351
|
Yin Y, Lin J, Yuan S, Tong S, He Y, Dong B, Zhang F, Chen E, Zheng J, Wang W. Vaccination status for mild and asymptomatic infections with SARS-CoV-2 Omicron BA.2 variant in Shanghai. J Med Virol 2023; 95:e28767. [PMID: 37212341 DOI: 10.1002/jmv.28767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023]
Abstract
This study aimed to evaluate the effects of different vaccine regimens on mild and asymptomatic infections with SARS-CoV-2 Omicron BA.2 variant in Shanghai. All asymptomatic patients and those with mild symptoms of Omicron infections were recruited from three major Fangcang shelter hospitals between March 26, 2022 and May 20, 2022. Nucleic acid for SARS-CoV-2 by real-time reverse-transcription polymerase chain reaction methods in nasopharyngeal swabs was assessed every day during the hospitalization. The value of cycle threshold lower than 35 was considered as positive result of SARS-CoV-2. A total of 214 592 cases were included in this study. The proportion of the asymptomatic patients was 76.90% and 23.10% of the recruited patients had mild symptoms. The median (interquartile range [IQR]: 25-75) duration of viral shedding (DVS) was 7 (5-10) days among all participants. The DVS varied greatly among different age groups. Children and the elderly had longer DVS compared with the adults. The booster shot of inactivated vaccine contributed to the shorter DVS in patients aged ≥70 years compared with the unvaccinated patients (8 [6-11] vs. 9 [6-12] days, p = 0.002]. Full inactivated vaccine regimen contributed to the shorter DVS in patients aged 3-6 years (7 [5-9] vs. 8 [5-10] days, p = 0.001]. In conclusion, the full inactivated vaccine regimen on children aged 3-6 years and booster inactivated vaccine regimen on the elderly aged ≥70 years appeared to be effective in reducing DVS. The booster vaccine regimen should be rigorously promoted and implemented.
Collapse
Affiliation(s)
- Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jilei Lin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuhua Yuan
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shilu Tong
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center National Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Yi He
- Information Technology Department, Shanghai Children's Medical Center National Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bin Dong
- Medical Department, Shanghai Children's Medical Center National Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fen Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Wang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
352
|
Murray SM, Ansari AM, Frater J, Klenerman P, Dunachie S, Barnes E, Ogbe A. The impact of pre-existing cross-reactive immunity on SARS-CoV-2 infection and vaccine responses. Nat Rev Immunol 2023; 23:304-316. [PMID: 36539527 PMCID: PMC9765363 DOI: 10.1038/s41577-022-00809-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Pre-existing cross-reactive immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins in infection-naive subjects have been described by several studies. In particular, regions of high homology between SARS-CoV-2 and common cold coronaviruses have been highlighted as a likely source of this cross-reactivity. However, the role of such cross-reactive responses in the outcome of SARS-CoV-2 infection and vaccination is currently unclear. Here, we review evidence regarding the impact of pre-existing humoral and T cell immune responses to outcomes of SARS-CoV-2 infection and vaccination. Furthermore, we discuss the importance of conserved coronavirus epitopes for the rational design of pan-coronavirus vaccines and consider cross-reactivity of immune responses to ancestral SARS-CoV-2 and SARS-CoV-2 variants, as well as their impact on COVID-19 vaccination.
Collapse
Affiliation(s)
- Sam M Murray
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Azim M Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
353
|
Tani Y, Takita M, Kobashi Y, Wakui M, Zhao T, Yamamoto C, Saito H, Kawashima M, Sugiura S, Nishikawa Y, Omata F, Shimazu Y, Kawamura T, Sugiyama A, Nakayama A, Kaneko Y, Kodama T, Kami M, Tsubokura M. Varying Cellular Immune Response against SARS-CoV-2 after the Booster Vaccination: A Cohort Study from Fukushima Vaccination Community Survey, Japan. Vaccines (Basel) 2023; 11:vaccines11050920. [PMID: 37243024 DOI: 10.3390/vaccines11050920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Booster vaccination reduces the incidence of severe cases and mortality related to COVID-19, with cellular immunity playing an important role. However, little is known about the proportion of the population that has achieved cellular immunity after booster vaccination. Thus, we conducted a Fukushima cohort database and assessed humoral and cellular immunity in 2526 residents and healthcare workers in Fukushima Prefecture in Japan through continuous blood collection every 3 months from September 2021. We identified the proportion of people with induced cellular immunity after booster vaccination using the T-SPOT.COVID test, and analyzed their background characteristics. Among 1089 participants, 64.3% (700/1089) had reactive cellular immunity after booster vaccination. Multivariable analysis revealed the following independent predictors of reactive cellular immunity: age < 40 years (adjusted odds ratio: 1.81; 95% confidence interval: 1.19-2.75; p-value: 0.005) and adverse reactions after vaccination (1.92, 1.19-3.09, 0.007). Notably, despite IgG(S) and neutralizing antibody titers of ≥500 AU/mL, 33.9% (349/1031) and 33.5% (341/1017) of participants, respectively, did not have reactive cellular immunity. In summary, this is the first study to evaluate cellular immunity at the population level after booster vaccination using the T-SPOT.COVID test, albeit with several limitations. Future studies will need to evaluate previously infected subjects and their T-cell subsets.
Collapse
Affiliation(s)
- Yuta Tani
- Medical Governance Research Institute, Tokyo 108-0074, Japan
| | - Morihito Takita
- Medical Governance Research Institute, Tokyo 108-0074, Japan
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yurie Kobashi
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Tianchen Zhao
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hiroaki Saito
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of Internal Medicine, Soma Central Hospital, Fukushima 976-0016, Japan
| | - Moe Kawashima
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Sota Sugiura
- Medical Governance Research Institute, Tokyo 108-0074, Japan
| | - Yoshitaka Nishikawa
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Fumiya Omata
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Yuzo Shimazu
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Akira Sugiyama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Aya Nakayama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yudai Kaneko
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
- Medical and Biological Laboratories Co., Ltd., Tokyo 105-0012, Japan
| | - Tetsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Masahiro Kami
- Medical Governance Research Institute, Tokyo 108-0074, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
- Department of Internal Medicine, Soma Central Hospital, Fukushima 976-0016, Japan
| |
Collapse
|
354
|
Sun R, Wang Y, Abolhassani H. Cellular mechanisms and clinical applications for phenocopies of inborn errors of immunity: infectious susceptibility due to cytokine autoantibodies. Expert Rev Clin Immunol 2023:1-14. [PMID: 37114623 DOI: 10.1080/1744666x.2023.2208863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
INTRODUCTION With a growing knowledge of Inborn error immunity (IEI), immunological profiling and genetic predisposition to IEI phenocopies have been developed in recent years. AREAS COVERED Here we summarized the correlation between various pathogen invasions, autoantibody profiles, and corresponding clinical features in the context of patients with IEI phenocopies. It has been extensively evident that patients with anti-cytokine autoantibodies underly impaired anti-pathogen immune responses and lead to broad unregulated inflammation and tissue damage. Several hypotheses of anti-cytokine autoantibodies production were summarized here, including a defective negative selection of autoreactive T cells, abnormal germinal center formation, molecular mimicry, HLA class II allele region, lack of auto-reactive lymphocyte apoptosis, and other possible hypotheses. EXPERT OPINION Phenocopies of IEI associated with anti-cytokine autoantibodies are increasingly recognized as one of the causes of acquired immunodeficiency and susceptibility to certain pathogen infections, especially facing the current challenge of the COVID-19 pandemic. By investigating clinical, genetic, and pathogenesis autoantibodies profiles associated with various pathogens' susceptibilities, we could better understand the IEI phenocopies with anti-cytokine autoantibodies, especially for those that underlie life-threatening SARS-CoV-2.
Collapse
Affiliation(s)
- Rui Sun
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
355
|
Fernández-Moreno R, Valle-Arroyo J, Páez-Vega A, Salinas A, Cano A, Pérez AB, Torre-Cisneros J, Cantisán S. Memory SARS-CoV-2 T-cell response in convalescent COVID-19 patients with undetectable specific IgG antibodies: a comparative study. Front Immunol 2023; 14:1142918. [PMID: 37180143 PMCID: PMC10169638 DOI: 10.3389/fimmu.2023.1142918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Background During the COVID-19 pandemic, a variable percentage of patients with SARS-CoV-2 infection failed to elicit humoral response. This study investigates whether patients with undetectable SARS-CoV-2 IgG are able to generate SARS-CoV-2 memory T cells with proliferative capacity upon stimulation. Methods This cross-sectional study was conducted with convalescent COVID-19 patients, diagnosed with a positive real-time PCR (RT-PCR) from nasal and pharyngeal swab specimens. COVID-19 patients were enrolled ≥3 months after the last PCR positive. Proliferative T-cell response after whole blood stimulation was assessed using the FASCIA assay. Results A total of 119 participants (86 PCR-confirmed COVID-19 patients and 33 healthy controls) were randomly filtered from an initial cohort. Of these 86 patients, 59 had detectable (seropositive) and 27 had undetectable (seronegative) SARS-CoV-2 IgG. Seropositive patients were subclassified as asymptomatic/mild or severe according to the oxygen supplementation requirement. SARS-CoV-2 CD3+ and CD4+ T cells showed significantly lower proliferative response in seronegative than in seropositive patients. The ROC curve analysis indicated that ≥ 5 CD4+ blasts/μL of blood defined a "positive SARS-CoV-2 T cell response". According to this cut-off, 93.2% of seropositive patients had a positive T-cell response compared to 50% of seronegative patients and 20% of negative controls (chi-square; p < 0.001). Conclusions This proliferative assay is useful not only to discriminate convalescent patients from negative controls, but also to distinguish seropositive patients from those with undetectable SARS-CoV-2 IgG antibodies. Memory T cells in seronegative patients are able to respond to SARSCoV-2 peptides, although at a lower magnitude than seropositive patients.
Collapse
Affiliation(s)
- Raquel Fernández-Moreno
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
| | - Jorge Valle-Arroyo
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
| | - Aurora Páez-Vega
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
| | - Ana Salinas
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
| | - Angela Cano
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
- Infectious Diseases Unit, Reina Sofía University Hospital, Cordoba, Spain
| | - Ana B Pérez
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
- Microbiology Unit, Reina Sofía University Hospital, Cordoba, Spain
| | - Julián Torre-Cisneros
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
- Infectious Diseases Unit, Reina Sofía University Hospital, Cordoba, Spain
| | - Sara Cantisán
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
- Infectious Diseases Unit, Reina Sofía University Hospital, Cordoba, Spain
| |
Collapse
|
356
|
Chiang CY, Lin YJ, Weng WT, Lin HD, Lu CY, Chen WJ, Shih CY, Lin PY, Lin SZ, Ho TJ, Shibu MA, Huang CY. Recuperative herbal formula Jing Si maintains vasculature permeability balance, regulates inflammation and assuages concomitants of "Long-Covid". Biomed Pharmacother 2023; 163:114752. [PMID: 37116351 PMCID: PMC10130602 DOI: 10.1016/j.biopha.2023.114752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a worldwide health threat that has long-term effects on the patients and there is currently no efficient cure prescribed for the treatment and the prolonging effects. Traditional Chinese medicines (TCMs) have been reported to exert therapeutic effect against COVID-19. In this study, the therapeutic effects of Jing Si herbal tea (JSHT) against COVID-19 infection and associated long-term effects were evaluated in different in vitro and in vivo models. The anti-inflammatory effects of JSHT were studied in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and in Omicron pseudotyped virus-induced acute lung injury model. The effect of JSHT on cellular stress was determined in HK-2 proximal tubular cells and H9c2 cardiomyoblasts. The therapeutic benefits of JSHT on anhedonia and depression symptoms associated with long COVID were evaluated in mice models for unpredictable chronic mild stress (UCMS). JSHT inhibited the NF-ƙB activities, and significantly reduced LPS-induced expression of TNFα, COX-2, NLRP3 inflammasome, and HMGB1. JSHT was also found to significantly suppress the production of NO by reducing iNOS expression in LPS-stimulated RAW 264.7 cells. Further, the protective effects of JSHT on lung tissue were confirmed based on mitigation of lung injury, repression in TMRRSS2 and HMGB-1 expression and reduction of cytokine storm in the Omicron pseudotyped virus-induced acute lung injury model. JSHT treatment in UCMS models also relieved chronic stress and combated depression symptoms. The results therefore show that JSHT attenuates the cytokine storm by repressing NF-κB cascades and provides the protective functions against symptoms associated with long COVID-19 infection.
Collapse
Affiliation(s)
- Chien-Yi Chiang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Wen-Tsan Weng
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Heng-Dao Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Cheng-You Lu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Wan-Jing Chen
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Cheng Yen Shih
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien 970, Taiwan; Buddhist Tzu Chi Foundation Hospital, Hualien 97002, Tawian
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Buddhist Tzu Chi Foundation Hospital, Hualien 97002, Tawian; Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; School of Post-Baccalaure-ate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien 97004,Taiwan; Integration Center of Traditional Chinese and Modern Medicine, HualienTzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | | | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Department of Biological Science and Technology, Asia University, Taichung 413, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
357
|
Kenny G, Townsend L, Savinelli S, Mallon PWG. Long COVID: Clinical characteristics, proposed pathogenesis and potential therapeutic targets. Front Mol Biosci 2023; 10:1157651. [PMID: 37179568 PMCID: PMC10171433 DOI: 10.3389/fmolb.2023.1157651] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
The emergence of persistent ill-health in the aftermath of SARS-CoV-2 infection has presented significant challenges to patients, healthcare workers and researchers. Termed long COVID, or post-acute sequelae of COVID-19 (PASC), the symptoms of this condition are highly variable and span multiple body systems. The underlying pathophysiology remains poorly understood, with no therapeutic agents proven to be effective. This narrative review describes predominant clinical features and phenotypes of long COVID alongside the data supporting potential pathogenesis of these phenotypes including ongoing immune dysregulation, viral persistence, endotheliopathy, gastrointestinal microbiome disturbance, autoimmunity, and dysautonomia. Finally, we describe current potential therapies under investigation, as well as future potential therapeutic options based on the proposed pathogenesis research.
Collapse
Affiliation(s)
- Grace Kenny
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin, Ireland
| | - Liam Townsend
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin, Ireland
| | - Stefano Savinelli
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin, Ireland
| |
Collapse
|
358
|
Dietz LL, Juhl AK, Søgaard OS, Reekie J, Nielsen H, Johansen IS, Benfield T, Wiese L, Stærke NB, Jensen TØ, Jakobsen SF, Olesen R, Iversen K, Fogh K, Bodilsen J, Petersen KT, Larsen L, Madsen LW, Lindvig SO, Holden IK, Raben D, Andersen SD, Hvidt AK, Andreasen SR, Baerends EAM, Lundgren J, Østergaard L, Tolstrup M. Impact of age and comorbidities on SARS-CoV-2 vaccine-induced T cell immunity. COMMUNICATIONS MEDICINE 2023; 3:58. [PMID: 37095240 PMCID: PMC10124939 DOI: 10.1038/s43856-023-00277-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/17/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Older age and chronic disease are important risk factors for developing severe COVID-19. At population level, vaccine-induced immunity substantially reduces the risk of severe COVID-19 disease and hospitalization. However, the relative impact of humoral and cellular immunity on protection from breakthrough infection and severe disease is not fully understood. METHODS In a study cohort of 655 primarily older study participants (median of 63 years (IQR: 51-72)), we determined serum levels of Spike IgG antibodies using a Multiantigen Serological Assay and quantified the frequency of SARS-CoV-2 Spike-specific CD4 + and CD8 + T cells using activation induced marker assay. This enabled characterization of suboptimal vaccine-induced cellular immunity. The risk factors of being a cellular hypo responder were assessed using logistic regression. Further follow-up of study participants allowed for an evaluation of the impact of T cell immunity on breakthrough infections. RESULTS We show reduced serological immunity and frequency of CD4 + Spike-specific T cells in the oldest age group (≥75 years) and higher Charlson Comorbidity Index (CCI) categories. Male sex, age group ≥75 years, and CCI > 0 is associated with an increased likelihood of being a cellular hypo-responder while vaccine type is a significant risk factor. Assessing breakthrough infections, no protective effect of T cell immunity is identified. CONCLUSIONS SARS-CoV-2 Spike-specific immune responses in both the cellular and serological compartment of the adaptive immune system increase with each vaccine dose and are progressively lower with older age and higher prevalence of comorbidities. The findings contribute to the understanding of the vaccine response in individuals with increased risk of severe COVID-19 disease and hospitalization.
Collapse
Affiliation(s)
- Lisa Loksø Dietz
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Anna Karina Juhl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Isik Somuncu Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Nina Breinholt Stærke
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tomas Østergaard Jensen
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stine Finne Jakobsen
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kasper Iversen
- Department of Cardiology and Department of Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Kamille Fogh
- Department of Cardiology and Department of Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Jacob Bodilsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Lykke Larsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lone Wulff Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susan Olaf Lindvig
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Inge Kristine Holden
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Dept of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
359
|
Scarsi E, Massucco S, Ferraro PM, Cella A, Grisanti SG, Assini A, Beronio A, Della Cava F, Gemelli C, Bandini F, Serrati C, Del Sette M, Schenone A, Benedetti L, Prada V, Grandis M. Comparing the Impact of COVID-19 on Vaccinated and Unvaccinated Patients Affected by Myasthenia Gravis. Life (Basel) 2023; 13:life13041064. [PMID: 37109594 PMCID: PMC10146687 DOI: 10.3390/life13041064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
We evaluated 13 patients affected by myasthenia gravis (MG) who had coronavirus disease 2019 (COVID-19) before vaccination and 14 myasthenic patients who contracted severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection after vaccination to evaluate factors related to different COVID-19 outcomes. We compared the two groups' previous stability of MG and the severity of SARS-CoV-2 infection. Vaccinated and non-vaccinated patients were comparable in terms of severity of the previous MG course (mean maximum myasthenia gravis Foundation of America-MGFA-Class III) and during SARS-CoV-2 infection (mean MGFA Class II). In non-vaccinated patients, the hospitalization and severe course percentages were 61.5%, while the mortality reached 30.8%. The hospitalization, severe course, and mortality percentages in vaccinated patients were 7.1%. In deceased, non-vaccinated patients, greater myasthenia severity in the past clinical history, but not at the time of infection, was observed. Similarly, older age at MG onset and at the time of infection correlated with a more severe COVID-19 course in non-vaccinated patients (p = 0.03 and p = 0.04), but not in the group of vaccinated patients. In summary, our data support a protective role of vaccination in myasthenic patients, even if anti-CD20 therapy might be associated with a poor immune response to vaccines.
Collapse
Affiliation(s)
- Elena Scarsi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
| | - Sara Massucco
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
| | - Pilar M Ferraro
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Arianna Cella
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
| | - Stefano G Grisanti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
| | - Andrea Assini
- Neurology Unit, Galliera Hospital, Via Mura Delle Cappuccine 14, 16128 Genova, Italy
| | - Alessandro Beronio
- Department of Neurology, Sant'Andrea Civic Hospital, Via V. Veneto 197, 19121 La Spezia, Italy
| | - Fabio Della Cava
- Department of Neurology, Imperia Hospital, Via Sant'Agata 57, 18100 Imperia, Italy
| | - Chiara Gemelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Fabio Bandini
- Department of Neurology, Villa Scassi Hospital, ASL 3 Genovese, Corso O. Scassi 1, 16149 Genova, Italy
| | - Carlo Serrati
- Department of Neurology, Imperia Hospital, Via Sant'Agata 57, 18100 Imperia, Italy
| | - Massimo Del Sette
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Luana Benedetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Valeria Prada
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
| | - Marina Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| |
Collapse
|
360
|
Qin T, Shen B, Li E, Jin S, Luo R, Zhang Y, Qi J, Deng X, Shi Z, Wang T, Zhou Y, Gao Y. MHC class I links with severe pathogenicity in C57BL/6N mice infected with SARS-CoV-2/BMA8. Virol J 2023; 20:75. [PMID: 37081549 PMCID: PMC10116088 DOI: 10.1186/s12985-023-02031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes non-symptomatic infection, mild influenza-like symptoms to pneumonia, severe acute respiratory distress syndrome, and even death, reflecting different clinical symptoms of viral infection. However, the mechanism of its pathogenicity remains unclear. Host-specific traits have a breakthrough significance for studying the pathogenicity of SARS-CoV-2. We previously reported SARS-CoV-2/BMA8, a mouse-adapted strain, was lethal to aged BALB/c mice but not to aged C57BL/6N mice. Here, we further investigate the differences in pathogenicity of BMA8 strain against wild-type aged C57BL/6N and BALB/c mice. METHODS Whole blood and tissues were collected from mice before and after BMA8 strain infection. Viral replication and infectivity were assessed by detection of viral RNA copies and viral titers; the degree of inflammation in mice was tested by whole blood cell count, ELISA and RT-qPCR assays; the pathogenicity of SARS-CoV-2/BMA8 in mice was measured by Histopathology and Immunohistochemistry; and the immune level of mice was evaluated by flow cytometry to detect the number of CD8+ T cells. RESULTS Our results suggest that SARS-CoV-2/BMA8 strain caused lower pathogenicity and inflammation level in C57BL/6N mice than in BALB/c mice. Interestingly, BALB/c mice whose MHC class I haplotype is H-2Kd showed more severe pathogenicity after infection with BMA8 strain, while blockade of H-2Kb in C57BL/6N mice was also able to cause this phenomenon. Furthermore, H-2Kb inhibition increased the expression of cytokines/chemokines and accelerated the decrease of CD8+ T cells caused by SARS-CoV-2/BMA8 infection. CONCLUSIONS Taken together, our work shows that host MHC molecules play a crucial role in the pathogenicity differences of SARS-CoV-2/BMA8 infection. This provides a more profound insight into the pathogenesis of SARS-CoV-2, and contributes enlightenment and guidance for controlling the virus spread.
Collapse
Affiliation(s)
- Tian Qin
- School of life sciences, Northeast Normal University, Changchun, 130024, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Beilei Shen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Song Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of life sciences, Shandong Normal University, Jinan, 250014, China
| | - Rongbo Luo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yiming Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Jing Qi
- School of life sciences, Northeast Normal University, Changchun, 130024, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xiuwen Deng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhuangzhuang Shi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130033, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yifa Zhou
- School of life sciences, Northeast Normal University, Changchun, 130024, China.
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|
361
|
Mok CKP, Chen C, Zhao S, Sun Y, Yiu K, Chan TO, Lai HL, Lai KC, Lau KM, Ling KC, Chan KKP, Ng SS, Ko FW, Peiris M, Hui DS. Omicron BA.1-specific T-cell responses in adults vaccinated with CoronaVac or BNT162b2 in Hong Kong: an observational cohort study. THE LANCET. MICROBE 2023:S2666-5247(23)00006-X. [PMID: 37086735 PMCID: PMC10115591 DOI: 10.1016/s2666-5247(23)00006-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/19/2022] [Accepted: 12/23/2022] [Indexed: 04/24/2023]
Abstract
BACKGROUND The primary aim of using vaccines in public health responses to SARS-CoV-2 variants of concern is to reduce incidence of severe disease, for which T-cell responses are essential. There is a paucity of data on vaccine-induced T-cell immunity to omicron (B.1.1.529). We aimed to compare SARS-CoV-2 omicron BA.1-specific T-cell responses in adults vaccinated with CoronaVac or BNT162b2. METHODS For this observational cohort, we recruited adults (aged ≥18 years) from three vaccination centres in Hong Kong. We included participants from four cohorts (cohort 1: participants who received two doses of either BNT162b2 or CoronaVac, cohort 2: participants who received two doses and a booster, cohort 3: participants who received two doses and a booster and had a breakthrough omicron infection, and cohort 4: participants who had a previous non-omicron infection and subsequently received one dose of vaccine). People with confirmed history of COVID-19 at recruitment were excluded from cohort 1 and cohort 2. We collected blood samples before vaccination (for cohort 1 and 2), 1-month following vaccination (for all cohorts), and during convalescence for cohort 3 and 4) and determined the proportion of IFNγ+CD4+ and IFNγ+CD8+ T cells in peripheral blood against SARS-CoV-2 using flow cytometry with peptide pools of SARS-CoV-2 wild type or omicron BA.1. The primary outcome was proportion of CD4+ and CD8+ T cells against SARS-CoV-2 1 month after exposure (ie, vaccination or breakthrough infection). FINDINGS Overall, between May 21, 2020, and Aug 31, 2021, we recruited 659 participants (231 [35%] men and 428 [65%] women). Of these participants, 428 were included in cohort 1 (214 [50%] received BNT162b2 and 214 [50%] received CoronaVac); 127 in cohort 2 (48 [38%] received all BNT162b2, 40 [31%] received all CoronaVac, and 39 [31%] received two CoronaVac and a booster with BNT162b2); 58 in cohort 3, and 46 in cohort 4 (16 [35%] received CoronaVac and 30 [65%] received BNT162b2). Vaccine-induced T-cell responses to the wild-type and omicron BA.1 variants were generally similar in adults receiving two doses of either CoronaVac (CD4+ cells p=0·33; CD8+ cells p=0·70) or BNT162b2 (CD4+ cells p=0·28; CD8+ cells p=1·0). Using a peptide pool of all structural proteins for stimulation, BNT162b2 induced a higher median frequency of omicron-specific CD4+ T cells in adults younger than 60 years (CD4+ cells 0·012% vs 0·010%, p=0·031; CD8+ cells 0·003% vs 0·000%, p=0·055) and omicron-specific CD8+ T cells in people aged 60 years or older (CD4+ cells 0·015% vs 0·006%, p=0·0070; CD8+ cells 0·007% vs 0·000%, p=0·035). A booster dose of either BNT162b2 or CoronaVac after two doses of CoronaVac boosted waning T-cell responses, but T-cell responses did not exceed those at 1 month after the second dose (CoronaVac CD4+ p=0·41, CD8+ p=0·79; BNT162b2 CD4+ p=0·70 CD8+ p=0·80). INTERPRETATION The evidence that mRNA and inactivated vaccines based on the ancestral SARS-CoV-2 virus elicited T-cell responses to SARS-CoV-2 omicron variants might explain the high observed vaccine effectiveness against severe COVID-19 shown by both types of vaccine, despite great differences in neutralising antibody responses. The use of either vaccine can be considered if the primary aim is to reduce severity and death caused by the new omicron subvariants; however, BNT162b2 is preferable for adults older than 60 years. FUNDING The Health and Medical Research Fund Commissioned Research on the Novel Coronavirus Disease and S H Ho Foundation.
Collapse
Affiliation(s)
- Chris Ka Pun Mok
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chunke Chen
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shilin Zhao
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuanxin Sun
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Karen Yiu
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Tat-On Chan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ho-Lun Lai
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kiu Cheung Lai
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ka Man Lau
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwun Cheung Ling
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ken K P Chan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Susanna S Ng
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Fanny W Ko
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China; School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - David S Hui
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
362
|
Sunagar R, Singh A, Kumar S. SARS-CoV-2: Immunity, Challenges with Current Vaccines, and a Novel Perspective on Mucosal Vaccines. Vaccines (Basel) 2023; 11:vaccines11040849. [PMID: 37112761 PMCID: PMC10143972 DOI: 10.3390/vaccines11040849] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The global rollout of COVID-19 vaccines has played a critical role in reducing pandemic spread, disease severity, hospitalizations, and deaths. However, the first-generation vaccines failed to block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission, partially due to the limited induction of mucosal immunity, leading to the continuous emergence of variants of concern (VOC) and breakthrough infections. To meet the challenges from VOC, limited durability, and lack of mucosal immune response of first-generation vaccines, novel approaches are being investigated. Herein, we have discussed the current knowledge pertaining to natural and vaccine-induced immunity, and the role of the mucosal immune response in controlling SARS-CoV2 infection. We have also presented the current status of the novel approaches aimed at eliciting both mucosal and systemic immunity. Finally, we have presented a novel adjuvant-free approach to elicit effective mucosal immunity against SARS-CoV-2, which lacks the safety concerns associated with live-attenuated vaccine platforms.
Collapse
Affiliation(s)
| | - Amit Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
363
|
Lauretani F, Salvi M, Zucchini I, Testa C, Cattabiani C, Arisi A, Maggio M. Relationship between Vitamin D and Immunity in Older People with COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085432. [PMID: 37107714 PMCID: PMC10138672 DOI: 10.3390/ijerph20085432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 05/11/2023]
Abstract
Vitamin D is a group of lipophilic hormones with pleiotropic actions. It has been traditionally related to bone metabolism, although several studies in the last decade have suggested its role in sarcopenia, cardiovascular and neurological diseases, insulin-resistance and diabetes, malignancies, and autoimmune diseases and infections. In the pandemic era, by considering the response of the different branches of the immune system to SARS-CoV-2 infection, our aims are both to analyse, among the pleiotropic effects of vitamin D, how its strong multimodal modulatory effect on the immune system is able to affect the pathophysiology of COVID-19 disease and to emphasise a possible relationship between the well-known circannual fluctuations in blood levels of this hormone and the epidemiological trend of this infection, particularly in the elderly population. The biologically active form of vitamin D, or calcitriol, can influence both the innate and the adaptive arm of the immune response. Calcifediol levels have been found to be inversely correlated with upper respiratory tract infections in several studies, and this activity seems to be related to its role in the innate immunity. Cathelicidin is one of the main underlying mechanisms since this peptide increases the phagocytic and germicidal activity acting as chemoattractant for neutrophils and monocytes, and representing the first barrier in the respiratory epithelium to pathogenic invasion. Furthermore, vitamin D exerts a predominantly inhibitory action on the adaptive immune response, and it influences either cell-mediated or humoral immunity through suppression of B cells proliferation, immunoglobulins production or plasma cells differentiation. This role is played by promoting the shift from a type 1 to a type 2 immune response. In particular, the suppression of Th1 response is due to the inhibition of T cells proliferation, pro-inflammatory cytokines production (e.g., INF-γ, TNF-α, IL-2, IL-17) and macrophage activation. Finally, T cells also play a fundamental role in viral infectious diseases. CD4 T cells provide support to B cells antibodies production and coordinate the activity of the other immunological cells; moreover, CD8 T lymphocytes remove infected cells and reduce viral load. For all these reasons, calcifediol could have a protective role in the lung damage produced by COVID-19 by both modulating the sensitivity of tissue to angiotensin II and promoting overexpression of ACE-2. Promising results for the potential effectiveness of vitamin D supplementation in reducing the severity of COVID-19 disease was demonstrated in a pilot clinical trial of 76 hospitalised patients with SARS-CoV-2 infection where oral calcifediol administration reduced the need for ICU treatment. These interesting results need to be confirmed in larger studies with available information on vitamin D serum levels.
Collapse
Affiliation(s)
- Fulvio Lauretani
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-703325
| | - Marco Salvi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Irene Zucchini
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Crescenzo Testa
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Chiara Cattabiani
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Arianna Arisi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Marcello Maggio
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
364
|
Gurshaney S, Morales-Alvarez A, Ezhakunnel K, Manalo A, Huynh TH, Abe JI, Le NT, Weiskopf D, Sette A, Lupu DS, Gardell SJ, Nguyen H. Metabolic dysregulation impairs lymphocyte function during severe SARS-CoV-2 infection. Commun Biol 2023; 6:374. [PMID: 37029220 PMCID: PMC10080180 DOI: 10.1038/s42003-023-04730-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
Cellular metabolic dysregulation is a consequence of SARS-CoV-2 infection that is a key determinant of disease severity. However, how metabolic perturbations influence immunological function during COVID-19 remains unclear. Here, using a combination of high-dimensional flow cytometry, cutting-edge single-cell metabolomics, and re-analysis of single-cell transcriptomic data, we demonstrate a global hypoxia-linked metabolic switch from fatty acid oxidation and mitochondrial respiration towards anaerobic, glucose-dependent metabolism in CD8+Tc, NKT, and epithelial cells. Consequently, we found that a strong dysregulation in immunometabolism was tied to increased cellular exhaustion, attenuated effector function, and impaired memory differentiation. Pharmacological inhibition of mitophagy with mdivi-1 reduced excess glucose metabolism, resulting in enhanced generation of SARS-CoV-2- specific CD8+Tc, increased cytokine secretion, and augmented memory cell proliferation. Taken together, our study provides critical insight regarding the cellular mechanisms underlying the effect of SARS-CoV-2 infection on host immune cell metabolism, and highlights immunometabolism as a promising therapeutic target for COVID-19 treatment.
Collapse
Affiliation(s)
- Sanjeev Gurshaney
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Anamaria Morales-Alvarez
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Kevin Ezhakunnel
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Andrew Manalo
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Thien-Huong Huynh
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1451, Houston, TX, 77030, USA
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Daniel S Lupu
- AdventHealth Cancer Institute, AdventHealth Research Institute, Orlando, FL, 32804, USA
| | - Stephen J Gardell
- Translational Research Institute, AdventHealth Research Institute, Orlando, FL, 32804, USA
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
365
|
Alves RPDS, Wang YT, Mikulski Z, McArdle S, Shafee N, Valentine KM, Miller R, Verma SK, Batiz FAS, Maule E, Nguyen MN, Timis J, Mann C, Zandonatti M, Alarcon S, Rowe J, Kronenberg M, Weiskopf D, Sette A, Hastie K, Saphire EO, Festin S, Kim K, Shresta S. SARS-CoV-2 Omicron (B.1.1.529) shows minimal neurotropism in a double-humanized mouse model. Antiviral Res 2023; 212:105580. [PMID: 36940916 PMCID: PMC10027296 DOI: 10.1016/j.antiviral.2023.105580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initially infects the respiratory tract, it also directly or indirectly affects other organs, including the brain. However, little is known about the relative neurotropism of SARS-CoV-2 variants of concern (VOCs), including Omicron (B.1.1.529), which emerged in November 2021 and has remained the dominant pathogenic lineage since then. To address this gap, we examined the relative ability of Omicron, Beta (B.1.351), and Delta (B.1.617.2) to infect the brain in the context of a functional human immune system by using human angiotensin-converting enzyme 2 (hACE2) knock-in triple-immunodeficient NGC mice with or without reconstitution with human CD34+ stem cells. Intranasal inoculation of huCD34+-hACE2-NCG mice with Beta and Delta resulted in productive infection of the nasal cavity, lungs, and brain on day 3 post-infection, but Omicron was surprisingly unique in its failure to infect either the nasal tissue or brain. Moreover, the same infection pattern was observed in hACE2-NCG mice, indicating that antiviral immunity was not responsible for the lack of Omicron neurotropism. In independent experiments, we demonstrate that nasal inoculation with Beta or with D614G, an ancestral SARS-CoV-2 with undetectable replication in huCD34+-hACE2-NCG mice, resulted in a robust response by human innate immune cells, T cells, and B cells, confirming that exposure to SARS-CoV-2, even without detectable infection, is sufficient to induce an antiviral immune response. Collectively, these results suggest that modeling of the neurologic and immunologic sequelae of SARS-CoV-2 infection requires careful selection of the appropriate SARS-CoV-2 strain in the context of a specific mouse model.
Collapse
Affiliation(s)
| | - Ying-Ting Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kristen M Valentine
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robyn Miller
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shailendra Kumar Verma
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Fernanda Ana Sosa Batiz
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erin Maule
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julia Timis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Colin Mann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michelle Zandonatti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Suzie Alarcon
- Sequencing Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jenny Rowe
- Charles River Laboratories Research Models and Services Inc., Wilmington, MA, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Kathryn Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Stephen Festin
- Charles River Laboratories Research Models and Services Inc., Wilmington, MA, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
366
|
Abstract
The inflammaging concept was introduced in 2000 by Prof. Franceschi. This was an evolutionary or rather a revolutionary conceptualization of the immune changes in response to a lifelong stress. This conceptualization permitted to consider the lifelong proinflammatory process as an adaptation which could eventually lead to either beneficial or detrimental consequences. This dichotomy is influenced by both the genetics and the environment. Depending on which way prevails in an individual, the outcome may be healthy longevity or pathological aging burdened with aging-related diseases. The concept of inflammaging has also revealed the complex, systemic nature of aging. Thus, this conceptualization opens the way to consider age-related processes in their complexity, meaning that not only the process but also all counter-processes should be considered. It has also opened the way to add new concepts to the original one, leading to better understanding of the nature of inflammaging and of aging itself. Finally, it showed the way towards potential multimodal interventions involving a holistic approach to optimize the aging process towards a healthy longevity.
Collapse
|
367
|
Wu D, Efimov GA, Bogolyubova AV, Pierce BG, Mariuzza RA. Structural insights into protection against a SARS-CoV-2 spike variant by T cell receptor diversity. J Biol Chem 2023; 299:103035. [PMID: 36806685 PMCID: PMC9934920 DOI: 10.1016/j.jbc.2023.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
T cells play a crucial role in combatting SARS-CoV-2 and forming long-term memory responses to this coronavirus. The emergence of SARS-CoV-2 variants that can evade T cell immunity has raised concerns about vaccine efficacy and the risk of reinfection. Some SARS-CoV-2 T cell epitopes elicit clonally restricted CD8+ T cell responses characterized by T cell receptors (TCRs) that lack structural diversity. Mutations in such epitopes can lead to loss of recognition by most T cells specific for that epitope, facilitating viral escape. Here, we studied an HLA-A2-restricted spike protein epitope (RLQ) that elicits CD8+ T cell responses in COVID-19 convalescent patients characterized by highly diverse TCRs. We previously reported the structure of an RLQ-specific TCR (RLQ3) with greatly reduced recognition of the most common natural variant of the RLQ epitope (T1006I). Opposite to RLQ3, TCR RLQ7 recognizes T1006I with even higher functional avidity than the WT epitope. To explain the ability of RLQ7, but not RLQ3, to tolerate the T1006I mutation, we determined structures of RLQ7 bound to RLQ-HLA-A2 and T1006I-HLA-A2. These complexes show that there are multiple structural solutions to recognizing RLQ and thereby generating a clonally diverse T cell response to this epitope that assures protection against viral escape and T cell clonal loss.
Collapse
Affiliation(s)
- Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China; W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | | | | | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
368
|
Wan EYF, Yan VKC, Mok AHY, Wang B, Xu W, Cheng FWT, Lai FTT, Chui CSL, Li X, Wong CKH, Li PH, Cowling BJ, Hung IFN, Lau CS, Wong ICK, Chan EWY. Effectiveness of Molnupiravir and Nirmatrelvir-Ritonavir in Hospitalized Patients With COVID-19 : A Target Trial Emulation Study. Ann Intern Med 2023; 176:505-514. [PMID: 36913693 PMCID: PMC10052319 DOI: 10.7326/m22-3057] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Whether hospitalized patients benefit from COVID-19 oral antivirals is uncertain. OBJECTIVE To examine the real-world effectiveness of molnupiravir and nirmatrelvir-ritonavir in hospitalized patients with COVID-19 during the Omicron outbreak. DESIGN Target trial emulation study. SETTING Electronic health databases in Hong Kong. PARTICIPANTS The molnupiravir emulated trial included hospitalized patients with COVID-19 aged 18 years or older between 26 February and 18 July 2022 (n = 16 495). The nirmatrelvir-ritonavir emulated trial included hospitalized patients with COVID-19 aged 18 years or older between 16 March and 18 July 2022 (n = 7119). INTERVENTION Initiation of molnupiravir or nirmatrelvir-ritonavir within 5 days of hospitalization with COVID-19 versus no initiation of molnupiravir or nirmatrelvir-ritonavir. MEASUREMENTS Effectiveness against all-cause mortality, intensive care unit (ICU) admission, or use of ventilatory support within 28 days. RESULTS The use of oral antivirals in hospitalized patients with COVID-19 was associated with a lower risk for all-cause mortality (molnupiravir: hazard ratio [HR], 0.87 [95% CI, 0.81 to 0.93]; nirmatrelvir-ritonavir: HR, 0.77 [CI, 0.66 to 0.90]) but no significant risk reduction in terms of ICU admission (molnupiravir: HR, 1.02 [CI, 0.76 to 1.36]; nirmatrelvir-ritonavir: HR, 1.08 [CI, 0.58 to 2.02]) or the need for ventilatory support (molnupiravir: HR, 1.07 [CI, 0.89 to 1.30]; nirmatrelvir-ritonavir: HR, 1.03 [CI, 0.70 to 1.52]). There was no significant interaction between drug treatment and the number of COVID-19 vaccine doses received, thereby supporting the effectiveness of oral antivirals regardless of vaccination status. No significant interaction between nirmatrelvir-ritonavir treatment and age, sex, or Charlson Comorbidity Index was observed, whereas molnupiravir tended to be more effective in older people. LIMITATION The outcome of ICU admission or need for ventilatory support may not capture all severe COVID-19 cases; unmeasured confounders, such as obesity and health behaviors, may exist. CONCLUSION Molnupiravir and nirmatrelvir-ritonavir reduced all-cause mortality in both vaccinated and unvaccinated hospitalized patients. No significant reduction in ICU admission or the need for ventilatory support was observed. PRIMARY FUNDING SOURCE Health and Medical Research Fund Research on COVID-19, Government of the Hong Kong Special Administrative Region; Research Grants Council, Collaborative Research Fund; and Health Bureau, Government of the Hong Kong Special Administrative Region.
Collapse
Affiliation(s)
- Eric Yuk Fai Wan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, and Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China (E.Y.F.W., C.K.H.W.)
| | - Vincent Ka Chun Yan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China (V.K.C.Y., F.W.T.C.)
| | - Anna Hoi Ying Mok
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China (A.H.Y.M., B.W., W.X.)
| | - Boyuan Wang
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China (A.H.Y.M., B.W., W.X.)
| | - Wanchun Xu
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China (A.H.Y.M., B.W., W.X.)
| | - Franco Wing Tak Cheng
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China (V.K.C.Y., F.W.T.C.)
| | - Francisco Tsz Tsun Lai
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, and Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China (F.T.T.L.)
| | - Celine Sze Ling Chui
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, and School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China (C.S.L.C.)
| | - Xue Li
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, and Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China (X.L.)
| | - Carlos King Ho Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, and Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China (E.Y.F.W., C.K.H.W.)
| | - Philip Hei Li
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China (P.H.L., I.F.N.H., C.S.L.)
| | - Benjamin John Cowling
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, and WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China (B.J.C.)
| | - Ivan Fan Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China (P.H.L., I.F.N.H., C.S.L.)
| | - Chak Sing Lau
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China (P.H.L., I.F.N.H., C.S.L.)
| | - Ian Chi Kei Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, and Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China, Research Department of Practice and Policy, School of Pharmacy, University College London, London, United Kingdom, and Aston Pharmacy School, Aston University, Birmingham, United Kingdom (I.C.K.W.)
| | - Esther Wai Yin Chan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, and Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China, and Department of Pharmacy, The University of Hong Kong-Shenzhen Hospital, and The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China (E.W.Y.C.)
| |
Collapse
|
369
|
Xiao C, Ren Z, Zhang B, Mao L, Zhu G, Gao L, Su J, Ye J, Long Z, Zhu Y, Chen P, Su X, Zhou T, Huang Y, Chen X, Xie C, Yuan J, Hu Y, Zheng J, Wang Z, Lou J, Yang X, Kuang Z, Zhang H, Wang P, Liang X, Luo OJ, Chen G. Insufficient epitope-specific T cell clones are responsible for impaired cellular immunity to inactivated SARS-CoV-2 vaccine in older adults. NATURE AGING 2023; 3:418-435. [PMID: 37117789 PMCID: PMC10154213 DOI: 10.1038/s43587-023-00379-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/03/2023] [Indexed: 04/30/2023]
Abstract
Aging is a critical risk factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efficacy. The immune responses to inactivated vaccine for older adults, and the underlying mechanisms of potential differences to young adults, are still unclear. Here we show that neutralizing antibody production by older adults took a longer time to reach similar levels in young adults after inactivated SARS-CoV-2 vaccination. We screened SARS-CoV-2 variant strains for epitopes that stimulate specific CD8 T cell response, and older adults exhibited weaker CD8 T-cell-mediated responses to these epitopes. Comparison of lymphocyte transcriptomes from pre-vaccinated and post-vaccinated donors suggested that the older adults had impaired antigen processing and presentation capability. Single-cell sequencing revealed that older adults had less T cell clone expansion specific to SARS-CoV-2, likely due to inadequate immune receptor repertoire size and diversity. Our study provides mechanistic insights for weaker response to inactivated vaccine by older adults and suggests the need for further vaccination optimization for the old population.
Collapse
Affiliation(s)
- Chanchan Xiao
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Zhiyao Ren
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
- Guangzhou Geriatric Hospital, Guangzhou, China
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Bei Zhang
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Lipeng Mao
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Guodong Zhu
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Guangzhou Geriatric Hospital, Guangzhou, China
| | - Lijuan Gao
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Jun Su
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China
| | - Jiezhou Ye
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Ze Long
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Yue Zhu
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Pengfei Chen
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Xiangmeng Su
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Tong Zhou
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Yanhao Huang
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Xiongfei Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Chaojun Xie
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yutian Hu
- Meng Yi Center Limited, Macau, China
| | - Jingshan Zheng
- Shenzhen Kangtai Biological Products Co. Ltd, Shenzhen, China
| | - Zhigang Wang
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China
| | | | - Xiang Yang
- Leidebio Bioscience Co., Ltd., Guangzhou, China
| | - Zhiqiang Kuang
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China
| | - Hongyi Zhang
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Pengcheng Wang
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| | - Xiaofeng Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China.
| | - Oscar Junhong Luo
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China.
| | - Guobing Chen
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
- Guangzhou Laboratory, Guangzhou, China.
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
370
|
Schmitt CA, Tchkonia T, Niedernhofer LJ, Robbins PD, Kirkland JL, Lee S. COVID-19 and cellular senescence. Nat Rev Immunol 2023; 23:251-263. [PMID: 36198912 PMCID: PMC9533263 DOI: 10.1038/s41577-022-00785-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
Abstract
The clinical severity of coronavirus disease 2019 (COVID-19) is largely determined by host factors. Recent advances point to cellular senescence, an ageing-related switch in cellular state, as a critical regulator of SARS-CoV-2-evoked hyperinflammation. SARS-CoV-2, like other viruses, can induce senescence and exacerbates the senescence-associated secretory phenotype (SASP), which is comprised largely of pro-inflammatory, extracellular matrix-degrading, complement-activating and pro-coagulatory factors secreted by senescent cells. These effects are enhanced in elderly individuals who have an increased proportion of pre-existing senescent cells in their tissues. SASP factors can contribute to a 'cytokine storm', tissue-destructive immune cell infiltration, endothelialitis (endotheliitis), fibrosis and microthrombosis. SASP-driven spreading of cellular senescence uncouples tissue injury from direct SARS-CoV-2-inflicted cellular damage in a paracrine fashion and can further amplify the SASP by increasing the burden of senescent cells. Preclinical and early clinical studies indicate that targeted elimination of senescent cells may offer a novel therapeutic opportunity to attenuate clinical deterioration in COVID-19 and improve resilience following infection with SARS-CoV-2 or other pathogens.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
- Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany.
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Soyoung Lee
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
| |
Collapse
|
371
|
Nguyen NX, Richens AW, Sircy LM, Allard DE, Kolawole EM, Evavold BD, Bettini M, Hale JS. Immunogen-Specific Strengths and Limitations of the Activation-Induced Marker Assay for Assessing Murine Antigen-Specific CD4+ T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:916-925. [PMID: 36883856 PMCID: PMC10038905 DOI: 10.4049/jimmunol.2200638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/31/2023] [Indexed: 03/09/2023]
Abstract
The activation-induced marker (AIM) assay is a cytokine-independent technique to identify Ag-specific T cells based on the upregulated expression of activation markers after Ag restimulation. The method offers an alternative to intracellular cytokine staining in immunological studies, in which limited cytokine production makes the cell subsets of interest difficult to detect. Studies of lymphocytes in human and nonhuman primates have used the AIM assay to detect Ag-specific CD4+ and CD8+ T cells. However, there is a lack of validation of the strengths and limitations of the assay in murine (Mus musculus) models of infection and vaccination. In this study, we analyzed immune responses of TCR-transgenic CD4+ T cells, including lymphocytic choriomeningitis virus-specific SMARTA, OVA-specific OT-II, and diabetogenic BDC2.5-transgenic T cells, and measured the ability of the AIM assay to effectively identify these cells to upregulate AIM markers OX40 and CD25 following culture with cognate Ag. Our findings indicate that the AIM assay is effective for identifying the relative frequency of protein immunization-induced effector and memory CD4+ T cells, whereas the AIM assay had reduced ability to identify specific cells induced by viral infection, particularly during chronic lymphocytic choriomeningitis virus infection. Evaluation of polyclonal CD4+ T cell responses to acute viral infection demonstrated that the AIM assay can detect a proportion of both high- and low-affinity cells. Together, our findings indicate that the AIM assay can be an effective tool for relative quantification of murine Ag-specific CD4+ T cells to protein vaccination, while demonstrating its limitations during conditions of acute and chronic infection.
Collapse
Affiliation(s)
- Nguyen X Nguyen
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Andrew W Richens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Linda M Sircy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Denise E Allard
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Maria Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - J Scott Hale
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
372
|
Pons S, Uhel F, Frapy E, Sérémé Y, Zafrani L, Aschard H, Skurnik D. How Protective are Antibodies to SARS-CoV-2, the Main Weapon of the B-Cell Response? Stem Cell Rev Rep 2023; 19:585-600. [PMID: 36422774 PMCID: PMC9685122 DOI: 10.1007/s12015-022-10477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/25/2022]
Abstract
Since the beginning of the Coronavirus disease (COVID)-19 pandemic in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for more than 600 million infections and 6.5 million deaths worldwide. Given the persistence of SARS-CoV-2 and its ability to develop new variants, the implementation of an effective and long-term herd immunity appears to be crucial to overcome the pandemic. While a vast field of research has focused on the role of humoral immunity against SARS-CoV-2, a growing body of evidence suggest that antibodies alone only confer a partial protection against infection of reinfection which could be of high importance regarding the strategic development goals (SDG) of the United Nations (UN) and in particular UN SDG3 that aims towards the realization of good health and well being on a global scale in the context of the COVID-19 pandemic.In this review, we highlight the role of humoral immunity in the host defense against SARS-CoV-2, with a focus on highly neutralizing antibodies. We summarize the results of the main clinical trials leading to an overall disappointing efficacy of convalescent plasma therapy, variable results of monoclonal neutralizing antibodies in patients with COVID-19 but outstanding results for the mRNA based vaccines against SARS-CoV-2. Finally, we advocate that beyond antibody responses, the development of a robust cellular immunity against SARS-CoV-2 after infection or vaccination is of utmost importance for promoting immune memory and limiting disease severity, especially in case of (re)-infection by variant viruses.
Collapse
Affiliation(s)
- Stéphanie Pons
- DMU DREAM, Department of Anesthesiology and Critical Care, Sorbonne University, GRC 29, AP-HP, Pitié-Salpêtrière, Paris, France
- Université de Paris Cité, INSERM U976- Human Immunology, Pathophysiology, Immunotherapy (HIPI), Paris, France
| | - Fabrice Uhel
- INSERM, CNRS, Institut Necker Enfants Malades, Université de Paris Cité, Paris, France
- DMU ESPRIT, Médecine Intensive Réanimation, AP-HP, Hôpital Louis Mourier, 92700, Colombes, France
| | - Eric Frapy
- INSERM, CNRS, Institut Necker Enfants Malades, Université de Paris Cité, Paris, France
| | - Youssouf Sérémé
- INSERM, CNRS, Institut Necker Enfants Malades, Université de Paris Cité, Paris, France
| | - Lara Zafrani
- Université de Paris Cité, INSERM U976- Human Immunology, Pathophysiology, Immunotherapy (HIPI), Paris, France
- Medical Intensive Care Unit, Saint Louis Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Hugues Aschard
- Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | - David Skurnik
- INSERM, CNRS, Institut Necker Enfants Malades, Université de Paris Cité, Paris, France.
- Department of Clinical Microbiology, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Université de Paris Cité, Paris, France.
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
373
|
Fraser R, Orta-Resendiz A, Dockrell D, Müller-Trutwin M, Mazein A. Severe COVID-19 versus multisystem inflammatory syndrome: comparing two critical outcomes of SARS-CoV-2 infection. Eur Respir Rev 2023; 32:32/167/220197. [PMID: 36889788 PMCID: PMC10032586 DOI: 10.1183/16000617.0197-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/31/2022] [Indexed: 03/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with diverse host response immunodynamics and variable inflammatory manifestations. Several immune-modulating risk factors can contribute to a more severe coronavirus disease 2019 (COVID-19) course with increased morbidity and mortality. The comparatively rare post-infectious multisystem inflammatory syndrome (MIS) can develop in formerly healthy individuals, with accelerated progression to life-threatening illness. A common trajectory of immune dysregulation forms a continuum of the COVID-19 spectrum and MIS; however, severity of COVID-19 or the development of MIS is dependent on distinct aetiological factors that produce variable host inflammatory responses to infection with different spatiotemporal manifestations, a comprehensive understanding of which is necessary to set better targeted therapeutic and preventative strategies for both.
Collapse
Affiliation(s)
- Rupsha Fraser
- The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Aurelio Orta-Resendiz
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - David Dockrell
- The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
374
|
Harne R, Williams B, Abdelaal HFM, Baldwin SL, Coler RN. SARS-CoV-2 infection and immune responses. AIMS Microbiol 2023; 9:245-276. [PMID: 37091818 PMCID: PMC10113164 DOI: 10.3934/microbiol.2023015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus continues to be an enormous global challenge faced by the healthcare sector. Availability of new vaccines and drugs targeting SARS-CoV-2 and sequelae of COVID-19 has given the world hope in ending the pandemic. However, the emergence of mutations in the SARS-CoV-2 viral genome every couple of months in different parts of world is a persistent danger to public health. Currently there is no single treatment to eradicate the risk of COVID-19. The widespread transmission of SARS-CoV-2 due to the Omicron variant necessitates continued work on the development and implementation of effective vaccines. Moreover, there is evidence that mutations in the receptor domain of the SARS-CoV-2 spike glycoprotein led to the decrease in current vaccine efficacy by escaping antibody recognition. Therefore, it is essential to actively identify the mechanisms by which SARS-CoV-2 evades the host immune system, study the long-lasting effects of COVID-19 and develop therapeutics targeting SARS-CoV-2 infections in humans and preclinical models. In this review, we describe the pathogenic mechanisms of SARS-CoV-2 infection as well as the innate and adaptive host immune responses to infection. We address the ongoing need to develop effective vaccines that provide protection against different variants of SARS-CoV-2, as well as validated endpoint assays to evaluate the immunogenicity of vaccines in the pipeline, medications, anti-viral drug therapies and public health measures, that will be required to successfully end the COVID-19 pandemic.
Collapse
Affiliation(s)
- Rakhi Harne
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington, USA
| | - Brittany Williams
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Hazem F. M. Abdelaal
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington, USA
| | - Susan L. Baldwin
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington, USA
| | - Rhea N. Coler
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
375
|
Aleksova M, Todorova Y, Emilova R, Baymakova M, Yancheva N, Andonova R, Zasheva A, Grifoni A, Weiskopf D, Sette A, Nikolova M. Virus-Specific Stem Cell Memory CD8+ T Cells May Indicate a Long-Term Protection against Evolving SARS-CoV-2. Diagnostics (Basel) 2023; 13:diagnostics13071280. [PMID: 37046496 PMCID: PMC10093371 DOI: 10.3390/diagnostics13071280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Immune memory to SARS-CoV-2 is key for establishing herd immunity and limiting the spread of the virus. The duration and qualities of T-cell-mediated protection in the settings of constantly evolving pathogens remain an open question. We conducted a cross-sectional study of SARS-CoV-2-specific CD4+ and CD8+ T-cell responses at several time points over 18 months (30–750 days) post mild/moderate infection with the aim to identify suitable methods and biomarkers for evaluation of long-term T-cell memory in peripheral blood. Included were 107 samples from 95 donors infected during the periods 03/2020–07/2021 and 09/2021–03/2022, coinciding with the prevalence of B.1.1.7 (alpha) and B.1.617.2 (delta) variants in Bulgaria. SARS-CoV-2-specific IFNγ+ T cells were measured in ELISpot in parallel with flow cytometry detection of AIM+ total and stem cell-like memory (TSCM) CD4+ and CD8+ T cells after in vitro stimulation with peptide pools corresponding to the original and delta variants. We show that, unlike IFNγ+ T cells, AIM+ virus-specific CD4+ and CD8+ TSCM are more adequate markers of T cell memory, even beyond 18 months post-infection. In the settings of circulating and evolving viruses, CD8+ TSCM is remarkably stable, back-differentiated into effectors, and delivers immediate protection, regardless of the initial priming strain.
Collapse
|
376
|
Yun YF, Feng ZY, Zhang JJ. COVID-19 and liver dysfunction in children: Current views and new hypotheses. World J Hepatol 2023; 15:353-363. [PMID: 37034238 PMCID: PMC10075013 DOI: 10.4254/wjh.v15.i3.353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/14/2023] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) poses an extremely serious global impact on public healthcare for individuals of all ages, including children. Increasing evidence has shown that liver abnormalities are commonly found in children with COVID-19, and age-related features in innate and adaptive response have been demonstrated. However, there are few reports and studies on COVID-19 related liver injury in children, and the data are scattered. So that many contradictions have arose. This situation is not only due to the serious ethical issues in studying pediatric patients with COVID-19, but also because of the short duration and wide coverage of the COVID-19 epidemic, the severity and complexity of clinical cases varied, as did the inclusion criteria for case reporting and patient outcomes. Therefore, we totaled the incidences, characteristics and pathomechanism of liver injury in children since the COVID-19 outbreak. The etiology of COVID-19-related liver injury is divided into three categories: (1) The direct mechanism involves severe acute respiratory syndrome coronavirus 2 binding to angiotensin-converting enzyme 2 in the liver or bile duct to exert direct toxicity; (2) the indirect mechanisms include an inflammatory immune response and hypoxia; and (3) COVID-19-related treatments, such as mechanical ventilation and antiviral drugs, may cause liver injury. In summary, this minireview provides fundamental insights into COVID-19 and liver dysfunction in children.
Collapse
Affiliation(s)
- Yang-Fang Yun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Zhi-Yuan Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Jing-Jing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
377
|
Fu JYL, Pukhari MH, Bador MK, Sam IC, Chan YF. Humoral and T Cell Immune Responses against SARS-CoV-2 after Primary and Homologous or Heterologous Booster Vaccinations and Breakthrough Infection: A Longitudinal Cohort Study in Malaysia. Viruses 2023; 15:844. [PMID: 37112825 PMCID: PMC10146761 DOI: 10.3390/v15040844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Vaccine efficacy against SARS-CoV-2 could be compromised by the emergence of SARS-CoV-2 variants and it is important to study how it impacts the booster vaccination regime. We investigated the humoral and T cell responses longitudinally in vaccinated uninfected (n = 25) and post-COVID-19 individuals (n = 8), and those who had received a BNT162b2 booster following complete two-doses regimes of either BNT162b2 (homologous) (n = 14) or ChAdOx1-S (heterologous) (n = 15) vaccines, by means of a SARS-CoV-2 pseudovirus neutralization test and QuantiFERON SARS-CoV-2 assay. Vaccinated post-COVID-19 individuals showed higher neutralizing antibodies with longer durability against SARS-CoV-2 wild type (WT) and Omicron spikes, but demonstrated similar declining T cell responses compared to the uninfected vaccinated. Two doses of BNT162b2 induced higher neutralizing antibodies against WT and T cell responses than ChAdOx1-S for six months. The BNT162b2 booster confers a greater humoral response against WT, but a similar cross-neutralizing antibody against Omicron and T cell responses in the homologous booster group compared to the heterologous booster group. Breakthrough infection in the homologous booster group (n = 11) significantly increased the neutralizing antibody, but T cell responses remained low. Our data may impact government public health policy regarding the administration of mix-and-match vaccines, where both vaccination regimes can be employed should there be shortages of certain vaccines.
Collapse
Affiliation(s)
- Jolene Yin Ling Fu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (J.Y.L.F.); (M.H.P.); (M.K.B.); (I.-C.S.)
| | - Muhammad Harith Pukhari
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (J.Y.L.F.); (M.H.P.); (M.K.B.); (I.-C.S.)
| | - Maria Kahar Bador
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (J.Y.L.F.); (M.H.P.); (M.K.B.); (I.-C.S.)
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (J.Y.L.F.); (M.H.P.); (M.K.B.); (I.-C.S.)
- Department of Medical Microbiology, University Malaya Medical Centre, Kuala Lumpur 59100, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (J.Y.L.F.); (M.H.P.); (M.K.B.); (I.-C.S.)
| |
Collapse
|
378
|
Humbert M, Olofsson A, Wullimann D, Niessl J, Hodcroft EB, Cai C, Gao Y, Sohlberg E, Dyrdak R, Mikaeloff F, Neogi U, Albert J, Malmberg KJ, Lund-Johansen F, Aleman S, Björkhem-Bergman L, Jenmalm MC, Ljunggren HG, Buggert M, Karlsson AC. Functional SARS-CoV-2 cross-reactive CD4 + T cells established in early childhood decline with age. Proc Natl Acad Sci U S A 2023; 120:e2220320120. [PMID: 36917669 PMCID: PMC10041119 DOI: 10.1073/pnas.2220320120] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
Pre-existing SARS-CoV-2-reactive T cells have been identified in SARS-CoV-2-unexposed individuals, potentially modulating COVID-19 and vaccination outcomes. Here, we provide evidence that functional cross-reactive memory CD4+ T cell immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is established in early childhood, mirroring early seroconversion with seasonal human coronavirus OC43. Humoral and cellular immune responses against OC43 and SARS-CoV-2 were assessed in SARS-CoV-2-unexposed children (paired samples at age two and six) and adults (age 26 to 83). Pre-existing SARS-CoV-2-reactive CD4+ T cell responses targeting spike, nucleocapsid, and membrane were closely linked to the frequency of OC43-specific memory CD4+ T cells in childhood. The functional quality of the cross-reactive memory CD4+ T cell responses targeting SARS-CoV-2 spike, but not nucleocapsid, paralleled OC43-specific T cell responses. OC43-specific antibodies were prevalent already at age two. However, they did not increase further with age, contrasting with the antibody magnitudes against HKU1 (β-coronavirus), 229E and NL63 (α-coronaviruses), rhinovirus, Epstein-Barr virus (EBV), and influenza virus, which increased after age two. The quality of the memory CD4+ T cell responses peaked at age six and subsequently declined with age, with diminished expression of interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF), and CD38 in late adulthood. Age-dependent qualitative differences in the pre-existing SARS-CoV-2-reactive T cell responses may reflect the ability of the host to control coronavirus infections and respond to vaccination.
Collapse
Affiliation(s)
- Marion Humbert
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Anna Olofsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| | - David Wullimann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Julia Niessl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Emma B. Hodcroft
- Institute of Social and Preventive Medicine, University of Bern, Bern3012, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
| | - Curtis Cai
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Robert Dyrdak
- Department of Clinical Microbiology, Karolinska University Hospital, 171 76Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77Stockholm, Sweden
| | - Flora Mikaeloff
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Jan Albert
- Department of Clinical Microbiology, Karolinska University Hospital, 171 76Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77Stockholm, Sweden
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
- Department of Cancer Immunology, Institute for Cancer Research, University of Oslo, 0379Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0379Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, 0372Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, 0372Oslo, Norway
| | - Soo Aleman
- Unit for Infectious Diseases and Dermatology, I73, Karolinska University Hospital, Huddinge, 141 86Stockholm, Sweden
- Infectious Diseases and Dermatology Unit, Department of Medicine, Huddinge, Karolinska Institutet, 141 86Huddinge, Sweden
| | - Linda Björkhem-Bergman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83Huddinge, Sweden
- Palliative Medicine, Stockholms Sjukhem, 112 19Stockholm, Sweden
| | - Maria C. Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83Linköping, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Annika C. Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| |
Collapse
|
379
|
Zornikova KV, Sheetikov SA, Rusinov AY, Iskhakov RN, Bogolyubova AV. Architecture of the SARS-CoV-2-specific T cell repertoire. Front Immunol 2023; 14:1070077. [PMID: 37020560 PMCID: PMC10067759 DOI: 10.3389/fimmu.2023.1070077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
The T cell response plays an indispensable role in the early control and successful clearance of SARS-CoV-2 infection. However, several important questions remain about the role of cellular immunity in COVID-19, including the shape and composition of disease-specific T cell repertoires across convalescent patients and vaccinated individuals, and how pre-existing T cell responses to other pathogens—in particular, common cold coronaviruses—impact susceptibility to SARS-CoV-2 infection and the subsequent course of disease. This review focuses on how the repertoire of T cell receptors (TCR) is shaped by natural infection and vaccination over time. We also summarize current knowledge regarding cross-reactive T cell responses and their protective role, and examine the implications of TCR repertoire diversity and cross-reactivity with regard to the design of vaccines that confer broader protection against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ksenia V. Zornikova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Saveliy A. Sheetikov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Yu Rusinov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Rustam N. Iskhakov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V. Bogolyubova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- *Correspondence: Apollinariya V. Bogolyubova,
| |
Collapse
|
380
|
Demultiplexing Ig repertoires by parallel mRNA/DNA sequencing shows major differential alterations in severe COVID-19. iScience 2023; 26:106260. [PMID: 36845033 PMCID: PMC9942447 DOI: 10.1016/j.isci.2023.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
To understand the fine differential elements that can lead to or prevent acute respiratory distress syndrome (ARDS) in COVID-19 patients, it is crucial to investigate the immune response architecture. We herein dissected the multiple layers of B cell responses by flow cytometry and Ig repertoire analysis from acute phase to recovery. Flow cytometry with FlowSOM analysis showed major changes associated with COVID-19 inflammation such as an increase of double-negative B-cells and ongoing plasma cell differentiation. This paralleled COVID-19-driven expansion of two disconnected B-cell repertoires. Demultiplexing successive DNA and RNA Ig repertoire patterns characterized an early expansion of IgG1 clonotypes with atypically long and uncharged CDR3, the abundance of this inflammatory repertoire being correlated with ARDS and likely pejorative. A superimposed convergent response included convergent anti-SARS-CoV-2 clonotypes. It featured progressively increasing somatic hypermutation together with normal-length or short CDR3 and it persisted until a quiescent memory B-cell stage after recovery.
Collapse
|
381
|
Nah EH, Cho S, Park H, Kim S, Noh D, Kwon E, Cho HI. SARS-CoV-2 Antibody Response and Sustainability after a Third Dose of BNT162b2 in Healthcare Workers at Health Promotion Centers. Viruses 2023; 15:v15030751. [PMID: 36992460 PMCID: PMC10055753 DOI: 10.3390/v15030751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The aim of this study was to determine the antibody response and the sustainability of immunogenicity after a third dose of BNT162b2 (BNT) in homologous [ChAdOx1 (ChAd)/ChAd, BNT/BNT, and mRNA-1273 (Moderna)/Moderna] and heterologous (ChAd/BNT) vaccinations of two primary doses with different schemes. This prospective observational study recruited consenting healthcare workers from 16 health checkup centers in 13 Korean cities. Three-point blood tests were analyzed as the antibody response after the third vaccination: T3-1 (1 month after the third dose), T3-3 (3 months after the third dose), and T3-4–10 (4–10 months after the third dose). SARS-CoV-2 antibodies were measured using a chemiluminescence microparticle immunoassay with SARS-CoV-2 IgG II Quant in the ARCHITECT system (Abbott Diagnostics). The antibody levels were significantly higher in the Moderna /Moderna and BNT/BNT groups than in the ChAd/ ChAd and ChAd/BNT groups (p < 0.05) at T3-1. At T3-3, antibody levels had decreased by 29.1% in the BNT/BNT group and by 45.3% in the ChAd/ChAd group compared with the antibody levels at T3-1. The anti-SARS-CoV-2 S-RBD IgG levels at T3-1 were significantly associated with having received mRNA vaccines as the two primary doses (p < 0.001). The third dose of BNT induced an increased humoral immune response in various vaccination schemes, which was more prominent for the two primary doses of homologous mRNA vaccines. However, this immunogenicity decreased within 3–10 months after the third dose. These results suggest that another booster dose (a fourth dose), which would be able to counteract SARS-CoV-2 variants, is needed.
Collapse
Affiliation(s)
- Eun-Hee Nah
- Department of Laboratory Medicine and Health Promotion Research Institute, Korea Association of Health Promotion, Seoul 07572, Republic of Korea
- Correspondence: or ; Tel.: +82-2-2600-0107; Fax: +82-2-2690-4915
| | - Seon Cho
- Department of Laboratory Medicine and Health Promotion Research Institute, Korea Association of Health Promotion, Seoul 07572, Republic of Korea
| | - Hyeran Park
- Department of Laboratory Medicine and Health Promotion Research Institute, Korea Association of Health Promotion, Seoul 07572, Republic of Korea
| | - Suyoung Kim
- Department of Laboratory Medicine and Health Promotion Research Institute, Korea Association of Health Promotion, Seoul 07572, Republic of Korea
| | - Dongwon Noh
- Department of Laboratory Medicine and Health Promotion Research Institute, Korea Association of Health Promotion, Seoul 07572, Republic of Korea
| | - Eunjoo Kwon
- Department of Laboratory Medicine and Health Promotion Research Institute, Korea Association of Health Promotion, Seoul 07572, Republic of Korea
| | - Han-Ik Cho
- MEDIcheck LAB, Korea Association of Health Promotion, Seoul 07572, Republic of Korea
| |
Collapse
|
382
|
Sabetta E, Noviello M, Sciorati C, Viganò M, De Lorenzo R, Beretta V, Valtolina V, Di Resta C, Banfi G, Ferrari D, Locatelli M, Ciceri F, Bonini C, Rovere-Querini P, Tomaiuolo R. A longitudinal analysis of humoral, T cellular response and influencing factors in a cohort of healthcare workers: Implications for personalized SARS-CoV-2 vaccination strategies. Front Immunol 2023; 14:1130802. [PMID: 36999012 PMCID: PMC10043299 DOI: 10.3389/fimmu.2023.1130802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/22/2023] [Indexed: 03/15/2023] Open
Abstract
IntroductionSARS-CoV-2 mRNA vaccinations elicit both virus-specific humoral and T-cell responses, but a complex interplay of different influencing factors, such as natural immunity, gender, and age, guarantees host protection. The present study aims to assess the immune dynamics of humoral, T-cell response, and influencing factors to stratify individual immunization status up to 10 months after Comirnaty-vaccine administration.MethodsTo this aim, we longitudinally evaluated the magnitude and kinetics of both humoral and T-cell responses by serological tests and enzyme-linked immunospot assay at 5 time points. Furthermore, we compared the course over time of the two branches of adaptive immunity to establish an eventual correlation between adaptive responses. Lastly, we evaluated putative influencing factors collected by an anonymized survey administered to all participants through multiparametric analysis. Among 984 healthcare workers evaluated for humoral immunity, 107 individuals were further analyzed to describe SARS-CoV-2-specific T-cell responses. Participants were divided into 4 age groups: <40 and ≥40 years for men, <48 and ≥48 years for women. Furthermore, results were segregated according to SARS-CoV-2-specific serostatus at baseline.ResultsThe disaggregated evaluation of humoral responses highlighted antibody levels decreased in older subjects. The humoral responses were higher in females than in males (p=0.002) and previously virus-exposed subjects compared to naïve subjects (p<0.001). The vaccination induced a robust SARS-CoV-2 specific T-cell response at early time points in seronegative subjects compared to baseline levels (p<0.0001). However, a contraction was observed 6 months after vaccination in this group (p<0.01). On the other hand, the pre-existing specific T-cell response detected in natural seropositive individuals was longer-lasting than the response of the seronegative subjects, decreasing only 10 months after vaccination. Our data suggest that T-cell reactiveness is poorly impacted by sex and age. Of note, SARS-CoV-2-specific T-cell response was not correlated to the humoral response at any time point.DiscussionThese findings suggest prospects for rescheduling vaccination strategies by considering individual immunization status, personal characteristics, and the appropriate laboratory tests to portray immunity against SARS-CoV-2 accurately. Deepening our knowledge about T and B cell dynamics might optimize the decision-making process in vaccination campaigns, tailoring it to each specific immune response.
Collapse
Affiliation(s)
| | - Maddalena Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory (MITiCi), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Clara Sciorati
- Innate Immunity and Tissue Remodeling Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Viganò
- Scientific Direction, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | | | - Valeria Beretta
- Experimental Hematology Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory (MITiCi), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Valtolina
- Experimental Hematology Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory (MITiCi), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Giuseppe Banfi
- Vita-Salute San Raffaele University, Milan, Italy
- Scientific Direction, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | | | - Massimo Locatelli
- Laboratory Medicine Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory (MITiCi), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy
- Innate Immunity and Tissue Remodeling Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Patrizia Rovere-Querini,
| | | |
Collapse
|
383
|
Makhijani P, Basso PJ, Chan YT, Chen N, Baechle J, Khan S, Furman D, Tsai S, Winer DA. Regulation of the immune system by the insulin receptor in health and disease. Front Endocrinol (Lausanne) 2023; 14:1128622. [PMID: 36992811 PMCID: PMC10040865 DOI: 10.3389/fendo.2023.1128622] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
The signaling pathways downstream of the insulin receptor (InsR) are some of the most evolutionarily conserved pathways that regulate organism longevity and metabolism. InsR signaling is well characterized in metabolic tissues, such as liver, muscle, and fat, actively orchestrating cellular processes, including growth, survival, and nutrient metabolism. However, cells of the immune system also express the InsR and downstream signaling machinery, and there is increasing appreciation for the involvement of InsR signaling in shaping the immune response. Here, we summarize current understanding of InsR signaling pathways in different immune cell subsets and their impact on cellular metabolism, differentiation, and effector versus regulatory function. We also discuss mechanistic links between altered InsR signaling and immune dysfunction in various disease settings and conditions, with a focus on age related conditions, such as type 2 diabetes, cancer and infection vulnerability.
Collapse
Affiliation(s)
- Priya Makhijani
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Buck Institute for Research in Aging, Novato, CA, United States
| | - Paulo José Basso
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yi Tao Chan
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nan Chen
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jordan Baechle
- Buck Institute for Research in Aging, Novato, CA, United States
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, United States
| | - Saad Khan
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - David Furman
- Buck Institute for Research in Aging, Novato, CA, United States
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, United States
- Stanford 1, 000 Immunomes Project, Stanford School of Medicine, Stanford University, Stanford, CA, United States
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pilar, Argentina
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Daniel A. Winer
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Buck Institute for Research in Aging, Novato, CA, United States
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, United States
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
384
|
Moore SC, Kronsteiner B, Longet S, Adele S, Deeks AS, Liu C, Dejnirattisai W, Reyes LS, Meardon N, Faustini S, Al-Taei S, Tipton T, Hering LM, Angyal A, Brown R, Nicols AR, Dobson SL, Supasa P, Tuekprakhon A, Cross A, Tyerman JK, Hornsby H, Grouneva I, Plowright M, Zhang P, Newman TAH, Nell JM, Abraham P, Ali M, Malone T, Neale I, Phillips E, Wilson JD, Murray SM, Zewdie M, Shields A, Horner EC, Booth LH, Stafford L, Bibi S, Wootton DG, Mentzer AJ, Conlon CP, Jeffery K, Matthews PC, Pollard AJ, Brown A, Rowland-Jones SL, Mongkolsapaya J, Payne RP, Dold C, Lambe T, Thaventhiran JED, Screaton G, Barnes E, Hopkins S, Hall V, Duncan CJA, Richter A, Carroll M, de Silva TI, Klenerman P, Dunachie S, Turtle L. Evolution of long-term vaccine-induced and hybrid immunity in healthcare workers after different COVID-19 vaccine regimens. MED 2023; 4:191-215.e9. [PMID: 36863347 PMCID: PMC9933851 DOI: 10.1016/j.medj.2023.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Both infection and vaccination, alone or in combination, generate antibody and T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the maintenance of such responses-and hence protection from disease-requires careful characterization. In a large prospective study of UK healthcare workers (HCWs) (Protective Immunity from T Cells in Healthcare Workers [PITCH], within the larger SARS-CoV-2 Immunity and Reinfection Evaluation [SIREN] study), we previously observed that prior infection strongly affected subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. METHODS Here, we report longer follow-up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. FINDINGS We make three observations: first, the dynamics of humoral and cellular responses differ; binding and neutralizing antibodies declined, whereas T and memory B cell responses were maintained after the second vaccine dose. Second, vaccine boosting restored immunoglobulin (Ig) G levels; broadened neutralizing activity against variants of concern, including Omicron BA.1, BA.2, and BA.5; and boosted T cell responses above the 6-month level after dose 2. Third, prior infection maintained its impact driving larger and broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. CONCLUSIONS Broadly cross-reactive T cell responses are well maintained over time-especially in those with combined vaccine and infection-induced immunity ("hybrid" immunity)-and may contribute to continued protection against severe disease. FUNDING Department for Health and Social Care, Medical Research Council.
Collapse
Affiliation(s)
- Shona C Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Stephanie Longet
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sandra Adele
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Alexandra S Deeks
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Division of Emerging Infectious Disease, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Laura Silva Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Naomi Meardon
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sian Faustini
- Institute for Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Saly Al-Taei
- Institute for Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Tom Tipton
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luisa M Hering
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adrienn Angyal
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Rebecca Brown
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Alexander R Nicols
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle, UK
| | - Susan L Dobson
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aekkachai Tuekprakhon
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew Cross
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Jessica K Tyerman
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle, UK
| | - Hailey Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Irina Grouneva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Megan Plowright
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Peijun Zhang
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Thomas A H Newman
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jeremy M Nell
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Priyanka Abraham
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Tom Malone
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Isabel Neale
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Eloise Phillips
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Joseph D Wilson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford University Medical School, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Sam M Murray
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Martha Zewdie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Adrian Shields
- Institute for Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Emily C Horner
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lucy H Booth
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lizzie Stafford
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Daniel G Wootton
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christopher P Conlon
- Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Philippa C Matthews
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; The Francis Crick Institute, London, UK; Division of Infection and Immunity, University College London, London, UK; Department of Infectious Diseases, University College London Hospital NHS Foundation Trust, London, UK
| | - Andrew J Pollard
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sarah L Rowland-Jones
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Rebecca P Payne
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | | | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Susan Hopkins
- UK Health Security Agency, London, UK; Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Victoria Hall
- UK Health Security Agency, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Christopher J A Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle, UK; Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Alex Richter
- Institute for Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Miles Carroll
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thushan I de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
385
|
Strzelec M, Detka J, Mieszczak P, Sobocińska MK, Majka M. Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front Immunol 2023; 14:1127704. [PMID: 36969193 PMCID: PMC10033545 DOI: 10.3389/fimmu.2023.1127704] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, there has been a tremendous development of biotechnological, pharmacological, and medical techniques which can be implemented in the functional modulation of the immune system components. Immunomodulation has attracted much attention because it offers direct applications in both basic research and clinical therapy. Modulation of a non-adequate, amplified immune response enables to attenuate the clinical course of a disease and restore homeostasis. The potential targets to modulate immunity are as multiple as the components of the immune system, thus creating various possibilities for intervention. However, immunomodulation faces new challenges to design safer and more efficacious therapeutic compounds. This review offers a cross-sectional picture of the currently used and newest pharmacological interventions, genomic editing, and tools for regenerative medicine involving immunomodulation. We reviewed currently available experimental and clinical evidence to prove the efficiency, safety, and feasibility of immunomodulation in vitro and in vivo. We also reviewed the advantages and limitations of the described techniques. Despite its limitations, immunomodulation is considered as therapy itself or as an adjunct with promising results and developing potential.
Collapse
|
386
|
Ahmed MIM, Plank M, Castelletti N, Diepers P, Eser TM, Rubio-Acero R, Noreña I, Reinkemeyer C, Zapf D, Hoelscher M, Janke C, Wieser A, Geldmacher C. Impact of Omicron Variant Infection on Assessment of Spike-Specific Immune Responses Using the EUROIMMUN Quan-T-Cell SARS-CoV-2 Assay and Roche Elecsys Anti-SARS-CoV-2-S. Diagnostics (Basel) 2023; 13:diagnostics13061024. [PMID: 36980332 PMCID: PMC10047097 DOI: 10.3390/diagnostics13061024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The currently prevailing variants of SARS-CoV-2 are subvariants of the Omicron variant. The aim of this study was to analyze the effect of mutations in the Spike protein of Omicron on the results Quan-T-Cell SARS-CoV-2 assays and Roche Elecsys anti-SARS-CoV-2 anti-S1. Omicron infected subjects ((n = 37), vaccinated (n = 20) and unvaccinated (n = 17)) were recruited approximately 3 weeks after a positive PCR test. The Quan-T-Cell SARS-CoV-2 assays (EUROIMMUN) using Wuhan and the Omicron adapted antigen assay and a serological test (Roche Elecsys anti-SARS-CoV-2 anti-S1) were performed. Using the original Wuhan SARS-CoV-2 IGRA TUBE, in 19 of 21 tested Omicron infected subjects, a positive IFNy response was detected, while 2 non-vaccinated but infected subjects did not respond. The Omicron adapted antigen tube resulted in comparable results. In contrast, the serological assay detected a factor 100-fold lower median Spike-specific RBD antibody concentration in non-vaccinated Omicron infected patients (n = 12) compared to patients from the pre Omicron era (n = 12) at matched time points, and eight individuals remained below the detection threshold for positivity. For vaccinated subjects, the Roche assay detected antibodies in all subjects and showed a 400 times higher median specific antibody concentration compared to non-vaccinated infected subjects in the pre-Omicron era. Our results suggest that Omicron antigen adapted IGRA stimulator tubes did not improve detection of SARS-CoV-2-specific T-cell responses in the Quant-T-Cell-SARS-CoV-2 assay. In non-vaccinated Omicron infected individuals, the Wuhan based Elecsys anti-SARS-CoV-2 anti-S1 serological assay results in many negative results at 3 weeks after diagnosis.
Collapse
Affiliation(s)
- Mohamed I M Ahmed
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Michael Plank
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
| | - Noemi Castelletti
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, German Research Centre for Environmental Health, 85764 Neuherberg, Germany
| | - Paulina Diepers
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
| | - Tabea M Eser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Raquel Rubio-Acero
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
| | - Ivan Noreña
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
| | - Christina Reinkemeyer
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
| | - Dorinja Zapf
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| | - Christian Janke
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
- Max Von Pettenkofer Institute, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| |
Collapse
|
387
|
Liontos A, Asimakopoulos AG, Markopoulos GS, Biros D, Athanasiou L, Tsourlos S, Dova L, Rapti IC, Tsiakas I, Ntzani E, Evangelou E, Tzoulaki I, Tsilidis K, Vartholomatos G, Dounousi E, Milionis H, Christaki E. Correlation of Lymphocyte Subpopulations, Clinical Features and Inflammatory Markers during Severe COVID-19 Onset. Pathogens 2023; 12:pathogens12030414. [PMID: 36986336 PMCID: PMC10057940 DOI: 10.3390/pathogens12030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Dysregulation of the immune response in the course of COVID-19 has been implicated in critical outcomes. Lymphopenia is evident in severe cases and has been associated with worse outcomes since the early phases of the pandemic. In addition, cytokine storm has been associated with excessive lung injury and concomitant respiratory failure. However, it has also been hypothesized that specific lymphocyte subpopulations (CD4 and CD8 T cells, B cells, and NK cells) may serve as prognostic markers for disease severity. The aim of this study was to investigate possible associations of lymphocyte subpopulations alterations with markers of disease severity and outcomes in patients hospitalized with COVID-19. Materials/Methods: A total of 42 adult hospitalized patients were included in this study, from June to July 2021. Flow-cytometry was used to calculate specific lymphocyte subpopulations on day 1 (admission) and on day 5 of hospitalization (CD45, CD3, CD3CD8, CD3CD4, CD3CD4CD8, CD19, CD16CD56, CD34RA, CD45RO). Markers of disease severity and outcomes included: burden of disease on CT (% of affected lung parenchyma injury), C-reactive protein and interleukin-6 levels. PO2/FiO2 ratio and differences in lymphocytes subsets between two timepoints were also calculated. Logistic and linear regressions were used for the analyses. All analyses were performed using Stata (version 13.1; Stata Corp, College Station, TX, USA). Results: Higher levels of CD16CD56 cells (Natural Killer cells) were associated with higher risk of lung injury (>50% of lung parenchyma). An increase in CD3CD4 and CD4RO cell count difference between day 5 and day 1 resulted in a decrease of CRP difference between these timepoints. On the other hand, CD45RARO difference was associated with an increase in the difference of CRP levels between the two timepoints. No other significant differences were found in the rest of the lymphocyte subpopulations. Conclusions: Despite a low patient number, this study showed that alterations in lymphocyte subpopulations are associated with COVID-19 severity markers. It was observed that an increase in lymphocytes (CD4 and transiently CD45RARO) resulted in lower CRP levels, perhaps leading to COVID-19 recovery and immune response homeostasis. However, these findings need further evaluation in larger scale trials.
Collapse
Affiliation(s)
- Angelos Liontos
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros-George Asimakopoulos
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios S. Markopoulos
- Haematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Biros
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Lazaros Athanasiou
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Stavros Tsourlos
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Leukothea Dova
- Haematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45110 Ioannina, Greece
| | - Iro-Chrisavgi Rapti
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Ilias Tsiakas
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Ntzani
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelos Evangelou
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Ioanna Tzoulaki
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Tsilidis
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - George Vartholomatos
- Haematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Haralampos Milionis
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Eirini Christaki
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
- Correspondence: ; Tel.: +30-26-5109-9640
| |
Collapse
|
388
|
Karunakaran I, Ritter M, Pfarr K, Klarmann-Schulz U, Debrah AY, Debrah LB, Katawa G, Wanji S, Specht S, Adjobimey T, Hübner MP, Hoerauf A. Filariasis research - from basic research to drug development and novel diagnostics, over a decade of research at the Institute for Medical Microbiology, Immunology and Parasitology, Bonn, Germany. FRONTIERS IN TROPICAL DISEASES 2023; 4:1126173. [PMID: 38655130 PMCID: PMC7615856 DOI: 10.3389/fitd.2023.1126173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Filariae are vector borne parasitic nematodes, endemic in tropical and subtropical regions causing avoidable infections ranging from asymptomatic to stigmatizing and disfiguring disease. The filarial species that are the major focus of our institution's research are Onchocerca volvulus causing onchocerciasis (river blindness), Wuchereria bancrofti and Brugia spp. causing lymphatic filariasis (elephantiasis), Loa loa causing loiasis (African eye worm), and Mansonella spp causing mansonellosis. This paper aims to showcase the contribution of our institution and our collaborating partners to filarial research and covers decades of long research spanning basic research using the Litomosoides sigmodontis animal model to development of drugs and novel diagnostics. Research with the L. sigmodontis model has been extensively useful in elucidating protective immune responses against filariae as well as in identifying the mechanisms of filarial immunomodulation during metabolic, autoimmune and infectious diseases. The institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany has also been actively involved in translational research in contributing to the identification of new drug targets and pre-clinical drug research with successful and ongoing partnership with sub-Saharan Africa, mainly Ghana (the Kumasi Centre for Collaborative Research (KCCR)), Cameroon (University of Buea (UB)) and Togo (Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA)), Asia and industry partners. Further, in the direction of developing novel diagnostics that are sensitive, time, and labour saving, we have developed sensitive qPCRs as well as LAMP assays and are currently working on artificial intelligence based histology analysis for onchocerciasis. The article also highlights our ongoing research and the need for novel animal models and new drug targets.
Collapse
Affiliation(s)
- Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Ute Klarmann-Schulz
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Alexander Yaw Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Center for Collaborative Research (KCCR), Kumasi, Ghana
| | - Linda Batsa Debrah
- Kumasi Center for Collaborative Research (KCCR), Kumasi, Ghana
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Samuel Wanji
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Sabine Specht
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Tomabu Adjobimey
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
389
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains asymptomatic in 33% to 90% of older adults depending on their immune status from prior infection, vaccination, and circulating strain. Older adults symptomatic with SARS-CoV-2 often both present atypically, such as with a blunted fever response, and develop more severe disease. Early and late reports showed that older adults have increased severity of coronavirus disease 2019 (COVID-19) with higher case fatality rates and higher intensive care needs compared with younger adults. Infection and vaccine-induced antibody response and long-term effects of COVID-19 also differ in older adults.
Collapse
|
390
|
Tan Y, Zhang C, Li D, Huang J, Liu Z, Chen T, Zou X, Qin B. Bibliometric and visualization analysis of global research trends on immunosenescence (1970-2021). Exp Gerontol 2023; 173:112089. [PMID: 36646295 DOI: 10.1016/j.exger.2023.112089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Immunosenescence, the aging of the immune system, leads to a decline in the body's adaptability to the environment and plays an important role in various diseases. Immunosenescence has been widely studied in recent years. However, to date, no relevant bibliometric analyses have been conducted. This study aimed to analyze the foundation and frontiers of immunosenescence research through bibliometric analysis. METHODS Articles and reviews on immunosenescence from 1970 to 2021 were obtained from the Web of Science Core Collection. Countries, institutions, authors, journals, references, and keywords were analyzed and visualized using VOSviewer and CiteSpace. The R language and Microsoft Excel 365 were used for statistical analyses. RESULTS In total, 3763 publications were included in the study. The global literature on immunosenescence research has increased from 1970 to 2021. The United States was the most productive country with 1409 papers and the highest H-index. Italy had the highest average number of citations per article (58.50). Among the top 10 institutions, 50 % were in the United States. The University of California was the most productive institution, with 159 articles. Kroemer G, Franceschi C, Goronzy JJ, Solana R, and Fulop T were among the top 10 most productive and co-cited authors. Experimental Gerontology (n = 170) published the most papers on immunosenescence. The analysis of keywords found that current research focuses on "inflammaging", "gut microbiota", "cellular senescence", and "COVID-19". CONCLUSIONS Immunosenescence research has increased over the years, and future cooperation and interaction between countries and institutions must be expanded. The connection between inflammaging, gut microbiota, age-related diseases, and immunosenescence is a current research priority. Individualized treatment of immunosenescence, reducing its negative effects, and promoting healthy longevity will become an emerging research direction.
Collapse
Affiliation(s)
- Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Chuanhe Zhang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Deshuang Li
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Jianguo Huang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Ziling Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Tianyu Chen
- Medical Department, Wuxi Second People's Hospital, Wuxi, China
| | - Xuyan Zou
- Changsha Aier Eye Hospital, Aier Eye Hospital Group, Changsha, China.
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China.
| |
Collapse
|
391
|
Kohmer N, Stein S, Schenk B, Grikscheit K, Metzler M, Rabenau HF, Widera M, Herrmann E, Wicker S, Ciesek S. Heterologous prime-boost immunization with ChAdOx1-S and BNT162b2: reactogenicity and immunogenicity in a prospective cohort study. Int J Infect Dis 2023; 128:166-175. [PMID: 36587839 PMCID: PMC9800011 DOI: 10.1016/j.ijid.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Regarding reactogenicity and immunogenicity, heterologous COVID-19 vaccination regimens are considered as an alternative to conventional immunization schemes. METHODS Individuals receiving either heterologous (ChAdOx1-S [AstraZeneca, Cambridge, UK]/BNT162b2 [Pfizer-BioNTech, Mainz, Germany]; n = 306) or homologous (messenger RNA [mRNA]-1273 [Moderna, Cambridge, Massachusetts, USA]; n = 139) vaccination were asked to participate when receiving their second dose. Reactogenicity was assessed after 1 month, immunogenicity after 1, 3, and/or 6 months, including a third dose, through SARS-CoV-2 antispike immunoglobulin G, surrogate virus neutralization test, and a plaque reduction neutralization test against the Delta (B.1.167.2) and Omicron (B.1.1.529; BA.1) variants of concern. RESULTS The overall reactogenicity was lower after heterologous vaccination. In both cohorts, SARS-CoV-2 antispike immunoglobulin G concentrations waned over time with the heterologous vaccination demonstrating higher neutralizing activity than homologous mRNA vaccination after 3 months to low neutralizing levels in the Delta plaque reduction neutralization test after 6 months. At this point, 3.2% of the heterologous and 11.4% of the homologous cohort yielded low neutralizing activity against Omicron. After a third dose of an mRNA vaccine, ≥99% of vaccinees demonstrated positive neutralizing activity against Delta. Depending on the vaccination scheme and against Omicron, 60% to 87.5% of vaccinees demonstrated positive neutralizing activity. CONCLUSION ChAdOx1-S/BNT162b2 vaccination demonstrated an acceptable reactogenicity and immunogenicity profile. A third dose of an mRNA vaccine is necessary to maintain neutralizing activity against SARS-CoV-2. However, variants of concern-adapted versions of the vaccines would be desirable.
Collapse
Affiliation(s)
- Niko Kohmer
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.
| | - Shivana Stein
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Barbara Schenk
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Katharina Grikscheit
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Melinda Metzler
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Holger F Rabenau
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modelling, Goethe University Frankfurt, Frankfurt, Germany
| | - Sabine Wicker
- Occupational Health Service, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany; German Centre for Infection Research, External Partner Site, Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany.
| |
Collapse
|
392
|
Al-Akioui-Sanz K, Pascual-Miguel B, Díaz-Almirón M, Mestre-Durán C, Navarro-Zapata A, Clares-Villa L, Martín-Cortázar C, Vicario JL, Moreno MÁ, Balas A, De Paz R, Minguillón J, Pérez-Martínez A, Ferreras C. Donor selection for adoptive cell therapy with CD45RA - memory T cells for patients with coronavirus disease 2019, and dexamethasone and interleukin-15 effects on the phenotype, proliferation and interferon gamma release. Cytotherapy 2023; 25:330-340. [PMID: 36585293 PMCID: PMC9742221 DOI: 10.1016/j.jcyt.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AIMS We have previously demonstrated the safety and feasibility of adoptive cell therapy with CD45RA- memory T cells containing severe acute respiratory syndrome coronavirus 2-specific T cells for patients with coronavirus disease 2019 from an unvaccinated donor who was chosen based on human leukocyte antigen compatibility and cellular response. In this study, we examined the durability of cellular and humoral immunity within CD45RA- memory T cells and the effect of dexamethasone, the current standard of care treatment, and interleukin-15, a cytokine critically involved in T-cell maintenance and survival. METHODS We performed a longitudinal analysis from previously severe acute respiratory syndrome coronavirus 2-infected and infection-naïve individuals covering 21 months from infection and 10 months after full vaccination with the BNT162b2 Pfizer/BioNTech vaccine. RESULTS We observed that cellular responses are maintained over time. Humoral responses increased after vaccination but were gradually lost. In addition, dexamethasone did not alter cell functionality or proliferation of CD45RA- T cells, and interleukin-15 increased the memory T-cell activation state, regulatory T cell expression, and interferon gamma release. CONCLUSIONS Our results suggest that the best donors for adoptive cell therapy would be recovered individuals and 2 months after vaccination, although further studies with larger cohorts would be needed to confirm this finding. Dexamethasone did not affect the characteristics of the memory T cells at a concentration used in the clinical practice and IL-15 showed a positive effect on SARS-CoV-2-specific CD45RA- T cells.
Collapse
Affiliation(s)
- Karima Al-Akioui-Sanz
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Bárbara Pascual-Miguel
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | | | - Carmen Mestre-Durán
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Alfonso Navarro-Zapata
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Laura Clares-Villa
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Carla Martín-Cortázar
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - José Luis Vicario
- Histocompatibility Unit, Transfusion Center of Madrid, Madrid, Spain
| | | | - Antonio Balas
- Histocompatibility Unit, Transfusion Center of Madrid, Madrid, Spain
| | - Raquel De Paz
- Cell Therapy Unit, Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Jordi Minguillón
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain; Pediatric Hemato-oncology Department, La Paz University Hospital, Madrid, Spain; Faculty of Medicine Autonomous, University of Madrid, Madrid, Spain
| | - Cristina Ferreras
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.
| |
Collapse
|
393
|
Kim WJ, Roberts CC, Song JY, Yoon JG, Seong H, Hyun HJ, Lee H, Gil A, Oh Y, Park JE, Jeon B, Lee JE, Choi SK, Yoon SK, Lee S, Kim B, Kane D, Spruill S, Kudchodkar SB, Muthumani K, Park YK, Kwon I, Jeong M, Maslow JN. Safety and immunogenicity of the bi-cistronic GLS-5310 COVID-19 DNA vaccine delivered with the GeneDerm suction device. Int J Infect Dis 2023; 128:112-120. [PMID: 36592685 PMCID: PMC9803371 DOI: 10.1016/j.ijid.2022.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES The CoV2-001 phase I randomized trial evaluated the safety and immunogenicity of the GLS-5310 bi-cistronic DNA vaccine through 48 weeks of follow-up. DESIGN A total of 45 vaccine-naïve participants were recruited between December 31, 2020, and March 30, 2021. GLS-5310, encoding for the SARS-CoV-2 spike and open reading frame 3a (ORF3a) proteins, was administered intradermally at 0.6 mg or 1.2 mg per dose, followed by application of the GeneDerm suction device as part of a two-dose regimen spaced either 8 or 12 weeks between vaccinations. RESULTS GLS-5310 was well tolerated with no serious adverse events reported. Antibody and T cell responses were dose-independent. Anti-spike antibodies were induced in 95.5% of participants with an average geometric mean titer of ∼480 four weeks after vaccination and declined minimally through 48 weeks. Neutralizing antibodies were induced in 55.5% of participants with post-vaccination geometric mean titer of 28.4. T cell responses were induced in 97.8% of participants, averaging 716 site forming units/106 cells four weeks after vaccination, increasing to 1248 at week 24, and remaining greater than 1000 through 48 weeks. CONCLUSION GLS-5310 administered with the GeneDerm suction device was well tolerated and induced high levels of binding antibodies and T-cell responses. Antibody responses were similar to other DNA vaccines, whereas T cell responses were many-fold greater than DNA and non-DNA vaccines.
Collapse
Affiliation(s)
- Woo Joo Kim
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | | | - Joon Young Song
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Yoon
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hye Seong
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hak-Jun Hyun
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hyojin Lee
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Areum Gil
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Yeeun Oh
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Ji-Eun Park
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Bohyun Jeon
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Ji-Eun Lee
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Sang Kyu Choi
- Division of Vaccine clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health Korea Disease Korean Control and Prevention Agency, Cheongju-si, Republic of Korea
| | - Sun Kyung Yoon
- Division of Vaccine clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health Korea Disease Korean Control and Prevention Agency, Cheongju-si, Republic of Korea
| | - Sunhee Lee
- Division of Vaccine clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health Korea Disease Korean Control and Prevention Agency, Cheongju-si, Republic of Korea
| | - Byoungguk Kim
- Division of Vaccine clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health Korea Disease Korean Control and Prevention Agency, Cheongju-si, Republic of Korea
| | - Deborah Kane
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | | | | | - Kar Muthumani
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Young K Park
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Ijoo Kwon
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Moonsup Jeong
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Joel N Maslow
- GeneOne Life Science, Inc., Seoul, Republic of Korea; Department of Medicine, Morristown Medical Center, Morristown, USA.
| |
Collapse
|
394
|
Ng T, Malavet VF, Mansoor MA, Arvelo AC, Dhume K, Prokop E, McKinstry KK, Strutt TM. Intermediate Levels of Pre-Existing Protective Antibody Allow Priming of Protective T Cell Immunity against Influenza. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:628-639. [PMID: 36645384 PMCID: PMC9998374 DOI: 10.4049/jimmunol.2200393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/23/2022] [Indexed: 01/17/2023]
Abstract
Overcoming interfering impacts of pre-existing immunity to generate universally protective influenza A virus (IAV)-specific T cell immunity through vaccination is a high priority. In this study, we passively transfer varied amounts of H1N1-IAV-specific immune serum before H1N1-IAV infection to determine how different levels of pre-existing Ab influence the generation and protective potential of heterosubtypic T cell responses in a murine model. Surprisingly, IAV nucleoprotein-specific CD4 and CD8 T cell responses are readily detected in infected recipients of IAV-specific immune serum regardless of the amount transferred. When compared with responses in control groups and recipients of low and intermediate levels of convalescent serum, nucleoprotein-specific T cell responses in recipients of high levels of IAV-specific serum, which prevent overt weight loss and reduce peak viral titers in the lungs, are, however, markedly reduced. Although detectable at priming, this response recalls poorly and is unable to mediate protection against a lethal heterotypic (H3N2) virus challenge at later memory time points. A similar failure to generate protective heterosubtypic T cell immunity during IAV priming is seen in offspring of IAV-primed mothers that naturally receive high titers of IAV-specific Ab through maternal transfer. Our findings support that priming of protective heterosubtypic T cell responses can occur in the presence of intermediate levels of pre-existing Ab. These results have high relevance to vaccine approaches aiming to incorporate and evaluate cellular and humoral immunity towards IAV and other viral pathogens against which T cells can protect against variants escaping Ab-mediated protection.
Collapse
Affiliation(s)
- Terry Ng
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Valeria Flores Malavet
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Mishfak A.M. Mansoor
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Andrea C. Arvelo
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Kunal Dhume
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Emily Prokop
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - K. Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Tara M. Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| |
Collapse
|
395
|
Pirabe A, Schrottmaier WC, Heber S, Schmuckenschlager A, Treiber S, Pereyra D, Santol J, Pawelka E, Traugott M, Schörgenhofer C, Seitz T, Karolyi M, Jilma B, Resch U, Zoufaly A, Assinger A. Immunoglobulin G production in COVID-19 - associations with age, outcome, viral persistence, inflammation and pro-thrombotic markers. J Infect Public Health 2023; 16:384-392. [PMID: 36702013 PMCID: PMC9862708 DOI: 10.1016/j.jiph.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Age represents the major risk factor for fatal disease outcome in coronavirus disease (COVID-19) due to age-related changes in immune responses. On the one hand lymphocyte counts continuously decline with advancing age, on the other hand somatic hyper-mutations of B-lymphocytes and levels of class-switched antibodies diminish, resulting in lower neutralizing antibody titers. To date the impact of age on immunoglobulin G (IgG) production in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is unknown. Therefore, we investigated the impact of age on the onset of IgG production and its association with outcome, viral persistence, inflammatory and thrombotic markers in consecutive, hospitalized COVID-19 patients admitted to the Clinic Favoriten (Vienna, Austria) between April and October 2020 that fulfilled predefined inclusion criteria. Three different IgGs against SARS-CoV-2 (spike protein S1, nucleocapsid (NC), and the spike protein receptor binding domain (RBD)) were monitored in plasma of 97 patients upon admission and three times within the first week followed by weekly assessment during their entire hospital stay. We analyzed the association of clinical parameters including C-reactive protein (CRP), D-dimer levels and platelet count as well as viral persistence with the onset and concentration of different anti-SARS-CoV-2 specific IgGs. Our data demonstrate that in older individuals anti-SARS-CoV-2 IgG production increases earlier after symptom onset and that deceased patients have the highest amount of antibodies against SARS-CoV-2 whereas intensive care unit (ICU) survivors have the lowest titers. In addition, anti-SARS-CoV-2 IgG concentrations are not associated with curtailed viral infectivity, inflammatory or thrombotic markers, suggesting that not only serological memory but also other adaptive immune responses are involved in successful viral killing and protection against a severe COVID-19 infection.
Collapse
Affiliation(s)
- Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Heber
- Institute of Physiology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sonja Treiber
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - David Pereyra
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Jonas Santol
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Erich Pawelka
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | | | - Christian Schörgenhofer
- Department of Clinical Pharmacology, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Tamara Seitz
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | - Mario Karolyi
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Ulrike Resch
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alexander Zoufaly
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria; Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
396
|
Mnguni AT, Schietekat D, Ebrahim N, Sonday N, Boliter N, Schrueder N, Gabriels S, Sigwadhi LN, Zemlin AE, Chapanduka ZC, Ngah V, Yalew A, Jalavu T, Abdullah I, Tamuzi JL, Tembo Y, Davies MA, English R, Nyasulu PS. The clinical and epidemiological characteristics of a series of patients living with HIV admitted for COVID-19 in a district hospital. BMC Infect Dis 2023; 23:123. [PMID: 36855103 PMCID: PMC9972337 DOI: 10.1186/s12879-023-08004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/11/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic continues to evolve. Globally, COVID-19 continues to strain even the most resilient healthcare systems, with Omicron being the latest variant. We made a thorough search for literature describing the effects of the COVID-19 in a high human immunodeficiency virus (HIV)/tuberculosis (TB) burden district-level hospital setting. We found scanty literature. METHODS A retrospective observational study was conducted at Khayelitsha District Hospital in Cape Town, South Africa (SA) over the period March 2020-December 2021. We included confirmed COVID-19 cases with HIV infection aged from 18 years and above. Analysis was performed to identify predictors of mortality or hospital discharge among people living with HIV (PLWH). Predictors investigated include CD4 count, antiretroviral therapy (ART), TB, non-communicable diseases, haematological, and biochemical parameters. FINDINGS This cohort of PLWH with SARS-CoV-2 infection had a median (IQR) age of 46 (37-54) years, male sex distribution of 29.1%, and a median (IQR) CD4 count of 267 (141-457) cells/mm3. Of 255 patients, 195 (76%) patients were discharged, 60 (24%) patients died. One hundred and sixty-nine patients (88%) were on ART with 73(28%) patients having acquired immunodeficiency syndrome (AIDS). After multivariable analysis, smoking (risk ratio [RR]: 2.86 (1.75-4.69)), neutrophilia [RR]: 1.024 (1.01-1.03), and glycated haemoglobin A1 (HbA1c) [RR]: 1.01 (1.007-1.01) were associated with mortality. CONCLUSION The district hospital had a high COVID-19 mortality rate among PLWH. Easy-to-access biomarkers such as CRP, neutrophilia, and HbA1c may play a significant role in informing clinical management to prevent high mortality due to COVID-19 in PLWH at the district-level hospitals.
Collapse
Affiliation(s)
- Ayanda Trevor Mnguni
- grid.11956.3a0000 0001 2214 904XDepartment of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa ,Khayelitsha District Hospital, Cape Town, South Africa
| | | | | | | | | | - Neshaad Schrueder
- grid.11956.3a0000 0001 2214 904XDepartment of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Shiraaz Gabriels
- grid.11956.3a0000 0001 2214 904XDepartment of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lovemore N. Sigwadhi
- grid.11956.3a0000 0001 2214 904XDivision of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Annalise E. Zemlin
- grid.11956.3a0000 0001 2214 904XDivision of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and NHLS Tygerberg Hospital, Cape Town, South Africa
| | - Zivanai C. Chapanduka
- grid.11956.3a0000 0001 2214 904XDivision of Haematological Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and NHLS Tygerberg Hospital, Cape Town, South Africa
| | - Veranyuy Ngah
- grid.11956.3a0000 0001 2214 904XDivision of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anteneh Yalew
- grid.11956.3a0000 0001 2214 904XDivision of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Thumeka Jalavu
- grid.11956.3a0000 0001 2214 904XDivision of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and NHLS Tygerberg Hospital, Cape Town, South Africa
| | - Ibtisam Abdullah
- grid.11956.3a0000 0001 2214 904XDivision of Haematological Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and NHLS Tygerberg Hospital, Cape Town, South Africa ,grid.507908.30000 0000 8750 5335Division of Haematological Pathology, Department of Pathology, Northland District Health Board, Northland, New Zealand
| | - Jacques L. Tamuzi
- grid.11956.3a0000 0001 2214 904XDivision of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Yamanya Tembo
- grid.7836.a0000 0004 1937 1151School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Mary-Ann Davies
- Health Impact Assessment Directorate, Western Cape Government, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Rene English
- grid.11956.3a0000 0001 2214 904XDivision of Health Systems and Public Health, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Peter S. Nyasulu
- grid.11956.3a0000 0001 2214 904XDivision of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa ,grid.11951.3d0000 0004 1937 1135Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
397
|
Cao L, Guo J, Li H, Ren H, Xiao K, Zhang Y, Zhu S, Song Y, Zhao W, Wu D, Chen Z, Zhang Y, Xia B, Ji T, Yan D, Wang D, Yang Q, Zhou Y, Li X, Hou Z, Xu W. A Beta Strain-Based Spike Glycoprotein Vaccine Candidate Induces Broad Neutralization and Protection against SARS-CoV-2 Variants of Concern. Microbiol Spectr 2023; 11:e0268722. [PMID: 36847495 PMCID: PMC10100794 DOI: 10.1128/spectrum.02687-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 02/04/2023] [Indexed: 03/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is still ongoing. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) are circulating worldwide, making it resistant to existing vaccines and antiviral drugs. Therefore, the evaluation of variant-based expanded spectrum vaccines to optimize the immune response and provide broad protectiveness is very important. In this study, we expressed spike trimer protein (S-TM) based on the Beta variant in a GMP-grade workshop using CHO cells. Mice were immunized twice with S-TM protein combined with aluminum hydroxide (Al) and CpG Oligonucleotides (CpG) adjuvant to evaluate its safety and efficacy. BALB/c immunized with S-TM + Al + CpG induced high neutralizing antibody titers against the Wuhan-Hu-1 strain (wild-type, WT), the Beta and Delta variants, and even the Omicron variant. In addition, compared with the S-TM + Al group, the S-TM + Al + CpG group effectively induced a stronger Th1-biased cell immune response in mice. Furthermore, after the second immunization, H11-K18 hACE2 mice were well protected from challenge with the SARS-CoV-2 Beta strain, with a 100% survival rate. The virus load and pathological lesions in the lungs were significantly reduced, and no virus was detected in mouse brain tissue. Our vaccine candidate is practical and effective for current SARS-CoV-2 VOCs, which will support its further clinical development for potential sequential immune and primary immunization. IMPORTANCE Continuous emergence of adaptive mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to challenge the use and development of existing vaccines and drugs. The value of variant-based vaccines that are capable of inducing a higher and broader protection immune response against SARS-CoV-2 variants is currently being evaluated. This article shows that a recombinant prefusion spike protein based on a Beta variant was highly immunogenic and could induced a stronger Th1-biased cell immune response in mice and was effectively protective against challenge with the SARS-CoV-2 Beta variant. Importantly, this Beta-based SARS-CoV-2 vaccine could also offer a robust humoral immune response with effectively broad neutralization ability against the wild type and different variants of concern (VOCs): the Beta, Delta, and Omicron BA.1 variants. To date, the vaccine described here has been produced in a pilot scale (200L), and the development, filling process, and toxicological safety evaluation have also been completed, which provides a timely response to the emerging SARS-CoV-2 variants and vaccine development.
Collapse
Affiliation(s)
- Lei Cao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinyuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hai Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hu Ren
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuangli Zhu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Song
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weijia Zhao
- Hwellso Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Dan Wu
- Hwellso Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Zhihui Chen
- Hwellso Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Yanan Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Baicheng Xia
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tianjiao Ji
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Yan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongyan Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Yang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yangzi Zhou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaolei Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhanjun Hou
- Hwellso Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Wenbo Xu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
398
|
Abd El-Baky N, Amara AA, Redwan EM. HLA-I and HLA-II Peptidomes of SARS-CoV-2: A Review. Vaccines (Basel) 2023; 11:548. [PMID: 36992131 PMCID: PMC10058130 DOI: 10.3390/vaccines11030548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The adaptive (T-cell-mediated) immune response is a key player in determining the clinical outcome, in addition to neutralizing antibodies, after SARS-CoV-2 infection, as well as supporting the efficacy of vaccines. T cells recognize viral-derived peptides bound to major histocompatibility complexes (MHCs) so that they initiate cell-mediated immunity against SARS-CoV-2 infection or can support developing a high-affinity antibody response. SARS-CoV-2-derived peptides bound to MHCs are characterized via bioinformatics or mass spectrometry on the whole proteome scale, named immunopeptidomics. They can identify potential vaccine targets or therapeutic approaches for SARS-CoV-2 or else may reveal the heterogeneity of clinical outcomes. SARS-CoV-2 epitopes that are naturally processed and presented on the human leukocyte antigen class I (HLA-I) and class II (HLA-II) were identified for immunopeptidomics. Most of the identified SARS-CoV-2 epitopes were canonical and out-of-frame peptides derived from spike and nucleocapsid proteins, followed by membrane proteins, whereby many of which are not caught by existing vaccines and could elicit effective responses of T cells in vivo. This review addresses the detection of SARS-CoV-2 viral epitopes on HLA-I and HLA-II using bioinformatics prediction and mass spectrometry (HLA peptidomics). Profiling the HLA-I and HLA-II peptidomes of SARS-CoV-2 is also detailed.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Amro A. Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Elrashdy M. Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah P.O. Box 80203, Saudi Arabia
| |
Collapse
|
399
|
Gressens SB, Wiedemann A, Déchenaud M, Dupuis J, Gallien S, Melica G, Haioun C, Lemonnier F, Levy Y. Anti-SARS-CoV-2 cellular response after 2 and 3 doses of BNT162b2 mRNA vaccine in lymphoma patients receiving anti-CD20 antibodies. Vaccine 2023; 41:1550-1553. [PMID: 36737320 PMCID: PMC9884622 DOI: 10.1016/j.vaccine.2023.01.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Patients receiving anti-CD20 antibodies showed limited efficacy of a booster dose of BNT162b2. Patients with lymphomas combine such immunotherapies with cytotoxic chemotherapies that could result in an even greater alteration of the immune response to vaccination. We report here the impact of a third vaccine dose on T cell specific responses in a small cohort of patients treated in our center by anti-CD20 therapies and cytotoxic chemotherapies for lymphoid malignancies. Our results showed that a third dose in these severely immune suppressed patients could improve the expansion on CD4+Th1+T cell responses while the effect CD8 + T cell responses was marginal.
Collapse
Affiliation(s)
- Simon B Gressens
- Infectious Diseases and Immunology Department, Hôpital Universitaire Henri Mondor, Assistance Publique Hôpitaux de Paris - Université Paris Est Créteil, France.
| | - Aurélie Wiedemann
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France
| | - Marie Déchenaud
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Jehan Dupuis
- IAP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoides, F-94010 Créteil, France
| | - Sébastien Gallien
- Infectious Diseases and Immunology Department, Hôpital Universitaire Henri Mondor, Assistance Publique Hôpitaux de Paris - Université Paris Est Créteil, France; Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France
| | - Giovanna Melica
- Infectious Diseases and Immunology Department, Hôpital Universitaire Henri Mondor, Assistance Publique Hôpitaux de Paris - Université Paris Est Créteil, France; Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France.
| | - Corinne Haioun
- IAP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoides, F-94010 Créteil, France; Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France
| | - François Lemonnier
- IAP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoides, F-94010 Créteil, France; Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France
| | - Yves Levy
- Infectious Diseases and Immunology Department, Hôpital Universitaire Henri Mondor, Assistance Publique Hôpitaux de Paris - Université Paris Est Créteil, France; Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France.
| |
Collapse
|
400
|
Kumar K, Tan WS, Arshad SS, Ho KL. Virus-like Particles of Nodavirus Displaying the Receptor Binding Domain of SARS-CoV-2 Spike Protein: A Potential VLP-Based COVID-19 Vaccine. Int J Mol Sci 2023; 24:ijms24054398. [PMID: 36901827 PMCID: PMC10001971 DOI: 10.3390/ijms24054398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Since the outbreak of the coronavirus disease 2019 (COVID-19), various vaccines have been developed for emergency use. The efficacy of the initial vaccines based on the ancestral strain of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has become a point of contention due to the emergence of new variants of concern (VOCs). Therefore, continuous innovation of new vaccines is required to target upcoming VOCs. The receptor binding domain (RBD) of the virus spike (S) glycoprotein has been extensively used in vaccine development due to its role in host cell attachment and penetration. In this study, the RBDs of the Beta (β) and Delta (δ) variants were fused to the truncated Macrobrachium rosenbergii nodavirus capsid protein without the protruding domain (CΔ116-MrNV-CP). Immunization of BALB/c mice with the virus-like particles (VLPs) self-assembled from the recombinant CP showed that, with AddaVax as an adjuvant, a significantly high level of humoral response was elicited. Specifically, mice injected with equimolar of adjuvanted CΔ116-MrNV-CP fused with the RBD of the β- and δ-variants increased T helper (Th) cell production with a CD8+/CD4+ ratio of 0.42. This formulation also induced proliferation of macrophages and lymphocytes. Overall, this study demonstrated that the nodavirus truncated CP fused with the SARS-CoV-2 RBD has potential to be developed as a VLP-based COVID-19 vaccine.
Collapse
Affiliation(s)
- Kiven Kumar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Siti Suri Arshad
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-9769-2729
| |
Collapse
|