401
|
Abstract
Mutations that drive uncontrolled cell-cycle progression are requisite events in tumorigenesis. But evolution has installed in the proliferative programmes of mammalian cells a variety of innate tumour-suppressive mechanisms that trigger apoptosis or senescence, should proliferation become aberrant. These contingent processes rely on a series of sensors and transducers that act in a coordinated network to target the machinery responsible for apoptosis and cell-cycle arrest at different points. Although oncogenic mutations that disable such networks can have profound and varied effects on tumour evolution, they may leave intact latent tumour-suppressive potential that can be harnessed therapeutically.
Collapse
Affiliation(s)
- Scott W Lowe
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA.
| | | | | |
Collapse
|
402
|
Pelengaris S, Abouna S, Cheung L, Ifandi V, Zervou S, Khan M. Brief inactivation of c-Myc is not sufficient for sustained regression of c-Myc-induced tumours of pancreatic islets and skin epidermis. BMC Biol 2004; 2:26. [PMID: 15613240 PMCID: PMC544575 DOI: 10.1186/1741-7007-2-26] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 12/21/2004] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tumour regression observed in many conditional mouse models following oncogene inactivation provides the impetus to develop, and a platform to preclinically evaluate, novel therapeutics to inactivate specific oncogenes. Inactivating single oncogenes, such as c-Myc, can reverse even advanced tumours. Intriguingly, transient c-Myc inactivation proved sufficient for sustained osteosarcoma regression; the resulting osteocyte differentiation potentially explaining loss of c-Myc's oncogenic properties. But would this apply to other tumours? RESULTS We show that brief inactivation of c-Myc does not sustain tumour regression in two distinct tissue types; tumour cells in pancreatic islets and skin epidermis continue to avoid apoptosis after c-Myc reactivation, by virtue of Bcl-xL over-expression or a favourable microenvironment, respectively. Moreover, tumours progress despite reacquiring a differentiated phenotype and partial loss of vasculature during c-Myc inactivation. Interestingly, reactivating c-Myc in beta-cell tumours appears to result not only in further growth of the tumour, but also re-expansion of the accompanying angiogenesis and more pronounced beta-cell invasion (adenocarcinoma). CONCLUSIONS Given that transient c-Myc inactivation could under some circumstances produce sustained tumour regression, the possible application of this potentially less toxic strategy in treating other tumours has been suggested. We show that brief inactivation of c-Myc fails to sustain tumour regression in two distinct models of tumourigenesis: pancreatic islets and skin epidermis. These findings challenge the potential for cancer therapies aimed at transient oncogene inactivation, at least under those circumstances where tumour cell differentiation and alteration of epigenetic context fail to reinstate apoptosis. Together, these results suggest that treatment schedules will need to be informed by knowledge of the molecular basis and environmental context of any given cancer.
Collapse
Affiliation(s)
- Stella Pelengaris
- Biomedical Research Institute, Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Sylvie Abouna
- Biomedical Research Institute, Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Linda Cheung
- Biomedical Research Institute, Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Vasiliki Ifandi
- Biomedical Research Institute, Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Sevasti Zervou
- Biomedical Research Institute, Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Michael Khan
- Biomedical Research Institute, Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
403
|
Wang YH, Liu S, Zhang G, Zhou CQ, Zhu HX, Zhou XB, Quan LP, Bai JF, Xu NZ. Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo. Breast Cancer Res 2004; 7:R220-8. [PMID: 15743499 PMCID: PMC1064129 DOI: 10.1186/bcr975] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 09/26/2004] [Accepted: 11/24/2004] [Indexed: 12/23/2022] Open
Abstract
Introduction Breast cancer is the leading cause of cancer death in women worldwide. Elevated expression of c-Myc is a frequent genetic abnormality seen in this malignancy. For a better understanding of its role in maintaining the malignant phenotype, we used RNA interference (RNAi) directed against c-Myc in our study. RNAi provides a new, reliable method to investigate gene function and has the potential for gene therapy. The aim of the study was to examine the anti-tumor effects elicited by a decrease in the protein level of c-Myc by RNAi and its possible mechanism of effects in MCF-7 cells. Method A plasmid-based polymerase III promoter system was used to deliver and express short interfering RNA (siRNA) targeting c-myc to reduce its expression in MCF-7 cells. Western blot analysis was used to measure the protein level of c-Myc. We assessed the effects of c-Myc silencing on tumor growth by a growth curve, by soft agar assay and by nude mice experiments in vivo. Standard fluorescence-activated cell sorter analysis and TdT-mediated dUTP nick end labelling assay were used to determine apoptosis of the cells. Results Our data showed that plasmids expressing siRNA against c-myc markedly and durably reduced its expression in MCF-7 cells by up to 80%, decreased the growth rate of MCF-7 cells, inhibited colony formation in soft agar and significantly reduced tumor growth in nude mice. We also found that depletion of c-Myc in this manner promoted apoptosis of MCF-7 cells upon serum withdrawal. Conclusion c-Myc has a pivotal function in the development of breast cancer. Our data show that decreasing the c-Myc protein level in MCF-7 cells by RNAi could significantly inhibit tumor growth both in vitro and in vivo, and imply the therapeutic potential of RNAi on the treatment of breast cancer by targeting overexpression oncogenes such as c-myc, and c-myc might be a potential therapeutic target for human breast cancer.
Collapse
Affiliation(s)
- Yi-hua Wang
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shuang Liu
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Guo Zhang
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Cui-qi Zhou
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hong-xia Zhu
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiao-bo Zhou
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Lan-ping Quan
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jin-feng Bai
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ning-zhi Xu
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
404
|
Brun T, Franklin I, St-Onge L, Biason-Lauber A, Schoenle EJ, Wollheim CB, Gauthier BR. The diabetes-linked transcription factor PAX4 promotes {beta}-cell proliferation and survival in rat and human islets. ACTA ACUST UNITED AC 2004; 167:1123-35. [PMID: 15596543 PMCID: PMC2172618 DOI: 10.1083/jcb.200405148] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanism by which the β-cell transcription factor Pax4 influences cell function/mass was studied in rat and human islets of Langerhans. Pax4 transcripts were detected in adult rat islets, and levels were induced by the mitogens activin A and betacellulin. Wortmannin suppressed betacellulin-induced Pax4 expression, implicating the phosphatidylinositol 3-kinase signaling pathway. Adenoviral overexpression of Pax4 caused a 3.5-fold increase in β-cell proliferation with a concomitant 1.9-, 4-, and 5-fold increase in Bcl-xL (antiapoptotic), c-myc, and Id2 mRNA levels, respectively. Accordingly, Pax4 transactivated the Bcl-xL and c-myc promoters, whereas its diabetes-linked mutant was less efficient. Bcl-xL activity resulted in altered mitochondrial calcium levels and ATP production, explaining impaired glucose-induced insulin secretion in transduced islets. Infection of human islets with an inducible adenoviral Pax4 construct caused proliferation and protection against cytokine-evoked apoptosis, whereas the mutant was less effective. We propose that Pax4 is implicated in β-cell plasticity through the activation of c-myc and potentially protected from apoptosis through Bcl-xL gene expression.
Collapse
Affiliation(s)
- Thierry Brun
- Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
405
|
Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, Pasche AC, Knabenhans C, Macdonald HR, Trumpp A. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 2004; 18:2747-63. [PMID: 15545632 PMCID: PMC528895 DOI: 10.1101/gad.313104] [Citation(s) in RCA: 605] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The activity of adult stem cells is essential to replenish mature cells constantly lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. Here, we provide genetic evidence for an unexpected function of the c-Myc protein in the homeostasis of hematopoietic stem cells (HSCs). Conditional elimination of c-Myc activity in the bone marrow (BM) results in severe cytopenia and accumulation of HSCs in situ. Mutant HSCs self-renew and accumulate due to their failure to initiate normal stem cell differentiation. Impaired differentiation of c-Myc-deficient HSCs is linked to their localization in the differentiation preventative BM niche environment, and correlates with up-regulation of N-cadherin and a number of adhesion receptors, suggesting that release of HSCs from the stem cell niche requires c-Myc activity. Accordingly, enforced c-Myc expression in HSCs represses N-cadherin and integrins leading to loss of self-renewal activity at the expense of differentiation. Endogenous c-Myc is differentially expressed and induced upon differentiation of long-term HSCs. Collectively, our data indicate that c-Myc controls the balance between stem cell self-renewal and differentiation, presumably by regulating the interaction between HSCs and their niche.
Collapse
Affiliation(s)
- Anne Wilson
- Genetics and Stem Cell Laboratory, Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Yang HW, Kutok JL, Lee NH, Piao HY, Fletcher CDM, Kanki JP, Look AT. Targeted expression of human MYCN selectively causes pancreatic neuroendocrine tumors in transgenic zebrafish. Cancer Res 2004; 64:7256-62. [PMID: 15492244 DOI: 10.1158/0008-5472.can-04-0931] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The zebrafish model organism has been used extensively for studies of genetic pathways in development, indicating its potential applicability to cancer. Here we show that targeted expression of MYCN in cells of the pancreatic islet induces neuroendocrine carcinoma. Four transgenic fish developed abdominal tumors between 4 and 6 months of age, and histologic analysis revealed lobulated arrangements of neoplastic cells with expression of the MYCN transgene. The tumors also expressed insulin mRNA, and pancreatic exocrine cells and ducts were identified within the neoplasms, indicating a pancreatic origin for the tumor. Transmission electron microscopy revealed cytoplasmic, endocrine-dense core granules, analogous to those found in human neuroendocrine tumors. Our studies establish a zebrafish transgenic model of pancreatic neuroendocrine carcinoma, setting the stage to evaluate molecular pathways downstream of MYCN in this vertebrate forward genetic model system.
Collapse
Affiliation(s)
- Hong Wei Yang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
407
|
Boxer RB, Jang JW, Sintasath L, Chodosh LA. Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 2004; 6:577-86. [PMID: 15607962 DOI: 10.1016/j.ccr.2004.10.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 09/03/2004] [Accepted: 10/05/2004] [Indexed: 11/15/2022]
Abstract
Recent studies of oncogene dependence in conditional transgenic mice have suggested the exciting possibility that transient or prolonged MYC inactivation may be sufficient for sustained reversal of the tumorigenic process. In contrast, we report here that following oncogene downregulation, the majority of c-MYC-induced mammary adenocarcinomas grow in the absence of MYC overexpression. In addition, residual neoplastic cells persist from virtually all tumors that do regress to a nonpalpable state and these residual cells rapidly recover their malignant properties following MYC reactivation or spontaneously recur in a MYC-independent manner. Thus, MYC-induced mammary tumor cells subjected to either brief or prolonged MYC inactivation remain exquisitely sensitive to its oncogenic effects and characteristically progress to a state in which growth is MYC-independent.
Collapse
Affiliation(s)
- Robert B Boxer
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
408
|
Abstract
Tumors induced in conditional oncomice can show remarkable different responses to subsequent oncogene deprivation. Complete sustained regression, concomitant with massive differentiation and/or apoptosis, and partial regression are both observed. In the latter case, tumor growth either resumes without being dependent any longer on the oncogene, or requires reactivation of the oncogene in cells that have become dormant. These models reflect many of the features we also witness in human cancer and can therefore assist us in understanding the underlying mechanisms and in designing more effective treatment protocols.
Collapse
Affiliation(s)
- Jos Jonkers
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
409
|
Heiser D, Labi V, Erlacher M, Villunger A. The Bcl-2 protein family and its role in the development of neoplastic disease. Exp Gerontol 2004; 39:1125-35. [PMID: 15288687 DOI: 10.1016/j.exger.2004.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 04/28/2004] [Accepted: 04/30/2004] [Indexed: 01/09/2023]
Abstract
Programmed cell death is the physiological process responsible for shaping organs during embryogenesis, maintaining tissue homeostasis and allowing controlled deletion of potentially harmful cells within the adult organism. The genetics of apoptosis are well conserved in all metazoans and although the evolution of humans and worms separated more than 600 million years ago, basic signaling concepts in apoptosis are highly related in both species. More crucial to humans than worms is the fact that abnormalities in cell death control can contribute to the development of cancer. While C.elegans can easily survive with additional somatic cells that should normally be deleted during development humans may suffer pathological consequences, ranging from tumorigenesis to autoimmunity, as a result of mutations in cell death regulatory genes. Despite the high degree of evolutionary conservation in cell death control, apoptosis signaling in mammals is much more complex than in C.elegans. In mammalian cells, programmed cell death can be induced either by ligand-mediated activation of certain members of the tumor necrosis factor receptor family--so-called 'death receptors'--such as Fas (CD95/Apo-1) and TRAIL or it can be induced in a cell autonomous manner in response to certain stress signals by pro-apoptotic members of the Bcl-2 family. In this review, we focus on general concepts of how the Bcl-2 protein family regulates cell death and how deregulation of this 'intrinsic' apoptotic signaling pathway impinges on the pathogenesis of malignant disease, the major cause of death in the aging population.
Collapse
Affiliation(s)
- Dietmar Heiser
- Institute of Pathophysiology, University of Innsbruck Medical School, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
410
|
Zapata JM, Krajewska M, Morse HC, Choi Y, Reed JC. TNF receptor-associated factor (TRAF) domain and Bcl-2 cooperate to induce small B cell lymphoma/chronic lymphocytic leukemia in transgenic mice. Proc Natl Acad Sci U S A 2004; 101:16600-5. [PMID: 15545599 PMCID: PMC534512 DOI: 10.1073/pnas.0407541101] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Indexed: 11/18/2022] Open
Abstract
Transgenic mice overexpressing in B lymphocytes either Bcl-2 or a TNF receptor-associated factor (TRAF)2 mutant lacking the N-terminal RING and zinc finger domains located at the N terminus of the molecule (TRAF2DN), which mimics TRAF1, developed lymphadenopathy and splenomegaly due to polyclonal B cell expansion. Remarkably, TRAF2DN/Bcl-2 double-transgenic mice contained B cell populations similar to those observed in TRAF2DN mice. However, over time, they developed severe splenomegaly and lymphadenopathy, and most animals also developed leukemia, pleural effusion, and, in some cases, ascites associated with monoclonal and oligoclonal B cell neoplasms. The life span of TRAF2DN/Bcl-2 mice was markedly reduced compared with Bcl-2 and TRAF2DN single-transgenics or wild-type littermates. The expanded B cell population of TRAF2DN/Bcl-2 double-transgenic mice was primarily comprised of small/medium-size noncycling B220(M)/IgM(H)/IgD(L)/CD21(L)/CD23(NULL)/CD11b(+)/CD5+ cells that were Bcl-6-negative, consistent with a B-1 phenotype. The cells also expressed high levels of CD54 and other adhesion molecules. In vitro, these B cells showed comparable proliferation rates to those of wild-type counterparts but exhibited markedly increased survival and were resistant to apoptosis induced by chemotherapeutic agents and glucocorticoids. Histopathologic features were consistent with mouse small B cell lymphoma progressing to leukemia with many similarities to human chronic lymphocytic leukemia. Given that many human chronic lymphocytic leukemias overexpress TRAF1 and Bcl-2, our findings suggest that cooperation between Bcl-2 and TRAF pathways contributes to the development of this type of leukemia.
Collapse
MESH Headings
- Animals
- Apoptosis
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Gene Rearrangement, B-Lymphocyte
- Genes, bcl-2
- Humans
- Integrin beta1/metabolism
- Intercellular Adhesion Molecule-1/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Protein Structure, Tertiary
- Sequence Deletion
- TNF Receptor-Associated Factor 2/chemistry
- TNF Receptor-Associated Factor 2/genetics
- TNF Receptor-Associated Factor 2/physiology
Collapse
Affiliation(s)
- Juan M Zapata
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
411
|
Hipfner DR, Cohen SM. Connecting proliferation and apoptosis in development and disease. Nat Rev Mol Cell Biol 2004; 5:805-15. [PMID: 15459661 DOI: 10.1038/nrm1491] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cells grow and divide rapidly during embryonic and postnatal development. Net tissue growth reflects the balance between the addition of new cells and the elimination of existing cells by programmed cell death. Cells compete for growth and survival factors to ensure an appropriate balance between the addition and elimination of cells. Elaborate mechanisms ensure that cells do not evade these constraints, and thereby prevent uncontrolled proliferation.
Collapse
Affiliation(s)
- David R Hipfner
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 169117, Heidelberg, Germany.
| | | |
Collapse
|
412
|
Willingham AT, Deveraux QL, Hampton GM, Aza-Blanc P. RNAi and HTS: exploring cancer by systematic loss-of-function. Oncogene 2004; 23:8392-400. [PMID: 15517021 DOI: 10.1038/sj.onc.1208217] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer develops through the successive accumulation and selection of genetic and epigenetic alterations, enabling cells to survive, replicate and evade homeostatic control mechanisms such as apoptosis and antiproliferative signals. This transformation process, however, may create vulnerabilities since the accumulation of mutations can expose synthetic lethal gene interactions and oncogene-driven cellular reprogramming ('addiction'), giving rise to new therapeutic avenues. With the completion of the human genome project, it is anticipated that the identification and characterization of genetic networks that regulate cell growth, differentiation, apoptosis and transformation will be fundamental to decoding the complexity of these processes, and ultimately, cancer itself. Genomic methodologies, such as large-scale mRNA profiling using microarrays, have already begun to reveal the molecular basis of cancer heterogeneity and the clinical behavior of tumors. The combination of traditional cell culture techniques with high-throughput screening approaches has given rise to new cellular-genomics methodologies that enable the simultaneous interrogation of thousands of genes in live cells, facilitating true functional profiling of biological processes. Among these, RNA interference (RNAi) has the potential to enable rapid genome-wide loss-of-function (LOF) screens in mammalian systems, which until recently has been the sole domain of lower organisms. Here, we present a broad overview of this maturing technology and explore how, within current technical constraints, large-scale LOF use of RNAi can be exploited to uncover the molecular basis of cancer--from the genetics of synthetic lethality and oncogene-dependent cellular addiction to the acquisition of cancer-associated cellular phenotypes.
Collapse
Affiliation(s)
- Aarron T Willingham
- Department of Chemistry, Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
413
|
Gunde T, Tanner S, Auf der Maur A, Petrascheck M, Barberis A. Quenching accumulation of toxic galactose-1-phosphate as a system to select disruption of protein-protein interactions in vivo. Biotechniques 2004; 37:844-52. [PMID: 15560141 DOI: 10.2144/04375pt03] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The reverse two-hybrid system has been developed to readily identify molecules or mutations that can disrupt protein-protein interactions in vivo. This system is generally based on the interaction-dependent activation of a reporter gene, whose product inhibits the growth of the engineered yeast cell. Thus, disruption of the interaction between the hybrid proteins can be positively selected because, by reducing the expression of the negative marker gene, it allows cell growth. Although several counter-selectable marker genes are currently available, their application in the reverse two-hybrid system is generally confronted with technical and practical problems such as low selectivity and relatively complex experimental procedures. Thus, the characterization of more reliable and simple counter-selection assays for the reverse two-hybrid system continues to be of interest. We have developed a novel counter-selection assay based on the toxicity of intracellular galactose-1-phosphate, which accumulates upon expression of a galactokinase-encoding GAL1 reporter gene in the absence of transferase activity. Decreased GAL1 gene expression upon dissociation of interacting proteins causes reduction of intracellular galactose-1-phosphate concentrations, thus allowing cell growth under selective conditions.
Collapse
Affiliation(s)
- Tea Gunde
- ESBATech AG, CH-8952 Zürich-Schlieren, Switzerland
| | | | | | | | | |
Collapse
|
414
|
Wiener Z, Ontsouka EC, Jakob S, Torgler R, Falus A, Mueller C, Brunner T. Synergistic induction of the Fas (CD95) ligand promoter by Max and NFkappaB in human non-small lung cancer cells. Exp Cell Res 2004; 299:227-35. [PMID: 15302589 DOI: 10.1016/j.yexcr.2004.05.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 04/26/2004] [Indexed: 11/28/2022]
Abstract
Fas (CD95/APO-1) ligand is a member of the Tumor Necrosis Factor family and a potent inducer of apoptosis. Fas ligand is expressed in activated T cells and represents a major cytotoxic effector mechanism by which T cells kill their target cells. Activation-induced Fas ligand expression in T cells is under the stringent control of various transcription factors, including nuclear factor kappaB (NFkappaB) and c-Myc/Max. There is accumulating evidence that Fas ligand is also expressed by various non-hematopoietic tumor cells, however, little is known about Fas ligand regulation in tumor cells. In this study, we have analyzed the regulation of the Fas ligand gene promoter induction in two non-small cell lung cancer cell lines, with a major focus on the role of the c-Myc/Max transcription factor. Our results revealed that inhibition of c-Myc/Max did not substantially reduce basal levels of Fas ligand promoter activity, nor did overexpression of c-Myc significantly induce promoter activity. In contrast, we observed that overexpression of Max resulted in a marked increase in basal promoter activity and synergistically enhanced phorbolester- and doxorubicin-induced NFkappaB-mediated Fas ligand promoter activity. These results were confirmed by analyzing endogenous Fas ligand transcription. We conclude that high levels of Max and stress-induced NFkappaB activation may result in elevated expression of Fas ligand in human lung cancer cells and possibly contribute to Fas ligand-associated immune escape mechanisms.
Collapse
MESH Headings
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Basic-Leucine Zipper Transcription Factors
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Doxorubicin/pharmacology
- Fas Ligand Protein
- Gene Expression Regulation, Neoplastic/genetics
- Genes, Regulator/genetics
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Membrane Glycoproteins/genetics
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Phorbol Esters/pharmacology
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins c-myc/genetics
- Stress, Physiological/genetics
- Stress, Physiological/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/genetics
- Tumor Escape/genetics
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Zoltan Wiener
- Division of Immunopathology, Institute of Pathology, University of Berne, Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
415
|
Beer S, Zetterberg A, Ihrie RA, McTaggart RA, Yang Q, Bradon N, Arvanitis C, Attardi LD, Feng S, Ruebner B, Cardiff RD, Felsher DW. Developmental context determines latency of MYC-induced tumorigenesis. PLoS Biol 2004; 2:e332. [PMID: 15455033 PMCID: PMC519000 DOI: 10.1371/journal.pbio.0020332] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 07/22/2004] [Indexed: 02/02/2023] Open
Abstract
One of the enigmas in tumor biology is that different types of cancers are prevalent in different age groups. One possible explanation is that the ability of a specific oncogene to cause tumorigenesis in a particular cell type depends on epigenetic parameters such as the developmental context. To address this hypothesis, we have used the tetracycline regulatory system to generate transgenic mice in which the expression of a c-MYC human transgene can be conditionally regulated in murine hepatocytes. MYC's ability to induce tumorigenesis was dependent upon developmental context. In embryonic and neonatal mice, MYC overexpression in the liver induced marked cell proliferation and immediate onset of neoplasia. In contrast, in adult mice MYC overexpression induced cell growth and DNA replication without mitotic cell division, and mice succumbed to neoplasia only after a prolonged latency. In adult hepatocytes, MYC activation failed to induce cell division, which was at least in part mediated through the activation of p53. Surprisingly, apoptosis is not a barrier to MYC inducing tumorigenesis. The ability of oncogenes to induce tumorigenesis may be generally restrained by developmentally specific mechanisms. Adult somatic cells have evolved mechanisms to prevent individual oncogenes from initiating cellular growth, DNA replication, and mitotic cellular division alone, thereby preventing any single genetic event from inducing tumorigenesis. A transgenic mouse model demonstrates that developmental context may be the reason why the spectrum of tumors differs in children and adults
Collapse
Affiliation(s)
- Shelly Beer
- 1Division of Oncology, Departments of Medicine and PathologyStanford University, Stanford, CaliforniaUnited States of America
| | - Anders Zetterberg
- 2Division of Cellular and Molecular Tumor Cancer Center, Departments of Oncology and PathologyKarolinska Institute, StockholmSweden
| | - Rebecca A Ihrie
- 3Department of Radiation and Cancer Oncology, Stanford UniversityStanford, CaliforniaUnited States of America
| | - Ryan A McTaggart
- 4Department of Surgery, Division of TransplantationUniversity of California, San Francisco, San Francisco, CaliforniaUnited States of America
| | - Qiwei Yang
- 1Division of Oncology, Departments of Medicine and PathologyStanford University, Stanford, CaliforniaUnited States of America
| | - Nicole Bradon
- 1Division of Oncology, Departments of Medicine and PathologyStanford University, Stanford, CaliforniaUnited States of America
| | - Constadina Arvanitis
- 1Division of Oncology, Departments of Medicine and PathologyStanford University, Stanford, CaliforniaUnited States of America
| | - Laura D Attardi
- 3Department of Radiation and Cancer Oncology, Stanford UniversityStanford, CaliforniaUnited States of America
| | - Sandy Feng
- 4Department of Surgery, Division of TransplantationUniversity of California, San Francisco, San Francisco, CaliforniaUnited States of America
| | - Boris Ruebner
- 5Department of Pathology, University of CaliforniaDavis, Davis, CaliforniaUnited States of America
| | - Robert D Cardiff
- 5Department of Pathology, University of CaliforniaDavis, Davis, CaliforniaUnited States of America
| | - Dean W Felsher
- 1Division of Oncology, Departments of Medicine and PathologyStanford University, Stanford, CaliforniaUnited States of America
| |
Collapse
|
416
|
Giuriato S, Rabin K, Fan AC, Shachaf CM, Felsher DW. Conditional animal models: a strategy to define when oncogenes will be effective targets to treat cancer. Semin Cancer Biol 2004; 14:3-11. [PMID: 14757531 DOI: 10.1016/j.semcancer.2003.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to model cancer in the mouse has provided a robust methodology to dissect the molecular etiology of cancer. These models serve as potentially powerful platforms to preclinically evaluate novel therapeutics. In particular, the recent development of strategies to conditionally induce the or knockout the function of genes in a tissue specific manner has enabled investigators to engineer mice to demonstrate that the targeted inactivation of specific oncogenes can be effective in inducing sustained regression of tumors. Thus, these animal models will be useful to define the specific genes that will be therapeutically useful to target for the treatment of particular human cancers.
Collapse
Affiliation(s)
- Sylvie Giuriato
- Division of Oncology, Stanford University, CCSR 1105, 269 Campus Drive, Stanford, CA 94305-5151, USA
| | | | | | | | | |
Collapse
|
417
|
Calvisi DF, Ladu S, Conner EA, Factor VM, Thorgeirsson SS. Disregulation of E-cadherin in transgenic mouse models of liver cancer. J Transl Med 2004; 84:1137-47. [PMID: 15220935 DOI: 10.1038/labinvest.3700147] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
E-cadherin is a cell-cell adhesion molecule that plays a pivotal role in the development and maintenance of cell polarity. Disruption of E-cadherin-mediated adhesion represents a key step toward the invasive phenotype in a variety of solid tumors, including hepatocellular carcinoma (HCC). Here, we investigate whether deregulation of E-cadherin occurs along the multistep process of hepatocarcinogenesis in transgenic mouse models, including c-Myc, E2F1, c-Myc/TGF-alpha and c-Myc/E2F1 mice. Liver tumors from the transgenic mouse lines could be divided into two categories based on E-cadherin levels. Of 28, 20 (71.4%) c-Myc HCCs showed marked reduction of E-cadherin expression when compared with wild-type livers. In contrast, all of c-Myc/TGF-alpha and the majority of E2F1 and c-myc/E2F1 preneoplastic and neoplastic lesions exhibited overexpression of E-cadherin. Downregulation of E-cadherin was associated with promoter hypermethylation in seven of 20 c-Myc HCCs (35%), while no loss of heterozygosity at the E-cadherin locus was detected. Nuclear accumulation of beta-catenin did not correlate with E-cadherin downregulation. Furthermore, c-Myc HCCs with reduced E-cadherin displayed upregulation of hypoxia-inducible factor-1alpha and vascular endothelial growth factor proteins. Importantly, loss of E-cadherin was associated with increased cell proliferation and higher microvessel density in c-Myc tumors. Taken together, these data suggest that loss of E-cadherin might favor tumor progression in relatively more benign HCC from c-Myc transgenic mice by stimulating neoplastic proliferation and angiogenesis under hypoxic conditions.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- DNA, Neoplasm/analysis
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Immunohistochemistry
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred Strains
- Mice, Transgenic
- Microcirculation/pathology
- Microsatellite Repeats
- Neovascularization, Pathologic
- Polymerase Chain Reaction
Collapse
Affiliation(s)
- Diego F Calvisi
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
418
|
Affiliation(s)
- S Del Prato
- Department of Endocrinology and Metabolism, Section of Diabetes, University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
419
|
Honeycutt KA, Koster MI, Roop DR. Genes involved in stem cell fate decisions and commitment to differentiation play a role in skin disease. J Investig Dermatol Symp Proc 2004; 9:261-8. [PMID: 15369222 DOI: 10.1111/j.1087-0024.2004.09312.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Multipotent stem cells residing in the bulge region of the hair follicle give rise to cells of different fates including those forming hair follicles, interfollicular epidermis, and associated glands. Stem cell fate determination is regulated by genes involved in both proliferation and differentiation, which are tightly regulated processes. Understanding the molecular mechanisms by which proliferation and differentiation are regulated will provide useful insight into treating human diseases caused by the deregulation of these processes. Two genes involved in regulating proliferation and differentiation are c-Myc and p63, both of which have been found to be deregulated/mutated in several human diseases. Accelerating proliferation leads to neoplastic human diseases and deregulated c-Myc has been implicated in a variety of cancers. Evidence indicates that c-Myc also diverts stem cells to an epidermal and sebaceous gland fate at the expense of the hair follicle fate. Therefore, deregulation of c-Myc has the potential to not only accelerate tumorigenesis, but also influence skin tumor phenotype. In addition, the inhibition of differentiation may also predispose to the development of skin cancer. Recent evidence suggests that the transcription factor p63, is not only responsible for the initiation of an epithelial stratification program during development, but also the maintenance of the proliferative potential of basal keratinocytes in mature epidermis. Mutations in the p63 gene have been shown to cause ectodermal dysplasias and deregulated expression of p63 has been observed in squamous cell carcinomas. In this review, we will discuss recent data implicating a role for both c-Myc and p63 in human skin diseases.
Collapse
|
420
|
Abstract
Tumors arise from normal cells through the acquisition of multiple genetic alterations that endow cancer cells with the phenotypes associated with neoplasia. Although we still lack a complete understanding of the specific complement of mutations that together program the behavior of any particular cancer, several lines of evidence indicate that many of these alterations perturb regulatory networks critical for cell proliferation, growth, and survival. As such, cancer cells maintain a precarious balance among unfettered proliferation, genomic instability, cell cycle arrest, and apoptosis. This year's Beatson International Cancer Conference focused on recent advances in our understanding of the pathways that regulate senescence, apoptosis, and cancer.
Collapse
Affiliation(s)
- William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
421
|
Griffiths GJ, Koh MY, Brunton VG, Cawthorne C, Reeves NA, Greaves M, Tilby MJ, Pearson DG, Ottley CJ, Workman P, Frame MC, Dive C. Expression of kinase-defective mutants of c-Src in human metastatic colon cancer cells decreases Bcl-xL and increases oxaliplatin- and Fas-induced apoptosis. J Biol Chem 2004; 279:46113-21. [PMID: 15326164 DOI: 10.1074/jbc.m408550200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor resistance to current drugs prevents curative treatment of human colon cancer. A pressing need for effective, tumor-specific chemotherapies exists. The non-receptor-tyrosine kinase c-Src is overexpressed in >70% of human colon cancers and represents a tractable drug target. KM12L4A human metastatic colon cancer cells were stably transfected with two distinct kinase-defective mutants of c-src. Their response to oxaliplatin, to SN38, the active metabolite of irinotecan (drugs active in colon cancer), and to activation of the death receptor Fas was compared with vector control cells in terms of cell cycle arrest and apoptosis. Both kinase-defective forms of c-Src co-sensitized cells to apoptosis induced by oxaliplatin and Fas activation but not by SN38. Cells harboring kinase-defective forms of c-Src carrying function blocking point mutations in SH3 or SH2 domains were similarly sensitive to oxaliplatin, suggesting that reduction in kinase activity and not a Src SH2-SH3 scaffold function was responsible for the observed altered sensitivity. Oxaliplatin-induced apoptosis, potentiated by kinase-defective c-Src mutants, was dependent on activation of caspase 8 and associated with Bid cleavage. Each of the stable cell lines in which kinase-defective mutants of c-Src were expressed had reduced levels of Bcl-x(L.) However, inhibition of c-Src kinase activity by PP2 in vector control cells did not alter the oxaliplatin response over 72 h nor did it reduce Bcl-x(L) levels. The data suggest that longer term suppression of Src kinase activity may be required to lower Bcl-x(L) levels and sensitize colon cancer cells to oxaliplatin-induced apoptosis.
Collapse
Affiliation(s)
- Gareth J Griffiths
- Cancer Research UK Paterson Institute for Cancer Research, Manchester, and School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester M20 4BX, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
422
|
Flores I, Murphy DJ, Swigart LB, Knies U, Evan GI. Defining the temporal requirements for Myc in the progression and maintenance of skin neoplasia. Oncogene 2004; 23:5923-30. [PMID: 15208685 DOI: 10.1038/sj.onc.1207796] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The homeostatic integrity of skin epidermis is maintained by a balance between keratinocyte proliferation, on one hand, and terminal differentiation combined with outward migration and shedding, on the other. Perturbation of this balance in favor of proliferation can result in hyperplasia and, potentially, tumorigenesis. We have previously described a reversible transgenic mouse model of epidermal neoplasia in which expression of an acutely regulatable form of Myc, MycERTAM, is targeted to epidermis via the involucrin promoter. In this model, sustained activation of MycERTAM induces a complex neoplastic lesion involving marked hyperplasia of less-differentiated suprabasal cells, angiogenesis and overt papillomatosis. Subsequent deactivation of MycERTAM triggers complete papilloma regression. Here, we provide evidence that Myc-induced papillomas are self-limiting because of the eventual differentiation of MycERTAM-expressing keratinocytes. Thus, keratinocyte differentiation eventually prevails over Myc-induced proliferation. We also show that regression of Myc-induced papillomas following MycERTAM deactivation occurs through a combination of growth arrest and irreversible differentiation. Finally, we demonstrate that transient deactivation of Myc is sufficient to expel keratinocytes irreversibly from the proliferative compartment and render them refractory to the mitogenic influence of subsequent Myc reactivation. Such observations illustrate the potential utility of even short-term inhibition of oncogenic lesions in the treatment of cancer.
Collapse
Affiliation(s)
- Ignacio Flores
- Cancer Research Institute, University of California at San Francisco, 2340 Sutter St, San Francisco, CA 94143-0875, USA
| | | | | | | | | |
Collapse
|
423
|
Abstract
Mesothelial cells line the pleural and peritoneal surfaces, where under normal conditions they proliferate and undergo cell death at a slow rate, thereby maintaining a constant number of cells. These tightly regulated processes are disrupted in malignancy. By developing a better understanding of the mechanisms that regulate cell proliferation and apoptosis in mesothelial and mesothelioma cells, we may be able to develop more effective therapeutic agents that target specific steps in these pathways to induce apoptosis more efficiently. This paper reviews our current knowledge of the signaling pathways involved in the regulation of mesothelial cell proliferation and apoptosis. The latest advancements in identifying proteins that play key roles in the resistance to apoptosis are highlighted.
Collapse
Affiliation(s)
- Lorriana E Leard
- Lung Biology Center, San Francisco General Hospital, University of California San Francisco, California, USA
| | | |
Collapse
|
424
|
Klampfer L, Huang J, Sasazuki T, Shirasawa S, Augenlicht L. Oncogenic Ras Promotes Butyrate-induced Apoptosis through Inhibition of Gelsolin Expression. J Biol Chem 2004; 279:36680-8. [PMID: 15213223 DOI: 10.1074/jbc.m405197200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.
Collapse
Affiliation(s)
- Lidija Klampfer
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, 111 E. 210th Street, Bronx, NY 10467, USA.
| | | | | | | | | |
Collapse
|
425
|
Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP, Batlle E, Simon-Assmann P, Clevers H, Nathke IS, Clarke AR, Winton DJ. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 2004; 18:1385-90. [PMID: 15198980 PMCID: PMC423189 DOI: 10.1101/gad.287404] [Citation(s) in RCA: 624] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although Apc is well characterized as a tumor-suppressor gene in the intestine, the precise mechanism of this suppression remains to be defined. Using a novel inducible Ahcre transgenic line in conjunction with a loxP-flanked Apc allele we, show that loss of Apc acutely activates Wnt signaling through the nuclear accumulation of beta-catenin. Coincidentally, it perturbs differentiation, migration, proliferation, and apoptosis, such that Apc-deficient cells maintain a "crypt progenitor-like" phenotype. Critically, for the first time we confirm a series of Wnt target molecules in an in vivo setting and also identify a series of new candidate targets within the same setting.
Collapse
Affiliation(s)
- Owen J Sansom
- School of Biosciences, University of Cardiff, Cardiff CF10 3US, Wales
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
426
|
Cheung WC, Kim JS, Linden M, Peng L, Van Ness B, Polakiewicz RD, Janz S. Novel targeted deregulation of c-Myc cooperates with Bcl-X(L) to cause plasma cell neoplasms in mice. J Clin Invest 2004; 113:1763-73. [PMID: 15199411 PMCID: PMC420503 DOI: 10.1172/jci20369] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 04/14/2004] [Indexed: 01/10/2023] Open
Abstract
Deregulated expression of both Myc and Bcl-X(L) are consistent features of human plasma cell neoplasms (PCNs). To investigate whether targeted expression of Myc and Bcl-X(L) in mouse plasma cells might lead to an improved model of human PCN, we generated Myc transgenics by inserting a single-copy histidine-tagged mouse Myc gene, Myc(His), into the mouse Ig heavy-chain Calpha locus. We also generated Bcl-X(L) transgenic mice that contain a multicopy Flag-tagged mouse Bcl-x(Flag) transgene driven by the mouse Ig kappa light-chain 3' enhancer. Single-transgenic Bcl-X(L) mice remained tumor free by 380 days of age, whereas single-transgenic Myc mice developed B cell tumors infrequently (4 of 43, 9.3%). In contrast, double-transgenic Myc/Bcl-X(L) mice developed plasma cell tumors with short onset (135 days on average) and full penetrance (100% tumor incidence). These tumors produced monoclonal Ig, infiltrated the bone marrow, and contained elevated amounts of Myc(His) and Bcl-X(L)(Flag) proteins compared with the plasma cells that accumulated in large numbers in young tumor-free Myc/Bcl-X(L) mice. Our findings demonstrate that the enforced expression of Myc and Bcl-X(L) by Ig enhancers with peak activity in plasma cells generates a mouse model of human PCN that recapitulates some features of human multiple myeloma.
Collapse
|
427
|
Martin SS, Ridgeway AG, Pinkas J, Lu Y, Reginato MJ, Koh EY, Michelman M, Daley GQ, Brugge JS, Leder P. A cytoskeleton-based functional genetic screen identifies Bcl-xL as an enhancer of metastasis, but not primary tumor growth. Oncogene 2004; 23:4641-5. [PMID: 15064711 DOI: 10.1038/sj.onc.1207595] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many mouse models of breast cancer form large primary tumors that rarely metastasize. Models with aggressive metastasis express oncoproteins that simultaneously affect growth and apoptosis pathways. To define the role of apoptotic resistance and to model a challenge faced by tumor cells during metastatic dissemination, we focused on apoptosis induced by cell shape change. Inhibiting actin polymerization with Latrunculin-A causes cell rounding and death within hours in nontumorigenic human 10A-Ras mammary epithelial cells. In contrast, MDA-MB-231 metastatic breast tumor cells resist LA-induced death, and survive for days despite cell rounding. Infecting 10A-Ras cells with a MDA-MB-231 retroviral expression library, and selecting with Latrunculin-A repeatedly identified Bcl-xL as a suppressor of cytoskeleton-dependent death. Although Bcl-xL enhances the spread of metastatic breast tumor cell lines, the distinct effects of apoptotic resistance on tumor growth in the mammary gland and during metastasis have not been compared directly. We find that Bcl-xL overexpression in mouse mammary epithelial cells does not induce primary tumor formation or enhance MEK-induced tumorigenesis within the mammary gland environment. However, it strongly enhances metastatic potential. These results with Bcl-xL provide novel evidence that isolated apoptotic resistance can increase metastatic potential, but remain overlooked by assays based on breast tumor growth.
Collapse
Affiliation(s)
- Stuart S Martin
- Harvard Medical School, Department of Genetics, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Mao DYL, Barsyte-Lovejoy D, Ho CSW, Watson JD, Stojanova A, Penn LZ. Promoter-binding and repression of PDGFRB by c-Myc are separable activities. Nucleic Acids Res 2004; 32:3462-8. [PMID: 15226411 PMCID: PMC443544 DOI: 10.1093/nar/gkh669] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The c-Myc transcription factor represses the mRNA expression of the platelet-derived growth factor receptor beta gene (PDGFRB). Using chromatin immunoprecipitation, we show that c-Myc binds to the proximal promoter of the PDGFRB gene in proliferating rat fibroblasts. Interestingly, mutant c-Myc proteins that are unable to repress PDGFRB gene expression, c-Myc(dBR) and c-Myc(d106-143), are still able to bind to the promoter in vivo. Hence, promoter-binding and repression of PDGFRB by c-Myc are separable activities. We also show that Myc repression of PDGFRB is not dependent on previously described or known transactivator-binding regions, suggesting Myc may be recruited to the promoter by multiple or yet unidentified transcription factors. In the presence of intact promoter-binding by Myc, trichostatin A (TSA) can block Myc repression of PDGFRB in vivo, again demonstrating that promoter-binding and repression are separable. Taken together, we hypothesize that Myc repression of PDGFRB expression occurs by a multi-step mechanism in which repression is initiated after Myc is recruited to the promoter.
Collapse
Affiliation(s)
- Daniel Y L Mao
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | |
Collapse
|
429
|
Jin Z, Gao F, Flagg T, Deng X. Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation. J Biol Chem 2004; 279:40209-19. [PMID: 15210690 DOI: 10.1074/jbc.m404056200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is formed by nitrosation of nicotine and has been identified as the most potent carcinogen contained in cigarette smoke. NNK significantly contributes to smoking-related lung cancer, but the molecular mechanism remains enigmatic. Bcl2 and c-Myc are two major oncogenic proteins that cooperatively promote tumor development. We report here that NNK simultaneously stimulates Bcl2 phosphorylation exclusively at Ser(70) and c-Myc at Thr(58) and Ser(62) through activation of both ERK1/2 and PKCalpha, which is required for NNK-induced survival and proliferation of human lung cancer cells. Treatment of cells with staurosporine or PD98059 blocks both Bcl2 and c-Myc phosphorylation and results in suppression of NNK-induced proliferation. Specific depletion of c-Myc expression by RNA interference retards G(1)/S cell cycle transition and blocks NNK-induced cell proliferation. Phosphorylation of Bcl2 at Ser(70) promotes a direct interaction between Bcl2 and c-Myc in the nucleus and on the outer mitochondrial membrane that significantly enhances the half-life of the c-Myc protein. Thus, NNK-induced functional cooperation of Bcl2 and c-Myc in promoting cell survival and proliferation may occur in a novel mechanism involving their phosphorylation, which may lead to development of human lung cancer and/or chemoresistance.
Collapse
Affiliation(s)
- Zhaohui Jin
- University of Florida Shands Cancer Center, Department of Medicine, University of Florida, Gainesville, Florida 32610-0232, USA
| | | | | | | |
Collapse
|
430
|
|
431
|
Affiliation(s)
- Bruno Amati
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy.
| |
Collapse
|
432
|
Cheung WC, Kim JS, Linden M, Peng L, Van Ness B, Polakiewicz RD, Janz S. Novel targeted deregulation of c-Myc cooperates with Bcl-XL to cause plasma cell neoplasms in mice. J Clin Invest 2004. [DOI: 10.1172/jci200420369] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
433
|
Abstract
The ability to achieve insulin independence with either solid-organ pancreas or islet transplantation has increased the number of patients seeking beta-cell replacement as an alternative to insulin therapy. Despite dramatic improvements in the ability to achieve insulin independence following solid-organ pancreas transplantation, the secondary complications of long-standing diabetes are frequently irreversible by the time surgical intervention is justified based on the risk of this procedure. Pancreatic islet transplantation provides a safer and less invasive alternative for beta-cell replacement that could be justified earlier in the course of diabetes to prevent the development of secondary complications. Recent advances in the technology of islet isolation, as well as the ability to prevent the alloimmune and recurrent autoimmune response following islet transplantation with immunosuppressive regimens that are not toxic to beta cells, have rekindled an interest in this field. Widespread application of islet transplantation will depend on further improvements in selective immunosuppression, development of immunologic tolerance, and finding new sources of beta cells.
Collapse
Affiliation(s)
- Peter G Stock
- Department of Surgery, Division of Transplantation, University of California, San Francisco, San Francisco, California 94143, USA.
| | | |
Collapse
|
434
|
Juin P, Geneste O, Raimbaud E, Hickman JA. Shooting at survivors: Bcl-2 family members as drug targets for cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1644:251-60. [PMID: 14996507 DOI: 10.1016/j.bbamcr.2003.10.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Accepted: 10/31/2003] [Indexed: 11/20/2022]
Affiliation(s)
- Philippe Juin
- Univ. de Nantes, INSERM U419, 44035 Nantes Cedex 035, France.
| | | | | | | |
Collapse
|
435
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:985-987. [DOI: 10.11569/wcjd.v12.i4.985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
436
|
Kalra N, Kumar V. c-Fos is a mediator of the c-myc-induced apoptotic signaling in serum-deprived hepatoma cells via the p38 mitogen-activated protein kinase pathway. J Biol Chem 2004; 279:25313-9. [PMID: 15078869 DOI: 10.1074/jbc.m400932200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The proto-oncogene c-myc encodes a transcription factor that plays a pivotal role in cell proliferation, differentiation, and apoptosis. The signaling mechanism of c-Myc-induced apoptosis was investigated on the human hepatoma Huh7 cells under growth factor-deprived conditions. The apoptotic process did not involve p53. Rather it was dependent on the expression of c-Fos. Activation of caspases 3 and 9 and down-regulation of Bcl2 were observed in the apoptotic process, indicating it to be a mitochondria-dependent event. An increase in the p38 mitogen-activated protein kinase that was mediated by a Rac1-dependent and cdc42-independent pathway eventually leading to up-regulation of c-Fos activity was also observed. Deletion analysis of the promoter region of the c-fos gene indicated that the ATF2-responsive element conferred the Myc-induced expression of c-Fos. Co-expression of the dominant-negative mutants of c-Fos, p38, and Rac1 blocked the Myc-mediated apoptosis. SB20358, a chemical inhibitor of p38 pathway, also specifically blocked the apoptotic signaling by c-Myc. Furthermore, co-expression of the hepatitis B virus X protein (HBx) along with Myc abrogated the apoptotic signals. The HBx expression was associated with an increase in the levels of phosphorylated AKT and down-regulation of c-Fos by Myc. Thus, c-Fos seems be a new mediator of c-Myc-induced apoptosis.
Collapse
Affiliation(s)
- Neetu Kalra
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
437
|
Kaminski A, Gao H, Morgan NG. Involvement of the cGMP signalling pathway in the regulation of viability in insulin-secreting BRIN-BD11 cells. FEBS Lett 2004; 559:118-24. [PMID: 14960318 DOI: 10.1016/s0014-5793(04)00048-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Accepted: 12/21/2003] [Indexed: 01/01/2023]
Abstract
We have evaluated the hypothesis that cGMP may serve as an intracellular messenger regulating the viability of pancreatic beta-cells. A direct activator of soluble guanylyl cyclase, YC-1, caused a time- and dose-dependent loss of viability in clonal BRIN-BD11 beta-cells. This was accompanied by a rise in cGMP and was antagonised by Rp-8-pCPT-cGMPS, a selective inhibitor of protein kinase G (PKG). Reverse transcription polymerase chain reaction analysis confirmed that BRIN-BD11 cells (and human islets) express all three known isoforms of PKG (PKG-Ialpha, -Ibeta and II). Cell death induced by YC-1 was not sensitive to cell-permeable caspase inhibitors and was not accompanied by oligonucleosomal DNA fragmentation. The response was, however, inhibited by actinomycin D, suggesting that a transcription-dependent pathway of programmed cell death is involved in the actions of cGMP.
Collapse
Affiliation(s)
- Anna Kaminski
- Endocrine Pharmacology Group, Institute of Biomedical and Clinical Science, Peninsula Medical School, Room N32, ITTC Building, Tamar Science Park, Plymouth, Devon PL6 8BX, UK
| | | | | |
Collapse
|
438
|
Eichten A, Rud DS, Grace M, Piboonniyom SO, Zacny V, Münger K. Molecular pathways executing the "trophic sentinel" response in HPV-16 E7-expressing normal human diploid fibroblasts upon growth factor deprivation. Virology 2004; 319:81-93. [PMID: 14967490 DOI: 10.1016/j.virol.2003.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 11/07/2003] [Accepted: 11/07/2003] [Indexed: 10/26/2022]
Abstract
In response to oncogenic insults, normal human cells execute a defense response that culminates in cellular suicide, apoptosis. Normal human diploid fibroblasts expressing the human papillomavirus type 16 (HPV-16) E7 oncoprotein are predisposed to apoptosis when they are deprived of growth factors. Even though a dominant negative p53 mutant abrogates the cell death response, it is not accompanied by p53 phosphorylation, the DNA binding capacity of p53 remains unaltered, and no activation of common p53-dependent transcriptional targets is observed. Expression of two insulin-like growth factor-1 binding proteins, IGFBP-2 and -5, is increased presumably in response to enhanced NF-kappaB activity in HPV-16 E7-expressing serum-starved cells. Phosphorylation of AKT, an important modulator of IGF-1 survival signaling, is lower in serum-starved E7-expressing cells, and exogenously added IGF-1 can partially inhibit the cell death response. This suggests that IGFBP-2 and -5 may limit IGF-1 availability thus decreasing survival signaling. Caspase 3 but not caspase 8 is activated in serum-starved HPV-16 E7-expressing cells. Caspase inhibition affects nuclear DNA fragmentation, but cell death is not inhibited. Although mitochondria play important roles in caspase-dependent as well as -independent forms of cell death, there is no evidence for cytochrome c release and thus for mitochondrial permeabilization in growth factor deprived HPV-16 E7-expressing cells.
Collapse
Affiliation(s)
- Alexandra Eichten
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
439
|
Abstract
Neuroblastomas are the most frequently occurring solid tumors in children under 5 years. Spontaneous regression is more common in neuroblastomas than in any other tumor type, especially in young patients under 12 months. Unfortunately, the full clinical spectrum of neuroblastomas also includes very aggressive tumors, unresponsive to multi-modality treatment and accounting for most of the pediatric cancer mortalities under 5 years of age. It is generally emphasized that more than one biological entity of neuroblastoma exists. Structural genetic defects such as amplification of MYCN, gain of chromosome 17q and LOH of 1p and several other chromosomal regions have proven to be valuable as prognostic factors and will be discussed in relation to their clinical relevance. Recent research is starting to uncover important molecular pathways involved in the pathogenesis of neuroblastomas. The aim of this review is to discuss several important aspects of the biology of the neuroblast, such as the role of overexpressed oncogenes like MYCN and cyclin D1, the mechanisms leading to decreased apoptosis, like overexpression of BCL-2, survivin, NM23, epigenetic silencing of caspase 8 and the role of tumor suppressor genes, like p53, p73 and RASSF1A. In addition, the role of specific proteins overexpressed in neuroblastomas, such as the neurotrophin receptors TrkA, B and C in relation to spontaneous regression and anti-angiogenesis will be discussed. Finally, we will try to relate these pathways to the embryonal origin of neuroblastomas and discuss possible new avenues in the therapeutic approach of future neuroblastoma patients.
Collapse
Affiliation(s)
- Max M van Noesel
- Department of Pediatric Oncology-Hematology, Erasmus MC/Sophia Children's Hospital, 3015 GJ Rotterdam, The Netherlands.
| | | |
Collapse
|
440
|
Van de Casteele M, Kefas BA, Cai Y, Heimberg H, Scott DK, Henquin JC, Pipeleers D, Jonas JC. Prolonged culture in low glucose induces apoptosis of rat pancreatic beta-cells through induction of c-myc. Biochem Biophys Res Commun 2004; 312:937-44. [PMID: 14651961 DOI: 10.1016/j.bbrc.2003.11.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prolonged culture in low-glucose concentrations (</=5mM) induces apoptosis in pancreatic beta-cells by a poorly defined mechanism. We now show that, in both purified rat beta-cells and isolated rat islets, culture in the presence of 3 or 5mM (G3-G5) instead of 10mM glucose (G10) induces a large increase in c-myc expression before onset of a caspase-dependent apoptosis. These effects were prevented by addition of leucine and glutamine to G3 and G5, and were mimicked by addition of the mitochondrial poison azide to G10. In contrast, inhibition of Ca(2+) influx and insulin secretion with diazoxide under control conditions did not stimulate islet c-myc expression nor beta-cell apoptosis. In rat beta-cells, adenovirus-mediated c-myc overexpression increased their rate of apoptosis, whereas antisense-c-myc expression reduced low-glucose-induced apoptosis by approximately 50%. In the insulin producing MIN6 cell line, apoptosis induction by either low glucose or an activator of AMP-activated protein kinase (AMPK) was associated with c-myc mRNA and protein upregulation. In conclusion, stimulation of beta-cell apoptosis by prolonged culture at low glucose partly results from early and sustained induction of beta-cell c-myc expression. These effects may be due to sustained restriction in nutrient-derived metabolic signals.
Collapse
|
441
|
Abstract
Cancer can largely be conceived as a consequence of genomic catastrophes resulting in genetic events that usurp physiologic function of a normal cell. These genetic events mediate their pathologic effects by either activating oncogenes or inactivating tumor-suppressor genes. The targeted repair or inactivation of these damaged gene products may counteract the effects of these genetic events, reversing tumorigenesis and thereby serve as an effective therapy for cancer. However, because they are the result of many genetic events, the inactivation of no single mutant gene product may be sufficient to reverse cancer. Despite this caveat, compelling recent evidence suggests that there are circumstances when even the brief interruption of activation of a single oncogene can be sufficient to reverse tumorigenesis. Understanding how and when oncogene inactivation reverses cancer will be important in both defining the molecular pathogenesis of cancer as well as developing new molecularly based treatments.
Collapse
Affiliation(s)
- Dean W Felsher
- Division of Oncology, Department of Medicine, Stanford University, CCSR 1105B, 269 Campus Drive, Stanford, CA 94305-5151, USA.
| |
Collapse
|
442
|
Ruddell A, Mezquita P, Brandvold KA, Farr A, Iritani BM. B lymphocyte-specific c-Myc expression stimulates early and functional expansion of the vasculature and lymphatics during lymphomagenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 163:2233-45. [PMID: 14633598 PMCID: PMC1892400 DOI: 10.1016/s0002-9440(10)63581-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Expression of the c-myc proto-oncogene is deregulated in many human cancers. We examined the role of c-Myc in stimulating angiogenesis and lymphangiogenesis in a highly metastatic murine model of Burkitt's lymphoma (E micro -c-myc), where c-Myc is expressed exclusively in B lymphocytes. Immunohistochemical analysis of bone marrow and lymph nodes from young (preneoplastic) E micro -c-myc transgenic mice revealed increased growth of blood vessels, which are functional by dye flow assay. Lymphatic sinuses also increased in size and number within the lymph nodes, as demonstrated by immunostaining for with a lymphatic endothelial marker 10.1.1. The 10.1.1 antibody recognizes VEGFR-2- and VEGFR-3-positive lymphatic sinuses and vessels within lymph nodes, and also recognizes lymphatic vessels in other tissues. Subcutaneously injected dye traveled more efficiently through draining lymph nodes in E micro -c-myc mice, indicating that these hypertrophic lymphatic sinuses increase lymph flow. Purified B lymphocytes and lymphoid tissues from E micro -c-myc mice expressed increased levels of vascular endothelial growth factor (VEGF) by immunohistochemical or immunoblot assays, which could promote blood and lymphatic vessel growth through interaction with VEGFR-2, which is expressed on the endothelium of both vessel types. These results indicate that constitutive c-Myc expression stimulates angiogenesis and lymphangiogenesis, which may promote the rapid growth and metastasis of c-Myc-expressing cancer cells, respectively.
Collapse
Affiliation(s)
- Alanna Ruddell
- Fred Hutchinson Cancer Research Center, the Department of Biological Structure, and the Department of Comparative Medicine, University of Washington, Seattle, Washington 98109-1024, USA.
| | | | | | | | | |
Collapse
|
443
|
Abstract
A paradox for the cancer biology field has been the revelation that oncogenes, once thought to simply provide advantages to a cancer cell, actually put it at dire risk of cell suicide. Myc is the quintessential oncogene in this respect, as in normal cells it is required for cell cycle traverse, whereas in cancers it is overexpressed and functions as the angiogenic switch. Nonetheless, Myc overexpression kills normal cells dead in their tracks. Here we review Myc-induced pathways that contribute to the apoptotic response. Molecular analysis of Myc-induced tumors has established that some of these apoptotic pathways are essential checkpoints that guard the cell from cancer, as they are selectively bypassed during tumorigenesis. The precise mechanism(s) by which Myc targets these pathways are largely unresolved, but we propose that they involve crosstalk and feedback regulatory loops between arbiters of cell death.
Collapse
Affiliation(s)
- Jonas A Nilsson
- Department of Biochemistry, St Jude Children's Research Hospital, 332 N Lauderdale, Memphis, TN 38105, USA
| | | |
Collapse
|
444
|
Limoli CL, Giedzinski E, Rola R, Otsuka S, Palmer TD, Fike JR. Radiation Response of Neural Precursor Cells: Linking Cellular Sensitivity to Cell Cycle Checkpoints, Apoptosis and Oxidative Stress. Radiat Res 2004; 161:17-27. [PMID: 14680400 DOI: 10.1667/rr3112] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Therapeutic irradiation of the brain can cause a progressive cognitive dysfunction that may involve defects in neurogenesis. In an effort to understand the mechanisms underlying radiation-induced stem cell dysfunction, neural precursor cells isolated from the adult rat hippocampus were analyzed for acute (0-24 h) and chronic (3-33 days) changes in apoptosis and reactive oxygen species (ROS) after exposure to X rays. Irradiated neural precursor cells exhibited an acute dose-dependent apoptosis accompanied by an increase in ROS that persisted over a 3-4-week period. The radiation effects included the activation of cell cycle checkpoints that were associated with increased Trp53 phosphorylation and Trp53 and p21 (Cdkn1a) protein levels. In vivo, neural precursor cells within the hippocampal dentate subgranular zone exhibited significant sensitivity to radiation. Proliferating precursor cells and their progeny (i.e. immature neurons) exhibited dose-dependent reductions in cell number. These reductions were less severe in Trp53-null mice, possibly due to the disruption of apoptosis. These data suggest that the apoptotic and ROS responses may be tied to Trp53-dependent regulation of cell cycle control and stress-activated pathways. The temporal coincidence between in vitro and in vivo measurements of apoptosis suggests that oxidative stress may provide a mechanistic explanation for radiation-induced inhibition of neurogenesis in the development of cognitive impairment.
Collapse
Affiliation(s)
- Charles L Limoli
- Department of Radiation Oncology, University of California, San Francisco, California 94103-0806, USA.
| | | | | | | | | | | |
Collapse
|
445
|
Hurlin PJ, Dezfouli S. Functions of myc:max in the control of cell proliferation and tumorigenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 238:183-226. [PMID: 15364199 DOI: 10.1016/s0074-7696(04)38004-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Deregulation and elevated expression of members of the Myc family of bHLHZip transcription factors are observed in a high percentage of tumors. This close association with human cancers has led to a tremendous effort to define their biological and biochemical activities. Although Myc family proteins have the capacity to elicit a wide range of cell behaviors, their principal function appears to be to drive cells into the cell cycle and to keep them there. However, forced expression of Myc profoundly sensitizes normal cells to apoptosis. Therefore, tumor formation caused by deregulated Myc expression requires cooperating events that disrupt pathways that mediate apoptosis. Myc-dependent tumor formation may also be impeded by a set of related bHLHZip proteins with the demonstrated potential to act as Myc antagonists in cell culture experiments. In this review, we examine the complex activities of Myc family proteins and how their actions might be regulated in the context of a network of bHLHZip proteins.
Collapse
Affiliation(s)
- Peter J Hurlin
- Portland Shriners Hospitals for Children and Department of Cell and Developmental Biology Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
446
|
Lewis BC, Klimstra DS, Varmus HE. The c-myc and PyMT oncogenes induce different tumor types in a somatic mouse model for pancreatic cancer. Genes Dev 2003; 17:3127-38. [PMID: 14681205 PMCID: PMC305263 DOI: 10.1101/gad.1140403] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have generated a mouse model for pancreatic cancer through the somatic delivery of oncogene-bearing avian retroviruses to mice that express TVA, the receptor for avian leukosis sarcoma virus subgroup A (ALSV-A), under the control of the elastase promoter. Delivery of ALSV-A-based RCAS vectors encoding either mouse polyoma virus middle T antigen (PyMT) or c-Myc to elastase-tv-a transgenic, Ink4a/Arf null mice induced the formation of pancreatic tumors. RCAS-PyMT induced pancreatic tumors with the histologic features of acinar or ductal carcinomas. The induced pancreatic lesions express Pdx1, a marker for pancreas progenitor cells, and many tumors express markers for both exocrine and endocrine cell lineages, suggesting that the tumors may be derived from progenitor cells. In contrast, RCAS-c-myc induced endocrine tumors exclusively, as determined by histology and detection of differentiation markers. Thus, specific oncogenes can induce the formation of different pancreatic tumor types in a single transgenic line, most likely from one or more types of multipotential progenitor cells. Our model appears to be useful for elucidating the genetic alterations, target cells, and signaling pathways that are important in the genesis of different types of pancreatic cancer.
Collapse
MESH Headings
- Animals
- Antigens, Polyomavirus Transforming/physiology
- Avian Leukosis Virus/genetics
- Avian Proteins
- Biomarkers, Tumor/analysis
- Carcinoma in Situ/genetics
- Carcinoma in Situ/metabolism
- Carcinoma in Situ/pathology
- Carcinoma, Acinar Cell/genetics
- Carcinoma, Acinar Cell/metabolism
- Carcinoma, Acinar Cell/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Transformation, Neoplastic/pathology
- Cyclin-Dependent Kinase Inhibitor p16/physiology
- Cystadenocarcinoma/genetics
- Cystadenocarcinoma/metabolism
- Cystadenocarcinoma/pathology
- DNA-Binding Proteins/metabolism
- Genetic Vectors
- Humans
- Insulinoma/pathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Paired Box Transcription Factors
- Pancreas/pathology
- Pancreatic Elastase/metabolism
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Plasmids/genetics
- Proto-Oncogene Proteins c-myc/physiology
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Transcription Factors/metabolism
- Transfection
- Tumor Suppressor Protein p14ARF/physiology
Collapse
Affiliation(s)
- Brian C Lewis
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | |
Collapse
|
447
|
Maclean KH, Keller UB, Rodriguez-Galindo C, Nilsson JA, Cleveland JL. c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL. Mol Cell Biol 2003; 23:7256-70. [PMID: 14517295 PMCID: PMC230315 DOI: 10.1128/mcb.23.20.7256-7270.2003] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alterations in MYC and p53 are hallmarks of cancer. p53 coordinates the response to gamma irradiation (gamma-IR) by either triggering apoptosis or cell cycle arrest. c-Myc activates the p53 apoptotic checkpoint, and thus tumors overexpressing MYC often harbor p53 mutations. Nonetheless, many of these cancers are responsive to therapy, suggesting that Myc may sensitize cells to gamma-IR independent of p53. In mouse embryo fibroblasts (MEFs) and in E micro -myc transgenic B cells in vivo, c-Myc acts in synergy with gamma-IR to trigger apoptosis, but alone, when cultured in growth medium, it does not induce a DNA damage response. Surprisingly, c-Myc also sensitizes p53-deficient MEFs to gamma-IR-induced apoptosis. In normal cells, and in precancerous B cells of E micro -myc transgenic mice, this apoptotic response is associated with the suppression of the antiapoptotic regulators Bcl-2 and Bcl-X(L) and with the concomitant induction of Puma, a proapoptotic BH3-only protein. However, in p53-null MEFs only Bcl-X(L) expression was suppressed, suggesting levels of Bcl-X(L) regulate the response to gamma-IR. Indeed, Bcl-X(L) overexpression blocked this apoptotic response, whereas bcl-X-deficient MEFs were inherently and selectively sensitive to gamma-IR-induced apoptosis. Therefore, MYC may sensitize tumor cells to DNA damage by suppressing Bcl-X.
Collapse
Affiliation(s)
- Kirsteen H Maclean
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
448
|
Abstract
Apoptosis, the cell-suicide programme executed by caspases, is critical for maintaining tissue homeostasis, and impaired apoptosis is now recognized to be a key step in tumorigenesis. Whether a cell should live or die is largely determined by the Bcl-2 family of anti- and proapoptotic regulators. These proteins respond to cues from various forms of intracellular stress, such as DNA damage or cytokine deprivation, and interact with opposing family members to determine whether or not the caspase proteolytic cascade should be unleashed. This review summarizes current views of how these proteins sense stress, interact with their relatives, perturb organelles such as the mitochondrion and endoplasmic reticulum and govern pathways to caspase activation. It briefly explores how family members influence cell-cycle entry and outlines the evidence for their involvement in tumour development, both as oncoproteins and tumour suppressors. Finally, it discusses the promise of novel anticancer therapeutics that target these vital regulators.
Collapse
Affiliation(s)
- Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Victoria, Australia.
| | | | | |
Collapse
|
449
|
Brunelle JK, Santore MT, Budinger GRS, Tang Y, Barrett TA, Zong WX, Kandel E, Keith B, Simon MC, Thompson CB, Hay N, Chandel NS. c-Myc sensitization to oxygen deprivation-induced cell death is dependent on Bax/Bak, but is independent of p53 and hypoxia-inducible factor-1. J Biol Chem 2003; 279:4305-12. [PMID: 14627695 DOI: 10.1074/jbc.m312241200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Deregulated expression of c-Myc can sensitize cells to a variety of death stimuli, including loss of growth factors and oxygen. In this study, we examined whether rodent fibroblasts that conditionally express c-Myc undergo a similar mechanism of cell death in response to serum or oxygen deprivation. Our results demonstrate that murine embryonic fibroblasts from bax-/-bak-/- mice that conditionally express c-Myc did not die in response to either oxygen or serum deprivation. Fibroblasts from p53-/- mice that conditionally express c-Myc died in response to oxygen (but not serum) deprivation. The inability of p53 to regulate oxygen deprivation-induced cell death was due to the lack of induction of p53 target genes Puma, Noxa, and Pten. In contrast, serum deprivation transcriptionally induced Puma and Pten in cells that conditionally express c-Myc. The failure of p53 to regulate oxygen deprivation-induced cell death led us to hypothesize whether hypoxia-inducible factor (HIF) might be a critical regulator of cell death during oxygen deprivation. Fibroblasts from HIF-1beta-/- cells that conditionally express c-Myc were not able to transcriptionally activate HIF during oxygen deprivation. These cells died in response to oxygen deprivation. Thus, oxygen deprivation-induced cell death in fibroblasts with deregulated expression of c-Myc is independent of p53 or HIF-1 status, but is dependent on the Bcl-2 family member Bax or Bak to initiate mitochondrial dependent cell death.
Collapse
Affiliation(s)
- Joslyn K Brunelle
- Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611-3010, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
450
|
Hipfner DR, Cohen SM. The Drosophila sterile-20 kinase slik controls cell proliferation and apoptosis during imaginal disc development. PLoS Biol 2003; 1:E35. [PMID: 14624240 PMCID: PMC261876 DOI: 10.1371/journal.pbio.0000035] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Accepted: 08/26/2003] [Indexed: 12/19/2022] Open
Abstract
Cell proliferation and programmed cell death are closely controlled during animal development. Proliferative stimuli generally also induce apoptosis, and anti-apoptotic factors are required to allow net cell proliferation. Genetic studies in Drosophila have led to identification of a number of genes that control both processes, providing new insights into the mechanisms that coordinate cell growth, proliferation, and death during development and that fail to do so in diseases of cell proliferation. We present evidence that the Drosophila Sterile-20 kinase Slik promotes cell proliferation and controls cell survival. At normal levels, Slik provides survival cues that prevent apoptosis. Cells deprived of Slik activity can grow, divide, and differentiate, but have an intrinsic survival defect and undergo apoptosis even under conditions in which they are not competing with normal cells for survival cues. Like some oncogenes, excess Slik activity stimulates cell proliferation, but this is compensated for by increased cell death. Tumor-like tissue overgrowth results when apoptosis is prevented. We present evidence that Slik acts via Raf, but not via the canonical ERK pathway. Activation of Raf can compensate for the lack of Slik and support cell survival, but activation of ERK cannot. We suggest that Slik mediates growth and survival cues to promote cell proliferation and control cell survival during Drosophila development. Identification and characterization of Slik as a new regulator of cell growth and survival based on loss-of-function and overexpression analysis
Collapse
|