351
|
Kitzman P. VGLUT1 and GLYT2 labeling of sacrocaudal motoneurons in the spinal cord injured spastic rat. Exp Neurol 2006; 204:195-204. [PMID: 17134699 DOI: 10.1016/j.expneurol.2006.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/26/2006] [Accepted: 10/21/2006] [Indexed: 11/19/2022]
Abstract
Spasticity of the midline (axial) musculature may hinder (1) performing transfers, (2) efficient extremity and head movements, and (3) efficient respiration. Currently, gaps exist in our knowledge of the pathophysiology involved in spasticity development within the axial musculature. The goals of this study were (1) to study the effects of S(2) transection on the number and distribution of glutamatergic inputs, arising from primary afferents, and glycinergic inputs to sacrocaudal motoneurons; and (2) to correlate changes in these synaptic inputs with the development of spasticity within the tail musculature, which are the caudal counterparts to the trunk axial musculature. Animals with S(2) spinal transection were tested behaviorally using our established system. At 1, 2, 4, and 12 weeks post-injury, sacrocaudal motoneurons were retrogradely labeled with cholera toxin beta-subunit (CTB), and temporal changes in vesicular glutamate transporter 1 (VGLUT1) and glycine transporter 2 (GlyT2) inputs to CTB-labeled motoneurons were visualized using antibodies specific for each synaptic type and confocal microscopy. These time points correspond to each of 4 stages of spasticity development. There was no significant change in either VGLUT1 or GlyT2 labeling of sacrocaudal motoneurons at any of the time points examined. Spinal cord injury-induced spasticity, in the tail musculature, does not appear to involve either an increase in monosynaptic glutamatergic inputs from myelinated afferents or a decrease in glycinergic inputs to sacrocaudal motoneurons.
Collapse
Affiliation(s)
- Patrick Kitzman
- Department of Rehabilitation Sciences, The University of Kentucky, Charles T. Wethington Building, Rm. 210D, 900 S. Limestone Avenue, Lexington, KY 40536-0200, USA.
| |
Collapse
|
352
|
Bonanomi D, Benfenati F, Valtorta F. Protein sorting in the synaptic vesicle life cycle. Prog Neurobiol 2006; 80:177-217. [PMID: 17074429 DOI: 10.1016/j.pneurobio.2006.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 01/06/2023]
Abstract
At early stages of differentiation neurons already contain many of the components necessary for synaptic transmission. However, in order to establish fully functional synapses, both the pre- and postsynaptic partners must undergo a process of maturation. At the presynaptic level, synaptic vesicles (SVs) must acquire the highly specialized complement of proteins, which make them competent for efficient neurotransmitter release. Although several of these proteins have been characterized and linked to precise functions in the regulation of the SV life cycle, a systematic and unifying view of the mechanisms underlying selective protein sorting during SV biogenesis remains elusive. Since SV components do not share common sorting motifs, their targeting to SVs likely relies on a complex network of protein-protein and protein-lipid interactions, as well as on post-translational modifications. Pleiomorphic carriers containing SV proteins travel and recycle along the axon in developing neurons. Nevertheless, SV components appear to eventually undertake separate trafficking routes including recycling through the neuronal endomembrane system and the plasmalemma. Importantly, SV biogenesis does not appear to be limited to a precise stage during neuronal differentiation, but it rather continues throughout the entire neuronal lifespan and within synapses. At nerve terminals, remodeling of the SV membrane results from the use of alternative exocytotic pathways and possible passage through as yet poorly characterized vacuolar/endosomal compartments. As a result of both processes, SVs with heterogeneous molecular make-up, and hence displaying variable competence for exocytosis, may be generated and coexist within the same nerve terminal.
Collapse
Affiliation(s)
- Dario Bonanomi
- Department of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | | |
Collapse
|
353
|
Juge N, Yoshida Y, Yatsushiro S, Omote H, Moriyama Y. Vesicular glutamate transporter contains two independent transport machineries. J Biol Chem 2006; 281:39499-506. [PMID: 17046815 DOI: 10.1074/jbc.m607670200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vesicular glutamate transporters (VGLUTs) are responsible for the vesicular storage of l-glutamate and play an essential role in glutamatergic signal transmission in the central nervous system. The molecular mechanism of the transport remains unknown. Here, we established a novel in vitro assay procedure, which includes purification of wild and mutant VGLUT2 and their reconstitution with purified bacterial F(o)F(1)-ATPase (F-ATPase) into liposomes. Upon the addition of ATP, the proteoliposomes facilitated l-glutamate uptake in a membrane potential (DeltaPsi)-dependent fashion. The ATP-dependent l-glutamate uptake exhibited an absolute requirement for approximately 4 mm Cl(-), was sensitive to Evans blue, but was insensitive to d,l-aspartate. VGLUT2s with mutations in the transmembrane-located residues Arg(184), His(128), and Glu(191) showed a dramatic loss in l-glutamate transport activity, whereas Na(+)-dependent inorganic phosphate (P(i)) uptake remained comparable to that of the wild type. Furthermore, P(i) transport did not require Cl(-) and was not inhibited by Evans blue. Thus, VGLUT2 appears to possess two intrinsic transport machineries that are independent of each other: a DeltaPsi-dependent l-glutamate uptake and a Na(+)-dependent P(i) uptake.
Collapse
Affiliation(s)
- Narinobu Juge
- Laboratory of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
354
|
Voglmaier SM, Kam K, Yang H, Fortin DL, Hua Z, Nicoll RA, Edwards RH. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 2006; 51:71-84. [PMID: 16815333 DOI: 10.1016/j.neuron.2006.05.027] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/21/2006] [Accepted: 05/31/2006] [Indexed: 11/16/2022]
Abstract
Synaptic vesicles have been proposed to form through two mechanisms: one directly from the plasma membrane involving clathrin-dependent endocytosis and the adaptor protein AP2, and the other from an endosomal intermediate mediated by the adaptor AP3. However, the relative role of these two mechanisms in synaptic vesicle recycling has remained unclear. We now find that vesicular glutamate transporter VGLUT1 interacts directly with endophilin, a component of the clathrin-dependent endocytic machinery. In the absence of its interaction with endophilin, VGLUT1 recycles more slowly during prolonged, high-frequency stimulation. Inhibition of the AP3 pathway with brefeldin A rescues the rate of recycling, suggesting a competition between AP2 and -3 pathways, with endophilin recruiting VGLUT1 toward the faster AP2 pathway. After stimulation, however, inhibition of the AP3 pathway prevents the full recovery of VGLUT1 by endocytosis, implicating the AP3 pathway specifically in compensatory endocytosis.
Collapse
Affiliation(s)
- Susan M Voglmaier
- Department of Neurology, Graduate Programs in Cell Biology, Neuroscience and Biomedical Sciences, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
355
|
Herzog E, Takamori S, Jahn R, Brose N, Wojcik SM. Synaptic and vesicular co-localization of the glutamate transporters VGLUT1 and VGLUT2 in the mouse hippocampus. J Neurochem 2006; 99:1011-8. [PMID: 16942593 DOI: 10.1111/j.1471-4159.2006.04144.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) are essential to glutamatergic synapses and determine the glutamatergic phenotype of neurones. The three known VGLUT isoforms display nearly identical uptake characteristics, but the associated expression domains in the adult rodent brain are largely segregated. Indeed, indirect evidence obtained in young VGLUT1-deficient mice indicated that in cells that co-express VGLUT1 and VGLUT2, the transporters may be targeted to different synaptic vesicles, which may populate different types of synapses formed by the same neurone. Direct evidence for a systematic segregation of VGLUT1 and VGLUT2 to distinct synapses and vesicles is lacking, and the mechanisms that may convey this segregation are not known. We show here that VGLUT1 and VGLUT2 are co-localized in many layers of the young hippocampus. Strikingly, VGLUT2 co-localizes with VGLUT1 in the mossy fibers at early stages. Furthermore, we show that a fraction of VGLUT1 and VGLUT2 is carried by the same vesicles at these stages. Hence, hippocampal neurones co-expressing VGLUT1 and VGLUT2 do not appear to sort them to separate vesicle pools. As the number of transporter molecules per vesicle affects quantal size, the developmental window where VGLUT1 and VGLUT2 are co-expressed may allow for greater plasticity in the control of quantal release.
Collapse
Affiliation(s)
- Etienne Herzog
- Max Planck Institut für Experimentelle Medizin, Abteilung Molekulare Neurobiologie,Göttingen, Germany
| | | | | | | | | |
Collapse
|
356
|
Brunk I, Blex C, Rachakonda S, Höltje M, Winter S, Pahner I, Walther DJ, Ahnert-Hilger G. The first luminal domain of vesicular monoamine transporters mediates G-protein-dependent regulation of transmitter uptake. J Biol Chem 2006; 281:33373-85. [PMID: 16926160 DOI: 10.1074/jbc.m603204200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of vesicular monoamine transporters (VMATs) is down-regulated by the G-protein alpha-subunits of G(o2) and G(q), but the signaling pathways are not known. We show here that no such regulation is observed when VMAT1 or VMAT2 are expressed in Chinese hamster ovary (CHO) cells. However, when the intracellular compartments of VMAT-expressing CHO cells are preloaded with different monoamines, transport becomes susceptible to G-protein-dependent regulation, with differences between the two transporter isoforms. Epinephrine induces G-protein-mediated inhibition of transmitter uptake in CHOVMAT1 cells but prevents inhibition induced by dopamine in CHOVMAT2 cells. Epinephrine also antagonizes G-protein-mediated inhibition of monoamine uptake by VMAT2 expressing platelets or synaptic vesicles. In CHOVMAT2 cells G-protein-mediated inhibition of monoamine uptake can be induced by 5-hydroxytryptamine (serotonin) 1B receptor agonists, whereas alpha1 receptor agonists modulate uptake into CHOVMAT1 cells. Accordingly, 5-hydroxytryptamine 1B receptor antagonists prevent G-protein-mediated inhibition of uptake in partially filled platelets and synaptic vesicles expressing VMAT2. CHO cells expressing VMAT mutants with a shortened first vesicular loop transport monoamines. However, no or a reduced G-protein regulation of uptake can be initiated. In conclusion, vesicular content is involved in the activation of vesicle associated G-proteins via a structure sensing the luminal monoamine content. The first luminal loop of VMATs may represent a G-protein-coupled receptor that adapts vesicular filling.
Collapse
Affiliation(s)
- Irene Brunk
- Functional Cell Biology, Centre for Anatomy, Charité-Universitätsmedizin Berlin, Philippstrasse 12, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
357
|
Matsugami TR, Tanemura K, Mieda M, Nakatomi R, Yamada K, Kondo T, Ogawa M, Obata K, Watanabe M, Hashikawa T, Tanaka K. From the Cover: Indispensability of the glutamate transporters GLAST and GLT1 to brain development. Proc Natl Acad Sci U S A 2006; 103:12161-6. [PMID: 16880397 PMCID: PMC1524927 DOI: 10.1073/pnas.0509144103] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous in vitro studies have shown that the neurotransmitter glutamate is important in brain development. Paradoxically, loss-of-function mouse models of glutamatergic signaling that are generated by genetic deletion of glutamate receptors or glutamate release show normal brain assembly. We examined the direct consequences on brain development of extracellular glutamate buildup due to the depletion of the glutamate transporters GLAST and GLT1. GLAST/GLT1 double knockout mice show multiple brain defects, including cortical, hippocampal, and olfactory bulb disorganization with perinatal mortality. Here, we report abnormal formation of the neocortex in GLAST/GLT1 mutants. Several essential aspects of neuronal development, such as stem cell proliferation, radial migration, neuronal differentiation, and survival of SP neurons, were impaired. These results provide direct in vivo evidence that GLAST and GLT1 are necessary for brain development through regulation of extracellular glutamate concentration and show that an important mechanism is likely to be maintenance of glutamate-mediated synaptic transmission.
Collapse
Affiliation(s)
- Toshiko R. Matsugami
- *Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Laboratory for Neural Architecture
| | | | - Michihiro Mieda
- *Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | - Keiko Yamada
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; and
| | | | | | - Kunihiko Obata
- **Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; and
| | - Tsutomu Hashikawa
- Laboratory for Neural Architecture
- To whom correspondence may be addressed. E-mail:
or
| | - Kohichi Tanaka
- *Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Corporation, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
358
|
De Gois S, Jeanclos E, Morris M, Grewal S, Varoqui H, Erickson JD. Identification of endophilins 1 and 3 as selective binding partners for VGLUT1 and their co-localization in neocortical glutamatergic synapses: implications for vesicular glutamate transporter trafficking and excitatory vesicle formation. Cell Mol Neurobiol 2006; 26:679-93. [PMID: 16710756 PMCID: PMC11520632 DOI: 10.1007/s10571-006-9054-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 03/10/2006] [Indexed: 12/26/2022]
Abstract
1. Selective protein-protein interactions between neurotransmitter transporters and their synaptic targets play important roles in regulating chemical neurotransmission. We screened a yeast two-hybrid library with bait containing the C-terminal amino acids of VGLUT1 and obtained clones that encode endophilin 1 and endophilin 3, proteins considered to play an integral role in glutamatergic vesicle formation. 2. Using a modified yeast plasmid vector to enable more cost-effective screens, we analyzed the selectivity and specificity of this interaction. Endophilins 1 and 3 selectively recognize only VGLUT1 as the C-terminus of VGLUT2 and VGLUT3 do not interact with either endophilin isoform. We mutagenized four conserved stretches of primary sequence in VGLUT1 that includes two polyproline motifs (Pro1, PPAPPP, and Pro2, PPRPPPP), found only in VGLUT1, and two conserved stretches (SEEK, SYGAT), found also in VGLUT2 and VGLUT3. The absence of the VGLUT conserved regions does not affect VGLUT1-endophilin association. Of the two polyproline stretches, only one (Pro2) is required for binding specificity to both endophilin 1 and endophilin 3. 3. We also show that endophilin 1 and endophilin 3 co-localize with VGLUT1 in synaptic terminals of differentiated rat neocortical neurons in primary culture. These results indicate that VGLUT1 and both endophilins are enriched in a class of excitatory synaptic terminals in cortical neurons and there, may interact to play an important role affecting the vesicular sequestration and synaptic release of glutamate.
Collapse
Affiliation(s)
- Stephanie De Gois
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112 USA
| | - Elisabeth Jeanclos
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112 USA
| | - Marie Morris
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112 USA
| | - Sukhjeevan Grewal
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112 USA
| | - Helene Varoqui
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112 USA
| | - Jeffrey D. Erickson
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112 USA
| |
Collapse
|
359
|
Moulder KL, Meeks JP, Mennerick S. Homeostatic regulation of glutamate release in response to depolarization. Mol Neurobiol 2006; 33:133-53. [PMID: 16603793 DOI: 10.1385/mn:33:2:133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 11/30/1999] [Accepted: 08/04/2005] [Indexed: 11/11/2022]
Abstract
Proper nervous system function requires a balance between excitation and inhibition. Systems of homeostasis may have evolved in neurons to help maintain or restore balance between excitation and inhibition, presumably because excessive excitation can cause dysfunction and cell death. This article reviews evidence for homeostatic mechanisms within the hippocampus that lead to differential regulation of glutamate and gamma-aminobutyric acid release in response to conditions of excess depolarization. We recently found differential effects on glutamate release at the level of action potential coupling to transmitter release, vesicular release probability, and vesicle availability. Such differential regulation may help to prevent excitotoxicity and runaway excitation.
Collapse
Affiliation(s)
- Krista L Moulder
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
360
|
Takamori S. VGLUTs: 'exciting' times for glutamatergic research? Neurosci Res 2006; 55:343-51. [PMID: 16765470 DOI: 10.1016/j.neures.2006.04.016] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 04/11/2006] [Accepted: 04/25/2006] [Indexed: 11/19/2022]
Abstract
Glutamate is the principal excitatory neurotransmitter in the mammalian central nervous system (CNS). Glutamate is first synthesized in the cytoplasm of presynaptic terminals before being loaded into synaptic vesicles, which fuse with the plasma membrane, releasing their contents, in response to neuronal activity. The important process of synaptic vesicle loading is mediated by a transport protein, collectively known as vesicular glutamate transporter (VGLUT). Controlling the activity of these transporters could potentially modulate the efficacy of glutamatergic neurotransmission. In recent years, three isoforms of mammalian VGLUTs have been cloned and molecularly characterized in detail. Probing these three VGLUTs has been proven to be the most reliable way of visualizing sites of glutamate release in the mammalian CNS. Immunohistochemical studies on VGLUTs suggest that glutamatergic neurons are categorized into subgroups depending on which VGLUT isoform they contain. Recent studies on VGLUT1-deficient mice have led various models to be postulated concerning the possible roles of VGLUTs in synaptic physiology, such as presynaptic regulation of quantal size and activity-dependent short-term plasticity.
Collapse
Affiliation(s)
- Shigeo Takamori
- Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
361
|
Steinert JR, Kuromi H, Hellwig A, Knirr M, Wyatt AW, Kidokoro Y, Schuster CM. Experience-dependent formation and recruitment of large vesicles from reserve pool. Neuron 2006; 50:723-33. [PMID: 16731511 DOI: 10.1016/j.neuron.2006.04.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 02/10/2006] [Accepted: 04/17/2006] [Indexed: 10/24/2022]
Abstract
The sizes and contents of transmitter-filled vesicles have been shown to vary depending on experimental manipulations resulting in altered quantal sizes. However, whether such a presynaptic regulation of quantal size can be induced under physiological conditions as a potential alternative mechanism to alter the strength of synaptic transmission is unknown. Here we show that presynaptic vesicles of glutamatergic synapses of Drosophila neuromuscular junctions increase in size as a result of high natural crawling activities of larvae, leading to larger quantal sizes and enhanced evoked synaptic transmission. We further show that these larger vesicles are formed during a period of enhanced replenishment of the reserve pool of vesicles, from which they are recruited via a PKA- and actin-dependent mechanism. Our results demonstrate that natural behavior can induce the formation, recruitment, and release of larger vesicles in an experience-dependent manner and hence provide evidence for an additional mechanism of synaptic potentiation.
Collapse
Affiliation(s)
- Joern R Steinert
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
362
|
Wojcik SM, Katsurabayashi S, Guillemin I, Friauf E, Rosenmund C, Brose N, Rhee JS. A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron 2006; 50:575-87. [PMID: 16701208 DOI: 10.1016/j.neuron.2006.04.016] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 03/15/2006] [Accepted: 04/05/2006] [Indexed: 11/30/2022]
Abstract
The type of vesicular transporter expressed by a neuron is thought to determine its neurotransmitter phenotype. We show that inactivation of the vesicular inhibitory amino acid transporter (Viaat, VGAT) leads to embryonic lethality, an abdominal defect known as omphalocele, and a cleft palate. Loss of Viaat causes a drastic reduction of neurotransmitter release in both GABAergic and glycinergic neurons, indicating that glycinergic neurons do not express a separate vesicular glycine transporter. This loss of GABAergic and glycinergic synaptic transmission does not impair the development of inhibitory synapses or the expression of KCC2, the K+ -Cl- cotransporter known to be essential for the establishment of inhibitory neurotransmission. In the absence of Viaat, GABA-synthesizing enzymes are partially lost from presynaptic terminals. Since GABA and glycine compete for vesicular uptake, these data point to a close association of Viaat with GABA-synthesizing enzymes as a key factor in specifying GABAergic neuronal phenotypes.
Collapse
Affiliation(s)
- Sonja M Wojcik
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, D-37075 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
363
|
Jung SK, Morimoto R, Otsuka M, Omote H. Transmembrane topology of vesicular glutamate transporter 2. Biol Pharm Bull 2006; 29:547-9. [PMID: 16508164 DOI: 10.1248/bpb.29.547] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vesicular glutamate transporter (VGLUT) plays an essential role in L-glutamate signaling in neurons and some peripheral tissues through vesicular storage of L-glutamate in secretory vesicles. To investigate the topology of VGLUT in membranes, we prepared site-directed antibodies against the amino-terminal (anti-N), 1st putative loop (anti-L), and carboxyl terminal (anti-C) regions. None of the antibodies reacted with VGLUT2 expressed in COS cells because they could not gain access to the antigen. However, both the anti-N and anti-C antibodies recognized VGLUT2 when the cells were permeabilized with digitonin, while the anti-L antibodies did not. Immunological reactivity to anti-L-antibodies appeared when the cells were permeabilized with Triton X-100. These results suggest that both the amino-terminal and carboxyl-terminal regions of VGLUT2 in membranes face the cytoplasm while the 1st loop faces the lumen.
Collapse
Affiliation(s)
- Sun-Kyung Jung
- Laboratory of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | | | | | | |
Collapse
|
364
|
Bogen IL, Boulland JL, Mariussen E, Wright MS, Fonnum F, Kao HT, Walaas SI. Absence of synapsin I and II is accompanied by decreases in vesicular transport of specific neurotransmitters. J Neurochem 2006; 96:1458-66. [PMID: 16478532 DOI: 10.1111/j.1471-4159.2005.03636.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Studies of synapsin-deficient mice have shown decreases in the number of synaptic vesicles but knowledge about the consequences of this decrease, and which classes of vesicles are being affected, has been lacking. In this study, glutamatergic, GABAergic and dopaminergic transport has been analysed in animals where the genes encoding synapsin I and II were inactivated. The levels of the vesicular glutamate transporter (VGLUT) 1, VGLUT2 and the vesicular GABA transporter (VGAT) were decreased by approximately 40% in adult forebrain from mice devoid of synapsin I and II, while vesicular monoamine transporter (VMAT) 2 and VGLUT3 were present in unchanged amounts compared with wild-type mice. Functional studies on synaptic vesicles showed that the vesicular uptake of glutamate and GABA was decreased by 41 and 23%, respectively, while uptake of dopamine was unaffected by the lack of synapsin I and II. Double-labelling studies showed that VGLUT1 and VGLUT2 colocalized fully with synapsin I and/or II in the hippocampus and neostriatum, respectively. VGAT showed partial colocalization, while VGLUT3 and VMAT2 did not colocalize with either synapsin I or II in the brain areas studied. In conclusion, distinct vesicular transporters show a variable degree of colocalization with synapsin proteins and, hence, distinct sensitivities to inactivation of the genes encoding synapsin I and II.
Collapse
Affiliation(s)
- Inger Lise Bogen
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
365
|
Vinatier J, Herzog E, Plamont MA, Wojcik SM, Schmidt A, Brose N, Daviet L, El Mestikawy S, Giros B. Interaction between the vesicular glutamate transporter type 1 and endophilin A1, a protein essential for endocytosis. J Neurochem 2006; 97:1111-25. [PMID: 16606361 DOI: 10.1111/j.1471-4159.2006.03821.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the nerve terminal, neurotransmitter is actively packaged into synaptic vesicles before its release by Ca2+-dependent exocytosis. The three vesicular glutamate transporters (VGLUT1, -2 and -3) are highly conserved proteins that display similar bioenergetic and pharmacological properties but are expressed in different brain areas. We used the divergent C-terminus of VGLUT1 as a bait in a yeast two-hybrid screen to identify and map the interaction between a proline-rich domain of VGLUT1 and the Src homology domain 3 (SH3) domain of endophilin. We further confirmed this interaction by using different glutathione-S-transferase-endophilin fusion proteins to pull down VGLUT1 from rat brain extracts. The expression profiles of the two genes and proteins were compared on rat brain sections, showing that endophilin is most highly expressed in regions and cells expressing VGLUT1. Double immunofluorescence in the rat cerebellum shows that most VGLUT1-positive terminals co-express endophilin, whereas VGLUT2-expressing terminals are often devoid of endophilin. However, neither VGLUT1 transport activity, endophilin enzymatic activity nor VGLUT1 synaptic targeting were altered by this interaction. Overall, the discovery of endophilin as a partner for VGLUT1 in nerve terminals strongly suggests the existence of functional differences between VGLUT1 and -2 terminals in their abilities to replenish vesicle pools.
Collapse
Affiliation(s)
- Jacqueline Vinatier
- INSERM U513, Neurobiology and Psychiatry, Faculté de Médecine, Créteil, France
| | | | | | | | | | | | | | | | | |
Collapse
|
366
|
Yelamanchili SV, Pendyala G, Brunk I, Darna M, Albrecht U, Ahnert-Hilger G. Differential sorting of the vesicular glutamate transporter 1 into a defined vesicular pool is regulated by light signaling involving the clock gene Period2. J Biol Chem 2006; 281:15671-9. [PMID: 16595674 DOI: 10.1074/jbc.m600378200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic strength depends on the amount of neurotransmitter stored in synaptic vesicles. The vesicular transmitter content has recently been shown to be directly dependent on the expression levels of vesicular neurotransmitter transporters indicating that the transport capacity of synaptic vesicles is a critical determinant for synaptic efficacy. Using synaptic vesicles prepared from whole brain at different times of the day we now show that the amount of vesicular glutamate transporter (VGLUT) 1 undergoes strong diurnal cycling. VGLUT1 protein levels are high before the start of the light period, decline at noon, increase again before start of the dark period, and decline again at midnight. Mice kept in complete darkness showed within a 24-h period only a single peak of VGLUT1 expression in the middle of the rest phase. In contrast, mice lacking the period gene Period 2, a core component of the circadian clock, did not show any light-cycle-dependent changes of VGLUT1 levels. No other of several synaptic vesicle proteins examined underwent circadian cycling. Circadian cycling of VGLUT1 was not seen when analyzing homogenate or synaptosomes, the starting fraction for vesicle preparation. Circadian cycling of VGLUT1 was also not reflected at the mRNA level. We conclude that nerve terminals are endowed with mechanisms that regulate quantal size by changing the copy number of transporters in synaptic vesicles. A reduced amount of VGLUT1 per vesicle is probably achieved by means of selective sorting controlled by clock genes.
Collapse
Affiliation(s)
- Sowmya V Yelamanchili
- AG Functional Cell Biology, Centre for Anatomy, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
367
|
Nadrigny F, Rivals I, Hirrlinger PG, Koulakoff A, Personnaz L, Vernet M, Allioux M, Chaumeil M, Ropert N, Giaume C, Kirchhoff F, Oheim M. Detecting fluorescent protein expression and co-localisation on single secretory vesicles with linear spectral unmixing. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:533-47. [PMID: 16568270 DOI: 10.1007/s00249-005-0040-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 12/07/2005] [Indexed: 10/24/2022]
Abstract
Many questions in cell biology and biophysics involve the quantitation of co-localisation and the interaction of proteins tagged with different fluorophores. However, the incomplete separation of the different colour channels due to the presence of autofluorescence, along with cross-excitation and emission "bleed-through" of one colour channel into the other, all combine to render the interpretation of multi-band images ambiguous. Here we introduce a new live-cell epifluorescence spectral imaging and linear unmixing technique for classifying resolution-limited point objects containing multiple fluorophores. We demonstrate the performance of our technique by detecting, at the single-vesicle level, the co-expression of the vesicle-associated membrane protein, VAMP-2 (also called synaptobrevin-2), linked to either enhanced green fluorescent protein (EGFP) or citrine [a less pH-sensitive variant of enhanced yellow fluorescent protein (EYFP)], in mouse cortical astrocytes. In contrast, the co-expression of VAMP-2-citrine and the lysosomal transporter sialine fused to EGFP resulted in little overlap. Spectral imaging and linear unmixing permit us to fingerprint the expression of spectrally overlapping fluorescent proteins on single secretory organelles in the presence of a spectrally broad autofluorescence. Our technique provides a robust alternative to error-prone dual- or triple colour co-localisation studies.
Collapse
Affiliation(s)
- Fabien Nadrigny
- Molecular and Cellular Biophysics of Synaptic Transmission, Laboratory of Neurophysiology and New Microscopies, INSERM U603, CNRS FRE 2500, Université René Descartes (Paris 5), 45 rue des Saints Pères, 75 006, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
368
|
Kashani A, Betancur C, Giros B, Hirsch E, El Mestikawy S. Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson disease. Neurobiol Aging 2006; 28:568-78. [PMID: 16563567 PMCID: PMC1976623 DOI: 10.1016/j.neurobiolaging.2006.02.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 02/03/2006] [Accepted: 02/14/2006] [Indexed: 11/28/2022]
Abstract
Glutamatergic pathways play a key role in the functional organization of neuronal circuits involved in Parkinson disease (PD). Recently, three vesicular glutamate transporters (VGLUT1-3) were identified. VGLUT1 and VGLUT2 are responsible for the uploading of glutamate into synaptic vesicles and are the first specific markers of glutamatergic neurons available. Here, we analyzed the expression of VGLUT1 and VGLUT2 in autopsy tissues of PD patients and matched controls using Western blot and immunoautoradiography. VGLUT1 and VGLUT2 expression was increased in the Parkinsonian putamen by 24% and 29%, respectively (p<0.01). In contrast, only VGLUT1 was dramatically decreased in the prefrontal and temporal cortex of PD patients (approximately 50%, p<0.01 and p<0.001, respectively). These findings demonstrate the existence of profound alterations of glutamatergic transmission in PD, which are likely to contribute to the motor and cognitive impairments associated with the disease, and should thus be taken into account in the treatment of PD.
Collapse
Affiliation(s)
- Alireza Kashani
- Neurobiologie et Psychiatrie
INSERM : U513Université Paris XII Val de MarneFaculte de Medecine PARIS XII
8, Rue du General Sarrail
94010 CRETEIL CEDEX,FR
| | - Catalina Betancur
- Neurobiologie et Psychiatrie
INSERM : U513Université Paris XII Val de MarneFaculte de Medecine PARIS XII
8, Rue du General Sarrail
94010 CRETEIL CEDEX,FR
| | - Bruno Giros
- Neurobiologie et Psychiatrie
INSERM : U513Université Paris XII Val de MarneFaculte de Medecine PARIS XII
8, Rue du General Sarrail
94010 CRETEIL CEDEX,FR
| | - Etienne Hirsch
- Neurologie et thérapeutique expérimentale
INSERM : U679 IFR70Université Pierre et Marie Curie - Paris VIGH Pitié-Salpetrière
47, Boulevard de L'Hopital
75651 PARIS CEDEX 13,FR
| | - Salah El Mestikawy
- Neurobiologie et Psychiatrie
INSERM : U513Université Paris XII Val de MarneFaculte de Medecine PARIS XII
8, Rue du General Sarrail
94010 CRETEIL CEDEX,FR
- * Correspondence should be adressed to: Salah El Mestikawy
| |
Collapse
|
369
|
Winter S, Brunk I, Walther DJ, Höltje M, Jiang M, Peter JU, Takamori S, Jahn R, Birnbaumer L, Ahnert-Hilger G. Galphao2 regulates vesicular glutamate transporter activity by changing its chloride dependence. J Neurosci 2006; 25:4672-80. [PMID: 15872115 PMCID: PMC6725018 DOI: 10.1523/jneurosci.0549-05.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Classical neurotransmitters, including monoamines, acetylcholine, glutamate, GABA, and glycine, are loaded into synaptic vesicles by means of specific transporters. Vesicular monoamine transporters are under negative regulation by alpha subunits of trimeric G-proteins, including Galpha(o2) and Galpha(q). Furthermore, glutamate uptake, mediated by vesicular glutamate transporters (VGLUTs), is decreased by the nonhydrolysable GTP-analog guanylylimidodiphosphate. Using mutant mice lacking various Galpha subunits, including Galpha(o1), Galpha(o2), Galpha(q), and Galpha11, and a Galpha(o2)-specific monoclonal antibody, we now show that VGLUTs are exclusively regulated by Galpha(o2). G-protein activation does not affect the electrochemical proton gradient serving as driving force for neurotransmitter uptake; rather, Galpha(o2) exerts its action by specifically affecting the chloride dependence of VGLUTs. All VGLUTs show maximal activity at approximately 5 mm chloride. Activated Galpha(o2) shifts this maximum to lower chloride concentrations. In contrast, glutamate uptake by vesicles isolated from Galpha(o2-/-) mice have completely lost chloride activation. Thus, Galpha(o2) acts on a putative regulatory chloride binding domain that appears to modulate transport activity of vesicular glutamate transporters.
Collapse
Affiliation(s)
- Sandra Winter
- AG Funktionelle Zellbiologie, Centrum für Anatomie, Charité Universitätsmedizin Berlin, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
370
|
Erickson JD, De Gois S, Varoqui H, Schafer MKH, Weihe E. Activity-dependent regulation of vesicular glutamate and GABA transporters: a means to scale quantal size. Neurochem Int 2006; 48:643-9. [PMID: 16546297 DOI: 10.1016/j.neuint.2005.12.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 12/21/2005] [Indexed: 11/28/2022]
Abstract
The functional balance of glutamatergic and GABAergic signaling in neuronal cortical circuits is under homeostatic control. That is, prolonged alterations of global network activity leads to opposite changes in quantal amplitude at glutamatergic and GABAergic synapses. Such scaling of excitatory and inhibitory transmission within cortical circuits serves to restore and maintain a constant spontaneous firing rate of pyramidal neurons. Our recent work shows that this includes alterations in the levels of expression of vesicular glutamate (VGLUT1 and VGLUT2) and GABA (VIAAT) transporters. Other vesicle markers, such as synaptophysin or synapsin, are not regulated in this way. Endogenous regulation at the level of mRNA and synaptic protein controls the number of transporters per vesicle and hence, the level of vesicle filling with transmitter. Bidirectional and opposite activity-dependent regulation of VGLUT1 and VIAAT expression would serve to adjust the balance of glutamate and GABA release and therefore the level of postsynaptic receptor saturation. In some excitatory neurons and synapses, co-expression of VGLUT1 and VGLUT2 occurs. Bidirectional and opposite changes in the levels of two excitatory vesicular transporters would enable individual neocortical neurons to scale up or scale down the level of vesicular glutamate storage, and thus, the amount available for release at individual synapses. Regulated vesicular transmitter storage and release via selective changes in the level of expression of vesicular glutamate and GABA transporters indicates that homeostatic plasticity of synaptic strength at cortical synapses includes presynaptic elements.
Collapse
Affiliation(s)
- Jeffrey D Erickson
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, 70112, USA.
| | | | | | | | | |
Collapse
|
371
|
Hallberg OE, Bogen IL, Reistad T, Haug KH, Wright MS, Fonnum F, Walaas SI. Differential development of vesicular glutamate transporters in brain: an in vitro study of cerebellar granule cells. Neurochem Int 2006; 48:579-85. [PMID: 16517018 DOI: 10.1016/j.neuint.2005.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/22/2005] [Accepted: 12/22/2005] [Indexed: 11/28/2022]
Abstract
The cerebellar granule cells have been extensively used for studies on metabolism, neurotransmission and neurotoxicology, since they can easily be grown in cultures. However, knowledge about the development of different proteins essential for synaptic transmission in these cells is lacking. This study has characterized the developmental profiles of the vesicular glutamate transporters (VGLUTs) and the synaptic vesicle proteins synapsins and synaptophysin in cerebellar granule cells and in co-cultures containing both granule cells and astrocytes. The protein levels of VGLUT2 decreased by approximately 70% from days 2 to 7 in vitro, whereas the levels of VGLUT1 increased by approximately 95%. Protein levels of synapsin I, synapsin IIIa and synaptophysin showed a developmental pattern similar to VGLUT1 while synapsin II and VGLUT3 were absent. The mRNA expressions of VGLUT1 and VGLUT2 were in accordance with the protein levels. The results indicate both that cerebellar granule cells are mature at approximately 7 days in vitro, and that the up-regulation of VGLUT1 and down-regulation of VGLUT2 in cerebellar granule cells are both independent of surrounding astrocytes and neuronal input. The results of this study are discussed in relation to general developmental profiles of VGLUTs in other brain regions.
Collapse
Affiliation(s)
- Olof Ehlers Hallberg
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1112, Blindern, N-0317 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
372
|
Buckby LE, Jensen TP, Smith PJE, Empson RM. Network stability through homeostatic scaling of excitatory and inhibitory synapses following inactivity in CA3 of rat organotypic hippocampal slice cultures. Mol Cell Neurosci 2006; 31:805-16. [PMID: 16500111 DOI: 10.1016/j.mcn.2006.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 12/06/2005] [Accepted: 01/11/2006] [Indexed: 11/20/2022] Open
Abstract
Homeostatic plasticity is a phenomenon whereby synaptic strength is scaled in the context of the activity that the network receives. Here, we have analysed excitatory and inhibitory synapses in a model of homeostatic plasticity where rat organotypic hippocampal slice cultures were deprived of excitatory synaptic input by the NMDA and AMPA/KA glutamate receptor antagonists, AP5 and CNQX. We show that chronic excitatory synapse deprivation generates an excitable CA3 network where enhanced amplitude and frequency of spontaneous excitatory post-synaptic potentials were associated with increased glutamate receptor subunit expression and increased number and size of synapsin 1 and VGLUT1 positive puncta. Intact spontaneous inhibitory post-synaptic potentials coincided with persistent expression of the GABA-A receptor alpha subunit and GAD65 and an enhancement of parvalbumin-positive puncta. In this model of homeostatic plasticity, scaling up of synaptic excitation and maintenance of fast synaptic inhibition promote an excitable, but stable, CA3 network.
Collapse
Affiliation(s)
- Lucy E Buckby
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | | | | |
Collapse
|
373
|
Krantz DE. Vesicular monogamy? Neuron 2006; 49:1-2. [PMID: 16387631 DOI: 10.1016/j.neuron.2005.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Vesicular neurotransmitter transporters package transmitter into the lumen of synaptic vesicles for quantal release. However, the number of transporters that localize to each vesicle is not known. In this issue of Neuron, a study by Daniels et al. using the Drosophila neuromuscular junction and mutations of the vesicular glutamate transporter suggests that one transporter may suffice to fill each vesicle.
Collapse
Affiliation(s)
- David E Krantz
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, The David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
374
|
Wilson NR, Kang J, Hueske EV, Leung T, Varoqui H, Murnick JG, Erickson JD, Liu G. Presynaptic regulation of quantal size by the vesicular glutamate transporter VGLUT1. J Neurosci 2006; 25:6221-34. [PMID: 15987952 PMCID: PMC6725055 DOI: 10.1523/jneurosci.3003-04.2005] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A fundamental question in synaptic physiology is whether the unitary strength of a synapse can be regulated by presynaptic characteristics and, if so, what those characteristics might be. Here, we characterize a newly proposed mechanism for altering the strength of glutamatergic synapses based on the recently identified vesicular glutamate transporter VGLUT1. We provide direct evidence that filling in isolated synaptic vesicles is subject to a dynamic equilibrium that is determined by both the concentration of available glutamate and the number of vesicular transporters participating in loading. We observe that changing the number of vesicular transporters expressed at hippocampal excitatory synapses results in enhanced evoked and miniature responses and verify biophysically that these changes correspond to an increase in the amount of glutamate released per vesicle into the synaptic cleft. In addition, we find that this modulation of synaptic strength by vesicular transporter expression is endogenously regulated, both across development to coincide with a maturational increase in vesicle cycling and quantal amplitude and by excitatory and inhibitory receptor activation in mature neurons to provide an activity-dependent scaling of quantal size via a presynaptic mechanism. Together, these findings underscore that vesicular transporter expression is used endogenously to directly regulate the extent of glutamate release, providing a concise presynaptic mechanism for controlling the quantal efficacy of excitatory transmission during synaptic refinement and plasticity.
Collapse
Affiliation(s)
- Nathan R Wilson
- Department of Brain and Cognitive Sciences, Picower Center for Learning and Memory, and The Institute of Physical and Chemical Research (RIKEN), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | | | | | | | | | | | | | |
Collapse
|
375
|
De Gois S, Schäfer MKH, Defamie N, Chen C, Ricci A, Weihe E, Varoqui H, Erickson JD. Homeostatic scaling of vesicular glutamate and GABA transporter expression in rat neocortical circuits. J Neurosci 2006; 25:7121-33. [PMID: 16079394 PMCID: PMC6725238 DOI: 10.1523/jneurosci.5221-04.2005] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homeostatic control of pyramidal neuron firing rate involves a functional balance of feedforward excitation and feedback inhibition in neocortical circuits. Here, we reveal a dynamic scaling in vesicular excitatory (vesicular glutamate transporters VGLUT1 and VGLUT2) and inhibitory (vesicular inhibitory amino acid transporter VIAAT) transporter mRNA and synaptic protein expression in rat neocortical neuronal cultures, using a well established in vitro protocol to induce homeostatic plasticity. During the second and third week of synaptic differentiation, the predominant vesicular transporters expressed in neocortical neurons, VGLUT1 and VIAAT, are both dramatically upregulated. In mature cultures, VGLUT1 and VIAAT exhibit bidirectional and opposite regulation by prolonged activity changes. Endogenous coregulation during development and homeostatic scaling of the expression of the transporters in functionally differentiated cultures may serve to control vesicular glutamate and GABA filling and adjust functional presynaptic excitatory/inhibitory balance. Unexpectedly, hyperexcitation in differentiated cultures triggers a striking increase in VGLUT2 mRNA and synaptic protein, whereas decreased excitation reduces levels. VGLUT2 mRNA and protein are expressed in subsets of VGLUT1-encoded neocortical neurons that we identify in primary cultures and in neocortex in situ and in vivo. After prolonged hyperexcitation, downregulation of VGLUT1/synaptophysin intensity ratios at most synapses is observed, whereas a subset of VGLUT1-containing boutons selectively increase the expression of VGLUT2. Bidirectional and opposite regulation of VGLUT1 and VGLUT2 by activity may serve as positive or negative feedback regulators for cortical synaptic transmission. Intracortical VGLUT1/VGLUT2 coexpressing neurons have the capacity to independently modulate the level of expression of either transporter at discrete synapses and therefore may serve as a plastic interface between subcortical thalamic input (VGLUT2) and cortical output (VGLUT1) neurons.
Collapse
Affiliation(s)
- Stéphanie De Gois
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
376
|
Kitzman P. Changes in vesicular glutamate transporter 2, vesicular GABA transporter and vesicular acetylcholine transporter labeling of sacrocaudal motoneurons in the spastic rat. Exp Neurol 2006; 197:407-19. [PMID: 16300756 DOI: 10.1016/j.expneurol.2005.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 09/17/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
Spasticity of the midline musculature can significantly hinder performing transfers and lead to development of pressure sores. Currently, significant gaps exist in our knowledge of the pathophysiology involved in spasticity development following SCI, especially regarding the axial musculature. The goals of this study were: (1) to determine the effects of S(2) transection on the number and distribution of glutamatergic, GABAergic and cholinergic inputs on more caudal motoneurons, (2) to correlate these changes with the development of spasticity within the tail musculature, which are the caudal counterparts to the axial musculature. Animals with S(2) spinal transection were tested behaviorally for the progression of spasticity within the tail musculature. At 1, 2, 4, or 12 weeks post-injury, the animals were sacrificed and temporal changes in glutamatergic, GABAergic, and cholinergic inputs to sacrocaudal motoneurons were assessed using antibodies for the specific vesicular transporter of each neurotransmitter and confocal microscopy. At 1 week post-injury, when the tail musculature demonstrated decreased responsiveness, an overall increase in the ratio of excitatory to inhibitory input to sacrocaudal motoneurons was observed. From 2 to 12 weeks post-injury, when the tail musculature demonstrated increased reflex behavior, an overall decrease in the ratio of excitatory to inhibitory inputs was observed. Additionally, from 2 to 12 weeks following spinal transection, a progressive loss of cholinergic labeling of sacrocaudal motoneurons was observed. The increase in the overall level of excitation with a concomitant loss of cholinergic influence following spinal transection could, in part, explain the development of spasticity within the tail musculature.
Collapse
Affiliation(s)
- Patrick Kitzman
- Department of Rehabilitation Sciences, The University of Kentucky, 126G Charles T. Wethington Building, 900 S. Limestone Ave., Lexington, 40536-0200, USA.
| |
Collapse
|
377
|
Nakamura K, Hioki H, Fujiyama F, Kaneko T. Postnatal changes of vesicular glutamate transporter (VGluT)1 and VGluT2 immunoreactivities and their colocalization in the mouse forebrain. J Comp Neurol 2006; 492:263-88. [PMID: 16217795 DOI: 10.1002/cne.20705] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vesicular glutamate transporter 1 (VGluT1) and VGluT2 accumulate neurotransmitter glutamate into synaptic vesicles at presynaptic terminals, and their antibodies are thus considered to be a good marker for glutamatergic axon terminals. In the present study, we investigated the postnatal development and maturation of glutamatergic neuronal systems by single- and double-immunolabelings for VGluT1 and VGluT2 in mouse forebrain including the telencephalon and diencephalon. VGluT2 immunoreactivity was widely distributed in the forebrain, particularly in the diencephalon, from postnatal day 0 (P0) to adulthood, suggesting relatively early maturation of VGluT2-loaded glutamatergic axons. In contrast, VGluT1 immunoreactivity was intense only in the limbic regions at P0, and drastically increased in the other telencephalic and diencephalic regions during three postnatal weeks. Interestingly, VGluT1 immunoreactivity was frequently colocalized with VGluT2 immunoreactivity at single axon terminal-like profiles in layer IV of the primary somatosensory area from P5 to P10 and in the ventral posteromedial thalamic nucleus from P0 to P14. This was in sharp contrast to the finding that almost no colocalization was found in glomeruli of the olfactory bulb, patchy regions of the caudate-putamen, and the ventral posterolateral thalamic nucleus, where moderate to intense immunoreactivities for VGluT1 and VGluT2 were intermingled with each other in neuropil during postnatal development. The present results indicate that VGluT2-loaded glutamatergic axons maturate earlier than VGluT1-laden axons in the mouse telencephalic and diencephalic regions, and suggest that VGluT1 plays a transient developmental role in some glutamatergic systems that mainly use VGluT2 in the adulthood.
Collapse
Affiliation(s)
- Kouichi Nakamura
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
378
|
Daniels RW, Collins CA, Chen K, Gelfand MV, Featherstone DE, DiAntonio A. A single vesicular glutamate transporter is sufficient to fill a synaptic vesicle. Neuron 2006; 49:11-6. [PMID: 16387635 PMCID: PMC2248602 DOI: 10.1016/j.neuron.2005.11.032] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/20/2005] [Accepted: 11/17/2005] [Indexed: 11/17/2022]
Abstract
Quantal size is the postsynaptic response to the release of a single synaptic vesicle and is determined in part by the amount of transmitter within that vesicle. At glutamatergic synapses, the vesicular glutamate transporter (VGLUT) fills vesicles with glutamate. While elevated VGLUT expression increases quantal size, the minimum number of transporters required to fill a vesicle is unknown. In Drosophila DVGLUT mutants, reduced transporter levels lead to a dose-dependent reduction in the frequency of spontaneous quantal release with no change in quantal size. Quantal frequency is not limited by vesicle number or impaired exocytosis. This suggests that a single functional unit of transporter is both necessary and sufficient to fill a vesicle to completion and that vesicles without DVGLUT are empty. Consistent with the presence of empty vesicles, at dvglut mutant synapses synaptic vesicles are smaller, suggesting that vesicle filling and/or transporter level is an important determinant of vesicle size.
Collapse
Affiliation(s)
- Richard W. Daniels
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Catherine A. Collins
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kaiyun Chen
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Maria V. Gelfand
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - David E. Featherstone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Aaron DiAntonio
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
379
|
Wässle H, Regus-Leidig H, Haverkamp S. Expression of the vesicular glutamate transporter vGluT2 in a subset of cones of the mouse retina. J Comp Neurol 2006; 496:544-55. [PMID: 16572432 DOI: 10.1002/cne.20942] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cone photoreceptors have a continuous release of glutamate that is modulated by light. Vesicular glutamate transporters (vGluT) play an essential role for sustaining this release by loading synaptic vesicles in the cone synapse, the so-called cone pedicle. In the present study mouse retinas were immunostained for vGluT1 and vGluT2. vGluT1 was localized to all cone pedicles and rod spherules, whereas vGluT2 was found in only 10% of the cone pedicles. The vGluT2-expressing cones were characterized in more detail. They are distributed in a regular array, suggesting they are a distinct type. Their proportion does not differ between dorsal (L-cone-dominated) and ventral (S-cone-dominated) retina, and they are not the genuine blue cones of the mouse retina. During development, vGluT1 and vGluT2 expression in cones starts at around P0 and right from the beginning vGluT2 is only expressed in a subset of cones. Bipolar cells contact the vGluT2-expressing cones and other cones nonselectively. The possible functional role of vGluT2 expression in a small fraction of cones is discussed.
Collapse
Affiliation(s)
- Heinz Wässle
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research, D-60528 Frankfurt/Main, Germany.
| | | | | |
Collapse
|
380
|
Chang HY, Grygoruk A, Brooks ES, Ackerson LC, Maidment NT, Bainton RJ, Krantz DE. Overexpression of the Drosophila vesicular monoamine transporter increases motor activity and courtship but decreases the behavioral response to cocaine. Mol Psychiatry 2006; 11:99-113. [PMID: 16189511 DOI: 10.1038/sj.mp.4001742] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aminergic signaling pathways have been implicated in a variety of neuropsychiatric illnesses, but the mechanisms by which these pathways influence complex behavior remain obscure. Vesicular monoamine transporters (VMATs) have been shown to regulate the amount of monoamine neurotransmitter that is stored and released from synaptic vesicles in mammalian systems, and an increase in their expression has been observed in bipolar patients. The model organism Drosophila melanogaster provides a powerful, but underutilized genetic system for studying how dopamine (DA) and serotonin (5HT) may influence behavior. We show that a Drosophila isoform of VMAT (DVMAT-A) is expressed in both dopaminergic and serotonergic neurons in the adult Drosophila brain. Overexpression of DVMAT-A in these cells potentiates stereotypic grooming behaviors and locomotion and can be reversed by reserpine, which blocks DVMAT activity, and haloperidol, a DA receptor antagonist. We also observe a prolongation of courtship behavior, a decrease in successful mating and a decrease in fertility, suggesting a role for aminergic circuits in the modulation of sexual behaviors. Finally, we find that DMVAT-A overexpression decreases the fly's sensitivity to cocaine, suggesting that the synaptic machinery responsible for this behavior may be downregulated. DVMAT transgenes may be targeted to additional neuronal pathways using standard Drosophila techniques, and our results provide a novel paradigm to study the mechanisms by which monoamines regulate complex behaviors relevant to neuropsychiatric illness.
Collapse
Affiliation(s)
- H-Y Chang
- Department of Psychiatry and Biobehavioral Sciences, Gonda (Goldschmied) Center for Genetic and Neuroscience Research, Geffen School of Medicine-UCLA, University of California at Los Angeles, 695 Charles Young Drive, Los Angeles, CA 90095-1761, USA
| | | | | | | | | | | | | |
Collapse
|
381
|
Alonso-Nanclares L, De Felipe J. Vesicular glutamate transporter 1 immunostaining in the normal and epileptic human cerebral cortex. Neuroscience 2005; 134:59-68. [PMID: 15961236 DOI: 10.1016/j.neuroscience.2005.03.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/21/2005] [Accepted: 03/11/2005] [Indexed: 12/19/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the brain where, due to the activity of specific vesicular glutamate transporters, it accumulates in synaptic vesicles. The vesicular glutamate transporter 1 is found in the majority of axon terminals that form asymmetrical (excitatory) synapses in the rat neocortex. However, since there is no information available regarding the distribution of vesicular glutamate transporter 1 in the human neocortex, we have used correlative light and electron microscopy to define its expression in this tissue. We found that the distribution of vesicular glutamate transporter 1-immunoreactivity is virtually identical to that found in the rat neocortex, both at the light and electron microscope levels. Therefore, we assessed whether vesicular glutamate transporter 1 immunostaining might be a useful tool to study the pathological alterations of glutamatergic transmission in the epileptic cerebral cortex. We analyzed the distribution of vesicular glutamate transporter 1 in the peritumoral neocortex of patients with epilepsy secondary to low-grade tumors. In these regions, we found alterations in the pattern of vesicular glutamate transporter 1-immunoreactivity that perfectly matched the neuronal loss and gliosis, as well as the decrease in the number of asymmetrical synapses identified by electron microscopy in this tissue. Thus, vesicular glutamate transporter 1 immunostaining appears to be a reliable and simple tool to study glutamatergic synapses in the normal and epileptic human cerebral cortex.
Collapse
|
382
|
Ewald P, Neuhuber WL, Raab M. Vesicular glutamate transporter 1 immunoreactivity in extrinsic and intrinsic innervation of the rat esophagus. Histochem Cell Biol 2005; 125:377-95. [PMID: 16231188 DOI: 10.1007/s00418-005-0083-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2005] [Indexed: 01/19/2023]
Abstract
Encouraged by the recent finding of vesicular glutamate transporter 2 (VGLUT2) immunoreactivity (-ir) in intraganglionic laminar endings (IGLEs) of the rat esophagus, we investigated also the distribution and co-localization patterns of VGLUT1. Confocal imaging revealed substantial co-localization of VGLUT1-ir with selective markers of IGLEs, i.e., calretinin and VGLUT2, indicating that IGLEs contain both VGLUT1 and VGLUT2 within their synaptic vesicles. Besides IGLEs, we found VGLUT1-ir in both cholinergic and nitrergic myenteric neuronal cell bodies, in fibers of the muscularis mucosae, and in esophageal motor endplates. Skeletal neuromuscular junctions, in contrast, showed no VGLUT1-ir. We also tested for probable co-localization of VGLUT1-ir with markers of extrinsic and intrinsic esophageal innervation and glia. Within the myenteric neuropil we found, besides co-localization of VGLUT1 and substance P, no further co-localization of VGLUT1-ir with any of these markers. In the muscularis mucosae some VGLUT1-ir fibers were shown to contain neuronal nitric oxide synthase (nNOS)-ir. VGLUT1-ir in esophageal motor endplates was partly co-localized with vesicular acetylcholine transporter (VAChT)/choline acetyltransferase (ChAT)-ir, but VGLUT1-ir was also demonstrated in separately terminating fibers at motor endplates co-localized neither with ChAT/VAChT-ir nor with nNOS-ir, suggesting a hitherto unknown glutamatergic enteric co-innervation. Thus, VGLUT1-ir was found in extrinsic as well as intrinsic innervation of the rat esophagus.
Collapse
Affiliation(s)
- P Ewald
- Department of Anatomy I, University of Erlangen-Nuremberg, Krankenhausstr. 9, 91054, Erlangen, Germany
| | | | | |
Collapse
|
383
|
Greer CL, Grygoruk A, Patton DE, Ley B, Romero-Calderon R, Chang HY, Houshyar R, Bainton RJ, Diantonio A, Krantz DE. A splice variant of the Drosophila vesicular monoamine transporter contains a conserved trafficking domain and functions in the storage of dopamine, serotonin, and octopamine. ACTA ACUST UNITED AC 2005; 64:239-58. [PMID: 15849736 DOI: 10.1002/neu.20146] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vesicular monoamine transporters (VMATs) mediate the transport of dopamine (DA), serotonin (5HT), and other monoamines into secretory vesicles. The regulation of mammalian VMAT and the related vesicular acetylcholine transporter (VAChT) has been proposed to involve membrane trafficking, but the mechanisms remain unclear. To facilitate a genetic analysis of vesicular transporter function and regulation, we have cloned the Drosophila homolog of the vesicular monoamine transporter (dVMAT). We identify two mRNA splice variants (DVMAT-A and B) that differ at their C-terminus, the domain responsible for endocytosis of mammalian VMAT and VAChT. DVMAT-A contains trafficking motifs conserved in mammals but not C. elegans, and internalization assays indicate that the DVMAT-A C-terminus is involved in endocytosis. DVMAT-B contains a divergent C-terminal domain and is less efficiently internalized from the cell surface. Using in vitro transport assays, we show that DVMAT-A recognizes DA, 5HT, octopamine, tyramine, and histamine as substrates, and similar to mammalian VMAT homologs, is inhibited by the drug reserpine and the environmental toxins 2,2,4,5,6-pentachlorobiphenyl and heptachlor. We have developed a specific antiserum to DVMAT-A, and find that it localizes to dopaminergic and serotonergic neurons as well as octopaminergic, type II terminals at the neuromuscular junction. Surprisingly, DVMAT-A is co-expressed at type II terminals with the Drosophila vesicular glutamate transporter. Our data suggest that DVMAT-A functions as a vesicular transporter for DA, 5HT, and octopamine in vivo, and will provide a powerful invertebrate model for the study of transporter trafficking and regulation.
Collapse
Affiliation(s)
- Christina L Greer
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Gonda (Goldschmied) Center for Genetic and Neuroscience Research, 695 Charles Young Drive, Los Angeles, California 90095-1761, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
384
|
Moutsimilli L, Farley S, Dumas S, El Mestikawy S, Giros B, Tzavara ET. Selective cortical VGLUT1 increase as a marker for antidepressant activity. Neuropharmacology 2005; 49:890-900. [PMID: 16111724 DOI: 10.1016/j.neuropharm.2005.06.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 06/22/2005] [Accepted: 06/27/2005] [Indexed: 11/16/2022]
Abstract
The two recently characterized vesicular glutamate transporters (VGLUT) presynaptically mark and differentiate two distinct excitatory neuronal populations and thus define a cortical and a subcortical glutamatergic system (VGLUT1 and VGLUT2 positive, respectively). These two systems might be differentially implicated in brain neuropathology. Still, little is known on the modalities of VGLUT1 and VGLUT2 regulations in response to pharmacological or physiological stimuli. Given the importance of cortical neuronal activity in psychosis we investigated VGLUT1 mRNA and protein expression in response to chronic treatment with commonly prescribed psychotropic medications. We show that agents with antidepressant activity, namely the antidepressants fluoxetine and desipramine, the atypical antipsychotic clozapine, and the mood stabilizer lithium increased VGLUT1 mRNA expression in neurons of the cerebral cortex and the hippocampus and in concert enhanced VGLUT1 protein expression in their projection fields. In contrast the typical antipsychotic haloperidol, the cognitive enhancers memantine and tacrine, and the anxiolytic diazepam were without effect. We suggest that VGLUT1 could be a useful marker for antidepressant activity. Furthermore, adaptive changes in VGLUT1 positive neurons could constitute a common functional endpoint for structurally unrelated antidepressants, representing promising antidepressant targets in tracking specificity, mechanism, and onset at action.
Collapse
Affiliation(s)
- Larissa Moutsimilli
- INSERM U513, Neurobiologie et Psychiatrie, 8, rue du Général Sarrail, Créteil 94010 cedex, France
| | | | | | | | | | | |
Collapse
|
385
|
Danik M, Cassoly E, Manseau F, Sotty F, Mouginot D, Williams S. Frequent coexpression of the vesicular glutamate transporter 1 and 2 genes, as well as coexpression with genes for choline acetyltransferase or glutamic acid decarboxylase in neurons of rat brain. J Neurosci Res 2005; 81:506-21. [PMID: 15983996 DOI: 10.1002/jnr.20500] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is widely believed that expression of the vesicular glutamate transporter genes VGLUT1 and VGLUT2 is restricted to glutamatergic neurons and that the two transporters segregate in different sets of neurons. Using single-cell multiplex RT-PCR (sc-RT-mPCR), we show that VGLUT1 and VGLUT2 mRNAs were coexpressed in most of the sampled neurons from the rat hippocampus, cortex, and cerebellum at postnatal Day (P)14 but not P60. In accordance, changes in VGLUT1 and VGLUT2 mRNA concentrations were found to occur in these and other brain areas between P14 and P60, as revealed by semiquantitative RT-PCR and quantitated by ribonuclease protection assay. VGLUT1 and -2 coexpression in the hippocampal formation is supported further by in situ hybridization data showing that virtually all cells in the CA1-CA3 pyramidal and granule cell layers were highly positive for both transcripts until P14. It was revealed using sc-RT-mPCR that transcripts for VGLUT1 and VGLUT2 were also present in neurons of the cerebellum, striatum, and septum that expressed markers for gamma-aminobutyric acid (GABA)ergic or cholinergic phenotypes, as well as in hippocampal cells containing transcripts for the glial fibrillary acidic protein. Our study suggests that VGLUT1 and VGLUT2 proteins may often transport glutamate into vesicles within the same neuron, especially during early postnatal development, and that they are expressed widely in presumed glutamatergic, GABAergic, and cholinergic neurons, as well as in astrocytes. Furthermore, our study shows that such coexpressing neurons remain in the adult brain and identifies several areas that contain them in both young and adult rats.
Collapse
Affiliation(s)
- Marc Danik
- Douglas Hospital Research Centre, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
386
|
Fogal B, Trettel J, Uliasz TF, Levine ES, Hewett SJ. Changes in secondary glutamate release underlie the developmental regulation of excitotoxic neuronal cell death. Neuroscience 2005; 132:929-42. [PMID: 15857699 DOI: 10.1016/j.neuroscience.2005.01.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/01/2004] [Accepted: 01/26/2005] [Indexed: 11/24/2022]
Abstract
Vulnerability to excitotoxicity increases during development in vivo and in vitro. To determine whether the mere presence of mature N-methyl-D-aspartate (NMDA) receptors coincides with the emergence of excitotoxicity or whether post-receptor signaling processes may also contribute, we examined the temporal relationship of NMDA receptor expression, function and toxicity using cortical cell cultures. Surface expression of all NMDA receptor subunits increased with time in culture. This correlated with NMDA receptor function, assessed both biochemically and electrophysiologically, but not with the appearance of excitotoxicity. Specifically, cells at day in vitro (DIV) 10 were less susceptible to NMDA receptor-induced neurotoxicity than those cultured for 14 days, even though receptor expression/function was identical. In addition, cell-attached single channel recordings revealed that NMDA receptor conductance, open probability, and frequency of channel openings were not significantly different between the two days. Intriguingly, depolarization-induced release of glutamate from cultures grown for 10 days was significantly lower than that released from cultures grown for 14 days. Further, exogenous addition of glutamate receptor agonists immediately after removal of NMDA rendered cultures at DIV 10 susceptible to excitotoxicity, while toxicity was significantly reduced by addition of an NMDA receptor antagonist immediately after exposure to NMDA at DIV 14. These data are the first to demonstrate that the subsequent, secondary release of glutamate plays an equal, if not more important, role than NMDA receptor development per se, in mediating the enhanced vulnerability of neurons to excitotoxicity that occurs with age.
Collapse
Affiliation(s)
- B Fogal
- Department of Neuroscience, University of Connecticut Health Center, MC 3401, Farmington, 06030-3401, USA
| | | | | | | | | |
Collapse
|
387
|
Tordera RM, Pei Q, Sharp T. Evidence for increased expression of the vesicular glutamate transporter, VGLUT1, by a course of antidepressant treatment. J Neurochem 2005; 94:875-83. [PMID: 15992385 DOI: 10.1111/j.1471-4159.2005.03192.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The therapeutic effect of a course of antidepressant treatment is believed to involve a cascade of neuroadaptive changes in gene expression leading to increased neural plasticity. Because glutamate is linked to mechanisms of neural plasticity, this transmitter may play a role in these changes. This study investigated the effect of antidepressant treatment on expression of the vesicular glutamate transporters, VGLUT1-3 in brain regions of the rat. Repeated treatment with fluoxetine, paroxetine or desipramine increased VGLUT1 mRNA abundance in frontal, orbital, cingulate and parietal cortices, and regions of the hippocampus. Immunoautoradiography analysis showed that repeated antidepressant drug treatment increased VGLUT1 protein expression. Repeated electroconvulsive shock (ECS) also increased VGLUT1 mRNA abundance in regions of the cortex and hippocampus compared to sham controls. The antidepressant drugs and ECS did not alter VGLUT1 mRNA abundance after acute administration, and no change was detected after repeated treatment with the antipsychotic agents, haloperidol and chlorpromazine. In contrast to VGLUT1, the different antidepressant treatments did not commonly increase the expression of VGLUT2 or VGLUT3 mRNA. These data suggest that a course of antidepressant drug or ECS treatment increases expression of VGLUT1, a key gene involved in the regulation of glutamate secretion.
Collapse
|
388
|
Daniels RW, Collins CA, Gelfand MV, Dant J, Brooks ES, Krantz DE, DiAntonio A. Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J Neurosci 2005; 24:10466-74. [PMID: 15548661 PMCID: PMC6730318 DOI: 10.1523/jneurosci.3001-04.2004] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quantal size is a fundamental parameter controlling the strength of synaptic transmission. The transmitter content of synaptic vesicles is one mechanism that can affect the physiological response to the release of a single vesicle. At glutamatergic synapses, vesicular glutamate transporters (VGLUTs) are responsible for filling synaptic vesicles with glutamate. To investigate how VGLUT expression can regulate synaptic strength in vivo, we have identified the Drosophila vesicular glutamate transporter, which we name DVGLUT. DVGLUT mRNA is expressed in glutamatergic motoneurons and a large number of interneurons in the Drosophila CNS. DVGLUT protein resides on synaptic vesicles and localizes to the presynaptic terminals of all known glutamatergic neuromuscular junctions as well as to synapses throughout the CNS neuropil. Increasing the expression of DVGLUT in motoneurons leads to an increase in quantal size that is accompanied by an increase in synaptic vesicle volume. At synapses confronted with increased glutamate release from each vesicle, there is a compensatory decrease in the number of synaptic vesicles released that maintains normal levels of synaptic excitation. These results demonstrate that (1) expression of DVGLUT determines the size and glutamate content of synaptic vesicles and (2) homeostatic mechanisms exist to attenuate the excitatory effects of excess glutamate release.
Collapse
Affiliation(s)
- Richard W Daniels
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
389
|
Leenders AM, Sheng ZH. Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity. Pharmacol Ther 2005; 105:69-84. [PMID: 15626456 PMCID: PMC1804289 DOI: 10.1016/j.pharmthera.2004.10.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Activity-dependent modulation of synaptic function and structure is emerging as one of the key mechanisms underlying synaptic plasticity. Whereas over the past decade considerable progress has been made in identifying postsynaptic mechanisms for synaptic plasticity, the presynaptic mechanisms involved have remained largely elusive. Recent evidence implicates that second messenger regulation of the protein interactions in synaptic vesicle release machinery is one mechanism by which cellular events modulate synaptic transmission. Thus, identifying protein kinases and their targets in nerve terminals, particularly those functionally regulated by synaptic activity or intracellular [Ca2+], is critical to the elucidation of the molecular mechanisms underlying modulation of neurotransmitter release and presynaptic plasticity. The phosphorylation and dephosphorylation states of synaptic proteins that mediate vesicle exocytosis could regulate the biochemical pathways leading from synaptic vesicle docking to fusion. However, functional evaluation of the activity-dependent phosphorylation events for modulating presynaptic functions still represents a considerable challenge. Here, we present a brief overview of the data on the newly identified candidate targets of the second messenger-activated protein kinases in the presynaptic release machinery and discuss the potential impact of these phosphorylation events in synaptic strength and presynaptic plasticity.
Collapse
Affiliation(s)
| | - Zu-Hang Sheng
- * Corresponding author. Tel.: 301 435 4596; fax: 301 480 5763. E-mail address: (Z.-H. Sheng)
| |
Collapse
|
390
|
Hur EE, Zaborszky L. Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization study [corrected]. J Comp Neurol 2005; 483:351-73. [PMID: 15682395 DOI: 10.1002/cne.20444] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamate transmission is critical for controlling cortical activity, but the specific contribution of the different isoforms of vesicular glutamate transporters in subcortical pathways to the neocortex is largely unknown. To determine the distribution and neocortical projections of vesicular glutamate transporter2 (Vglut2)-containing neurons, we used in situ hybridization and injections of the retrograde tracer Fluoro-Gold into the medial prefrontal and primary somatosensory cortices. The thalamus contains the majority of Vglut2 cells projecting to the neocortex (approximately 90% for the medial prefrontal cortex and 96% for the primary somatosensory cortex) followed by the hypothalamus and basal forebrain, the claustrum, and the brainstem. There are significantly more Vglut2 neurons projecting to the medial prefrontal cortex than to the primary somatosensory cortex. The medial prefrontal cortex also receives a higher percentage of Vglut2 projection from the hypothalamus than the primary somatosensory cortex. About 50% of thalamic Vglut2 projection to the medial prefrontal cortex and as much as 80% of the thalamic projection to primary somatosensory cortex originate in various relay thalamic nuclei. The remainder arise from different midline and intralaminar nuclei traditionally thought to provide nonspecific or diffuse projection to the cortex. The extrathalamic Vglut2 corticopetal projections, together with the thalamic intralaminar-midline Vglut2 corticopetal projections, may participate in diffuse activation of the neocortex.
Collapse
Affiliation(s)
- Elizabeth E Hur
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, USA
| | | |
Collapse
|
391
|
Eastwood SL, Burnet PWJ, Harrison PJ. Decreased hippocampal expression of the susceptibility gene PPP3CC and other calcineurin subunits in schizophrenia. Biol Psychiatry 2005; 57:702-10. [PMID: 15820226 DOI: 10.1016/j.biopsych.2004.12.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 12/08/2004] [Accepted: 12/16/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND Calcineurin (CaN) is a phosphatase involved in synaptic plasticity. A haplotype of the PPP3CC gene, which encodes the gamma isoform of the catalytic subunit (CaN A), has been associated with schizophrenia. However, the distribution of CaN A gamma is not established, nor whether its expression changes in schizophrenia. METHODS CaN A expression was analyzed in the hippocampal formation of 13 patients with schizophrenia and 12 controls. All three isoforms were examined, using in situ hybridization histochemistry, RT-PCR, and laser-assisted microdissection. CaN A protein was assessed using ELISA and immunohistochemistry. CaN A mRNAs were also measured in rats treated with haloperidol or chlorpromazine. RESULTS CaN was prominent in excitatory neurons. CaN A alpha and A beta isoforms were abundant in all subfields, but CaN A gamma was not reliably detected in CA1. CaN A protein, and all three mRNAs, were decreased in schizophrenia. The mRNA reductions were present in all subfields measured, except CA1. CaN A mRNAs were unaltered in the antipsychotic-treated rats. CONCLUSIONS Decreased CaN expression extends the evidence for aberrant hippocampal synaptic plasticity in schizophrenia, which particularly affects glutamatergic transmission, and which leaves CA1 relatively unaffected. Reduced expression of PPP3CC may underlie its genetic involvement in the disorder.
Collapse
Affiliation(s)
- Sharon L Eastwood
- Department of Psychiatry, University of Oxford, Warneford Hospital, Headington, Oxford, United Kingdom.
| | | | | |
Collapse
|
392
|
Billups B. Colocalization of vesicular glutamate transporters in the rat superior olivary complex. Neurosci Lett 2005; 382:66-70. [PMID: 15911123 DOI: 10.1016/j.neulet.2005.02.071] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 02/09/2005] [Accepted: 02/27/2005] [Indexed: 10/25/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) are responsible for the accumulation of the excitatory neurotransmitter glutamate into synaptic vesicles. It is currently controversial whether the two isoforms found in glutamatergic neurons, VGLUT1 and VGLUT2, are present at the same synapse or have entirely complementary patterns of distribution. Using fluorescent immunohistochemistry, this study examines the colocalization of these two transporters in the rat superior olivary complex (SOC) between postnatal day (P) 5 and 29. The medial and lateral superior olives (MSO; LSO) stain for both VGLUT1 and VGLUT2 at all ages studied, with VGLUT1 levels doubling over this developmental period and VGLUT2 levels remaining unchanged. The ventral nucleus of the trapezoid body (VNTB) strongly labels only for VGLUT2, despite the fact that glutamatergic synapses are present that are formed from collaterals of axons that go on to form synapses containing both VGLUT1 and VGLUT2. Principal neurons of the medial nucleus of the trapezoid body (MNTB) are surrounded by the calyx of Held presynaptic terminal, which is large enough to allow examination of VGLUT localization within a synapse. Throughout its postnatal developmental period a single calyx synapse contains both VGLUT1 and VGLUT2. Whereas VGLUT1 levels are greatly up-regulated from P5 to P29, VGLUT2 levels remain high. As the abundance of VGLUT determines the quantal size, this up-regulation will increase excitatory postsynaptic currents (EPSCs) and have influences on synaptic physiology.
Collapse
Affiliation(s)
- Brian Billups
- Department of Cell Physiology and Pharmacology, University of Leicester, P.O. Box 138, Leicester LE1 9HN, UK.
| |
Collapse
|
393
|
Eastwood SL, Harrison PJ. Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons. Schizophr Res 2005; 73:159-72. [PMID: 15653259 DOI: 10.1016/j.schres.2004.05.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 05/24/2004] [Accepted: 05/24/2004] [Indexed: 01/11/2023]
Abstract
Synaptic protein gene expression is altered in schizophrenia. In the hippocampal formation there may be particular involvement of glutamatergic neurons and their synapses, but overall the profile remains unclear. In this in situ hybridization histochemistry (ISHH) study, we examined four informative synaptic protein transcripts: vesicular glutamate transporter (VGLUT) 1, VGLUT2, complexin I, and complexin II, in dorsolateral prefrontal cortex (DPFC), superior temporal cortex (STC), and hippocampal formation, in 13 subjects with schizophrenia and 18 controls. In these areas, VGLUT1 and complexin II are expressed primarily by excitatory neurons, whereas complexin I is mainly expressed by inhibitory neurons. In schizophrenia, VGLUT1 mRNA was decreased in hippocampal formation and DPFC, complexin II mRNA was reduced in DPFC and STC, and complexin I mRNA decreased in STC. Hippocampal VGLUT1 mRNA declined with age selectively in the schizophrenia group. VGLUT2 mRNA was not quantifiable due to its low level. The data provide additional evidence for a synaptic pathology in schizophrenia, in terms of a reduced expression of three synaptic protein genes. In the hippocampus, the loss of VGLUT1 mRNA supports data indicating that glutamatergic presynaptic deficits are prominent, whereas the pattern of results in temporal and frontal cortex suggests broadly similar changes may affect inhibitory and excitatory neurons. The impairment of synaptic transmission implied by the synaptic protein reductions may contribute to the dysfunction of cortical neural circuits that characterises the disorder.
Collapse
Affiliation(s)
- S L Eastwood
- Department of Psychiatry, University of Oxford, Warneford Hospital, Neurosciences Building, Oxford OX3 7JX, UK.
| | | |
Collapse
|
394
|
Lachamp P, Balland B, Tell F, Baude A, Strube C, Crest M, Kessler JP. Early expression of AMPA receptors and lack of NMDA receptors in developing rat climbing fibre synapses. J Physiol 2005; 564:751-63. [PMID: 15731186 PMCID: PMC1464465 DOI: 10.1113/jphysiol.2005.084517] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Whether nascent glutamatergic synapses acquire their AMPA receptors constitutively or via a regulated pathway triggered by pre-existing NMDA receptor activation is still an open issue. Here, we provide evidence that some glutamatergic synapses develop without expressing NMDA receptors. Using immunocytochemistry, we showed that synapses between developing rat climbing fibres and Purkinje cells expressed GluR2-containing AMPA receptors as soon as they were formed (i.e. on embryonic day 19) but never carried detectable NMDA receptors. This was confirmed by electrophysiological recordings. Excitatory synaptic currents were recorded in Purkinje cells as early as P0. However, no NMDA receptor-mediated component was found in either spontaneous or evoked synaptic responses. In addition, we ruled out a possible role of extrasynaptic NMDA receptors by showing that AMPA receptor clustering at nascent climbing fibre synapses was not modified by chronic in utero NMDA receptor blockade.
Collapse
Affiliation(s)
- Philippe Lachamp
- Laboratoire de Neurophysiologie cellulaire, UMR CNRS 6150, Centre National de la Recherche Scientifique et Université de la Mediterrannée, IFR Jean Roche, Faculté de Médecine Nord, Bd Pierre Dramard, F13916 Marseille cedex 20, France
| | | | | | | | | | | | | |
Collapse
|
395
|
Fiszman ML, Barberis A, Lu C, Fu Z, Erdélyi F, Szabó G, Vicini S. NMDA receptors increase the size of GABAergic terminals and enhance GABA release. J Neurosci 2005; 25:2024-31. [PMID: 15728842 PMCID: PMC6726051 DOI: 10.1523/jneurosci.4980-04.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 01/04/2005] [Accepted: 01/07/2005] [Indexed: 11/21/2022] Open
Abstract
In developing cerebellar interneurons, NMDA increases spontaneous GABA release by activating presynaptic NMDA receptors. We investigated the role of these receptors on differentiating basket/stellate cells in cerebellar cultures grown under conditions allowing functional synaptic transmission. Presynaptic GABAergic boutons were visualized either by GAD65 immunostaining or by using cells derived from GAD65-enhanced green fluorescent protein (eGFP) transgenic mice, in which cerebellar basket/stellate cells express eGFP. After the first week in culture, whole-cell recordings from granule cells reveal that acute application of NMDA increases miniature IPSC (mIPSC) frequency. Interestingly, after 2 weeks, the mIPSC frequency increases compared with the first week but is not modulated by NMDA. Furthermore, in cultures chronically treated with NMDA for 1 week, the size of the GABAergic boutons increases. This growth is paralleled by increased mIPSC frequency and the loss of NMDA sensitivity. Direct patch-clamp recording from these presynaptic terminals reveals single NMDA-activated channels, showing multiple conductance levels, and electronic propagation from the somatodendritic compartment. Our results demonstrate that NMDA receptors alter GABAergic synapses in developing cerebellar cultures by increasing the size of the terminal and spontaneous GABA release. These findings parallel changes in inhibitory synaptic efficacy seen in vivo in developing GABAergic interneurons of the molecular layer of the cerebellum.
Collapse
Affiliation(s)
- Mónica L Fiszman
- Department of Physiology and Biophysics, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | | | | | |
Collapse
|
396
|
Blaesse P, Ehrhardt S, Friauf E, Nothwang HG. Developmental pattern of three vesicular glutamate transporters in the rat superior olivary complex. Cell Tissue Res 2005; 320:33-50. [PMID: 15714284 DOI: 10.1007/s00441-004-1054-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 11/15/2004] [Indexed: 11/29/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) mediate the packaging of the excitatory neurotransmitter glutamate into synaptic vesicles. Three VGLUT subtypes have been identified so far, which are differentially expressed in the brain. Here, we have investigated the spatiotemporal distribution of the three VGLUTs in the rat superior olivary complex (SOC), a prominent processing center, which receives strong glutamatergic inputs and which lies within the auditory brainstem. Immunoreactivity (ir) against all three VGLUTs was found in the SOC nuclei throughout development (postnatal days P0-P60). It was predominantly seen in axon terminals, although cytoplasmic labeling also occurred. Each transporter displayed a characteristic expression pattern. In the adult SOC, VGLUT1 labeling varied from strong in the medial nucleus of the trapezoid body, lateral superior olive, and medial superior olive (MSO) to moderate (ventral and lateral nuclei of the trapezoid body) to faint (superior paraolivary nucleus). VGLUT2-ir was moderate to strong throughout the SOC, whereas VGLUT3 was only weakly expressed. These results extend previous reports on co-localization of VGLUTs in the auditory brainstem. As in the adult, specific features were seen during development for all three transporters. Intensity increases and decreases occurred with both VGLUT1 and VGLUT3, whereas VGLUT2-ir remained moderately high throughout development. A striking result was obtained with VGLUT3, which was only transiently expressed in the different SOC nuclei between P0 and P12. A transient occurrence of VGLUT1-immunoreactive terminals on somata of MSO neurons was another striking finding. Our results imply a considerable amount of synaptic reorganization in the glutamatergic inputs to the SOC and suggest differential roles of VGLUTs during maturation and in adulthood.
Collapse
Affiliation(s)
- Peter Blaesse
- Abteilung Tierphysiologie, Fachbereich Biologie, Technische Universität Kaiserslautern, Kaiserslautern, Deutschland
| | | | | | | |
Collapse
|
397
|
Gillespie DC, Kim G, Kandler K. Inhibitory synapses in the developing auditory system are glutamatergic. Nat Neurosci 2005; 8:332-8. [PMID: 15746915 DOI: 10.1038/nn1397] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 12/29/2004] [Indexed: 11/09/2022]
Abstract
Activity-dependent synapse refinement is crucial for the formation of precise excitatory and inhibitory neuronal circuits. Whereas the mechanisms that guide refinement of excitatory circuits are becoming increasingly clear, the mechanisms guiding inhibitory circuits have remained obscure. In the lateral superior olive (LSO), a nucleus in the mammalian sound localization system that receives inhibitory input from the medial nucleus of the trapezoid body (MNTB), specific elimination and strengthening of synapses that are both GABAergic and glycinergic (GABA/glycinergic synapses) is essential for the formation of a precise tonotopic map. We provide evidence that immature GABA/glycinergic synapses in the rat LSO also release the excitatory neurotransmitter glutamate, which activates postsynaptic NMDA receptors (NMDARs). Immunohistochemical studies demonstrate synaptic colocalization of the vesicular glutamate transporter 3 with the vesicular GABA transporter, indicating that GABA, glycine and glutamate are released from single MNTB terminals. Glutamatergic transmission at MNTB-LSO synapses is most prominent during the period of synapse elimination. Synapse-specific activation of NMDARs by glutamate release at GABAergic and glycinergic synapses could be important in activity-dependent refinement of inhibitory circuits.
Collapse
Affiliation(s)
- Deda C Gillespie
- Department of Neurobiology, University of Pittsburgh School of Medicine, W1412 Biomedical Science Tower, 3500 Terrace St., Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
398
|
Fu Z, Logan SM, Vicini S. Deletion of the NR2A subunit prevents developmental changes of NMDA-mEPSCs in cultured mouse cerebellar granule neurones. J Physiol 2005; 563:867-81. [PMID: 15649973 PMCID: PMC1665615 DOI: 10.1113/jphysiol.2004.079467] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We investigated the role N-methyl-d-aspartate (NMDA) receptor subunits play in shaping excitatory synaptic currents in cultures of cerebellar granule cells (CGCs) from NR2A knockout (NR2A-/-) and wild-type (+/+) mice. Cultures were maintained in a condition that facilitates the occurrence of functional synapses, allowing us to record NMDA-miniature excitatory postsynaptic currents (mEPSCs) in addition to NMDA receptor-mediated whole-cell currents at three ages in vitro. Whole-cell NMDA current density decreased with development in both strains though currents from NR2A-/- neurones demonstrated greater sensitivity to CP101 606, an NR2B subunit specific blocker. Sensitivity to Mg(2+) blockade decreased with age in vitro in +/+ but not in NR2A-/- CGCs. Immunocytochemistry revealed that dendrites and somas displayed distinct NR1 and NR2A subunit clusters which became increasingly colocalized in +/+ neurones. Qualitatively the overall NR2B subunit staining pattern was similar in +/+ and NR2A-/- neurones throughout development, suggesting that the NR2B subunit distribution is not mediated by the NR2A subunit. In addition, staining with markers for excitatory synapses showed that expression of NR2A subunit (but not NR2B) increases at both synaptic and extrasynaptic sites in +/+ neurones during development. In parallel, NMDA-mEPSCs were faster in +/+ compared with NR2A-/- neurones at all time points studied, suggesting that the NR2A subunit begins to replace NR2B-rich NMDA receptors even at early stages of development. Many NR2A-/- neurones were devoid of NMDA-mEPSCs at the later time point, and transfection of the NR2A subunit in these neurones restored fast decay and the occurrence of NMDA-mEPSCs. Taken together, our results indicate that the NR2A subunit is mainly responsible for the developmental changes observed in the maturation of excitatory synapses.
Collapse
Affiliation(s)
- Zhanyan Fu
- Department of Physiology and Biophysics, BSB225 Georgetown University School of Medicine, 3900 Reservoir Rd, Washington, DC 20007, USA
| | | | | |
Collapse
|
399
|
Stornetta RL, Rosin DL, Simmons JR, McQuiston TJ, Vujovic N, Weston MC, Guyenet PG. Coexpression of vesicular glutamate transporter-3 and γ-aminobutyric acidergic markers in rat rostral medullary raphe and intermediolateral cell column. J Comp Neurol 2005; 492:477-94. [PMID: 16228993 DOI: 10.1002/cne.20742] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Markers of serotonergic, gamma-aminobutyric acid (GABA)-ergic (glutamic acid decarboxylase, 67 kDa isoform; GAD-67), and glutamatergic transmission (vesicular glutamate transporter 3; VGLUT3) have been detected in presumed sympathetic premotor neurons of the medullary raphe, a region that controls sympathetic tone to brown fat, skin blood vessels, and heart. In this study, the degree of coexpression of these markers was examined in raphe neurons by simultaneous histological detection of tryptophan hydroxylase (TrpOH) immunoreactivity with GAD-67 mRNA and VGLUT3 mRNA. Over half (52%) of the VGLUT3 mRNA-positive neurons expressed one or both of the other markers. The proportion of VGLUT3 neurons containing at least one of the other two markers was even higher (89%) for VGLUT3 spinally projecting neurons. VGLUT3 neurons containing markers for both serotonin and GABA were especially numerous (50-72%, depending on rostrocaudal level) within the marginal layer of raphe pallidus and the parapyramidal region. The dual GABAergic and glutamatergic nature of some bulbospinal raphe neurons was suggested by the presence of nerve terminals immunoreactive (ir) for both VGLUT3 and GABA in the intermediolateral cell column (IML) as detected by electron microscopy. VGLUT3-ir terminals formed approximately equal numbers of symmetric and asymmetric synapses onto presumed preganglionic neurons (nitric oxide synthase-ir profiles) or GABA-ir dendrites in IML, and terminals immunoreactive for both VGLUT3 and GABA always formed symmetric synapses. These data suggest that medullary raphe VGLUT3 neurons could inhibit sympathetic outflow and that their spinal targets include both preganglionic neurons and GABAergic interneurons.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
400
|
|