351
|
Liu D, Song K, Xie G, Li L. MBR-UV/Cl 2 system in treating polluted surface water with typical PPCP contamination. Sci Rep 2020; 10:8835. [PMID: 32483265 PMCID: PMC7264135 DOI: 10.1038/s41598-020-65845-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/11/2020] [Indexed: 12/02/2022] Open
Abstract
This study proposed the membrane bioreactor–ultraviolet/chlorine (MBR-UV/Cl2) process for treating polluted surface water with pharmaceutical personal care product (PPCP) contamination. Results showed that MBR-UV/Cl2 effectively removed the organic matters and ammonia at approximately 80% and 95%. MBR-UV/Cl2 was used in the removal of sulfadiazine(SDZ), sulfamethoxazole(SMZ), tetracycline(TC), oxytetracycline(OTC), ciprofloxacin(CIP), ofloxacin(OFX), erythromycin(ERY), roxithromycin(ROX), ibuprofen(IBU) and, naproxen(NAX) at 12.18%, 95.61%, 50.50%, 52.97%, 33.56%, 47.71%, 87.57%, 93.38%, 93.80%, and 71.46% in which their UV/Cl2 contribution was 12.18%, 95.61%, 29.04%, 38.14%, 25.94%, 7.20%, 80.28%, 33.79%, 73.08%, and 23.05%, respectively. The removal of 10 typical PPCPs using UV/Cl2 obtained higher contributions than those of the MBR process, except OTC, ROX, and IBU. The UV/Cl2 process with 3-min hydraulic retention time and chlorine concentration at 3 mg/L effectively removed the trace of PPCPs. MBR-UV/Cl2 has the potential to be developed as an effective technology in treating polluted surface water with PPCP contamination.
Collapse
Affiliation(s)
- Dan Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
352
|
Zhu Y, Ling J, Li L, Guan X. The effectiveness of bisulfite-activated permanganate technology to enhance the coagulation efficiency of Microcystis aeruginosa. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
353
|
Guo K, Zheng S, Zhang X, Zhao L, Ji S, Chen C, Wu Z, Wang D, Fang J. Roles of Bromine Radicals and Hydroxyl Radicals in the Degradation of Micropollutants by the UV/Bromine Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6415-6426. [PMID: 32320225 DOI: 10.1021/acs.est.0c00723] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The inevitable occurrence of Br- in natural water affects the degradation kinetics of micropollutants in the UV/chlorine process, the radical chemistry of which, however, is largely unclear. As Br- in the UV/chlorine process first forms free bromine (HOBr/OBr-), this study investigated the radical chemistry of the UV/bromine process for the degradation of selected micropollutants resistant to bromine, i.e., ibuprofen and benzoate, to focus on the roles of radicals. The actual quantum yields of HOBr and OBr- by UV photolysis at 254 nm are 0.43 (±0.025) and 0.26 (±0.025) mol Einstein-1, respectively. Br• and HO• are generated first, and then, Br2•- is formed, with the signal detectable at 360 nm by laser flash photolysis. Compared with Cl• in the UV/chlorine system, Br• exists at higher concentrations (∼10-12 M) in the UV/bromine system while HO• exists at similar concentrations. In the UV/bromine process, reactive bromine species (RBS) dominates the degradation of ibuprofen, while HO• dominates the degradation of benzoate. Br• and Br2•- are reactive toward ibuprofen which second-order rate constants (k) were determined to be 2.2 × 109 and 5.3 × 107 M-1 s-1, respectively, by laser flash photolysis. Br• was the major RBS for ibuprofen degradation by the UV/bromine treatment, whereas Br2•- increasingly contributed to ibuprofen degradation with increasing free bromine or Br- concentrations. Br• could be scavenged by HCO3- and natural organic matter (NOM), and the k with NOM was determined to be 2.6 × 104 (mg/L)-1 s-1. Both Br• and Br2•- prefer to react with ibuprofen via electron transfer with activation energy barriers (Δ‡G0SET) of 1.35 and 7.78 kcal mol-1, respectively. RBS promoted the formation of hydroxylated products. Then free bromine, rather than RBS, was responsible for the formation of brominated products, increasing the total organic bromine (TOBr) and tribromomethane yields in the UV/bromine system. This study demonstrates for the first time the roles of RBS and HO• in micropollutant degradation in the UV/bromine process.
Collapse
Affiliation(s)
- Kaiheng Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Shanshan Zheng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xuewen Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liu Zhao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Shaomin Ji
- School of Chemicals Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Chunyan Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zihao Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ding Wang
- Independent Researcher, 25 Tuscany Springs Territory NW, Calgary, Alberta T3L 2 V2, Canada
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
354
|
Wang L, Zhang Q, Chen B, Bu Y, Chen Y, Ma J, Rosario-Ortiz FL, Zhu R. Some issues limiting photo(cata)lysis application in water pollutant control: A critical review from chemistry perspectives. WATER RESEARCH 2020; 174:115605. [PMID: 32078833 DOI: 10.1016/j.watres.2020.115605] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
For decades, photolysis and photocatalysis have been touted as promising environment-benign and robust technologies to degrade refractory pollutants from water. However, extensive, large-scale engineering applications remain limited now. To facilitate the technology transfer process, earlier reviews have advocated to developing more cost-effective and innocuous materials, maximizing efficiency of photon usage, and optimizing photoreactor systems, mostly from material and reactor improvement perspectives. However, there are also some fundamental yet critical chemistry issues in photo(cata)lysis processes demanding more in-depth understanding and more careful consideration. Hence, this review summarizes some of these challenges. Of them, the first and paramount issue is the interference of coexisting compounds, including dissolved organic matter, anions, cations, and spiked additives. Secondly, considerable concerns are pointed to the formation of undesirable reaction by-products, such as halogenated, nitrogenous, and sulfur-containing compounds, which might increase instead of reduce toxicity of water if inadequate fluence and catalyst/additive are supplied due to time and cost constraints. Lastly, a critical issue lies in the uncertainty of current approaches used for identifying and quantifying radicals, especially when multiple radicals coexist together under changing and interconvertible conditions. The review hence highlights the needs to better understand these fundamental chemistry issues and meanwhile calls for more delicate design of experiments in future studies to overcome these barriers.
Collapse
Affiliation(s)
- Lei Wang
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Qi Zhang
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Baiyang Chen
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Yinan Bu
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yi Chen
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, 428 UCB, University of Colorado, Boulder, CO, 80309, United States
| | - Rongshu Zhu
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
355
|
Wang Y, Xue Y, Zhang C. Generation and application of reactive chlorine species by electrochemical process combined with UV irradiation: Synergistic mechanism for enhanced degradation performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136501. [PMID: 31931214 DOI: 10.1016/j.scitotenv.2020.136501] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Saline wastewater originates from many industries, containing a large amount of salt (NaCl) and other toxic and harmful organic matter, which have a great impact on the soil and groundwater. However, the treatment of saline wastewater is a serious problem because organic contents are hard to degrade with the high salinity by the common water treatment technologies. Herein, an electrochemical process coupled with ultraviolet (UV) irradiation was proposed for the saline wastewater treatment. High efficiency of p-nitrophenol (p-NP) and ammonia degradation were contributed from the in situ electrochemical produced active chlorine and photo-induced chlorine radicals. Under the optimal conditions (0.10 A, 0.05 M NaCl, and pH 6.00), approximately 98.91% p-NP was removed after 60 min with the rate constant of 7.521 × 10-2 min-1 in the electrochemical process, and 28.99% mineralization rate was obtained, while with the synergistic effect of UV and electrochemistry, approximately 100% of p-NP removal (k = 9.331 × 10-2 min-1) was achieved by 30 min treatment and about 83.70% of p-NP can be mineralized to CO2 after 60 min. The study on the synergistic mechanism of enhanced degradation performance illustrated that Cl with high oxidation capacity played an important role in the p-NP oxidation. Besides, based on the chlorine radical reactions, this method was also effectively applied to remove ammonia nitrogen (92.00% removal of total nitrogen in 100 min) for nitrogen-containing wastewater. Thus, this study offers a promising approach for the treatment of saline industry wastewater.
Collapse
Affiliation(s)
- Yunting Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology of Beijing, Beijing 100083, People's Republic of China
| | - Yudong Xue
- College of Engineering, Korea University, Seoul 136-701, Republic of Korea.
| | - Chunhui Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology of Beijing, Beijing 100083, People's Republic of China
| |
Collapse
|
356
|
Stanbury DM. Mechanisms of Advanced Oxidation Processes, the Principle of Detailed Balancing, and Specifics of the UV/Chloramine Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4658-4663. [PMID: 32126765 DOI: 10.1021/acs.est.9b07484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advanced oxidation processes tend to have very complex reaction mechanisms, and models containing over 150 steps have been developed to describe the chemistry. Without the aid of automation, it is extremely difficult to avoid the development of kinetic mechanisms that violate the principle of detailed balancing. Here, we apply DETBAL, a computer application, to systematically identify many violations of the principle of detailed balancing in a model proposed for the UV/chloramine process. We then show that these violations can also be found in dozens of other proposed models for advanced oxidation processes. Suggested repairs to these violations are provided. These repairs lead to no significant changes in the model predictions because the illegal loops include steps that are unnecessary under the conditions modeled. The model omits certain steps that do have significant effects on the model predictions.
Collapse
Affiliation(s)
- David M Stanbury
- Department of Chemistry and Biochemistry Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
357
|
Wang H, Ge D, Cheng Z, Zhu N, Yuan H, Lou Z. Improved understanding of dissolved organic matter transformation in concentrated leachate induced by hydroxyl radicals and reactive chlorine species. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121702. [PMID: 31796363 DOI: 10.1016/j.jhazmat.2019.121702] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Concentrated leachate (CL) is commonly featured with high salt and dissolved organic matters (DOM). In this study, molecular transformation of DOM was revealed to identify the reactive mechanisms with (non-) radical reactive species in ozonation, electrolysis and E+-ozonation processes. Chlorine ions were efficiently activated into non-radical reactive chlorine species (RCS) with 245.7 mg/L, which was more dominant in electrolysis. Compared to ozonation, C•OH was increased from 2.6 × 10-4 mg/L into 5.8 × 10-4 mg/L and the generation of Cl•/ClO• could be concluded according to the decline of non-radical RCS in E+-ozonation process. For chromophoric and fluorescent DOM, aromatic compounds and polymerization degree dramatically decreased in E+-ozonation. Lipid-like and CRAM/lignin-like compounds were substantially degraded, as •OH and ClO•/Cl• shows an affinity towards oxygen-containing organic compounds via single electron transfer by attracting OH bonds. Especially, carbon/hydrogen/oxygen (CHO-containing) compounds were readily to be degraded with the removal efficiency of 92.5 %, 97.0 % and 98.4 % in electrolysis, ozonation and E+-ozonation, respectively. Moreover, nitrogen atoms have a negative effect on DOM degradation, and thus, carbon/hydrogen/nitrogen and carbon/hydrogen/nitrogen/sulfur (CHN- and CHNS-containing) compounds were considered as refractory compounds. This paper is expected to shed light on the synergetic effect in E+-ozonation and transformation of refractory DOM in CL treatment.
Collapse
Affiliation(s)
- Hui Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongdong Ge
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaowen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
358
|
Zhou S, Wu Y, Zhu S, Sun J, Bu L, Dionysiou DD. Nitrogen conversion from ammonia to trichloronitromethane: Potential risk during UV/chlorine process. WATER RESEARCH 2020; 172:115508. [PMID: 31981900 DOI: 10.1016/j.watres.2020.115508] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
In this study, the potential formation of trichloronitromethane (TCNM) from model organic compounds in ammonia-containing water treated by UV/chlorine process was evaluated. Monochloramine generated from the reaction of chlorine and ammonia can be photolyzed to produce NO2- and reactive nitrogen species (RNS), which play important roles in the formation of TCNM during the subsequent chlorination. The results showed that increase of nitrogen to chlorine molar ratio (from 0 to 1.0) and pH (from 6.5 to 8.0) enhanced the formation of TCNM, mainly due to the increased yield of NO2- and RNS from the photolyzed monochloramine. The formation of TCNM was interestingly found to be linearly correlated with Hammett constants of the model precursors, which is theoretically related to the rate constants of RNS with model compounds. Enhanced formation of TCNM was also observed during the treatment of natural organic matter by UV/chlorine process in ammonia-containing water. The toxicity assessment showed that TCNM significantly increased the genotoxicity of formed DBPs. Furthermore, the electrophilic substitution reaction of •NO2 was proved to more likely occur on the ortho and para position of phenol according to the calculation of Gaussian program, and a possible reaction pathway of phenol and •NO2 was proposed based on the calculated results.
Collapse
Affiliation(s)
- Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Julong Sun
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| |
Collapse
|
359
|
Wang Y, Couet M, Gutierrez L, Allard S, Croué JP. Impact of DOM source and character on the degradation of primidone by UV/chlorine: Reaction kinetics and disinfection by-product formation. WATER RESEARCH 2020; 172:115463. [PMID: 31962269 DOI: 10.1016/j.watres.2019.115463] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 05/28/2023]
Abstract
The presence of Dissolved Organic Matter (DOM) can exert a strong influence on the effectiveness of the UV/chlorine process. This study examined the impact of five DOM isolates with different characteristics on the degradation kinetics of model contaminant primidone (PM) during UV/chlorine treatment. The formation of Disinfection By-Products (DBPs) from DOM after 15-min UV/chlorine treatment followed by 24 h chlorination was investigated and compared with chlorination alone. The use of chemical probes and radical scavengers revealed that •OH and ClO• were the main radical species responsible for the loss of PM at acidic and alkaline conditions, respectively. All tested DOM isolates significantly inhibited the decay of PM. A strong negative correlation (>0.93) was observed between the decay rate constants of PM and SUVA of DOM isolates, except for EfOM isolate, which induced the strongest inhibitory effect due to its higher abundance in sulfur-containing functional groups (i.e., sink of •OH/Cl• radicals). Compared with chlorination, the formation of Adsorbable Organic Chlorine (AOCl) and Trichloromethane (TCM) during the UV/Chlorine process was enhanced and hindered for low SUVA isolates and high SUVA DOM, respectively. However, Dichloroacetonitrile (DCAN) formation was generally lower for all isolates except for Ribou Reservoir DOM at pH 8.4 because of its high reactive nitrogenous DBP precursors at caustic conditions. However, when normalized to the chlorine consumed, the UV/Chlorine process always led to a lower DBPs formation compared with chlorination alone.
Collapse
Affiliation(s)
- Yuru Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China; Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Australia
| | - Marie Couet
- Institut de Chimie des Milieux et des Matériaux, IC2MP UMR 7285 CNRS, Université de Poitiers, France; Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Australia
| | - Leonardo Gutierrez
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Australia; Facultad Del Mar y Medio Ambiente, Universidad Del Pacifico, Ecuador
| | - Sébastien Allard
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Australia
| | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux, IC2MP UMR 7285 CNRS, Université de Poitiers, France; Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Australia.
| |
Collapse
|
360
|
Zhang Y, Jiang W, Ren Y, Wang B, Liu Y, Hua Q, Tang J. Efficient photocatalytic degradation of 2-chloro-4,6-dinitroresorcinol in salty industrial wastewater using glass-supported TiO2. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0448-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
361
|
Lopez-Prieto IJ, Wu S, Ji W, Daniels KD, Snyder SA. A direct injection liquid chromatography tandem mass spectrometry method for the kinetic study on iodinated contrast media (ICMs) removal in natural water. CHEMOSPHERE 2020; 243:125311. [PMID: 31759215 DOI: 10.1016/j.chemosphere.2019.125311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Iodinated contrast media (ICMs) are a class of X-ray contrast media worldwide utilized for radiographic procedures. Since they cannot be removed efficiently during water treatment, they can be found in surface and groundwater. In this work, a rapid and sensitive direct injection liquid chromatography-tandem (LC-MS/MS) method for the simultaneous analysis of seven ICMs media (iopamidol, ioxitalamic acid, diatrizoic acid, iothalamic acid, iohexol, iomeprol and iopromide) in complex aqueous matrices has been developed and validated. The MDLs for the analytes ranged from 0.7 to 21 ng L-1 in ultrapure water, and recoveries ranged from 86 to 100% in drinking water, 85-103% in groundwater and 84-105% in WWTP effluent. A stereo-isomer for iopromide was separated. This analytic method was applied to investigate the removal of target ICMs by low pressure ultra violet light (LPUV) advanced oxidation processes with three oxidants, hydrogen peroxide, free chlorine and monochloramine in groundwater. Results showed that the addition of oxidants did not enhance attenuation of ICMs, since fluence-based decay apparent rate constants were similar (KUV = 3.2 × 10-3, KUV-Cl2 = 3.6 × 10-3 and KUV-NH2 = 3.4 × 10-3 10-3 cm2 mJ-1). This yielded direct photolysis is the main mechanism to attenuate target ICMs.
Collapse
Affiliation(s)
- Israel J Lopez-Prieto
- University of Arizona, Department of Chemical & Environmental Engineering, 1133 E. James E Rogers Way, Harshbarger 108, Tucson, AZ, 85721-0011, United States
| | - Shimin Wu
- University of Arizona, Department of Chemical & Environmental Engineering, 1133 E. James E Rogers Way, Harshbarger 108, Tucson, AZ, 85721-0011, United States; ER Environmental Protection Engineering TechnologyCo., Ltd., Shenzhen, 518071, China
| | - Weikang Ji
- University of Arizona, Department of Chemical & Environmental Engineering, 1133 E. James E Rogers Way, Harshbarger 108, Tucson, AZ, 85721-0011, United States
| | - Kevin D Daniels
- University of Arizona, Department of Chemical & Environmental Engineering, 1133 E. James E Rogers Way, Harshbarger 108, Tucson, AZ, 85721-0011, United States; Hazen and Sawyer, 1400 E. Southern Avenue, Suite 340, Tempe, AZ, 85282, United States
| | - Shane A Snyder
- University of Arizona, Department of Chemical & Environmental Engineering, 1133 E. James E Rogers Way, Harshbarger 108, Tucson, AZ, 85721-0011, United States; Nanyang Technological University, Nanyang Environment & Water Research Institute, Clean Tech One, 1 Cleantech Loop, #06-08, Singapore, 637141, Singapore.
| |
Collapse
|
362
|
Gao YQ, Zhang J, Li C, Tian FX, Gao NY. Comparative evaluation of metoprolol degradation by UV/chlorine and UV/H 2O 2 processes. CHEMOSPHERE 2020; 243:125325. [PMID: 31733542 DOI: 10.1016/j.chemosphere.2019.125325] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The degradation of metoprolol (MTP), a β-blocker commonly used for cardiovascular diseases, by UV/chlorine and UV/H2O2 processes was comparatively evaluated. MTP direct photolysis at 254 nm could be neglected, but remarkable MTP degradation was observed in both the UV/chlorine and UV/H2O2 systems. Compared with UV/H2O2, UV/chlorine has a more pronounced MTP degradation efficiency. In addition to primary radicals (OH and Cl), secondary radicals (ClO and Cl2-) played a pivotal role in degrading MTP by UV/chlorine process. The relative contributions of hydroxyl radicals (OH) and reactive chlorine species (RCS) in the UV/chlorine system varied at different solution pH values (i.e., the contribution of RCS increased from 57.7% to 75.1% as the pH increased from 6 to 8). The degradation rate rose as the oxidant dosage increased in the UV/chlorine and UV/H2O2 processes. The presence of Cl- slightly affected MTP degradation in both processes, while the existence of HCO3- and HA inhibited MTP degradation to different extents in both processes. In terms of the overall cost of electrical energy, UV/chlorine is more cost efficient than UV/H2O2. The degradation products during the two processes were identified and compared, and the degradation pathways were proposed accordingly. Compared with the direct chlorination of MTP, pre-oxidation with UV/chlorine and UV/H2O2 significantly enhanced the formation of commonly known DBPs. Therefore, when using UV/chlorine and UV/H2O2 in real waters to remove organic pollutants, the possible risk of enhanced DBP formation resulting from the degradation of certain pollutants during post-chlorination should be carefully considered.
Collapse
Affiliation(s)
- Yu-Qiong Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Jia Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Fu-Xiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
363
|
Jang J, Shahzad A, Woo SH, Lee DS. Magnetic Ti 3C 2T x (Mxene) for diclofenac degradation via the ultraviolet/chlorine advanced oxidation process. ENVIRONMENTAL RESEARCH 2020; 182:108990. [PMID: 31816586 DOI: 10.1016/j.envres.2019.108990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/12/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
In this study, a magnetic titanium carbide (Ti3C2Tx) MXene was synthesized through a one-step chemical co-precipitation method using ammonium bifluoride as a mild etchant and was investigated for photocatalytic degradation of diclofenac (DCF) via the ultraviolet (UV)/chlorine process. The DCF degradation was enhanced by the generation of active radicals such as the hydroxyl radical and reactive chlorine species compared with that resulting from UV and chlorination treatment alone as well as UV/H2O2 processes at pH 7. The first-order rate constant of the UV/chlorine process was 0.1025 min-1, which is 12.7 and 6.8 times higher than those of the only UV and UV/H2O2 processes, respectively. Magnetic nanoparticles on the surfaces of Ti3C2Tx sheets not only enhanced the adsorption capacity of the synthesized composite but also increased the rate of electron transfer in solution. In addition, the effects of different operating conditions such as magnetic Ti3C2Tx dose, pH, and initial chlorine concentration on DCF degradation were investigated. Magnetic Ti3C2Tx showed high stability and photodegradation efficiency during seven consecutive degradation reaction cycles. The derivatives of DCF during the photocatalytic degradation process were also investigated based on the observed intermediate products and a degradation pathway was proposed. Thus the synthesized magnetic Ti3C2Tx is a simple and affordable photocatalyst, which can significantly enhance DCF degradation in the UV/chlorine advanced oxidation process.
Collapse
Affiliation(s)
- Jiseon Jang
- R&D Institute of Radioactive Wastes, Korea Radioactive Waste Agency, 174 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Asif Shahzad
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Seung Han Woo
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon, 34158, Republic of Korea.
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
364
|
Jiang B, Tian Y, Zhang Z, Yin Z, Feng L, Liu Y, Zhang L. Degradation behaviors of Isopropylphenazone and Aminopyrine and their genetic toxicity variations during UV/chloramine treatment. WATER RESEARCH 2020; 170:115339. [PMID: 31805497 DOI: 10.1016/j.watres.2019.115339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/17/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Combination of ultraviolet and chloramine (i.e., UV/chloramine) treatment has been attracting increasingly attention in recent years due to its high efficiency in removing trace organic contaminants. This study investigated the degradation behaviors of two pyrazolone pharmaceuticals (i.e., Isopropyl phenazone (PRP) and Aminopyrine (AMP)) and their genetic toxicity variations during UV/chloramine treatment. The results showed that chloramine could hardly degrade PRP and AMP, while UV/chloramine greatly increased the observed first-order rate constant (kobs) of PRP and AMP degradation. The quenching and probe experiments illustrated that the reactive chlorine species (RCS) contributed dominantly to PRP removal, and hydroxyl radical (HO•) was the major contributor to the degradation of AMP, while the reactive amine radicals (RNS) could hardly degrade them. The overall degradation rates of PRP and AMP decreased as pH increased from 6.5 to 10. The kobs of PRP and AMP increased along with NH2Cl dosage increasing and reached a plateau at higher concentrations (0.2-0.5 mM). The present background carbonate (HCO3-, 1-10 mM), chloride (Cl-, 1-10 mM) and natural organic matter (NOM, 5-10 mg-C L-1) exhibited inhibition impacts on PRP and AMP degradation. In addition, the intermediates/products of PRP and AMP were identified and their general degradation pathways were proposed to be hydroxylation, deacetylation, and dephenylization. Specifically, Cl-substitution was inferred during PRP degradation, while demethylation in tertiary amine group was only observed in AMP degradation. These mechanisms including the main reactive sites of PRP and AMP were further confirmed by the frontier orbitals calculation. Moreover, the results of the genetic toxicity according to the micronucleus test of Viciafaba root tip indicated that UV/chloramine treatment could partially reduce the genetic toxicity of PRP and AMP.
Collapse
Affiliation(s)
- Bingqi Jiang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Yajun Tian
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Zichen Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Ze Yin
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
365
|
Shen Z, Zhang Y, Zhou C, Bai J, Chen S, Li J, Wang J, Guan X, Rahim M, Zhou B. Exhaustive denitrification via chlorine oxide radical reactions for urea based on a novel photoelectrochemical cell. WATER RESEARCH 2020; 170:115357. [PMID: 31812812 DOI: 10.1016/j.watres.2019.115357] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Urea is a major source of nitrogen pollution in domestic sewage and its denitrification is difficult since it is very likely to be converted into ammonia or nitrate instead of expected N2. Herein, we propose an exhaustive denitrification method for urea via the oxidation of amine/ammonia-N with chlorine oxide radical, which induced from a bi-functional RuO2//WO3 anode, and the highly selective reduction of nitrate-N on cathode in photoelectrochemical cell (PEC). Under illumination, the WO3 photoanode side promotes the quantities hydroxyl and reactive chlorine radical, and these radicals are immediately combined to stronger chlorine oxide radical by RuO2 side, which obviously enhances the efficiency and speed of the urea oxidation. Synchronously, the over-oxidized nitrate can be selectively reduced by Pd and Au nanoparticles on the surface of cathode. Eventually, exhaustive denitrification is realized by the circulative reaction. Experimental observations and theoretical calculation revealed that chlorine oxide radical promoted significant denitrification of urea with an efficiency of 99.74% in 60 min under the optimum condition. The removal rate constant of the RuO2//WO3 anode was 3.08 times than that of single WO3 anode and 2.64 times than that of single RuO2 anode, confirming the chlorine oxide radical had stronger ability on denitrification than reactive chlorine radical. Also, the bi-functional anode contributed to best current efficiencies, utilizing the energy availably. This work proposes a promising method of exhaustive denitrification for urea.
Collapse
Affiliation(s)
- Zhaoxi Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, PR China
| | - Yan Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, PR China
| | - Changhui Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, PR China
| | - Jing Bai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, PR China
| | - Shuai Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, PR China
| | - Jinhua Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, PR China.
| | - Jiachen Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, PR China
| | - Xiaohong Guan
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Mohammadi Rahim
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, PR China; Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Key Laboratory of Thin Film and Microfabrication Technology, Ministry of Education, Shanghai, 200240, PR China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan, 650034, PR China.
| |
Collapse
|
366
|
Yang Q, Guo Y, E Y, Zhang S, Blatchley ER, Li J. Methyl chloride produced during UV 254 irradiation of saline water. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121263. [PMID: 31605974 DOI: 10.1016/j.jhazmat.2019.121263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Ultraviolet (UV) irradiation is widely used for water treatment due to its effectiveness against a wide range of waterborne pathogens with minimal production of regulated disinfection byproducts. However, in this study, the formation of methyl chloride (CH3Cl) from guaiacol and chloride was observed during UV254 irradiation. The results indicated that direct photolysis of guaiacol produced an arenium ion, and the reactive methoxy group was further transformed to CH3Cl in the presence of chloride. O-quinone was detected as the primary product of the degradation of guaiacol resulting from UV254 irradiation. Other organic compounds containing methoxy, ethoxy, or methylamino groups with structures that are similar to guaiacol were also demonstrated to generate halocarbons in aqueous chloride or bromide solution under UV254 irradiation. Scavenging experiments and removal of oxygen demonstrated that neither oxygen nor chlorine radicals were involved in CH3Cl formation. In seawater samples, CH3Cl was also detected in the presence or absence of added organic matter. These results demonstrate that CH3Cl can be formed during UV254 irradiation in saline water and that attention should be paid to this compound and structurally-related compounds in the application of UV254 processes.
Collapse
Affiliation(s)
- Qian Yang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Yang Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Yue E
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Sanbing Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, 550 Stadium Mall Drive, Purdue University, West Lafayette, IN, 47907, USA; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jing Li
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
367
|
Liu Z, Lin YL, Xu B, Hu CY, Zhang TY, Cao TC, Pan Y, Gao NY. Degradation of diiodoacetamide in water by UV/chlorination: Kinetics, efficiency, influence factors and toxicity evaluation. CHEMOSPHERE 2020; 240:124761. [PMID: 31546190 DOI: 10.1016/j.chemosphere.2019.124761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The formation and control of haloacetamides (HAcAms) in drinking water have raised high attention due to their high genotoxicity and cytotoxicity, especially the most cytotoxic one, diiodoacetamide (DIAcAm). In this study, the degradation of DIAcAm by UV/chlorination was investigated in terms of degradation kinetics, efficiency, influencing factors, oxidation products and toxicity evaluation. Results revealed that the degradation of DIAcAm by UV/chlorine process followed pseudo-first-order kinetics, and the rate constant between DIAcAm and OH radicals was determined as 2.8 × 109 M-1 s-1. The contribution of Cl to DIAcAm degradation by UV/chlorine oxidation was negligible. Increasing chlorine dosage and decreasing pH significantly promoted the DIAcAm degradation during UV/chlorine oxidation, but the presence of bicarbonate (HCO3-) and natural organic matter (NOM) inhibited it. The mass balance analysis of iodine species was also evaluated during UV/chlorine oxidation of DIAcAm. In this process, with DIAcAm decreasing from 16.0 to 0.8 μM-I in 20 min, IO3-, I- and HOI/I2 increased from 0 to 6.3, 6.1 and 0.5 μM-I, respectively. The increase of CHO cell viability during DIAcAm degradation indicated that the toxicity of DIAcAm could be decreased by chlorination, UV irradiation and UV/chlorine oxidation treatments, in which UV/chlorine oxidation was more effective on toxicity reduction than chlorination and UV irradiation alone.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 824, Taiwan, ROC
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Chen-Yan Hu
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Tong-Cheng Cao
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
368
|
Gao ZC, Lin YL, Xu B, Xia Y, Hu CY, Zhang TY, Cao TC, Pan Y, Gao NY. A comparison of dissolved organic matter transformation in low pressure ultraviolet (LPUV) and ultraviolet light-emitting diode (UV-LED)/chlorine processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134942. [PMID: 31710848 DOI: 10.1016/j.scitotenv.2019.134942] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
This study compared the degradation of dissolved organic matter (DOM) by UV/chlorine advanced oxidation processes (AOPs) with emerging ultraviolet light-emitting diode (UV-LED, 275 nm) and traditional low pressure UV (LPUV, 254 nm) as UV sources. Excitation emission matrix-parallel factor (EEM-PARAFAC) analysis and two-dimensional (2D) correlation gel permeation chromatograph were applied to explore the evolutions of DOM during oxidation processes. The degradation behaviors of DOM indicated by UV absorbance at 254 nm (UV254), dissolved organic carbon (DOC), and fluorophores fitted the pseudo-first-order kinetics well. The removal efficiency of DOM was similar under UV-LED and LPUV irradiation alone. However, UV-LED exhibited much higher degradation rates (increased by 29-160%) than LPUV regardless of the tracking variables during UV/chlorine processes. For three PARAFAC components, humic-like fluorescences were preferentially degraded by UV/chlorine oxidation compared with protein-like fluorescence potentially due to the differences of electronic moieties and molecular weight (MW). The decline in UV254, DOC, and fluorophores increased with increasing chlorine dosage; linear correlations between those indicators were observed during the two AOPs. Moreover, UV-LED/chlorine could achieve greater extents of MW change. Our study demonstrated that UV-LED could be a superior alternative for the future selection of UV source in the UV/chlorine process.
Collapse
Affiliation(s)
- Ze-Chen Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan, ROC
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Ying Xia
- Shanghai Chengtou Water (Group) Co., Ltd., Water Production Branch, Shanghai 200086, PR China
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Tong-Cheng Cao
- School of Chemical Science and Engineering, Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 200092, PR China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
369
|
Yang W, Tang Y, Liu L, Peng X, Zhong Y, Chen Y, Huang Y. Chemical behaviors and toxic effects of ametryn during the UV/chlorine process. CHEMOSPHERE 2020; 240:124941. [PMID: 31726615 DOI: 10.1016/j.chemosphere.2019.124941] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Ametryn (AMT), one of the most widely used herbicides in agriculture, has been frequently detected as a micropollutant in many aquatic environments. AMT residue not only pollutes water but also acts as a precursor for the production of disinfection by-products (DBPs). This study systematically investigated the fate of AMT during the UV/chlorine process. It was observed that the combination of UV irradiation and chlorination degraded AMT synergistically. The results of the radical quenching experiments suggested that AMT degradation by the UV/chlorine process involved the participation of UV photolysis, hydroxyl radical (OH) reactions, and reactive chlorine species (RCS) reactions, which accounted for 45.4%, 36.4%, and 14.5% of the degradation, respectively. Moreover, we found that Cl- 2 was an important reactive radical for AMT degradation. The chlorine dose, pH, coexisting anions (Cl- and HCO3-), and natural organic matter (NOM) were found to affect AMT degradation during the UV/chlorine process. Nineteen predominant intermediates/products of AMT degradation during UV/chlorine process were identified, including atrazine. Moreover, the corresponding transformation pathways were proposed, including electron transfer, bond cleavage (C-S, C-N), radical (OH, Cl and Cl- 2) reactions, and subsequent hydroxylation. The toxicity tests with Vibrio fischeri on AMT degradation suggested that more DBPs were generated by UV/chlorine-treated AMT, which possessed higher acute toxicity than AMT did. Although the UV/chlorine process evidently promoted the AMT degradation, optimization of process parameters may reduce the DBP production and merits further investigation.
Collapse
Affiliation(s)
- Weiwei Yang
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yankui Tang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China.
| | - Lu Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xiaoyu Peng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yaxuan Zhong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yunong Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yinfeng Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
370
|
Cerreta G, Roccamante MA, Plaza-Bolaños P, Oller I, Aguera A, Malato S, Rizzo L. Advanced treatment of urban wastewater by UV-C/free chlorine process: Micro-pollutants removal and effect of UV-C radiation on trihalomethanes formation. WATER RESEARCH 2020; 169:115220. [PMID: 31677437 DOI: 10.1016/j.watres.2019.115220] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/22/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
The effect of the UV-C/free chlorine (FC) process on the removal of contaminants of emerging concern (CECs) from real urban wastewater as well as the effect of UV-C radiation on the formation of trihalomethanes (THMs) compared to FC process alone was investigated. Unlike of FC process, UV-C/FC was really effective in the degradation of the target CECs (carbamazepine (CBZ), diclofenac, sulfamethoxazole and imidacloprid) in real wastewater (87% degradation of total CECs within 60 min, QUVC = 1.33 kJ L-1), being CBZ the most refractory one (49.5%, after 60 min). The UV-C radiation significantly affected the formation of THMs. THMs concentration (mainly chloroform) was lower in UV-C/FC process after 30 min treatment (<1 μgL-1 = limit of quantification (LOQ)) than in FC process in dark (2.3 μgL-1). Noteworthy, while in FC treated wastewater chloroform concentration increased after treatment, UV-C/FC process resulted in a significant decrease (residual concentrations below the LOQ), even after 24 h and 48 h post-treatment incubation. The formation of radicals due to UV-C/FC process can reduce THMs compared to chlorination process, because part of FC reacts with UV-C radiation to form radicals and it is no longer available to form THMs. These results are encouraging in terms of possible use of UV-C/FC process as advanced treatment of urban wastewater even for possible effluent reuse.
Collapse
Affiliation(s)
- Giusy Cerreta
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Melina A Roccamante
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200, Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain
| | | | - Isabel Oller
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200, Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain
| | - Ana Aguera
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain
| | - Sixto Malato
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy; Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200, Tabernas, Almería, Spain.
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
371
|
Liu H, Zhang B, Li Y, Fang Q, Hou Z, Tian S, Gu J. Effect of Radical Species and Operating Parameters on the Degradation of Sulfapyridine Using a UV/Chlorine System. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huaying Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Biaojun Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qi Fang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhichao Hou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Junjie Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
372
|
Chen Y, Li S, Hu J. Photoelectrocatalytic degradation of organics and formation of disinfection byproducts in reverse osmosis concentrate. WATER RESEARCH 2020; 168:115105. [PMID: 31614236 DOI: 10.1016/j.watres.2019.115105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
The high content of organics in municipal reverse osmosis concentrate (ROC) requires proper treatment. Here, this study applied the photoelectrocatalysis (PEC) to reduce the concentration of organics in ROC. Meanwhile, the formation of disinfection byproducts (DBPs) was investigated. Participation of primary oxidants in organics removal and DBPs formation was revealed at different anodic potentials and pHs. The results showed that PEC process effectively oxidized the organics in ROC, achieving the highest mineralization rate of 63%. Increasing anodic potential from 0 to 1.0 V enhanced the oxidations of bulk organics (i.e., dissolved organic carbons (DOC), UV254, fluorescence, large molecular weight compounds) and trace-level pharmaceuticals. Raising anodic potential to higher than 1.0 V slightly benefited the oxidations of bulk organics, owing to the relatively stable formation of hydroxyl radicals (OH•) and radical reactive chlorine species (r-RCS). The continuously rising concentration of free chlorine (FC) accelerated the decompositions of pharmaceuticals at ≥ 1.0 V. However, the generated FC raised the concentration of DBPs up to 10.36 μmol/L at 3.0 V. Lowering initial pH from 7-9 to 4-6 improved the mineralization rates by around 20% due to the higher formation of OH• at pH 4-6. Further decreasing initial pH from 6 to 4 enhanced the breakdown of large molecular weight compounds as well as the decomposition of pharmaceuticals. This came from the strengthened formation of FC and r-RCS at lower pHs. The intense participation of FC and r-RCS resulted in a higher total DBP concentration at pH 4-6 than that at pH 7-9. However, the individual species of DBPs changed differently toward the pH shift. The results of this study show that PEC could be an alternative for organics oxidation in ROC with proper control of DBPs formation.
Collapse
Affiliation(s)
- Yiwei Chen
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Si Li
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore.
| |
Collapse
|
373
|
Kowalska K, Maniakova G, Carotenuto M, Sacco O, Vaiano V, Lofrano G, Rizzo L. Removal of carbamazepine, diclofenac and trimethoprim by solar driven advanced oxidation processes in a compound triangular collector based reactor: A comparison between homogeneous and heterogeneous processes. CHEMOSPHERE 2020; 238:124665. [PMID: 31473529 DOI: 10.1016/j.chemosphere.2019.124665] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Contaminants of emerging concern (including pharmaceuticals) are not effectively removed by municipal wastewater treatment plants (WWTPs), so particular concern is related to agricultural wastewater reuse due to their possible uptake in crops irrigated with WWTPs effluents. Advanced oxidation processes (AOPs) and solar AOPs have been demonstrated to effectively remove pharmaceuticals from different aqueous matrices. In this study, an heterogeneous photocatalytic process using powdered nitrogen-doped TiO2 immobilized on polystyrene spheres (sunlight/N-TiO2) was compared to the benchmark homogenous AOP sunlight/H2O2 in a compound triangular collector reactor, to evaluate the degradation of three pharmaceuticals (carbamazepine (CBZ), diclofenac (DCF), trimethoprim (TMP)) in water. The degradation of the contaminants by sunlight and sunlight-AOPs well fit the pseudo-first order kinetic model (but for TMP under sunlight). High removal efficiency by solar photolysis was observed for DCF (up to 100%, half-life sunlight cumulative energy QS,1/2 = 2 kJ L-1, half-life time t1/2 = 32 min), while CBZ (32%, QS,1/2 = 28 kJ L-1, t1/2 = 385 min) and TMP (5% removal after 300 min) removal was poor. The degradation rate of CBZ, TMP and DCF was found to be slower during sunlight/H2O2 (QS,1/2 = 5 kJ L-1, t1/2 = 77 min; QS,1/2 = 20 kJ L-1, t1/2 = 128 min; QS,1/2 = 4 kJ L-1, t1/2 = 27 min, respectively) compared to sunlight/N-TiO2 (QS,1/2 = 4 kJ L-1, t1/2 = 55 min; QS,1/2 = 3 kJ L-1, t1/2 = 42 min; QS,1/2 = 2 kJ L-1, t1/2 = 25 min, respectively). These results are promising in terms of solar technology upscale because the faster degradation kinetics observed for sunlight/N-TiO2 process would result in smaller treatment volume, thus possibly perspective compensating the cost of the photocatalyst.
Collapse
Affiliation(s)
- K Kowalska
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, ul. Akademicka 2, 44-100, Gliwice, Poland; The Biotechnology Centre, Silesian University of Technology, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland
| | - G Maniakova
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - M Carotenuto
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - O Sacco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - V Vaiano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - G Lofrano
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy; Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples "Federico II", via Cinthia ed. 7, 80126, Naples, Italy
| | - L Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
374
|
Oxidation of β-blocker atenolol by a combination of UV light and chlorine: Kinetics, degradation pathways and toxicity assessment. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115927] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
375
|
Xing J, Liang H, Chuah CJ, Bao Y, Luo X, Wang T, Wang J, Li G, Snyder SA. Insight into Fe(II)/UV/chlorine pretreatment for reducing ultrafiltration (UF) membrane fouling: Effects of different natural organic fractions and comparison with coagulation. WATER RESEARCH 2019; 167:115112. [PMID: 31585385 DOI: 10.1016/j.watres.2019.115112] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/06/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Fe(II)/UV/chlorine was promoted as a pretreatment strategy for UF membrane to mitigate membrane fouling induced from different organic fractions. This treatment could be an emerging alternative prior to UF process attributed to the coupled role of oxidation and coagulation. To obtain a comprehensive understanding of fouling reduction, the influence of Fe(II)/UV/chlorine process on the characteristics of various feed solutions was inspected, including humic acid (HA), bovine serum albumin (BSA), sodium alginate (SA) and their mixture (HSB). The results suggested that Fe(II)/UV/chlorine process exhibited notable performance on membrane fouling control compared to Fe(II) coagulation alone. With the UV exposure of 720 mJ/cm2, the certain dose of Fe(II) and chlorine (15 μM and 2 mg/L) effectively prevented the rapid development of fouling caused by the single organic fractions and their mixture. And the increased dosage promoted the performance of membrane fouling mitigation. The reduction of organic loadings and characteristics change of feed water took the main responsibility for the fouling alleviation. The properties of membrane fouling and their correlation with feed water qualities were analyzed. The results and insight analysis were supposed to evaluate and predict the effectiveness of fouling control when the feed solutions were pretreated by Fe(II)/UV/chlorine process according to various compositions and characteristics of the organic fractions.
Collapse
Affiliation(s)
- Jiajian Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chong Joon Chuah
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore
| | - Yueping Bao
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tianyu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shane A Snyder
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore.
| |
Collapse
|
376
|
Yang H, Li Y, Chen Y, Ye G, Sun X. Comparison of ciprofloxacin degradation in reclaimed water by UV/chlorine and UV/persulfate advanced oxidation processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1576-1588. [PMID: 31100181 DOI: 10.1002/wer.1144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
This study analyzed the ciprofloxacin (CIP) degradation in real reclaimed water through UV/chlorine and UV/persulfate (UV/PS) advanced oxidation processes. The influence of oxidant dosage, pH, inorganic anions, and humic acid (HA) on the oxidation capacity and performances of various UV-based processes was investigated. The results revealed that the CIP degradation rate constants in the UV/chlorine and UV/PS processes were higher than that in UV/H2 O2 , direct-UV, NaClO, and K2 S2 O8 processes. The removal rate peaked at 0.1 mM oxidant dosage for 1 μM CIP, while the rate constant was highest at pH 5 (UV/chlorine) and pH 7 (UV/PS). The presence of Cl- , HCO3 - , and HA inhibited CIP removal in both processes. The degradation rate observed in reclaimed water was high, but still lower than that in laboratory water by 9.2 (UV/chlorine) and 9 (UV/PS) times. The UV/chlorine and UV/PS processes were found to be more cost-effective and hence more feasible in removing refractory compounds in reclaimed water. PRACTITIONER POINTS: The addition of oxidant and UV irradiation together had a pronounced promotion in the degradation of CIP. Cl· and SO4 ·- had potential importance for enhancing CIP degradation in UV/chlorine and UV/PS process, respectively. UV/chlorine and UV/PS processes exhibited effective removal capability to CIP in real reclaimed water.
Collapse
Affiliation(s)
- Haiyan Yang
- Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Yi Li
- Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Yihua Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Guihong Ye
- Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Xiaobo Sun
- Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, China
| |
Collapse
|
377
|
Cerreta G, Roccamante MA, Oller I, Malato S, Rizzo L. Contaminants of emerging concern removal from real wastewater by UV/free chlorine process: A comparison with solar/free chlorine and UV/H 2O 2 at pilot scale. CHEMOSPHERE 2019; 236:124354. [PMID: 31330434 DOI: 10.1016/j.chemosphere.2019.124354] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 05/20/2023]
Abstract
The removal of contaminants of emerging concern (CECs) from urban wastewater treatment plants (UWTPs) is really important to minimize the risk for human health and environment. In this study, the homogeneous advanced oxidation process (AOP) UV-C/free chlorine (UV-C/FC) was investigated at pilot scale in the degradation of a mixture of four CECs, in different water matrices and compared to a consolidated AOP, namely UV-C/H2O2. As matter of fact 90% degradation of CECs was observed after 15 min (QUVC = 0.33 kJ L-1) by UV-C/FC (5 mg L-1 of FC) and 30 min (0.67 kJ L-1) by UV-C/H2O2 (5 mg L-1 of H2O2) in natural water. However, CECs degradation by UV-C/H2O2 and UV-C/FC was comparable (>82%) in wastewater samples, under the investigated conditions (60 min, 1.33 kJ L-1). The effect of sunlight/FC process on the target CECs was also investigated (in a compound parabolic collector based reactor). Interestingly, a different behaviour was observed between the two light sources. In particular, a total removal of carbamazepine (CBZ) and imidacloprid (IMD) was observed for UV-C/FC process with 0.27 kJ L-1 and 10 mgL-1 of FC, while, in the sunlight/FC process (same FC dose), CBZ total removal took place quite fast (0.50 kJ L-1), but 90% removal of IMD was observed only after 60 min (7.09 kJ L-1). In conclusion, UV-C/FC process can be an interesting solution for tertiary treatment of urban wastewater for the removal of CECs and sunlight/FC is worthy of further investigation to evaluate its possible application in small UWTPs.
Collapse
Affiliation(s)
- Giusy Cerreta
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Melina A Roccamante
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés Km 4, 04200, Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain
| | - Isabel Oller
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés Km 4, 04200, Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain
| | - Sixto Malato
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy; Plataforma Solar de Almería-CIEMAT, Ctra. Senés Km 4, 04200, Tabernas, Almería, Spain.
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
378
|
Sun J, Bu L, Chen S, Lu X, Wu Y, Shi Z, Zhou S. Oxidation of Microcystic-LR via the solar/chlorine process: Radical mechanism, pathways and toxicity assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109509. [PMID: 31398579 DOI: 10.1016/j.ecoenv.2019.109509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Microcystin-LR (MC-LR) is the most widely distributed and harmful variant toxins released by cyanobacteria, which poses potential threaten to people and aquatic animals when entering natural water. In our research, solar/chlorine process was comprehensively investigated to degrade and detoxify MC-LR. Under the chlorine concentration of 1.0 mg L-1, MC-LR (1.0 μM) was decreased by 96.7%, 26%, and 9% by solar/chlorine process, chlorination, and solar irradiation respectively. Quenching experiments confirmed that reactive chlorine species (RCS) and hydroxyl radical (HO) were the predominant reactive species in solar/chlorine process at neutral condition, and ozone was generated because of the participation of triplet-state oxygen (O(3P)). The respective contributions of each reactive species were calculated with the order as: RCS, HO, ozone, and solar irradiation. The presence of HCO3- and natural organic matter in water inhibited the degradation efficiency of MC-LR. Moreover, the transformation products of MC-LR generated during the solar/chlorine process were identified and a possible pathway was proposed. The hepatotoxicity of MC-LR and its transformation products was compared using protein phosphatase 2A. Our experimental results revealed that the concentration and hepatotoxicity of MC-LR both significantly decreased, and most products were not hepatoxic. Overall, the solar/chlorine process is a promising alternative technology to degrade MC-LR during eutrophication.
Collapse
Affiliation(s)
- Julong Sun
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Educaation, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Educaation, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Shiyang Chen
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha, 410007, China
| | - Xianlei Lu
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha, 410007, China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Educaation, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Zhou Shi
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Educaation, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Educaation, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
379
|
Liu Y, Tang Y, Wu Y, Feng L, Zhang L. Degradation of naproxen in chlorination and UV/chlorine processes: kinetics and degradation products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34301-34310. [PMID: 30746625 DOI: 10.1007/s11356-019-04472-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Naproxen (NAP) is a nonsteroidal anti-inflammatory drug which has been widely used and frequently detected in water environments. This study investigated the NAP degradation in the chlorination and UV/chlorine disinfection processes, which usually acted as the last barriers for water treatment. The results showed that both chlorination and UV/chlorine disinfection could remove NAP effectively. At various chlorine dosages (0.1~0.5 mM), the contributions of chlorination and reactive radicals to the degradation of NAP in the UV/chlorine process were calculated to be 50.5~56.9% and 43.1~49.5%, respectively. However, the reactive radicals dominated in NAP degradation in alkaline solutions, while chlorination dominated in acidic conditions. The HCO3- (10~50 mM) slightly inhibited, Cl- (10~50 mM) gradually promoted, and HA (1~5 mg/L) significantly reduced NAP degradation by UV/chlorine process. The degradation intermediates and products were obtained via high-performance liquid chromatography with QE-MS/MS; NAP was degraded by demethylation, acetylation, and dicarboxylic acid pathways during the chlorination and UV/chlorination processes.
Collapse
Affiliation(s)
- Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, School of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yuqing Tang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, School of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yongxin Wu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, School of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, School of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, School of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
380
|
Matsushita T, Sugita W, Ishikawa T, Shi G, Nishizawa S, Matsui Y, Shirasaki N. Prediction of 1,4-dioxane decomposition during VUV treatment by model simulation taking into account effects of coexisting inorganic ions. WATER RESEARCH 2019; 164:114918. [PMID: 31377528 DOI: 10.1016/j.watres.2019.114918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
1,4-Dioxane is one of the most persistent organic micropollutants and is quite difficult to remove via conventional drinking water treatment consisting of coagulation, sedimentation, and sand filtration. Vacuum ultraviolet (VUV) treatment has recently been found to show promise as a treatment method for 1,4-dioxane removal, but the associated decomposition rate of 1,4-dioxane is known to be very sensitive to water quality characteristics. Some computational models have been proposed to predict the decomposition rate of micropollutants during VUV treatment, but the effects of only bicarbonate and natural organic matter have been considered in the models. In the present study, we attempted to develop a versatile computational model for predicting the behavior of 1,4-dioxane during VUV treatment that took into account the effects of other coexisting inorganic ions commonly found in natural waters. We first conducted 1,4-dioxane decomposition experiments with low-pressure mercury lamps and test waters that had been prepared by adding various inorganic ions to an aqueous phosphate buffer. The apparent decomposition rate of 1,4-dioxane was suppressed when bicarbonate, chloride, and nitrate were added to the test waters. Whereas bicarbonate and chloride directly suppressed the apparent decomposition rate by consuming HO•, nitrate became influential only after being transformed into nitrite by concomitant UV light (λ = 254 nm) irradiation. Cl-related radicals (Cl• and Cl2•-) did not react with 1,4-dioxane directly. A computational model consisting of 31 ordinary differential equations with respect to time that had been translated from 84 reactions (10 photochemical and 74 chemical reactions) among 31 chemical species was then developed for predicting the behavior of 1,4-dioxane during VUV treatment. Nine of the parameters in the ordinary differential equations were determined by least squares fitting to an experimental dataset that included different concentrations of bicarbonate, chloride, nitrate, and nitrite. Without further parameter adjustments, the model successfully predicted the behavior of 1,4-dioxane during VUV treatment of three groundwaters naturally contaminated with 1,4-dioxane as well as one dechlorinated tap water sample supplemented with 1,4-dioxane.
Collapse
Affiliation(s)
- Taku Matsushita
- Faculty of Engineering Hokkaido University, N13W8, Sapporo, 060-8628, Japan.
| | - Wataru Sugita
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - Tomoya Ishikawa
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - Gang Shi
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - Shota Nishizawa
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - Yoshihiko Matsui
- Faculty of Engineering Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - Nobutaka Shirasaki
- Faculty of Engineering Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| |
Collapse
|
381
|
Ike IA, Karanfil T, Cho J, Hur J. Oxidation byproducts from the degradation of dissolved organic matter by advanced oxidation processes - A critical review. WATER RESEARCH 2019; 164:114929. [PMID: 31387056 DOI: 10.1016/j.watres.2019.114929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/15/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Advanced oxidation processes (AOPs) have been increasingly used for the treatment of source waters and wastewaters. AOPs characteristically produce oxidation byproducts (OBPs) from the partial degradation of dissolved organic matter (DOM) and/or the transformation of inorganic ions (especially, halides) into highly toxic substances including bromate and halogenated organic OBPs (X-OBPs). However, despite the enormous health and environmental risks posed by X-OBPs, an integral understanding of the complex OBP formation mechanisms during AOPs is lacking, which limits the development of safe and effective AOP-based water treatment schemes. The present critical and comprehensive review was intended to fill in this important knowledge gap. The study shows, contrary to the hitherto prevailing opinion, that the direct incorporation of halide atoms (X•) into DOM makes an insignificant contribution to the formation of organic X-OBPs. The principal halogenating agent is hypohalous acid/hypohalite (HOX/XO-), whose control is, therefore, critical to the reduction of both organic and inorganic X-OBPs. Significant generation of X-OBPs has been observed during sulfate radical AOPs (SR-AOPs), which arises principally from the oxidizing effects of the unactivated oxidant and/or the applied catalytic activator rather than the sulfate radical as is commonly held. A high organic carbon/X- molar ratio (>5), an effective non-catalytic activator such as UV or Fe2+, a low oxidant concentration, and short treatment time are suggested to limit the accumulation of HOX/XO- and, thus, the generation of X-OBPs during SR-AOPs. At present, there are no established techniques to prevent the formation of X-OBPs during UV/chlor(am)ine AOPs because the maintenance of substantial amounts of active halogen is essential to these processes. The findings and conclusions reached in this review would advance the research and application of AOPs.
Collapse
Affiliation(s)
- Ikechukwu A Ike
- Department of Environment and Energy, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Tanju Karanfil
- Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, SC, 29625, USA
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea.
| |
Collapse
|
382
|
Zhang Z, Chuang YH, Szczuka A, Ishida KP, Roback S, Plumlee MH, Mitch WA. Pilot-scale evaluation of oxidant speciation, 1,4-dioxane degradation and disinfection byproduct formation during UV/hydrogen peroxide, UV/free chlorine and UV/chloramines advanced oxidation process treatment for potable reuse. WATER RESEARCH 2019; 164:114939. [PMID: 31408756 DOI: 10.1016/j.watres.2019.114939] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Advanced oxidation using UV/free chlorine and UV/chloramines are being considered as alternatives to UV/H2O2 for treatment of reverse osmosis (RO) permeate in treatment trains for the potable reuse of municipal wastewater. This pilot-scale comparison of the three advanced oxidation processes (AOPs) evaluated three factors important for selecting among these alternatives. First, the study characterized the speciation of oxidants serving as the source of radicals within the AOPs to facilitate process modeling. Kinetic modeling that included consideration of the chloramines occurring in RO permeate accurately predicted oxidant speciation. Modeling of the UV/free chlorine AOP indicated that free chlorine is scavenged by reactions with ammonia and monochloramine in RO permeate, such that oxidant speciation can shift in favor of dichloramine over the short (∼30 s) timescale of AOP treatment. Second, the order of efficacy for degrading the target contaminant, 1,4-dioxane, in terms of minimizing UV fluence was UV/free chlorine > UV/H2O2 ≫ UV/chloramines. However, estimates indicated that the UV/chloramines and UV/H2O2 AOPs could be similar on a cost-effectiveness basis due to savings in reagent costs by the UV/chloramines AOP, provided the RO permeate featured >3 mg/L as Cl2 chloramines. Third, the study evaluated whether the use of chlorine-based oxidants within the UV/free chlorine and UV/chloramines AOPs enhanced disinfection byproduct (DBP) formation. Even after AOP treatment and chloramination, total halogenated DBP formation remained low at <15 μg/L for all three AOPs. DBP formation was similar between the AOPs, except that the UV/free chlorine AOP promoted haloacetaldehyde formation, while the UV/H2O2 and UV/chloramines AOPs followed by chloramination increased chloropicrin formation. However, total DBP formation on a toxic potency-weighted basis was similar among the AOPs, since haloacetonitriles and haloacetamides were the dominant contributors and did not differ significantly among the AOPs.
Collapse
Affiliation(s)
- Zhong Zhang
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States
| | - Yi-Hsueh Chuang
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States
| | - Aleksandra Szczuka
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States
| | - Kenneth P Ishida
- Research & Development Department, Orange County Water District, 18700 Ward Street, Fountain Valley, CA, 92708, United States
| | - Shannon Roback
- Research & Development Department, Orange County Water District, 18700 Ward Street, Fountain Valley, CA, 92708, United States
| | - Megan H Plumlee
- Research & Development Department, Orange County Water District, 18700 Ward Street, Fountain Valley, CA, 92708, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States.
| |
Collapse
|
383
|
Wu Z, Chen C, Zhu BZ, Huang CH, An T, Meng F, Fang J. Reactive Nitrogen Species Are Also Involved in the Transformation of Micropollutants by the UV/Monochloramine Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11142-11152. [PMID: 31411457 DOI: 10.1021/acs.est.9b01212] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The UV/monochloramine (NH2Cl) process is an emerging advanced oxidation process (AOP) in water treatment via radicals produced from the UV photolysis of NH2Cl. This study investigated the degradation of micropollutants by the UV/NH2Cl AOP, with ibuprofen (IBP) and naproxen (NPX) selected as representative micropollutants. Hydroxyl radical (HO•) and chlorine atom (Cl•) were identified in the process, and unexpectedly, we found that reactive nitrogen species (RNS) also played important roles in the transformation of micropollutants. The electron paramagnetic resonance (EPR) analysis proved the production of •NO as well as HO•. The concentrations of HO•, Cl•, and •NO in UV/NH2Cl remained constant at pH 6.0-8.6, resulting in the slightly changed UV fluence-based pseudo-first-order rate constants (k') of IBP and NPX, which were about 1.65 × 10-3 and 2.54 × 10-3 cm2/mJ, respectively. For IBP, the relative contribution of RNS to k' was 27.8% at pH 7 and 50 μM NH2Cl, which was higher than that of Cl• (6.5%) but lower than that of HO• (58.7%). For NPX, the relative contribution of RNS to k' was 13.6%, which was lower than both Cl• (23.2%) and HO• (46.9%). The concentrations of HO•, Cl•, and •NO increased with the increasing NH2Cl dosage. Water matrix components of natural organic matter (NOM) and bicarbonate can scavenge HO•, Cl•, and RNS. The presence of 5 mg/L NOM decreased the k' of IBP and NPX by 66.9 and 57.6%, respectively, while 2 mM bicarbonate decreased the k' of IBP by 57.4% but increased the k' of NPX by 10.5% due to the contribution of CO3•- to NPX degradation. Products containing nitroso-, hydroxyl-, and chlorine-groups were detected during the degradation of IBP and NPX by UV/NH2Cl, indicating the role of nitrogen oxide radical (•NO) as well as HO• and Cl•. Trichloronitromethane formation was strongly enhanced in the UV/NH2Cl-treated samples, further indicating the important roles of RNS in this process. This study first demonstrates the involvement of RNS in the transformation of micropollutants in UV/NH2Cl.
Collapse
Affiliation(s)
- Zihao Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Chunyan Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , China
| | - Fangang Meng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| |
Collapse
|
384
|
Xie P, Zou Y, Jiang S, Wang Z, Wang J, Zhang L, Yue S, Feng X. Application of vacuum-ultraviolet (VUV) to degrade β-blocker propranolol in aquatic environment: Efficiency, kinetics, pathways and acute toxicity. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
385
|
Xie P, Zou Y, Jiang S, Wang J, Zhang L, Wang Z, Yue S, Feng X. Degradation of imipramine by vacuum ultraviolet (VUV) system: Influencing parameters, mechanisms, and variation of acute toxicity. CHEMOSPHERE 2019; 233:282-291. [PMID: 31176129 DOI: 10.1016/j.chemosphere.2019.05.201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Degradation of imipramine (IMI) in the VUV system (VUV185 + UV254) was firstly evaluated in this study. Both HO• oxidation and UV254 direct photolysis accounted for IMI degradation. The quantum yields of UV254 direct photolysis of deprotonated and protonated IMI were 1.31×10-2 and 3.31×10-3, respectively, resulting in the higher degradation efficiency of IMI at basic condition. Increasing the initial IMI concentration lowered the degradation efficiency of IMI. While elevating reaction temperature significantly improved IMI degradation efficiency through the promotion of both the quantum yields of HO• and the UV254 direct photolysis rate. The apparent activation energy was calculated to be about 26.6 kJ mol-1. Negative-linear relationships between the kobs of IMI degradation and the concentrations of HCO3-/CO32-, NOM and Cl- were obtained. The degradation pathways were proposed that cleavage of side chain and hydroxylation of iminodibenzyl and methyl groups were considered as the initial steps for IMI degradation in the VUV system. Although some high toxic intermediate products would be produced, they can be further transformed to other lower toxic products. The good degradation efficiency of IMI under realistic water matrices further suggests that the VUV system would be a good method to degrade IMI in aquatic environment.
Collapse
Affiliation(s)
- Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China; Center for the Environmental Implications of Nanotechnology (CEINT), Durham, 27708-0287, USA
| | - Yujia Zou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Shan Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jingwen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Li Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Siyang Yue
- School of Architecture & Urban Planning, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaonan Feng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
386
|
Lei Y, Cheng S, Luo N, Yang X, An T. Rate Constants and Mechanisms of the Reactions of Cl • and Cl 2•- with Trace Organic Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11170-11182. [PMID: 31483622 DOI: 10.1021/acs.est.9b02462] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cl• and Cl2•- radicals contribute to the degradation of trace organic contaminants (TrOCs) such as pharmaceutical and personal care products and endocrine-disrupting chemicals. However, little is known about their reaction rate constants and mechanisms. In this study, the reaction rate constants of Cl• and Cl2•- with 88 target compounds were determined using laser flash photolysis. Decay kinetics, product buildup kinetics, and competition kinetics were applied to track the changes in their transient spectra. Cl• exhibited quite high reactivity toward TrOCs with reaction rate constants ranging from 3.10 × 109 to 4.08 × 1010 M-1 s-1. Cl2•- was less reactive but more selective, with reaction rate constants varying from <1 × 106 to 2.78 × 109 M-1 s-1. Three QSAR models were developed, which were capable of predicting the reaction rate constants of Cl2•- with TrOCs bearing phenol, alkoxy benzene, and aniline groups. The detection of Cl•-adducts of many TrOCs suggested that Cl• addition was an important reaction mechanism. Single electron transfer (SET) predominated in reactions of Cl• with TrOCs bearing electron-rich moieties (e.g., sulfonamides), and their cation radicals were observed. Cl• might also abstract hydrogen atoms from phenolic compounds to generate phenoxyl radicals. Moreover, Cl• could react with TrOCs through multiple pathways since more than one transient intermediate was detected simultaneously. SET was the major reaction mechanism of Cl2•- reactions with TrOCs bearing phenols, alkoxy benzenes, and anilines groups. Cl2•- was found to play an important role in TrOC degradation, though it has been often neglected in previous studies. The results improve the understanding of halogen radical-involved chemistry in TrOC degradation.
Collapse
Affiliation(s)
- Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Na Luo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Taicheng An
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , China
| |
Collapse
|
387
|
Yang L, Zhang Z. Degradation of six typical pesticides in water by VUV/UV/chlorine process: Evaluation of the synergistic effect. WATER RESEARCH 2019; 161:439-447. [PMID: 31228663 DOI: 10.1016/j.watres.2019.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Vacuum ultraviolet/ultraviolet/chlorine (VUV/UV/chlorine) is considered a novel advanced oxidation process (AOP), but little is known about its kinetics for pollutant degradation in water treatment. This study investigated the degradation of six typical pesticides, namely dimethoate (DMT), atrazine (ATZ), prometon (PMT), propoxur (PPX), bromacil (BRM) and propachlor (PPC), by VUV/UV/chlorine. The results show that all pesticides were rapidly degraded by VUV/UV/chlorine with a high removal efficiency of over 95% after 60 s. The pesticide degradation fitted well with pseudo-first-order reaction kinetics and a significant synergistic effect was observed during the VUV/UV/chlorine process. The synergistic factor (FV/U/Cl) for DMT, ATZ, PMT, PPX, BRM and PPC were determined to be 1.75, 1.70, 2.06, 1.57, 2.84 and 1.61, respectively, indicating a synergistic improvement of 57%-184% for all pesticides. As hydroxyl radical (HO•) transformed into reactive chlorine species (RCSs), the contribution ratio of RCSs for the pesticide degradation was much higher than that of HO• in the VUV/UV/chlorine process, thus causing the synergistic effect. Solution pH ranging from 5.0 to 10.0 had various influence on the pesticide degradation by VUV/UV/chlorine. As initial concentration of free chlorine increased from 0 to 0.25 mM, the apparent rate constants of the pesticides kept on increasing while the FV/U/Cl first increased and reached the highest value, and decreased afterwards. The formation of nitrite was significantly inhibited during the degradation of all pesticides by VUV/UV/chlorine. It suggests that VUV/UV/chlorine is a promising AOP for the pesticide degradation in water treatment.
Collapse
Affiliation(s)
- Laxiang Yang
- College of Food and Chemical Engineering, Shaoyang University, No. 28, Lane 3, Shaoshui West Road, Shaoyang, 422000, Hunan, China.
| | - Zhenhua Zhang
- College of Food and Chemical Engineering, Shaoyang University, No. 28, Lane 3, Shaoshui West Road, Shaoyang, 422000, Hunan, China
| |
Collapse
|
388
|
Cheng S, Zhang X, Song W, Pan Y, Lambropoulou D, Zhong Y, Du Y, Nie J, Yang X. Photochemical oxidation of PPCPs using a combination of solar irradiation and free available chlorine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:629-638. [PMID: 31129545 DOI: 10.1016/j.scitotenv.2019.05.184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
The degradation of pharmaceuticals and personal care products (PPCPs) by using solar photolysis in the presence of free available chlorine (FAC) was investigated in simulated drinking water. The combination of free available chlorine and sunlight irradiation dramatically accelerated the degradation of all the contaminants tested through the generation of hydroxyl radicals, reactive chlorine species (RCS) and ozone. Contaminants containing electron-donating moieties degraded quickly and were preferentially degraded by RCS and/or HO oxidation. Primidone, ibuprofen and atrazine, which contain electron-withdrawing moieties, were mainly degraded by HO. Trace amounts of O3 contributed greatly to carbamazepine's degradation. Degradation of PPCPs was accelerated in oxygenated solutions. Increasing chlorine concentrations barely enhanced removal of PPCPs bearing electron-withdrawing moieties. Higher pH generally decreased the degradation rate constants along with reduced levels of HO and Cl, but diclofenac, gemfibrozil, caffeine and carbamazepine had peak degradation rate constants at pH 7-8. The cytotoxicity using Chinese hamster ovary (CHO) cell did not show significant enhancement in solar/FAC treated water. Combining chlorination with sunlight may provide a simple and energy-efficient approach for improving the removal of organic contaminants during water treatment.
Collapse
Affiliation(s)
- Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200080, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Dimitra Lambropoulou
- Department of Chemistry, Aristotle University of Τhessaloniki, Thessaloniki 54124, Greece
| | - Yu Zhong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ye Du
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Jianxin Nie
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
389
|
Zou XY, Lin YL, Xu B, Zhang TY, Hu CY, Cao TC, Chu WH, Pan Y, Gao NY. Enhanced ronidazole degradation by UV-LED/chlorine compared with conventional low-pressure UV/chlorine at neutral and alkaline pH values. WATER RESEARCH 2019; 160:296-303. [PMID: 31154127 DOI: 10.1016/j.watres.2019.05.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Ultraviolet light-emitting diodes (UV-LEDs) are promising alternatives to conventional low-pressure UV (LPUV) lamps, mainly because they contain no toxic mercury and have a potential for less energy consumption and longer lifetime. In this study, UV sources including UV-LEDs (265, 275 and 285 nm) and LPUV (254 nm) were compared in UV/chlorine degradation of an organic contaminant, ronidazole (RNZ). UV-LED/chlorine performed better than LPUV/chlorine at neutral and alkaline pH values for RNZ degradation considering the fluence-based rate constant. However, the wall plug efficiencies of UV-LEDs are relatively low at present and must reach about 20-25% to achieve the same electrical energy per order as the LPUV in UV/chlorine degradation of RNZ at pH 7.5 and 9. Neither the contribution of radical (HO· or Cl·) nor the quantum yield of chlorine could explain the different RNZ degradation rate by UV/chlorine at different wavelengths and pH values, while the chlorine photolysis rate should be the key factor for these phenomena. The effects of common co-existing substances in real water (chloride, bicarbonate and natural organic matter) on UV/chlorine degradation of RNZ were similar at different UV wavelengths. Opposite to other oxidants or reductants, the molar absorption coefficient of chlorine increases when the UV wavelength increases from 254 to 285 nm at neutral and alkaline pH, which makes UV-LED/chlorine one of the best choices for UV-LED-based advanced oxidation/reduction processes.
Collapse
Affiliation(s)
- Xiang-Yun Zou
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 824, Taiwan, ROC
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Tong-Cheng Cao
- School of Chemical Science and Engineering, Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, 200092, PR China
| | - Wen-Hai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
390
|
Li X, Bai J, Li J, Zhang Y, Shen Z, Qiao L, Xu Q, Zhou B. Efficient TN removal and simultaneous TOC conversion for highly toxic organic amines based on a photoelectrochemical-chlorine radicals process. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.01.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
391
|
Zhu H, Jia R, Sun S, Feng G, Wang M, Zhao Q, Xin X, Zhou A. Elimination of trichloroanisoles by UV/H 2O 2: Kinetics, degradation mechanism, water matrix effects and toxicity assessment. CHEMOSPHERE 2019; 230:258-267. [PMID: 31108436 DOI: 10.1016/j.chemosphere.2019.05.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
The elimination of 2,3,6-trichloroanisole (2,3,6-TCA), which produces a musty-earthy off-odor in water, by an ultraviolet (UV)/H2O2 process was assessed. The removal of 88.1% of 2,3,6-TCA in ultrapure water (UPW) was achieved using an initial 2,3,6-TCA concentration of 1 μg L-1 (4.73 nM), a H2O2 concentration of 20 mg L-1 (0.588 mM), a UV intensity of 1.44 mW cm-2 and a pH of 8.2. The reaction was found to be pseudo first order with a rate constant (kobs) of 0.0340 min-1. Both the removal efficiency and kobs increased significantly upon increasing the H2O2 concentration from 10 to 50 mg L-1. The second order rate constant (kHO·,2,3,6-TCA) in competition kinetic trials was determined to be 8.17 × 107 M-1s-1. Degradation products generated during both the UV photolysis and UV/H2O2 treatment of 2,3,6-TCA solutions were analyzed using ultrahigh resolution gas chromatography/mass spectrometry, and the degradation mechanism was proposed. The toxicities of water solutions during both processes were assessed via a luminescence method in conjunction with Vibrio fischeri. The pH and Cl-, HCO3- and natural organic matter concentrations of the aqueous medium were all found to significantly affect the removal of 2,3,6-TCA. The degradation rates of trichloroanisoles (TCAs) in real-world water samples demonstrated that UV/H2O2 has significant potential with regard to controlling TCAs as pollutants in water.
Collapse
Affiliation(s)
- Huanhuan Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China; Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250101, PR China
| | - Ruibao Jia
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250101, PR China.
| | - Shaohua Sun
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250101, PR China
| | - Guixue Feng
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250101, PR China
| | - Mingquan Wang
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250101, PR China
| | - Qinghua Zhao
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250101, PR China
| | - Xiaodong Xin
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250101, PR China
| | - Anran Zhou
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| |
Collapse
|
392
|
Sun P, Meng T, Wang Z, Zhang R, Yao H, Yang Y, Zhao L. Degradation of Organic Micropollutants in UV/NH 2Cl Advanced Oxidation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9024-9033. [PMID: 31282670 DOI: 10.1021/acs.est.9b00749] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Monochloramine (NH2Cl) can be irradiated by UV to create an advanced oxidation condition (i.e., UV/NH2Cl) for the elimination of organic micropollutants (OMPs) from source water. However, information in retrospective studies was scarce on how UV/NH2Cl performance would be affected by the water matrix and OMP molecular structures. In this study, the degradation of five representative OMPs, including triclosan, carbamazepine, sulfamethoxazole, estradiol (E2), and ethinylestradiol (EE2), was examined in different water matrices. All OMPs were rapidly removed by UV/NH2Cl but exhibited different degradation mechanisms. Although •OH, •Cl, and direct photolysis mainly contributed to the overall degradation of OMPs in buffered nanopure water, the contribution of reactive nitrogen species (RNS) generated from the photolysis of NH2Cl was not negligible in the degradation of E2 and EE2. A phenolic group was identified as the moiety reactive toward RNS. Based on quantitative analysis of the impact on OMP degradation from cosolutes (including Cl-, HCO3-, NOM) as well as pH and NH2Cl doses, we developed a kinetic model for the prediction of OMP degradation in complex water matrices. In environmental water matrices, the performance and radical contributions in UV/NH2Cl and UV/H2O2 systems were taken into comparison, which showed faster degradation of OMPs and a more significant contribution of CO3•- in the UV/NH2Cl process.
Collapse
Affiliation(s)
- Peizhe Sun
- School of Environmental Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Tan Meng
- School of Environmental Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Zijian Wang
- School of Environmental Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Ruochun Zhang
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Hong Yao
- School of Civil Engineering , Beijing Jiaotong University , Beijing 100044 , China
| | - Yongkui Yang
- School of Environmental Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Lin Zhao
- School of Environmental Science and Engineering , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
393
|
Hao R, Mao X, Qian Z, Zhao Y, Wang L, Yuan B, Wang K, Liu Z, Qi M, Crittenden J. Simultaneous Removal of SO 2 and NO Using a Novel Method of Ultraviolet Irradiating Chlorite-Ammonia Complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9014-9023. [PMID: 31264417 DOI: 10.1021/acs.est.8b06950] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A novel advanced oxidation process (AOP) using ultraviolet/sodium chlorite (UV/NaClO2) is developed for simultaneous removal of SO2 and NO. NH4OH, as an additive, was used to inhibit the generation of ClO2 and NO2. The removal efficiencies of SO2 and NO reached 98.7 and 99.1%. NO removal was enhanced by greater UV light intensity and shorter wavelengths but was insensitive to changes in pH and temperature. SO2 at 500-1000 mg/m3 improved NO removal, especially in the absence of UV. The coexistence of SO2 and O2 facilitated the removal of NO by ClO2-. HCO3-, Cl-, and Br- enhanced NO removal, but their roles were negligible when UV was added. The generation of ClO2 and ClO•/HO• was verified by an UV-vis spectrometer, electron spin resonance (ESR), and radical-quenching tests. The mechanisms responsible for the removal of SO2 and NO were attributed to the synergism between acid-base neutralization and radical-induced oxidation. The ClO2- evolution and product composition were demonstrated by UV-vis and X-ray photoelectron spectroscopy (XPS). Kinetics analyses showed that the Hatta numbers were 329-798 and 747-1000 without and with UV. Thus, the gas-film resistance mainly controlled the mass-transfer process.
Collapse
Affiliation(s)
- Runlong Hao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering , North China Electric Power University , Baoding 071003 , PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , PR China
- Brook Byer Institute for Sustainable Systems and School of Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Xingzhou Mao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering , North China Electric Power University , Baoding 071003 , PR China
| | - Zhen Qian
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering , North China Electric Power University , Baoding 071003 , PR China
| | - Yi Zhao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering , North China Electric Power University , Baoding 071003 , PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , PR China
| | - Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering , North China Electric Power University , Baoding 071003 , PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , PR China
| | - Bo Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering , North China Electric Power University , Baoding 071003 , PR China
| | - Kaimin Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering , North China Electric Power University , Baoding 071003 , PR China
| | - Zihan Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering , North China Electric Power University , Baoding 071003 , PR China
| | - Meng Qi
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering , North China Electric Power University , Baoding 071003 , PR China
| | - John Crittenden
- Brook Byer Institute for Sustainable Systems and School of Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
394
|
Adnan F, Phattarapattamawong S. Enhancing photocatalytic degradation of methyl orange by crystallinity transformation of titanium dioxide: A kinetic study. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:722-730. [PMID: 30849204 DOI: 10.1002/wer.1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
This work aimed to enhance the photocatalytic degradation of methyl orange (MO) by crystallinity transformation of titanium dioxide (TiO2 ). In addition, the kinetic degradation of MO was determined. To transform its crystallinity, TiO2 was synthesized using a sol-gel method and calcined at between 200°C to 600°C. Calcination at a temperature of 250°C resulted in TiO2 that showed the best performance, corresponding to MO removal of 87% ± 7%. MO removal by TiO2 calcined between 250°C to 400°C was higher than for commercial TiO2 powder (Sigma-aldrich) (62% ± 4%). TiO2 with a small crystallite size and high anatase fraction enhanced the photocatalytic degradation of MO, while the specific surface area and surface roughness seemed to play a minor role. The photocatalytic degradation of MO was NaCl-independent, while the photocatalytic activity increased with decreased pH. Reused TiO2 showed similar photocatalytic degradation of MO compared with pristine TiO2 , at 84 ± 2%. The oxidation kinetics of TiO2 calcined at 250°C were fitted to the Langmuir-Hinshelwood model (R2 = 0.9134). The kr and Ks values were 0.027 mg L-1 min-1 and 0.621 L/mg, respectively. Crystallinity transformation was a major factor in the enhancement of photocatalytic degradation of MO. PRACTITIONER POINTS: Photocatalytic activity of TiO2 depends on calcination temperature, pH, and a number of UVC lamps. TiO2 with a small crystallite size and high anatase fraction enhanced the photocatalytic degradation of MO.
Collapse
Affiliation(s)
- Fahrizal Adnan
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
- Department of Environmental Engineering, Mulawarman University, Samarinda, Indonesia
| | - Songkeart Phattarapattamawong
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand
| |
Collapse
|
395
|
Li J, Zhou S, Li M, Du E, Liu X. Mechanism insight of acetaminophen degradation by the UV/chlorine process: kinetics, intermediates, and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25012-25025. [PMID: 31250388 DOI: 10.1007/s11356-019-05747-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
The removal of acetaminophen (AAP) in aqueous solution by the UV/chlorine process was evaluated. The effect of chlorine dose, the initial AAP concentration, pH value, and UV intensity on the reaction were also investigated. The degradation mechanism and the ecological risk were further discussed. The results indicated that AAP degradation fitted pseudo-first-order kinetics. Compared with UV alone or dark chlorination, the combination of UV and chlorine significantly accelerated the degradation process. The AAP degradation was positively affected by chlorine dose and UV intensity, while negatively affected by the initial AAP concentration and ammonia nitrogen concentration during the UV/chlorine process. The frontier orbital theory analysis shows that the C5 position in the benzene ring of AAP is likely to be the first site attacked by HO• and Cl• radical to form the products. Twelve intermediates were identified by Q-TOF and GC-MS. The possible degradation pathways were also proposed. Luminescent bacteria experiment and ECOSAR prediction both revealed that acute toxicity of AAP degradation could only be partially reduced. Ecological risks during the UV/chlorine process need to be further evaluated.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Siqi Zhou
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Erdeng Du
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
396
|
Xing J, Liang H, Xu S, Chuah CJ, Luo X, Wang T, Wang J, Li G, Snyder SA. Organic matter removal and membrane fouling mitigation during algae-rich surface water treatment by powdered activated carbon adsorption pretreatment: Enhanced by UV and UV/chlorine oxidation. WATER RESEARCH 2019; 159:283-293. [PMID: 31102857 DOI: 10.1016/j.watres.2019.05.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 05/26/2023]
Abstract
In this work, UV and UV/chlorine (UV/Cl) were employed to enhance powdered activated carbon (PAC) adsorption pretreatment prior to ultrafiltration process for algae-contaminated surface water treatment. Their performance on membrane fouling mitigation and organic pollutant rejection was systematically evaluated. A comparative experiment was conducted under varying pollution degrees of algal extracellular organic matter (EOM) contamination in surface river water. The results indicated that UV/PAC and UV/Cl/PAC pretreatment effectively enhanced the removal of dissolved organic carbon (DOC) and UV-absorbing at 254 nm (UV254). The characteristics of feed water after pretreatments were investigated through apparent molecular-weight (MW) distribution and fluorescence parallel factor analysis (PARAFAC). In regard to membrane fouling mitigation, UV/Cl/PAC noticeably decreased reversible and irreversible fouling resistance simultaneously and UV/PAC preferred reducing reversible membrane fouling. Combined fouling modeling was operated to scrutinize the fouling mitigation mechanisms and standard pore blocking was proved to be dominant during the filtration process. Moreover, the UV/Cl and UV/Cl/PAC pretreatments were proved positive for emerging micropollutants degradation and disinfection by-products formation potential reduction. The results suggested that UV and UV/Cl are likely strategies to enhance the efficiency of PAC adsorption pretreatments prior to ultrafiltration during algae-contaminated water treatment.
Collapse
Affiliation(s)
- Jiajian Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Siqi Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chong Joon Chuah
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tianyu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shane A Snyder
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
| |
Collapse
|
397
|
Hao R, Wang Z, Mao X, Gong Y, Yuan B, Zhao Y, Tian B, Qi M. Elemental mercury removal by a novel advanced oxidation process of ultraviolet/chlorite-ammonia: Mechanism and kinetics. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:120-128. [PMID: 30986639 DOI: 10.1016/j.jhazmat.2019.03.134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 05/21/2023]
Abstract
A novel advanced oxidation process (AOP) of ultraviolet/chlorite-ammonia (UV/NaClO2-NH4OH) was developed to remove Hg0 from flue gas. The distribution of mercury concentration in three solutions of NaClO2-NH4OH, KCl, and H2SO4-KMnO4 was determined by cold atom fluorescence spectrometry (AFS). The role of NH4OH was to help NaClO2 preserving and/or stabilizing Hg2+ meanwhile inhibiting the photo-production of ClO2. In the absence of UV, decreasing pH promoted the release of Hg2+ from NaClO2-NH4OH; introducing NO, SO2, O2, Br-, Cl-, and HCO3- suppressed Hg0 oxidation. In the presence of UV, rising temperature accelerated the release of Hg2+ from NaClO2-NH4OH; while SO2, Br- and HCO3- facilitated Hg0 oxidation. In the absence and presence of UV, Hg0 oxidation was controlled by ClO2- and by ClO/Cl2O2/HO/ClO2, respectively. The formations of ClO/HO/ClO2 were confirmed by electron spin resonance (ESR). X-ray photoelectron spectroscopy (XPS) revealed that the products of Hg0 and ClO2- were HgCl2, and ClO2, Cl-, ClO3-, Cl2, and ClO4-, respectively. Analysis of kinetics showed that the Hatta numbers were 23-133 and 69-305 without and with UV, respectively, thus, the gas-film mass transfer was the rate-determining step. This paper gives a new insight in radical behavior in Hg0 oxidation.
Collapse
Affiliation(s)
- Runlong Hao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Zheng Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Xingzhou Mao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yaping Gong
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Bo Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yi Zhao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Baojuan Tian
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Meng Qi
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| |
Collapse
|
398
|
Ra J, Yoom H, Son H, Hwang TM, Lee Y. Transformation of an Amine Moiety of Atenolol during Water Treatment with Chlorine/UV: Reaction Kinetics, Products, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7653-7662. [PMID: 31244072 DOI: 10.1021/acs.est.9b01412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transformation of atenolol (ATN), a micropollutant containing a secondary (2°) amine moiety, can be significantly enhanced in water treatment with sequential and combined use of chlorine and UV (chlorine/UV) through photolysis of the N-Cl bond. This study investigated the transformation kinetics, products, and mechanisms of the amine moiety of ATN in chlorine/UV (254 nm). The fluence-based, photolysis rate constant for N-Cl ATN was 2.0 × 10-3 cm2/mJ. Transformation products (TPs) with primary (1°) amines were mainly produced, but TPs with 2° and 3° amines were also formed, on the basis of liquid chromatography (LC)/quadrupole-time-of-flight/mass spectrometry and LC/UV analyses. The amine-containing TPs could be further transformed in chlorine/UV (with residual chlorine in post UV) via formation and photolysis of new N-Cl bonds. Photolysis of N-Cl 1° amine TPs produced ammonia as a major product. These data could be explained by a reaction mechanism in which the N-Cl bond was cleaved by UV, forming aminyl radicals that were transformed via 1,2-hydrogen shift, β-scission, intramolecular addition, and 1,2-alkyl shift. Among these, the 1,2-alkyl shift is newly discovered in this study. Despite enhanced transformation, only partial mineralization of the ATN's amine moiety was expected, even under chlorine/UV advanced oxidation process conditions. Overall, the kinetic and mechanistic information from this study can be useful for predicting the transformation of amine moieties by chlorine/UV water treatment.
Collapse
Affiliation(s)
- Jiwoon Ra
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju 61005 , Republic of Korea
| | - Hoonsik Yoom
- Busan Water Quality Institute , Gimhae , Gyeongsangnam 621-813 , Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute , Gimhae , Gyeongsangnam 621-813 , Republic of Korea
| | - Tae-Mun Hwang
- Water Resources and Environmental Research Division , Korea Institute of Construction Technology , 2311, Goyang , Gyeonggi 411-712 , Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju 61005 , Republic of Korea
| |
Collapse
|
399
|
Wang L, Fang J, Zhang X, Xu X, Kong X, Wu Z, Hua Z, Ren Z, Guo K. Feasibility of the solar/chlorine treatment for lipid regulator degradation in simulated and real waters: The oxidation chemistry and affecting factors. CHEMOSPHERE 2019; 226:123-131. [PMID: 30925404 DOI: 10.1016/j.chemosphere.2019.03.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
This work investigated the feasibility and mechanisms of solar/chlorine process in the removal of a kind of emerging contaminants, lipid regulators (gemfibrozil (GFRZ), benzafibrate (BZF), and clofibric acid (CA)), in simulated and real waters. These lipid regulators could be effectively removed by solar/chlorine treatment, and their corresponding pseudo-first-order rate constants (k') increased with increasing chlorine dosage. The degradation of GFRZ and BZF was primarily ascribed to reactive chlorine species (RCS) and ozone, while that of CA was mainly attributable to hydroxyl radical (HO) and ozone. As pH rose from 5.0 to 8.4, kozone' of GFRZ and BZF increased, while kHO' decreased. However, kRCS' of GFRZ increased by 130%, while that of BZF decreased by 43.3%. These changes resulted in slight changes in the overall k's with increasing pH. k's of GFRZ, BZF, and CA by solar/chorine treatment were inhibited by natural organic matter (NOM) while the presence of bromide enhanced the degradation of GFRZ by solar/chlorine process. The degradation of lipid regulators was still effective in a secondary wastewater effluent sample and a sand-filtered water sample, although that was inhibited due to the dissolve organic matter (DOM) contained in real waters. The acute toxicity during the degradation of GFRZ by solar/chlorine treatment was comparable to that by treatment with chlorine alone. This study demonstrated that RCS played an important role in the degradation of micropollutants by the solar/chlorine treatment and the feasibility of solar/chlorine process in the application for the degradation of organic compounds in real waters.
Collapse
Affiliation(s)
- Liping Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiang Zhang
- Hebei Environmental Monitoring Center, Shijiazhuang, 050011, China
| | - Xibing Xu
- China Shipbuilding Industry Corporation International Engineering Co., Ltd., Beijing, 100121, China
| | - Xiujuan Kong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zihao Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhechao Hua
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ziran Ren
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Kaiheng Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
400
|
Zhang Y, Li J, Bai J, Li L, Chen S, Zhou T, Wang J, Xia L, Xu Q, Zhou B. Extremely Efficient Decomposition of Ammonia N to N 2 Using ClO • from Reactions of HO • and HOCl Generated in Situ on a Novel Bifacial Photoelectroanode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6945-6953. [PMID: 31117540 DOI: 10.1021/acs.est.9b00959] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The conversion of excess ammonia N into harmless N2 is a primary challenge for wastewater treatment. We present here a method to generate ClO• directionally for quick and efficient decomposition of NH4+ N to N2. ClO• was produced and enhanced by a bifacial anode, a front WO3 photoanode and a rear Sb-SnO2 anode, in which HO• generated on WO3 reacts with HClO generated on Sb-SnO2 to form ClO•. Results show that the ammonia decomposition rate of Sb-SnO2/WO3 is 4.4 times than that of WO3 and 3.3 times than that of Sb-SnO2, with achievement of the removal of NH4+ N on Sb-SnO2/WO3 and WO3 being 99.2 and 58.3% in 90 min, respectively. This enhancement is attributed to the high rate constant of ClO• with NH4+ N, which is 2.8 and 34.8 times than those of Cl• and HO•, respectively. The steady-state concentration of ClO• (2.5 × 10-13 M) is 102 times those of HO• and Cl•, and this is further confirmed by kinetic simulations. In combination with the Pd-Cu/NF cathode to form a denitrification exhaustion system, Sb-SnO2/WO3 shows excellent total nitrogen removal (98.4%), which is more effective than WO3 (47.1%) in 90 min. This study provides new insight on the directed ClO• generation and its application on ammonia wastewater treatment.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Jinhua Li
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Jing Bai
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Linsen Li
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Shuai Chen
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Tingsheng Zhou
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Jiachen Wang
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Ligang Xia
- College of Environmental and Chemical Engineering , Shanghai University of Electric Power , 2588 Changyang Road , Shanghai 200090 , People's Republic of China
| | - Qunjie Xu
- College of Environmental and Chemical Engineering , Shanghai University of Electric Power , 2588 Changyang Road , Shanghai 200090 , People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , People's Republic of China
| | - Baoxue Zhou
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , People's Republic of China
- Key Laboratory of Thin Film and Microfabrication Technology , Ministry of Education , Shanghai 200240 , People's Republic of China
| |
Collapse
|