351
|
Coats S, Whyte P, Fero ML, Lacy S, Chung G, Randel E, Firpo E, Roberts JM. A new pathway for mitogen-dependent cdk2 regulation uncovered in p27(Kip1)-deficient cells. Curr Biol 1999; 9:163-73. [PMID: 10074425 DOI: 10.1016/s0960-9822(99)80086-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The ability of cyclin-dependent kinases (CDKs) to promote cell proliferation is opposed by cyclin-dependent kinase inhibitors (CKIs), proteins that bind tightly to cyclin-CDK complexes and block the phosphorylation of exogenous substrates. Mice with targeted CKI gene deletions have only subtle proliferative abnormalities, however, and cells prepared from these mice seem remarkably normal when grown in vitro. One explanation may be the operation of compensatory pathways that control CDK activity and cell proliferation when normal pathways are inactivated. We have used mice lacking the CKIs p21(Cip1) and p27(Kip1) to investigate this issue, specifically with respect to CDK regulation by mitogens. RESULTS We show that p27 is the major inhibitor of Cdk2 activity in mitogen-starved wild-type murine embryonic fibroblasts (MEFs). Nevertheless, inactivation of the cyclin E-Cdk2 complex in response to mitogen starvation occurs normally in MEFs that have a homozygous deletion of the p27 gene. Moreover, CDK regulation by mitogens is also not affected by the absence of both p27 and p21. A titratable Cdk2 inhibitor compensates for the absence of both CKIs, and we identify this inhibitor as p130, a protein related to the retinoblastoma gene product Rb. Thus, cyclin E-Cdk2 kinase activity cannot be inhibited by mitogen starvation of MEFs that lack both p27 and p130. In addition, cell types that naturally express low amounts of p130, such as T lymphocytes, are completely dependent on p27 for regulation of the cyclin E-Cdk2 complex by mitogens. CONCLUSIONS Inhibition of Cdk2 activity in mitogen-starved fibroblasts is usually performed by the CKI p27, and to a minor extent by p21. Remarkably p130, a protein in the Rb family that is not related to either p21 or p27, will directly substitute for the CKIs and restore normal CDK regulation by mitogens in cells lacking both p27 and p21. This compensatory pathway may be important in settings in which CKIs are not expressed at standard levels, as is the case in many human tumors.
Collapse
Affiliation(s)
- S Coats
- Cancer Biology Group Amgen Inc. Thousand Oaks California USA
| | | | | | | | | | | | | | | |
Collapse
|
352
|
Eymin B, Haugg M, Droin N, Sordet O, Dimanche-Boitrel MT, Solary E. p27Kip1 induces drug resistance by preventing apoptosis upstream of cytochrome c release and procaspase-3 activation in leukemic cells. Oncogene 1999; 18:1411-8. [PMID: 10050878 DOI: 10.1038/sj.onc.1202437] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cyclin-dependent kinase inhibitor p27Kip1 has been implicated as a drug resistance factor in tumor cells grown as spheroids or confluent monolayers. Here, we show that p27Kip1 overexpression also induces resistance to drug-induced apoptosis and cytotoxicity in human leukemic cells growing in suspension. The anti-apoptotic effect of p27Kip1 is not restricted to DNA-damaging agents but extends to the tubulin poison vinblastin, agonistic anti-Fas antibodies and macromolecule synthesis inhibitors. To further identify at which level this protein interferes with the cell death pathway, we investigated its influence on caspase activation and mitochondrial changes. Exposure of mock-transfected U937 cells to 50 microm etoposide activates procaspase-3 and the long isoform of procaspase-2 and induces mitochondrial potential decrease and cytochrome c release from mitochondria to the cytosol. All these events are prevented by p27Kip1 overexpression. p27Kip1 does not modulate Bcl-2, Bcl-X(L), Mcl-1 and Bax protein level in leukemic cells but suppresses Mcl-1 expression decrease observed in mock-transfected U937 cells undergoing etoposide-induced cell death. We conclude that p27Kip1 prevents cell death upstream of the final pathway common to many apoptotic stimuli that involves cytochrome c release from mitochondria and activation of downstream caspases.
Collapse
Affiliation(s)
- B Eymin
- Laboratory of Onco-Hematology and Pharmacology, CJF INSERM 94-08, Faculty of Medicine & Pharmacy, Dijon, France
| | | | | | | | | | | |
Collapse
|
353
|
Beier F, Lee RJ, Taylor AC, Pestell RG, LuValle P. Identification of the cyclin D1 gene as a target of activating transcription factor 2 in chondrocytes. Proc Natl Acad Sci U S A 1999; 96:1433-8. [PMID: 9990041 PMCID: PMC15480 DOI: 10.1073/pnas.96.4.1433] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endochondral bone growth is regulated by the rates of chondrocyte proliferation and differentiation. However, the intracellular mechanisms regulating these processes are poorly understood. Recently, interruption of the gene encoding the transcription factor activating transcription factor 2 (ATF-2) was shown to inhibit proliferation of chondrocytes in mice [Reimold, A. M., et al. (1996) Nature (London) 379, 262-265]. The target genes of ATF-2 that are responsible for this phenotype remain unknown. Here we report that the cyclin D1 gene is a direct target of ATF-2 in chondrocytes. ATF-2 is present in nuclear extracts from chondrogenic cell lines and binds, as a complex with a CRE-binding protein (CREB)/CRE modulator protein, to the cAMP response element (CRE) in the cyclin D1 promoter. Mutation of the cyclin D1 CRE caused a 78% reduction in the activity of the promoter in chondrocytes. Overexpression of ATF-2 in chondrocytes enhanced activity of the cyclin D1 promoter 3. 5-fold. In contrast, inhibition of endogenous ATF-2 or CREB by expression of dominant-negative inhibitors of CREB and ATF-2 significantly reduced the activity of the promoter in chondrocytes through the CRE. In addition, levels of cyclin D1 protein are greatly reduced in the chondrocytes of ATF-2-deficient mice. These data identify the cyclin D1 gene as a direct target of ATF-2 in chondrocytes and suggest that reduced expression of cyclin D1 contributes to the defective cartilage development of these mice.
Collapse
Affiliation(s)
- F Beier
- Department of Medical Biochemistry, University of Calgary; 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| | | | | | | | | |
Collapse
|
354
|
Zhang P, Wong C, Liu D, Finegold M, Harper JW, Elledge SJ. p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Genes Dev 1999; 13:213-24. [PMID: 9925645 PMCID: PMC316389 DOI: 10.1101/gad.13.2.213] [Citation(s) in RCA: 314] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cell-cycle arrest is thought to be required for differentiation of muscle cells. However, the molecules controlling cell-cycle exit and the differentiation step(s) dependent on cell-cycle arrest are poorly understood. Here we show that two Cdk inhibitors, p21(CIP1) and p57(KIP2), redundantly control differentiation of skeletal muscle and alveoli in the lungs. Mice lacking both p21 and p57 fail to form myotubes, display increased proliferation and apoptotic rates of myoblasts, and display endoreplication in residual myotubes. This point of arrest during muscle development is identical to that of mice lacking the myogenic transcription factor myogenin, indicating a role for cell-cycle exit in myogenin function. Expression of myogenin, p21, and p57 is parallel but independent, and in response to differentiation signals, these proteins are coordinately regulated to trigger both cell-cycle exit and a dependent muscle-specific program of gene expression to initiate myoblast terminal differentiation and muscle formation.
Collapse
Affiliation(s)
- P Zhang
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030 USA
| | | | | | | | | | | |
Collapse
|
355
|
Bastians H, Townsley FM, Ruderman JV. The cyclin-dependent kinase inhibitor p27(Kip1) induces N-terminal proteolytic cleavage of cyclin A. Proc Natl Acad Sci U S A 1998; 95:15374-81. [PMID: 9860976 PMCID: PMC28050 DOI: 10.1073/pnas.95.26.15374] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Progression through the cell cycle is regulated in part by the sequential activation and inactivation of cyclin-dependent kinases (CDKs). Many signals arrest the cell cycle through inhibition of CDKs by CDK inhibitors (CKIs). p27(Kip1) (p27) was first identified as a CKI that binds and inhibits cyclin A/CDK2 and cyclin E/CDK2 complexes in G1. Here we report that p27 has an additional property, the ability to induce a proteolytic activity that cleaves cyclin A, yielding a truncated cyclin A lacking the mitotic destruction box. Other CKIs (p15(Ink4b), p16(Ink4a), p21(Cip1), and p57(Kip2)) do not induce cleavage of cyclin A; other cyclins (cyclin B, D1, and E) are not cleaved by the p27-induced protease activity. The C-terminal half of p27, which is dispensable for its kinase inhibitory activity, is required to induce cleavage. Mechanistically, p27 does not appear to cause cleavage through direct interaction with cyclin/CDK complexes. Instead, it activates a latent protease that, once activated, does not require the continuing presence of p27. Mutation of cyclin A at R70 or R71, residues at or very close to the cleavage site, blocks cleavage. Noncleavable mutants are still recognized by the anaphase-promoting complex/cyclosome pathway responsible for ubiquitin-dependent proteolysis of mitotic cyclins, indicating that the p27-induced cleavage of cyclin A is part of a separate pathway. We refer to this protease as Tsap (pTwenty-seven- activated protease).
Collapse
Affiliation(s)
- H Bastians
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
356
|
Abstract
The conflict theory is the only hypothesis to have attracted any critical attention for the evolution of genomic imprinting. Although the earliest data appeared supportive, recent systematic analyses have not confirmed the model's predictions. The status of theory remains undecided, however, as post-hoc explanations can be provided as to why these predictions are not borne out.
Collapse
Affiliation(s)
- L D Hurst
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 4SD, UK.
| | | |
Collapse
|
357
|
Abstract
Precise control of cell-cycle progression is believed to be critical for normal development, while oncogenesis may be a direct result of its disturbance. Cell-cycle progression is regulated predominantly by a series of serine/threonine kinases, the cyclin-dependent kinases (CDKs). The activities of the CDKs are controlled by a variety of mechanisms, and a group of molecules that inhibit CDK activity, CDK inhibitors (CKIs), has recently become the focus of interest, particularly in the fields of development and tumorigenesis. To date, seven CKIs have been identified in mammals and categorized into two families, the Cip/Kip and Ink4 families. The Cip/Kip family is well conserved phylogenetically, suggesting that it is biologically important. Despite the structural and biochemical similarities among the Cip/Kip members, the phenotypes of knockout mice of each Cip/Kip member are surprisingly different, which suggests that the Cip/Kip CKIs have a variety of physiological functions. In this review, the biological roles of Cip/Kip CKIs in development and tumor suppression are discussed.
Collapse
Affiliation(s)
- K Nakayama
- Department of Molecular and Cellular Biology, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
358
|
Nagata M, Nakayama K, Terada Y, Hoshi S, Watanabe T. Cell cycle regulation and differentiation in the human podocyte lineage. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:1511-20. [PMID: 9811343 PMCID: PMC1853414 DOI: 10.1016/s0002-9440(10)65739-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mature podocytes are regarded as growth-arrested cells with characteristic phenotypic features that underlie their function. To determine the relationship between cell cycle regulation and differentiation, the spatiotemporal expression of cyclin A, cyclin B1, cyclin D1, the cyclin-dependent kinase inhibitors (CKIs) p27 and p57, and markers of differentiating podocytes in developing human kidneys was investigated by immunohistochemistry. In S-shaped body stage, Ki-67, a cell proliferation marker that labels the G1/S/G2/M phase, was expressed in the majority (more than 80%) of presumptive podocytes, along with cyclin A (approximately 20% of the Ki-67-positive cells) and cyclin B1 (less than 5% of Ki-67-positive cells) expression. Among these cells), cyclin D1 and CKIs were markedly down-regulated. At the capillary-loop stage, by contrast, CKIs and cyclin D1 were intensely positive in podocytes, whereas no Ki-67, cyclin B1, or cyclin A expression was seen. Moreover, double-immunolabeling and serial-section analysis provided evidence that CKIs and markers specific for differentiating podocytes, namely PHM-5 (podocalyxin-like protein in humans), synaptopodin (a foot process-related protein), and C3b receptor, were co-expressed at the capillary-loop stage. Podocytes were the only cells within the glomeruli that expressed CKIs at immunohistochemically detectable levels. Furthermore, bcl-2 (an apoptosis inhibitory protein) showed a reciprocal expression pattern to that of CKI. These results suggest that 1) the cell cycle of podocytes is regulated by cyclin and CKIs, 2) CKIs may act to arrest the cell cycle in podocytes at the capillary-loop stage, and 3) the specific cell cycle system in podocytes may be closely correlated with their terminal differentiation in humans.
Collapse
Affiliation(s)
- M Nagata
- Department of Pathology, Institute of Clinical, Medical Sciences, University of Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
359
|
Ding QM, Ko TC, Evers BM. Caco-2 intestinal cell differentiation is associated with G1 arrest and suppression of CDK2 and CDK4. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1193-200. [PMID: 9814966 DOI: 10.1152/ajpcell.1998.275.5.c1193] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cellular mechanisms regulating intestinal proliferation and differentiation remain largely undefined. Previously, we showed an early induction of the cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1) in Caco-2 cells, a human colon cancer line that spontaneously differentiates into a small bowel phenotype. The purpose of our present study was to assess the timing of cell cycle arrest in relation to differentiation in Caco-2 cells and to examine the mechanisms responsible for CDK inactivation. Caco-2 cells undergo a relative G1/S block and cease to proliferate at day 3 postconfluency; an increase in the activity of terminally differentiated brush-border enzymes (sucrase and alkaline phosphatase) was noted at day 6 postconfluency. Cell cycle block was associated with suppression of both CDK2 and CDK4 activities, which are important for G1/S progression. Treatment of the CDK immune complexes with the detergent deoxycholate (DOC) resulted in restoration of CDK2, but not CDK4, activity at day 3 postconfluency, suggesting the presence of inhibitory protein(s) binding to the cyclin/CDK2 complex at this time point. An increased binding of p21(Waf1/Cip1) to CDK2 complexes at day 3 postconfluency was noted, suggesting a potential role for p21(Waf1/Cip1) in CDK2 inactivation; however, immunodepletion of p21(Waf1/Cip1) from Caco-2 protein extracts demonstrated that p21(Waf1/Cip1) is only partially responsible for CDK2 suppression at day 3 postconfluency. A decrease in the cyclin E/CDK2 complex appears to contribute to the CDK2 inactivation noted at days 6 and 12 postconfluency. Taken together, our results suggest that multiple mechanisms contribute to CDK suppression during Caco-2 cell differentiation. Inhibition of CDK2 and CDK4 leads to G1 arrest and inhibition of proliferation that precede Caco-2 cell differentiation.
Collapse
Affiliation(s)
- Q M Ding
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | |
Collapse
|
360
|
Zhang P, Wong C, DePinho RA, Harper JW, Elledge SJ. Cooperation between the Cdk inhibitors p27(KIP1) and p57(KIP2) in the control of tissue growth and development. Genes Dev 1998; 12:3162-7. [PMID: 9784491 PMCID: PMC317217 DOI: 10.1101/gad.12.20.3162] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell cycle exit is required for terminal differentiation of many cell types. The retinoblastoma protein Rb has been implicated both in cell cycle exit and differentiation in several tissues. Rb is negatively regulated by cyclin-dependent kinases (Cdks). The main effectors that down-regulate Cdk activity to activate Rb are not known in the lens or other tissues. In this study, using multiple mutant mice, we show that the Cdk inhibitors p27(KIP1) and p57(KIP2) function redundantly to control cell cycle exit and differentiation of lens fiber cells and placental trophoblasts. These studies demonstrate that p27(KIP1) and p57(KIP2) are critical terminal effectors of signal transduction pathways that control cell differentiation.
Collapse
Affiliation(s)
- P Zhang
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York 10461 USA
| | | | | | | | | |
Collapse
|
361
|
Ruesch MN, Laimins LA. Human papillomavirus oncoproteins alter differentiation-dependent cell cycle exit on suspension in semisolid medium. Virology 1998; 250:19-29. [PMID: 9770416 DOI: 10.1006/viro.1998.9359] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The suspension of keratinocytes containing episomal forms of the human papillomavirus (HPV)-31 genome in semisolid medium results in the induction of viral late functions. In this study, the suspension in semisolid medium was used to analyze how HPV deregulates the process of cell cycle exit during differentiation. In cells that contain the entire HPV-31 genome, induction of late protein synthesis was found to be linked with the expression of cyclin A. Consistent with analyses in organotypic rafts, the expression of the high-risk E7 oncoprotein alone was sufficient to retain cyclin A expression during suspension-induced differentiation. The cyclin-dependent kinase inhibitors (CKIs) p27 and p57 were found to be up-regulated in normal keratinocytes, as well as in the lines that express the HPV oncoproteins. The up-regulation of these CKIs is coincident with the inhibition of cyclin/cdk activity in normal keratinocytes. Cells expressing E7 were found to retain significant cdk2-associated kinase activity, although it was partially inhibited, coincident with CKI induction. When the phosphorylation state of Rb was examined during differentiation, cells expressing E7 retained phosphorylated forms of Rb, whereas Rb in normal keratinocytes was hypophosphorylated. As previously reported, E7-expressing cells were found to contain less Rb protein than normal keratinocytes. Interestingly, the Rb levels decreased during normal keratinocyte differentiation, and this differentiation-dependent reduction in Rb levels was enhanced by EG and E7 expression. This study identified proteins that may be critical for cell cycle regulation during normal epithelial differentiation and demonstrated that HPV oncoproteins alter their activities.
Collapse
Affiliation(s)
- M N Ruesch
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, Illinois, 60611, USA
| | | |
Collapse
|
362
|
Gill RM, Slack R, Kiess M, Hamel PA. Regulation of expression and activity of distinct pRB, E2F, D-type cyclin, and CKI family members during terminal differentiation of P19 cells. Exp Cell Res 1998; 244:157-70. [PMID: 9770359 DOI: 10.1006/excr.1998.4197] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cell cycle regulatory proteins, which include cyclin-dependent kinases (cdks), cdk inhibitors (CKIs), cyclins, and the pRB, and E2F families of proteins, constitute a network of interacting factors which govern exit from or passage through the mammalian cell cycle. While the proteins within these families have similar structural characteristics, each family member exhibits distinct expression patterns during embryogenesis and distinct biological activities. In order to begin to understand the tissue-specific roles of these interacting factors, we determined the expression pattern and activity of the pRB, E2F, cyclin, cdk, and CKI families of cell cycle regulatory proteins during retinoic acid-induced (neuronal pathway) and DMSO-induced (cardiac muscle pathway) differentiation of the pluripotent murine embryonal carcinoma cell line, P19. We demonstrate here that P19 terminal differentiation causes lineage-specific changes in the expression and activity of distinct members of the E2F, pRB, cyclin, and CKI families. Furthermore, dynamic changes in the activities of these cell cycle regulatory proteins occur through several overlapping mechanisms, culminating in repression of DNA-binding activity by all of the E2F family members as cells terminally differentiate.
Collapse
Affiliation(s)
- R M Gill
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | | | | | |
Collapse
|
363
|
|
364
|
Abstract
A transgenic mouse insertional mutant displayed the phenotype of altered cranial morphology with sex-linked cleft palate. We have cloned the disrupted genomic X-linked locus and report the identification of the mCASK gene. The gene is transcribed to produce two messages of 4.5 and 9.5 kb expressed during development and in adult tissues, particularly the brain. We describe the isolation of two differentially spliced mouse cDNAs from the locus (mCASK-A and mCASK-B). The mCASK-B cDNA probably represents the full-length product of the 4.5-kb transcript. The identical N-termini of the predicted encoded proteins (mCASK-A and -B) are highly homologous to Ca2+/calmodulin-dependent protein kinase II, while the deduced C-terminus of mCASK-B is highly homologous to a family of multidomain proteins containing a guanylate kinase motif, the MAGUK proteins. mCASK-B is a new member of an emerging family of genes in which the encoded proteins combine these domains, termed here, the CAMGUKs, including rat CASK, Caenorhabditis elegans lin-2, and Drosophila caki/camguk. The CAMGUKs are likely to be effectors in signal transduction as regulatory partners of transmembrane molecules, modulated by calcium and nucleotides. The transgene in this mutant mouse line integrated into an intron that bisects the encoded calmodulin-binding domain, a potentially important regulatory domain of the predicted protein, generating hybrid transcripts.
Collapse
Affiliation(s)
- H G Laverty
- CID School of Biological Sciences, The Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | |
Collapse
|
365
|
Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S, Su L, Xiong Y. CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 1998; 12:2899-911. [PMID: 9744866 PMCID: PMC317173 DOI: 10.1101/gad.12.18.2899] [Citation(s) in RCA: 300] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/1998] [Accepted: 07/31/1998] [Indexed: 11/25/2022]
Abstract
INK4 and CIP/KIP are two distinct families of cyclin-dependent kinase (CDK) inhibitors implicated in mediating a wide range of cell growth control signals. We have created p18(INK4c)-deficient mice. These mice develop gigantism and widespread organomegaly. The pituitary gland, spleen, and thymus are disproportionately enlarged and hyperplastic. T and B lymphocytes develop normally in p18-deficient mice, but both exhibit increased cellularity and a higher proliferative rate upon mitogenic stimulation. Loss of p18, like that of p27, but not other CDK inhibitor genes, leads to a gradual progression from intermediate lobe pituitary hyperplasia in young mice to an adenoma by 10 months of age with a nearly complete penetrance. Mice lacking both p18 and p27, like mice chimeric for Rb deficiency, invariably died from pituitary adenomas by 3 months. Hence, p18 and p27 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis, likely by controlling the function of Rb.
Collapse
Affiliation(s)
- D S Franklin
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
366
|
Soos TJ, Park M, Kiyokawa H, Koff A. Regulation of the cell cycle by CDK inhibitors. Results Probl Cell Differ 1998; 22:111-31. [PMID: 9670321 DOI: 10.1007/978-3-540-69686-5_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- T J Soos
- Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
367
|
Paulsen M, Davies KR, Bowden LM, Villar AJ, Franck O, Fuermann M, Dean WL, Moore TF, Rodrigues N, Davies KE, Hu RJ, Feinberg AP, Maher ER, Reik W, Walter J. Syntenic organization of the mouse distal chromosome 7 imprinting cluster and the Beckwith-Wiedemann syndrome region in chromosome 11p15.5. Hum Mol Genet 1998; 7:1149-59. [PMID: 9618174 DOI: 10.1093/hmg/7.7.1149] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In human and mouse, most imprinted genes are arranged in chromosomal clusters. Their linked organization suggests co-ordinated mechanisms controlling imprinting and gene expression. The identification of local and regional elements responsible for the epigenetic control of imprinted gene expression will be important in understanding the molecular basis of diseases associated with imprinting such as Beckwith-Wiedemann syndrome. We have established a complete contig of clones along the murine imprinting cluster on distal chromosome 7 syntenic with the human imprinting region at 11p15.5 associated with Beckwith-Wiedemann syndrome. The cluster comprises approximately 1 Mb of DNA, contains at least eight imprinted genes and is demarcated by the two maternally expressed genes Tssc3 (Ipl) and H19 which are directly flanked by the non-imprinted genes Nap1l4 (Nap2) and Rpl23l (L23mrp), respectively. We also localized Kcnq1 (Kvlqt1) and Cd81 (Tapa-1) between Cdkn1c (p57(Kip2)) and Mash2. The mouse Kcnq1 gene is maternally expressed in most fetal but biallelically transcribed in most neonatal tissues, suggesting relaxation of imprinting during development. Our findings indicate conserved control mechanisms between mouse and human, but also reveal some structural and functional differences. Our study opens the way for a systematic analysis of the cluster by genetic manipulation in the mouse which will lead to animal models of Beckwith-Wiedemann syndrome and childhood tumours.
Collapse
Affiliation(s)
- M Paulsen
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB2 4AT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
368
|
Dangond F, Gullans SR. Differential expression of human histone deacetylase mRNAs in response to immune cell apoptosis induction by trichostatin A and butyrate. Biochem Biophys Res Commun 1998; 247:833-7. [PMID: 9647779 DOI: 10.1006/bbrc.1998.8891] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The reversible acetylation of histones by histone deacetylases (HDACs) and acetyltransferases (HATs) plays a fundamental role in gene transcription. We previously showed that HDAC mRNA is upregulated in immune cells upon PHA-induced activation. Little is known, however, about the differential regulation of HDAC mRNAs by the HDAC inhibitors Trichostatin A (TSA) and butyrate, agents known to block proliferation and induce apoptosis. We report that apoptosis-inducing concentrations of TSA and butyrate upregulate the expression of HDAC mRNAs in a differential manner and act synergistically with PHA to induce HDAC expression, suggesting the presence of independent HDAC regulatory mechanisms. Moreover, we show that HDAC inhibitor-induced apoptosis is associated with early abrogation of gamma-IFN production by Th1 lymphocytes and with p53 mRNA downregulation. Our findings highlight the dynamic interplay of cell cycle-, activation- and apoptosis-related proteins in association with time-dependent expression of HDACs and are suggestive of different specific roles for these enzymes.
Collapse
Affiliation(s)
- F Dangond
- Department of Neurology, Harvard Institutes of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusettes 02115, USA.
| | | |
Collapse
|
369
|
Zhou BB, Li H, Yuan J, Kirschner MW. Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells. Proc Natl Acad Sci U S A 1998; 95:6785-90. [PMID: 9618490 PMCID: PMC22635 DOI: 10.1073/pnas.95.12.6785] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The activation of cyclin-dependent kinases (cdks) has been implicated in apoptosis induced by various stimuli. We find that the Fas-induced activation of cdc2 and cdk2 in Jurkat cells is not dependent on protein synthesis, which is shut down very early during apoptosis before caspase-3 activation. Instead, activation of these kinases seems to result from both a rapid cleavage of Wee1 (an inhibitory kinase of cdc2 and cdk2) and inactivation of anaphase-promoting complex (the specific system for cyclin degradation), in which CDC27 homolog is cleaved during apoptosis. Both Wee1 and CDC27 are shown to be substrates of the caspase-3-like protease. Although cdk activities are elevated during Fas-induced apoptosis in Jurkat cells, general activation of the mitotic processes does not occur. Our results do not support the idea that apoptosis is simply an aberrant mitosis but, instead, suggest that a subset of mitotic mechanisms plays an important role in apoptosis through elevated cdk activities.
Collapse
Affiliation(s)
- B B Zhou
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
370
|
Caspary T, Cleary MA, Baker CC, Guan XJ, Tilghman SM. Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster. Mol Cell Biol 1998; 18:3466-74. [PMID: 9584186 PMCID: PMC108927 DOI: 10.1128/mcb.18.6.3466] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genomic imprinting is an epigenetic process that results in the preferential silencing of one of the two parental copies of a gene. Although the precise mechanisms by which genomic imprinting occurs are unknown, the tendency of imprinted genes to exist in chromosomal clusters suggests long-range regulation through shared regulatory elements. We characterize a 800-kb region on the distal end of mouse chromosome 7 that contains a cluster of four maternally expressed genes, H19, Mash2, Kvlqt1, and p57(Kip2), as well as two paternally expressed genes, Igf2 and Ins2, and assess the expression and imprinting of Mash2, Kvlqt1, and p57(Kip2) during development in embryonic and extraembryonic tissues. Unlike Igf2 and Ins2, which depend on H19 for their imprinting, Mash2, p57(Kip2), and Kvlqt1 are unaffected by a deletion of the H19 gene region, suggesting that these more telomeric genes are not regulated by the mechanism that controls H19, Igf2, and Ins2. Mutations in human p57(Kip2) have been implicated in Beckwith-Wiedemann syndrome, a disease that has also been associated with loss of imprinting of IGF2. We find, however, that a deletion of the gene has no effect on imprinting within the cluster. Surprisingly, the three maternally expressed genes are regulated very differently by DNA methylation; p57(Kip2) is activated, Kvlqt1 is silenced, and Mash2 is unaffected in mice lacking DNA methyltransferase. We conclude that H19 is not a global regulator of imprinting on distal chromosome 7 and that the telomeric genes are imprinted by a separate mechanism(s).
Collapse
Affiliation(s)
- T Caspary
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | |
Collapse
|
371
|
Obata Y, Kaneko-Ishino T, Koide T, Takai Y, Ueda T, Domeki I, Shiroishi T, Ishino F, Kono T. Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development 1998; 125:1553-60. [PMID: 9502736 DOI: 10.1242/dev.125.8.1553] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parthenogenetic embryos, which contained one genome from a neonate-derived non-growing oocyte and the other from a fully grown oocyte, developed to day 13.5 of gestation in mice, 3 days longer than previously recorded for parthenogenetic development. To investigate the hypothesis that disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes and this parthenogenetic phenotype, we have examined Peg1/Mest, Igf2, Peg3, Snrpn, H19, Igf2r and excess p57KIP2. We show that paternally expressed genes, Peg1/Mest, Peg3 and Snrpn, are expressed in the parthenotes, presumably due to a lack of maternal epigenetic modifications during oocyte growth. In contrast, the expression of Igf2, which is repressed in a competitive manner by transcription of the H19 gene, was very low. Furthermore, we show that the maternally expressed Igf2r and p57KIP2 genes were repressed in the alleles of the non-growing oocyte indicating maternal modifications during oocyte growth are necessary for its expression. Thus, our results show that primary imprinting during oocyte growth exhibits a crucial effect on both the expression and repression of maternal alleles during embryogenesis.
Collapse
Affiliation(s)
- Y Obata
- NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Cooper PR, Smilinich NJ, Day CD, Nowak NJ, Reid LH, Pearsall RS, Reece M, Prawitt D, Landers J, Housman DE, Winterpacht A, Zabel BU, Pelletier J, Weissman BE, Shows TB, Higgins MJ. Divergently transcribed overlapping genes expressed in liver and kidney and located in the 11p15.5 imprinted domain. Genomics 1998; 49:38-51. [PMID: 9570947 DOI: 10.1006/geno.1998.5221] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human chromosomal band 11p15.5 has been shown to contain genes involved in the development of several pediatric and adult tumors and in Beckwith-Wiedemann syndrome (BWS). Overlapping P1 artificial chromosome clones from this region have been used as templates for genomic sequencing in an effort to identify candidate genes for these disorders. PowerBLAST identified several matches with expressed sequence tags (ESTs) from fetal brain and liver cDNA libraries. Northern blot analysis indicated that two of the genes identified by these ESTs encode transcripts of 1-1.5 kb with predominant expression in fetal and adult liver and kidney. With RT-PCR and RACE, full-length transcripts were isolated for these two genes, with the largest open reading frames encoding putative proteins of 253 and 424 amino acids. Database comparison of the predicted amino acid sequence of the larger transcript indicated homology to integral membrane organic cation transporters; hence, we designate this gene ORCTL2 (organic cation transporter-like 2). An expressed sequence polymorphism provided evidence that the ORCTL2 gene exhibits "leaky" imprinting in both human fetal kidney and human fetal liver. The mouse orthologue (Orctl2) was identified, and a similar polymorphism was used to demonstrate maternal-specific expression of this gene in fetal liver from interspecific F1 mice. The predicted protein of the smaller gene showed no significant similarity in the database. Northern and RACE analyses suggest that this gene may have multiple transcription start sites. Determination of the genomic structure in humans indicated that the 5'-end of this transcript overlaps in divergent orientation with the first two exons of ORCTL2, suggesting a possible role for antisense regulation of one gene by the other. We, therefore, provisionally name this second transcript ORCTL2S (ORCTL2-antisense). The expression patterns of these genes and the imprinted expression of ORCTL2 are suggestive of a possible role in the development of Wilms tumor (WT) and hepatoblastoma. Although SSCP analysis of 62 WT samples and 10 BWS patients did not result in the identification of any mutations in ORCTL2 or ORCTL2S, it will be important to examine their expression pattern in tumors and BWS patients, since epigenetic alteration at these loci may play a role in the etiology of these diseases.
Collapse
Affiliation(s)
- P R Cooper
- Department of Human Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
373
|
Kaplan MH, Daniel C, Schindler U, Grusby MJ. Stat proteins control lymphocyte proliferation by regulating p27Kip1 expression. Mol Cell Biol 1998; 18:1996-2003. [PMID: 9528771 PMCID: PMC121429 DOI: 10.1128/mcb.18.4.1996] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1997] [Accepted: 01/15/1998] [Indexed: 02/07/2023] Open
Abstract
The proliferation of lymphocytes in response to cytokine stimulation is essential for a variety of immune responses. Recent studies with signal transducer and activator of transcription 6 (Stat6)-deficient mice have demonstrated that this protein is required for the normal proliferation of lymphocytes in response to interleukin-4 (IL-4). In this report, we show that the impaired IL-4-induced proliferative response of Stat6-deficient lymphocytes is not due to an inability to activate alternate signaling pathways, such as those involving insulin receptor substrates, or to a failure to upregulate IL-4 receptor levels. Cell cycle analysis showed that the percentage of Stat6-deficient lymphocytes that transit from the G1 to the S phase of the cell cycle following IL-4 stimulation is lower than that of control lymphocytes. Although the regulation of many genes involved in the control of cytokine-induced proliferation is normal in Stat6-deficient lymphocytes, protein levels of the cdk inhibitor p27Kip1 were found to be markedly dysregulated. p27Kip1 is expressed at significantly higher levels in Stat6-deficient lymphocytes than in control cells following IL-4 stimulation. The higher level of p27Kip1 expression seen in IL-4-stimulated Stat6-deficient lymphocytes correlates with decreased cdk2-associated kinase activity and is the result of the increased accumulation of protein rather than altered mRNA expression. Similarly, higher levels of p27Kip1 protein expression are also seen following IL-12 stimulation of Stat4-deficient lymphocytes than are seen following stimulation of control cells. These data suggest that Stat proteins may control the cytokine-induced proliferative response of activated T cells by regulating the expression of cell cycle inhibitors so that cyclin-cdk complexes may function to promote transition from the G1 to the S phase of the cell cycle.
Collapse
Affiliation(s)
- M H Kaplan
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
374
|
Watanabe H, Pan ZQ, Schreiber-Agus N, DePinho RA, Hurwitz J, Xiong Y. Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen. Proc Natl Acad Sci U S A 1998; 95:1392-7. [PMID: 9465025 PMCID: PMC19016 DOI: 10.1073/pnas.95.4.1392] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proper control of the mammalian cell cycle requires the function of cyclin-dependent kinase (CDK) inhibitors. The p21 family currently includes three distinct genes, p21, p27(Kip1), and p57(Kip2), that share a common N-terminal domain for binding to and inhibiting the kinase activity of CDK-cyclin complexes. The p21 protein also binds to proliferating cell nuclear antigen (PCNA) through a separate C-terminal domain affecting DNA replication and repair. The p27 and p57 proteins also each contain unique C-terminal domains whose functions are unknown. Here we show that the human p57 protein, like p21, contains a PCNA-binding domain within its C terminus that, when separated from its N-terminal CDK-cyclin binding domain, can prevent DNA replication in vitro and S phase entry in vivo. Disruption of either CDK/cyclin or PCNA binding partially reduced p57's ability to suppress myc/RAS-mediated transformation in primary cells, while loss of both inhibitory functions completely eliminated p57's suppressive activity. Thus, control of cell cycle and suppression of cell transformation by p57 require both CDK and PCNA inhibitory activity, and disruption of either or both functions may lead to uncontrolled cell growth.
Collapse
Affiliation(s)
- H Watanabe
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | | | |
Collapse
|
375
|
Foley KP, McArthur GA, Quéva C, Hurlin PJ, Soriano P, Eisenman RN. Targeted disruption of the MYC antagonist MAD1 inhibits cell cycle exit during granulocyte differentiation. EMBO J 1998; 17:774-85. [PMID: 9451002 PMCID: PMC1170426 DOI: 10.1093/emboj/17.3.774] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The switch from transcriptionally activating MYC-MAX to transcriptionally repressing MAD1-MAX protein heterodimers has been correlated with the initiation of terminal differentiation in many cell types. To investigate the function of MAD1-MAX dimers during differentiation, we disrupted the Mad1 gene by homologous recombination in mice. Analysis of hematopoietic differentiation in homozygous mutant animals revealed that cell cycle exit of granulocytic precursors was inhibited following the colony-forming cell stage, resulting in increased proliferation and delayed terminal differentiation of low proliferative potential cluster-forming cells. Surprisingly, the numbers of terminally differentiated bone marrow and peripheral blood granulocytes were essentially unchanged in Mad1 null mice. This imbalance between the frequencies of precursor and mature granulocytes was correlated with a compensatory decrease in granulocytic cluster-forming cell survival under apoptosis-inducing conditions. In addition, recovery of the peripheral granulocyte compartment following bone marrow ablation was significantly enhanced in Mad1 knockout mice. Two Mad1-related genes, Mxi1 and Mad3, were found to be expressed ectopically in adult spleen, indicating that functional redundancy and cross-regulation between MAD family members may allow for apparently normal differentiation in the absence of MAD1. These findings demonstrate that MAD1 regulates cell cycle withdrawal during a late stage of granulocyte differentiation, and suggest that the relative levels of MYC versus MAD1 mediate a balance between cell proliferation and terminal differentiation.
Collapse
Affiliation(s)
- K P Foley
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North-Mailstop A2-025, P.O. Box 19024, Seattle, WA 98109-1024, USA
| | | | | | | | | | | |
Collapse
|
376
|
|
377
|
McLaughlin KJ, Kochanowski H, Solter D, Schwarzkopf G, Szabó PE, Mann JR. Roles of the imprinted gene Igf2 and paternal duplication of distal chromosome 7 in the perinatal abnormalities of androgenetic mouse chimeras. Development 1997; 124:4897-904. [PMID: 9428426 DOI: 10.1242/dev.124.23.4897] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mouse chimeras made with androgenetic (two paternal genomes) ova or embryonic stem cells frequently die at the perinatal stage and exhibit a range of defects, the most noticeable being a pronounced overgrowth of rib cartilage. Excess concentrations of IGFII, a potent mitogen, has been suggested to play a major role in these defects, as androgenetic cells possess two active paternal copies of the imprinted Igf2 gene, rather than one inactive maternal and one active paternal copy as in normal cells. Here, we show that chimeras made with androgenetic embryonic stem cells, homozygous for an Igf2 null mutation, do not develop rib cartilage hyperplasia, demonstrating the dependence of this defect on Igf2 activity produced by androgenetic cells. In contrast, in these same chimeras, many other defects, including whole body overgrowth and perinatal death, are still prevalent, indicating that the abnormal expression of one or more imprinted genes, other than Igf2, is also capable of inducing most of the defects of androgenetic chimeras. Many of these genes may reside on distal chromosome 7, as we also show that perinatal chimeras made with embryonic stem cells possessing paternal duplication of distal chromosome 7 exhibit a range of defects similar to those of androgenetic chimeras. The relevance of these findings for the human imprinting-related disorder, Beckwith-Wiedemann syndrome, is discussed.
Collapse
Affiliation(s)
- K J McLaughlin
- Department of Developmental Biology, Max Planck Institute for Immunology, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
378
|
Eggenschwiler J, Ludwig T, Fisher P, Leighton PA, Tilghman SM, Efstratiadis A. Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes. Genes Dev 1997; 11:3128-42. [PMID: 9389646 PMCID: PMC316748 DOI: 10.1101/gad.11.23.3128] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Accepted: 10/06/1997] [Indexed: 02/05/2023]
Abstract
In mice, the imprinted Igf2 gene (expressed from the paternal allele), which encodes a growth-promoting factor (IGF-II), is linked closely to the reciprocally imprinted H19 locus on chromosome 7. Also imprinted (expressed from the maternal allele) is the Igf2r gene on chromsome 17 encoding the type 2 IGF receptor that is involved in degradation of excess IGF-II. Double mutant embryos carrying a deletion around the H19 region and also a targeted Igf2r allele, both inherited maternally, have extremely high levels of IGF-II (7- and 11-fold higher than normal in tissues and serum, respectively) as a result of biallelic Igf2 expression (imprint relaxation by deletion of H19-associated sequence) in combination with lack of the IGF2R-mediated IGF-II turnover. This excess of IGF-II causes somatic overgrowth, visceromegaly, placentomegaly, omphalocele, and cardiac and adrenal defects, which are also features of the Beckwith-Wiedemann syndrome (BWS), a genetically complex human disorder associated with chromosomal abnormalities in the 11p15.5 region where the IGF2 gene resides. In addition, the double mutant mouse embryos exhibit skeletal defects and cleft palate, which are manifestations observed frequently in the Simpson-Golabi-Behmel syndrome, another overgrowth disorder overlapping phenotypically, but not genetically, with BWS.
Collapse
MESH Headings
- Abnormalities, Multiple/etiology
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Adrenal Cortex/abnormalities
- Adrenal Cortex/embryology
- Animals
- Beckwith-Wiedemann Syndrome/etiology
- Beckwith-Wiedemann Syndrome/genetics
- Beckwith-Wiedemann Syndrome/metabolism
- Bone and Bones/abnormalities
- Bone and Bones/embryology
- Cleft Palate/embryology
- Crosses, Genetic
- Cyclin-Dependent Kinase Inhibitor p57
- Disease Models, Animal
- Eye Abnormalities/embryology
- Female
- Fetal Death
- Fetus/abnormalities
- Gene Expression Regulation, Developmental
- Heart Defects, Congenital
- Hernia, Umbilical/embryology
- Humans
- Insulin-Like Growth Factor II/biosynthesis
- Insulin-Like Growth Factor II/genetics
- Insulin-Like Growth Factor II/physiology
- Male
- Mice
- Mice, Mutant Strains
- Nuclear Proteins/genetics
- Phenotype
- Receptor, IGF Type 2/genetics
- Receptor, IGF Type 2/metabolism
- Sequence Deletion
Collapse
Affiliation(s)
- J Eggenschwiler
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
379
|
Zavitz KH, Zipursky SL. Controlling cell proliferation in differentiating tissues: genetic analysis of negative regulators of G1-->S-phase progression. Curr Opin Cell Biol 1997; 9:773-81. [PMID: 9425341 DOI: 10.1016/s0955-0674(97)80077-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Withdrawal from the cell cycle as cells begin to differentiate is accomplished by the downregulation of cyclin-dependent kinase activities in G1 phase. Recent analysis of loss-of-function mutations in flies, worms, and mice has provided insight into the roles of various negative regulators of G1 phase in developing organisms.
Collapse
Affiliation(s)
- K H Zavitz
- Department of Biological Chemistry, School of Medicine, University of California at Los Angeles 90095, USA.
| | | |
Collapse
|
380
|
Abstract
Progression through the eukaryotic cell cycle is regulated by the activities of a family of cyclin dependent kinases (CDKs). These kinases are negatively regulated by phosphorylation and by the action of cyclin kinase inhibitors (CKIs). In mammalian cells, two classes of CKIs have been identified, the INK4 class and the CIP/KIP class. These CKIs are versatile negative regulators of CDK function and have potential roles in development, checkpoint control and tumour suppression. Analysis of CKI knockout indicates that although these inhibitors are not generally required for survival, the phenotypes observed span the gamut of what might be expected for loss of a cell cycle inhibitor. This chapter summarizes our current understanding of the roles of CKIs in growth control.
Collapse
Affiliation(s)
- J W Harper
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
381
|
Hurst LD, McVean GT. Growth effects of uniparental disomies and the conflict theory of genomic imprinting. Trends Genet 1997; 13:436-43. [PMID: 9385840 DOI: 10.1016/s0168-9525(97)01273-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
While numerous theories have been proposed for the evolution of genomic imprinting, few have been tested. The conflict theory proposes that imprinting is an intra-individual manifestation of classical parent-offspring conflict. This theory is unique in predicting that imprinted genes expressed from the paternally derived genome should be enhancers of pre- and post-natal growth, while those expressed from the maternally derived genome should be growth suppressors. We examine this prediction by reviewing the literature on growth of human and mouse progeny that have inherited both copies (or part thereof) of a particular chromosome from only one parent. Perhaps surprisingly, we find that much of the data do not support the hypothesis.
Collapse
Affiliation(s)
- L D Hurst
- Department of Biology and Biochemistry, University of Bath, UK.
| | | |
Collapse
|
382
|
Sun FL, Dean WL, Kelsey G, Allen ND, Reik W. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature 1997; 389:809-15. [PMID: 9349812 DOI: 10.1038/39797] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The gene IGF2, which encodes a fetal insulin-like growth factor, is imprinted, so only one of two parental copies of the gene is expressed. The altered expression of IGF2 has been implicated in Beckwith-Wiedemann syndrome, a human fetal overgrowth syndrome, which is characterized by overgrowth of several organs and an increased risk of developing childhood tumours. We have introduced Igf2 transgenes into the mouse genome by using embryonic stem cells, which leads to transactivation of the endogenous Igf2 gene. The consequent overexpression of Igf2 results in most of the symptoms of Beckwith-Wiedemann syndrome, including prenatal overgrowth, polyhydramnios, fetal and neonatal lethality, disproportionate organ overgrowth including tongue enlargement, and skeletal abnormalities. These phenotypes establish Igf2 overexpression as a key determinant of Beckwith-Wiedemann syndrome.
Collapse
Affiliation(s)
- F L Sun
- Laboratory of Developmental Genetics and Imprinting, Department of Development and Genetics, The Babraham Institute, Cambridge, UK
| | | | | | | | | |
Collapse
|
383
|
Swanger WJ, Roberts JM. p57KIP2 targeted disruption and Beckwith-Wiedemann syndrome: is the inhibitor just a contributor? Bioessays 1997; 19:839-42. [PMID: 9363677 DOI: 10.1002/bies.950191002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Beckwith-Wiedemann syndrome is a human congenital disorder characterized by a wide variety of growth abnormalities, including developmental defects and predisposition to certain tumors. Genetic evidence has suggested a role for p57KIP2, a member of a family of cell cycle inhibitory genes, in Beckwith-Wiedemann syndrome. Two independent groups have reported the generation and characterization of mice lacking functional p57KIP2. These mice demonstrate a number of abnormal phenotypes which overlap with, although do not completely recapitulate, Beckwith-Wiedemann syndrome. These findings advance the molecular characterization of a human disorder, and provide insight into the interplay between regulation of cell division and development.
Collapse
Affiliation(s)
- W J Swanger
- Fred Hutchinson Cancer Research Center, Seattle, WA 98107, USA.
| | | |
Collapse
|
384
|
Abstract
DNA methylation is crucial for mammalian development because embryos that cannot maintain normal methylation levels die after gastrulation. I propose that DNA methylation is only important for the somatic lineages, but has no role in embryonic lineages including the germ line. Among vertebrates, genomic imprinting is found only in mammals, and numerous hypotheses have ascribed an essential function to imprinting because of the uniquely mammalian developmental and physiological requirements. However, our understanding of molecular details of the imprinting process, as well as evolutionary considerations, is rather consistent with imprinting having no intrinsic role in mammalian development.
Collapse
Affiliation(s)
- R Jaenisch
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge 02142, USA.
| |
Collapse
|
385
|
Abstract
Imprinted genes in mammals can be clustered in the genome. This raises important questions about mechanistic and functional relationships between imprinted genes in a cluster. The insulin-like growth factor II (IGF2) gene is paternally expressed and is surrounded by maternally expressed genes. Loss of imprinting of IGF2 is the most common molecular defect found in the human foetal overgrowth syndrome, Beckwith-Wiedemann syndrome (BWS). Transgenic experiments in the mouse establish that overexpression of IGF2 can result in most of the symptoms of BWS. However, mutations, translocations, or methylation defects in BWS have so far been found in three of the linked maternally expressed genes. We present a model where the paternal growth enhancer IGF2 is surrounded by multiple maternal suppressors, and mutations, or epigenetic alterations, in any of these suppressors could cause BWS. In addition, the precise phenotypic spectrum of BWS might depend on which maternally expressed gene is mutated.
Collapse
Affiliation(s)
- W Reik
- Laboratory of Developmental Genetics and Imprinting, Babraham Institute, Cambridge, UK.
| | | |
Collapse
|
386
|
MacNicol M, Schulman H. Cross-talk between protein kinase C and multifunctional Ca2+/calmodulin-dependent protein kinase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49824-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|