401
|
Drozd M, Ritter JM, Samuelson JP, Parker M, Wang L, Sander SJ, Yoshicedo J, Wright L, Odani J, Shrader T, Lee E, Lockhart SR, Ghai RR, Terio KA. Mortality associated with SARS-CoV-2 in nondomestic felids. Vet Pathol 2024. [DOI: https:/doi.org/10.1177/03009858231225500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Between September and November 2021, 5 snow leopards ( Panthera uncia) and 1 lion ( Panthera leo) were naturally infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) and developed progressive respiratory disease that resulted in death. Severe acute respiratory syndrome coronavirus 2 sequencing identified the delta variant in all cases sequenced, which was the predominant human variant at that time. The time between initial clinical signs and death ranged from 3 to 45 days. Gross lesions in all 6 cats included nasal turbinate hyperemia with purulent discharge and marked pulmonary edema. Ulcerative tracheitis and bronchitis were noted in 4 cases. Histologically, there was necrotizing and ulcerative rhinotracheitis and bronchitis with fibrinocellular exudates and fibrinosuppurative to pyogranulomatous bronchopneumonia. The 4 cats that survived longer than 8 days had fungal abscesses. Concurrent bacteria were noted in 4 cases, including those with more acute disease courses. Severe acute respiratory syndrome coronavirus 2 was detected by in situ hybridization using probes against SARS-CoV-2 spike and nucleocapsid genes and by immunohistochemistry. Viral nucleic acid and protein were variably localized to mucosal and glandular epithelial cells, pneumocytes, macrophages, and fibrinocellular debris. Based on established criteria, SARS-CoV-2 was considered a contributing cause of death in all 6 cats. While mild clinical infections are more common, these findings suggest that some SARS-CoV-2 variants may cause more severe disease and that snow leopards may be more severely affected than other felids.
Collapse
Affiliation(s)
- Mary Drozd
- University of Nebraska–Lincoln, Lincoln, NE
| | | | | | | | - Leyi Wang
- University of Illinois Urbana-Champaign, Urbana, IL
| | | | | | - Louden Wright
- Great Plain Zoo, Sioux Falls, SD
- Nashville Zoo at Grassmere, Nashville, TN
| | - Jenee Odani
- University of Hawai‘i at Mānoa, Honolulu, HI
| | | | - Elizabeth Lee
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Ria R. Ghai
- Centers for Disease Control and Prevention, Atlanta, GA
| | | |
Collapse
|
402
|
Gupta S, Gupta D, Bhatnagar S. Analysis of SARS-CoV-2 genome evolutionary patterns. Microbiol Spectr 2024; 12:e0265423. [PMID: 38197644 PMCID: PMC10846092 DOI: 10.1128/spectrum.02654-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
The spread of SARS-CoV-2 virus accompanied by public availability of abundant sequence data provides a window for the determination of viral evolutionary patterns. In this study, SARS-CoV-2 genome sequences were collected from seven countries in the period January 2020-December 2022. The sequences were classified into three phases, namely, pre-vaccination, post-vaccination, and recent period. Comparison was performed between these phases based on parameters like mutation rates, selection pressure (dN/dS ratio), and transition to transversion ratios (Ti/Tv). Similar comparisons were performed among SARS-CoV-2 variants. Statistical significance was tested using Graphpad unpaired t-test. The analysis showed an increase in the percent genomic mutation rates post-vaccination and in recent periods across all countries from the pre-vaccination sequences. Mutation rates were highest in NSP3, S, N, and NSP12b before and increased further after vaccination. NSP4 showed the largest change in mutation rates after vaccination. The dN/dS ratios showed purifying selection that shifted toward neutral selection after vaccination. N, ORF8, ORF3a, and ORF10 were under highest positive selection before vaccination. Shift toward neutral selection was driven by E, NSP3, and ORF7a in the after vaccination set. In recent sequences, the largest dN/dS change was observed in E, NSP1, and NSP13. The Ti/Tv ratios decreased with time. C→U and G→U were the most frequent transitions and transversions. However, U→G was the most frequent transversion in recent period. The Omicron variant had the highest genomic mutation rates, while Delta showed the highest dN/dS ratio. Protein-wise dN/dS ratio was also seen to vary across the different variants.IMPORTANCETo the best of our knowledge, there exists no other large-scale study of the genomic and protein-wise mutation patterns during the time course of evolution in different countries. Analyzing the SARS-CoV-2 evolutionary patterns in view of the varying spatial, temporal, and biological signals is important for diagnostics, therapeutics, and pharmacovigilance of SARS-CoV-2.
Collapse
Affiliation(s)
- Shubhangi Gupta
- Department of Biological Sciences and Engineering, Computational and Structural Biology Laboratory, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| | - Deepanshu Gupta
- Division of Biotechnology, Computational and Structural Biology Laboratory, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | - Sonika Bhatnagar
- Department of Biological Sciences and Engineering, Computational and Structural Biology Laboratory, Netaji Subhas University of Technology, Dwarka, New Delhi, India
- Division of Biotechnology, Computational and Structural Biology Laboratory, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| |
Collapse
|
403
|
Sarlo Davila KM, Nelli RK, Phadke KS, Ruden RM, Sang Y, Bellaire BH, Gimenez-Lirola LG, Miller LC. How do deer respiratory epithelial cells weather the initial storm of SARS-CoV-2 WA1/2020 strain? Microbiol Spectr 2024; 12:e0252423. [PMID: 38189329 PMCID: PMC10846091 DOI: 10.1128/spectrum.02524-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
The potential infectivity of severe acute respiratory syndrome associated coronavirus-2 (SARS-CoV-2) in animals raises a public health and economic concern, particularly the high susceptibility of white-tailed deer (WTD) to SARS-CoV-2. The disparity in the disease outcome between humans and WTD is very intriguing, as the latter are often asymptomatic, subclinical carriers of SARS-CoV-2. To date, no studies have evaluated the innate immune factors responsible for the contrasting SARS-CoV-2-associated disease outcomes in these mammalian species. A comparative transcriptomic analysis in primary respiratory epithelial cells of human (HRECs) and WTD (Deer-RECs) infected with the SARS-CoV-2 WA1/2020 strain was assessed throughout 48 h post inoculation (hpi). Both HRECs and Deer-RECs were susceptible to virus infection, with significantly (P < 0.001) lower virus replication in Deer-RECs. The number of differentially expressed genes (DEG) gradually increased in Deer-RECs but decreased in HRECs throughout the infection. The ingenuity pathway analysis of DEGs further identified that genes commonly altered during SARS-CoV-2 infection mainly belong to cytokine and chemokine response pathways mediated via interleukin-17 (IL-17) and nuclear factor-κB (NF-κB) signaling pathways. Inhibition of the NF-κB signaling in the Deer-RECs pathway was predicted as early as 6 hpi. The findings from this study could explain the lack of clinical signs reported in WTD in response to SARS-CoV-2 infection as opposed to the severe clinical outcomes reported in humans.IMPORTANCEThis study demonstrated that human and white-tailed deer primary respiratory epithelial cells are susceptible to the SARS-CoV-2 WA1/2020 strain infection. However, the comparative transcriptomic analysis revealed that deer cells could limit viral replication without causing hypercytokinemia by downregulating IL-17 and NF-κB signaling pathways. Identifying differentially expressed genes in human and deer cells that modulate key innate immunity pathways during the early infection will lead to developing targeted therapies toward preventing or mitigating the "cytokine storm" often associated with severe cases of coronavirus disease 19 (COVID-19). Moreover, results from this study will aid in identifying novel prognostic biomarkers in predicting SARS-CoV-2 adaption and transmission in deer and associated cervids.
Collapse
Affiliation(s)
- Kaitlyn M. Sarlo Davila
- United States Department of Agriculture, Agricultural Research Service, Infectious Bacterial Disease Research Unit, National Animal Disease Center , Ames, Iowa, USA
| | - Rahul K. Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Kruttika S. Phadke
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Rachel M. Ruden
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, Tennessee, USA
| | - Bryan H. Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Luis G. Gimenez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Laura C. Miller
- United States Department of Agriculture, Agricultural Research Service, Virus and Prion Research Unit, National Animal Disease Center, Ames, Iowa, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
404
|
Xing JH, Niu TM, Zou BS, Yang GL, Shi CW, Yan QS, Sun MJ, Yu T, Zhang SM, Feng XZ, Fan SH, Huang HB, Wang JH, Li MH, Jiang YL, Wang JZ, Cao X, Wang N, Zeng Y, Hu JT, Zhang D, Sun WS, Yang WT, Wang CF. Gut microbiota-derived LCA mediates the protective effect of PEDV infection in piglets. MICROBIOME 2024; 12:20. [PMID: 38317217 PMCID: PMC10840300 DOI: 10.1186/s40168-023-01734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/30/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND The gut microbiota is a critical factor in the regulation of host health, but the relationship between the differential resistance of hosts to pathogens and the interaction of gut microbes is not yet clear. Herein, we investigated the potential correlation between the gut microbiota of piglets and their disease resistance using single-cell transcriptomics, 16S amplicon sequencing, metagenomics, and untargeted metabolomics. RESULTS Porcine epidemic diarrhea virus (PEDV) infection leads to significant changes in the gut microbiota of piglets. Notably, Landrace pigs lose their resistance quickly after being infected with PEDV, but transplanting the fecal microbiota of Min pigs to Landrace pigs alleviated the infection status. Macrogenomic and animal protection models identified Lactobacillus reuteri and Lactobacillus amylovorus in the gut microbiota as playing an anti-infective role. Moreover, metabolomic screening of the secondary bile acids' deoxycholic acid (DCA) and lithocholic acid (LCA) correlated significantly with Lactobacillus reuteri and Lactobacillus amylovorus, but only LCA exerted a protective function in the animal model. In addition, LCA supplementation altered the distribution of intestinal T-cell populations and resulted in significantly enriched CD8+ CTLs, and in vivo and in vitro experiments showed that LCA increased SLA-I expression in porcine intestinal epithelial cells via FXR receptors, thereby recruiting CD8+ CTLs to exert antiviral effects. CONCLUSIONS Overall, our findings indicate that the diversity of gut microbiota influences the development of the disease, and manipulating Lactobacillus reuteri and Lactobacillus amylovorus, as well as LCA, represents a promising strategy to improve PEDV infection in piglets. Video Abstract.
Collapse
Affiliation(s)
- Jun-Hong Xing
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Tian-Ming Niu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Bo-Shi Zou
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Qing-Song Yan
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Ming-Jie Sun
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Tong Yu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Shu-Min Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xi-Ze Feng
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Shu-Hui Fan
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jun-Hong Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Ming-Han Li
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jing-Tao Hu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Di Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Wu-Sheng Sun
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
405
|
Khalil AM, Nogales A, Martínez-Sobrido L, Mostafa A. Antiviral responses versus virus-induced cellular shutoff: a game of thrones between influenza A virus NS1 and SARS-CoV-2 Nsp1. Front Cell Infect Microbiol 2024; 14:1357866. [PMID: 38375361 PMCID: PMC10875036 DOI: 10.3389/fcimb.2024.1357866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Following virus recognition of host cell receptors and viral particle/genome internalization, viruses replicate in the host via hijacking essential host cell machinery components to evade the provoked antiviral innate immunity against the invading pathogen. Respiratory viral infections are usually acute with the ability to activate pattern recognition receptors (PRRs) in/on host cells, resulting in the production and release of interferons (IFNs), proinflammatory cytokines, chemokines, and IFN-stimulated genes (ISGs) to reduce virus fitness and mitigate infection. Nevertheless, the game between viruses and the host is a complicated and dynamic process, in which they restrict each other via specific factors to maintain their own advantages and win this game. The primary role of the non-structural protein 1 (NS1 and Nsp1) of influenza A viruses (IAV) and the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively, is to control antiviral host-induced innate immune responses. This review provides a comprehensive overview of the genesis, spatial structure, viral and cellular interactors, and the mechanisms underlying the unique biological functions of IAV NS1 and SARS-CoV-2 Nsp1 in infected host cells. We also highlight the role of both non-structural proteins in modulating viral replication and pathogenicity. Eventually, and because of their important role during viral infection, we also describe their promising potential as targets for antiviral therapy and the development of live attenuated vaccines (LAV). Conclusively, both IAV NS1 and SARS-CoV-2 Nsp1 play an important role in virus-host interactions, viral replication, and pathogenesis, and pave the way to develop novel prophylactic and/or therapeutic interventions for the treatment of these important human respiratory viral pathogens.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Madrid, Spain
| | - Luis Martínez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| |
Collapse
|
406
|
Rosas-Murrieta NH, Rodríguez-Enríquez A, Herrera-Camacho I, Millán-Pérez-Peña L, Santos-López G, Rivera-Benítez JF. Comparative Review of the State of the Art in Research on the Porcine Epidemic Diarrhea Virus and SARS-CoV-2, Scope of Knowledge between Coronaviruses. Viruses 2024; 16:238. [PMID: 38400014 PMCID: PMC10892376 DOI: 10.3390/v16020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review presents comparative information corresponding to the progress in knowledge of some aspects of infection by the porcine epidemic diarrhea virus (PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronaviruses. PEDV is an alphacoronavirus of great economic importance due to the million-dollar losses it generates in the pig industry. PEDV has many similarities to the SARS-CoV-2 betacoronavirus that causes COVID-19 disease. This review presents possible scenarios for SARS-CoV-2 based on the collected literature on PEDV and the tools or strategies currently developed for SARS-CoV-2 that would be useful in PEDV research. The speed of the study of SARS-CoV-2 and the generation of strategies to control the pandemic was possible due to the knowledge derived from infections caused by other human coronaviruses such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS). Therefore, from the information obtained from several coronaviruses, the current and future behavior of SARS-CoV-2 could be inferred and, with the large amount of information on the virus that causes COVID-19, the study of PEDV could be improved and probably that of new emerging and re-emerging coronaviruses.
Collapse
Affiliation(s)
- Nora H. Rosas-Murrieta
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Alan Rodríguez-Enríquez
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Irma Herrera-Camacho
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Lourdes Millán-Pérez-Peña
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Gerardo Santos-López
- Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular y Virología, Instituto Mexicano del Seguro Social (IMSS), Metepec 74360, Mexico;
| | - José F. Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México 38110, Mexico;
| |
Collapse
|
407
|
Gubbins S. Quantifying the relationship between within-host dynamics and transmission for viral diseases of livestock. J R Soc Interface 2024; 21:20230445. [PMID: 38379412 PMCID: PMC10879856 DOI: 10.1098/rsif.2023.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Understanding the population dynamics of an infectious disease requires linking within-host dynamics and between-host transmission in a quantitative manner, but this is seldom done in practice. Here a simple phenomenological model for viral dynamics within a host is linked to between-host transmission by assuming that the probability of transmission is related to log viral titre. Data from transmission experiments for two viral diseases of livestock, foot-and-mouth disease virus in cattle and swine influenza virus in pigs, are used to parametrize the model and, importantly, test the underlying assumptions. The model allows the relationship between within-host parameters and transmission to be determined explicitly through their influence on the reproduction number and generation time. Furthermore, these critical within-host parameters (time and level of peak titre, viral growth and clearance rates) can be computed from more complex within-host models, raising the possibility of assessing the impact of within-host processes on between-host transmission in a more detailed quantitative manner.
Collapse
Affiliation(s)
- Simon Gubbins
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| |
Collapse
|
408
|
Dasgupta T, Manickam V. Benzydamine hydrochloride ameliorates ethanol-induced inflammation in RAW 264.7 macrophages by stabilizing redox homeostasis. Asian Pac J Trop Biomed 2024; 14:73-81. [DOI: 10.4103/apjtb.apjtb_823_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/24/2024] [Indexed: 01/05/2025] Open
Abstract
Objective:
To evaluate the protective effect of benzydamine hydrochloride against ethanol-induced oxidative stress and inflammation in RAW 264.7 macrophages.
Methods:
RAW 264.7 macrophages were treated with ethanol (100 mM) and benzydamine hydrochloride (7.5 μM). The inflammatory status was confirmed by measuring pro-(TNF-α and IL-6) and anti-inflammatory (IL-10) cytokines through ELISA and RT-PCR assays. Reactive oxygen species generation and mitochondrial membrane potential were investigated to study the protective role of benzydamine hydrochloride against ethanol-induced oxidative stress. Apoptosis detection was also investigated using flow cytometry and acridine orange/ethidium bromide staining.
Results:
Benzydamine hydrochloride significantly decreased the secretion of TNF-α and IL-6, as well as the generation of reactive oxygen species inside the cells, thereby stabilizing the mitochondrial membrane potential and reducing DNA fragmentation. The ethanol-induced cellular necrosis was also reversed by the administration of benzydamine hydrochloride.
Conclusions:
Benzydamine hydrochloride ameliorates ethanol-induced cell apoptosis and inflammation in RAW macrophages.
Collapse
Affiliation(s)
- Tiasha Dasgupta
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Venkatraman Manickam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
409
|
Hu B, Guo H, Si H, Shi Z. Emergence of SARS and COVID-19 and preparedness for the next emerging disease X. Front Med 2024; 18:1-18. [PMID: 38561562 DOI: 10.1007/s11684-024-1066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 04/04/2024]
Abstract
Severe acute respiratory syndrome (SARS) and Coronavirus disease 2019 (COVID-19) are two human Coronavirus diseases emerging in this century, posing tremendous threats to public health and causing great loss to lives and economy. In this review, we retrospect the studies tracing the molecular evolution of SARS-CoV, and we sort out current research findings about the potential ancestor of SARS-CoV-2. Updated knowledge about SARS-CoV-2-like viruses found in wildlife, the animal susceptibility to SARS-CoV-2, as well as the interspecies transmission risk of SARS-related coronaviruses (SARSr-CoVs) are gathered here. Finally, we discuss the strategies of how to be prepared against future outbreaks of emerging or re-emerging coronaviruses.
Collapse
Affiliation(s)
- Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hua Guo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Haorui Si
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengli Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
410
|
Cardenas M, Seibert B, Cowan B, Fraiha ALS, Carnaccini S, Gay LC, Faccin FC, Caceres CJ, Anderson TK, Vincent Baker AL, Perez DR, Rajao DS. Amino acid 138 in the HA of a H3N2 subtype influenza A virus increases affinity for the lower respiratory tract and alveolar macrophages in pigs. PLoS Pathog 2024; 20:e1012026. [PMID: 38377132 PMCID: PMC10906893 DOI: 10.1371/journal.ppat.1012026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Influenza A virus (FLUAV) infects a wide range of hosts and human-to-swine spillover events are frequently reported. However, only a few of these human viruses have become established in pigs and the host barriers and molecular mechanisms driving adaptation to the swine host remain poorly understood. We previously found that infection of pigs with a 2:6 reassortant virus (hVIC/11) containing the hemagglutinin (HA) and neuraminidase (NA) gene segments from the human strain A/Victoria/361/2011 (H3N2) and internal gene segments of an endemic swine strain (sOH/04) resulted in a fixed amino acid substitution in the HA (A138S, mature H3 HA numbering). In silico analysis revealed that S138 became predominant among swine H3N2 virus sequences deposited in public databases, while 138A predominates in human isolates. To understand the role of the HA A138S substitution in the adaptation of a human-origin FLUAV HA to swine, we infected pigs with the hVIC/11A138S mutant and analyzed pathogenesis and transmission compared to hVIC/11 and sOH/04. Our results showed that the hVIC/11A138S virus had an intermediary pathogenesis between hVIC/11 and sOH/04. The hVIC/11A138S infected the upper respiratory tract, right caudal, and both cranial lobes while hVIC/11 was only detected in nose and trachea samples. Viruses induced a distinct expression pattern of various pro-inflammatory cytokines such as IL-8, TNF-α, and IFN-β. Flow cytometric analysis of lung samples revealed a significant reduction of porcine alveolar macrophages (PAMs) in hVIC/11A138S-infected pigs compared to hVIC/11 while a MHCIIlowCD163neg population was increased. The hVIC/11A138S showed a higher affinity for PAMs than hVIC/11, noted as an increase of infected PAMs in bronchoalveolar lavage fluid (BALF), and showed no differences in the percentage of HA-positive PAMs compared to sOH/04. This increased infection of PAMs led to an increase of granulocyte-monocyte colony-stimulating factor (GM-CSF) stimulation but a reduced expression of peroxisome proliferator-activated receptor gamma (PPARγ) in the sOH/04-infected group. Analysis using the PAM cell line 3D4/21 revealed that the A138S substitution improved replication and apoptosis induction in this cell type compared to hVIC/11 but at lower levels than sOH/04. Overall, our study indicates that adaptation of human viruses to the swine host involves an increased affinity for the lower respiratory tract and alveolar macrophages.
Collapse
Affiliation(s)
- Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Ana Luiza S. Fraiha
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - C. Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
411
|
Kong D, Zhang S, Guo M, Li S, Wang Q, Gou J, Wu Y, Chen Y, Yang Y, Dai C, Tian Z, Wee ATS, Liu Y, Wei D. Ultra-Fast Single-Nucleotide-Variation Detection Enabled by Argonaute-Mediated Transistor Platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307366. [PMID: 37805919 DOI: 10.1002/adma.202307366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/03/2023] [Indexed: 10/09/2023]
Abstract
"Test-and-go" single-nucleotide variation (SNV) detection within several minutes remains challenging, especially in low-abundance samples, since existing methods face a trade-off between sensitivity and testing speed. Sensitive detection usually relies on complex and time-consuming nucleic acid amplification or sequencing. Here, a graphene field-effect transistor (GFET) platform mediated by Argonaute protein that enables rapid, sensitive, and specific SNV detection is developed. The Argonaute protein provides a nanoscale binding channel to preorganize the DNA probe, accelerating target binding and rapidly recognizing SNVs with single-nucleotide resolution in unamplified tumor-associated microRNA, circulating tumor DNA, virus RNA, and reverse transcribed cDNA when a mismatch occurs in the seed region. An integrated microchip simultaneously detects multiple SNVs in agreement with sequencing results within 5 min, achieving the fastest SNV detection in a "test-and-go" manner without the requirement of nucleic acid extraction, reverse transcription, and amplification.
Collapse
Affiliation(s)
- Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Shen Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200433, P. R. China
| | - Shenwei Li
- Shanghai International Travel Healthcare Center, Shanghai, 200335, P. R. China
| | - Qiang Wang
- Shanghai International Travel Healthcare Center, Shanghai, 200335, P. R. China
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yuetong Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Zhengan Tian
- Shanghai International Travel Healthcare Center, Shanghai, 200335, P. R. China
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
412
|
Prelog M, Jeske SD, Asam C, Fuchs A, Wieser A, Gall C, Wytopil M, Mueller-Schmucker SM, Beileke S, Goekkaya M, Kling E, Geldmacher C, Rubio-Acero R, Plank M, Christa C, Willmann A, Vu M, Einhauser S, Weps M, Lampl BMJ, Almanzar G, Kousha K, Schwägerl V, Liebl B, Weber B, Drescher J, Scheidt J, Gefeller O, Messmann H, Protzer U, Liese J, Hoelscher M, Wagner R, Überla K, Steininger P. Clinical and immunological benefits of full primary COVID-19 vaccination in individuals with SARS-CoV-2 breakthrough infections: A prospective cohort study in non-hospitalized adults. J Clin Virol 2024; 170:105622. [PMID: 38091664 DOI: 10.1016/j.jcv.2023.105622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND SARS-CoV-2 variants of concern (VOC) may result in breakthrough infections (BTIs) in vaccinated individuals. The aim of this study was to investigate the effects of full primary (two-dose) COVID-19 vaccination with wild-type-based SARS-CoV-2 vaccines on symptoms and immunogenicity of SARS-CoV-2 VOC BTIs. METHODS In a longitudinal multicenter controlled cohort study in Bavaria, Germany, COVID-19 vaccinated and unvaccinated non-hospitalized individuals were prospectively enrolled within 14 days of a PCR-confirmed SARS-CoV-2 infection. Individuals were visited weekly up to 4 times, performing a structured record of medical data and viral load assessment. SARS-CoV-2-specific antibody response was characterized by anti-spike-(S)- and anti-nucleocapsid-(N)-antibody concentrations, anti-S-IgG avidity and neutralization capacity. RESULTS A total of 300 individuals (212 BTIs, 88 non-BTIs) were included with VOC Alpha or Delta SARS-CoV-2 infections. Full primary COVID-19 vaccination provided a significant effectiveness against five symptoms (relative risk reduction): fever (33 %), cough (21 %), dysgeusia (22 %), dizziness (52 %) and nausea/vomiting (48 %). Full primary vaccinated individuals showed significantly higher 50 % inhibitory concentration (IC50) values against the infecting VOC compared to unvaccinated individuals at week 1 (269 vs. 56, respectively), and weeks 5-7 (1,917 vs. 932, respectively) with significantly higher relative anti-S-IgG avidity (78% vs. 27 % at week 4, respectively). CONCLUSIONS Full primary COVID-19 vaccination reduced symptom frequencies in non-hospitalized individuals with BTIs and elicited a more rapid and longer lasting neutralization capacity against the infecting VOC compared to unvaccinated individuals. These results support the recommendation to offer at least full primary vaccination to all adults to reduce disease severity caused by immune escape-variants.
Collapse
Affiliation(s)
- Martina Prelog
- Pediatric Rheumatology / Special Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Samuel D Jeske
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Claudia Asam
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Andre Fuchs
- Internal Medicine III - Gastroenterology and Infectious Diseases, University Hospital of Augsburg, Augsburg, Germany
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Christine Gall
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Monika Wytopil
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra M Mueller-Schmucker
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephanie Beileke
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mehmet Goekkaya
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Institute of Environmental Medicine Helmholtz Zentrum München, German Research Center for Environmental Health, Augsburg, Germany
| | - Elisabeth Kling
- Institute of Laboratory Medicine and Microbiology University Hospital Augsburg, Augsburg, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Raquel Rubio-Acero
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Michael Plank
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Catharina Christa
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Annika Willmann
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Martin Vu
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Manuela Weps
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Benedikt M J Lampl
- Regensburg Department of Public Health, Division of Infection Control and Prevention, Regensburg, Germany; Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Giovanni Almanzar
- Pediatric Rheumatology / Special Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Kimia Kousha
- Pediatric Rheumatology / Special Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Valeria Schwägerl
- Pediatric Infectious Diseases, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Bernhard Liebl
- Bavarian Health and Food Safety Authority (LGL), Oberschleißheim, Germany
| | - Beatrix Weber
- Institute for Information Systems, University of Applied Sciences Hof, Hof, Germany
| | | | - Jörg Scheidt
- Institute for Information Systems, University of Applied Sciences Hof, Hof, Germany
| | - Olaf Gefeller
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Helmut Messmann
- Internal Medicine III - Gastroenterology and Infectious Diseases, University Hospital of Augsburg, Augsburg, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany; Institute of Virology, Helmholtz Munich, Munich, Germany, and German Center for Infection Research, Munich partner site
| | - Johannes Liese
- Pediatric Infectious Diseases, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Ralf Wagner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany; Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
413
|
Kim H, Buckley A, Guo B, Kulshreshtha V, Geelen AV, Montiel N, Lager K, Yoon KJ. Experimental Seneca Valley virus infection in sows and their offspring. Vet Microbiol 2024; 289:109958. [PMID: 38181600 DOI: 10.1016/j.vetmic.2023.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024]
Abstract
Neonatal mortality has been increasingly reported on swine breeding farms experiencing swine idiopathic vesicular disease (SIVD) outbreaks, which can be accompanied by lethargy, diarrhea, and neurologic signs in neonates. Seneca Valley Virus (SVV), or Senecavirus A, has been detected in clinical samples taken from pigs with SIVD. Experimental SVV inoculation has caused vesicular disease in pigs, particularly during the stages from weaning to finishing. However, it remains crucial to investigate whether SVV directly contributes to the increase in neonatal mortality rates. The following study was conducted to chronicle the pathogenesis of SVV infection in sows and their offspring. Ten sows were intranasally inoculated with 4.75 × 107 plaque-forming units of the virus per sow either late in gestation (n = 5) or within fourteen days of farrowing (n = 5). Each sow replicated SVV following intranasal inoculation, but only one out of ten sows developed a vesicular lesion on the snout. Evidence of transplacental infection was observed in two litters, and an additional two litters became infected following parturition out of five litters from sows inoculated in late gestation. No clinical signs were observed in the infected neonates. Likewise, no clinical signs were observed in the other five litters inoculated after farrowing, although each piglet did replicate the challenge virus. In this study, the experimental challenge of SVV did not result in neonatal mortality in contrast to observations in the field; however, it has shed light on the pathogenesis of the virus, the transmission of SVV between sows and their offspring, and host immune response that can help shape control measures in the field.
Collapse
Affiliation(s)
- Hanjun Kim
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Alexandra Buckley
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA
| | - Baoqing Guo
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Vikas Kulshreshtha
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA
| | - Albert van Geelen
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA
| | - Nestor Montiel
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA
| | - Kelly Lager
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
414
|
Anbazhagan S, Himani KM, Karthikeyan R, Prakasan L, Dinesh M, Nair SS, Lalsiamthara J, Abhishek, Ramachandra SG, Chaturvedi VK, Chaudhuri P, Thomas P. Comparative genomics of Brucella abortus and Brucella melitensis unravels the gene sharing, virulence factors and SNP diversity among the standard, vaccine and field strains. Int Microbiol 2024; 27:101-111. [PMID: 37202587 DOI: 10.1007/s10123-023-00374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Brucella abortus and Brucella melitensis are the primary etiological agents of brucellosis in large and small ruminants, respectively. There are limited comparative genomic studies involving Brucella strains that explore the relatedness among both species. In this study, we involved strains (n=44) representing standard, vaccine and Indian field origin for pangenome, single nucleotide polymorphism (SNP) and phylogenetic analysis. Both species shared a common gene pool representing 2884 genes out of a total 3244 genes. SNP-based phylogenetic analysis indicated higher SNP diversity among B. melitensis (3824) strains in comparison to B. abortus (540) strains, and a clear demarcation was identified between standard/vaccine and field strains. The analysis for virulence genes revealed that virB3, virB7, ricA, virB5, ipx5, wbkC, wbkB, and acpXL genes were highly conserved in most of the Brucella strains. Interestingly, virB10 gene was found to have high variability among the B. abortus strains. The cgMLST analysis revealed distinct sequence types for the standard/vaccine and field strains. B. abortus strains from north-eastern India fall within similar sequence type differing from other strains. In conclusion, the analysis revealed a highly shared core genome among two Brucella species. SNP analysis revealed B. melitensis strains exhibit high diversity as compared to B. abortus strains. Strains with absence or high polymorphism of virulence genes can be exploited for the development of novel vaccine candidates effective against both B. abortus and B. melitensis.
Collapse
Affiliation(s)
- S Anbazhagan
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
- ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad, India
| | - K M Himani
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - R Karthikeyan
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Lakshmi Prakasan
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - M Dinesh
- Division of Pathology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Sonu S Nair
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Jonathan Lalsiamthara
- Department of Molecular Microbiology & Immunology, SOM, OHSU, Portland, OR, US, 97239, USA
| | - Abhishek
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - S G Ramachandra
- ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad, India
| | - V K Chaturvedi
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Pallab Chaudhuri
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India.
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
415
|
Zhou Q, Zhang L, Dong Y, Wang Y, Zhang B, Zhou S, Huang Q, Wu T, Chen G. The role of SARS-CoV-2-mediated NF-κB activation in COVID-19 patients. Hypertens Res 2024; 47:375-384. [PMID: 37872376 PMCID: PMC10838770 DOI: 10.1038/s41440-023-01460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
The SARS-CoV-2 pandemic, now in its third year, has had a profound impact on public health and economics all over the world. Different populations showed varied susceptibility to this virus and mortality after infection. Clinical and laboratory data revealed that the uncontrolled inflammatory response plays an important role in their poor outcome. Herein, we summarized the role of NF-κB activation during SARS-CoV-2 invasion and replication, particularly the angiotensin-converting enzyme 2 (ACE2)-mediated NF-κB activation. Then we summarized the COVID-19 drugs' impact on NF-κB activation and their problems. A favorable prognosis is linked with timely treatment with NF-κB activation inhibitors, such as TNFα, IL-1β, and IL-6 monoclonal antibodies. However, further clinical researches are still required to clarify the time window, dosage of administration, contraindication, and potential side effects of these drugs, particularly for COVID-19 patients with hypertension, hyperglycemia, diabetes, or other chronic diseases.
Collapse
Affiliation(s)
- Qiaoqiao Zhou
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
| | - Lei Zhang
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Environmental Purification Material Science and Engineering Technology Research Center, Hubei University of Education, Wuhan, 430205, China
| | - Yanming Dong
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuan Wang
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Bin Zhang
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
| | - Shiyi Zhou
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
| | - Qing Huang
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Environmental Purification Material Science and Engineering Technology Research Center, Hubei University of Education, Wuhan, 430205, China
| | - Tian Wu
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Environmental Purification Material Science and Engineering Technology Research Center, Hubei University of Education, Wuhan, 430205, China
| | - Gongxuan Chen
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China.
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China.
- Hubei Environmental Purification Material Science and Engineering Technology Research Center, Hubei University of Education, Wuhan, 430205, China.
| |
Collapse
|
416
|
Linnehan BK, Kodera SM, Allard SM, Brodie EC, Allaband C, Knight R, Lutz HL, Carroll MC, Meegan JM, Jensen ED, Gilbert JA. Evaluation of the safety and efficacy of fecal microbiota transplantations in bottlenose dolphins (Tursiops truncatus) using metagenomic sequencing. J Appl Microbiol 2024; 135:lxae026. [PMID: 38305096 PMCID: PMC10853691 DOI: 10.1093/jambio/lxae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/03/2024]
Abstract
AIMS Gastrointestinal disease is a leading cause of morbidity in bottlenose dolphins (Tursiops truncatus) under managed care. Fecal microbiota transplantation (FMT) holds promise as a therapeutic tool to restore gut microbiota without antibiotic use. This prospective clinical study aimed to develop a screening protocol for FMT donors to ensure safety, determine an effective FMT administration protocol for managed dolphins, and evaluate the efficacy of FMTs in four recipient dolphins. METHODS AND RESULTS Comprehensive health monitoring was performed on donor and recipient dolphins. Fecal samples were collected before, during, and after FMT therapy. Screening of donor and recipient fecal samples was accomplished by in-house and reference lab diagnostic tests. Shotgun metagenomics was used for sequencing. Following FMT treatment, all four recipient communities experienced engraftment of novel microbial species from donor communities. Engraftment coincided with resolution of clinical signs and a sustained increase in alpha diversity. CONCLUSION The donor screening protocol proved to be safe in this study and no adverse effects were observed in four recipient dolphins. Treatment coincided with improvement in clinical signs.
Collapse
Affiliation(s)
| | - Sho M Kodera
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
| | - Sarah M Allard
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, United States
| | - Erin C Brodie
- National Marine Mammal Foundation, San Diego, CA 92106, United States
| | - Celeste Allaband
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, United States
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, United States
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, United States
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, United States
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Holly L Lutz
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, United States
| | | | - Jennifer M Meegan
- National Marine Mammal Foundation, San Diego, CA 92106, United States
| | - Eric D Jensen
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, San Diego, CA 92106, United States
| | - Jack A Gilbert
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, United States
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
417
|
Basso CR, Cruz TF, Vieira LB, Pedrosa VDA, Possebon FS, Araujo Junior JP. Development of a Gold Nanoparticle-Based ELISA for Detection of PCV2. Pathogens 2024; 13:108. [PMID: 38392846 PMCID: PMC10893201 DOI: 10.3390/pathogens13020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
In this new methodology, plasmonic ELISA (pELISA) was used to detect Circovirus porcine2 (PCV2) in serum samples without the need for plate reading equipment. This process occurs by adapting the conventional ELISA test with gold nanoparticles (AuNPs) to promote a color change on the plate and quickly identify this difference with the naked eye, generating a dark purple-gray hue when the samples are positive and red when the samples are negative. The technique demonstrated high efficiency in detecting samples with a viral load ≥ 5 log10 copies/mL. Plasmonic ELISA offers user-friendly, cost-effective, and reliable characteristics, making it a valuable tool for PCV2 diagnosis and potentially adaptable for other pathogen detection applications.
Collapse
Affiliation(s)
- Caroline Rodrigues Basso
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (T.F.C.); (F.S.P.)
| | - Taís Fukuta Cruz
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (T.F.C.); (F.S.P.)
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| | - Larissa Baldo Vieira
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (T.F.C.); (F.S.P.)
| | - Valber de Albuquerque Pedrosa
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| | - Fábio Sossai Possebon
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (T.F.C.); (F.S.P.)
| | - João Pessoa Araujo Junior
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (T.F.C.); (F.S.P.)
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| |
Collapse
|
418
|
Liu W, Huang Z, Xiao J, Wu Y, Xia N, Yuan Q. Evolution of the SARS-CoV-2 Omicron Variants: Genetic Impact on Viral Fitness. Viruses 2024; 16:184. [PMID: 38399960 PMCID: PMC10893260 DOI: 10.3390/v16020184] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Over the last three years, the pandemic of COVID-19 has had a significant impact on people's lives and the global economy. The incessant emergence of variant strains has compounded the challenges associated with the management of COVID-19. As the predominant variant from late 2021 to the present, Omicron and its sublineages, through continuous evolution, have demonstrated iterative viral fitness. The comprehensive elucidation of the biological implications that catalyzed this evolution remains incomplete. In accordance with extant research evidence, we provide a comprehensive review of subvariants of Omicron, delineating alterations in immune evasion, cellular infectivity, and the cross-species transmission potential. This review seeks to clarify the underpinnings of biology within the evolution of SARS-CoV-2, thereby providing a foundation for strategic considerations in the post-pandemic era of COVID-19.
Collapse
Affiliation(s)
- Wenhao Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Zehong Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Jin Xiao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| |
Collapse
|
419
|
Sritong N, Ngo WW, Ejendal KFK, Linnes JC. Development of an integrated sample amplification control for salivary point-of-care pathogen testing. Anal Chim Acta 2024; 1287:342072. [PMID: 38182338 PMCID: PMC10860388 DOI: 10.1016/j.aca.2023.342072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The COVID-19 pandemic has led to a rise in point-of-care (POC) and home-based tests, but concerns over usability, accuracy, and effectiveness have arisen. The incorporation of internal amplification controls (IACs), essential control for translational POC diagnostics, could mitigate false-negative and false-positive results due to sample matrix interference or inhibition. Although emerging POC nucleic acid amplification tests (NAATs) for detecting SARS-CoV-2 show impressive analytical sensitivity in the lab, the assessment of clinical accuracy with IACs is often overlooked. In some cases, the IACs were run spatially, complicating assay workflow. Therefore, the multiplex assay for pathogen and IAC is needed. RESULTS We developed a one-pot duplex reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) assay for saliva samples, a non-invasive and simple collected specimen for POC NAATs. The ORF1ab gene of SARS-CoV-2 was used as a target and a human 18S ribosomal RNA in human saliva was employed as an IAC to ensure clinical reliability of the RT-LAMP assay. The optimized assay could detect SARS-CoV-2 viral particles down to 100 copies/μL of saliva within 30 min without RNA extraction. The duplex RT-LAMP for SARS-CoV-2 and IAC is successfully amplified in the same reaction without cross-reactivity. The valid results were easily visualized in triple-line lateral flow immunoassay, in which two lines (flow control and IAC lines) represent valid negative results and three lines (flow control, IAC, and test line) represent valid positive results. This duplex assay demonstrated a clinical sensitivity of 95%, specificity of 100%, and accuracy of 96% in 30 clinical saliva samples. SIGNIFICANCE IACs play a crucial role in ensuring user confidence with respect to the accuracy and reliability of at-home and POC molecular diagnostics. We demonstrated the multiplex capability of SARS-COV-2 and human18S ribosomal RNA RT-LAMP without complicating assay design. This generic platform can be extended in a similar manner to include human18S ribosomal RNA IACs into different clinical sample matrices.
Collapse
Affiliation(s)
- Navaporn Sritong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Winston Wei Ngo
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Karin F K Ejendal
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Department of Public Health, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
420
|
Li Y, Liu T, Zhang Y, Duan X, Liu F. RNA recombination: non-negligible factor for preventing emergence or reemergence of Senecavirus A. Front Vet Sci 2024; 11:1357179. [PMID: 38328259 PMCID: PMC10847583 DOI: 10.3389/fvets.2024.1357179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Tianyu Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaoxiao Duan
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
421
|
Guo Y, Sui L, Kong D, Liu D, Gao Y, Jiang Y, Cui W, Li J, Li Y, Wang L. Porcine epidemic diarrhea virus strain CH/HLJ/18 isolated in China: characterization and phylogenetic analysis. Virol J 2024; 21:28. [PMID: 38268010 PMCID: PMC10807084 DOI: 10.1186/s12985-023-02233-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/06/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Porcine epidemic diarrhea (PED) is an infectious disease of the digestive tract caused by the porcine epidemic diarrhea virus (PEDV), characterized by vomiting, severe diarrhea, and high mortality rates in piglets. In recent years, the distribution of this disease in China has remarkably increased, and its pathogenicity has also increased. PEDV has been identified as the main cause of viral diarrhea in piglets. This study aimed to understand the genetic evolution and diversity of PEDV to provide a theoretical basis for the development of new vaccines and the prevention and treatment of PED. METHODS A PEDV strain was isolated from the small intestine of a diarrheal piglet using Vero cells. The virus was identified using reverse transcription-polymerase chain reaction (RT-PCR), indirect immunofluorescence assay (IFA), and transmission electron microscopy. The whole genome sequence was sequenced, phylogenetic analysis was conducted using MEGA (version 7.0), and recombination analysis was performed using RDP4 and SimPlot. The S protein amino acid sequence was aligned using Cluster X (version 2.0), and the S protein was modeled using SWISS-MODEL to compare differences in structure and antigenicity. Finally, the piglets were inoculated with PEDV to evaluate its pathogenicity in newborn piglets. RESULT PEDV strain CH/HLJ/18 was isolated. CH/HLJ/18 shared 89.4-99.2% homology with 52 reference strains of PEDV belonging to the GII-a subgroup. It was a recombinant strain of PEDV BJ-2011-1 and PEDV CH_hubei_2016 with a breakpoint located in ORF1b. Unique amino acid deletions and mutations were observed in the CH/HLJ/18 S protein. The piglets then developed severe watery diarrhea and died within 7 d of inoculation with CH/HLJ/18, suggesting that CH/HLJ/18 was highly pathogenic to newborn piglets. CONCLUSION A highly pathogenic recombinant PEDV GII-a strain, CH/HLJ/18, was identified in China, with unique deletion and mutation of amino acids in the S protein that may lead to changes in protein structure and antigenicity. These results will be crucial for understanding the prevalence and variation of PEDV and for preventing and controlling PED.
Collapse
Affiliation(s)
- Yuyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Ling Sui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Deming Kong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Dan Liu
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Yueyi Gao
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| |
Collapse
|
422
|
Zhuang J, Yan Z, Zhou T, Li Y, Wang H. The role of receptors in the cross-species spread of coronaviruses infecting humans and pigs. Arch Virol 2024; 169:35. [PMID: 38265497 DOI: 10.1007/s00705-023-05956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/19/2023] [Indexed: 01/25/2024]
Abstract
The pandemic caused by SARS-CoV-2, which has proven capable of infecting over 30 animal species, highlights the critical need for understanding the mechanisms of cross-species transmission and the emergence of novel coronavirus strains. The recent discovery of CCoV-HuPn-2018, a recombinant alphacoronavirus from canines and felines that can infect humans, along with evidence of SARS-CoV-2 infection in pig cells, underscores the potential for coronaviruses to overcome species barriers. This review investigates the origins and cross-species transmission of both human and porcine coronaviruses, with a specific emphasis on the instrumental role receptors play in this process.
Collapse
Affiliation(s)
- Jie Zhuang
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhiwei Yan
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Tiezhong Zhou
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Yonggang Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Huinuan Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
423
|
Farjo M, Koelle K, Martin MA, Gibson LL, Walden KKO, Rendon G, Fields CJ, Alnaji FG, Gallagher N, Luo CH, Mostafa HH, Manabe YC, Pekosz A, Smith RL, McManus DD, Brooke CB. Within-host evolutionary dynamics and tissue compartmentalization during acute SARS-CoV-2 infection. J Virol 2024; 98:e0161823. [PMID: 38174928 PMCID: PMC10805032 DOI: 10.1128/jvi.01618-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
The global evolution of SARS-CoV-2 depends in part upon the evolutionary dynamics within individual hosts with varying immune histories. To characterize the within-host evolution of acute SARS-CoV-2 infection, we sequenced saliva and nasal samples collected daily from vaccinated and unvaccinated individuals early during infection. We show that longitudinal sampling facilitates high-confidence genetic variant detection and reveals evolutionary dynamics missed by less-frequent sampling strategies. Within-host dynamics in both unvaccinated and vaccinated individuals appeared largely stochastic; however, in rare cases, minor genetic variants emerged to frequencies sufficient for forward transmission. Finally, we detected significant genetic compartmentalization of viral variants between saliva and nasal swab sample sites in many individuals. Altogether, these data provide a high-resolution profile of within-host SARS-CoV-2 evolutionary dynamics.IMPORTANCEWe detail the within-host evolutionary dynamics of SARS-CoV-2 during acute infection in 31 individuals using daily longitudinal sampling. We characterized patterns of mutational accumulation for unvaccinated and vaccinated individuals, and observed that temporal variant dynamics in both groups were largely stochastic. Comparison of paired nasal and saliva samples also revealed significant genetic compartmentalization between tissue environments in multiple individuals. Our results demonstrate how selection, genetic drift, and spatial compartmentalization all play important roles in shaping the within-host evolution of SARS-CoV-2 populations during acute infection.
Collapse
Affiliation(s)
- Mireille Farjo
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Michael A. Martin
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Laura L. Gibson
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kimberly K. O. Walden
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Gloria Rendon
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher J. Fields
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Fadi G. Alnaji
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nicholas Gallagher
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chun Huai Luo
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heba H. Mostafa
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yukari C. Manabe
- Division of Infectious Disease, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rebecca L. Smith
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - David D. McManus
- Division of Cardiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
424
|
Hakim MS, Gunadi, Rahayu A, Wibawa H, Eryvinka LS, Supriyati E, Vujira KA, Iskandar K, Afiahayati, Daniwijaya EW, Oktoviani FN, Annisa L, Utami FDT, Amadeus VC, Nurhidayah SS, Leksono TP, Halim FV, Arguni E, Nuryastuti T, Wibawa T. Sequence analysis of the Spike, RNA-dependent RNA polymerase, and protease genes reveals a distinct evolutionary pattern of SARS-CoV-2 variants circulating in Yogyakarta and Central Java provinces, Indonesia. Virus Genes 2024:10.1007/s11262-023-02048-1. [PMID: 38244104 DOI: 10.1007/s11262-023-02048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/22/2023] [Indexed: 01/22/2024]
Abstract
During the Covid-19 pandemic, the resurgence of SARS-CoV-2 was due to the development of novel variants of concern (VOC). Thus, genomic surveillance is essential to monitor continuing evolution of SARS-CoV-2 and to track the emergence of novel variants. In this study, we performed phylogenetic, mutation, and selection pressure analyses of the Spike, nsp12, nsp3, and nsp5 genes of SARS-CoV-2 isolates circulating in Yogyakarta and Central Java provinces, Indonesia from May 2021 to February 2022. Various bioinformatics tools were employed to investigate the evolutionary dynamics of distinct SARS-CoV-2 isolates. During the study period, 213 and 139 isolates of Omicron and Delta variants were identified, respectively. Particularly in the Spike gene, mutations were significantly more abundant in Omicron than in Delta variants. Consistently, in all of four genes studied, the substitution rates of Omicron were higher than that of Delta variants, especially in the Spike and nsp12 genes. In addition, selective pressure analysis revealed several sites that were positively selected in particular genes, implying that these sites were functionally essential for virus evolution. In conclusion, our study demonstrated a distinct evolutionary pattern of SARS-CoV-2 variants circulating in Yogyakarta and Central Java provinces, Indonesia.
Collapse
Affiliation(s)
- Mohamad Saifudin Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Gunadi
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ayu Rahayu
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hendra Wibawa
- Disease Investigation Center Wates, Directorate General of Livestok Services, Ministry of Agriculture, Yogyakarta, Indonesia
| | - Laudria Stella Eryvinka
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Endah Supriyati
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Khanza Adzkia Vujira
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kristy Iskandar
- Department of Child Health and Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/UGM Academic Hospital, Yogyakarta, Indonesia
| | - Afiahayati
- Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Edwin Widyanto Daniwijaya
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Farida Nur Oktoviani
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Luthvia Annisa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fadila Dyah Trie Utami
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Verrell Christopher Amadeus
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Setiani Silvy Nurhidayah
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tiara Putri Leksono
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fiqih Vidiantoro Halim
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Eggi Arguni
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
425
|
Yadav V, Ravichandran S. Significance of understanding the genomics of host-pathogen interaction in limiting antibiotic resistance development: lessons from COVID-19 pandemic. Brief Funct Genomics 2024; 23:69-74. [PMID: 36722037 DOI: 10.1093/bfgp/elad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 02/02/2023] Open
Abstract
The entire world is facing the stiff challenge of COVID-19 pandemic. To overcome the spread of this highly infectious disease, several short-sighted strategies were adopted such as the use of broad-spectrum antibiotics and antifungals. However, the misuse and/or overuse of antibiotics have accentuated the emergence of the next pandemic: antimicrobial resistance (AMR). It is believed that pathogens while transferring between humans and the environment carry virulence and antibiotic-resistant factors from varied species. It is presumed that all such genetic factors are quantifiable and predictable, a better understanding of which could be a limiting step for the progression of AMR. Herein, we have reviewed how genomics-based understanding of host-pathogen interactions during COVID-19 could reduce the non-judicial use of antibiotics and prevent the eruption of an AMR-based pandemic in future.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skaone University Hospital, Lund University, Malmo SE-20213, Sweden
| | | |
Collapse
|
426
|
Lei J, Miao Y, Bi W, Xiang C, Li W, Zhang R, Li Q, Yang Z. Porcine Epidemic Diarrhea Virus: Etiology, Epidemiology, Antigenicity, and Control Strategies in China. Animals (Basel) 2024; 14:294. [PMID: 38254462 PMCID: PMC10812628 DOI: 10.3390/ani14020294] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a porcine enteric coronavirus, which is one of the main causative agents of porcine epidemic diarrhea (PED), with 100% morbidity and 80-100% mortality in neonatal piglets. Since 2010, large-scale PED caused by highly pathogenic variants of PEDV has occurred successively in China and other countries in the world, posing a great threat to the global pig industry. It has been demonstrated in many investigations that the classic attenuated vaccine strain, PEDV CV777, is insufficient to fully protect against the PEDV variants. Moreover, the maternally derived antibodies elicited by inactivated vaccines also cannot completely protect piglets from infection. In addition, feedback feeding poses a risk of periodic PEDV recurrence in pig farms, making it challenging to successfully limit the spread of PEDV in China. This review focuses on the etiology, epidemiology, antigenicity, and control strategies of PEDV in China and provides information for the formulation of effective control measures.
Collapse
Affiliation(s)
- Jianlin Lei
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang 745000, China;
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Yongqiang Miao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Wenrui Bi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Chaohui Xiang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Wei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Qian Li
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang 745000, China;
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| |
Collapse
|
427
|
Kim DM, Moon SH, Kim SC, Lee TG, Cho HS, Tark D. Genome characterization of a Korean isolate of porcine epidemic diarrhea virus. Microbiol Resour Announc 2024; 13:e0011823. [PMID: 38117065 DOI: 10.1128/mra.00118-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
Porcine epidemic diarrhea (PED) outbreaks occur annually in the Republic of Korea. The complete genome sequence of the PED virus isolate CKK1-1 obtained from an infected pig was determined. The genome is 28,037 nt long, excluding the poly(A) tail, and contains seven open reading frames flanked by two untranslated regions.
Collapse
Affiliation(s)
- Dae-Min Kim
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University , Iksan, South Korea
| | - Sung-Hyun Moon
- College of Veterinary Medicine, Jeonbuk National University , Iksan, South Korea
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University , Iksan, South Korea
| | - Taek Geun Lee
- College of Veterinary Medicine, Jeonbuk National University , Iksan, South Korea
| | - Ho-Seong Cho
- College of Veterinary Medicine, Jeonbuk National University , Iksan, South Korea
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University , Iksan, South Korea
| |
Collapse
|
428
|
Zhang Y, Shi C, Yuan J, Zhang Y, Jin X, Zu S, Zhang H, Hu H. Rapid Construction of Recombinant PDCoV Expressing an Enhanced Green Fluorescent Protein for the Antiviral Screening Assay Based on Transformation-Associated Recombination Cloning in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1124-1135. [PMID: 38181302 DOI: 10.1021/acs.jafc.3c08327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that mainly causes diarrhea and death in suckling piglets and also has the potential for cross-species transmission, threatening public health. However, there is still no effective vaccine or drug to prevent PDCoV infection. In order to accelerate the development of antiviral drugs, we established a high-throughput screening platform using a novel genome editing technology called transformation-associated recombination cloning in yeast. The recombinant PDCoV and PDCoV reporter virus expressing enhanced green fluorescent protein were both rapidly rescued with stable genealogical characteristics during passage. Further study demonstrated that the reporter virus can be used for high-throughput screening of antiviral drugs with a Z-factor of 0.821-0.826. Then, a medicine food homology compound library was applied, and we found that three compounds were potential antiviral reagents. In summary, we have established a fast and efficient reverse genetic system of PDCoV, providing a powerful platform for the research of antiviral drugs.
Collapse
Affiliation(s)
- Yucan Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenxi Shi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jin Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yue Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaohui Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Shaopo Zu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Honglei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou 450046, China
| | - Hui Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou 450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| |
Collapse
|
429
|
Zhang J, Cruz-Cosme R, Zhang C, Liu D, Tang Q, Zhao RY. Endoplasmic reticulum-associated SARS-CoV-2 ORF3a elicits heightened cytopathic effects despite robust ER-associated degradation. mBio 2024; 15:e0303023. [PMID: 38078754 PMCID: PMC10790703 DOI: 10.1128/mbio.03030-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has tragically claimed millions of lives through coronavirus disease 2019 (COVID-19), and there remains a critical gap in our understanding of the precise molecular mechanisms responsible for the associated fatality. One key viral factor of interest is the SARS-CoV-2 ORF3a protein, which has been identified as a potent inducer of host cellular proinflammatory responses capable of triggering the catastrophic cytokine storm, a primary contributor to COVID-19-related deaths. Moreover, ORF3a, much like the spike protein, exhibits a propensity for frequent mutations, with certain variants linked to the severity of COVID-19. Our previous research unveiled two distinct types of ORF3a mutant proteins, categorized by their subcellular localizations, setting the stage for a comparative investigation into the functional and mechanistic disparities between these two types of ORF3a variants. Given the clinical significance and functional implications of the natural ORF3a mutations, the findings of this study promise to provide invaluable insights into the potential roles undertaken by these mutant ORF3a proteins in the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dongxiao Liu
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
| |
Collapse
|
430
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
431
|
Li Y, Shi F, Cao L, Zheng Q, Feng Y, Wang B, Huang Y. Identification of novel serological agents for porcine deltacoronavirus infection based on the immunogenic accessory protein NS6. ANIMAL DISEASES 2024; 4:3. [DOI: 10.1186/s44149-023-00109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2025] Open
Abstract
AbstractPorcine deltacoronavirus (PDCoV) is a swine enteropathogenic CoV that causes severe vomiting, diarrhea and dehydration in suckling piglets, leading to economic losses in the swine industry. There is a great need for a convenient method to detect circulating antibodies and help in accurate diagnosis and disease control. Previously, we demonstrated that a unique PDCoV accessory protein, NS6, is expressed during PDCoV infection in pigs and is incorporated into PDCoV virions; thus, we deduced that NS6 is likely an immunogenic target that can be used for the diagnosis of PDCoV infection. In this study, we first confirmed that NS6 is immunogenic in PDCoV-infected pigs by performing a serum western blot. Furthermore, we developed a novel NS6-based indirect enzyme-linked immunosorbent assay (iELISA) method and compared it to an established S1-based iELISA for the survey of anti-PDCoV IgG or IgA in pigs of different ages in China. The NS6-iELISA has high specificity for the detection of IgG antibodies and no cross-reactivity with other porcine enteric CoVs (transmissible gastroenteritis coronavirus, porcine epidemic diarrhea virus, or swine acute diarrhea syndrome coronavirus). This NS6 serology-based method has great sensitivity and good repeatability, making it a new and cost-saving option for the rapid diagnosis and immunosurveillance of PDCoV, which may also be important for the prevention and control of deltacoronavirus-related infection in pigs and other animals.
Collapse
|
432
|
Das D, Lin CW, Chuang HS. On-chip screening of SARS-CoV-2 cDNA by LAMP-integrated rotational diffusometry. Talanta 2024; 267:125253. [PMID: 37776805 DOI: 10.1016/j.talanta.2023.125253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
The unprecedented pandemic has raised the demand for prompt, precise, and large-scale virus detection techniques to control the transmission of contagious illnesses. In this study, a loop-mediated isothermal amplification (LAMP) based on-chip platform was developed to address this challenge using rotational diffusometry and functionalized Janus particles. A recombinant plasmid containing a cDNA sequence of the SARS-CoV-2 non-structural protein 2 (nsp2) gene was employed here as a proof-of-concept for COVID-19 detection. Specifically, designed primers and the functionalized Janus particles were simultaneously loaded on a microfluidic chip to perform the LAMP reaction on a hot plate. The optimal Janus particle concentrations for diffusometric analysis were thoroughly validated, and the performance of the on-chip LAMP reaction was assessed using thermal image analysis. Utilization of the highly sensitive rotational diffusometry achieved a limit of detection of 1 pg/μL in just 10 min with a sample volume of 20 μL. Our method delivered a tenfold higher sensitivity than the conventional method by utilizing only half of its usual required time. Overall, this study proposes a potential nucleic acid (NA) amplification device to aid the rapid diagnosis of various diseases by modifying the primers for different target genes.
Collapse
Affiliation(s)
- Dhrubajyoti Das
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung, 413, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
433
|
Zhang J, Hom K, Zhang C, Nasr M, Gerzanich V, Zhang Y, Tang Q, Xue F, Simard JM, Zhao RY. SARS-CoV-2 ORF3a Protein as a Therapeutic Target against COVID-19 and Long-Term Post-Infection Effects. Pathogens 2024; 13:75. [PMID: 38251382 PMCID: PMC10819734 DOI: 10.3390/pathogens13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has posed unparalleled challenges due to its rapid transmission, ability to mutate, high mortality and morbidity, and enduring health complications. Vaccines have exhibited effectiveness, but their efficacy diminishes over time while new variants continue to emerge. Antiviral medications offer a viable alternative, but their success has been inconsistent. Therefore, there remains an ongoing need to identify innovative antiviral drugs for treating COVID-19 and its post-infection complications. The ORF3a (open reading frame 3a) protein found in SARS-CoV-2, represents a promising target for antiviral treatment due to its multifaceted role in viral pathogenesis, cytokine storms, disease severity, and mortality. ORF3a contributes significantly to viral pathogenesis by facilitating viral assembly and release, essential processes in the viral life cycle, while also suppressing the body's antiviral responses, thus aiding viral replication. ORF3a also has been implicated in triggering excessive inflammation, characterized by NF-κB-mediated cytokine production, ultimately leading to apoptotic cell death and tissue damage in the lungs, kidneys, and the central nervous system. Additionally, ORF3a triggers the activation of the NLRP3 inflammasome, inciting a cytokine storm, which is a major contributor to the severity of the disease and subsequent mortality. As with the spike protein, ORF3a also undergoes mutations, and certain mutant variants correlate with heightened disease severity in COVID-19. These mutations may influence viral replication and host cellular inflammatory responses. While establishing a direct link between ORF3a and mortality is difficult, its involvement in promoting inflammation and exacerbating disease severity likely contributes to higher mortality rates in severe COVID-19 cases. This review offers a comprehensive and detailed exploration of ORF3a's potential as an innovative antiviral drug target. Additionally, we outline potential strategies for discovering and developing ORF3a inhibitor drugs to counteract its harmful effects, alleviate tissue damage, and reduce the severity of COVID-19 and its lingering complications.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.H.); (F.X.)
| | - Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Mohamed Nasr
- Drug Development and Clinical Sciences Branch, Division of AIDS, NIAID, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (V.G.); (J.M.S.)
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA;
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA;
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.H.); (F.X.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (V.G.); (J.M.S.)
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
- Department of Microbiology-Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
434
|
Opriessnig T, Gauger PC, Filippsen Favaro P, Rawal G, Magstadt DR, Digard P, Lee HM, Halbur PG. An experimental universal swine influenza a virus (IAV) vaccine candidate based on the M2 ectodomain (M2e) peptide does not provide protection against H1N1 IAV challenge in pigs. Vaccine 2024; 42:220-228. [PMID: 38087714 DOI: 10.1016/j.vaccine.2023.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 12/02/2023] [Indexed: 01/01/2024]
Abstract
Swine flu is a common disease problem in North American pig populations and swine influenza A viruses (IAV) are extremely diverse and the lack of cross protection between heterologous strains is impacting vaccine efficacy in the field. The objective of this study was to design and test a novel swine flu vaccine targeting the M2 ectodomain (M2e) of IAV, a highly conserved region within the IAV proteome. In brief, an M2e peptide was designed to match the predominant swine IAV M2 sequence based on global analysis of sequences from pigs and humans. The resulting sequence was used to synthesize the M2e peptide coupled to a carrier protein. The final vaccine concentration was 200 µg per dose, and a commercial, microemulsion-based aqueous adjuvant was added. Nine 3-week-old IAV negative piglets were randomly assigned to three groups and rooms including non-vaccinated pigs (NEG-CONTROLs) and vaccinated pigs using the intramuscular (M2e-IM) or the intranasal route (M2e-IN). Vaccinations were done at weaning and again at 2 weeks later. An in-house enzyme-linked immunosorbent assay (ELISA) was developed and validated to study the M2e IgG antibody response and demonstrated M2e-IM pigs had a higher systemic antibody response compared to M2e-IN pigs. Subsequently, an IAV challenge study was conducted. The results indicated that M2e-IM vaccinated pigs were not protected from H1N1 (US pandemic clade, global clade 1A.3.3.2) challenge despite having a strong humoral anti-M2e immune response. In conclusion, while the experimental IAV vaccine was able to induce anti-M2e antibodies, when challenged with H1N1, the vaccinated pigs were not protected, perhaps indicating that reactivity to the M2e antigen alone is not sufficient to reduce clinical signs, lesions or shedding associated with experimental IAV challenge.
Collapse
Affiliation(s)
- Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA; Vaccines and Diagnostics Department, Moredun Research Institute, Penicuik, Edinburgh, UK.
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | | | - Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Drew R Magstadt
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Paul Digard
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Hui-Min Lee
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Patrick G Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
435
|
Benfica LF, Brito LF, do Bem RD, Mulim HA, Glessner J, Braga LG, Gloria LS, Cyrillo JNSG, Bonilha SFM, Mercadante MEZ. Genome-wide association study between copy number variation and feeding behavior, feed efficiency, and growth traits in Nellore cattle. BMC Genomics 2024; 25:54. [PMID: 38212678 PMCID: PMC10785391 DOI: 10.1186/s12864-024-09976-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Feeding costs represent the largest expenditures in beef production. Therefore, the animal efficiency in converting feed in high-quality protein for human consumption plays a major role in the environmental impact of the beef industry and in the beef producers' profitability. In this context, breeding animals for improved feed efficiency through genomic selection has been considered as a strategic practice in modern breeding programs around the world. Copy number variation (CNV) is a less-studied source of genetic variation that can contribute to phenotypic variability in complex traits. In this context, this study aimed to: (1) identify CNV and CNV regions (CNVRs) in the genome of Nellore cattle (Bos taurus indicus); (2) assess potential associations between the identified CNVR and weaning weight (W210), body weight measured at the time of selection (WSel), average daily gain (ADG), dry matter intake (DMI), residual feed intake (RFI), time spent at the feed bunk (TF), and frequency of visits to the feed bunk (FF); and, (3) perform functional enrichment analyses of the significant CNVR identified for each of the traits evaluated. RESULTS A total of 3,161 CNVs and 561 CNVRs ranging from 4,973 bp to 3,215,394 bp were identified. The CNVRs covered up to 99,221,894 bp (3.99%) of the Nellore autosomal genome. Seventeen CNVR were significantly associated with dry matter intake and feeding frequency (number of daily visits to the feed bunk). The functional annotation of the associated CNVRs revealed important candidate genes related to metabolism that may be associated with the phenotypic expression of the evaluated traits. Furthermore, Gene Ontology (GO) analyses revealed 19 enrichment processes associated with FF. CONCLUSIONS A total of 3,161 CNVs and 561 CNVRs were identified and characterized in a Nellore cattle population. Various CNVRs were significantly associated with DMI and FF, indicating that CNVs play an important role in key biological pathways and in the phenotypic expression of feeding behavior and growth traits in Nellore cattle.
Collapse
Affiliation(s)
- Lorena F Benfica
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA.
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil.
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Ricardo D do Bem
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Joseph Glessner
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Larissa G Braga
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | - Leonardo S Gloria
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | | | | | | |
Collapse
|
436
|
Wang J, Lei B, Zhang W, Li L, Ji J, Liu M, Zhao K, Yuan W. Preparation of Monoclonal Antibodies against the Capsid Protein and Development of an Epitope-Blocking Enzyme-Linked Immunosorbent Assay for Detection of the Antibody against Porcine Circovirus 3. Animals (Basel) 2024; 14:235. [PMID: 38254404 PMCID: PMC10812811 DOI: 10.3390/ani14020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Porcine circovirus type 3 (PCV3) is endemic in swine worldwide and causes reproductive disorders, dermatitis and nephrotic syndrome, and multi-organ inflammation. Currently, there is a growing need for rapid and accurate diagnostic methods in disease monitoring. In this study, four monoclonal antibodies (mAbs) against PCV3 capsid proteins were prepared (mAbs 2F6, 2G8, 6E2, and 7E3). MAb 7E3, which had the highest binding affinity for the Cap protein, was chosen for further investigation. A novel B cell epitope 110DLDGAW115 was identified using mAb 7E3. An epitope-blocking (EB) enzyme-linked immunosorbent assay (ELISA) was successfully developed using horseradish-peroxidase-labeled mAb 7E3 to detect PCV3 antibodies in porcine sera. Moreover, the EB-ELISA showed no specific reaction with other porcine disease sera, and the cut-off value was defined as 35%. Compared with the commercial ELISA, the percentage agreement was 95.59%. Overall, we have developed a novel EB-ELISA method that accurately and conveniently detects PCV3 in serum, making it a valuable tool for the clinical detection of PCV3 infection.
Collapse
Affiliation(s)
- Junli Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Baishi Lei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Lijie Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Jiashuang Ji
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Mandi Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071000, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071000, China
- North China Research Center of Animal Epidemic Pathogen Biology, China Agriculture Ministry, Baoding 071000, China
| |
Collapse
|
437
|
Abdel-Basset M, Mohamed R, Alrashdi I, Sallam KM, Hameed IA. CNN-IKOA: convolutional neural network with improved Kepler optimization algorithm for image segmentation: experimental validation and numerical exploration. JOURNAL OF BIG DATA 2024; 11:13. [DOI: 10.1186/s40537-023-00858-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2025]
Abstract
AbstractChest diseases, especially COVID-19, have quickly spread throughout the world and caused many deaths. Finding a rapid and accurate diagnostic tool was indispensable to combating these diseases. Therefore, scientists have thought of combining chest X-ray (CXR) images with deep learning techniques to rapidly detect people infected with COVID-19 or any other chest disease. Image segmentation as a preprocessing step has an essential role in improving the performance of these deep learning techniques, as it could separate the most relevant features to better train these techniques. Therefore, several approaches were proposed to tackle the image segmentation problem accurately. Among these methods, the multilevel thresholding-based image segmentation methods won significant interest due to their simplicity, accuracy, and relatively low storage requirements. However, with increasing threshold levels, the traditional methods have failed to achieve accurate segmented features in a reasonable amount of time. Therefore, researchers have recently used metaheuristic algorithms to tackle this problem, but the existing algorithms still suffer from slow convergence speed and stagnation into local minima as the number of threshold levels increases. Therefore, this study presents an alternative image segmentation technique based on an enhanced version of the Kepler optimization algorithm (KOA), namely IKOA, to better segment the CXR images at small, medium, and high threshold levels. Ten CXR images are used to assess the performance of IKOA at ten threshold levels (T-5, T-7, T-8, T-10, T-12, T-15, T-18, T-20, T-25, and T-30). To observe its effectiveness, it is compared to several metaheuristic algorithms in terms of several performance indicators. The experimental outcomes disclose the superiority of IKOA over all the compared algorithms. Furthermore, the IKOA-based segmented CXR images at eight different threshold levels are used to train a newly proposed CNN model called CNN-IKOA to find out the effectiveness of the segmentation step. Five performance indicators, namely overall accuracy, precision, recall, F1-score, and specificity, are used to disclose the CNN-IKOA’s effectiveness. CNN-IKOA, according to the experimental outcomes, could achieve outstanding outcomes for the images segmented at T-12, where it could reach 94.88% for overall accuracy, 96.57% for specificity, 95.40% for precision, and 95.40% for recall.
Collapse
|
438
|
Colston JM, Chernyavskiy P, Gardner L, Nong M, Fang B, Houpt E, Swarup S, Badr H, Zaitchik B, Lakshmi V, Kosek M. The Planetary Child Health & Enterics Observatory (Plan-EO): a protocol for an interdisciplinary research initiative and web-based dashboard for mapping enteric infectious diseases and their risk factors and interventions in LMICs. RESEARCH SQUARE 2024:rs.3.rs-2640564. [PMID: 36993232 PMCID: PMC10055683 DOI: 10.21203/rs.3.rs-2640564/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Background Diarrhea remains a leading cause of childhood illness throughout the world that is increasing due to climate change and is caused by various species of ecologically sensitive pathogens. The emerging Planetary Health movement emphasizes the interdependence of human health with natural systems, and much of its focus has been on infectious diseases and their interactions with environmental and human processes. Meanwhile, the era of big data has engendered a public appetite for interactive web-based dashboards for infectious diseases. However, enteric infectious diseases have been largely overlooked by these developments. Methods The Planetary Child Health and Enterics Observatory (Plan-EO) is a new initiative that builds on existing partnerships between epidemiologists, climatologists, bioinformaticians, and hydrologists as well as investigators in numerous low- and middle-income countries. Its objective is to provide the research and stakeholder community with an evidence base for the geographical targeting of enteropathogen-specific child health interventions such as novel vaccines. The initiative will produce, curate, and disseminate spatial data products relating to the distribution of enteric pathogens and their environmental and sociodemographic determinants. Discussion As climate change accelerates there is an urgent need for etiology-specific estimates of diarrheal disease burden at high spatiotemporal resolution. Plan-EO aims to address key challenges and knowledge gaps by making rigorously obtained, generalizable disease burden estimates freely available and accessible to the research and stakeholder communities. Pre-processed environmental and EO-derived spatial data products will be housed, continually updated, and made publicly available to the research and stakeholder communities both within the webpage itself and for download. These inputs can then be used to identify and target priority populations living in transmission hotspots and for decision-making, scenario-planning, and disease burden projection. Study registration PROSPERO protocol #CRD42023384709.
Collapse
Affiliation(s)
| | | | | | - Malena Nong
- University of Virginia College of Arts & Sciences
| | | | - Eric Houpt
- University of Virginia School of Medicine
| | | | | | | | | | | |
Collapse
|
439
|
Guo Z, Lu Q, Jin Q, Li P, Xing G, Zhang G. Phylogenetically evolutionary analysis provides insights into the genetic diversity and adaptive evolution of porcine deltacoronavirus. BMC Vet Res 2024; 20:22. [PMID: 38200538 PMCID: PMC10782762 DOI: 10.1186/s12917-023-03863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Porcine deltacoronavirus (PDCoV) is one of the emerging swine enteric coronaviruses (SECoVs), which has been widely prevalent in the North America and Asia. In addition to causing severe diarrhea in piglets, PDCoV also shows the potential to infect diverse host species, including calves, chickens, turkey poults, and humans. However, the clinical pathogenicity and genetic evolution of PDCoV is still not fully understood. RESULTS Here, we recorded an outbreak of a novel recombinant PDCoV strain (CHN-HeN06-2022) in a large nursery fattening pig farm. Genomic analysis showed that the CHN-HeN06-2022 strain shared 98.3-98.7% sequence identities with the Chinese and American reference strains. To clarify the evolutionary relationships, phylogenetic analysis was performed using the PDCoV genome sequences available in the GenBank database. Based on genetic distance and geographical distribution, the phylogenetic tree clearly showed that all the PDCoV sequences could be divided into lineage 1 and lineage 2, which were further classified into sublineage 1.1 (Chinese strains), 1.2 (the North American strains), 2.1 (the Southeast Asian strains), and 2.2 (Chinese strains). Corresponding to the evolutionary tree, we found that, compared to lineage 1, lineage 2 strains usually contain a continuous 6-nt deletion in Nsp2 and a 9-nt deletion in Nsp3, respectively. Furthermore, recombination analysis suggested that the CHN-HeN06-2022 occurred segments exchange crossed Nsp2 and Nsp3 region between sublineage 1.1 and sublineage 2.1. Combined with previously reported recombinant strains, the highest recombination frequency occurred in Nsp2, Nsp3, and S gene. Additionally, we identified a total of 14 amino acid sites under positive selection in spike protein, most of which are located in the regions related with the viral attachment, receptor binding, and membrane fusion. CONCLUSIONS Taken together, our studies provide novel insights into the genetic diversity and adaptive evolution of PDCoV. It would be helpful to the development of vaccine and potential antiviral agent.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Qingxia Lu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Qianyue Jin
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Peng Li
- Vet Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- School of Advanced Agricultural Sciences, Peking University, Beijing, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
440
|
Colston JM, Chernyavskiy P, Gardner L, Nong M, Fang B, Houpt E, Swarup S, Badr H, Zaitchik B, Lakshmi V, Kosek M. The Planetary Child Health & Enterics Observatory (Plan-EO): a protocol for an interdisciplinary research initiative and web-based dashboard for mapping enteric infectious diseases and their risk factors and interventions in LMICs. RESEARCH SQUARE 2024:rs.3.rs-2640564. [PMID: 36993232 PMCID: PMC10055683 DOI: 10.21203/rs.3.rs-2640564/v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Diarrhea remains a leading cause of childhood illness throughout the world that is increasing due to climate change and is caused by various species of ecologically sensitive pathogens. The emerging Planetary Health movement emphasizes the interdependence of human health with natural systems, and much of its focus has been on infectious diseases and their interactions with environmental and human processes. Meanwhile, the era of big data has engendered a public appetite for interactive web-based dashboards for infectious diseases. However, enteric infectious diseases have been largely overlooked by these developments. Methods The Planetary Child Health and Enterics Observatory (Plan-EO) is a new initiative that builds on existing partnerships between epidemiologists, climatologists, bioinformaticians, and hydrologists as well as investigators in numerous low- and middle-income countries. Its objective is to provide the research and stakeholder community with an evidence base for the geographical targeting of enteropathogen-specific child health interventions such as novel vaccines. The initiative will produce, curate, and disseminate spatial data products relating to the distribution of enteric pathogens and their environmental and sociodemographic determinants. Discussion As climate change accelerates there is an urgent need for etiology-specific estimates of diarrheal disease burden at high spatiotemporal resolution. Plan-EO aims to address key challenges and knowledge gaps by making rigorously obtained, generalizable disease burden estimates freely available and accessible to the research and stakeholder communities. Pre-processed environmental and EO-derived spatial data products will be housed, continually updated, and made publicly available to the research and stakeholder communities both within the webpage itself and for download. These inputs can then be used to identify and target priority populations living in transmission hotspots and for decision-making, scenario-planning, and disease burden projection. Study registration PROSPERO protocol #CRD42023384709.
Collapse
Affiliation(s)
| | | | | | - Malena Nong
- University of Virginia College of Arts & Sciences
| | | | - Eric Houpt
- University of Virginia School of Medicine
| | | | | | | | | | | |
Collapse
|
441
|
Kampf G. Does COVID-19 Vaccination Protect Contact Persons? A Systematic Review. HYGIENE 2024; 4:23-48. [DOI: 10.3390/hygiene4010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The protective effect of COVID-19 vaccination for contact persons is controversial. Therefore, the aim of this review was to determine whether COVID-19 vaccination provides significant protection for them. A PubMed search was carried out using the terms “unvaccinated vaccinated covid” in combination with “viral load” and “transmission”. Studies were included if they reported original comparative data on the SARS-CoV-2 viral load, duration of SARS-CoV-2 detection, or SARS-CoV-2 transmission rates. A total of 332 articles were identified, of which 68 were included and analyzed. The differences in the viral load were equivocal in 57% of the 35 studies, significantly lower in the vaccinated in 11 studies and in the unvaccinated in 3 studies. The infectious virus levels were significantly lower in the vaccinated in two out of six studies. Virus clearance was significantly faster in vaccinated subjects in two of eight studies (detection of viral RNA) and two of four studies (detection of infectious virus). The secondary attack rates were significantly lower in vaccinated index cases in 6 of 15 studies. The vaccination status of contacts was described in two of the six studies and was 31.8% and 39.9% lower in households with an unvaccinated index case. The inconsistent and variable differences in the viral load, viral clearance and secondary attack rates between vaccinated and unvaccinated individuals, especially during the omicron predominance, suggests that COVID-19 vaccination is unlikely to prevent a relevant proportion of transmissions to contact persons, taking into account the relevance of the immunological status of the contact population (vaccination rates and previous infection).
Collapse
Affiliation(s)
- Günter Kampf
- University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany
| |
Collapse
|
442
|
Huang H, Wu B, Lin W. Characterising respiratory infections among hospitalised children during the COVID-19 pandemic in southeastern China: a cross-sectional study of pathogens and clinical association. BMJ Open 2024; 14:e076824. [PMID: 38199623 PMCID: PMC10807008 DOI: 10.1136/bmjopen-2023-076824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVE Children with acute respiratory tract infections (ARTIs) pose significantly burden on healthcare facilities due to high hospitalisation rates and mortality. However, limited epidemiological and clinical characteristics data on ARTIs in southeastern China during the COVID-19 pandemic exists. DESIGN Cross-sectional. SETTING Tertiary hospital associated with the First Affiliated Hospital, Fujian Medical University, China. PARTICIPANTS 1007 hospitalised children diagnosed with ARTIs, aged 30 days to 15 years, were enrolled in this study from 1 January 2020 to 31 December 2021. OUTCOME MEASURE The primary outcomes are the rate of pathogen infections in children with ARTIs. Secondary outcomes are the description of risk factors associated with ARTIs in children. RESULTS Of the 1007 enrolled children, 28.2%, 42.2%, 21.8% and 7.7% were diagnosed with upper respiratory tract infection, bronchopneumonia, bronchitis and pneumonia, respectively. Mycoplasma pneumoniae (MP) was the most prevalent pathogen (31.9%), followed by influenza B virus (IFVB; 29.1%) and influenza A virus (IFVA; 19.1%). The study found that children under 1 year old (older than 30 days: ORIFVB=12.50; ORMP=8.53), children aged 1-3 years (ORMP=1.62), the winter season (ORIFVA=1.36), the time from symptoms onset to hospitalisation (ORMP=1.10) and increased precipitation (ORLP=1.01) were high-risk factors for ARTIs. CONCLUSION This investigation offers significant insights into the prevalence and distribution of common pathogens among children experiencing ARTIs in the context of the COVID-19 pandemic. The discernment of high-risk factors linked to these pathogens enhances our understanding of the epidemiological characteristics of ARTIs in children.
Collapse
Affiliation(s)
- Huanhuan Huang
- Department of Pediatrics, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Bin Wu
- Department of Pediatrics, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wei Lin
- Department of Pediatrics, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
443
|
Morgan G, Pinchbeck G, Taymaz E, Chattaway MA, Schmidt V, Williams N. An investigation of the presence and antimicrobial susceptibility of Enterobacteriaceae in raw and cooked kibble diets for dogs in the United Kingdom. Front Microbiol 2024; 14:1301841. [PMID: 38260907 PMCID: PMC10800874 DOI: 10.3389/fmicb.2023.1301841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Raw meat diets (RMD) for dogs are an increasingly popular alternative pet food choice, however studies worldwide have demonstrated them to be contaminated with zoonotic and antimicrobial resistant (AMR) bacteria, including bacteria resistant to critically important antibiotics. Despite this, few data exist surrounding the presence of these bacteria in RMD in the United Kingdom. The present study aimed to identify the most commonly selected RMD and non-raw diets (NRMD) by United Kingdom dog owners. Additionally, it investigated the presence of AMR-Enterobacteriaceae in samples of pre-prepared RMD and cooked commercial kibble dog foods. An online survey investigating diet preferences of United Kingdom dog owners was open for 6 weeks between February-March 2020. From this, the top 10 brands of pre-prepared raw and cooked kibble diets were ascertained and 134 samples purchased (110 RMD, 24 kibble) and subjected to microbiological testing. Bacterial enumeration of E. coli and other Enterobacteriaceae was undertaken, and the presence of Salmonella spp. and AMR-E. coli within samples determined. Whole genome sequencing was undertaken on Salmonella spp. and third-generation cephalosporin-resistant 3GCR-E. coli isolates. Pre-prepared RMD was most commonly selected by dog owners who fed RMD, and cooked commercial complete dry food was most frequently fed by owners who fed NRMD. Damaged and leaking packaging was observed in samples of RMD, alongside variability in information provided surrounding product traceability. Counts of E. coli and other Enterobacteriaceae exceeding >5,000 CFU/g were identified in samples of RMD. AMR-, extended-spectrum beta-lactamase (ESBL)-producing and 3GCR-E. coli was isolated from 39, 14 and 16% of RMD samples, respectively. Multiple antimicrobial resistance genes were identified in 3GCR-E. coli isolates. Of the ESBL encoding genes, blaCTX-M-15 was most commonly identified. S. enterica was isolated from 5% of RMD samples. No Enterobacteriaceae were isolated from any of the cooked kibble samples. The present study suggests that pre-prepared RMD available for dogs in the United Kingdom can be contaminated with zoonotic and AMR-Enterobacteriaceae. RMDs, therefore, are potentially an important One Health concern. Veterinary and medical professionals, pet food retailers and pet owners should be aware of these risks; and stringent hygiene measures should be practiced if owners choose to feed RMD.
Collapse
Affiliation(s)
- Genever Morgan
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | - Gina Pinchbeck
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | - Eda Taymaz
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | - Marie Anne Chattaway
- Gastrointestinal Bacteria Reference Unit, United Kingdom Health Security Agency, London, United Kingdom
| | - Vanessa Schmidt
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | - Nicola Williams
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| |
Collapse
|
444
|
Guo C, Chen Q, Fan G, Sun Y, Nie J, Shen Z, Meng Z, Zhou Y, Li S, Wang S, Ma J, Sun Q, Wu L. gcPathogen: a comprehensive genomic resource of human pathogens for public health. Nucleic Acids Res 2024; 52:D714-D723. [PMID: 37850635 PMCID: PMC10767814 DOI: 10.1093/nar/gkad875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Here, we present the manually curated Global Catalogue of Pathogens (gcPathogen), an extensive genomic resource designed to facilitate rapid and accurate pathogen analysis, epidemiological exploration and monitoring of antibiotic resistance features and virulence factors. The catalogue seamlessly integrates and analyzes genomic data and associated metadata for human pathogens isolated from infected patients, animal hosts, food and the environment. The pathogen list is supported by evidence from medical or government pathogenic lists and publications. The current version of gcPathogen boasts an impressive collection of 1 164 974 assemblies comprising 986 044 strains from 497 bacterial taxa, 4794 assemblies encompassing 4319 strains from 265 fungal taxa, 89 965 assemblies featuring 13 687 strains from 222 viral taxa, and 646 assemblies including 387 strains from 159 parasitic taxa. Through this database, researchers gain access to a comprehensive 'one-stop shop' that facilitates global, long-term public health surveillance while enabling in-depth analysis of genomes, sequence types, antibiotic resistance genes, virulence factors and mobile genetic elements across different countries, diseases and hosts. To access and explore the data and statistics, an interactive web interface has been developed, which can be accessed at https://nmdc.cn/gcpathogen/. This user-friendly platform allows seamless querying and exploration of the extensive information housed within the gcPathogen database.
Collapse
Affiliation(s)
- Chongye Guo
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Qi Chen
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Guomei Fan
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Yan Sun
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Jingyi Nie
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Zhihong Shen
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Meng
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuanchun Zhou
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Shiwen Li
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Shuai Wang
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Juncai Ma
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinglan Sun
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Linhuan Wu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
445
|
Li J, Zhang K, Lin G, Li J. CRISPR-Cas system: A promising tool for rapid detection of SARS-CoV-2 variants. J Med Virol 2024; 96:e29356. [PMID: 38180237 DOI: 10.1002/jmv.29356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
COVID-19, caused by SARS-CoV-2, remains a global health crisis. The emergence of multiple variants with enhanced characteristics necessitates their detection and monitoring. Genome sequencing, the gold standard, faces implementation challenges due to complexity, cost, and limited throughput. The CRISPR-Cas system offers promising potential for rapid variant detection, with advantages such as speed, sensitivity, specificity, and programmability. This review provides an in-depth examination of the applications of CRISPR-Cas in mutation detection specifically for SARS-CoV-2. It begins by introducing SARS-CoV-2 and existing variant detection platforms. The principles of the CRISPR-Cas system are then clarified, followed by an exploration of three CRISPR-Cas-based mutation detection platforms, which are evaluated from different perspectives. The review discusses strategies for mutation site selection and the utilization of CRISPR-Cas, offering valuable insights for the development of mutation detection methods. Furthermore, a critical analysis of the clinical applications, advantages, disadvantages, challenges, and prospects of the CRISPR-Cas system is provided.
Collapse
Affiliation(s)
- Jing Li
- National Center for Clinical Laboratories, Beijing Hospital/National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Kuo Zhang
- National Center for Clinical Laboratories, Beijing Hospital/National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Guigao Lin
- National Center for Clinical Laboratories, Beijing Hospital/National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital/National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| |
Collapse
|
446
|
Arnold M, Echtermann T, Nathues H. Infectious Enteric Diseasses in Pigs. PRODUCTION DISEASES IN FARM ANIMALS 2024:223-269. [DOI: 10.1007/978-3-031-51788-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
447
|
Lv Y, Shao Y, Jiang C, Wang Y, Li Y, Li Y, Duan X, Dong S, Lin J, Zhang H, Shan H. Quantitative proteomics based on TMT revealed the response of PK15 cells infected PEDV wild strain. Microb Pathog 2024; 186:106503. [PMID: 38142905 DOI: 10.1016/j.micpath.2023.106503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Porcine epidemic diarrhea (PED), caused by porcine epidemic diarrhea virus (PEDV), is an acute and highly contagious enteric disease with a high mortality rate in suckling piglets. Identification of proteins associated with PEDV infection may provide insights into the pathogenesis of this viral disease. In this study, we employed tandem mass tag (TMT) quantitative protein analysis to investigate proteomic changes in PK15 cells following PEDV infection, and differential protein expression profiles were obtained at 0 h, 24 h, and 48 h post-infection. Overall, a total of 6330 proteins were identified. Applying criteria for fold change >1.5 < 0.67 and p-values <0.05 resulted in the identification of 59 up-regulated proteins and 103 down-regulated proteins that exhibited significant alterations in the H24 group compared to the H0 group. The H48 group demonstrated significant upregulation of 110 proteins and downregulation of 144 proteins compared to the H0 group; additionally, there were also 10 upregulated and 30 downregulated proteins in the H48 group when compared to the H24 group. These differentially expressed proteins (DEPs) were involved in immune response regulation, signal transduction, lipid transport and metabolism processes as well as cell apoptosis pathways. Based on these DEPs, we propose that PEDV may disrupt signal transduction pathways along with lipid transport and metabolism processes leading to maximal viral replication, it may also trigger inflammatory cascades accordingly. These findings could provide valuable information for elucidating specific pathogenesis related to PEDV infection while contributing towards developing new antiviral strategies.
Collapse
Affiliation(s)
- Yuting Lv
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yu Shao
- Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chengyuan Jiang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yongming Wang
- Shandong Huahong Biological Engineering Co., LTD, Binzhou, Shandong, China
| | - Yingguang Li
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yan Li
- Qingdao Animal Disease Prevention and Control Center, Qingdao, Shandong, China
| | - Xiaoxiao Duan
- Qingdao Animal Disease Prevention and Control Center, Qingdao, Shandong, China
| | - Shaoming Dong
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiaxu Lin
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hongliang Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China.
| | - Hu Shan
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
448
|
Lu 卢 Z泽, Zhao 赵 S生, Shu 束 H华, Gong 巩 LY龙. Epidemic threshold influenced by non-pharmaceutical interventions in residential university environments. CHINESE PHYSICS B 2024; 33:028707. [DOI: 10.1088/1674-1056/ace2b0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The control of highly contagious disease spreading in campuses is a critical challenge. In residential universities, students attend classes according to a curriculum schedule, and mainly pack into classrooms, dining halls and dorms. They move from one place to another. To simulate such environments, we propose an agent-based susceptible–infected–recovered model with time-varying heterogeneous contact networks. In close environments, maintaining physical distancing is the most widely recommended and encouraged non-pharmaceutical intervention. It can be easily realized by using larger classrooms, adopting staggered dining hours, decreasing the number of students per dorm and so on. Their real-world influence remains uncertain. With numerical simulations, we obtain epidemic thresholds. The effect of such countermeasures on reducing the number of disease cases is also quantitatively evaluated.
Collapse
|
449
|
Kampf G. Does the COVID-19 Vaccination Reduce the Risk to Transmit SARS-CoV-2 to Others? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1457:247-264. [PMID: 39283431 DOI: 10.1007/978-3-031-61939-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
It has been assumed that the COVID-19 vaccination reduces the risk of transmission to others. Results during the delta predominance show that the viral load in the vaccinated population is not consistently lower compared to the unvaccinated, and during the omicron predominance, the viral load was even somewhat higher. Levels of infectious SARS-CoV-2 were partly lower in the vaccinated population. Viral loads were mostly lower in re-infections compared to breakthrough infections. Viral clearance including the detection of infectious virus has mostly been described to be faster in the vaccinated population suggesting a shorter duration as a possible source for transmission. The epidemiological relevance of this finding remains uncertain. Approximately half of the transmission studies found lower secondary attack rates from the fully vaccinated population, but the results are probably best explained by the vaccination status of the contact population. Public health data from the UK show that the number of COVID-19 cases is higher among the fully vaccinated and boosted population who might be possible sources, in contrast to lower case numbers within the first three months among the vaccinated obtained in phase 3 trials on symptomatic cases. Overall, there is no convincing evidence that the COVID-19 vaccination significantly reduces the risk to transmit SARS-CoV-2 to others.
Collapse
Affiliation(s)
- Günter Kampf
- University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, 17475, Greifswald, Germany.
| |
Collapse
|
450
|
Khobragade DS, Daf G, Khobragade S, Kopare T, Gujarkar P, Potbhare M. A comprehensive review on evolution of corona virus and its implications. AIP CONFERENCE PROCEEDINGS 2024; 3188:100030. [DOI: 10.1063/5.0240695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|