351
|
Zhu Q, Scherer PE. Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nat Rev Nephrol 2017; 14:105-120. [PMID: 29199276 DOI: 10.1038/nrneph.2017.157] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Excess adiposity can induce adverse sequelae in multiple cell types and organ systems. The transition from the lean to the obese state is characterized by fundamental cellular changes at the level of the adipocyte. These changes affect the local microenvironment within the respective adipose tissue but can also affect nonadipose systems. Adipocytes within fat pads respond to chronic nutrient excess through hyperplasia or hypertrophy, which can differentially affect interorgan crosstalk between various adipose depots and other organs. This crosstalk is dependent on the unique ability of the adipocyte to coordinate metabolic adjustments throughout the body and to integrate responses to maintain metabolic homeostasis. These actions occur through the release of free fatty acids and metabolites during times of energy need - a process that is altered in the obese state. In addition, adipocytes release a wide array of signalling molecules, such as sphingolipids, as well as inflammatory and hormonal factors (adipokines) that are critical for interorgan crosstalk. The interactions of adipose tissue with the kidney - referred to as the adipo-renal axis - are important for normal kidney function as well as the response of the kidney to injury. Here, we discuss the mechanistic basis of this interorgan crosstalk, which clearly has great therapeutic potential given the increasing rates of chronic kidney disease secondary to obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8549, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8549, USA.,Touchstone Diabetes Center, Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8549, USA
| |
Collapse
|
352
|
Whon TW, Shin NR, Jung MJ, Hyun DW, Kim HS, Kim PS, Bae JW. Conditionally Pathogenic Gut Microbes Promote Larval Growth by Increasing Redox-Dependent Fat Storage in High-Sugar Diet-Fed Drosophila. Antioxid Redox Signal 2017; 27:1361-1380. [PMID: 28462587 DOI: 10.1089/ars.2016.6790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Changes in the composition of the gut microbiota contribute to the development of obesity and subsequent complications that are associated with metabolic syndrome. However, the role of increased numbers of certain bacterial species during the progress of obesity and factor(s) controlling the community structure of gut microbiota remain unclear. Here, we demonstrate the inter-relationship between Drosophila melanogaster and their resident gut microbiota under chronic high-sugar diet (HSD) conditions. RESULTS Chronic feeding of an HSD to Drosophila resulted in a predominance of resident uracil-secreting bacteria in the gut. Axenic insects mono-associated with uracil-secreting bacteria or supplemented with uracil under HSD conditions promoted larval development. Redox signaling induced by bacterial uracil promoted larval growth by regulating sugar and lipid metabolism via activation of p38a mitogen-activated protein kinase. INNOVATION The present study identified a new redox-dependent mechanism by which uracil-secreting bacteria (previously regarded as opportunistic pathobionts) protect the host from metabolic perturbation under chronic HSD conditions. CONCLUSION These results illustrate how Drosophila and gut microbes form a symbiotic relationship under stress conditions, and changes in the gut microbiota play an important role in alleviating deleterious diet-derived effects such as hyperglycemia. Antioxid. Redox Signal. 27, 1361-1380.
Collapse
Affiliation(s)
- Tae Woong Whon
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Na-Ri Shin
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Mi-Ja Jung
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Dong-Wook Hyun
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Hyun Sik Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Pil Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| |
Collapse
|
353
|
Estrogen receptor 1 (ESR1) regulates VEGFA in adipose tissue. Sci Rep 2017; 7:16716. [PMID: 29196658 PMCID: PMC5711936 DOI: 10.1038/s41598-017-16686-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor A (VEGFA) is a key factor in the regulation of angiogenesis in adipose tissue. Poor vascularization during adipose tissue proliferation causes fibrosis and local inflammation, and is associated with insulin resistance. It is known that 17-beta estradiol (E2) regulates adipose tissue function and VEGFA expression in other tissues; however, the ability of E2 to regulate VEGFA in adipose tissue is currently unknown. In this study, we showed that, in 3T3-L1 cells, E2 and the estrogen receptor 1 (ESR1) agonist PPT induced VEGFA expression, while ESR1 antagonist (MPP), and selective knockdown of ESR1 using siRNA decreased VEGFA and prevented the ability of E2 to modulate its expression. Additionally, we found that E2 and PPT induced the binding of hypoxia inducible factor 1 alpha subunit (HIF1A) in the VEGFA gene promoter. We further found that VEGFA expression was lower in inguinal and gonadal white adipose tissues of ESR1 total body knockout female mice compared to wild type mice. In conclusion, our data provide evidence of an important role for E2/ESR1 in modulating adipose tissue VEGFA, which is potentially important to enhance angiogenesis, reduce inflammation and improve adipose tissue function.
Collapse
|
354
|
Han SJ, Boyko EJ, Fujimoto WY, Kahn SE, Leonetti DL. Low Plasma Adiponectin Concentrations Predict Increases in Visceral Adiposity and Insulin Resistance. J Clin Endocrinol Metab 2017; 102:4626-4633. [PMID: 29029184 PMCID: PMC5718705 DOI: 10.1210/jc.2017-01703] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/20/2017] [Indexed: 12/01/2022]
Abstract
Context Plasma adiponectin concentration has been shown to be inversely associated with body mass index (BMI) and insulin resistance in cross-sectional research. However, it is unclear whether adiponectin predicts future body composition and insulin resistance. Objective We aimed to investigate the potential relationship between adiponectin concentration and future regional body fat distribution and insulin resistance. Design and Setting This was a community-based prospective cohort study with 5 years of follow-up. Participants A total of 218 Japanese Americans without diabetes (79 men, 139 women, mean age 51.7 ± 10.1 years) were assessed at baseline and after 5 years of follow-up. Main Outcome Measures Abdominal visceral and subcutaneous fat area and thigh subcutaneous fat area were measured by computed tomography (CT). Insulin resistance was evaluated by homeostasis model assessment 2 of insulin resistance (HOMA2-IR). Plasma total adiponectin was measured by radioimmunoassay. Results Baseline adiponectin was inversely associated with abdominal visceral fat area (P = 0.037) and HOMA2-IR (P = 0.002) at 5 years in a multiple linear regression model after adjustment for baseline traits (including age, sex, BMI, abdominal visceral fat area, abdominal subcutaneous fat area, thigh subcutaneous fat area, HOMA2-IR) and weight change. However, no association was seen between baseline adiponectin concentration and BMI or other CT-measured regional fat depots at 5 years. Conclusions Low plasma adiponectin concentration independently predicted future abdominal visceral fat accumulation and increased insulin resistance in Japanese Americans.
Collapse
Affiliation(s)
- Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea 16499
- Seattle Epidemiologic Research and Information Center, VA Puget Sound Health Care System, Seattle, Washington 98108
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98195
| | - Edward J. Boyko
- Seattle Epidemiologic Research and Information Center, VA Puget Sound Health Care System, Seattle, Washington 98108
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98195
| | - Wilfred Y. Fujimoto
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98195
| | - Steven E. Kahn
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98195
- Hospital and Specialty Medicine Service, VA Puget Sound Health Care System, Seattle, Washington 98108
| | - Donna L. Leonetti
- Department of Anthropology, University of Washington, Seattle, Washington 98105
| |
Collapse
|
355
|
Chennamsetty I, Coronado M, Contrepois K, Keller MP, Carcamo-Orive I, Sandin J, Fajardo G, Whittle AJ, Fathzadeh M, Snyder M, Reaven G, Attie AD, Bernstein D, Quertermous T, Knowles JW. Nat1 Deficiency Is Associated with Mitochondrial Dysfunction and Exercise Intolerance in Mice. Cell Rep 2017; 17:527-540. [PMID: 27705799 DOI: 10.1016/j.celrep.2016.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/28/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
We recently identified human N-acetyltransferase 2 (NAT2) as an insulin resistance (IR) gene. Here, we examine the cellular mechanism linking NAT2 to IR and find that Nat1 (mouse ortholog of NAT2) is co-regulated with key mitochondrial genes. RNAi-mediated silencing of Nat1 led to mitochondrial dysfunction characterized by increased intracellular reactive oxygen species and mitochondrial fragmentation as well as decreased mitochondrial membrane potential, biogenesis, mass, cellular respiration, and ATP generation. These effects were consistent in 3T3-L1 adipocytes, C2C12 myoblasts, and in tissues from Nat1-deficient mice, including white adipose tissue, heart, and skeletal muscle. Nat1-deficient mice had changes in plasma metabolites and lipids consistent with a decreased ability to utilize fats for energy and a decrease in basal metabolic rate and exercise capacity without altered thermogenesis. Collectively, our results suggest that Nat1 deficiency results in mitochondrial dysfunction, which may constitute a mechanistic link between this gene and IR.
Collapse
Affiliation(s)
- Indumathi Chennamsetty
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Coronado
- Division of Cardiology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Ivan Carcamo-Orive
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John Sandin
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Giovanni Fajardo
- Division of Cardiology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Andrew J Whittle
- Department of Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Mohsen Fathzadeh
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gerald Reaven
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Daniel Bernstein
- Division of Cardiology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua W Knowles
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
356
|
Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction. Nutrients 2017; 9:nu9121289. [PMID: 29186929 PMCID: PMC5748740 DOI: 10.3390/nu9121289] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein.
Collapse
|
357
|
Role of Mitochondrial Complex IV in Age-Dependent Obesity. Cell Rep 2017; 16:2991-3002. [PMID: 27626667 DOI: 10.1016/j.celrep.2016.08.041] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/14/2015] [Accepted: 08/14/2016] [Indexed: 12/18/2022] Open
Abstract
Aging is associated with progressive white adipose tissue (WAT) enlargement initiated early in life, but the molecular mechanisms involved remain unknown. Here we show that mitochondrial complex IV (CIV) activity and assembly are already repressed in white adipocytes of middle-aged mice and involve a HIF1A-dependent decline of essential CIV components such as COX5B. At the molecular level, HIF1A binds to the Cox5b proximal promoter and represses its expression. Silencing of Cox5b decreased fatty acid oxidation and promoted intracellular lipid accumulation. Moreover, local in vivo Cox5b silencing in WAT of young mice increased the size of adipocytes, whereas restoration of COX5B expression in aging mice counteracted adipocyte enlargement. An age-dependent reduction in COX5B gene expression was also found in human visceral adipose tissue. Collectively, our findings establish a pivotal role for CIV dysfunction in progressive white adipocyte enlargement during aging, which can be restored to alleviate age-dependent WAT expansion.
Collapse
|
358
|
Abstract
Angiogenesis plays an important role in controlling tissue development and maintaining normal tissue function. Dysregulated angiogenesis is implicated in the pathogenesis of a variety of diseases, particularly diabetes, cancers, and neurodegenerative disorders. As the major regulator of angiogenesis, the vascular endothelial growth factor (VEGF) family is composed of a group of crucial members including VEGF-B. While the physiological roles of VEGF-B remain debatable, increasing evidence suggests that this protein is able to protect certain type of cells from apoptosis under pathological conditions. More importantly, recent studies reveal that VEGF-B is involved in lipid transport and energy metabolism, implicating this protein in obesity, diabetes and related metabolic complications. This article summarizes the current knowledge and understanding of VEGF-B in physiology and pathology, and shed light on the therapeutic potential of this crucial protein.
Collapse
Affiliation(s)
- Hongyu Zhu
- a State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , Nanjing , China
| | - Mingming Gao
- b Department of Pharmaceutical and Biomedical Sciences , University of Georgia , Athens , GA , USA
| | - Xiangdong Gao
- a State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , Nanjing , China
| | - Yue Tong
- a State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , Nanjing , China
| |
Collapse
|
359
|
Krumm C, Giesy S, Caixeta L, Butler W, Sauerwein H, Kim J, Boisclair Y. Effect of hormonal and energy-related factors on plasma adiponectin in transition dairy cows. J Dairy Sci 2017; 100:9418-9427. [DOI: 10.3168/jds.2017-13274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
|
360
|
Abstract
Adipose tissue not only has an important role in the storage of excess nutrients but also senses nutrient status and regulates energy mobilization. An overall positive energy balance is associated with overnutrition and leads to excessive accumulation of fat in adipocytes. These cells respond by initiating an inflammatory response that, although maladaptive in the long run, might initially be a physiological response to the stresses obesity places on adipose tissue. In this Review, we characterize adipose tissue inflammation and review the current knowledge of what triggers obesity-associated inflammation in adipose tissue. We examine the connection between adipose tissue inflammation and the development of insulin resistance and catecholamine resistance and discuss the ensuing state of metabolic inflexibility. Finally, we review the current and potential new anti-inflammatory treatments for obesity-associated metabolic disease.
Collapse
Affiliation(s)
- Shannon M Reilly
- Department of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Alan R Saltiel
- Department of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
361
|
Chen Z, Yu R, Xiong Y, Du F, Zhu S. A vicious circle between insulin resistance and inflammation in nonalcoholic fatty liver disease. Lipids Health Dis 2017; 16:203. [PMID: 29037210 PMCID: PMC5644081 DOI: 10.1186/s12944-017-0572-9] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) comprises a spectrum of diseases, including simple steatosis, nonalcoholic steatohepatitis (NASH), liver cirrhosis and hepatocellular carcinoma. Lipotoxicity, insulin resistance (IR) and inflammation are involved in the disease process. Lipotoxicity promotes inflammation and IR, which in turn, increase adipocyte lipolysis and exacerbates lipotoxicity. Furthermore, IR and inflammation form a vicious circle, with each condition promoting the other and accelerating the development of NAFLD in the presence of lipotoxicity. As an integrator of inflammatory pathway networks, nuclear factor-kappa B (NF-κB) regulates expression of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and anti-inflammatory cytokines, such as adiponectin in NAFLD. In this review, the relationships between lipotoxicity, IR and inflammation in NAFLD are discussed, with particular emphasis on the inflammatory pathways.
Collapse
Affiliation(s)
- Zhonge Chen
- Medical Center of The Graduate School, Nanchang University, Nanchang, China
| | - Rong Yu
- Department of Endocrinology, Second Affliated Hospital, Nanchang University, Nanchang, China
| | - Ying Xiong
- Department of Gastroenterology, Second Affliated Hospital, Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Fangteng Du
- Department of Gastroenterology, Second Affliated Hospital, Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| | - Shuishan Zhu
- Department of Gastroenterology, Second Affliated Hospital, Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| |
Collapse
|
362
|
Tang Q, Chen C, Zhang Y, Dai M, Jiang Y, Wang H, Yu M, Jing W, Tian W. Wnt5a regulates the cell proliferation and adipogenesis via MAPK-independent pathway in early stage of obesity. Cell Biol Int 2017; 42:63-74. [PMID: 28851071 DOI: 10.1002/cbin.10862] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/26/2017] [Indexed: 02/05/2023]
Abstract
The early stage of obesity is an important stage in the development of obesity. However, there are few studies which explored the property or changes in obesity at early stage especially involving Wnt5a. The associated gene expression of Wnt5a on cell regeneration and the effect of Wnt5a on rat adipose-derived stem cell (rASC) proliferation and adipogenesis need additional study. Here, we investigated the changes in obesity at early stage and how Wnt5a regulates rASC regeneration, proliferation, and adipogenesis. Our data revealed that obesity at early stage measured by Lee index presented a state with impaired adipogenesis and more infiltrated inflammatory cells but without significant changes in adipocyte sizes and inflammatory factors. The process might be associated with anti-canonical Wnt pathway and a reciprocal Wnt5a/JNK pathway. Besides the gene expression of Wnt5a decreased from cell passage 1 to passage 3. The cell proliferation was regulated by increasing dose of Wnt5a with the maximal effect at 50 ng/mL and 50 ng/mL Wnt5a suppressed adipogenic differentiation at middle-late stage of adipogenesis via anti-β-catenin and a mitogen-activated protein kinase (MAPK) signaling-independent manner. Accordingly, the research helps to gain further insights into the early stage of obesity and its associated changes on a cellular and molecular level.
Collapse
Affiliation(s)
- Qi Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Chang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Minjia Dai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Yichen Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Jing
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| |
Collapse
|
363
|
Alcala M, Calderon-Dominguez M, Serra D, Herrero L, Ramos MP, Viana M. Short-term vitamin E treatment impairs reactive oxygen species signaling required for adipose tissue expansion, resulting in fatty liver and insulin resistance in obese mice. PLoS One 2017; 12:e0186579. [PMID: 29028831 PMCID: PMC5640231 DOI: 10.1371/journal.pone.0186579] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022] Open
Abstract
Objectives The use of antioxidant therapy in the treatment of oxidative stress-related diseases such as cardiovascular disease, diabetes or obesity remains controversial. Our aim is to demonstrate that antioxidant supplementation may promote negative effects if used before the establishment of oxidative stress due to a reduced ROS generation under physiological levels, in a mice model of obesity. Methods C57BL/6J mice were fed with a high-fat diet for 14 weeks, with (OE group) or without (O group) vitamin E supplementation. Results O mice developed a mild degree of obesity, which was not enough to induce metabolic alterations or oxidative stress. These animals exhibited a healthy expansion of retroperitoneal white adipose tissue (rpWAT) and the liver showed no signs of lipotoxicity. Interestingly, despite achieving a similar body weight, OE mice were insulin resistant. In the rpWAT they presented a reduced generation of ROS, even below physiological levels (C: 1651.0 ± 212.0; O: 3113 ± 284.7; OE: 917.6 ±104.4 RFU/mg protein. C vs OE p< 0.01). ROS decay may impair their action as second messengers, which could account for the reduced adipocyte differentiation, lipid transport and adipogenesis compared to the O group. Together, these processes limited the expansion of this fat pad and as a consequence, lipid flux shifted towards the liver, causing steatosis and hepatomegaly, which may contribute to the marked insulin resistance. Conclusions This study provides in vivo evidence for the role of ROS as second messengers in adipogenesis, lipid metabolism and insulin signaling. Reducing ROS generation below physiological levels when the oxidative process has not yet been established may be the cause of the controversial results obtained by antioxidant therapy.
Collapse
Affiliation(s)
- Martin Alcala
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Maria Calderon-Dominguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria P. Ramos
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Marta Viana
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- * E-mail:
| |
Collapse
|
364
|
Ohlsson C, Hammarstedt A, Vandenput L, Saarinen N, Ryberg H, Windahl SH, Farman HH, Jansson JO, Movérare-Skrtic S, Smith U, Zhang FP, Poutanen M, Hedjazifar S, Sjögren K. Increased adipose tissue aromatase activity improves insulin sensitivity and reduces adipose tissue inflammation in male mice. Am J Physiol Endocrinol Metab 2017; 313:E450-E462. [PMID: 28655716 PMCID: PMC5668598 DOI: 10.1152/ajpendo.00093.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/14/2017] [Accepted: 06/17/2017] [Indexed: 02/03/2023]
Abstract
Females are, in general, more insulin sensitive than males. To investigate whether this is a direct effect of sex-steroids (SS) in white adipose tissue (WAT), we developed a male mouse model overexpressing the aromatase enzyme, converting testosterone (T) to estradiol (E2), specifically in WAT (Ap2-arom mice). Adipose tissue E2 levels were increased while circulating SS levels were unaffected in male Ap2-arom mice. Importantly, male Ap2-arom mice were more insulin sensitive compared with WT mice and exhibited increased serum adiponectin levels and upregulated expression of Glut4 and Irs1 in WAT. The expression of markers of macrophages and immune cell infiltration was markedly decreased in WAT of male Ap2-arom mice. The adipogenesis was enhanced in male Ap2-arom mice, supported by elevated Pparg expression in WAT and enhanced differentiation of preadipocyte into mature adipocytes. In summary, increased adipose tissue aromatase activity reduces adipose tissue inflammation and improves insulin sensitivity in male mice. We propose that estrogen increases insulin sensitivity via a local effect in WAT on adiponectin expression, adipose tissue inflammation, and adipogenesis.
Collapse
Affiliation(s)
- Claes Ohlsson
- Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Hammarstedt
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Liesbeth Vandenput
- Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Niina Saarinen
- University of Turku, Institute of Biomedicine, Turku Center for Disease Modeling, Department of Physiology, Turku, Finland; and
| | - Henrik Ryberg
- Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara H Windahl
- Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helen H Farman
- Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - John-Olov Jansson
- Institute of Neuroscience and Physiology/Endocrinology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fu-Ping Zhang
- University of Turku, Institute of Biomedicine, Turku Center for Disease Modeling, Department of Physiology, Turku, Finland; and
| | - Matti Poutanen
- University of Turku, Institute of Biomedicine, Turku Center for Disease Modeling, Department of Physiology, Turku, Finland; and
| | - Shahram Hedjazifar
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Klara Sjögren
- Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden;
| |
Collapse
|
365
|
Adipose Tissue Function and Expandability as Determinants of Lipotoxicity and the Metabolic Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:161-196. [PMID: 28585199 DOI: 10.1007/978-3-319-48382-5_7] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis and it is constituted of three different types of adipocytes : white, beige and brown which are integrated with vascular, immune, neural and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concert action of the three type of adipocytes/tissues has been reported to ensure an optimal metabolic status in rodents. However, when one or multiple of these adipose depots become dysfunctional as a consequence of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity counteracts obesity and its associated lipotoxic metabolic effects. The development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition and expandability capacity as well as molecular and metabolic signatures in both physiological and pathophysiological conditions.
Collapse
|
366
|
Abstract
The metabolic syndrome (MetS) or insulin resistance syndrome is a constellation of obesity-related metabolic derangements predisposing to type 2 diabetes and cardiovascular disease. In 1998, WHO defined the first criteria of MetS. Three years later, the user-friendly National Cholesterol Education Program criteria of MetS were proposed. Different criteria were issued by the International Diabetes Federation in 2005, making abdominal obesity a necessary component. Several international societies, including The International Diabetes Federation, jointly adopted the revised National Cholesterol Education Program criteria as harmonizing criteria of MetS in 2009. WHO warned the next year that MetS has limited practical utility as a management tool. Adipose tissue inflammation has been shown to be a fundamental mechanism of metabolic derangements, associated with ectopic lipid deposit and mitochondrial dysfunction in skeletal muscle and the liver.
Collapse
|
367
|
Hypoxia in 3T3-L1 adipocytes suppresses adiponectin expression via the PERK and IRE1 unfolded protein response. Biochem Biophys Res Commun 2017; 493:346-351. [PMID: 28888981 DOI: 10.1016/j.bbrc.2017.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 01/17/2023]
Abstract
Adiponectin, an adipocytokine produced by adipocytes, functions as an anti-inflammatory and anti-apoptotic substance, while also enhancing insulin sensitivity. Patients or model animals with obesity or diabetes typically present attenuated expression of adiponectin. Moreover, obesity and diabetes are often accompanied with hypoxia in adipose tissue, which may result in endoplasmic reticulum (ER) stress as well as low expression of adiponectin. The purpose of this study was to investigate the specific role of the unfolded protein response (UPR) involved in the low expression of adiponectin induced by hypoxia. Subjecting 3T3-L1 adipocytes to hypoxia significantly reduced adiponectin expression and activated the PERK and IRE1 signaling pathways in a time-dependent manner. The ATF6 signaling pathway showed no obvious changes with hypoxia treatment under a similar time course. Moreover, the down-regulated expression of adiponectin induced by hypoxia was relieved once the PERK and IRE1 signaling pathways were suppressed by the inhibitors GSK2656157 and 4μ8C, respectively. Overall, these data demonstrate that hypoxia can suppress adiponectin expression and activate the PERK and IRE1 signaling pathways in differentiated adipocytes, and this two pathways are involved in the suppression of adiponectin expression induced by hypoxia.
Collapse
|
368
|
Jang HH, Nam SY, Kim MJ, Kim JB, Choi JS, Kim HR, Lee YM. Agrimonia pilosa Ledeb. aqueous extract improves impaired glucose tolerance in high-fat diet-fed rats by decreasing the inflammatory response. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:442. [PMID: 28870184 PMCID: PMC5583762 DOI: 10.1186/s12906-017-1949-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023]
Abstract
Background Agrimonia pilosa Ledeb. is a medicinal plant with physiological activities such as anti-cancer, antioxidant, anti-inflammatory activities and in vitro anti-diabetic activity. However, the effects of aqueous extracts from A. pilosa on insulin-resistant rats have not yet been examined. We investigated the effects of aqueous extract from A. pilosa on impaired glucose metabolism induced by a high-fat diet in rats. Methods Male Sprague-Dawley rats were assigned to the following groups: normal-fat diet (NF, n = 9); high-fat diet (HF, n = 9); high-fat diet with 0.1% A. pilosa aqueous extract (HFA, n = 10). Experimental diets were administered for 16 weeks. At the end of the treatment, liver and fat tissues were isolated, and serum was collected for biochemical analysis. Results The HF group rats had a significantly higher liver weight than the NF group rats did, and increased hepatic lipid accumulation (p < 0.05); however, supplementation with A. pilosa decreased liver weight. Blood glucose levels in the HFA group were lower than levels measured in the HF group 30, 60, and 120 min after glucose administration (p < 0.05). In addition, dietary A. pilosa supplementation decreased tumor necrosis factor α and interleukin 6 levels, while increasing serum adiponectin concentrations (p < 0.05 vs. the HF group). These effects were accompanied by reduced hepatic and adipose tissue expression of inflammation-related genes such as Tnf and Il1b (p < 0.05). Conclusions Our findings indicate that A. pilosa aqueous extract can ameliorate insulin resistance in high-fat diet-fed rats by decreasing the inflammatory response. Electronic supplementary material The online version of this article (10.1186/s12906-017-1949-z) contains supplementary material, which is available to authorized users.
Collapse
|
369
|
Abstract
PURPOSE OF REVIEW Adipose tissue (AT) houses both innate and adaptive immune systems that are crucial for preserving AT function and metabolic homeostasis. In this review, we summarize recent information regarding progression of obesity-associated AT inflammation and insulin resistance. We additionally consider alterations in AT distribution and the immune system in males vs. females and among different racial populations. RECENT FINDINGS Innate and adaptive immune cell-derived inflammation drives insulin resistance both locally and systemically. However, new evidence also suggests that the immune system is equally vital for adipocyte differentiation and protection from ectopic lipid deposition. Furthermore, roles of anti-inflammatory immune cells such as regulatory T cells, "M2-like" macrophages, eosinophils, and mast cells are being explored, primarily due to promise of immunotherapeutic applications. Both immune responses and AT distribution are strongly influenced by factors like sex and race, which have been largely underappreciated in the field of metabolically-associated inflammation, or meta-flammation. More studies are required to recognize factors that switch inflammation from controlled to uncontrolled in obesity-associated pathogenesis and to integrate the combined effects of meta-flammation and immunometabolism. It is critical to recognize that the AT-associated immune system can be alternately beneficial and destructive; therefore, simply blocking immune responses early in obesity may not be the best clinical approach. The dearth of information on gender and race-associated disparities in metabolism, AT distribution, and the immune system suggest that a greater understanding of such differences will be critical to develop personalized treatments for obesity and the associated metabolic dysfunction.
Collapse
Affiliation(s)
- Madhur Agrawal
- Department of Microbiology, Boston University School of Medicine, 72 East Concord Street L-516, Boston, MA, 02118, USA
| | - Philip A Kern
- Department of Medicine, Division of Endocrinology, University of Kentucky, Lexington, KY, USA
| | - Barbara S Nikolajczyk
- Department of Microbiology, Boston University School of Medicine, 72 East Concord Street L-516, Boston, MA, 02118, USA.
- Department of Pathology, Boston University School of Medicine, Boston, MA, USA.
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
370
|
Adiponectin protects against development of metabolic disturbances in a PCOS mouse model. Proc Natl Acad Sci U S A 2017; 114:E7187-E7196. [PMID: 28790184 DOI: 10.1073/pnas.1708854114] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adiponectin, together with adipocyte size, is the strongest factor associated with insulin resistance in women with polycystic ovary syndrome (PCOS). This study investigates the causal relationship between adiponectin levels and metabolic and reproductive functions in PCOS. Prepubertal mice overexpressing adiponectin from adipose tissue (APNtg), adiponectin knockouts (APNko), and their wild-type (WT) littermate mice were continuously exposed to placebo or dihydrotestosterone (DHT) to induce PCOS-like traits. As expected, DHT exposure led to reproductive dysfunction, as judged by continuous anestrus, smaller ovaries with a decreased number of corpus luteum, and an increased number of cystic/atretic follicles. A two-way between-groups analysis showed that there was a significant main effect for DHT exposure, but not for genotype, indicating adiponectin does not influence follicle development. Adiponectin had, however, some protective effects on ovarian function. Similar to in many women with PCOS, DHT exposure led to reduced adiponectin levels, larger adipocyte size, and reduced insulin sensitivity in WTs. APNtg mice remained metabolically healthy despite DHT exposure, while APNko-DHT mice were even more insulin resistant than their DHT-exposed littermate WTs. DHT exposure also reduced the mRNA expression of genes involved in metabolic pathways in gonadal adipose tissue of WT and APNko, but this effect of DHT was not observed in APNtg mice. Moreover, APNtg-DHT mice displayed increased pancreatic mRNA levels of insulin receptors, Pdx1 and Igf1R, suggesting adiponectin stimulates beta cell viability/hyperplasia in the context of PCOS. In conclusion, adiponectin improves metabolic health but has only minor effects on reproductive functions in this PCOS-like mouse model.
Collapse
|
371
|
Adipokines and Non-Alcoholic Fatty Liver Disease: Multiple Interactions. Int J Mol Sci 2017; 18:ijms18081649. [PMID: 28758929 PMCID: PMC5578039 DOI: 10.3390/ijms18081649] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence links obesity with low-grade inflammation which may originate from adipose tissue that secretes a plethora of pro- and anti-inflammatory cytokines termed adipokines. Adiponectin and leptin have evolved as crucial signals in many obesity-related pathologies including non-alcoholic fatty liver disease (NAFLD). Whereas adiponectin deficiency might be critically involved in the pro-inflammatory state associated with obesity and related disorders, overproduction of leptin, a rather pro-inflammatory mediator, is considered of equal relevance. An imbalanced adipokine profile in obesity consecutively contributes to metabolic inflammation in NAFLD, which is associated with a substantial risk for developing hepatocellular carcinoma (HCC) also in the non-cirrhotic stage of disease. Both adiponectin and leptin have been related to liver tumorigenesis especially in preclinical models. This review covers recent advances in our understanding of some adipokines in NAFLD and associated HCC.
Collapse
|
372
|
Zhang X, Liu Y, Shao H, Zheng X. Obesity Paradox in Lung Cancer Prognosis: Evolving Biological Insights and Clinical Implications. J Thorac Oncol 2017; 12:1478-1488. [PMID: 28757418 DOI: 10.1016/j.jtho.2017.07.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/18/2017] [Accepted: 07/22/2017] [Indexed: 01/16/2023]
Abstract
The survival rate of lung cancer remains low despite the progress of surgery and chemotherapy. With the increasing comorbidity of obesity in patients with lung cancer, new challenges are emerging in the management of this patient population. A key issue of interest is the prognostic effect of obesity on surgical and chemotherapeutic outcomes in patients with lung cancer, which is fueled by the growing observation of survival benefits in overweight or obese patients. This unexpected inverse relationship between obesity and lung cancer mortality, called the obesity paradox, remains poorly understood. The evolving insights into the heterogeneity of obesity phenotypes and associated biological connections with lung cancer progression in recent years may help explain some of the seemingly paradoxical relationship, and well-designed clinical studies looking at the causal role of obesity-associated molecules are expected. Here, we examine potential biological mechanisms behind the protective effects of obesity in lung cancer. We highlight the need to clarify the clinical implications of this relationship toward an updated intervention strategy in the clinical care of patients with lung cancer and obesity.
Collapse
Affiliation(s)
- Xueli Zhang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Yamin Liu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Hua Shao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Xiao Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
373
|
Wu W, Shi F, Liu D, Ceddia RP, Gaffin R, Wei W, Fang H, Lewandowski ED, Collins S. Enhancing natriuretic peptide signaling in adipose tissue, but not in muscle, protects against diet-induced obesity and insulin resistance. Sci Signal 2017; 10:10/489/eaam6870. [PMID: 28743802 PMCID: PMC7418652 DOI: 10.1126/scisignal.aam6870] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In addition to controlling blood pressure, cardiac natriuretic peptides (NPs) can stimulate lipolysis in adipocytes and promote the "browning" of white adipose tissue. NPs may also increase the oxidative capacity of skeletal muscle. To unravel the contribution of NP-stimulated metabolism in adipose tissue compared to that in muscle in vivo, we generated mice with tissue-specific deletion of the NP clearance receptor, NPRC, in adipose tissue (NprcAKO ) or in skeletal muscle (NprcMKO ). We showed that, similar to Nprc null mice, NprcAKO mice, but not NprcMKO mice, were resistant to obesity induced by a high-fat diet. NprcAKO mice exhibited increased energy expenditure, improved insulin sensitivity, and increased glucose uptake into brown fat. These mice were also protected from diet-induced hepatic steatosis and visceral fat inflammation. These findings support the conclusion that NPRC in adipose tissue is a critical regulator of energy metabolism and suggest that inhibiting this receptor may be an important avenue to explore for combating metabolic disease.
Collapse
Affiliation(s)
- Wei Wu
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA.,Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fubiao Shi
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Dianxin Liu
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Ryan P Ceddia
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Robert Gaffin
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Wan Wei
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Huafeng Fang
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - E Douglas Lewandowski
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Sheila Collins
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA.
| |
Collapse
|
374
|
Hepler C, Shao M, Xia JY, Ghaben AL, Pearson MJ, Vishvanath L, Sharma AX, Morley TS, Holland WL, Gupta RK. Directing visceral white adipocyte precursors to a thermogenic adipocyte fate improves insulin sensitivity in obese mice. eLife 2017; 6. [PMID: 28722653 PMCID: PMC5552276 DOI: 10.7554/elife.27669] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/18/2017] [Indexed: 01/01/2023] Open
Abstract
Visceral adiposity confers significant risk for developing metabolic disease in obesity whereas preferential expansion of subcutaneous white adipose tissue (WAT) appears protective. Unlike subcutaneous WAT, visceral WAT is resistant to adopting a protective thermogenic phenotype characterized by the accumulation of Ucp1+ beige/BRITE adipocytes (termed ‘browning’). In this study, we investigated the physiological consequences of browning murine visceral WAT by selective genetic ablation of Zfp423, a transcriptional suppressor of the adipocyte thermogenic program. Zfp423 deletion in fetal visceral adipose precursors (Zfp423loxP/loxP; Wt1-Cre), or adult visceral white adipose precursors (PdgfrbrtTA; TRE-Cre; Zfp423loxP/loxP), results in the accumulation of beige-like thermogenic adipocytes within multiple visceral adipose depots. Thermogenic visceral WAT improves cold tolerance and prevents and reverses insulin resistance in obesity. These data indicate that beneficial visceral WAT browning can be engineered by directing visceral white adipocyte precursors to a thermogenic adipocyte fate, and suggest a novel strategy to combat insulin resistance in obesity. DOI:http://dx.doi.org/10.7554/eLife.27669.001 Mammals have different types of fat cells in their bodies. White fat cells store energy for later use, and brown and beige fat cells burn energy to help keep the body warm. Individuals who are obese typically have too many white fat cells in and around their belly. This belly fat, also called visceral fat, accumulates around the organs and is believed to contribute to metabolic diseases, such as diabetes and heart disease. Individuals who are obese also have relatively few brown and beige energy-burning fat cells. Boosting the amount of brown and beige fat in individuals who are obese has been proposed as a potential way to reduce their risk of metabolic disease. One way to do this would be to encourage white visceral fat cells to become more like energy-burning beige or brown fat cells. Recent research has shown that white fat cells contain higher amounts of a protein called Zfp423 than brown or beige fat cells. This protein turns off the genes that fat cells use to burn energy and so keeps white fat cells in an energy-storing state. Now, Hepler et al. show that genetically modifying mice to turn off the gene that produces Zfp423 specifically in the precursor cells that become white fat cells causes more energy-burning beige cells to appear in their visceral fat. The genetically modified mice were better able to tolerate cold than normal mice. When placed on a high-fat diet, the modified mice were also less likely to become resistant to the effects of the hormone insulin – a process that can lead to the development of type 2 diabetes and may be linked to heart disease. This suggests that treatments that prevent Zfp423 from working in fat cells could help to treat or prevent diabetes and heart disease in people who are obese. Before such treatments can be developed, further work is needed to investigate how Zfp423 works in more detail, and to confirm that it has the same effects in human fat cells as it does in mice. DOI:http://dx.doi.org/10.7554/eLife.27669.002
Collapse
Affiliation(s)
- Chelsea Hepler
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jonathan Y Xia
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Alexandra L Ghaben
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Mackenzie J Pearson
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ankit X Sharma
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Thomas S Morley
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
375
|
Garcia-Carrizo F, Priego T, Szostaczuk N, Palou A, Picó C. Sexual Dimorphism in the Age-Induced Insulin Resistance, Liver Steatosis, and Adipose Tissue Function in Rats. Front Physiol 2017; 8:445. [PMID: 28744221 PMCID: PMC5504177 DOI: 10.3389/fphys.2017.00445] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/12/2017] [Indexed: 01/01/2023] Open
Abstract
Age-linked metabolic disturbances, such as liver steatosis and insulin resistance, show greater prevalence in men than in women. Thus, our aim was to analyze these sex-related differences in male and female Wistar rats (aged 26 days and 3, 7, and 14 months), and to assess their potential relationship with alterations in the capacity of adipose tissue expansion and the dysregulation of the main adipokines produced by the adipose tissue, leptin and adiponectin. Adiposity-related parameters, blood parameters, the expression of genes related to expandability and inflammation (WAT), lipid metabolism (liver), and leptin and insulin signaling (both tissues) were measured. In females, adiposity index and WAT DNA content gradually increased with age, whereas males peaked at 7 months. A similar sex-dependent pattern was observed for leptin expression in WAT, while Mest expression levels decreased with age in males but not in females. Females also showed increased expression of the proliferation marker PCNA in the inguinal WAT compared to males. In males, leptin/adiponectin ratio greatly increased from 7 to 14 months in a more acute manner than in females, along with an increase in HOMA-IR index and hepatic triacylglyceride content, while no changes were observed in females. In liver, 14-month-old males displayed decreased mRNA levels of Insr, Ampkα2, and Cpt1a compared with levels at 7 months. Males also showed decreased mRNA levels of Obrb (both tissues), and increased expression levels of Cd68 and Emr1 (WAT) with age. In conclusion, females are more protected from age-related metabolic disturbances, such as insulin resistance, hepatic lipid deposition, and WAT inflammation compared to males. This may be related to their greater capacity for WAT expansion-reflected by a greater Mest/leptin mRNA ratio-and to their ability to maintain adiponectin levels and preserve leptin sensitivity with aging.
Collapse
Affiliation(s)
- Francisco Garcia-Carrizo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic IslandsPalma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Palma de Mallorca, Spain
| | - Teresa Priego
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic IslandsPalma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Palma de Mallorca, Spain
| | - Nara Szostaczuk
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic IslandsPalma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Palma de Mallorca, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic IslandsPalma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Palma de Mallorca, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic IslandsPalma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Palma de Mallorca, Spain
| |
Collapse
|
376
|
Abstract
The induction of brown-like adipocyte development in white adipose tissue (WAT) confers numerous metabolic benefits by decreasing adiposity and increasing energy expenditure. Therefore, WAT browning has gained considerable attention for its potential to reverse obesity and its associated co-morbidities. However, this perspective has been tainted by recent studies identifying the detrimental effects of inducing WAT browning. This review aims to highlight the adverse outcomes of both overactive and underactive browning activity, the harmful side effects of browning agents, as well as the molecular brake-switch system that has been proposed to regulate this process. Developing novel strategies that both sustain the metabolic improvements of WAT browning and attenuate the related adverse side effects is therefore essential for unlocking the therapeutic potential of browning agents in the treatment of metabolic diseases.
Collapse
|
377
|
Smith BK, Steinberg GR. AMP-activated protein kinase, fatty acid metabolism, and insulin sensitivity. Curr Opin Clin Nutr Metab Care 2017; 20:248-253. [PMID: 28375880 DOI: 10.1097/mco.0000000000000380] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Insulin resistance is an important risk factor for metabolic diseases such as type 2 diabetes, cardiovascular disease and certain cancers. A common characteristic of strategies that improve insulin sensitivity involves the activation of the energy sensing enzyme of the cell, AMP-activated protein kinase (AMPK). The purpose of this review is to explore the mechanisms associated with AMPK activation to improve insulin sensitivity with a focus on fatty acid metabolism. We will also discuss the literature surrounding direct AMPK activators to improve insulin resistance and important considerations for the design of direct AMPK activators. RECENT FINDINGS AMPK activation can decrease de novo lipogenesis, increase fatty acid oxidation and promote mitochondrial integrity to improve insulin sensitivity. Drugs targeted to directly activate AMPK show therapeutic promise, yet in vivo data is lacking. SUMMARY Designing a drug to directly activate AMPK may improve insulin resistance by reducing liver de novo lipogenesis and increasing brown and white adipose tissue mitochondrial function. However, in vivo experimental procedures to support this notion are not extensive and more research is required.
Collapse
Affiliation(s)
- Brennan K Smith
- aDivision of Endocrinology and Metabolism, Department of Medicine bDepartment of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
378
|
Ansar H, Zamaninour N, Djazayery A, Pishva H, Vafa M, Mazaheri Nezhad Fard R, Dilmaghanian A, Mirzaei K, Shidfar F. Weight Changes and Metabolic Outcomes in Calorie-Restricted Obese Mice Fed High-Fat Diets Containing Corn or Flaxseed Oil: Physiological Role of Sugar Replacement with Polyphenol-Rich Grape. J Am Coll Nutr 2017; 36:422-433. [PMID: 28665260 DOI: 10.1080/07315724.2017.1318315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Because diet components are important during dieting in obesity treatment, we examined possible beneficial effects of substituting corn oil and sugar with flaxseed oil and grape in calorie-restricted high-fat diets on weight changes as well as improvement in some metabolic markers and related gene expression. METHODS Seventy-five C57BL/6J male mice were given free access to a high-fat (36% of energy from fat) diet containing corn oil plus sugar (CO + S). After 11 weeks, 15 mice were sacrificed and another 60 were divided among 4 high-fat diet groups with 30% calorie restriction (CR) for the next 12 weeks. The diets contained corn oil (CO) or flaxseed oil (FO) with sugar (S) or grape (G). RESULTS Despite CR, a weight loss trend was observed only during the first 4 weeks in all groups. CR did not significantly increase SIRT1 gene expression. Higher liver weight was observed in mice consuming FO (p < 0.05). Proliferator-activated receptor gamma (PPARγ) expression decreased in FO + G-CR significantly and even with a reduction of adiposity and higher adiponectin levels, fasting blood sugar (FBS) was significantly higher than in CO + G-CR. Grape intake increased Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression and decreased insulin resistance in CO + G-CR. CONCLUSIONS Sugar replacement with polyphenol-rich grape along with CR improved glucose homeostasis, and substituting corn oil with flaxseed oil in obese mice reduced fat mass, but even with no change in adiponectin levels it could not decrease insulin resistance. However, none of the food item combinations facilitated weight reduction in the long-term CR. Therefore, regardless of the total calorie intake, different diet components and fat contents may have unexpected effects on metabolic regulation.
Collapse
Affiliation(s)
- Hastimansooreh Ansar
- a Department of Community Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Negar Zamaninour
- a Department of Community Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Abolghassem Djazayery
- a Department of Community Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Hamideh Pishva
- b Department of Cellular-Molecular Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Mohammadreza Vafa
- c Department of Nutrition; School of public health , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - Ramin Mazaheri Nezhad Fard
- d Division of Food Microbiology, Department of Pathobiology, School of Public Health , Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Aydin Dilmaghanian
- e Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - Khadijeh Mirzaei
- a Department of Community Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Farzad Shidfar
- c Department of Nutrition; School of public health , Iran University of Medical Sciences (IUMS) , Tehran , Iran.,e Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| |
Collapse
|
379
|
Lipid droplet growth and adipocyte development: mechanistically distinct processes connected by phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1273-1283. [PMID: 28668300 DOI: 10.1016/j.bbalip.2017.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022]
Abstract
The differentiation of preadipocytes into mature adipocytes is accompanied by the growth and formation of a giant, unilocular lipid droplet (LD). Mechanistically however, LD growth and adipogenesis are two different processes. Recent studies have uncovered a number of proteins that are able to regulate both LD dynamics and adipogenesis, such as SEIPIN, LIPIN and CDP-Diacylglycerol Synthases. It appears that phospholipids, phosphatidic acid in particular, play a critical role in both LD budding/growth and adipocyte development. This review summarizes recent advances, and aims to provide a better understanding of LD growth as well as adipogenesis, two critical aspects in mammalian fat storage. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
|
380
|
Abstract
Adiponectin is the most abundant peptide secreted by adipocytes, whose reduction plays a central role in obesity-related diseases, including insulin resistance/type 2 diabetes and cardiovascular disease. In addition to adipocytes, other cell types, such as skeletal and cardiac myocytes and endothelial cells, can also produce this adipocytokine. Adiponectin effects are mediated by adiponectin receptors, which occur as two isoforms (AdipoR1 and AdipoR2). Adiponectin has direct actions in liver, skeletal muscle, and the vasculature.Adiponectin exists in the circulation as varying molecular weight forms, produced by multimerization. Several endoplasmic reticulum ER-associated proteins, including ER oxidoreductase 1-α (Ero1-α), ER resident protein 44 (ERp44), disulfide-bond A oxidoreductase-like protein (DsbA-L), and glucose-regulated protein 94 (GPR94), have recently been found to be involved in the assembly and secretion of higher-order adiponectin complexes. Recent data indicate that the high-molecular weight (HMW) complexes have the predominant action in metabolic tissues. Studies have shown that adiponectin administration in humans and rodents has insulin-sensitizing, anti-atherogenic, and anti-inflammatory effects, and, in certain settings, also decreases body weight. Therefore, adiponectin replacement therapy in humans may suggest potential versatile therapeutic targets in the treatment of obesity, insulin resistance/type 2 diabetes, and atherosclerosis. The current knowledge on regulation and function of adiponectin in obesity, insulin resistance, and cardiovascular disease is summarized in this review.
Collapse
|
381
|
Troike KM, Henry BE, Jensen EA, Young JA, List EO, Kopchick JJ, Berryman DE. Impact of Growth Hormone on Regulation of Adipose Tissue. Compr Physiol 2017. [PMID: 28640444 DOI: 10.1002/cphy.c160027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing prevalence of obesity and obesity-related conditions worldwide has necessitated a more thorough understanding of adipose tissue (AT) and expanded the scope of research in this field. AT is now understood to be far more complex and dynamic than previously thought, which has also fueled research to reevaluate how hormones, such as growth hormone (GH), alter the tissue. In this review, we will introduce properties of AT important for understanding how GH alters the tissue, such as anatomical location of depots and adipokine output. We will provide an overview of GH structure and function and define several human conditions and cognate mouse lines with extremes in GH action that have helped shape our understanding of GH and AT. A detailed discussion of the GH/AT relationship will be included that addresses adipokine production, immune cell populations, lipid metabolism, senescence, differentiation, and fibrosis, as well as brown AT and beiging of white AT. A brief overview of how GH levels are altered in an obese state, and the efficacy of GH as a therapeutic option to manage obesity will be given. As we will reveal, the effects of GH on AT are numerous, dynamic and depot-dependent. © 2017 American Physiological Society. Compr Physiol 7:819-840, 2017.
Collapse
Affiliation(s)
- Katie M Troike
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Brooke E Henry
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Elizabeth A Jensen
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Jonathan A Young
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Edward O List
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Darlene E Berryman
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
382
|
Abstract
Adipose tissue represents a critical component in healthy energy homeostasis. It fulfills important roles in whole-body lipid handling, serves as the body's major energy storage compartment and insulation barrier, and secretes numerous endocrine mediators such as adipokines or lipokines. As a consequence, dysfunction of these processes in adipose tissue compartments is tightly linked to severe metabolic disorders, including obesity, metabolic syndrome, lipodystrophy, and cachexia. While numerous studies have addressed causes and consequences of obesity-related adipose tissue hypertrophy and hyperplasia for health, critical pathways and mechanisms in (involuntary) adipose tissue loss as well as its systemic metabolic consequences are far less understood. In this review, we discuss the current understanding of conditions of adipose tissue wasting and review microenvironmental determinants of adipocyte (dys)function in related pathophysiologies.
Collapse
Affiliation(s)
- Alexandros Vegiopoulos
- Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Maria Rohm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program Inner Medicine I, Neuherberg, Germany
| |
Collapse
|
383
|
Influence of the definition of "metabolically healthy obesity" on the progression of coronary artery calcification. PLoS One 2017; 12:e0178741. [PMID: 28575097 PMCID: PMC5456095 DOI: 10.1371/journal.pone.0178741] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 05/18/2017] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Debates whether metabolically healthy obesity (MHO) increases the cardiovascular risk might be due to the metabolic instability of MHO or the absence of a perfect definition of MHO. Therefore, we aimed to investigate the influence of the MHO phenotype on the coronary artery calcium score (CACS) progression according to definition of MHO. METHODS We analyzed a retrospective cohort with a CACS of 0 at baseline and available serial CACS measurements taken ≥ 12 months apart (n = 1,218). Obesity was defined as BMI ≥ 25 kg/m2, and MHO was defined as obesity accompanied by ≤ 1 (MHO class I) or 0 (MHO class II) components of metabolic syndrome (MetS). RESULTS During a median follow-up of 45 months, 32.2% of MHO class I and 10.2% of MHO class II subjects developed MetS. Compared to non-obese/metabolically healthy subjects (reference group), hazard ratios (HR) for development of MetS were 2.174 (95% confidence interval [CI]: 1.513-3.124) and 1.166 (95% CI: 0.434-3.129) for MHO class I and II subjects, respectively. The MHO class I subjects showed a significantly increased risk of CACS progression as compared to the reference group (HR: 1.653; 95% CI: 1.144-2.390), whereas MHO class II subjects did not (HR: 1.195; 95% CI: 0.514-2.778). Among subjects with MHO class I, no significant CACS progression was observed in the subjects who maintained metabolic health during follow-up (HR: 1.448; 95% CI: 0.921-2.278). CONCLUSIONS The risks of metabolic deterioration and CACS progression were significant in subjects with MHO class I, but not in those with MHO class II.
Collapse
|
384
|
Vatarescu M, Bechor S, Haim Y, Pecht T, Tarnovscki T, Slutsky N, Nov O, Shapiro H, Shemesh A, Porgador A, Bashan N, Rudich A. Adipose tissue supports normalization of macrophage and liver lipid handling in obesity reversal. J Endocrinol 2017; 233:293-305. [PMID: 28360082 PMCID: PMC5457504 DOI: 10.1530/joe-17-0007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/30/2017] [Indexed: 12/21/2022]
Abstract
Adipose tissue inflammation and dysfunction are considered central in the pathogenesis of obesity-related dysmetabolism, but their role in the rapid metabolic recovery upon obesity reversal is less well defined. We hypothesized that changes in adipose tissue endocrine and paracrine mechanisms may support the rapid improvement of obesity-induced impairment in cellular lipid handling. C57Bl-6J mice were fed ad libitum either normal chow (NC) or high-fat diet (HFF) for 10 weeks. A dietary obesity reversal group was fed HFF for 8 weeks and then switched to NC for 2 weeks (HFF→NC). Whole-body glucose homeostasis rapidly nearly normalized in the HFF→NC mice (fasting glucose and insulin fully normalized, glucose and insulin tolerance tests reversed 82% to the NC group levels). During 2 weeks of the dietary reversal, the liver was significantly cleared from ectopic fat, and functionally, glucose production from pyruvate, alanine or fructose was normalized. In contrast, adipose tissue inflammation (macrophage infiltration and polarization) largely remained as in HFF, though obesity-induced adipose tissue macrophage lipid accumulation decreased by ~50%, and adipose tissue MAP kinase hyperactivation was reversed. Ex vivo, mild changes in adipose tissue adipocytokine secretion profile were noted. These corresponded to partial or full reversal of the excess cellular lipid droplet accumulation induced by HFF adipose tissue conditioned media in hepatoma or macrophage cells, respectively. We propose that early after initiating reversal of nutritional obesity, rapid metabolic normalization largely precedes resolution of adipose tissue inflammation. Nevertheless, we demonstrate a hitherto unrecognized contribution of adipose tissue to the rapid improvement in lipid handling by the liver and by macrophages.
Collapse
Affiliation(s)
- Maayan Vatarescu
- The Department of Clinical Biochemistry and PharmacologyFaculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev (NIBN)Ben-Gurion University, Beer-Sheva, Israel
| | - Sapir Bechor
- The Department of Clinical Biochemistry and PharmacologyFaculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev (NIBN)Ben-Gurion University, Beer-Sheva, Israel
| | - Yulia Haim
- The Department of Clinical Biochemistry and PharmacologyFaculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev (NIBN)Ben-Gurion University, Beer-Sheva, Israel
| | - Tal Pecht
- The Department of Clinical Biochemistry and PharmacologyFaculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev (NIBN)Ben-Gurion University, Beer-Sheva, Israel
| | - Tanya Tarnovscki
- The Department of Clinical Biochemistry and PharmacologyFaculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noa Slutsky
- The Department of Clinical Biochemistry and PharmacologyFaculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ori Nov
- The Department of Clinical Biochemistry and PharmacologyFaculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hagit Shapiro
- The Department of Clinical Biochemistry and PharmacologyFaculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avishai Shemesh
- The Shraga Segal Department of MicrobiologyImmunology and Genetics, Ben-Gurion University, Beer-Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of MicrobiologyImmunology and Genetics, Ben-Gurion University, Beer-Sheva, Israel
| | - Nava Bashan
- The Department of Clinical Biochemistry and PharmacologyFaculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Assaf Rudich
- The Department of Clinical Biochemistry and PharmacologyFaculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev (NIBN)Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
385
|
Abstract
Alzheimer's disease (AD) is a degenerative brain disease and the most common cause of dementia. AD is characterized by the extracellular amyloid beta (Aβ) plaques and intraneuronal deposits of neurofibrillary tangles (NFTs). Recently, as aging has become a familiar phenomenon around the world, patients with AD are increasing in number. Thus, many researchers are working toward finding effective therapeutics for AD focused on Aβ hypothesis, although there has been no success yet. In this review paper, we suggest that AD is a metabolic disease and that we should focus on metabolites that are affected by metabolic alterations to find effective therapeutics for AD. Aging is associated with not only AD but also obesity and type 2 diabetes (T2DM). AD, obesity, and T2DM share demographic profiles, risk factors, and clinical and biochemical features in common. Considering AD as a kind of metabolic disease, we suggest insulin, adiponectin, and antioxidants as mechanistic links among these diseases and targets for AD therapeutics. Patients with AD show reduced insulin signal transductions in the brain, and intranasal injection of insulin has been found to have an effect on AD treatment. In addition, adiponectin is decreased in the patients with obesity and T2DM. This reduction induces metabolic dysfunction both in the body and the brain, leading to AD pathogenesis. Oxidative stress is known to be induced by Aβ and NFTs, and we suggest that oxidative stress caused by metabolic alterations in the body induce brain metabolic alterations, resulting in AD.
Collapse
Affiliation(s)
- Somang Kang
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- BK21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- BK21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea. jelee@yuhs
| |
Collapse
|
386
|
Tsuji T, Yamaguchi K, Kikuchi R, Nakamura H, Misaka R, Nagai A, Aoshiba K. Improvement of metabolic disorders by an EP 2 receptor agonist via restoration of the subcutaneous adipose tissue in pulmonary emphysema. Prostaglandins Other Lipid Mediat 2017; 130:16-22. [PMID: 28263859 DOI: 10.1016/j.prostaglandins.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/16/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is often associated with co-morbidities. Metabolic disorders like hyperlipidemia and diabetes occur also in underweight COPD patients, although the mechanism is uncertain. Subcutaneous adipose tissue (SAT) plays an important role in energy homeostasis, since restricted capacity to increase fat cell number with increase in fat cell size occurring instead, is associated with lipotoxicity and metabolic disorders. The aim of this study is to show the protective role of SAT for the metabolic disorders in pulmonary emphysema of a murine model. We found ectopic fat accumulation and impaired glucose homeostasis with wasting of SAT in a murine model of elastase-induced pulmonary emphysema (EIE mice) reared on a high-fat diet. ONO-AE1-259, a selective E-prostanoid (EP) 2 receptor agonist, improved angiogenesis and subsequently adipogenesis, and finally improved ectopic fat accumulation and glucose homeostasis with restoration of the capacity for storage of surplus energy in SAT. These results suggest that metabolic disorders like hyperlipidemia and diabetes occured in underweight COPD is partially due to the less capacity for storage of surplus energy in SAT, though the precise mechanism is uncertained. Our data pave the way for the development of therapeutic interventions for metabolic disorders in emphysema patients, e.g., use of pro-angiogenic agents targeting the capacity for storage of surplus energy in the subcutaneous adipose tissue.
Collapse
Affiliation(s)
- Takao Tsuji
- Institute of Geriatrics, Tokyo Women's Medical University, 2-15-1 Shibuya, Shibuya, Tokyo 150-0002, Japan; Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| | - Kazuhiro Yamaguchi
- Division of Comprehensive Sleep Medicine, Tokyo Women's Medical University, 8-1,Kawada-cho, Sinjuku, Tokyo 162-8666, Japan.
| | - Ryota Kikuchi
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| | - Ryoichi Misaka
- Institute of Geriatrics, Tokyo Women's Medical University, 2-15-1 Shibuya, Shibuya, Tokyo 150-0002, Japan.
| | - Atsushi Nagai
- Reserch Institute for Respiratory Diseases, Shin-yurigaoka GeneralHospital, 255 Asou, Kawasaki, Kanagawa 215-0026, Japan.
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| |
Collapse
|
387
|
Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ Res 2017; 118:1786-807. [PMID: 27230642 DOI: 10.1161/circresaha.115.306885] [Citation(s) in RCA: 453] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the collateral damage of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of proinflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines.
Collapse
Affiliation(s)
- José J Fuster
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.).
| | - Noriyuki Ouchi
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.)
| | - Noyan Gokce
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.)
| | - Kenneth Walsh
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.).
| |
Collapse
|
388
|
Adipose crosstalk with other cell types in health and disease. Exp Cell Res 2017; 360:6-11. [PMID: 28433698 DOI: 10.1016/j.yexcr.2017.04.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/22/2022]
Abstract
In addition to storing and mobilizing energy, adipocytes secrete circulating factors to signal to other tissues and coordinate energy metabolism. These functions can become disrupted in the setting of obesity, contributing to the development of diabetes, cardiovascular disease, and cancer. Since the discovery of leptin and adiponectin, an increasing number of adipokines have been identified and their functions elucidated. More recent studies have highlighted other modes by which adipose tissue can participate in crosstalk with other cell types and tissues. These modes of communication, which are reviewed here, include the secretion of enzymes, lipid species, and exosomes. Advances in profiling technology suggest that a substantial number of adipose-derived factors remain to be characterized. Further advances in this growing field are likely to provide important basic insights into the molecular control of metabolism.
Collapse
|
389
|
Intramyocellular lipid content and lipogenic gene expression responses following a single bout of resistance type exercise differ between young and older men. Exp Gerontol 2017; 93:36-45. [PMID: 28385599 DOI: 10.1016/j.exger.2017.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/07/2017] [Accepted: 03/28/2017] [Indexed: 11/21/2022]
Abstract
The aim of this study was to examine the temporal relationship between intramyocellular lipid (IMCL) content and the expression of genes associated with IMCL turnover, fat metabolism, and inflammation during recovery from an acute bout of resistance type exercise in old versus young men. Seven healthy young (23±2years, 77.2±2.9kg) and seven healthy older (72±1years, 79.3±4.9kg) males performed a single bout of resistance exercise involving 6 sets of 10 repetitions of leg press and 6 sets of 10 repetitions of leg extension at 75% one-repetition maximum (1-RM). Muscle biopsy samples were obtained before and 12, 24 and 48h after the completion of exercise and analysed for IMCL content and the expression of 48 genes. The subjects refrained from further heavy physical exercise and consumed a standardized diet for the entire experimental period. The IMCL content was ~2-fold higher at baseline and 12h post-exercise in old compared with young individuals. However, no differences between groups were apparent after 48h of recovery. There was higher expression of genes involved in fatty acid synthesis (FASN and PPARγ) during the first 24h of recovery. Differential responses to exercise were observed between groups for a number of genes indicating increased inflammatory response (IL6, IkBalpha, CREB1) and impaired fat metabolism and TCA cycle (LPL, ACAT1, SUCLG1) in older compared with younger individuals. A singe bout of resistance type exercise leads to molecular changes in skeletal muscle favouring reduced lipid oxidation, increased lipogenesis, and exaggerated inflammation during post-exercise recovery in the older compared with younger individuals, which may be indicative of a blunted response of IMCL turnover with ageing.
Collapse
|
390
|
Testroet ED, Sherman P, Yoder C, Testroet A, Reynolds C, O'Neil M, Lei SM, Beitz DC, Baas TJ. A novel and robust method for testing bimodality and characterizing porcine adipocytes of adipose tissue of 5 purebred lines of pig. Adipocyte 2017; 6:102-111. [PMID: 28425850 PMCID: PMC5477704 DOI: 10.1080/21623945.2017.1304870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adipocyte sizes from adipose tissue of mature animals form a bimodal distribution, thus reporting mean cell size is misleading. The objectives of this study were to develop a robust method for testing bimodality of porcine adipocytes, describe the size distribution with an informative metric, and statistically test hypertrophy and appearance of new small adipocytes, possibly resulting from hyperplasia or lipid filling of previously divided fibroblastic cells. Ninety-three percent of adipose samples measured were bimodal (P < 0.0001); therefore, we describe and propose a method of testing hyperplasia or lipid filling of previously divided fibroblastic cells based upon the probability of an adipocyte falling into 2 chosen competing “bins” as adiposity increases. We also conclude that increased adiposity is correlated positively with an adipocyte being found in the minor mode (r = 0.46) and correlated negatively with an adipocyte being found in the major mode (r = −0.22), providing evidence of either hyperplasia or lipid filling of previously divided fibroblastic cells. We additionally conclude that as adiposity increases, the mode of the major distribution of cells occurs at a larger diameter of adipocyte, indicating hypertrophy.
Collapse
Affiliation(s)
- Eric D. Testroet
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Peter Sherman
- Department of Statistics, Iowa State University, Ames, IA, USA
| | | | - Amber Testroet
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Carmen Reynolds
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Mathew O'Neil
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Soi Meng Lei
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Donald C. Beitz
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Tom J. Baas
- Department of Animal Science, Iowa State University, Ames, IA, USA
| |
Collapse
|
391
|
Niu M, Xiang L, Liu Y, Zhao Y, Yuan J, Dai X, Chen H. Adiponectin induced AMP-activated protein kinase impairment mediates insulin resistance in Bama mini-pig fed high-fat and high-sucrose diet. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1190-1197. [PMID: 28423886 PMCID: PMC5494494 DOI: 10.5713/ajas.17.0006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/05/2017] [Accepted: 03/19/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Adipose tissue is no longer considered as an inert storage organ for lipid, but instead is thought to play an active role in regulating insulin effects via secretion adipokines. However, conflicting reports have emerged regarding the effects of adipokines. In this study, we investigated the role of adipokines in glucose metabolism and insulin sensitivity in obese Bama mini-pigs. METHODS An obesity model was established in Bama mini-pigs, by feeding with high-fat and high-sucrose diet for 30 weeks. Plasma glucose and blood biochemistry levels were measured, and intravenous glucose tolerance test was performed. Adipokines, including adiponectin, interleukin-6 (IL-6), resistin and tumor necrosis factor alpha (TNF-α), and glucose-induced insulin secretion were also examined by radioimmunoassay. AMP-activated protein kinase (AMPK) phosphorylation in skeletal muscle, which is a useful insulin resistance marker, was examined by immunoblotting. Additionally, associations of AMPK phosphorylation with plasma adipokines and homeostasis model assessment of insulin resistance (HOMA-IR) index were assessed by Pearce's correlation analysis. RESULTS Obese pigs showed hyperglycemia, high triglycerides, and insulin resistance. Adiponectin levels were significantly decreased (p<0.05) and IL-6 amounts dramatically increased (p<0.05) in obese pigs both in serum and adipose tissue, corroborating data from obese mice and humans. However, circulating resistin and TNF-α showed no difference, while the values of TNF-α in adipose tissue were significantly higher in obese pigs, also in agreement with data from obese humans but not rodent models. Moreover, strong associations of skeletal muscle AMPK phosphorylation with plasma adiponectin and HOMA-IR index were obtained. CONCLUSION AMPK impairment induced by adiponectin decrease mediates insulin resistance in high-fat and high-sucrose diet induction. In addition, Bama mini-pig has the possibility of a conformable model for human metabolic diseases.
Collapse
Affiliation(s)
- Miaomiao Niu
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Xiang
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yaqian Liu
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuqiong Zhao
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jifang Yuan
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xin Dai
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hua Chen
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
392
|
Mota de Sá P, Richard AJ, Hang H, Stephens JM. Transcriptional Regulation of Adipogenesis. Compr Physiol 2017; 7:635-674. [PMID: 28333384 DOI: 10.1002/cphy.c160022] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adipocytes are the defining cell type of adipose tissue. Once considered a passive participant in energy storage, adipose tissue is now recognized as a dynamic organ that contributes to several important physiological processes, such as lipid metabolism, systemic energy homeostasis, and whole-body insulin sensitivity. Therefore, understanding the mechanisms involved in its development and function is of great importance. Adipocyte differentiation is a highly orchestrated process which can vary between different fat depots as well as between the sexes. While hormones, miRNAs, cytoskeletal proteins, and many other effectors can modulate adipocyte development, the best understood regulators of adipogenesis are the transcription factors that inhibit or promote this process. Ectopic expression and knockdown approaches in cultured cells have been widely used to understand the contribution of transcription factors to adipocyte development, providing a basis for more sophisticated in vivo strategies to examine adipogenesis. To date, over two dozen transcription factors have been shown to play important roles in adipocyte development. These transcription factors belong to several families with many different DNA-binding domains. While peroxisome proliferator-activated receptor gamma (PPARγ) is undoubtedly the most important transcriptional modulator of adipocyte development in all types of adipose tissue, members of the CCAAT/enhancer-binding protein, Krüppel-like transcription factor, signal transducer and activator of transcription, GATA, early B cell factor, and interferon-regulatory factor families also regulate adipogenesis. The importance of PPARγ activity is underscored by several covalent modifications that modulate its activity and its ability to modulate adipocyte development. This review will primarily focus on the transcriptional control of adipogenesis in white fat cells and on the mechanisms involved in this fine-tuned developmental process. © 2017 American Physiological Society. Compr Physiol 7:635-674, 2017.
Collapse
Affiliation(s)
- Paula Mota de Sá
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Allison J Richard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Hardy Hang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
393
|
Guillermier C, Fazeli PK, Kim S, Lun M, Zuflacht JP, Milian J, Lee H, Francois-Saint-Cyr H, Horreard F, Larson D, Rosen ED, Lee RT, Lechene CP, Steinhauser ML. Imaging mass spectrometry demonstrates age-related decline in human adipose plasticity. JCI Insight 2017; 2:e90349. [PMID: 28289709 DOI: 10.1172/jci.insight.90349] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Quantification of stable isotope tracers has revealed the dynamic state of living tissues. A new form of imaging mass spectrometry quantifies isotope ratios in domains much smaller than a cubic micron, enabling measurement of cell turnover and metabolism with stable isotope tracers at the single-cell level with a methodology we refer to as multi-isotope imaging mass spectrometry. In a first-in-human study, we utilize stable isotope tracers of DNA synthesis and de novo lipogenesis to prospectively measure cell birth and adipocyte lipid turnover. In a study of healthy adults, we elucidate an age-dependent decline in new adipocyte generation and adipocyte lipid turnover. A linear regression model suggests that the aging effect could be mediated by a decline in insulin-like growth factor-1 (IGF-1). This study therefore establishes a method for measurement of cell turnover and metabolism in humans with subcellular resolution while implicating the growth hormone/IGF-1 axis in adipose tissue aging.
Collapse
Affiliation(s)
- Christelle Guillermier
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Center for NanoImaging, Brigham and Women's Hospital, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Pouneh K Fazeli
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Soomin Kim
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mingyue Lun
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jonah P Zuflacht
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jessica Milian
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hang Lee
- Harvard Medical School, Boston, Massachusetts, USA.,Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | - Evan D Rosen
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Richard T Lee
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Harvard Stem Cell Institute and.,Department of Stem Cell and Regenerative Medicine, Harvard University, Cambridge, Massachusetts, USA
| | - Claude P Lechene
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Center for NanoImaging, Brigham and Women's Hospital, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew L Steinhauser
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Center for NanoImaging, Brigham and Women's Hospital, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Harvard Stem Cell Institute and
| |
Collapse
|
394
|
Hui X, Zhang M, Gu P, Li K, Gao Y, Wu D, Wang Y, Xu A. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue. EMBO Rep 2017; 18:645-657. [PMID: 28270525 DOI: 10.15252/embr.201643184] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 11/09/2022] Open
Abstract
Adipose tissue inflammation, characterized by augmented infiltration and altered polarization of macrophages, contributes to insulin resistance and its associated metabolic diseases. The NAD+-dependent deacetylase SIRT1 serves as a guardian against metabolic disorders in multiple tissues. To dissect the roles of SIRT1 in adipose tissues, metabolic phenotypes of mice with selective ablation of SIRT1 in adipocytes and myeloid cells were monitored. Compared to myeloid-specific SIRT1 depletion, mice with adipocyte-selective deletion of SIRT1 are more susceptible to diet-induced insulin resistance. The phenotypic changes in adipocyte-selective SIRT1 knockout mice are associated with an increased number of adipose-resident macrophages and their polarization toward the pro-inflammatory M1 subtype. Mechanistically, SIRT1 in adipocytes modulates expression and secretion of several adipokines, including adiponectin, MCP-1, and interleukin 4, which in turn alters recruitment and polarization of the macrophages in adipose tissues. In adipocytes, SIRT1 deacetylates the transcription factor NFATc1 and thereby enhances the binding of NFATc1 to the Il4 gene promoter. These findings suggest that adipocyte SIRT1 controls systemic glucose homeostasis and insulin sensitivity via the cross talk with adipose-resident macrophages.
Collapse
Affiliation(s)
- Xiaoyan Hui
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mingliang Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ping Gu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Endocrinology, School of Medicine, Nanjing University Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| | - Kuai Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuan Gao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Donghai Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China .,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China .,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
395
|
An HJ, Lee B, Kim DH, Lee EK, Chung KW, Park MH, Jeong HO, Kim SM, Moon KM, Kim YR, Kim SJ, Yun HY, Chun P, Yu BP, Moon HR, Chung HY. Physiological characterization of a novel PPAR pan agonist, 2-(4-(5,6-methylenedioxybenzo[d]thiazol-2-yl)-2-methylphenoxy)-2-methylpropanoic acid (MHY2013). Oncotarget 2017; 8:16912-16924. [PMID: 28129657 PMCID: PMC5370010 DOI: 10.18632/oncotarget.14818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/27/2016] [Indexed: 02/03/2023] Open
Abstract
Recently, agonists targeting multiple peroxisome proliferator-activated receptors (PPARs) have been developed to improve metabolic disorders and minimize the side effects of selective PPAR agonists such as weight gain and dyslipidemia. We newly synthesized six 2-methyl-2-(o-tolyloxy)propanoic acid derivatives based on the structure of a well-known PPAR pan agonist, bezafibrate. Of six compounds, MHY2013 was screened as the strongest activator of three PPAR subtypes based on protein docking simulation and luciferase assays. When treated orally in db/db mice, MHY2013 ameliorated obesity-induced insulin resistance, dyslipidemia, and hepatic steatosis without changes of the body weight and levels of liver and kidney injury markers. MHY2013 decreased the serum triglyceride and fatty acid levels, which is associated with an increase in fatty acid oxidation signaling in the liver and thermogenic signaling on white adipose tissue, respectively. Furthermore, MHY2013 markedly increased serum levels of insulin-sensitizing hormones including fibroblast growth factor 21 (FGF21) and adiponectin. In conclusion, this study suggests that, MHY2013 is a novel PPAR pan agonist that improves obesity-induced insulin resistance, dyslipidemia and hepatic steatosis and elevates insulin-sensitizing hormones in the blood.
Collapse
Affiliation(s)
- Hye Jin An
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Bonggi Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea.,Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea
| | - Dae Hyun Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Eun Kyeong Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Min Hi Park
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Hyoung Oh Jeong
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Seong Min Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Kyoung Mi Moon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Ye Ra Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Seong Jin Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Hwi Young Yun
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy, Inje University, Gyeongsangnam-do 50834, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
396
|
Overexpressing the novel autocrine/endocrine adipokine WISP2 induces hyperplasia of the heart, white and brown adipose tissues and prevents insulin resistance. Sci Rep 2017; 7:43515. [PMID: 28240264 PMCID: PMC5327486 DOI: 10.1038/srep43515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/27/2017] [Indexed: 12/31/2022] Open
Abstract
WISP2 is a novel adipokine, most highly expressed in the adipose tissue and primarily in undifferentiated mesenchymal cells. As a secreted protein, it is an autocrine/paracrine activator of canonical WNT signaling and, as an intracellular protein, it helps to maintain precursor cells undifferentiated. To examine effects of increased WISP2 in vivo, we generated an aP2-WISP2 transgenic (Tg) mouse. These mice had increased serum levels of WISP2, increased lean body mass and whole body energy expenditure, hyperplastic brown/white adipose tissues and larger hyperplastic hearts. Obese Tg mice remained insulin sensitive, had increased glucose uptake by adipose cells and skeletal muscle in vivo and ex vivo, increased GLUT4, increased ChREBP and markers of adipose tissue lipogenesis. Serum levels of the novel fatty acid esters of hydroxy fatty acids (FAHFAs) were increased and transplantation of Tg adipose tissue improved glucose tolerance in recipient mice supporting a role of secreted FAHFAs. The growth-promoting effect of WISP2 was shown by increased BrdU incorporation in vivo and Tg serum increased mesenchymal precursor cell proliferation in vitro. In contrast to conventional canonical WNT ligands, WISP2 expression was inhibited by BMP4 thereby allowing normal induction of adipogenesis. WISP2 is a novel secreted regulator of mesenchymal tissue cellularity.
Collapse
|
397
|
Miroshnikova VV, Panteleeva AA, Bazhenova EA, Demina EP, Usenko TS, Nikolaev MA, Semenova IA, Neimark AE, He J, Belyaeva OD, Berkovich OA, Baranova EI, Pchelina SN. [Regulation of ABCA1 and ABCG1 gene expression in the intraabdominal adipose tissue]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:283-9. [PMID: 27420620 DOI: 10.18097/pbmc20166203283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tissue specific expression of genes encoding cholesterol transporters ABCA1 and ABCG1 as well as genes encoding the most important transcriptional regulators of adipogenesis - LXRa, LXRb, PPARg and RORa has been investigated in intraabdominal adipose tissue (IAT) samples.A direct correlation between the content of ABCA1 and ABCG1 proteins with RORa protein level (r=0.480, p<0.05; r=0.435, p<0.05, respectively) suggests the role of the transcription factor RORa in the regulation of IAT ABCA1 and ABCG1 protein levels. ABCA1 and ABCG1 gene expression positively correlated with obesity indicators such as body mass index (BMI) (r=0.522, p=0.004; r=0.594, p=0.001, respectively) and waist circumference (r=0.403, p=0.033; r=0.474, p=0.013, respectively). The development of obesity is associated with decreased IAT levels of RORa and LXRb mRNA (p=0.016 and p=0.002, respectively). These data suggest that the nuclear factor RORa can play a significant role in the regulation of cholesterol metabolism and control IAT expression of ABCA1 and ABCG1, while the level of IAT LXRb gene expression may be an important factor associated with the development of obesity.
Collapse
Affiliation(s)
- V V Miroshnikova
- Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roshcha, Gatchina, Russia; Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - A A Panteleeva
- Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roshcha, Gatchina, Russia; Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - E A Bazhenova
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - E P Demina
- Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roshcha, Gatchina, Russia
| | - T S Usenko
- Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roshcha, Gatchina, Russia; Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - M A Nikolaev
- Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roshcha, Gatchina, Russia
| | - I A Semenova
- Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roshcha, Gatchina, Russia
| | - A E Neimark
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - J He
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - O D Belyaeva
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - O A Berkovich
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - E I Baranova
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - S N Pchelina
- Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roshcha, Gatchina, Russia; Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| |
Collapse
|
398
|
Illesca PG, Álvarez SM, Selenscig DA, Ferreira MDR, Giménez MS, Lombardo YB, D'Alessandro ME. Dietary soy protein improves adipose tissue dysfunction by modulating parameters related with oxidative stress in dyslipidemic insulin-resistant rats. Biomed Pharmacother 2017; 88:1008-1015. [PMID: 28178612 DOI: 10.1016/j.biopha.2017.01.153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 01/15/2023] Open
Abstract
The present study investigates the benefits of the dietary intake of soy protein on adipose tissue dysfunction in a rat model that mimics several aspects of the human metabolic syndrome. Wistar rats were fed a sucrose-rich diet (SRD) for 4 months. After that, half of the animals continued with SRD until month 8 while in the other half, casein protein was replaced by isolated soy protein for 4 months (SRD-S). A reference group consumed a control diet all the time. In adipose tissue we determined: i) the activities of antioxidant enzymes, gene expression of Mn-superoxide dismutase (SOD) and glutathione peroxidase (GPx), and glutathione redox state ii) the activity of xanthine oxidase (XO), ROS levels and the gene expression of NAD(P)H oxidase iii) the expression of the nuclear factor erythroid-2 related factor-2 (Nrf2). Besides, adiposity visceral index, insulin sensitivity, and tumor necrosis factor-α (TNF-α) in plasma were determined. Compared with the SRD-fed rats, the animals fed a SRD-S showed: activity normalization of SOD and glutathione reductase, improvement of mRNA SOD and normalization of mRNA GPx without changes in the expression of the Nrf2, and improvement of glutathione redox state. These results were accompanied by a normalization of XO activity and improvement of both the ROS production as well as TNF-α levels in plasma. Besides, adipocyte size distribution, adiposity visceral index and insulin sensitivity improved. The results suggest that soy protein can be a complementary nutrient for treating some signs of the metabolic syndrome.
Collapse
Affiliation(s)
- Paola G Illesca
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, El Pozo CC 242, 3000, Santa Fe, Argentina
| | - Silvina M Álvarez
- Laboratory of Molecular Biochemistry, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Avenida Ejercito de los Andes 950, 5700, San Luis, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Dante A Selenscig
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, El Pozo CC 242, 3000, Santa Fe, Argentina
| | - María Del R Ferreira
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, El Pozo CC 242, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María S Giménez
- Laboratory of Molecular Biochemistry, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Avenida Ejercito de los Andes 950, 5700, San Luis, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Yolanda B Lombardo
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, El Pozo CC 242, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María E D'Alessandro
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, El Pozo CC 242, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
399
|
Brøns C, Grunnet LG. MECHANISMS IN ENDOCRINOLOGY: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander? Eur J Endocrinol 2017; 176:R67-R78. [PMID: 27913612 DOI: 10.1530/eje-16-0488] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/19/2016] [Accepted: 09/14/2016] [Indexed: 12/11/2022]
Abstract
Dysfunctional adipose tissue is associated with an increased risk of developing type 2 diabetes (T2D). One characteristic of a dysfunctional adipose tissue is the reduced expandability of the subcutaneous adipose tissue leading to ectopic storage of fat in organs and/or tissues involved in the pathogenesis of T2D that can cause lipotoxicity. Accumulation of lipids in the skeletal muscle is associated with insulin resistance, but the majority of previous studies do not prove any causality. Most studies agree that it is not the intramuscular lipids per se that causes insulin resistance, but rather lipid intermediates such as diacylglycerols, fatty acyl-CoAs and ceramides and that it is the localization, composition and turnover of these intermediates that play an important role in the development of insulin resistance and T2D. Adipose tissue is a more active tissue than previously thought, and future research should thus aim at examining the exact role of lipid composition, cellular localization and the dynamics of lipid turnover on the development of insulin resistance. In addition, ectopic storage of fat has differential impact on various organs in different phenotypes at risk of developing T2D; thus, understanding how adipogenesis is regulated, the interference with metabolic outcomes and what determines the capacity of adipose tissue expandability in distinct population groups is necessary. This study is a review of the current literature on the adipose tissue expandability hypothesis and how the following ectopic lipid accumulation as a consequence of a limited adipose tissue expandability may be associated with insulin resistance in muscle and liver.
Collapse
Affiliation(s)
- Charlotte Brøns
- Department of Endocrinology (Diabetes and Metabolism)Rigshospitalet, Copenhagen, Denmark
| | - Louise Groth Grunnet
- Department of Endocrinology (Diabetes and Metabolism)Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
400
|
Holland WL, Xia JY, Johnson JA, Sun K, Pearson MJ, Sharma AX, Quittner-Strom E, Tippetts TS, Gordillo R, Scherer PE. Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol Metab 2017; 6:267-275. [PMID: 28271033 PMCID: PMC5323887 DOI: 10.1016/j.molmet.2017.01.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/27/2016] [Accepted: 01/05/2017] [Indexed: 02/06/2023] Open
Abstract
Objective Adiponectin and the signaling induced by its cognate receptors, AdipoR1 and AdipoR2, have garnered attention for their ability to promote insulin sensitivity and oppose steatosis. Activation of these receptors promotes the deacylation of ceramide, a lipid metabolite that appears to play a causal role in impairing insulin signaling. Methods Here, we have developed transgenic mice that overexpress AdipoR1 or AdipoR2 under the inducible control of a tetracycline response element. These represent the first inducible genetic models that acutely manipulate adiponectin receptor signaling in adult mouse tissues, which allows us to directly assess AdipoR signaling on glucose and lipid metabolism. Results Overexpression of either adiponectin receptor isoform in the adipocyte or hepatocyte is sufficient to enhance ceramidase activity, whole body glucose metabolism, and hepatic insulin sensitivity, while opposing hepatic steatosis. Importantly, metabolic improvements fail to occur in an adiponectin knockout background. When challenged with a leptin-deficient genetic model of type 2 diabetes, AdipoR2 expression in adipose or liver is sufficient to reverse hyperglycemia and glucose intolerance. Conclusion These observations reveal that adiponectin is critical for AdipoR-induced ceramidase activation which enhances hepatic glucose and lipid metabolism via rapidly acting “cross-talk” between liver and adipose tissue sphingolipids. Adiponectin receptor signaling in adipose prompts beneficial effects on whole-body glucose and lipid metabolism. The small molecule adiponectin receptor antagonist AdipoRon lowers hepatic ceramides. Depletion of ceramides in adipocytes results in diminished hepatic ceramide accumulation. Depletion of ceramides in hepatocytes results in diminished adipose sphingolipid accumulation. Adiponectin is essential for the beneficial effects of adiponectin receptors on glucose, ceramide, and lipid metabolism.
Collapse
Affiliation(s)
- William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA.
| | - Jonathan Y Xia
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Joshua A Johnson
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mackenzie J Pearson
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Ankit X Sharma
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Ezekiel Quittner-Strom
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Trevor S Tippetts
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| |
Collapse
|