3951
|
Bulloch K, Miller MM, Gal-Toth J, Milner TA, Gottfried-Blackmore A, Waters EM, Kaunzner UW, Liu K, Lindquist R, Nussenzweig MC, Steinman RM, McEwen BS. CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J Comp Neurol 2008; 508:687-710. [PMID: 18386786 DOI: 10.1002/cne.21668] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243-1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP(+) brain dendritic cells (EYFP(+) bDC) that colocalized with a small fraction of microglia immunoreactive for Mac-1, Iba-1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP(+) bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP(+) bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP(+) bDC were present in the embryonic CNS when the blood-brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP(+) bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood-brain barrier. Ultrastructural analysis of EYFP(+) bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid-induced seizures revealed that EYFP(+) bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure-activated EGFP(+) microglia in the hippocampus of cfms (CSF-1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population.
Collapse
Affiliation(s)
- Karen Bulloch
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3952
|
Abstract
Dysfunctions affecting the connections of basal ganglia lead to major neurological and psychiatric disorders. We investigated levels of mRNA for three neurexins (Nrxn) and three neuroligins (Nlgn) in the globus pallidus, subthalamic nucleus, and substantia nigra, in control conditions and after short-term exposure to cocaine. The expression of Nrxn2beta and Nlgn3 in the substantia nigra and Nlgn1 in the subthalamic nucleus depended on genetic background. The development of short-term cocaine appetence induced an increase in Nrxn3beta expression in the globus pallidus. Human NRXN3 has recently been linked to several addictions. Thus, NRXN3 adhesion molecules may play an important role in the synaptic plasticity of neurons involved in the indirect pathways of basal ganglia, in which they regulate reward-related learning.
Collapse
|
3953
|
Inestrosa NC, Toledo EM. The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease. Mol Neurodegener 2008; 3:9. [PMID: 18652670 PMCID: PMC2515306 DOI: 10.1186/1750-1326-3-9] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 07/24/2008] [Indexed: 01/10/2023] Open
Abstract
Recent evidence supports a neuroprotective role for Wnt signaling in neurodegenerative disorders such as Alzheimer's Disease (AD). In fact, a relationship between amyloid-beta-peptide (Abeta)-induced neurotoxicity and a decrease in the cytoplasmic levels of beta-catenin has been observed. Apparently Abeta binds to the extracellular cysteine-rich domain of the Frizzled receptor (Fz) inhibiting Wnt/beta-catenin signaling. Cross-talk with other signaling cascades that regulate Wnt/beta-catenin signaling, including the activation of M1 muscarinic receptor and PKC, the use of Ibuprofen-ChE bi-functional compounds, PPAR alpha, gamma agonists, nicotine and some antioxidants, results in neuroprotection against Abeta. These studies indicate that a sustained loss of Wnt signaling function may be involved in the Abeta-dependent neurodegeneration observed in Alzheimer's brain. In conclusion the activation of the Wnt signaling pathway could be proposed as a therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V. Luco" (CRCP), MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
- CARE & CRCP Biomedical Center, Faculty of Biological Sciences, P. Catholic University of Chile, P.O. Box 114-D, Santiago, Chile
| | - Enrique M Toledo
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V. Luco" (CRCP), MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| |
Collapse
|
3954
|
Bertrand L, Nissanov J. The Neuroterrain 3D Mouse Brain Atlas. Front Neuroinform 2008; 2:3. [PMID: 18974795 PMCID: PMC2525976 DOI: 10.3389/neuro.11.003.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 07/10/2008] [Indexed: 11/13/2022] Open
Abstract
A significant objective of neuroinformatics is the construction of tools to readily access, search, and analyze anatomical imagery. This goal can be subdivided into development of the necessary databases and of the computer vision tools for image analysis. When considering mesoscale images, the latter tools can be further divided into registration algorithms and anatomical models. The models are atlases that contain both bitmap images and templates of anatomical boundaries. We report here on construction of such a model for the C57BL/6J mouse. The intended purpose of this atlas is to aid in automated delineation of the Mouse Brain Library, a database of brain histological images of importance to neurogenetic research.
Collapse
Affiliation(s)
- Louise Bertrand
- Department of Neurobiology and Anatomy, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Jonathan Nissanov
- Department of Neurobiology and Anatomy, Drexel University College of MedicinePhiladelphia, PA, USA
| |
Collapse
|
3955
|
Ji S, Sun L, Jin R, Kumar S, Ye J. Automated annotation of Drosophila gene expression patterns using a controlled vocabulary. ACTA ACUST UNITED AC 2008; 24:1881-8. [PMID: 18632750 DOI: 10.1093/bioinformatics/btn347] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION Regulation of gene expression in space and time directs its localization to a specific subset of cells during development. Systematic determination of the spatiotemporal dynamics of gene expression plays an important role in understanding the regulatory networks driving development. An atlas for the gene expression patterns of fruit fly Drosophila melanogaster has been created by whole-mount in situ hybridization, and it documents the dynamic changes of gene expression pattern during Drosophila embryogenesis. The spatial and temporal patterns of gene expression are integrated by anatomical terms from a controlled vocabulary linking together intermediate tissues developed from one another. Currently, the terms are assigned to patterns manually. However, the number of patterns generated by high-throughput in situ hybridization is rapidly increasing. It is, therefore, tempting to approach this problem by employing computational methods. RESULTS In this article, we present a novel computational framework for annotating gene expression patterns using a controlled vocabulary. In the currently available high-throughput data, annotation terms are assigned to groups of patterns rather than to individual images. We propose to extract invariant features from images, and construct pyramid match kernels to measure the similarity between sets of patterns. To exploit the complementary information conveyed by different features and incorporate the correlation among patterns sharing common structures, we propose efficient convex formulations to integrate the kernels derived from various features. The proposed framework is evaluated by comparing its annotation with that of human curators, and promising performance in terms of F1 score has been reported.
Collapse
Affiliation(s)
- Shuiwang Ji
- Department of Computer Science and Engineering, Center for Evolutionary Functional Genomics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | | | | | | |
Collapse
|
3956
|
Johnston J, Griffin SJ, Baker C, Skrzypiec A, Chernova T, Forsythe ID. Initial segment Kv2.2 channels mediate a slow delayed rectifier and maintain high frequency action potential firing in medial nucleus of the trapezoid body neurons. J Physiol 2008; 586:3493-509. [PMID: 18511484 PMCID: PMC2538803 DOI: 10.1113/jphysiol.2008.153734] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 05/22/2008] [Indexed: 11/08/2022] Open
Abstract
The medial nucleus of the trapezoid body (MNTB) is specialized for high frequency firing by expression of Kv3 channels, which minimize action potential (AP) duration, and Kv1 channels, which suppress multiple AP firing, during each calyceal giant EPSC. However, the outward K(+) current in MNTB neurons is dominated by another unidentified delayed rectifier. It has slow kinetics and a peak conductance of approximately 37 nS; it is half-activated at -9.2 +/- 2.1 mV and half-inactivated at -35.9 +/- 1.5 mV. It is blocked by several non-specific potassium channel antagonists including quinine (100 microm) and high concentrations of extracellular tetraethylammonium (TEA; IC(50) = 11.8 mM), but no specific antagonists were found. These characteristics are similar to recombinant Kv2-mediated currents. Quantitative RT-PCR showed that Kv2.2 mRNA was much more prevalent than Kv2.1 in the MNTB. A Kv2.2 antibody showed specific staining and Western blots confirmed that it recognized a protein approximately 110 kDa which was absent in brainstem tissue from a Kv2.2 knockout mouse. Confocal imaging showed that Kv2.2 was highly expressed in axon initial segments of MNTB neurons. In the absence of a specific antagonist, Hodgkin-Huxley modelling of voltage-gated conductances showed that Kv2.2 has a minor role during single APs (due to its slow activation) but assists recovery of voltage-gated sodium channels (Nav) from inactivation by hyperpolarizing interspike potentials during repetitive AP firing. Current-clamp recordings during high frequency firing and characterization of Nav inactivation confirmed this hypothesis. We conclude that Kv2.2-containing channels have a distinctive initial segment location and crucial function in maintaining AP amplitude by regulating the interspike potential during high frequency firing.
Collapse
Affiliation(s)
- Jamie Johnston
- MRC Toxicology Unit, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | | | | | |
Collapse
|
3957
|
D'Souza CA, Chopra V, Varhol R, Xie YY, Bohacec S, Zhao Y, Lee LLC, Bilenky M, Portales-Casamar E, He A, Wasserman WW, Goldowitz D, Marra MA, Holt RA, Simpson EM, Jones SJM. Identification of a set of genes showing regionally enriched expression in the mouse brain. BMC Neurosci 2008; 9:66. [PMID: 18625066 PMCID: PMC2483290 DOI: 10.1186/1471-2202-9-66] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 07/14/2008] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. RESULTS We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. CONCLUSION Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.
Collapse
Affiliation(s)
- Cletus A D'Souza
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| | - Vikramjit Chopra
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| | - Richard Varhol
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| | - Yuan-Yun Xie
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - Slavita Bohacec
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - Yongjun Zhao
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| | - Lisa LC Lee
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - Mikhail Bilenky
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| | - Elodie Portales-Casamar
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - An He
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - Daniel Goldowitz
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - Marco A Marra
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| | - Robert A Holt
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - Steven JM Jones
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| |
Collapse
|
3958
|
Wisor JP, Pasumarthi RK, Gerashchenko D, Thompson CL, Pathak S, Sancar A, Franken P, Lein ES, Kilduff TS. Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. J Neurosci 2008; 28:7193-201. [PMID: 18614689 PMCID: PMC2603080 DOI: 10.1523/jneurosci.1150-08.2008] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 05/07/2008] [Accepted: 05/27/2008] [Indexed: 11/21/2022] Open
Abstract
Sleep deprivation (SD) results in increased electroencephalographic (EEG) delta power during subsequent non-rapid eye movement sleep (NREMS) and is associated with changes in the expression of circadian clock-related genes in the cerebral cortex. The increase of NREMS delta power as a function of previous wake duration varies among inbred mouse strains. We sought to determine whether SD-dependent changes in circadian clock gene expression parallel this strain difference described previously at the EEG level. The effects of enforced wakefulness of incremental durations of up to 6 h on the expression of circadian clock genes (bmal1, clock, cry1, cry2, csnk1epsilon, npas2, per1, and per2) were assessed in AKR/J, C57BL/6J, and DBA/2J mice, three strains that exhibit distinct EEG responses to SD. Cortical expression of clock genes subsequent to SD was proportional to the increase in delta power that occurs in inbred strains: the strain that exhibits the most robust EEG response to SD (AKR/J) exhibited dramatic increases in expression of bmal1, clock, cry2, csnkIepsilon, and npas2, whereas the strain with the least robust response to SD (DBA/2) exhibited either no change or a decrease in expression of these genes and cry1. The effect of SD on circadian clock gene expression was maintained in mice in which both of the cryptochrome genes were genetically inactivated. cry1 and cry2 appear to be redundant in sleep regulation as elimination of either of these genes did not result in a significant deficit in sleep homeostasis. These data demonstrate transcriptional regulatory correlates to previously described strain differences at the EEG level and raise the possibility that genetic differences underlying circadian clock gene expression may drive the EEG differences among these strains.
Collapse
Affiliation(s)
- Jonathan P Wisor
- Biosciences Division, SRI International, Menlo Park, California 94025, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
3959
|
Taha AY, Chen CT, Liu Z, Kim JH, Mount HTJ, Bazinet RP. Brainstem concentrations of cholesterol are not influenced by genetic ablation of the low-density lipoprotein receptor. Neurochem Res 2008; 34:311-5. [PMID: 18607722 DOI: 10.1007/s11064-008-9777-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 06/10/2008] [Indexed: 11/30/2022]
Abstract
PURPOSE The low-density lipoprotein receptor (LDLr) mediates the uptake of LDL particles enriched with cholesterol, into several tissues. In contrast to other tissues, the brain is thought to obtain cholesterol solely by de novo synthesis, yet certain brain regions such as the brainstem are highly enriched with the LDLr. The goal of the present study was to assess the role of the LDLr in maintaining cholesterol concentrations in the brainstem of wildtype and LDLr knockout (LDLr-/-) mice. Cholesterol concentrations were also measured in the cortex, which served as a reference point, due to the lower expression of the LDLr, as compared to the brainstem. METHODS LDLr-/- and wildtype mice consumed an AIN-93G diet ad libitum until 7 weeks of age. After microwaving, the cortex and anterior brain stem were isolated for cholesterol analysis. Cholesterol was extracted into chloroform/methanol, derivatized in trimethylsilyl chloride and measured by gas chromatography/mass spectrometry. RESULTS Concentrations of cholesterol in the brainstem did not differ statistically between LDLr-/- (18.8 +/- 1.6 mg/g wet weight brain) and wildtype (19.1 +/- 2.0). Cortical cholesterol concentrations also did not differ statistically between LDLr-/- (11.0 +/- 0.4 mg/g wet weight brain) and wildtype (11.1 +/- 0.2) mice. CONCLUSION The LDLr is not necessary for maintaining cholesterol concentrations in the cortex or brainstem, suggesting that other mechanisms are sufficient to maintain brain cholesterol concentrations.
Collapse
Affiliation(s)
- Ameer Y Taha
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
3960
|
Abstract
In recent years, the deluge of complicated molecular and cellular microscopic images creates compelling challenges for the image computing community. There has been an increasing focus on developing novel image processing, data mining, database and visualization techniques to extract, compare, search and manage the biological knowledge in these data-intensive problems. This emerging new area of bioinformatics can be called ‘bioimage informatics’. This article reviews the advances of this field from several aspects, including applications, key techniques, available tools and resources. Application examples such as high-throughput/high-content phenotyping and atlas building for model organisms demonstrate the importance of bioimage informatics. The essential techniques to the success of these applications, such as bioimage feature identification, segmentation and tracking, registration, annotation, mining, image data management and visualization, are further summarized, along with a brief overview of the available bioimage databases, analysis tools and other resources. Contact:pengh@janelia.hhmi.org Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hanchuan Peng
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.
| |
Collapse
|
3961
|
|
3962
|
Boline J, Lee EF, Toga AW. Digital atlases as a framework for data sharing. Front Neurosci 2008; 2:100-6. [PMID: 18982112 PMCID: PMC2570073 DOI: 10.3389/neuro.01.012.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 05/22/2008] [Indexed: 11/30/2022] Open
Abstract
Digital brain atlases are useful as references, analytical tools, and as a data integration framework. As a result, they and their supporting tools are being recognized as potentially useful resources in the movement toward data sharing. Several projects are connecting infrastructure to these tools which facilitate sharing, managing, and retrieving data of different types, scale, and even location. With these in place, we have the ability to combine, analyze, and interpret these data in a manner not previously possible, opening the door to examine issues in new and exciting ways, and potentially leading to speedier discovery of answers as well as new questions about the brain. Here we discuss recent efforts in the use of digital mouse atlases for data sharing.
Collapse
Affiliation(s)
- Jyl Boline
- *Department of Neurology, Laboratory of NeuroImaging, School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Erh-Fang Lee
- *Department of Neurology, Laboratory of NeuroImaging, School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Arthur W. Toga
- *Department of Neurology, Laboratory of NeuroImaging, School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| |
Collapse
|
3963
|
Olszewski PK, Cedernaes J, Olsson F, Levine AS, Schiöth HB. Analysis of the network of feeding neuroregulators using the Allen Brain Atlas. Neurosci Biobehav Rev 2008; 32:945-56. [PMID: 18457878 PMCID: PMC2474779 DOI: 10.1016/j.neubiorev.2008.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 01/28/2008] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
Abstract
The Allen Brain Atlas, the most comprehensive in situ hybridization database, covers over 21,000 genes expressed in the mouse brain. Here we discuss the feasibility to utilize the ABA in research pertaining to the central regulation of feeding and we define advantages and vulnerabilities associated with the use of the atlas as a guidance tool. We searched for 57 feeding-related genes in the ABA, and of those 42 display distribution consistent with that described in previous reports. Detailed analyses of these 42 genes in the nucleus accumbens, ventral tegmental area, nucleus of the solitary tract, lateral hypothalamus, arcuate, paraventricular, ventromedial and dorsomedial nuclei suggests that molecules involved in feeding stimulation and termination are coexpressed in multiple consumption-related sites. Gene systems linked to energy needs, reward or satiation display a remarkably high level of overlap. This conclusion calls into question the classical concept of brain sites viewed as independent hunger or reward "centers" and favors the theory of a widespread feeding network comprising multiple neuroregulators affecting numerous aspects of consumption.
Collapse
Affiliation(s)
- Pawel K Olszewski
- Minnesota Obesity Center, Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55117, United States.
| | | | | | | | | |
Collapse
|
3964
|
Englander EW. Brain capacity for repair of oxidatively damaged DNA and preservation of neuronal function. Mech Ageing Dev 2008; 129:475-82. [PMID: 18374390 PMCID: PMC2519888 DOI: 10.1016/j.mad.2008.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/23/2008] [Accepted: 02/07/2008] [Indexed: 11/20/2022]
Abstract
Accumulation of oxidative DNA damage in the human brain has been implicated in etiologies of post-traumatic and age-associated declines in neuronal function. In neurons, because of high metabolic rates and prolonged life span, exposure to free radicals is intense and risk for accumulation of damaged DNA is amplified. While data indicate that the brain is equipped to repair nuclear and mitochondrial DNA, it is unclear whether repair is executed by distinct subsets of the DNA-repair machinery. Likewise, there are no firm assessments of brain capacity for accurate DNA repair under normal and more so compromised conditions. Consequently, the scope of DNA repair in the brain and the impact of resolution of oxidative lesions on neuronal survival and function remain largely unknown. This review considers evidences for brain levels and activities of the base excision repair (BER) pathway in the context of newly available, comprehensive in situ hybridization analyses of genes encoding repair enzymes. These analyses suggest that not all subsets of BER are equally represented in the brain. Because BER is the major repair process for oxidatively damaged DNA, to what extent parsimonious BER may contribute to development of neuronal dysfunction and brain injury under compromised conditions, is discussed.
Collapse
Affiliation(s)
- Ella W Englander
- Department of Surgery, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1220, USA.
| |
Collapse
|
3965
|
An essential role for Frizzled5 in neuronal survival in the parafascicular nucleus of the thalamus. J Neurosci 2008; 28:5641-53. [PMID: 18509025 DOI: 10.1523/jneurosci.1056-08.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Frizzled5 (Fz5), a putative Wnt receptor, is expressed in the retina, hypothalamus, and the parafascicular nucleus (PFN) of the thalamus. By constructing Fz5 alleles in which beta-galactosidase replaces Fz5 or in which Cre-mediated recombination replaces Fz5 with alkaline phosphatase, we observe that Fz5 is required continuously and in a cell autonomous manner for the survival of adult PFN neurons, but is not required for proliferation, migration, or axonal growth and targeting of developing PFN neurons. A motor phenotype associated with loss of Fz5 establishes a role for the PFN in sensorimotor coordination. Transcripts coding for Wnt9b, the likely Fz5 ligand in vivo, and beta-catenin, a mediator of canonical Wnt signaling, are both downregulated in the Fz5(-/-) PFN, implying a positive feedback mechanism in which Wnt signaling is required to maintain the expression of Wnt signaling components. These data suggest that defects in Wnt-Frizzled signaling could be the cause of neuronal loss in degenerative CNS diseases.
Collapse
|
3966
|
Benoist M, Baude A, Tasmadjian A, Dargent B, Kessler JP, Castets F. Distribution of zinedin in the rat brain. J Neurochem 2008; 106:969-77. [DOI: 10.1111/j.1471-4159.2008.05448.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3967
|
Kim DS, Ross SE, Trimarchi JM, Aach J, Greenberg ME, Cepko CL. Identification of molecular markers of bipolar cells in the murine retina. J Comp Neurol 2008; 507:1795-810. [PMID: 18260140 PMCID: PMC2665264 DOI: 10.1002/cne.21639] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Retinal bipolar neurons serve as relay interneurons that connect rod and cone photoreceptor cells to amacrine and ganglion cells. They exhibit diverse morphologies essential for correct routing of photoreceptor cell signals to specific postsynaptic amacrine and ganglion cells. The development and physiology of these interneurons have not been completely defined molecularly. Despite previous identification of genes expressed in several bipolar cell subtypes, molecules that mark each bipolar cell type still await discovery. In this report, novel genetic markers of murine bipolar cells were found. Candidates were initially generated by using microarray analysis of single bipolar cells and mining of retinal serial analysis of gene expression (SAGE) data. These candidates were subsequently tested for expression in bipolar cells by RNA in situ hybridization. Ten new molecular markers were identified, five of which are highly enriched in their expression in bipolar cells within the adult retina. Double-labeling experiments using probes for previously characterized subsets of bipolar cells were performed to identify the subtypes of bipolar cells that express the novel markers. Additionally, the expression of bipolar cell genes was analyzed in Bhlhb4 knockout retinas, in which rod bipolar cells degenerate postnatally, to delineate further the identity of bipolar cells in which novel markers are found. From the analysis of Bhlhb4 mutant retinas, cone bipolar cell gene expression appears to be relatively unaffected by the degeneration of rod bipolar cells. Identification of molecular markers for the various subtypes of bipolar cells will lead to greater insights into the development and function of these diverse interneurons.
Collapse
Affiliation(s)
- Douglas S Kim
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
3968
|
Rumballe B, Georgas K, Little MH. High-throughput paraffin section in situ hybridization and dual immunohistochemistry on mouse tissues. Cold Spring Harb Protoc 2008; 2008:pdb.prot5030. [PMID: 21356874 PMCID: PMC2725362 DOI: 10.1101/pdb.prot5030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTIONSection in situ hybridization (SISH) is a high-resolution tool used to analyze gene expression patterns. This protocol utilizes the Tecan Freedom EVO150 platform to perform high-throughput SISH on paraffin sections to detect mRNA with a digoxigenin (DIG)-labeled probe. The slide is mounted and imaged before performing immunohistochemistry (IHC) on the same section. The dual reaction enables a marker of protein expression to be localized on the same section as the mRNA and facilitates more accurate annotation of the gene expression.
Collapse
Affiliation(s)
- Bree Rumballe
- Institute for Molecular Bioscience, University of Queensland, St Lucia, 4072, Australia
| | - Kylie Georgas
- Institute for Molecular Bioscience, University of Queensland, St Lucia, 4072, Australia
| | - Melissa H. Little
- Institute for Molecular Bioscience, University of Queensland, St Lucia, 4072, Australia
- Australian Stem Cell Centre, University of Queensland, St Lucia, 4072, Australia
| |
Collapse
|
3969
|
Wolosker H, Dumin E, Balan L, Foltyn VN. d-Amino acids in the brain: d-serine in neurotransmission and neurodegeneration. FEBS J 2008; 275:3514-26. [DOI: 10.1111/j.1742-4658.2008.06515.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3970
|
Abstract
This review examines recent advances in the study of brain correlates of consciousness. First, we briefly discuss some useful distinctions between consciousness and other brain functions. We then examine what has been learned by studying global changes in the level of consciousness, such as sleep, anesthesia, and seizures. Next we consider some of the most common paradigms used to study the neural correlates for specific conscious percepts and examine what recent findings say about the role of different brain regions in giving rise to consciousness for that percept. Then we discuss dynamic aspects of neural activity, such as sustained versus phasic activity, feedforward versus reentrant activity, and the role of neural synchronization. Finally, we briefly consider how a theoretical analysis of the fundamental properties of consciousness can usefully complement neurobiological studies.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
3971
|
Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 2008; 18:1433-45. [PMID: 18562676 DOI: 10.1101/gr.078378.108] [Citation(s) in RCA: 603] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The transcriptional networks that regulate embryonic stem (ES) cell pluripotency and lineage specification are the subject of considerable attention. To date such studies have focused almost exclusively on protein-coding transcripts. However, recent transcriptome analyses show that the mammalian genome contains thousands of long noncoding RNAs (ncRNAs), many of which appear to be expressed in a developmentally regulated manner. The functions of these remain untested. To identify ncRNAs involved in ES cell biology, we used a custom-designed microarray to examine the expression profiles of mouse ES cells differentiating as embryoid bodies (EBs) over a 16-d time course. We identified 945 ncRNAs expressed during EB differentiation, of which 174 were differentially expressed, many correlating with pluripotency or specific differentiation events. Candidate ncRNAs were identified for further characterization by an integrated examination of expression profiles, genomic context, chromatin state, and promoter analysis. Many ncRNAs showed coordinated expression with genomically associated developmental genes, such as Dlx1, Dlx4, Gata6, and Ecsit. We examined two novel developmentally regulated ncRNAs, Evx1as and Hoxb5/6as, which are derived from homeotic loci and share similar expression patterns and localization in mouse embryos with their associated protein-coding genes. Using chromatin immunoprecipitation, we provide evidence that both ncRNAs are associated with trimethylated H3K4 histones and histone methyltransferase MLL1, suggesting a role in epigenetic regulation of homeotic loci during ES cell differentiation. Taken together, our data indicate that long ncRNAs are likely to be important in processes directing pluripotency and alternative differentiation programs, in some cases through engagement of the epigenetic machinery.
Collapse
|
3972
|
Sun YG, Gao YJ, Zhao ZQ, Huang B, Yin J, Taylor GA, Chen ZF. Involvement of P311 in the affective, but not in the sensory component of pain. Mol Pain 2008; 4:23. [PMID: 18549486 PMCID: PMC2459156 DOI: 10.1186/1744-8069-4-23] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 06/12/2008] [Indexed: 11/12/2022] Open
Abstract
Pain is comprised of the sensory and affective components. Compared to the well-investigated mechanisms of the sensory pain, much less is known about the mechanisms underlying the affective pain. In recent years, accumulating evidence suggests that the anterior cingulate cortex (ACC) is a key structure for pain affection. To identify the molecules that may be involved in the affective component of pain, we have searched the Allen Brain Atlas expression database for genes whose expression is enriched in the ACC, and found that P311, an 8-kDa peptide, showed the strong expression in the ACC. P311 is also expressed in other areas associated with pain affection including the amygdala, insular cortex and thalamus. To understand the role of P311 in pain perception, we have examined the pain behaviors of the mice lacking P311. P311-/- mice showed normal heat and mechanical sensitivity, as well as normal formalin-induced inflammatory pain. In contrast, the formalin-induced avoidance behavior, which reflects pain-related negative emotion, was significantly attenuated in P311-/- mice relative to the control mice. These results suggest that P311 is involved in the affective, but not in the sensory component of pain. Our study thus provides the first evidence suggesting that the affective and sensory pain may be regulated by distinct molecular mechanisms.
Collapse
Affiliation(s)
- Yan-Gang Sun
- Departments of Anesthesiology, Washington University School of Medicine Pain Center, St, Louis, Missouri 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
3973
|
Hu YA, Gu X, Liu J, Yang Y, Yan Y, Zhao C. Expression pattern of Wnt inhibitor factor 1(Wif1) during the development in mouse CNS. Gene Expr Patterns 2008; 8:515-22. [PMID: 18586116 DOI: 10.1016/j.gep.2008.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2008] [Revised: 05/26/2008] [Accepted: 06/03/2008] [Indexed: 12/25/2022]
Abstract
Wnt inhibitor factor-1 (WIF-1) is an extracellular antagonist of Wnts secreted proteins. Here we describe the expression pattern of Wif1 throughout the development of the mouse central nervous system (CNS). Wif1 mRNA can be detected as early as the developmental stage E11, and expression persists to adulthood. In embryonic stages, the level of Wif1 expression was very prominent in several areas including the cerebral cortex, the diencephalon and the midbrain, with the strongest level in the hippocampal plate and the diencephalon. However, after birth, the expression level of Wif1 decreased in the cortex and diencephalon. By adulthood, Wif1 is mainly expressed in the medial habenular nucleus (MHb) in the epithalamus, the mitral layer cells in the olfactory bulb and a few nuclei in the hypothalamus. Our data shows that the expression of Wif1 was very strong during embryonic development of the CNS and suggests that Wif1 may play an essential role in the spatial and temporal regulation of Wnt signals.
Collapse
Affiliation(s)
- Yu-An Hu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, 87 Dingjiaoqiao Road, Nanjing, Jiangsu 210009, PR China
| | | | | | | | | | | |
Collapse
|
3974
|
The neurogenesis-controlling factor, Pax6, inhibits proliferation and promotes maturation in murine astrocytes. J Neurosci 2008; 28:4604-12. [PMID: 18448636 DOI: 10.1523/jneurosci.5074-07.2008] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Astrocytes serve various important functions in the CNS, but the molecular mechanisms of their generation and maturation are still enigmatic. Here, we show that Pax6, a key transcription factor that controls neurogenesis, also regulates proliferation, differentiation, and migration of astrocytes in the CNS. We first reveal that Pax6 is expressed in astrocytes during development as well as postnatally in the wild-type mouse. Astrocytes derived from Pax6 homozygous mutants (Sey/Sey) mice exhibited aberrant proliferation together with immature differentiation, both in vivo and in vitro, with higher migration potential in scratch-wound assays in vitro. Furthermore, a larger population of Sey/Sey astrocytes expresses neural stem cell markers such as nestin, Sox2, and prominin-1. These phenotypes of Pax6-deficient astrocytes putatively occur via higher Akt activity. Thus, the breakdown of Pax6 function induces the retention of neural stem-like characteristics and inhibits astrocyte maturation.
Collapse
|
3975
|
Cerebellar development transcriptome database (CDT-DB): profiling of spatio-temporal gene expression during the postnatal development of mouse cerebellum. Neural Netw 2008; 21:1056-69. [PMID: 18603407 DOI: 10.1016/j.neunet.2008.05.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 04/08/2008] [Accepted: 05/28/2008] [Indexed: 11/23/2022]
Abstract
A large amount of genetic information is devoted to brain development and functioning. The neural circuit of the mouse cerebellum develops through a series of cellular and morphological events (including neuronal proliferation and migration, axogenesis, dendritogenesis, synaptogenesis and myelination) all within three weeks of birth. All of these events are controlled by specific gene groups, whose temporal and spatial expression profiles must be encoded in the genome. To understand the genetic basis underlying cerebellar circuit development, we analyzed gene expression (transcriptome) during the developmental stages on a genome-wide basis. Spatio-temporal gene expression data were collected using in situ hybridization for spatial (cellular and regional) resolution and fluorescence differential display, GeneChip, microarray and RT-PCR for temporal (developmental time series) resolution, and were annotated using Gene Ontology (controlled terminology for genes and gene products) and anatomical context (cerebellar cell types and circuit structures). The annotated experimental data were integrated into a knowledge resource database, the Cerebellar Development Transcriptome Database (CDT-DB http://www.cdtdb.brain.riken.jp), with seamless links to the relevant information at various bioinformatics database websites. The CDT-DB not only provides a unique informatics tool for mining both spatial and temporal pattern information on gene expression in developing mouse brains, but also opens up opportunities to elucidate the transcriptome for cerebellar development.
Collapse
|
3976
|
Lichtman JW, Sanes JR. Ome sweet ome: what can the genome tell us about the connectome? Curr Opin Neurobiol 2008; 18:346-53. [PMID: 18801435 PMCID: PMC2735215 DOI: 10.1016/j.conb.2008.08.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 08/14/2008] [Accepted: 08/18/2008] [Indexed: 11/18/2022]
Abstract
Some neuroscientists argue that detailed maps of synaptic connectivity--wiring diagrams--will be needed if we are to understand how the brain underlies behavior and how brain malfunctions underlie behavioral disorders. Such large-scale circuit reconstruction, which has been called connectomics, may soon be possible, owing to numerous advances in technologies for image acquisition and processing. Yet, the community is divided on the feasibility and value of the enterprise. Remarkably similar objections were voiced when the Human Genome Project, now widely viewed as a success, was first proposed. We revisit that controversy to ask if it holds any lessons for proposals to map the connectome.
Collapse
Affiliation(s)
- Jeff W Lichtman
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
3977
|
Ulrich R, Stan AC, Koch A, Beineke A. Expression of brain-derived neurotrophic factor and tropomyosin-related kinase-B in a bovine jejunal nodular ganglioneuroblastoma. Vet Pathol 2008; 45:355-60. [PMID: 18487493 DOI: 10.1354/vp.45-3-355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This report describes the morphologic, ultrastructural, and immunophenotypic features of a nodular ganglioneuroblastoma in the jejunum of a 13-month-old Holstein-Friesian heifer. On histologic examination, the mass was composed of clusters of neuroblasts and isolated ganglionic neurons in abundant neurophilic matrix that was surrounded by scanty Schwannian stroma. On ultrastructure examination, the large ganglionic neuron-like cells had unmyelinated neurites. Most ganglionic neuron-like tumor cells expressed neurofilament, neuron-specific enolase, chromogranin A, and S-100, whereas the Schwann-cell-like stromal cells expressed S-100 and vimentin. Both brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase-B (Trk-B) were expressed in ganglionic neuron-like tumor cells, which suggested the activation or reactivation of an embryonic autocrine BDNF/Trk-B pathway that could have prolonged cell survival and promoted differentiation with neurite formation.
Collapse
Affiliation(s)
- R Ulrich
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
3978
|
Wang S, Hecksher-Sorensen J, Xu Y, Zhao A, Dor Y, Rosenberg L, Serup P, Gu G. Myt1 and Ngn3 form a feed-forward expression loop to promote endocrine islet cell differentiation. Dev Biol 2008; 317:531-40. [PMID: 18394599 PMCID: PMC2423199 DOI: 10.1016/j.ydbio.2008.02.052] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
High levels of Ngn3 expression in pancreatic progenitor cells are both necessary and sufficient to initiate endocrine differentiation. While it is clear that the Notch-Hes1-mediated signals control the number of Ngn3-expressing cells in the developing pancreas, it is not known what factors control the level of Ngn3 expression in individual pancreatic cells. Here we report that Myt1b and Ngn3 form a feed-forward expression loop that regulates endocrine differentiation. Myt1b induces glucagon expression by potentiating Ngn3 transcription in pancreatic progenitors. Vice versa, Ngn3 protein production induces the expression of Myt1. Furthermore, pancreatic Myt1 expression largely, but not totally, relies on Ngn3 activity. Surprisingly, a portion of Myt1 expressing pancreatic cells express glucagon and other alpha cell markers in Ngn3 nullizygous mutant animals. These results demonstrate that Myt1b and Ngn3 positively regulate each other's expression to promote endocrine differentiation. In addition, the data uncover an unexpected Ngn3 expression-independent endocrine cell production pathway, which further bolsters the notion that the seemingly equivalent endocrine cells of each type, as judged by hormone and transcription factor expression, are heterogeneous in their origin.
Collapse
Affiliation(s)
- Sui Wang
- Program in Developmental Biology and the Department of Cell and Developmental Biology. Vanderbilt University Medical Center. Nashville, TN 37232
| | - Jacob Hecksher-Sorensen
- Hagedorn Research Institute, Department of Developmental Biology, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark
| | - Yanwen Xu
- Program in Developmental Biology and the Department of Cell and Developmental Biology. Vanderbilt University Medical Center. Nashville, TN 37232
| | - Aizhen Zhao
- Program in Developmental Biology and the Department of Cell and Developmental Biology. Vanderbilt University Medical Center. Nashville, TN 37232
| | - Yuval Dor
- Cellular Biochemistry & Human Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120. Israel
| | - Louise Rosenberg
- Hagedorn Research Institute, Department of Developmental Biology, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark
| | - Palle Serup
- Hagedorn Research Institute, Department of Developmental Biology, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark
| | - Guoqiang Gu
- Program in Developmental Biology and the Department of Cell and Developmental Biology. Vanderbilt University Medical Center. Nashville, TN 37232
| |
Collapse
|
3979
|
Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. Proc Natl Acad Sci U S A 2008; 105:7327-32. [PMID: 18480253 DOI: 10.1073/pnas.0802545105] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although deficiencies in the retromer sorting pathway have been linked to late-onset Alzheimer's disease, whether these deficiencies underlie the disease remains unknown. Here we characterized two genetically modified animal models to test separate but related questions about the effects that retromer deficiency has on the brain. First, testing for cognitive defects, we investigated retromer-deficient mice and found that they develop hippocampal-dependent memory and synaptic dysfunction, which was associated with elevations in endogenous Abeta peptide. Second, testing for neurodegeneration and amyloid deposits, we investigated retromer-deficient flies expressing human wild-type amyloid precursor protein (APP) and human beta-site APP-cleaving enzyme (BACE) and found that they develop neuronal loss and human Abeta aggregates. By recapitulating features of the disease, these animal models suggest that retromer deficiency observed in late-onset Alzheimer's disease can contribute to disease pathogenesis.
Collapse
|
3980
|
Satoh J, Obayashi S, Misawa T, Sumiyoshi K, Oosumi K, Tabunoki H. Protein microarray analysis identifies human cellular prion protein interactors. Neuropathol Appl Neurobiol 2008; 35:16-35. [PMID: 18482256 DOI: 10.1111/j.1365-2990.2008.00947.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS To obtain an insight into the function of cellular prion protein (PrPC), we studied PrPC-interacting proteins (PrPIPs) by analysing a protein microarray. METHODS We identified 47 novel PrPIPs by probing an array of 5000 human proteins with recombinant human PrPC spanning amino acid residues 23-231 named PR209. RESULTS The great majority of 47 PrPIPs were annotated as proteins involved in the recognition of nucleic acids. Coimmunoprecipitation and cell imaging in a transient expression system validated the interaction of PR209 with neuronal PrPIPs, such as FAM64A, HOXA1, PLK3 and MPG. However, the interaction did not generate proteinase K-resistant proteins. KeyMolnet, a bioinformatics tool for analysing molecular interaction on the curated knowledge database, revealed that the complex molecular network of PrPC and PrPIPs has a significant relationship with AKT, JNK and MAPK signalling pathways. CONCLUSIONS Protein microarray is a useful tool for systematic screening and comprehensive profiling of the human PrPC interactome. Because the network of PrPC and interactors involves signalling pathways essential for regulation of cell survival, differentiation, proliferation and apoptosis, these observations suggest a logical hypothesis that dysregulation of the PrPC interactome might induce extensive neurodegeneration in prion diseases.
Collapse
Affiliation(s)
- J Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
3981
|
|
3982
|
Quraishe S, Asuni A, Boelens WC, O'Connor V, Wyttenbach A. Expression of the small heat shock protein family in the mouse CNS: differential anatomical and biochemical compartmentalization. Neuroscience 2008; 153:483-91. [PMID: 18384969 DOI: 10.1016/j.neuroscience.2008.01.058] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/29/2008] [Accepted: 01/29/2008] [Indexed: 01/12/2023]
Abstract
The small heat shock proteins (sHsps) are a family of molecular chaperones defined by an alpha-crystallin domain that is important for sHsps oligomerization and chaperone activity. sHsps perform many physiological functions including the maintenance of the cellular cytoskeleton, the regulation of protein aggregation and modulate cell survival in a number of cell types including glial and neuronal cells. Many of these functions have been implicated in disease processes in the CNS and indeed sHsps are considered targets for disease therapy. Despite this, there is no study that systematically and comparatively characterized sHsps expression in the CNS. In the present study we have analyzed the expression of this gene family in the mouse brain by reverse-transcriptase polymerase chain reaction (RT-PCR), in situ hybridization and Western blotting. Gene expression analysis of the 10 known members of mammalian sHsps confirms the presence of 5 sHsps in the CNS. A distinct white matter specific expression pattern for HspB5 and overlapping expression of HspB1 and HspB8 in the lateral and dorsal ventricles of the brain is observed. We confirm protein expression of HspB1, HspB5, HspB6 and HspB8 in the brain. Further subcellular fractionation of brain and synaptosomes details a distinct subcompartment-specific association and detergent solubility of sHsps. This biochemical signature is indicative of an association with synaptic and other neural specializations. This observation will help one understand the functional role played by sHsps during physiology and pathology in the CNS.
Collapse
Affiliation(s)
- S Quraishe
- University of Southampton, Neuroscience Group, School of Biological Sciences, Basset Crescent East, Southampton, UK
| | | | | | | | | |
Collapse
|
3983
|
Feinberg EH, Vanhoven MK, Bendesky A, Wang G, Fetter RD, Shen K, Bargmann CI. GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 2008; 57:353-63. [PMID: 18255029 DOI: 10.1016/j.neuron.2007.11.030] [Citation(s) in RCA: 522] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/05/2007] [Accepted: 11/27/2007] [Indexed: 11/20/2022]
Abstract
The identification of synaptic partners is challenging in dense nerve bundles, where many processes occupy regions beneath the resolution of conventional light microscopy. To address this difficulty, we have developed GRASP, a system to label membrane contacts and synapses between two cells in living animals. Two complementary fragments of GFP are expressed on different cells, tethered to extracellular domains of transmembrane carrier proteins. When the complementary GFP fragments are fused to ubiquitous transmembrane proteins, GFP fluorescence appears uniformly along membrane contacts between the two cells. When one or both GFP fragments are fused to synaptic transmembrane proteins, GFP fluorescence is tightly localized to synapses. GRASP marks known synaptic contacts in C. elegans, correctly identifies changes in mutants with altered synaptic specificity, and can uncover new information about synaptic locations as confirmed by electron microscopy. GRASP may prove particularly useful for defining connectivity in complex nervous systems.
Collapse
Affiliation(s)
- Evan H Feinberg
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
3984
|
Tabakoff B, Saba L, Kechris K, Hu W, Bhave SV, Finn DA, Grahame NJ, Hoffman PL. The genomic determinants of alcohol preference in mice. Mamm Genome 2008; 19:352-65. [PMID: 18563486 PMCID: PMC2583933 DOI: 10.1007/s00335-008-9115-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 05/14/2008] [Indexed: 02/06/2023]
Abstract
Searches for the identity of genes that influence the levels of alcohol consumption by humans and other animals have often been driven by presupposition of the importance of particular gene products in determining positively or negatively reinforcing effects of ethanol. We have taken an unbiased approach and performed a meta-analysis across three types of mouse populations to correlate brain gene expression with levels of alcohol intake. Our studies, using filtering procedures based on QTL analysis, produced a list of eight candidate genes with highly heritable expression, which could explain a significant amount of the variance in alcohol preference in mice. Using the Allen Brain Atlas for gene expression, we noted that the candidate genes' expression was localized to the olfactory and limbic areas as well as to the orbitofrontal cortex. Informatics techniques and pathway analysis illustrated the role of the candidate genes in neuronal migration, differentiation, and synaptic remodeling. The importance of olfactory cues, learning and memory formation (Pavlovian conditioning), and cortical executive function, for regulating alcohol intake by animals (including humans), is discussed.
Collapse
Affiliation(s)
- Boris Tabakoff
- Department of Pharmacology, University of Colorado Denver School of Medicine, Mail Stop F-8303, P.O. Box 6511, Aurora, CO 80045-0511, USA.
| | | | | | | | | | | | | | | |
Collapse
|
3985
|
Summerhurst K, Stark M, Sharpe J, Davidson D, Murphy P. 3D representation of Wnt and Frizzled gene expression patterns in the mouse embryo at embryonic day 11.5 (Ts19). Gene Expr Patterns 2008; 8:331-48. [PMID: 18364260 PMCID: PMC2452985 DOI: 10.1016/j.gep.2008.01.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/17/2008] [Accepted: 01/21/2008] [Indexed: 11/30/2022]
Abstract
Wnt signalling is one of the fundamental cell communication systems operating in the embryo and the collection of 19 Wnt and 10 Frizzled (Fzd) receptor genes (in mouse and human) represent just part of a complex system to be unravelled. Here we present a spatially comprehensive set of data on the 3D distribution of Wnt and Fzd gene expression patterns at a carefully selected single stage of mouse development. Overviews and selected features of the patterns are presented and the full 3D data set, generated by fully described probes, is available to the research community through the Edinburgh Mouse Atlas of Gene Expression. In addition to being comprehensive, the data set has been generated and recorded in a consistent manner to facilitate comparisons between gene expression patterns with the capacity to generate matching virtual sections from the 3D representations for specific studies. Expression patterns in the left forelimb were selected for more detailed comparative description. In addition to confirming the previously published expression of these genes, our whole embryo and limb bud analyses significantly extend the data in terms of details of the patterns and the addition of previously undetected sites of expression. Our focussed analysis of expression domains in the limb, defined by just two gene families, reveals a surprisingly high degree of spatial complexity and underlines the enormous potential for local cellular interactions that exist within an emerging structure. This work also highlights the use of OPT to generate detailed high-quality, spatially complex expression data that is readily comparable between specimens and can be reviewed and reanalysed as required for specific studies. It represents a core set of data that will be extended with additional stages of development and through addition of potentially interacting genes and ultimately other cross-regulatory communication pathways operating in the embryo.
Collapse
Affiliation(s)
- Kristen Summerhurst
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, College Green, Dublin, Ireland
| | - Margaret Stark
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH6 2XU, Scotland, United Kingdom
| | - James Sharpe
- ICREA, EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation, UPF, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Duncan Davidson
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH6 2XU, Scotland, United Kingdom
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, College Green, Dublin, Ireland
| |
Collapse
|
3986
|
Fisher ME, Clelland AK, Bain A, Baldock RA, Murphy P, Downie H, Tickle C, Davidson DR, Buckland RA. Integrating technologies for comparing 3D gene expression domains in the developing chick limb. Dev Biol 2008; 317:13-23. [PMID: 18355805 PMCID: PMC2529376 DOI: 10.1016/j.ydbio.2008.01.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 01/18/2008] [Accepted: 01/19/2008] [Indexed: 11/06/2022]
Abstract
Chick embryos are good models for vertebrate development due to their accessibility and manipulability. Recent large increases in available genomic data from both whole genome sequencing and EST projects provide opportunities for identifying many new developmentally important chicken genes. Traditional methods of documenting when and where specific genes are expressed in embryos using whole amount and section in-situ hybridisation do not readily allow appreciation of 3-dimensional (3D) patterns of expression, but this can be accomplished by the recently developed microscopy technique, Optical Projection Tomography (OPT). Here we show that OPT data on the developing chick wing from different labs can be reliably integrated into a common database, that OPT is efficient in capturing 3D gene expression domains and that such domains can be meaningfully compared. Novel protocols are used to compare 3D expression domains of 7 genes known to be involved in chick wing development. This reveals previously unappreciated relationships and demonstrates the potential, using modern genomic resources, for building a large scale 3D atlas of gene expression. Such an atlas could be extended to include other types of data, such as fate maps, and the approach is also more generally applicable to embryos, organs and tissues.
Collapse
Affiliation(s)
- Malcolm E Fisher
- Department of Cell and Developmental Biology, University of Dundee, Dow Street, Dundee, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
3987
|
Wolfgang MJ, Cha SH, Millington DS, Cline G, Shulman GI, Suwa A, Asaumi M, Kurama T, Shimokawa T, Lane MD. Brain-specific carnitine palmitoyl-transferase-1c: role in CNS fatty acid metabolism, food intake, and body weight. J Neurochem 2008; 105:1550-9. [PMID: 18248603 PMCID: PMC3888516 DOI: 10.1111/j.1471-4159.2008.05255.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While the brain does not utilize fatty acids as a primary energy source, recent evidence shows that intermediates of fatty acid metabolism serve as hypothalamic sensors of energy status. Increased hypothalamic malonyl-CoA, an intermediate in fatty acid synthesis, is indicative of energy surplus and leads to the suppression of food intake and increased energy expenditure. Malonyl-CoA functions as an inhibitor of carnitine palmitoyl-transferase 1 (CPT1), a mitochondrial outer membrane enzyme that initiates translocation of fatty acids into mitochondria for oxidation. The mammalian brain expresses a unique homologous CPT1, CPT1c, that binds malonyl-CoA tightly but does not support fatty acid oxidation in vivo, in hypothalamic explants or in heterologous cell culture systems. CPT1c knockout (KO) mice under fasted or refed conditions do not exhibit an altered CNS transcriptome of genes known to be involved in fatty acid metabolism. CPT1c KO mice exhibit normal levels of metabolites and of hypothalamic malonyl-CoA and fatty acyl-CoA levels either in the fasted or refed states. However, CPT1c KO mice exhibit decreased food intake and lower body weight than wild-type littermates. In contrast, CPT1c KO mice gain excessive body weight and body fat when fed a high-fat diet while maintaining lower or equivalent food intake. Heterozygous mice display an intermediate phenotype. These findings provide further evidence that CPT1c plays a role in maintaining energy homeostasis, but not through altered fatty acid oxidation.
Collapse
Affiliation(s)
- Michael J. Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Seung Hun Cha
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David S. Millington
- Duke University Medical Center, Biochemical Genetics Laboratory, Astellas Pharma Inc. Tsukuba, Ibaraki 305-8585 Japan
| | - Gary Cline
- Department of Internal Medicine and Cellular and Molecular Physiology, Howard Hughes Medical Institute, Astellas Pharma Inc. Tsukuba, Ibaraki 305-8585 Japan
| | - Gerald I Shulman
- Department of Internal Medicine and Cellular and Molecular Physiology, Howard Hughes Medical Institute, Astellas Pharma Inc. Tsukuba, Ibaraki 305-8585 Japan
| | - Akira Suwa
- Molecular Medicine Laboratories, Astellas Pharma Inc. Tsukuba, Ibaraki 305-8585 Japan
| | - Makoto Asaumi
- Molecular Medicine Laboratories, Astellas Pharma Inc. Tsukuba, Ibaraki 305-8585 Japan
| | - Takeshi Kurama
- Molecular Medicine Laboratories, Astellas Pharma Inc. Tsukuba, Ibaraki 305-8585 Japan
| | - Teruhiko Shimokawa
- Molecular Medicine Laboratories, Astellas Pharma Inc. Tsukuba, Ibaraki 305-8585 Japan
| | - M. Daniel Lane
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
3988
|
Juntti SA, Coats JK, Shah NM. A genetic approach to dissect sexually dimorphic behaviors. Horm Behav 2008; 53:627-37. [PMID: 18313055 PMCID: PMC2464277 DOI: 10.1016/j.yhbeh.2007.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/20/2007] [Accepted: 12/24/2007] [Indexed: 12/29/2022]
Abstract
It has been known since antiquity that gender-specific behaviors are regulated by the gonads. We now know that testosterone is required for the appropriate display of male patterns of behavior. Estrogen and progesterone, on the other hand, are essential for female typical responses. Research from several groups also indicates that estrogen signaling is required for male typical behaviors. This finding raises the issue of the relative contribution of these two hormonal systems in the control of male typical behavioral displays. In this review we discuss the findings that led to these conclusions and suggest various genetic strategies that may be required to understand the relative roles of testosterone and estrogen signaling in the control of gender-specific behavior.
Collapse
Affiliation(s)
| | | | - Nirao M. Shah
- 1550 4th Street, MC2722, Neuroscience Graduate Program, Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
3989
|
|
3990
|
Valerius MT, McMahon AP. Transcriptional profiling of Wnt4 mutant mouse kidneys identifies genes expressed during nephron formation. Gene Expr Patterns 2008; 8:297-306. [PMID: 18346943 PMCID: PMC2435058 DOI: 10.1016/j.gep.2008.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/30/2008] [Accepted: 02/02/2008] [Indexed: 01/26/2023]
Abstract
The mature nephron forms from a simple epithelial vesicle into an elaborate structure with distinct regions of specialized physiological function. The molecular components driving the process of nephron development are not well understood. To identify genes that may be informative in this process we conducted a transcriptional profiling screen using Wnt4 mutant kidneys. In Wnt4-/- homozygous mice, condensates and pretubular aggregates are induced, however, epithelial renal vesicles fail to form and subsequent tubulogenesis is blocked. A transcriptional profile comparison between wildtype and Wnt4-/- mutant kidneys at E14.5 was performed using Affymetrix oligonucleotide microarrays to identify nephron-expressed genes. This approach identified 236 genes with expression levels >1.8-fold higher in wildtype versus mutant kidneys, amongst these were a number of known nephron component markers confirming the validity of the screen. These results were further detailed by wholemount in situ hybridization (WISH) of E15.5 urogenital systems (UGS). We annotated the spatial expression pattern of these genes into eight categories of expression. Genes expressed in renal vesicle and their derivatives, structures absent in the mutant, accounted for the largest number of the observed expression patterns. A number of additional genes in areas not directly overlapping the Wnt4 expression domain were also identified including the cap mesenchyme, the collecting duct, and the cortical interstitium. This study provides a useful compendium of molecular markers for the study of nephrogenesis.
Collapse
Affiliation(s)
- M. Todd Valerius
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Andrew P. McMahon
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
3991
|
Wang IF, Wu LS, Chang HY, Shen CKJ. TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J Neurochem 2008; 105:797-806. [DOI: 10.1111/j.1471-4159.2007.05190.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3992
|
Haitina T, Olsson F, Stephansson O, Alsiö J, Roman E, Ebendal T, Schiöth HB, Fredriksson R. Expression profile of the entire family of Adhesion G protein-coupled receptors in mouse and rat. BMC Neurosci 2008; 9:43. [PMID: 18445277 PMCID: PMC2386866 DOI: 10.1186/1471-2202-9-43] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 04/29/2008] [Indexed: 01/02/2023] Open
Abstract
Background The Adhesion G protein-coupled receptors (GPCRs) are membrane-bound receptors with long N termini. This family has 33 members in humans. Several Adhesion GPCRs are known to have important physiological functions in CNS development and immune system response mediated by large cell surface ligands. However, the majority of Adhesion GPCRs are still poorly studied orphans with unknown functions. Results In this study we performed the extensive tissue localization analysis of the entire Adhesion GPCR family in rat and mouse. By applying the quantitative real-time PCR technique we have produced comparable expression profile for each of the members in the Adhesion family. The results are compared with literature data and data from the Allen Brain Atlas project. Our results suggest that the majority of the Adhesion GPCRs are either expressed in the CNS or ubiquitously. In addition the Adhesion GPCRs from the same phylogenetic group have either predominant CNS or peripheral expression, although each of their expression profile is unique. Conclusion Our findings indicate that many of Adhesion GPCRs are expressed, and most probably, have function in CNS. The related Adhesion GPCRs are well conserved in their structure and interestingly have considerable overlap in their expression profiles, suggesting similarities among the physiological roles for members within many of the phylogenetically related clusters.
Collapse
Affiliation(s)
- Tatjana Haitina
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, BMC, 75124 Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
3993
|
Wu JI, Rajendra R, Barsi JC, Durfee L, Benito E, Gao G, Kuruvilla M, Hrdlicková R, Liss AS, Artzt K. Targeted disruption of Mib2 causes exencephaly with a variable penetrance. Genesis 2008; 45:722-7. [PMID: 17987667 DOI: 10.1002/dvg.20349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mib1 and Mib2 ubiquitin ligases are very similar in their domain construction. They partake in the Notch signaling pathway by ubiquitinating the Notch receptors Delta and Jagged prior to endocytosis. We have created a targeted mutation of Mib2 and show that its phenotype is a variable penetrance, failure to close the cranial neural tube. The penetrance depends on the genetic background but it appears that Mib2 is not completely essential in mouse development.
Collapse
|
3994
|
Junghans D, Heidenreich M, Hack I, Taylor V, Frotscher M, Kemler R. Postsynaptic and differential localization to neuronal subtypes of protocadherin beta16 in the mammalian central nervous system. Eur J Neurosci 2008; 27:559-71. [PMID: 18279309 DOI: 10.1111/j.1460-9568.2008.06052.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The formation of synapses is dependent on the expression of surface adhesion molecules that facilitate correct recognition, stabilization and function. The more than 60 clustered protocadherins (Pcdhalpha, Pcdhbeta and Pcdhgamma) identified in human and mouse have attracted considerable attention because of their clustered genomic organization and the potential role of alpha- and gamma-Pcdhs in allocating a neuronal surface code specifying synaptic connectivity. Here, we investigated whether beta-Pcdhs also contribute to these processes. By performing RT-PCR, we found a striking parallel onset of expression of many beta-Pcdhs around the onset of neurogenesis and wide expression in the central nervous system. We generated antibodies specific to Pcdhb16 and showed localization of Pcdhb16 protein in the adult mouse cerebellum, hippocampus and cerebral cortex. Analysing the mouse retina in detail revealed localization of Pcdhb16 to specific cell types and, importantly, subsets of synapses. We show that Pcdhb16 localizes predominantly to postsynaptic compartments and the comparison with Pcdhb22 implies differential localization and functions of individual beta-Pcdhs in the mammalian central nervous system. Moreover, we provide evidence for a role of beta-Pcdhs in the outer segments and connecting cilia of photoreceptors. Our data show for the first time that beta-Pcdhs also localize to specific neuronal subpopulations and synapses, providing support for the hypothesis that clustered Pcdhs are candidate genes for the specification of synaptic connectivity and neuronal networks.
Collapse
Affiliation(s)
- Dirk Junghans
- Max-Planck Institute of Immunobiology, Department of Molecular Embryology, 79011 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
3995
|
Fowlkes CC, Hendriks CLL, Keränen SVE, Weber GH, Rübel O, Huang MY, Chatoor S, DePace AH, Simirenko L, Henriquez C, Beaton A, Weiszmann R, Celniker S, Hamann B, Knowles DW, Biggin MD, Eisen MB, Malik J. A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm. Cell 2008; 133:364-74. [PMID: 18423206 DOI: 10.1016/j.cell.2008.01.053] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 11/27/2007] [Accepted: 01/31/2008] [Indexed: 11/16/2022]
Abstract
To fully understand animal transcription networks, it is essential to accurately measure the spatial and temporal expression patterns of transcription factors and their targets. We describe a registration technique that takes image-based data from hundreds of Drosophila blastoderm embryos, each costained for a reference gene and one of a set of genes of interest, and builds a model VirtualEmbryo. This model captures in a common framework the average expression patterns for many genes in spite of significant variation in morphology and expression between individual embryos. We establish the method's accuracy by showing that relationships between a pair of genes' expression inferred from the model are nearly identical to those measured in embryos costained for the pair. We present a VirtualEmbryo containing data for 95 genes at six time cohorts. We show that known gene-regulatory interactions can be automatically recovered from this data set and predict hundreds of new interactions.
Collapse
Affiliation(s)
- Charless C Fowlkes
- Berkeley Drosophila Transcription Network Project, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3996
|
Belichenko NP, Belichenko PV, Li HH, Mobley WC, Francke U. Comparative study of brain morphology in Mecp2 mutant mouse models of Rett syndrome. J Comp Neurol 2008; 508:184-95. [PMID: 18306326 DOI: 10.1002/cne.21673] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rett syndrome (RTT) is caused by mutations in the X-linked gene MECP2. While patients with RTT show widespread changes in brain function, relatively few studies document changes in brain structure and none examine in detail whether mutations causing more severe clinical phenotypes are linked to more marked changes in brain structure. To study the influence of MeCP2-deficiency on the morphology of brain areas and axonal bundles, we carried out an extensive morphometric study of two Mecp2-mutant mouse models (Mecp2B and Mecp2J) of RTT. Compared to wildtype littermates, striking changes included reduced brain weight ( approximately 13% and approximately 9%) and the volumes of cortex ( approximately 11% and approximately 7%), hippocampus (both by approximately 8%), and cerebellum ( approximately 12% and 8%) in both mutant mice. At 3 weeks of age, most (24 of 47) morphological parameters were significantly altered in Mecp2B mice; fewer (18) were abnormal in Mecp2J mice. In Mecp2B mice, significantly lower values for cortical area were distributed along the rostrocaudal axis, and there was a reduced length of the olfactory bulb ( approximately 10%) and periaqueductal gray matter ( approximately 16%). In Mecp2J mice, while there was significant reduction in rostrocaudal length of cortex, this parameter was also abnormal in hippocampus ( approximately 10%), periaqueductal gray matter ( approximately 13%), fimbria ( approximately 18%), and anterior commissure ( approximately 10%). Our findings define patterns of Mecp2 mutation-induced changes in brain structure that are widespread and show that while some changes are present in both mutants, others are not. These observations provide the underpinning for studies to further define microarchitectural and physiological consequences of MECP2 deficiency.
Collapse
Affiliation(s)
- Nadia P Belichenko
- Department of Genetics, Stanford University, Stanford, California 94305-5489, USA
| | | | | | | | | |
Collapse
|
3997
|
Jagalur M, Pal C, Learned-Miller E, Zoeller RT, Kulp D. Analyzing in situ gene expression in the mouse brain with image registration, feature extraction and block clustering. BMC Bioinformatics 2008; 8 Suppl 10:S5. [PMID: 18269699 PMCID: PMC2230506 DOI: 10.1186/1471-2105-8-s10-s5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Many important high throughput projects use in situ hybridization and may require the analysis of images of spatial cross sections of organisms taken with cellular level resolution. Projects creating gene expression atlases at unprecedented scales for the embryonic fruit fly as well as the embryonic and adult mouse already involve the analysis of hundreds of thousands of high resolution experimental images mapping mRNA expression patterns. Challenges include accurate registration of highly deformed tissues, associating cells with known anatomical regions, and identifying groups of genes whose expression is coordinately regulated with respect to both concentration and spatial location. Solutions to these and other challenges will lead to a richer understanding of the complex system aspects of gene regulation in heterogeneous tissue. Results We present an end-to-end approach for processing raw in situ expression imagery and performing subsequent analysis. We use a non-linear, information theoretic based image registration technique specifically adapted for mapping expression images to anatomical annotations and a method for extracting expression information within an anatomical region. Our method consists of coarse registration, fine registration, and expression feature extraction steps. From this we obtain a matrix for expression characteristics with rows corresponding to genes and columns corresponding to anatomical sub-structures. We perform matrix block cluster analysis using a novel row-column mixture model and we relate clustered patterns to Gene Ontology (GO) annotations. Conclusion Resulting registrations suggest that our method is robust over intensity levels and shape variations in ISH imagery. Functional enrichment studies from both simple analysis and block clustering indicate that gene relationships consistent with biological knowledge of neuronal gene functions can be extracted from large ISH image databases such as the Allen Brain Atlas [1] and the Max-Planck Institute [2] using our method. While we focus here on imagery and experiments of the mouse brain our approach should be applicable to a variety of in situ experiments.
Collapse
Affiliation(s)
- Manjunatha Jagalur
- Department of Computer Science, University of Massachusetts Amherst, Amherst, MA-01003, USA.
| | | | | | | | | |
Collapse
|
3998
|
Kuhlman SJ, Huang ZJ. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression. PLoS One 2008; 3:e2005. [PMID: 18414675 PMCID: PMC2289876 DOI: 10.1371/journal.pone.0002005] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 03/07/2008] [Indexed: 12/20/2022] Open
Abstract
We describe a method that combines Cre-recombinase knockin mice and viral-mediated gene transfer to genetically label and functionally manipulate specific neuron types in the mouse brain. We engineered adeno-associated viruses (AAVs) that express GFP, dsRedExpress, or channelrhodopsin (ChR2) upon Cre/loxP recombination-mediated removal of a transcription-translation STOP cassette. Fluorescent labeling was sufficient to visualize neuronal structures with synaptic resolution in vivo, and ChR2 expression allowed light activation of neuronal spiking. The structural dynamics of a specific class of neocortical neuron, the parvalbumin-containing (Pv) fast-spiking GABAergic interneuron, was monitored over the course of a week. We found that although the majority of Pv axonal boutons were stable in young adults, bouton additions and subtractions on axonal shafts were readily observed at a rate of 10.10% and 9.47%, respectively, over 7 days. Our results indicate that Pv inhibitory circuits maintain the potential for structural re-wiring in post-adolescent cortex. With the generation of an increasing number of Cre knockin mice and because viral transfection can be delivered to defined brain regions at defined developmental stages, this strategy represents a general method to systematically visualize the structure and manipulate the function of different cell types in the mouse brain.
Collapse
Affiliation(s)
- Sandra J. Kuhlman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Z. Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
3999
|
Lim J, Crespo-Barreto J, Jafar-Nejad P, Bowman AB, Richman R, Hill DE, Orr HT, Zoghbi HY. Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 2008; 452:713-8. [PMID: 18337722 PMCID: PMC2377396 DOI: 10.1038/nature06731] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 01/21/2008] [Indexed: 01/11/2023]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a glutamine-encoding repeat in ataxin 1 (ATXN1). In all known polyglutamine diseases, the glutamine expansion confers toxic functions onto the protein; however, the mechanism by which this occurs remains enigmatic, in light of the fact that the mutant protein apparently maintains interactions with its usual partners. Here we show that the expanded polyglutamine tract differentially affects the function of the host protein in the context of different endogenous protein complexes. Polyglutamine expansion in ATXN1 favours the formation of a particular protein complex containing RBM17, contributing to SCA1 neuropathology by means of a gain-of-function mechanism. Concomitantly, polyglutamine expansion attenuates the formation and function of another protein complex containing ATXN1 and capicua, contributing to SCA1 through a partial loss-of-function mechanism. This model provides mechanistic insight into the molecular pathogenesis of SCA1 as well as other polyglutamine diseases.
Collapse
Affiliation(s)
- Janghoo Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
4000
|
Learning and memory impairment in Eph receptor A6 knockout mice. Neurosci Lett 2008; 438:205-9. [PMID: 18450376 DOI: 10.1016/j.neulet.2008.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 04/01/2008] [Accepted: 04/07/2008] [Indexed: 11/20/2022]
Abstract
Genetic inhibition of the ephrin receptor (EphA6) in mice produced behavioral deficits specifically in tests of learning and memory. Using a fear conditioning training paradigm, mice deficient in EphA6 did not acquire the task as strongly as did wild type (WT) mice. When tested in the same context 24h later, knockout (KO) mice did not freeze as much as WT mice indicating reduced memory of the consequences of the training context. The KO mice also displayed less freezing when presented with the conditioning stimulus (CS) in a separate context. In the hidden platform phase of the Morris water maze (MWM) task, KO mice did not reach the same level of proficiency as did WT mice. KO mice also exhibited less preference for the target quadrant during a probe trial and were significantly impaired on an initial reversal of the platform. These findings suggest that EphA6, in line with a number of other Eph receptors and their ephrin ligands, is involved in neural circuits underlying aspects of learning and memory.
Collapse
|