WalesAustralia
| | - Ana I. Silva
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUnited Kingdom
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | | | - Dan J. Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Christian K. Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| | - Diana Tordesillas‐Gutiérrez
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Neuroimaging Unit, Technological FacilitiesValdecilla Biomedical Research Institute (IDIVAL), SantanderSpain
| | - Magnus O. Ulfarsson
- Population Genomics, deCODE genetics/AmgenReykjavikIceland
- Faculty of Electrical and Computer EngineeringUniversity of Iceland, ReykjavikIceland
| | - Ariana Vajdi
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Dennis van 't Ent
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Marianne B. M. van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Javier Vázquez‐Bourgon
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of PsychiatryMarqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL)SantanderSpain
- School of MedicineUniversity of CantabriaSantanderSpain
| | - Fidel Vila‐Rodriguez
- Department of PsychiatryThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - G. Bragi Walters
- Population Genomics, deCODE genetics/AmgenReykjavikIceland
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Lars T. Westlye
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- NORMENT, Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Katharina Wittfeld
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
| | - Elaine H. Zackai
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Kári Stefánsson
- Population Genomics, deCODE genetics/AmgenReykjavikIceland
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| | - Sebastien Jacquemont
- Sainte Justine Hospital Research CenterUniversity of Montreal, MontrealQCCanada
- Department of PediatricsUniversity of Montreal, MontrealQCCanada
| | - Paul M. Thompson
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Carrie E. Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and PsychologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Center for Neurobehavioral GeneticsUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
| |
Collapse
|
376
|
Li H, Chen W, Gou M, Li W, Tong J, Zhou Y, Xie T, Yu T, Feng W, Li Y, Chen S, Tian B, Tan S, Wang Z, Pan S, Li N, Luo X, Zhang P, Huang J, Tian L, Li CSR, Tan Y. The relationship between TLR4/NF-κB/IL-1β signaling, cognitive impairment, and white-matter integrity in patients with stable chronic schizophrenia. Front Psychiatry 2022; 13:966657. [PMID: 36051545 PMCID: PMC9424630 DOI: 10.3389/fpsyt.2022.966657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Previous studies have implicated intricate interactions between innate immunity and the brain in schizophrenia. Monocytic Toll-like receptor (TLR) 4 signaling, a crucial "sensor" of innate immunity, was reported to be over-activated in link with cognitive impairment in schizophrenia. As TLR4 is predominantly expressed on gliocytes prior to expression in neurons, we hypothesized that higher TLR4 levels may contribute to cognitive deterioration by affecting white matter microstructure. METHODS Forty-four patients with stable chronic schizophrenia (SCS) and 59 healthy controls (HCs) were recruited in this study. The monocytic function was detected with lipopolysaccharide (LPS) stimulation to simulate bacterial infection. Basal and LPS- stimulated levels of TLR4, nuclear factor-kappa B (NF-κB), and interleukin (IL)-1β were quantified with flow cytometry. Cognitive function was assessed by the MATRICS Consensus Cognitive Battery (MCCB) and psychopathological symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). We employed diffusion tensor imaging with a 3-T scanner and evaluated white-matter integrity with fractional anisotropy (FA). Subcortical volume and cortical thickness were also assessed. RESULTS The TLR4/NF-κB/IL-1β signaling pathway was activated in patients with SCS, but responded sluggishly to LPS stimulation when compared with HCs. Furthermore, monocytic TLR4 expressions were inversely correlated with cognitive function and white matter FA, but not with cortical thickness or subcortical gray matter volume in schizophrenia. CONCLUSION Our findings support altered TLR4 signaling pathway activity in association with deficits in cognition and white matter integrity in schizophrenia.
Collapse
Affiliation(s)
- Hongna Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wenjin Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanfang Zhou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ting Xie
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ting Yu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Feng
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanli Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shujuan Pan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Na Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Li Tian
- Department of Physiology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
377
|
Quidé Y, Watkeys OJ, Girshkin L, Kaur M, Carr VJ, Cairns MJ, Green MJ. Interactive effects of polygenic risk and cognitive subtype on brain morphology in schizophrenia spectrum and bipolar disorders. Eur Arch Psychiatry Clin Neurosci 2022; 272:1205-1218. [PMID: 35792918 PMCID: PMC9508053 DOI: 10.1007/s00406-022-01450-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/12/2022] [Indexed: 11/29/2022]
Abstract
Grey matter volume (GMV) may be associated with polygenic risk for schizophrenia (PRS-SZ) and severe cognitive deficits in people with schizophrenia, schizoaffective disorder (collectively SSD), and bipolar disorder (BD). This study examined the interactive effects of PRS-SZ and cognitive subtypes of SSD and BD in relation to GMV. Two-step cluster analysis was performed on 146 clinical cases (69 SSD and 77 BD) assessed on eight cognitive domains (verbal and visual memory, executive function, processing speed, visual processing, language ability, working memory, and planning). Among them, 55 BD, 51 SSD, and 58 healthy controls (HC), contributed to focal analyses of the relationships between cognitive subtypes, PRS-SZ and their interaction on GMV. Two distinct cognitive subtypes were evident among the combined sample of cases: a 'cognitive deficit' group (CD; N = 31, 20SSD/11BD) showed severe impairment across all cognitive indices, and a 'cognitively spared' (CS; N = 75; 31SSD/44BD) group showed intermediate cognitive performance that was significantly worse than the HC group but better than the CD subgroup. A cognitive subgroup-by-PRS-SZ interaction was significantly associated with GMV in the left precentral gyrus. Moderation analyses revealed a significant negative relationship between PRS-SZ and GMV in the CD group only. At low and average (but not high) PRS-SZ, larger precentral GMV was evident in the CD group compared to both CS and HC groups, and in the CS group compared to HCs. This study provides evidence for a relationship between regional GMV changes and PRS-SZ in psychosis spectrum cases with cognitive deficits, but not in cases cognitively spared.
Collapse
Affiliation(s)
- Yann Quidé
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, University of New South Wales (UNSW), Sydney, NSW Australia ,Neuroscience Research Australia, Randwick, NSW Australia
| | - Oliver J. Watkeys
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, University of New South Wales (UNSW), Sydney, NSW Australia ,Neuroscience Research Australia, Randwick, NSW Australia
| | - Leah Girshkin
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, University of New South Wales (UNSW), Sydney, NSW Australia ,Neuroscience Research Australia, Randwick, NSW Australia
| | - Manreena Kaur
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, University of New South Wales (UNSW), Sydney, NSW Australia ,Neuroscience Research Australia, Randwick, NSW Australia
| | - Vaughan J. Carr
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, University of New South Wales (UNSW), Sydney, NSW Australia ,Neuroscience Research Australia, Randwick, NSW Australia ,Department of Psychiatry, Monash University, Clayton, VIC Australia
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW Australia ,Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW Australia ,Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Melissa J. Green
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, University of New South Wales (UNSW), Sydney, NSW Australia ,Neuroscience Research Australia, Randwick, NSW Australia
| |
Collapse
|
378
|
Onitsuka T, Hirano Y, Nemoto K, Hashimoto N, Kushima I, Koshiyama D, Koeda M, Takahashi T, Noda Y, Matsumoto J, Miura K, Nakazawa T, Hikida T, Kasai K, Ozaki N, Hashimoto R. Trends in big data analyses by multicenter collaborative translational research in psychiatry. Psychiatry Clin Neurosci 2022; 76:1-14. [PMID: 34716732 PMCID: PMC9306748 DOI: 10.1111/pcn.13311] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 12/01/2022]
Abstract
The underlying pathologies of psychiatric disorders, which cause substantial personal and social losses, remain unknown, and their elucidation is an urgent issue. To clarify the core pathological mechanisms underlying psychiatric disorders, in addition to laboratory-based research that incorporates the latest findings, it is necessary to conduct large-sample-size research and verify reproducibility. For this purpose, it is critical to conduct multicenter collaborative research across various fields, such as psychiatry, neuroscience, molecular biology, genomics, neuroimaging, cognitive science, neurophysiology, psychology, and pharmacology. Moreover, collaborative research plays an important role in the development of young researchers. In this respect, the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium and Cognitive Genetics Collaborative Research Organization (COCORO) have played important roles. In this review, we first overview the importance of multicenter collaborative research and our target psychiatric disorders. Then, we introduce research findings on the pathophysiology of psychiatric disorders from neurocognitive, neurophysiological, neuroimaging, genetic, and basic neuroscience perspectives, focusing mainly on the findings obtained by COCORO. It is our hope that multicenter collaborative research will contribute to the elucidation of the pathological basis of psychiatric disorders.
Collapse
Affiliation(s)
- Toshiaki Onitsuka
- Department of Neuroimaging Psychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michihiko Koeda
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Neuropsychiatry, Nippon Medical School, Tama Nagayama Hospital, Tokyo, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
379
|
Turner JA, Calhoun VD, Thompson PM, Jahanshad N, Ching CRK, Thomopoulos SI, Verner E, Strauss GP, Ahmed AO, Turner MD, Basodi S, Ford JM, Mathalon DH, Preda A, Belger A, Mueller BA, Lim KO, van Erp TGM. ENIGMA + COINSTAC: Improving Findability, Accessibility, Interoperability, and Re-usability. Neuroinformatics 2022; 20:261-275. [PMID: 34846691 PMCID: PMC9149142 DOI: 10.1007/s12021-021-09559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 01/07/2023]
Abstract
The FAIR principles, as applied to clinical and neuroimaging data, reflect the goal of making research products Findable, Accessible, Interoperable, and Reusable. The use of the Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymized Computation (COINSTAC) platform in the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium combines the technological approach of decentralized analyses with the sociological approach of sharing data. In addition, ENIGMA + COINSTAC provides a platform to facilitate the use of machine-actionable data objects. We first present how ENIGMA and COINSTAC support the FAIR principles, and then showcase their integration with a decentralized meta-analysis of sex differences in negative symptom severity in schizophrenia, and finally present ongoing activities and plans to advance FAIR principles in ENIGMA + COINSTAC. ENIGMA and COINSTAC currently represent efforts toward improved Access, Interoperability, and Reusability. We highlight additional improvements needed in these areas, as well as future connections to other resources for expanded Findability.
Collapse
Affiliation(s)
- Jessica A Turner
- Psychology Department, Georgia State University, Atlanta, GA, USA.
| | - Vince D Calhoun
- Psychology Department, Georgia State University, Atlanta, GA, USA
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, 30303, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Eric Verner
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, 30303, USA
| | - Gregory P Strauss
- Departments of Psychology and Neuroscience, University of Georgia, Athens, GA, USA
| | - Anthony O Ahmed
- Weill Cornell Medicine, Department of Psychiatry, White Plains, NY, 10605, USA
| | - Matthew D Turner
- Psychology Department, Georgia State University, Atlanta, GA, USA
| | - Sunitha Basodi
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, 30303, USA
| | - Judith M Ford
- Veterans Affairs San Francisco Healthcare System, San Francisco, CA, 94121, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, 94121, USA
| | - Daniel H Mathalon
- Veterans Affairs San Francisco Healthcare System, San Francisco, CA, 94121, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, 94121, USA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, University of California Irvine Medical Center, 101 The City Drive S, Orange, CA, 92868, USA
| | - Aysenil Belger
- Department of Psychiatry and Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, 105 Smith Level Road, Chapel Hill, NC, 27599-8180, USA
| | - Bryon A Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Kelvin O Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, 5251 California Ave, Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, 309 Qureshey Research Lab, Irvine, CA, 92697, USA
| |
Collapse
|
380
|
Liew S, Zavaliangos‐Petropulu A, Jahanshad N, Lang CE, Hayward KS, Lohse KR, Juliano JM, Assogna F, Baugh LA, Bhattacharya AK, Bigjahan B, Borich MR, Boyd LA, Brodtmann A, Buetefisch CM, Byblow WD, Cassidy JM, Conforto AB, Craddock RC, Dimyan MA, Dula AN, Ermer E, Etherton MR, Fercho KA, Gregory CM, Hadidchi S, Holguin JA, Hwang DH, Jung S, Kautz SA, Khlif MS, Khoshab N, Kim B, Kim H, Kuceyeski A, Lotze M, MacIntosh BJ, Margetis JL, Mohamed FB, Piras F, Ramos‐Murguialday A, Richard G, Roberts P, Robertson AD, Rondina JM, Rost NS, Sanossian N, Schweighofer N, Seo NJ, Shiroishi MS, Soekadar SR, Spalletta G, Stinear CM, Suri A, Tang WKW, Thielman GT, Vecchio D, Villringer A, Ward NS, Werden E, Westlye LT, Winstein C, Wittenberg GF, Wong KA, Yu C, Cramer SC, Thompson PM. The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain-behavior relationships after stroke. Hum Brain Mapp 2022; 43:129-148. [PMID: 32310331 PMCID: PMC8675421 DOI: 10.1002/hbm.25015] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 01/28/2023] Open
Abstract
The goal of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well-powered meta- and mega-analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large-scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided.
Collapse
Affiliation(s)
- Sook‐Lei Liew
- Chan Division of Occupational Science and Occupational TherapyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of NeurologyUSC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biomedical Engineering, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Artemis Zavaliangos‐Petropulu
- Department of NeurologyUSC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Imaging Genetics CenterUSC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Neda Jahanshad
- Department of NeurologyUSC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Imaging Genetics CenterUSC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Catherine E. Lang
- Program in Physical TherapyWashington University School of MedicineSt. LouisMissouriUSA
| | - Kathryn S. Hayward
- Department of Physiotherapyand Florey Institute of Neuroscience and Mental Health, University of MelbourneParkvilleVictoriaAustralia
- NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, University of MelbourneParkvilleVictoriaAustralia
| | - Keith R. Lohse
- Department of Health, Kinesiology, and RecreationUniversity of UtahSalt Lake CityUtahUSA
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | - Julia M. Juliano
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Francesca Assogna
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Lee A. Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South DakotaVermillionSouth DakotaUSA
- Sioux Falls VA Health Care SystemSioux FallsSouth DakotaUSA
| | - Anup K. Bhattacharya
- Mallinckrodt Institute of Radiology, Washington University School of MedicineSt. LouisMissouriUSA
| | - Bavrina Bigjahan
- Department of NeurologyUSC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Michael R. Borich
- Department of Rehabilitation MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Lara A. Boyd
- Department of Physical Therapy, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Djavad Mowafaghian Centre for Brain HealthVancouverBritish ColumbiaCanada
| | - Amy Brodtmann
- Florey Institute for Neuroscience and Mental Health, University of MelbourneParkvilleVictoriaAustralia
| | - Cathrin M. Buetefisch
- Department of Rehabilitation MedicineEmory UniversityAtlantaGeorgiaUSA
- Department of NeurologyEmory UniversityAtlantaGeorgiaUSA
| | - Winston D. Byblow
- Department of Exercise Sciences, Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| | - Jessica M. Cassidy
- Division of Physical Therapy, Department Allied Health SciencesUniversity of North Carolina, Chapel HillChapel HillNorth CarolinaUSA
| | - Adriana B. Conforto
- Neurology Clinical Division, Hospital das Clínicas/São Paulo UniversitySão PauloBrazil
- Hospital Israelita Albert EinsteinSão PauloBrazil
| | - R. Cameron Craddock
- Department of Diagnostic MedicineThe University of Texas at Austin Dell Medical SchoolAustinTexasUSA
| | - Michael A. Dimyan
- Department of Neurology and Neurorehabilitation, School of MedicineUniversity of Maryland, BaltimoreBaltimoreMarylandUSA
- VA Maryland Health Care SystemBaltimoreMarylandUSA
| | - Adrienne N. Dula
- Department of Diagnostic MedicineThe University of Texas at Austin Dell Medical SchoolAustinTexasUSA
- Department of NeurologyDell Medical School at University of Texas at AustinAustinTexasUSA
| | - Elsa Ermer
- Department of Neurology and Neurorehabilitation, School of MedicineUniversity of Maryland, BaltimoreBaltimoreMarylandUSA
| | - Mark R. Etherton
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
- J. Philip Kistler Stroke Research CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Kelene A. Fercho
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South DakotaVermillionSouth DakotaUSA
- Federal Aviation Administration, Civil Aerospace Medical InstituteOklahoma CityOklahomaUSA
| | - Chris M. Gregory
- Department of Health Sciences and ResearchMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Shahram Hadidchi
- Department of RadiologyWayne State University/Detroit Medical CenterDetroitMichiganUSA
- Department of Internal MedicineWayne State University/Detroit Medical CenterDetroitMichiganUSA
| | - Jess A. Holguin
- Chan Division of Occupational Science and Occupational TherapyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Darryl H. Hwang
- Department of Radiology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Simon Jung
- Department of Neurology, University of BernBernSwitzerland
| | - Steven A. Kautz
- Department of Health Sciences and ResearchMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Ralph H Johnson VA Medical CenterCharlestonSouth CarolinaUSA
| | - Mohamed Salah Khlif
- Florey Institute for Neuroscience and Mental Health, University of MelbourneParkvilleVictoriaAustralia
| | - Nima Khoshab
- Department of Anatomy and NeurobiologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Bokkyu Kim
- Department of Physical Therapy EducationState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Division of Biokinesiology and Physical TherapyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hosung Kim
- Department of NeurologyUSC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Amy Kuceyeski
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Martin Lotze
- Functional Imaging Unit, Center for Diagnostic RadiologySchool of Medicine, University of GreifswaldGreifswaldGermany
| | - Bradley J. MacIntosh
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
- Physical Sciences Platform, Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
| | - John L. Margetis
- Chan Division of Occupational Science and Occupational TherapyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Feroze B. Mohamed
- Department of RadiologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Ander Ramos‐Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), Neurotechnology LaboratoryDerioSpain
- Institute of Medical Psychology and Behavioural Neurobiology, University of TubingenTübingenGermany
| | - Geneviève Richard
- Department of PsychologyUniversity of OsloOsloNorway
- NORMENT, Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Institute of Clinical Medicine, University of OsloOsloNorway
| | - Pamela Roberts
- Department of Physical Medicine and RehabilitationCedars‐SinaiLos AngelesCaliforniaUSA
| | - Andrew D. Robertson
- Department of KinesiologyUniversity of WaterlooWaterlooOntarioCanada
- Schlegel‐UW Research Institute for Aging, University of WaterlooWaterlooOntarioCanada
| | - Jane M. Rondina
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Natalia S. Rost
- Stroke Division, Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nerses Sanossian
- Division of Neurocritical Care and Stroke, Department of Neurology, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Nicolas Schweighofer
- Division of Biokinesiology and Physical Therapy, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Na Jin Seo
- Department of Health Sciences and ResearchMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Ralph H Johnson VA Medical CenterCharlestonSouth CarolinaUSA
- Division of Occupational Therapy, Department of Health Professions, Medical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Mark S. Shiroishi
- Division of Neuroradiology, Department of RadiologyKeck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Surjo R. Soekadar
- Department of Psychiatry and Psychotherapy, Clinical Neurotechnology LaboratoryCharité ‐ University Medicine BerlinBerlinGermany
- Applied Neurotechnology Laboratory, Department of Psychiatry and PsychotherapyUniversity of TübingenTübingenGermany
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
- Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | | | - Anisha Suri
- Department of Electrical and Computer EngineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Wai Kwong W. Tang
- Department of PsychiatryThe Chinese University of Hong KongHong KongPeople's Republic of China
| | - Gregory T. Thielman
- Physical Therapy and Neuroscience, University of the SciencesPhiladelphiaPennsylvaniaUSA
- Samson CollegeQuezon CityPhilippines
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Arno Villringer
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Department of Cognitive NeurologyUniversity Hospital LeipzigLeipzigGermany
- Center for Stroke Research, Charité‐Universitätsmedizin BerlinBerlinGermany
| | - Nick S. Ward
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Emilio Werden
- Florey Institute for Neuroscience and Mental Health, University of MelbourneParkvilleVictoriaAustralia
| | - Lars T. Westlye
- Department of PsychologyUniversity of OsloOsloNorway
- NORMENT, Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Carolee Winstein
- Division of Biokinesiology and Physical Therapy, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of NeurologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - George F. Wittenberg
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Veterans AffairsUniversity Drive CampusPittsburghPennsylvaniaUSA
| | - Kristin A. Wong
- Department of Physical Medicine and RehabilitationDell Medical School, University of Texas AustinAustinTexasUSA
| | - Chunshui Yu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Steven C. Cramer
- Department of NeurologyUCLA and California Rehabilitation InstituteLos AngelesCaliforniaUSA
| | - Paul M. Thompson
- Department of NeurologyUSC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Imaging Genetics CenterUSC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
381
|
Liu J, Wen F, Yan J, Yu L, Wang F, Wang D, Zhang J, Yan C, Chu J, Li Y, Li Y, Cui Y. Gray Matter Alterations in Pediatric Schizophrenia and Obsessive-Compulsive Disorder: A Systematic Review and Meta-Analysis of Voxel-Based Morphometry Studies. Front Psychiatry 2022; 13:785547. [PMID: 35308883 PMCID: PMC8924120 DOI: 10.3389/fpsyt.2022.785547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The aim of this study is comparing gray matter alterations in SCZ pediatric patients with those suffering from obsessive-compulsive disorder (OCD) based on a systematic review and an activation likelihood estimation (ALE) meta-analysis. METHODS A systematic literature search was performed in PubMed, Elsevier, and China National Knowledge Infrastructure (CNKI). A systematic review and an ALE meta-analysis were performed to quantitatively examine brain gray matter alterations. RESULTS Children and adolescents with schizophrenia had decreased gray matter volume (GMV) mainly in the prefrontal cortex (PFC), temporal cortex (such as the middle temporal gyrus and transverse temporal gyrus), and insula, while children and adolescents with OCD mainly had increased GMV in the PFC and the striatum (including the lentiform nucleus and caudate nucleus), and decreased GMV in the parietal cortex. CONCLUSIONS Our results suggest that gray matter abnormalities in the PFC may indicate homogeneity between the two diseases. In children and adolescents, structural alterations in schizophrenia mainly involve the fronto-temporal and cortico-insula circuits, whereas those in OCD mainly involve the prefrontal-parietal and the prefrontal-striatal circuits.
Collapse
Affiliation(s)
- Jingran Liu
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Fang Wen
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Junjuan Yan
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Liping Yu
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Fang Wang
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Duo Wang
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Jishui Zhang
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Chunmei Yan
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Jiahui Chu
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Yanlin Li
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Ying Li
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Yonghua Cui
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| |
Collapse
|
382
|
Frangou S, Modabbernia A, Williams SCR, Papachristou E, Doucet GE, Agartz I, Aghajani M, Akudjedu TN, Albajes‐Eizagirre A, Alnæs D, Alpert KI, Andersson M, Andreasen NC, Andreassen OA, Asherson P, Banaschewski T, Bargallo N, Baumeister S, Baur‐Streubel R, Bertolino A, Bonvino A, Boomsma DI, Borgwardt S, Bourque J, Brandeis D, Breier A, Brodaty H, Brouwer RM, Buitelaar JK, Busatto GF, Buckner RL, Calhoun V, Canales‐Rodríguez EJ, Cannon DM, Caseras X, Castellanos FX, Cervenka S, Chaim‐Avancini TM, Ching CRK, Chubar V, Clark VP, Conrod P, Conzelmann A, Crespo‐Facorro B, Crivello F, Crone EA, Dale AM, Dannlowski U, Davey C, de Geus EJC, de Haan L, de Zubicaray GI, den Braber A, Dickie EW, Di Giorgio A, Doan NT, Dørum ES, Ehrlich S, Erk S, Espeseth T, Fatouros‐Bergman H, Fisher SE, Fouche J, Franke B, Frodl T, Fuentes‐Claramonte P, Glahn DC, Gotlib IH, Grabe H, Grimm O, Groenewold NA, Grotegerd D, Gruber O, Gruner P, Gur RE, Gur RC, Hahn T, Harrison BJ, Hartman CA, Hatton SN, Heinz A, Heslenfeld DJ, Hibar DP, Hickie IB, Ho B, Hoekstra PJ, Hohmann S, Holmes AJ, Hoogman M, Hosten N, Howells FM, Hulshoff Pol HE, Huyser C, Jahanshad N, James A, Jernigan TL, Jiang J, Jönsson EG, Joska JA, Kahn R, et alFrangou S, Modabbernia A, Williams SCR, Papachristou E, Doucet GE, Agartz I, Aghajani M, Akudjedu TN, Albajes‐Eizagirre A, Alnæs D, Alpert KI, Andersson M, Andreasen NC, Andreassen OA, Asherson P, Banaschewski T, Bargallo N, Baumeister S, Baur‐Streubel R, Bertolino A, Bonvino A, Boomsma DI, Borgwardt S, Bourque J, Brandeis D, Breier A, Brodaty H, Brouwer RM, Buitelaar JK, Busatto GF, Buckner RL, Calhoun V, Canales‐Rodríguez EJ, Cannon DM, Caseras X, Castellanos FX, Cervenka S, Chaim‐Avancini TM, Ching CRK, Chubar V, Clark VP, Conrod P, Conzelmann A, Crespo‐Facorro B, Crivello F, Crone EA, Dale AM, Dannlowski U, Davey C, de Geus EJC, de Haan L, de Zubicaray GI, den Braber A, Dickie EW, Di Giorgio A, Doan NT, Dørum ES, Ehrlich S, Erk S, Espeseth T, Fatouros‐Bergman H, Fisher SE, Fouche J, Franke B, Frodl T, Fuentes‐Claramonte P, Glahn DC, Gotlib IH, Grabe H, Grimm O, Groenewold NA, Grotegerd D, Gruber O, Gruner P, Gur RE, Gur RC, Hahn T, Harrison BJ, Hartman CA, Hatton SN, Heinz A, Heslenfeld DJ, Hibar DP, Hickie IB, Ho B, Hoekstra PJ, Hohmann S, Holmes AJ, Hoogman M, Hosten N, Howells FM, Hulshoff Pol HE, Huyser C, Jahanshad N, James A, Jernigan TL, Jiang J, Jönsson EG, Joska JA, Kahn R, Kalnin A, Kanai R, Klein M, Klyushnik TP, Koenders L, Koops S, Krämer B, Kuntsi J, Lagopoulos J, Lázaro L, Lebedeva I, Lee WH, Lesch K, Lochner C, Machielsen MWJ, Maingault S, Martin NG, Martínez‐Zalacaín I, Mataix‐Cols D, Mazoyer B, McDonald C, McDonald BC, McIntosh AM, McMahon KL, McPhilemy G, Meinert S, Menchón JM, Medland SE, Meyer‐Lindenberg A, Naaijen J, Najt P, Nakao T, Nordvik JE, Nyberg L, Oosterlaan J, de la Foz VO, Paloyelis Y, Pauli P, Pergola G, Pomarol‐Clotet E, Portella MJ, Potkin SG, Radua J, Reif A, Rinker DA, Roffman JL, Rosa PGP, Sacchet MD, Sachdev PS, Salvador R, Sánchez‐Juan P, Sarró S, Satterthwaite TD, Saykin AJ, Serpa MH, Schmaal L, Schnell K, Schumann G, Sim K, Smoller JW, Sommer I, Soriano‐Mas C, Stein DJ, Strike LT, Swagerman SC, Tamnes CK, Temmingh HS, Thomopoulos SI, Tomyshev AS, Tordesillas‐Gutiérrez D, Trollor JN, Turner JA, Uhlmann A, van den Heuvel OA, van den Meer D, van der Wee NJA, van Haren NEM, van 't Ent D, van Erp TGM, Veer IM, Veltman DJ, Voineskos A, Völzke H, Walter H, Walton E, Wang L, Wang Y, Wassink TH, Weber B, Wen W, West JD, Westlye LT, Whalley H, Wierenga LM, Wittfeld K, Wolf DH, Worker A, Wright MJ, Yang K, Yoncheva Y, Zanetti MV, Ziegler GC, Karolinska Schizophrenia Project (KaSP), Thompson PM, Dima D. Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years. Hum Brain Mapp 2022; 43:431-451. [PMID: 33595143 PMCID: PMC8675431 DOI: 10.1002/hbm.25364] [Show More Authors] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/02/2021] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
Collapse
Affiliation(s)
- Sophia Frangou
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverCanada
| | | | - Steven C. R. Williams
- Department of NeuroimagingInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Efstathios Papachristou
- Psychology and Human DevelopmentInstitute of Education, University College LondonLondonUnited Kingdom
| | - Gaelle E. Doucet
- Institute for Human NeuroscienceBoys Town National Research HospitalOmahaNebraskaUSA
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Centre for Psychiatric Research, Department of Clinical NeuroscienceKarolinska InstitutetSolnaSweden
| | - Moji Aghajani
- Department of PsychiatryAmsterdam University Medical Centre, Vrije UniversiteitAmsterdamNetherlands
- Section Forensic Family & Youth CareInstitute of Education & Child StudiesLeiden UniversityNetherlands
| | - Theophilus N. Akudjedu
- Institute of Medical Imaging and Visualisation, Department of Medical Science and Public Health, Faculty of Health and Social SciencesBournemouth UniversityPooleUnited Kingdom
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive Genomics and NCBES Galway Neuroscience CentreNational University of IrelandGalwayIreland
| | - Anton Albajes‐Eizagirre
- FIDMAG Germanes HospitalàriesBarcelonaSpain
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
- Division of Mental Health and AddictionInstitute of Clinical Medicine, University of OsloOsloNorway
| | | | - Micael Andersson
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Nancy C. Andreasen
- Department of Psychiatry, Carver College of MedicineThe University of IowaIowa CityIowaUSA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
| | - Philip Asherson
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthHeidelberg UniversityHeidelbergGermany
| | - Nuria Bargallo
- Imaging Diagnostic CentreHospital Clinic, Barcelona University ClinicBarcelonaSpain
- August Pi i Sunyer Biomedical Research Institut (IDIBAPS)BarcelonaSpain
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthHeidelberg UniversityHeidelbergGermany
| | - Ramona Baur‐Streubel
- Department of Psychology, Biological Psychology, Clinical Psychology and PsychotherapyUniversity of WürzburgWürzburgGermany
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
| | - Aurora Bonvino
- Department of Biological PsychologyVrije UniversiteitAmsterdamNetherlands
| | - Dorret I. Boomsma
- Department of Biological PsychologyVrije UniversiteitAmsterdamNetherlands
| | - Stefan Borgwardt
- Department of Psychiatry & PsychotherapyUniversity of LübeckLübeckGermany
| | - Josiane Bourque
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthHeidelberg UniversityHeidelbergGermany
| | - Alan Breier
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesKensingtonNew South WalesAustralia
| | - Rachel M. Brouwer
- Rudolf Magnus Institute of NeuroscienceUniversity Medical Center UtrechtUtrechtNetherlands
| | - Jan K. Buitelaar
- Donders Center of Medical NeurosciencesRadboud UniversityNijmegenNetherlands
- Donders Centre for Cognitive NeuroimagingRadboud UniversityNijmegenNetherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenNetherlands
| | - Geraldo F. Busatto
- Laboratory of Psychiatric Neuroimaging, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Randy L. Buckner
- Department of Psychology, Center for Brain ScienceHarvard UniversityCambridgeMassachusettsUSA
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Vincent Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of TechnologyEmory University, USA Neurology, Radiology, Psychiatry and Biomedical Engineering, Emory UniversityAtlantaGeorgiaUSA
| | - Erick J. Canales‐Rodríguez
- FIDMAG Germanes HospitalàriesBarcelonaSpain
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
| | - Dara M. Cannon
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive Genomics and NCBES Galway Neuroscience CentreNational University of IrelandGalwayIreland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUnited Kingdom
| | | | - Simon Cervenka
- Centre for Psychiatric Research, Department of Clinical NeuroscienceKarolinska InstitutetSolnaSweden
- Stockholm Health Care ServicesStockholmSweden
| | - Tiffany M. Chaim‐Avancini
- Laboratory of Psychiatric Neuroimaging, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Victoria Chubar
- Mind‐Body Research Group, Department of NeuroscienceKU LeuvenLeuvenBelgium
| | - Vincent P. Clark
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
- Mind Research NetworkAlbuquerqueNew MexicoUSA
| | - Patricia Conrod
- Department of PsychiatryUniversité de MontréalMontrealCanada
| | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity of TübingenTübingenGermany
| | - Benedicto Crespo‐Facorro
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
- HU Virgen del Rocio, IBiSUniversity of SevillaSevillaSpain
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293Université de BordeauxBordeauxFrance
| | - Eveline A. Crone
- Erasmus School of Social and Behavioural SciencesErasmus University RotterdamRotterdamNetherlands
- Faculteit der Sociale Wetenschappen, Instituut PsychologieUniversiteit LeidenLeidenNetherlands
| | - Anders M. Dale
- Center for Multimodal Imaging and Genetics, Department of NeuroscienceUniversity of California‐San DiegoSan DiegoCaliforniaUSA
- Department of RadiologyUniversity of California‐San DiegoSan DiegoCaliforniaUSA
| | - Udo Dannlowski
- Department of Psychiatry and PsychotherapyUniversity of MünsterGermany
| | | | - Eco J. C. de Geus
- Department of Biological PsychologyVrije UniversiteitAmsterdamNetherlands
| | - Lieuwe de Haan
- Academisch Medisch CentrumUniversiteit van AmsterdamAmsterdamNetherlands
| | - Greig I. de Zubicaray
- Faculty of Health, Institute of Health and Biomedical InnovationQueensland University of TechnologyQueenslandAustralia
| | - Anouk den Braber
- Department of Biological PsychologyVrije UniversiteitAmsterdamNetherlands
| | - Erin W. Dickie
- Kimel Family Translational Imaging Genetics Laboratory, Campbell Family Mental Health Research InstituteCAMHCampbellCanada
- Department of PsychiatryUniversity of TorontoTorontoCanada
| | - Annabella Di Giorgio
- Biological Psychiatry LabFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni Rotondo (FG)Italy
| | - Nhat Trung Doan
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
| | - Erlend S. Dørum
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- Sunnaas Rehabilitation Hospital HTNesoddenNorway
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental NeurosciencesTechnische Universität DresdenDresdenGermany
- Faculty of MedicineUniversitätsklinikum Carl Gustav Carus an der TU DresdenDresdenGermany
| | - Susanne Erk
- Division of Mind and Brain Research, Department of Psychiatry and PsychotherapyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Thomas Espeseth
- Biological Psychiatry LabFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni Rotondo (FG)Italy
- Bjørknes CollegeOsloNorway
| | - Helena Fatouros‐Bergman
- Centre for Psychiatric Research, Department of Clinical NeuroscienceKarolinska InstitutetSolnaSweden
- Stockholm Health Care ServicesStockholmSweden
| | - Simon E. Fisher
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenNetherlands
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenNetherlands
| | - Jean‐Paul Fouche
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | - Barbara Franke
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenNetherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenNetherlands
- Department of PsychiatryRadboud University Medical CenterNijmegenNetherlands
| | - Thomas Frodl
- Department of Psychiatry and PsychotherapyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Paola Fuentes‐Claramonte
- FIDMAG Germanes HospitalàriesBarcelonaSpain
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
| | - David C. Glahn
- Department of PsychiatryTommy Fuss Center for Neuropsychiatric Disease Research Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Ian H. Gotlib
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Hans‐Jörgen Grabe
- Department of Psychiatry and PsychotherapyUniversity Medicine Greifswald, University of GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Oliver Grimm
- Department for Psychiatry, Psychosomatics and PsychotherapyUniversitätsklinikum Frankfurt, Goethe UniversitatFrankfurtGermany
| | - Nynke A. Groenewold
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | | | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General PsychiatryHeidelberg UniversityHeidelbergGermany
| | - Patricia Gruner
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
- Learning Based Recovery CenterVA Connecticut Health SystemWest HavenConnecticutUSA
| | - Rachel E. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Lifespan Brain Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Children's Hospital of PhiladelphiaUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ruben C. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Lifespan Brain Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Children's Hospital of PhiladelphiaUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tim Hahn
- Department of Psychiatry and PsychotherapyUniversity of MünsterGermany
| | - Ben J. Harrison
- Melbourne Neuropsychiatry CenterUniversity of MelbourneMelbourneAustralia
| | - Catharine A. Hartman
- Interdisciplinary Center Psychopathology and Emotion regulationUniversity Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Sean N. Hatton
- Brain and Mind CentreUniversity of SydneySydneyAustralia
| | - Andreas Heinz
- Division of Mind and Brain Research, Department of Psychiatry and PsychotherapyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Dirk J. Heslenfeld
- Departments of Experimental and Clinical PsychologyVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Derrek P. Hibar
- Personalized Healthcare, Genentech, Inc.South San FranciscoCaliforniaUSA
| | - Ian B. Hickie
- Brain and Mind CentreUniversity of SydneySydneyAustralia
| | - Beng‐Choon Ho
- Department of Psychiatry, Carver College of MedicineThe University of IowaIowa CityIowaUSA
| | - Pieter J. Hoekstra
- Department of PsychiatryUniversity Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthHeidelberg UniversityHeidelbergGermany
| | - Avram J. Holmes
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
| | - Martine Hoogman
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenNetherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenNetherlands
| | - Norbert Hosten
- Norbert Institute of Diagnostic Radiology and NeuroradiologyUniversity Medicine Greifswald, University of GreifswaldGreifswaldGermany
| | - Fleur M. Howells
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | | | - Chaim Huyser
- De Bascule, Academic Centre for Children and Adolescent PsychiatryAmsterdamNetherlands
| | - Neda Jahanshad
- Mind‐Body Research Group, Department of NeuroscienceKU LeuvenLeuvenBelgium
| | - Anthony James
- Department of PsychiatryOxford UniversityOxfordUnited Kingdom
| | - Terry L. Jernigan
- Center for Human Development, Departments of Cognitive Science, Psychiatry, and RadiologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesKensingtonNew South WalesAustralia
| | - Erik G. Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
| | - John A. Joska
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | - Rene Kahn
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - Andrew Kalnin
- Department of RadiologyOhio State University College of MedicineColumbusOhioUSA
| | - Ryota Kanai
- Department of NeuroinformaticsAraya, Inc.TokyoJapan
| | - Marieke Klein
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenNetherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenNetherlands
- Department of PsychiatryUniversity of California San DiegoSan DiegoCaliforniaUSA
| | | | - Laura Koenders
- Academisch Medisch CentrumUniversiteit van AmsterdamAmsterdamNetherlands
| | - Sanne Koops
- Rudolf Magnus Institute of NeuroscienceUniversity Medical Center UtrechtUtrechtNetherlands
| | - Bernd Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General PsychiatryHeidelberg UniversityHeidelbergGermany
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Jim Lagopoulos
- Sunshine Coast Mind and NeuroscienceThompson Institute, University of the Sunshine CoastQueenslandAustralia
| | - Luisa Lázaro
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
- Department of Child and Adolescent Psychiatry and PsychologyHospital Clinic, University of BarcelonaBarcelonaSpain
| | - Irina Lebedeva
- Mental Health Research CenterRussian Academy of Medical SciencesMoscowRussia
| | - Won Hee Lee
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - Klaus‐Peter Lesch
- Department of Psychiatry, Psychosomatics and PsychotherapyJulius‐Maximilians Universität WürzburgWürzburgGermany
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of PsychiatryStellenbosch UniversityStellenboschSouth Africa
| | | | - Sophie Maingault
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293Université de BordeauxBordeauxFrance
| | - Nicholas G. Martin
- Queensland Institute of Medical ResearchBerghofer Medical Research InstituteQueenslandAustralia
| | - Ignacio Martínez‐Zalacaín
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
- Department of PsychiatryBellvitge University Hospital‐IDIBELL, University of BarcelonaBarcelonaSpain
| | - David Mataix‐Cols
- Centre for Psychiatric Research, Department of Clinical NeuroscienceKarolinska InstitutetSolnaSweden
- Stockholm Health Care ServicesStockholmSweden
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293Université de BordeauxBordeauxFrance
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive Genomics and NCBES Galway Neuroscience CentreNational University of IrelandGalwayIreland
| | - Brenna C. McDonald
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - Katie L. McMahon
- School of Clinical Sciences, Institute of Health and Biomedical InnovationQueensland University of TechnologyQueenslandAustralia
| | - Genevieve McPhilemy
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive Genomics and NCBES Galway Neuroscience CentreNational University of IrelandGalwayIreland
| | - Susanne Meinert
- Department of Psychiatry and PsychotherapyUniversity of MünsterGermany
| | - José M. Menchón
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
- Department of PsychiatryBellvitge University Hospital‐IDIBELL, University of BarcelonaBarcelonaSpain
| | - Sarah E. Medland
- Queensland Institute of Medical ResearchBerghofer Medical Research InstituteQueenslandAustralia
| | - Andreas Meyer‐Lindenberg
- Department of Psychiatry and PsychotherapyCentral Institute of Mental Health, Heidelberg UniversityHeidelbergGermany
| | - Jilly Naaijen
- Donders Centre for Cognitive NeuroimagingRadboud UniversityNijmegenNetherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenNetherlands
| | - Pablo Najt
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive Genomics and NCBES Galway Neuroscience CentreNational University of IrelandGalwayIreland
| | - Tomohiro Nakao
- Department of Clinical MedicineKyushu UniversityFukuokaJapan
| | | | - Lars Nyberg
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå Center for Functional Brain Imaging, Umeå UniversityUmeåSweden
| | - Jaap Oosterlaan
- Department of Clinical NeuropsychologyAmsterdam University Medical Centre, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Víctor Ortiz‐García de la Foz
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
- Department of PsychiatryUniversity Hospital “Marques de Valdecilla”, Instituto de Investigación Valdecilla (IDIVAL)SantanderSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
| | - Yannis Paloyelis
- Department of NeuroimagingInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Paul Pauli
- Department of Psychology, Biological Psychology, Clinical Psychology and PsychotherapyUniversity of WürzburgWürzburgGermany
- Centre of Mental HealthUniversity of WürzburgWürzburgGermany
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
| | - Edith Pomarol‐Clotet
- FIDMAG Germanes HospitalàriesBarcelonaSpain
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
| | - Maria J. Portella
- FIDMAG Germanes HospitalàriesBarcelonaSpain
- Department of PsychiatryHospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Steven G. Potkin
- Department of PsychiatryUniversity of California at IrvineIrvineCaliforniaUSA
| | - Joaquim Radua
- Centre for Psychiatric Research, Department of Clinical NeuroscienceKarolinska InstitutetSolnaSweden
- August Pi i Sunyer Biomedical Research Institut (IDIBAPS)BarcelonaSpain
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Andreas Reif
- Department for Psychiatry, Psychosomatics and PsychotherapyUniversitätsklinikum Frankfurt, Goethe UniversitatFrankfurtGermany
| | - Daniel A. Rinker
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
| | - Joshua L. Roffman
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Pedro G. P. Rosa
- Laboratory of Psychiatric Neuroimaging, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Matthew D. Sacchet
- Center for Depression, Anxiety, and Stress ResearchMcLean Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesKensingtonNew South WalesAustralia
| | | | - Pascual Sánchez‐Juan
- Department of PsychiatryUniversity Hospital “Marques de Valdecilla”, Instituto de Investigación Valdecilla (IDIVAL)SantanderSpain
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED)ValderrebolloSpain
| | | | | | - Andrew J. Saykin
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Mauricio H. Serpa
- Laboratory of Psychiatric Neuroimaging, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Lianne Schmaal
- OrygenThe National Centre of Excellence in Youth Mental HealthMelbourneAustralia
- Centre for Youth Mental HealthThe University of MelbourneMelbourneAustralia
| | - Knut Schnell
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| | - Gunter Schumann
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
- Centre for Population Neuroscience and Precision MedicineInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Kang Sim
- Department of General PsychiatryInstitute of Mental HealthSingaporeSingapore
| | - Jordan W. Smoller
- Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Iris Sommer
- Department of Biomedical Sciences of Cells and Systems, Rijksuniversiteit GroningenUniversity Medical Center GroningenGroningenNetherlands
| | - Carles Soriano‐Mas
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
- Department of PsychiatryBellvitge University Hospital‐IDIBELL, University of BarcelonaBarcelonaSpain
| | - Dan J. Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of PsychiatryStellenbosch UniversityStellenboschSouth Africa
| | - Lachlan T. Strike
- Queensland Brain InstituteUniversity of QueenslandQueenslandAustralia
| | | | - Christian K. Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| | - Henk S. Temmingh
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | | | - Diana Tordesillas‐Gutiérrez
- FIDMAG Germanes HospitalàriesBarcelonaSpain
- Neuroimaging Unit, Technological FacilitiesValdecilla Biomedical Research Institute IDIVALCantabriaSpain
| | - Julian N. Trollor
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesKensingtonNew South WalesAustralia
| | - Jessica A. Turner
- College of Arts and SciencesGeorgia State UniversityAtlantaGeorgiaUSA
| | - Anne Uhlmann
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | - Odile A. van den Heuvel
- Department of PsychiatryAmsterdam University Medical Centre, Vrije UniversiteitAmsterdamNetherlands
| | - Dennis van den Meer
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
- Division of Mental Health and AddictionInstitute of Clinical Medicine, University of OsloOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtNetherlands
| | - Nic J. A. van der Wee
- Department of PsychiatryLeiden University Medical CenterLeidenNetherlands
- Leiden Institute for Brain and CognitionLeiden University Medical CenterLeidenNetherlands
| | - Neeltje E. M. van Haren
- Department of Child and Adolescent Psychiatry/PsychologyErasmus University Medical Center, Sophia Children's HospitalRotterdamThe Netherlands
| | - Dennis van 't Ent
- Department of Biological PsychologyVrije UniversiteitAmsterdamNetherlands
| | - Theo G. M. van Erp
- Department of PsychiatryUniversity of California at IrvineIrvineCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of California IrvineIrvineCaliforniaUSA
- Institute of Community MedicineUniversity Medicine, Greifswald, University of GreifswaldGreifswaldGermany
| | - Ilya M. Veer
- Division of Mind and Brain Research, Department of Psychiatry and PsychotherapyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam University Medical Centre, Vrije UniversiteitAmsterdamNetherlands
| | - Aristotle Voineskos
- Kimel Family Translational Imaging Genetics Laboratory, Campbell Family Mental Health Research InstituteCAMHCampbellCanada
- Department of PsychiatryUniversity of TorontoTorontoCanada
| | - Henry Völzke
- Institute of Community MedicineUniversity Medicine, Greifswald, University of GreifswaldGreifswaldGermany
- German Centre for Cardiovascular Research (DZHK), partner site GreifswaldGreifswaldGermany
- German Center for Diabetes Research (DZD), partner site GreifswaldGreifswaldGermany
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and PsychotherapyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Esther Walton
- Department of PsychologyUniversity of BathBathUnited Kingdom
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityEvanstonIllinoisUSA
| | - Yang Wang
- Department of RadiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Thomas H. Wassink
- Department of Psychiatry, Carver College of MedicineThe University of IowaIowa CityIowaUSA
| | - Bernd Weber
- Institute for Experimental Epileptology and Cognition ResearchUniversity of BonnBonnGermany
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesKensingtonNew South WalesAustralia
| | - John D. West
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - Heather Whalley
- Division of PsychiatryUniversity of EdinburghEdinburghUnited Kingdom
| | - Lara M. Wierenga
- Developmental and Educational Psychology Unit, Institute of PsychologyLeiden UniversityLeidenNetherlands
| | - Katharina Wittfeld
- Department of Psychiatry and PsychotherapyUniversity Medicine Greifswald, University of GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Daniel H. Wolf
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amanda Worker
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverCanada
| | | | - Kun Yang
- National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeFloridaUSA
| | - Yulyia Yoncheva
- Department of Child and Adolescent Psychiatry, Child Study CenterNYU Langone HealthNew York CityNew YorkUSA
| | - Marcus V. Zanetti
- Laboratory of Psychiatric Neuroimaging, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
- Instituto de Ensino e PesquisaHospital Sírio‐LibanêsSão PauloBrazil
| | - Georg C. Ziegler
- Division of Molecular Psychiatry, Center of Mental HealthUniversity of WürzburgWürzburgGermany
| | | | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Danai Dima
- Department of NeuroimagingInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
- Department of Psychology, School of Arts and Social SciencesCity University of LondonLondonUnited Kingdom
| |
Collapse
|
383
|
Salminen LE, Tubi MA, Bright J, Thomopoulos SI, Wieand A, Thompson PM. Sex is a defining feature of neuroimaging phenotypes in major brain disorders. Hum Brain Mapp 2022; 43:500-542. [PMID: 33949018 PMCID: PMC8805690 DOI: 10.1002/hbm.25438] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Sex is a biological variable that contributes to individual variability in brain structure and behavior. Neuroimaging studies of population-based samples have identified normative differences in brain structure between males and females, many of which are exacerbated in psychiatric and neurological conditions. Still, sex differences in MRI outcomes are understudied, particularly in clinical samples with known sex differences in disease risk, prevalence, and expression of clinical symptoms. Here we review the existing literature on sex differences in adult brain structure in normative samples and in 14 distinct psychiatric and neurological disorders. We discuss commonalities and sources of variance in study designs, analysis procedures, disease subtype effects, and the impact of these factors on MRI interpretation. Lastly, we identify key problems in the neuroimaging literature on sex differences and offer potential recommendations to address current barriers and optimize rigor and reproducibility. In particular, we emphasize the importance of large-scale neuroimaging initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analyses consortium, the UK Biobank, Human Connectome Project, and others to provide unprecedented power to evaluate sex-specific phenotypes in major brain diseases.
Collapse
Affiliation(s)
- Lauren E. Salminen
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Meral A. Tubi
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Joanna Bright
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Alyssa Wieand
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| |
Collapse
|
384
|
Hua JPY, Mathalon DH. Cortical and Subcortical Structural Morphometric Profiles in Individuals with Nonaffective and Affective Early Illness Psychosis. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac028. [PMID: 39144757 PMCID: PMC11206002 DOI: 10.1093/schizbullopen/sgac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Research has found strong evidence for common and distinct morphometric brain abnormality profiles in nonaffective psychosis (NAff-P) and affective psychosis (Aff-P). Due to chronicity and prolonged medication exposure confounds, it is crucial to examine structural morphometry early in the course of psychosis. Using Human Connectome Project-Early Psychosis data, multivariate profile analyses were implemented to examine regional profiles for cortical thickness, cortical surface area, subcortical volume, and ventricular volume in healthy control (HC; n = 56), early illness NAff-P (n = 83), and Aff-P (n = 30) groups after accounting for normal aging. Associations with symptom severity, functioning, and cognition were also examined. Group regional profiles were significantly nonparallel and differed in level for cortical thickness (P < .001), with NAff-P having widespread cortical thinning relative to HC and Aff-P and some regions showing greater deficits than others. Significant nonparallelism of group regional profiles was also evident for cortical surface area (P < .006), with Aff-P and N-Aff-P differing from HC and from each other (P < .001). For subcortical volume, there was significant profile nonparallelism with NAff-P having an enlarged left pallidum and smaller accumbens and hippocampus (P < .028), and Aff-P having a smaller accumbens and amygdala (P < .006), relative to HC. NAff-P also had larger basal ganglia compared to Aff-P. Furthermore, NAff-P had enlarged ventricles (P < .055) compared to HC and Aff-P. Additionally, greater ventricular volume was associated with increased manic symptoms in NAff-P and Aff-P. Overall, this study found common and distinct regional morphometric profile abnormalities in early illness NAff-P and Aff-P, providing evidence for both shared and disease-specific pathophysiological processes.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Medical Center, and the University of California, San Francisco, CA,USA
- Mental Health Service, San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
385
|
Yang B, Zhang W, Lencer R, Tao B, Tang B, Yang J, Li S, Zeng J, Cao H, Sweeney JA, Gong Q, Lui S. Grey matter connectome abnormalities and age-related effects in antipsychotic-naive schizophrenia. EBioMedicine 2021; 74:103749. [PMID: 34906839 PMCID: PMC8671864 DOI: 10.1016/j.ebiom.2021.103749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Background Convergent evidence is increasing to indicate progressive brain abnormalities in schizophrenia. Knowing the brain network features over the illness course in schizophrenia, independent of effects of antipsychotic medications, would extend our sight on this question. Methods We recruited 237 antipsychotic-naive patients with schizophrenia range from 16 to 73 years old, and 254 healthy controls. High-resolution T1 weighted images were obtained with a 3.0T MR scanner. Grey matter networks were constructed individually based on the similarities of regional grey matter measurements. Network metrics were compared between patient groups and healthy controls, and regression analyses with age were conducted to determine potential differential rate of age-related changes between them. Findings Nodal centrality abnormalities were observed in patients with untreated schizophrenia, particularly in the central executive, default mode and salience networks. Accelerated age-related declines and illness duration-related declines were observed in global assortativity, and in nodal metrics of left superior temporal pole in schizophrenia patients. Although no significant intergroup differences in age-related regression were observed, the pattern of network metric alternation of left thalamus indicated higher nodal properties in early course patients, which decreased in long-term ill patients. Interpretations Global and nodal alterations in the grey matter connectome related to age and duration of illness in antipsychotic-naive patients, indicating potentially progressive network organizations mainly involving temporal regions and thalamus in schizophrenia independent from medication effects. Funding The National Natural Science Foundation of China, Sichuan Science and Technology Program, the Fundamental Research Funds for the Central Universities, Post-Doctor Research Project, West China Hospital, Sichuan University , the Science and Technology Project of the Health Planning Committee of Sichuan, Postdoctoral Interdisciplinary Research Project of Sichuan University and 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University.
Collapse
Affiliation(s)
- Beisheng Yang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Muenster, Germany
| | - Bo Tao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Biqiu Tang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Yang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Siyi Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Jiaxin Zeng
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Hengyi Cao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - John A Sweeney
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, OH, United States
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
386
|
Sha Z, Schijven D, Francks C. Patterns of brain asymmetry associated with polygenic risks for autism and schizophrenia implicate language and executive functions but not brain masculinization. Mol Psychiatry 2021; 26:7652-7660. [PMID: 34211121 PMCID: PMC8872997 DOI: 10.1038/s41380-021-01204-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) and schizophrenia have been conceived as partly opposing disorders in terms of systemizing vs. empathizing cognitive styles, with resemblances to male vs. female average sex differences. Left-right asymmetry of the brain is an important aspect of its organization that shows average differences between the sexes and can be altered in both ASD and schizophrenia. Here we mapped multivariate associations of polygenic risk scores for ASD and schizophrenia with asymmetries of regional cerebral cortical surface area, thickness, and subcortical volume measures in 32,256 participants from the UK Biobank. Polygenic risks for the two disorders were positively correlated (r = 0.08, p = 7.13 × 10-50) and both were higher in females compared to males, consistent with biased participation against higher-risk males. Each polygenic risk score was associated with multivariate brain asymmetry after adjusting for sex, ASD r = 0.03, p = 2.17 × 10-9, and schizophrenia r = 0.04, p = 2.61 × 10-11, but the multivariate patterns were mostly distinct for the two polygenic risks and neither resembled average sex differences. Annotation based on meta-analyzed functional imaging data showed that both polygenic risks were associated with asymmetries of regions important for language and executive functions, consistent with behavioral associations that arose in phenome-wide association analysis. Overall, the results indicate that distinct patterns of subtly altered brain asymmetry may be functionally relevant manifestations of polygenic risks for ASD and schizophrenia, but do not support brain masculinization or feminization in their etiologies.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
387
|
Stauffer EM, Bethlehem RAI, Warrier V, Murray GK, Romero-Garcia R, Seidlitz J, Bullmore ET. Grey and white matter microstructure is associated with polygenic risk for schizophrenia. Mol Psychiatry 2021; 26:7709-7718. [PMID: 34462574 PMCID: PMC8872982 DOI: 10.1038/s41380-021-01260-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
Recent discovery of approximately 270 common genetic variants associated with schizophrenia has enabled polygenic risk scores (PRS) to be measured in the population. We hypothesized that normal variation in PRS would be associated with magnetic resonance imaging (MRI) phenotypes of brain morphometry and tissue composition. We used the largest extant genome-wide association dataset (N = 69,369 cases and N = 236,642 healthy controls) to measure PRS for schizophrenia in a large sample of adults from the UK Biobank (Nmax = 29,878) who had multiple micro- and macrostructural MRI metrics measured at each of 180 cortical areas, seven subcortical structures, and 15 major white matter tracts. Linear mixed-effect models were used to investigate associations between PRS and brain structure at global and regional scales, controlled for multiple comparisons. Polygenic risk was significantly associated with reduced neurite density index (NDI) at global brain scale, at 149 cortical regions, five subcortical structures, and 14 white matter tracts. Other microstructural parameters, e.g., fractional anisotropy, that were correlated with NDI were also significantly associated with PRS. Genetic effects on multiple MRI phenotypes were co-located in temporal, cingulate, and prefrontal cortical areas, insula, and hippocampus. Post-hoc bidirectional Mendelian randomization analyses provided preliminary evidence in support of a causal relationship between (reduced) thalamic NDI and (increased) risk of schizophrenia. Risk-related reduction in NDI is plausibly indicative of reduced density of myelinated axons and dendritic arborization in large-scale cortico-subcortical networks. Cortical, subcortical, and white matter microstructure may be linked to the genetic mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Eva-Maria Stauffer
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
| | - Richard A I Bethlehem
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Varun Warrier
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Graham K Murray
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Trust, Elizabeth House, Fulbourn Hospital, Cambridge, UK
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Rafael Romero-Garcia
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward T Bullmore
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Trust, Elizabeth House, Fulbourn Hospital, Cambridge, UK
| |
Collapse
|
388
|
Jiang W, Rootes-Murdy K, Chen J, Bizzozero NIP, Calhoun VD, van Erp TGM, Ehrlich S, Agartz I, Jönsson EG, Andreassen OA, Wang L, Pearlson GD, Glahn DC, Hong E, Liu J, Turner JA. Multivariate alterations in insula - Medial prefrontal cortex linked to genetics in 12q24 in schizophrenia. Psychiatry Res 2021; 306:114237. [PMID: 34655926 PMCID: PMC8643340 DOI: 10.1016/j.psychres.2021.114237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022]
Abstract
The direct effect of genetic variations on clinical phenotypes within schizophrenia (SZ) remains elusive. We examined the previously identified association of reduced gray matter concentration in the insula - medial prefrontal cortex and a quantitative trait locus located in 12q24 in a SZ dataset. The main analysis was performed on 1461 SNPs and 830 participants. The highest contributing SNPs were localized in five genes including TMEM119, which encodes a microglial marker, that is associated with neuroinflammation and Alzheimer's disease. The gene set in 12q4 may partially explain brain alterations in SZ, but they may also relate to other psychiatric and developmental disorders.
Collapse
Affiliation(s)
- Wenhao Jiang
- Department of Psychology, Georgia State University, United States of America; Department of Psychosomatics and Psychiatry, Zhongda Hospital, Institute of Psychosomatics, Medical School, Southeast University, Nanjing, China
| | - Kelly Rootes-Murdy
- Department of Psychology, Georgia State University, United States of America
| | - Jiayu Chen
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, United States of America
| | | | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, United States of America
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, United States of America; Qureshey Research Laboratory, Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA,United States of America
| | - Stefan Ehrlich
- Department of Psychiatry, Massachusetts General Hospital, United States of America; Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Lei Wang
- Psychiatry and Behavioral Health, Ohio State Wexner Medical Center, United States of America
| | | | - David C Glahn
- Boston Children's Hospital and Harvard Medical School, United States of America
| | - Elliot Hong
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, United States of America
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, United States of America
| | - Jessica A Turner
- Department of Psychology, Georgia State University, United States of America; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, United States of America
| |
Collapse
|
389
|
Axelrud LK, Simioni AR, Pine DS, Winkler AM, Pan PM, Sato JR, Zugman A, Parker N, Picon F, Jackowski A, Hoexter MQ, Barker G, Martinot JL, Martinot MLP, Satterthwaite T, Rohde LA, Milham M, Barker ED, Salum GA. Neuroimaging Association Scores: reliability and validity of aggregate measures of brain structural features linked to mental disorders in youth. Eur Child Adolesc Psychiatry 2021; 30:1895-1906. [PMID: 33030612 PMCID: PMC9077631 DOI: 10.1007/s00787-020-01653-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
In genetics, aggregation of many loci with small effect sizes into a single score improved prediction. Nevertheless, studies applying easily replicable weighted scores to neuroimaging data are lacking. Our aim was to assess the reliability and validity of the Neuroimaging Association Score (NAS), which combines information from structural brain features previously linked to mental disorders. Participants were 726 youth (aged 6-14) from two cities in Brazil who underwent MRI and psychopathology assessment at baseline and 387 at 3-year follow-up. Results were replicated in two samples: IMAGEN (n = 1627) and the Healthy Brain Network (n = 843). NAS were derived by summing the product of each standardized brain feature by the effect size of the association of that brain feature with seven psychiatric disorders documented by previous meta-analyses. NAS were calculated for surface area, cortical thickness and subcortical volumes using T1-weighted scans. NAS reliability, temporal stability and psychopathology and cognition prediction were analyzed. NAS for surface area showed high internal consistency and 3-year stability and predicted general psychopathology and cognition with higher replicability than specific symptomatic domains for all samples. They also predicted general psychopathology with higher replicability than single structures alone, accounting for 1-3% of the variance, but without directionality. The NAS for cortical thickness and subcortical volumes showed lower internal consistency and less replicable associations with behavioural phenotypes. These findings indicate the NAS based on surface area might be replicable markers of general psychopathology, but these links are unlikely to be causal or clinically useful yet.
Collapse
Affiliation(s)
- Luiza Kvitko Axelrud
- Section On Negative Affect and Social Processes, Departamento de Psiquiatria e Medicina Legal, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2350, Room 2202, Porto Alegre, 90035-003, Brazil.
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil.
| | - André Rafael Simioni
- Section On Negative Affect and Social Processes, Departamento de Psiquiatria e Medicina Legal, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2350, Room 2202, Porto Alegre, 90035-003, Brazil
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil
| | - Daniel Samuel Pine
- National Institute of Mental Health Intramural Research Program, Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Anderson Marcelo Winkler
- National Institute of Mental Health Intramural Research Program, Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Pedro Mario Pan
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil
- Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Ricardo Sato
- Centro de Matemática, Computação E Cognição, Universidade Federal Do ABC, Santo André, Brazil
| | - André Zugman
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil
- Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nadine Parker
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Felipe Picon
- Section On Negative Affect and Social Processes, Departamento de Psiquiatria e Medicina Legal, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2350, Room 2202, Porto Alegre, 90035-003, Brazil
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil
| | - Andrea Jackowski
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil
- Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo Queiroz Hoexter
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil
- Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gareth Barker
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jean-Luc Martinot
- Institut National de La Santé Et de La Recherche Médicale, INSERM Unit 1000 "Neuroimaging and Psychiatry", University Paris Saclay, University Paris Descartes, Paris, France
| | - Marie Laure Paillère Martinot
- Institut National de La Santé Et de La Recherche Médicale, INSERM Unit 1000 "Neuroimaging and Psychiatry", University Paris Saclay, University Paris Descartes, Paris, France
| | - Theodore Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Luis Augusto Rohde
- Section On Negative Affect and Social Processes, Departamento de Psiquiatria e Medicina Legal, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2350, Room 2202, Porto Alegre, 90035-003, Brazil
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil
| | | | - Edward Dylan Barker
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Giovanni Abrahão Salum
- Section On Negative Affect and Social Processes, Departamento de Psiquiatria e Medicina Legal, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2350, Room 2202, Porto Alegre, 90035-003, Brazil
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil
| |
Collapse
|
390
|
Schizotypy, childhood trauma and brain morphometry. Schizophr Res 2021; 238:73-81. [PMID: 34624682 DOI: 10.1016/j.schres.2021.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Childhood trauma confers risk for psychosis and is associated with increased 'schizotypy' (a multi-dimensional construct reflecting risk for psychosis in the general population). Structural brain alterations are associated with both childhood trauma and schizotypy, but the potential role of trauma exposure in moderating associations between schizotypy and brain morphology has yet to be determined. METHODS Participants were 160 healthy individuals (mean age: 40.08 years, SD = 13.64, range 18-64; 52.5% female). Childhood trauma exposure was assessed using the Childhood Adversity Questionnaire, and schizotypy was assessed using the Schizotypal Personality Questionnaire. Univariate voxel-based morphometry and multivariate analyses of grey matter volume covariation (GMC; derived from independent component analysis) were performed to determine the main effects of schizotypy, trauma exposure and their interaction on these indices of grey matter volume. Moderation analyses were performed following significant interaction. RESULTS Levels of schizotypy, in particular the Cognitive-Perceptual and Interpersonal dimensions, were negatively associated with GMC in the striatum, the hippocampus/parahippocampal gyrus, thalamus and insulae. Trauma exposure was negatively associated with GMC of the middle frontal gyrus and parietal lobule, while negatively associated with GMC in the cerebellum. Levels of schizotypy (total scores, and the cognitive-perceptual dimension) were negatively associated with striatal GMC in individuals not exposed to trauma, but not in those exposed to trauma. CONCLUSIONS Schizotypy and childhood trauma were independently associated with changes of grey matter in brain regions critical for cognition and social cognition. In individuals not exposed to trauma, increased schizotypy was associated with decreased striatal and limbic grey matter.
Collapse
|
391
|
Zhao Q, Li J, Xiao Y, Cao H, Wang X, Zhang W, Li S, Liao W, Gong Q, Lui S. Distinct neuroanatomic subtypes in antipsychotic-treated patients with schizophrenia classified by the predefined classification in a never-treated sample. PSYCHORADIOLOGY 2021; 1:212-224. [PMID: 38666223 PMCID: PMC11025559 DOI: 10.1093/psyrad/kkab018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Background Distinct neuroanatomic subtypes have been identified in never-treated patients with schizophrenia based on cerebral structural abnormalities, but whether antipsychotic-treated patients would be stratified under the guidance of such previously formed classification remains unclear. Objective The present study aimed to investigate alterations of brain structures in antipsychotic-treated patients with schizophrenia based on a predefined morphological classification and their relationships with cognitive performance. Methods Cortical thickness, surface area, and subcortical volume were extracted from 147 antipsychotic-treated patients with schizophrenia using structural magnetic resonance imaging for classification. The Brief Assessment of Cognition in Schizophrenia (BACS) and Positive and Negative Syndrome Scale (PANSS) were used to assess cognition and symptoms. Results Antipsychotic-treated patients were categorized into three subtypes with distinct patterns of brain morphological alterations. Subtypes 1 and 2 were characterized by widespread deficits in cortical thickness but relatively limited deficits in surface area. In contrast, subtype 3 demonstrated cortical thickening mainly in parietal-occipital regions and widespread deficits in surface area. All three subgroups demonstrated cognitive deficits compared with healthy controls. Significant associations between neuroanatomic and cognitive abnormalities were only observed in subtype 1, where cortical thinning in the left lingual gyrus was conversely related to symbol coding performance. Conclusions Similar to drug-naïve patients, neuroanatomic heterogeneity exists in antipsychotic-treated patients, with disparate associations with cognition. These findings promote our understanding of relationships between neuroanatomic abnormalities and cognitive performance in the context of heterogeneity. Moreover, these results suggest that neurobiological heterogeneity needs to be considered in cognitive research in schizophrenia.
Collapse
Affiliation(s)
- Qiannan Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hengyi Cao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY 11030, United States
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY 11004, United States
| | - Xiao Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Siyi Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
392
|
Khalil M, Hollander P, Raucher-Chéné D, Lepage M, Lavigne KM. Structural brain correlates of cognitive function in schizophrenia: A meta-analysis. Neurosci Biobehav Rev 2021; 132:37-49. [PMID: 34822878 DOI: 10.1016/j.neubiorev.2021.11.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/20/2022]
Abstract
Schizophrenia is characterized by cognitive impairments and widespread structural brain abnormalities. Brain structure-cognition associations have been extensively studied in schizophrenia, typically involving individual cognitive domains or brain regions of interest. Findings in overlapping and diffuse brain regions may point to structural alterations in large-scale brain networks. We performed a systematic review and meta-analysis examining whether brain structure-cognition associations can be explained in terms of biologically meaningful brain networks. Of 7,261 screened articles, 88 were included in a series of meta-analyses assessing publication bias, heterogeneity, and study quality. Significant associations were found between overall brain structure and eight MATRICS-inspired cognitive domains. Brain structure mapped onto the seven Yeo functionally defined networks and extraneous structures (amygdala, hippocampus, and cerebellum) typically showed associations with conceptually related cognitive domains, with higher-level domains (e.g., executive function, social cognition) associated with more networks. These findings synthesize the extensive literature on brain structure and cognition in schizophrenia from a contemporary network neuroscience perspective and suggest that brain structure-cognition associations in schizophrenia may follow functional network architecture.
Collapse
Affiliation(s)
- Marianne Khalil
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Philippine Hollander
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Delphine Raucher-Chéné
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, University Hospital of Reims, EPSM Marne, Reims, France; Cognition, Health, and Society Laboratory (EA 6291), University of Reims, Champagne-Ardenne, Reims, France
| | - Martin Lepage
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Katie M Lavigne
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
393
|
Linton SR, Popa AM, Luck SJ, Bolden K, Angkustsiri K, Carter CS, Niendam TA, Simon TJ. Atypical attentional filtering of visual information in youth with chromosome 22q11.2 deletion syndrome as indexed by event-related potentials. Neuroimage Clin 2021; 32:102877. [PMID: 34773799 PMCID: PMC8592928 DOI: 10.1016/j.nicl.2021.102877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Youth with chromosome 22q11.2 deletion syndrome (22q) face one of the highest genetic risk factors for the development of schizophrenia. Previous research suggests impairments in attentional control and potential interactions with elevated anxiety and reduced adaptive functioning may increase the risk for developing psychosis in this population. Here, we examined how variations in attentional control relate to the presence or severity of psychosis-proneness symptoms in these individuals. METHODS To achieve this, we measured attentional control in youth (12-18 years) with 22q (N = 35) compared to a typically developing group (N = 45), using a flanker task (the Distractor Target task) while measuring neural activity with event-related potentials. RESULTS Similar to previous findings observed in people with schizophrenia, greater attentional capture by, and reduced suppression of, non-target flanker stimuli characterized participants with 22q and was indexed by the N2pc (N2-posterior-contralateral) and PD (distractor positivity) components. Although we observed no relationships between these components and measures of psychosis-proneness in youth with 22q, these individuals endorsed a relatively low incidence of positive symptoms overall. CONCLUSIONS Our results provide neural evidence of an attentional control impairment in youth with 22q that suggests these individuals experience sustained attentional focus on irrelevant information and reduced suppression of distracting stimuli in their environment. Impairments in attentional control might be a valid biomarker of the potential to develop attenuated positive symptoms or frank psychosis in high-risk individuals long before the age at which such symptoms typically arise. The evaluation of such a hypothesis, and the preventive potential for the putative biomarker, should be the focus of future studies.
Collapse
Affiliation(s)
- S R Linton
- Department of Psychiatry and Behavioral Sciences, UC Davis, 2230 Stockton Blvd, Sacramento, CA 95817, USA; MIND Institute, UC Davis, 2825 50(th) Street, Sacramento, CA 95817, USA.
| | - A M Popa
- Department of Psychiatry and Behavioral Sciences, UC Davis, 2230 Stockton Blvd, Sacramento, CA 95817, USA; MIND Institute, UC Davis, 2825 50(th) Street, Sacramento, CA 95817, USA
| | - S J Luck
- Center for Mind and Brain and Department of Psychology, UC Davis, 267 Cousteau Place, Davis, CA 95618, USA
| | - K Bolden
- Department of Psychiatry and Behavioral Sciences, UC Davis, 2230 Stockton Blvd, Sacramento, CA 95817, USA; Imaging Research Center, UC Davis, 4701 X Street, Sacramento, CA 95817, USA
| | - K Angkustsiri
- Department of Psychiatry and Behavioral Sciences, UC Davis, 2230 Stockton Blvd, Sacramento, CA 95817, USA; Department of Pediatrics, UC Davis, 2516 Stockton Blvd, Sacramento, CA 95817, USA
| | - C S Carter
- Department of Psychiatry and Behavioral Sciences, UC Davis, 2230 Stockton Blvd, Sacramento, CA 95817, USA; Imaging Research Center, UC Davis, 4701 X Street, Sacramento, CA 95817, USA
| | - T A Niendam
- Department of Psychiatry and Behavioral Sciences, UC Davis, 2230 Stockton Blvd, Sacramento, CA 95817, USA; Imaging Research Center, UC Davis, 4701 X Street, Sacramento, CA 95817, USA
| | - T J Simon
- Department of Psychiatry and Behavioral Sciences, UC Davis, 2230 Stockton Blvd, Sacramento, CA 95817, USA; MIND Institute, UC Davis, 2825 50(th) Street, Sacramento, CA 95817, USA
| |
Collapse
|
394
|
Rootes-Murdy K, Zendehrouh E, Calhoun VD, Turner JA. Spatially Covarying Patterns of Gray Matter Volume and Concentration Highlight Distinct Regions in Schizophrenia. Front Neurosci 2021; 15:708387. [PMID: 34720851 PMCID: PMC8551386 DOI: 10.3389/fnins.2021.708387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction: Individuals with schizophrenia have consistent gray matter reduction throughout the cortex when compared to healthy individuals. However, the reduction patterns vary based on the quantity (concentration or volume) utilized by study. The objective of this study was to identify commonalities between gray matter concentration and gray matter volume effects in schizophrenia. Methods: We performed both univariate and multivariate analyses of case/control effects on 145 gray matter images from 66 participants with schizophrenia and 79 healthy controls, and processed to compare the concentration and volume estimates. Results: Diagnosis effects in the univariate analysis showed similar areas of volume and concentration reductions in the insula, occipitotemporal gyrus, temporopolar area, and fusiform gyrus. In the multivariate analysis, healthy controls had greater gray matter volume and concentration additionally in the superior temporal gyrus, prefrontal cortex, cerebellum, calcarine, and thalamus. In the univariate analyses there was moderate overlap between gray matter concentration and volume across the entire cortex (r = 0.56, p = 0.02). The multivariate analyses revealed only low overlap across most brain patterns, with the largest correlation (r = 0.37) found in the cerebellum and vermis. Conclusions: Individuals with schizophrenia showed reduced gray matter volume and concentration in previously identified areas of the prefrontal cortex, cerebellum, and thalamus. However, there were only moderate correlations across the cortex when examining the different gray matter quantities. Although these two quantities are related, concentration and volume do not show identical results, and therefore, should not be used interchangeably in the literature.
Collapse
Affiliation(s)
- Kelly Rootes-Murdy
- Department of Psychology, Georgia State University, Atlanta, GA, United States.,Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Elaheh Zendehrouh
- Department of Computer Science, Georgia State University, Atlanta, GA, United States.,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Vince D Calhoun
- Department of Psychology, Georgia State University, Atlanta, GA, United States.,Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Jessica A Turner
- Department of Psychology, Georgia State University, Atlanta, GA, United States.,Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| |
Collapse
|
395
|
Modenato C, Martin-Brevet S, Moreau CA, Rodriguez-Herreros B, Kumar K, Draganski B, Sønderby IE, Jacquemont S. Lessons Learned From Neuroimaging Studies of Copy Number Variants: A Systematic Review. Biol Psychiatry 2021; 90:596-610. [PMID: 34509290 DOI: 10.1016/j.biopsych.2021.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 01/06/2023]
Abstract
Pathogenic copy number variants (CNVs) and aneuploidies alter gene dosage and are associated with neurodevelopmental psychiatric disorders such as autism spectrum disorder and schizophrenia. Brain mechanisms mediating genetic risk for neurodevelopmental psychiatric disorders remain largely unknown, but there is a rapid increase in morphometry studies of CNVs using T1-weighted structural magnetic resonance imaging. Studies have been conducted one mutation at a time, leaving the field with a complex catalog of brain alterations linked to different genomic loci. Our aim was to provide a systematic review of neuroimaging phenotypes across CNVs associated with developmental psychiatric disorders including autism and schizophrenia. We included 76 structural magnetic resonance imaging studies on 20 CNVs at the 15q11.2, 22q11.2, 1q21.1 distal, 16p11.2 distal and proximal, 7q11.23, 15q11-q13, and 22q13.33 (SHANK3) genomic loci as well as aneuploidies of chromosomes X, Y, and 21. Moderate to large effect sizes on global and regional brain morphometry are observed across all genomic loci, which is in line with levels of symptom severity reported for these variants. This is in stark contrast with the much milder neuroimaging effects observed in idiopathic psychiatric disorders. Data also suggest that CNVs have independent effects on global versus regional measures as well as on cortical surface versus thickness. Findings highlight a broad diversity of regional morphometry patterns across genomic loci. This heterogeneity of brain patterns provides insight into the weak effects reported in magnetic resonance imaging studies of cognitive dimension and psychiatric conditions. Neuroimaging studies across many more variants will be required to understand links between gene function and brain morphometry.
Collapse
Affiliation(s)
- Claudia Modenato
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Sandra Martin-Brevet
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Clara A Moreau
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Human Genetics and Cognitive Functions, Centre National de la Recherche Scientifique UMR 3571, Department of Neuroscience, Université de Paris, Institut Pasteur, Paris, France
| | - Borja Rodriguez-Herreros
- Service des Troubles du Spectre de l'Autisme et Apparentés, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Kuldeep Kumar
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland; Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ida E Sønderby
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Sébastien Jacquemont
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
396
|
Karantonis JA, Carruthers SP, Rossell SL, Pantelis C, Hughes M, Wannan C, Cropley V, Van Rheenen TE. A Systematic Review of Cognition-Brain Morphology Relationships on the Schizophrenia-Bipolar Disorder Spectrum. Schizophr Bull 2021; 47:1557-1600. [PMID: 34097043 PMCID: PMC8530395 DOI: 10.1093/schbul/sbab054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The nature of the relationship between cognition and brain morphology in schizophrenia-spectrum disorders (SSD) and bipolar disorder (BD) is uncertain. This review aimed to address this, by providing a comprehensive systematic investigation of links between several cognitive domains and brain volume, cortical thickness, and cortical surface area in SSD and BD patients across early and established illness stages. An initial search of PubMed and Scopus databases resulted in 1486 articles, of which 124 met inclusion criteria and were reviewed in detail. The majority of studies focused on SSD, while those of BD were scarce. Replicated evidence for specific regions associated with indices of cognition was minimal, however for several cognitive domains, the frontal and temporal regions were broadly implicated across both recent-onset and established SSD, and to a lesser extent BD. Collectively, the findings of this review emphasize the significance of both frontal and temporal regions for some domains of cognition in SSD, while highlighting the need for future BD-related studies on this topic.
Collapse
Affiliation(s)
- James A Karantonis
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Sean P Carruthers
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Susan L Rossell
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- St Vincent’s Mental Health, St Vincent’s Hospital, Melbourne, Australia
| | - Christos Pantelis
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
| | - Matthew Hughes
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Cassandra Wannan
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Vanessa Cropley
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Tamsyn E Van Rheenen
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| |
Collapse
|
397
|
Lancaster TM, Dimitriadis SI, Perry G, Zammit S, O’Donovan MC, Linden DE. Morphometric Analysis of Structural MRI Using Schizophrenia Meta-analytic Priors Distinguish Patients from Controls in Two Independent Samples and in a Sample of Individuals With High Polygenic Risk. Schizophr Bull 2021; 48:524-532. [PMID: 34662406 PMCID: PMC8886591 DOI: 10.1093/schbul/sbab125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Schizophrenia (SCZ) is associated with structural brain changes, with considerable variation in the extent to which these cortical regions are influenced. We present a novel metric that summarises individual structural variation across the brain, while considering prior effect sizes, established via meta-analysis. We determine individual participant deviation from a within-sample-norm across structural MRI regions of interest (ROIs). For each participant, we weight the normalised deviation of each ROI by the effect size (Cohen's d) of the difference between SCZ/control for the corresponding ROI from the SCZ Enhancing Neuroimaging Genomics through Meta-Analysis working group. We generate a morphometric risk score (MRS) representing the average of these weighted deviations. We investigate if SCZ-MRS is elevated in a SCZ case/control sample (NCASE = 50; NCONTROL = 125), a replication sample (NCASE = 23; NCONTROL = 20) and a sample of asymptomatic young adults with extreme SCZ polygenic risk (NHIGH-SCZ-PRS = 95; NLOW-SCZ-PRS = 94). SCZ cases had higher SCZ-MRS than healthy controls in both samples (Study 1: β = 0.62, P < 0.001; Study 2: β = 0.81, P = 0.018). The high liability SCZ-PRS group also had a higher SCZ-MRS (Study 3: β = 0.29, P = 0.044). Furthermore, the SCZ-MRS was uniquely associated with SCZ status, but not attention-deficit hyperactivity disorder (ADHD), whereas an ADHD-MRS was linked to ADHD status, but not SCZ. This approach provides a promising solution when considering individual heterogeneity in SCZ-related brain alterations by identifying individual's patterns of structural brain-wide alterations.
Collapse
Affiliation(s)
- Thomas M Lancaster
- Department of Psychology, Bath University, Bath, UK,Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK,To whom correspondence should be addressed; Department of Psychology, Bath University, Bath, UK, tel.: +44-1225-384658, e-mail:
| | - Stavros I Dimitriadis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, UK
| | - Gavin Perry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Stan Zammit
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, UK,Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Michael C O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, UK,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - David E Linden
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, UK,Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK,School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
398
|
Krupa O, Fragola G, Hadden-Ford E, Mory JT, Liu T, Humphrey Z, Rees BW, Krishnamurthy A, Snider WD, Zylka MJ, Wu G, Xing L, Stein JL. NuMorph: Tools for cortical cellular phenotyping in tissue-cleared whole-brain images. Cell Rep 2021; 37:109802. [PMID: 34644582 PMCID: PMC8530274 DOI: 10.1016/j.celrep.2021.109802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 07/07/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023] Open
Abstract
Tissue-clearing methods allow every cell in the mouse brain to be imaged without physical sectioning. However, the computational tools currently available for cell quantification in cleared tissue images have been limited to counting sparse cell populations in stereotypical mice. Here, we introduce NuMorph, a group of analysis tools to quantify all nuclei and nuclear markers within the mouse cortex after clearing and imaging by light-sheet microscopy. We apply NuMorph to investigate two distinct mouse models: a Topoisomerase 1 (Top1) model with severe neurodegenerative deficits and a Neurofibromin 1 (Nf1) model with a more subtle brain overgrowth phenotype. In each case, we identify differential effects of gene deletion on individual cell-type counts and distribution across cortical regions that manifest as alterations of gross brain morphology. These results underline the value of whole-brain imaging approaches, and the tools are widely applicable for studying brain structure phenotypes at cellular resolution.
Collapse
Affiliation(s)
- Oleh Krupa
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27514, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Giulia Fragola
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ellie Hadden-Ford
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica T Mory
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tianyi Liu
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zachary Humphrey
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin W Rees
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ashok Krishnamurthy
- Renaissance Computing Institute, Chapel Hill, NC 27517, USA; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William D Snider
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark J Zylka
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Guorong Wu
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lei Xing
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jason L Stein
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
399
|
Jalbrzikowski M, Hayes RA, Scully KE, Franzen PL, Hasler BP, Siegle GJ, Buysse DJ, Dahl RE, Forbes EE, Ladouceur CD, McMakin DL, Ryan ND, Silk JS, Goldstein TR, Soehner AM. Associations between brain structure and sleep patterns across adolescent development. Sleep 2021; 44:zsab120. [PMID: 33971013 PMCID: PMC8503824 DOI: 10.1093/sleep/zsab120] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/21/2021] [Indexed: 01/05/2023] Open
Abstract
STUDY OBJECTIVES Structural brain maturation and sleep are complex processes that exhibit significant changes over adolescence and are linked to many physical and mental health outcomes. We investigated whether sleep-gray matter relationships are developmentally invariant (i.e. stable across age) or developmentally specific (i.e. only present during discrete time windows) from late childhood through young adulthood. METHODS We constructed the Neuroimaging and Pediatric Sleep Databank from eight research studies conducted at the University of Pittsburgh (2009-2020). Participants completed a T1-weighted structural MRI scan (sMRI) and 5-7 days of wrist actigraphy to assess naturalistic sleep. The final analytic sample consisted of 225 participants without current psychiatric diagnoses (9-25 years). We extracted cortical thickness and subcortical volumes from sMRI. Sleep patterns (duration, timing, continuity, regularity) were estimated from wrist actigraphy. Using regularized regression, we examined cross-sectional associations between sMRI measures and sleep patterns, as well as the effects of age, sex, and their interaction with sMRI measures on sleep. RESULTS Shorter sleep duration, later sleep timing, and poorer sleep continuity were associated with thinner cortex and altered subcortical volumes in diverse brain regions across adolescence. In a discrete subset of regions (e.g. posterior cingulate), thinner cortex was associated with these sleep patterns from late childhood through early-to-mid adolescence but not in late adolescence and young adulthood. CONCLUSIONS In childhood and adolescence, developmentally invariant and developmentally specific associations exist between sleep patterns and gray matter structure, across brain regions linked to sensory, cognitive, and emotional processes. Sleep intervention during specific developmental periods could potentially promote healthier neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Rebecca A Hayes
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kathleen E Scully
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Peter L Franzen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Brant P Hasler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
- Department of Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Greg J Siegle
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
- Department of Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Daniel J Buysse
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ronald E Dahl
- Department of Public Health, University of California, Berkeley, CA
| | - Erika E Forbes
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
- Department of Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Cecile D Ladouceur
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Dana L McMakin
- Department of Psychology, Florida International University, Miami, FL
| | - Neal D Ryan
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jennifer S Silk
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Tina R Goldstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Adriane M Soehner
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
400
|
Marrone S, Costanzo R, Scalia G, Umana GE, Riolo C, Giuffrida A, Vasta G, Calì A, Graziano F, Florio A, Ponzo G, Giuffrida M, Furnari M, Iacopino DG, Nicoletti GF. Delayed brain reexpansion in schizophrenic patient affected by trabecular type chronic subdural hematoma. Surg Neurol Int 2021; 12:442. [PMID: 34621558 PMCID: PMC8492410 DOI: 10.25259/sni_784_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/14/2021] [Indexed: 11/04/2022] Open
Abstract
Background: Chronic subdural hematoma (cSDH) represents a complex and unpredictable disease, characterized by high morbidity and mortality, especially in elderly patients. Factors affecting the postoperative brain reexpansion along to cSDH recurrence have not been yet adequately investigated. The authors presented the case of a schizophrenic patient affected by trabecular type cSDH that presented a delayed brain reexpansion despite a craniotomy and membranotomy. Case Description: A 51-year-old female patient with diagnosis of schizophrenia was admitted to the emergency department with GCS score of 5/15 and right anisocoria. An urgent brain CT revealed a trabecular right cSDH (35 mm in maximum diameter) with recent bleeding. After surgery, a brain CT scan showed a markedly reduced brain reexpansion and pneumocephalus. Nevertheless, postoperative 7-day brain CT documented a progressive brain reexpansion with reduced midline shift. Conclusion: According to our opinion, anatomopathological alterations in schizophrenia reduce normal brain compliance and increasing elastance, thus modifying the normal timing of reexpansion after cSDH drainage, also after craniotomy and membranotomy. Although postoperative pneumocephalus is a well-known cause of hindered reexpansion, this could be due to anatomical alterations in schizophrenia. Such factors must be considered in the preoperative planning but mostly in the postoperative management.
Collapse
Affiliation(s)
- Salvatore Marrone
- Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone", Palermo, Italy
| | - Roberta Costanzo
- Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone", Palermo, Italy
| | - Gianluca Scalia
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Giuseppe Emmanuele Umana
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Carmelo Riolo
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Angelo Giuffrida
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Giuseppe Vasta
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Alessandro Calì
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Francesca Graziano
- Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone", Palermo, Italy.,Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Agatino Florio
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Giancarlo Ponzo
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Massimiliano Giuffrida
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Massimo Furnari
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Domenico Gerardo Iacopino
- Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone", Palermo, Italy
| | - Giovanni Federico Nicoletti
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| |
Collapse
|