401
|
Koh ES, Kim S, Kim M, Hong YA, Shin SJ, Park CW, Chang YS, Chung S, Kim HS. D‑Pinitol alleviates cyclosporine A‑induced renal tubulointerstitial fibrosis via activating Sirt1 and Nrf2 antioxidant pathways. Int J Mol Med 2018; 41:1826-1834. [PMID: 29393366 PMCID: PMC5810208 DOI: 10.3892/ijmm.2018.3408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022] Open
Abstract
Although the mechanism of cyclosporine A (CsA)-induced renal injury remains to be fully elucidated, accumulating evidence suggests that oxidative stress is critical in producing CsA-induced structural and functional renal impairment. The present study investigated the effect of D-pinitol, a cyclitol present in soybean, on chronic CsA nephropathy. Male ICR mice were treated with vehicle, CsA (30 mg/kg/day), D-pinitol (50 mg/kg/day) or a combination of CsA and D-pinitol for 28 days. To assess which pathway responding to oxidative stress is augmented by D-pinitol, the expression levels of several antioxidant enzymes and their possible regulators were measured. Treatment with D-pinitol significantly suppressed the increase of serum creatinine and decrease of urine osmolality, compared with the CsA control group. Histological examination of Masson's trichrome- and α-smooth muscle actin-stained renal tissue demonstrated that the CsA-induced tubulointerstitial fibrosis and inflammation were attenuated by D-pinitol. Following the administration of D-pinitol, there were increased expression levels of heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1, superoxide dismutase 1 and catalase in CsA-treated kidneys. In addition, D-pinitol increased the level of sirtuin 1 (Sirt1), and the total and nuclear expression levels of nuclear erythroid factor 2-related factor 2 (Nrf2), suggesting that activation of the Sirt1 and Nrf2 pathways may induce the cellular antioxi dant system against CsA-induced nephropathy. Collectively, these data suggested that D-pinitol may protect the kidney from CsA-induced fibrosis, and that this renoprotective effect of D-pinitol was due to the inhibition of oxidative stress through the activation of Sirt1 and Nrf2, and the subsequent enhancement of antioxidant enzymes.
Collapse
Affiliation(s)
- Eun Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Soojeong Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Minyoung Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yu Ah Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoon Sik Chang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
402
|
Chin MP, Bakris GL, Block GA, Chertow GM, Goldsberry A, Inker LA, Heerspink HJL, O'Grady M, Pergola PE, Wanner C, Warnock DG, Meyer CJ. Bardoxolone Methyl Improves Kidney Function in Patients with Chronic Kidney Disease Stage 4 and Type 2 Diabetes: Post-Hoc Analyses from Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes Study. Am J Nephrol 2018; 47:40-47. [PMID: 29402767 DOI: 10.1159/000486398] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Increases in measured inulin clearance, measured creatinine clearance, and estimated glomerular filtration rate (eGFR) have been observed with bardoxolone methyl in 7 studies enrolling approximately 2,600 patients with type 2 diabetes (T2D) and chronic kidney disease (CKD). The largest of these studies was Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes (BEACON), a multinational, randomized, double-blind, placebo-controlled phase 3 trial which enrolled patients with T2D and CKD stage 4. The BEACON trial was terminated after preliminary analyses showed that patients randomized to bardoxolone methyl experienced significantly higher rates of heart failure events. We performed post-hoc analyses to characterize changes in kidney function induced by bardoxolone methyl. METHODS Patients in -BEACON (n = 2,185) were randomized 1: 1 to receive once-daily bardoxolone methyl (20 mg) or placebo. We compared the effects of bardoxolone methyl and placebo on a post-hoc composite renal endpoint consisting of ≥30% decline from baseline in eGFR, eGFR <15 mL/min/1.73 m2, and end-stage renal disease (ESRD) events (provision of dialysis or kidney transplantation). RESULTS Consistent with prior studies, patients randomized to bardoxolone methyl experienced mean increases in eGFR that were sustained through study week 48. Moreover, increases in eGFR from baseline were sustained 4 weeks after cessation of treatment. Patients randomized to bardoxolone methyl were significantly less likely to experience the composite renal endpoint (hazards ratio 0.48 [95% CI 0.36-0.64]; p < 0.0001). CONCLUSIONS Bardoxolone methyl preserves kidney function and may delay the onset of ESRD in patients with T2D and stage 4 CKD.
Collapse
Affiliation(s)
| | | | | | - Glenn M Chertow
- Stanford University School of Medicine, Stanford, California, USA
| | | | | | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | - David G Warnock
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
403
|
Yaribeygi H, Farrokhi FR, Rezaee R, Sahebkar A. Oxidative stress induces renal failure: A review of possible molecular pathways. J Cell Biochem 2018; 119:2990-2998. [DOI: 10.1002/jcb.26450] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/17/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Habib Yaribeygi
- Health Research CenterBaqiyatallah University of Medical SciencesTehranIran
- Chronic Kidney Diseases Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Farin R. Farrokhi
- Chronic Kidney Diseases Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Amirhossein Sahebkar
- Biotechnology Research CenterInstitute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
- School of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
404
|
|
405
|
Lin EY, Bayarsengee U, Wang CC, Chiang YH, Cheng CW. The natural compound 2,3,5,4'-tetrahydroxystilbene-2-O-β-d glucoside protects against adriamycin-induced nephropathy through activating the Nrf2-Keap1 antioxidant pathway. ENVIRONMENTAL TOXICOLOGY 2018; 33:72-82. [PMID: 29064158 DOI: 10.1002/tox.22496] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/07/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (THSG) is an active compound extracted from Polygonum multiflorum Thunb. This herb and radix Polygoni Multiflori preparata have been used to treat arteriosclerosis, hyperlipidemia, hypercholesterolemia, and diabetes for thousands of years. This study aimed to investigate the protective effects of THSG in an Adriamycin (AD)-induced focal segmental glomerulosclerosis (FSGS) mouse model and the underlying mechanisms in an in vitro system. Mice were treated with THSG (2.5 and 10 mg/kg, oral gavage) for 24 consecutive days. On the third day, mice were intravenously given a single dose of AD (10 mg/kg). At the end of the experiment, plasma and kidney samples were harvested to evaluate the therapeutic effects of THSG. The potential mechanisms of THSG in protecting against AD-induced cytotoxicity were examined using a real-time polymerase chain reaction, immunoblots, lactate dehydrogenase assay, and a cellular oxidized-thiol detection system in a mouse mesangial cell line. In this study, THSG showed concentration-dependent protective effects in ameliorating the progression of AD-induced FSGS. THSG suppressed albuminuria and hypercholesterolemia and reduced the status of lipid peroxidation in urine, plasma, and kidney tissue samples. Furthermore, THSG protected against podocyte damage, reduced renal fibrotic gene expressions, and alleviated the severity of glomerulosclerosis. Treatment of mouse mesangial cells with THSG induced nuclear factor erythroid-derived 2-like 2 (Nrf2) nuclear translocation, increased heme oxygenase-1 and NAD(P)H:quinone oxidoreductase (NQO)-1 gene expressions, and reduced cellular thiol oxidation and resistance to AD-induced cytotoxicity. Silencing Nrf2 and its repressor protein, Kelch-like ECH-associated protein 1 (Keap1), abolished these protective effects of THSG. In conclusion, THSG can play a protective role in ameliorating the progression of FSGS in a mouse model through activation of the Nrf2-Keap1 antioxidant pathway. Although a well-designed therapeutic study is needed, THSG may be applied to manage chronic kidney disease.
Collapse
Affiliation(s)
- En-Yuan Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Neurosurgery, Department of Surgery, Taiwan Adventist Hospital, Taipei, Taiwan
| | - Uyanga Bayarsengee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, Shastin Central Hospital in Ulaanbaatar, Mongolia
| | - Ching-Chiung Wang
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
406
|
Zhang H, Gao Z, Zhang Y, Wang H, Li Y. MiR-873-5p regulated LPS-induced oxidative stress via targeting heme oxygenase-1 (HO-1) in KGN cells. RSC Adv 2018; 8:39098-39105. [PMID: 35558291 PMCID: PMC9090657 DOI: 10.1039/c8ra06697c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Endocrinology
- The First Affiliated Hospital of Henan Polytechnic University
- The Second People's Hospital of Jiaozuo
- Jiaozuo 454000
- China
| | - Zhengnan Gao
- Department of Endocrinology
- Dalian Municipal Centre Hospital
- Dalian 116033
- China
| | - Yanjie Zhang
- Department of Endocrinology
- The First Affiliated Hospital of Henan Polytechnic University
- The Second People's Hospital of Jiaozuo
- Jiaozuo 454000
- China
| | - Huihui Wang
- Department of Endocrinology
- The First Affiliated Hospital of Henan Polytechnic University
- The Second People's Hospital of Jiaozuo
- Jiaozuo 454000
- China
| | - Yongfeng Li
- Department of Endocrinology
- The First Affiliated Hospital of Henan Polytechnic University
- The Second People's Hospital of Jiaozuo
- Jiaozuo 454000
- China
| |
Collapse
|
407
|
Fenofibrate ameliorates diabetic retinopathy by modulating Nrf2 signaling and NLRP3 inflammasome activation. Mol Cell Biochem 2017; 445:105-115. [PMID: 29264825 DOI: 10.1007/s11010-017-3256-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/10/2017] [Indexed: 12/22/2022]
Abstract
Oxidative stress and neuroinflammation contribute significantly to the development and progression of diabetic retinopathy. Fenofibrate has received great attention as it benefits diabetic patients by reducing retinal laser requirement. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a master regulator of anti-oxidative defense. Activation of nucleotide binding domain, leucine-rich repeat-containing receptor (NLR), pyrin domain-containing 3 (NLRP3) inflammasome plays a pivotal role in neuroinflammation. The purpose of this study is to determine whether fenofibrate protects retinas from oxidative damage and neuroinflammation via modulating the Nrf2 pathway and blocking NLRP3 inflammasome activation during diabetes. Diabetes is induced by intraperitoneal injection of streptozotocin in mice. Fenofibrate was given to mice in rodent chow. Upregulation of Nrf2 and NLRP3 inflammasome, enhanced ROS formation, and increased leukostasis and vascular leakage were observed in diabetic mouse retinas. Notably, Nrf2 and Caspase-1 were mainly colocalized with glutamine synthetase, one of the Mȕller cell markers. Fenofibrate further increased the expression of Nrf2 and its target gene NQO-1 and HO-1 and reduced ROS formation in diabetic retinas. In addition, retinal expression of NLRP3, Caspase-1 p20, IL-1β p17, and ICAM-1 were dramatically increased in vehicle-treated diabetic mice, which were abolished by fenofibrate intervention. Moreover, fenofibrate treatment also attenuated diabetes-induced retinal leukostasis and vascular leakage in mice. Taken together, fenofibrate attenuates oxidative stress and neuroinflammation in diabetic retinas, which is at least partially through modulating Nrf2 expression and NLRP3 inflammasome activation.
Collapse
|
408
|
Jing W, Vaziri ND, Nunes A, Suematsu Y, Farzaneh T, Khazaeli M, Moradi H. LCZ696 (Sacubitril/valsartan) ameliorates oxidative stress, inflammation, fibrosis and improves renal function beyond angiotensin receptor blockade in CKD. Am J Transl Res 2017; 9:5473-5484. [PMID: 29312499 PMCID: PMC5752897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
Progressive deterioration of kidney function in chronic kidney disease (CKD) is mediated by hypertension, oxidative stress, inflammation, and fibrosis. Renin-angiotensin blockade is commonly used to retard CKD progression. In addition, vasoactive peptides have been shown to reduce blood pressure and exert antioxidant, anti-inflammatory and anti-fibrotic effects. We hypothesized that administration of LCZ696 (sacubitril/valsartan) is more effective than valsartan alone in slowing progression of CKD. Male Sprague Dawley rats underwent sham surgery or 5/6 nephrectomy and after two weeks the CKD animals were randomized to no treatment, valsartan (30 mg/kg), or LCZ696 (60 mg/kg) daily by gavage. Serum, urine and kidney tissue analyses were performed after 8 weeks. The untreated CKD rats exhibited hypertension, proteinuria, tubular and glomerular damage, upregulation of pro-inflammatory, pro-oxidant and pro-fibrotic pathways; reduction in nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its key target products. LCZ696 administration improved renal function and histology and attenuated most of the molecular markers of oxidative stress, inflammation and fibrosis. Furthermore, LCZ696 was more effective than valsartan therapy alone in delaying the progression of kidney disease. Future clinical trials are needed to determine the safety and efficacy of this agent in treatment of patients with CKD.
Collapse
Affiliation(s)
- Wanghui Jing
- Division of Nephrology and Hypertension, University of CaliforniaIrvine, CA, USA
- School of Pharmacy, Xi’an Jiaotong UniversityXi’an, PR China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of CaliforniaIrvine, CA, USA
| | - Ane Nunes
- Division of Nephrology and Hypertension, University of CaliforniaIrvine, CA, USA
| | - Yasunori Suematsu
- Division of Nephrology and Hypertension, University of CaliforniaIrvine, CA, USA
| | - Ted Farzaneh
- Department of Pathology and Laboratory Medicine, University of CaliforniaIrvine, USA
| | - Mahyar Khazaeli
- Division of Nephrology and Hypertension, University of CaliforniaIrvine, CA, USA
| | - Hamid Moradi
- Division of Nephrology and Hypertension, University of CaliforniaIrvine, CA, USA
- Department of Medicine, Nephrology Section, Long Beach Veteran Affairs Health SystemLong Beach, CA, USA
| |
Collapse
|
409
|
Urinary Markers of Oxidative Stress Are Associated With Albuminuria But Not GFR Decline. Kidney Int Rep 2017; 3:573-582. [PMID: 29854964 PMCID: PMC5976868 DOI: 10.1016/j.ekir.2017.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 01/12/2023] Open
Abstract
Introduction Markers of oxidative stress increase with age and are prevalent with chronic kidney disease. However, the role of oxidative stress markers as predictors for kidney function decline in the general population is unclear. Methods We investigated whether a baseline urinary excretion of oxidative DNA damage (8-oxo-7,8-dihydro-2′-deoxyguanosine [8-oxodG]) and oxidative RNA damage (8-oxo-7,8-dihydroguanosine [8-oxoGuo]) was associated with the age-related glomerular filtration rate (GFR) decline or incident low-grade albuminuria during a median of 5.6 years of follow-up. In the Renal Iohexol Clearance Survey in the Sixth Tromsø Study, we measured GFR using iohexol clearance in 1591 participants without renal disease, diabetes, or cardiovascular disease. Low-grade albuminuria was defined as an albumin-creatinine ratio >1.13 mg/mmol. Results The mean (SD) annual GFR change was −0.84 (2.00) ml/min per 1.73 m2 per year. In linear mixed models, urinary 8-oxodG and 8-oxoGuo levels were not associated with the GFR change rate. In a multivariable adjusted logistic regression model, a baseline urinary 8-oxoGuo in the highest quartile was associated with an increased risk of low-grade albuminuria at follow-up (odds ratio: 2.64; 95% confidence interval: 1.50–4.65). When the highest quartile of urinary 8-oxoGuo was added to the baseline model, the area under the receiver operating characteristics curve for predicting low-grade albuminuria at follow-up improved from 0.67 to 0.71 (P = 0.002). Conclusion Oxidative stress measured as urinary 8-oxoGuo excretion was independently associated with incident low-grade albuminuria, but neither 8-oxoGuo nor 8-oxodG predicted an accelerated age-related GFR decline in a cohort representative of the middle-aged general population during almost 6 years of follow-up.
Collapse
|
410
|
Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, Hughes TM, Craft S, Freedman BI, Bowden DW, Vinik AI, Casellini CM. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2017; 102:4343-4410. [PMID: 29126250 PMCID: PMC5718697 DOI: 10.1210/jc.2017-01922] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 01/18/2023]
Abstract
Both type 1 and type 2 diabetes adversely affect the microvasculature in multiple organs. Our understanding of the genesis of this injury and of potential interventions to prevent, limit, or reverse injury/dysfunction is continuously evolving. This statement reviews biochemical/cellular pathways involved in facilitating and abrogating microvascular injury. The statement summarizes the types of injury/dysfunction that occur in the three classical diabetes microvascular target tissues, the eye, the kidney, and the peripheral nervous system; the statement also reviews information on the effects of diabetes and insulin resistance on the microvasculature of skin, brain, adipose tissue, and cardiac and skeletal muscle. Despite extensive and intensive research, it is disappointing that microvascular complications of diabetes continue to compromise the quantity and quality of life for patients with diabetes. Hopefully, by understanding and building on current research findings, we will discover new approaches for prevention and treatment that will be effective for future generations.
Collapse
Affiliation(s)
- Eugene J. Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Zhenqi Liu
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Mogher Khamaisi
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - George L. King
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Timothy M. Hughes
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Suzanne Craft
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Barry I. Freedman
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Donald W. Bowden
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Aaron I. Vinik
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| | - Carolina M. Casellini
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| |
Collapse
|
411
|
Zhang ZH, Mao JR, Chen H, Su W, Zhang Y, Zhang L, Chen DQ, Zhao YY, Vaziri ND. Removal of uremic retention products by hemodialysis is coupled with indiscriminate loss of vital metabolites. Clin Biochem 2017; 50:1078-1086. [PMID: 28928007 DOI: 10.1016/j.clinbiochem.2017.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although dialysis ameliorates uremia and fluid and electrolytes disorders, annual mortality rate remains high in dialysis population reflecting its shortcoming in replacing renal function. Unlike the normal kidney, dialysis causes dramatic shifts in volume and composition of body fluids and indiscriminate removal of vital solutes. Present study was undertaken to determine the impact of hemodialysis on plasma metabolites in end-stage renal disease (ESRD) patients. METHODS 80 hemodialysis patients and 80 age/gender-matched healthy controls were enrolled in the study. Using ultra performance liquid chromatography-high-definition mass spectrometry, we measured plasma metabolites before, during, and after hemodialysis procedure and in blood entering and leaving the dialysis filter. RESULTS Principal component analysis revealed significant difference in concentration of 214 metabolites between healthy control and ESRD patients' pre-dialysis plasma (126 increased and 88 reduced in ESRD group). Comparison of post-dialysis with pre-dialysis data revealed significant changes in the 362 metabolites. Among ESI+ metabolites 195 decreased and 55 increased and among ESI- metabolites 82 decreased and 30 increased following hemodialysis. Single blood passage through the dialyzer caused significant changes in 323 metabolites. Comparison of ESRD patients' post-hemodialysis with healthy subjects' data revealed marked differences in metabolic profiles. We identified 55 of the 362 differential metabolites including well known uremic toxins, waste products and vital biological compounds. CONCLUSION In addition to uremic toxins and waste products hemodialysis removes large number of identified and as-yet un-identified metabolites. Depletion of vital biological compounds by dialysis may contribute to the high morbidity and annual mortality rate in this population.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China; School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jia-Rong Mao
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, No. 2 Xihuamen, Xi'an, Shaanxi 710003, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Yuan Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, No. 2 Jiefang Road, Xi'an, Shaanxi 710004, China
| | - Li Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, No. 2 Jiefang Road, Xi'an, Shaanxi 710004, China
| | - Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA 92897, USA.
| |
Collapse
|
412
|
Duni A, Liakopoulos V, Rapsomanikis KP, Dounousi E. Chronic Kidney Disease and Disproportionally Increased Cardiovascular Damage: Does Oxidative Stress Explain the Burden? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9036450. [PMID: 29333213 PMCID: PMC5733207 DOI: 10.1155/2017/9036450] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) patients are among the groups at the highest risk for cardiovascular disease and significantly shortened remaining lifespan. CKD enhances oxidative stress in the organism with ensuing cardiovascular damage. Oxidative stress in uremia is the consequence of higher reactive oxygen species (ROS) production, whereas attenuated clearance of pro-oxidant substances and impaired antioxidant defenses play a complementary role. The pathophysiological mechanism underlying the increased ROS production in CKD is at least partly mediated by upregulation of the intrarenal angiotensin system. Enhanced oxidative stress in the setting of the uremic milieu promotes enzymatic modification of circulating lipids and lipoproteins, protein carbamylation, endothelial dysfunction via disruption of nitric oxide (NO) pathways, and activation of inflammation, thus accelerating atherosclerosis. Left ventricular hypertrophy (LVH) and heart failure are hallmarks of CKD. NADPH oxidase activation, xanthine oxidase, mitochondrial dysfunction, and NO-ROS are the main oxidative pathways leading to LVH and the cardiorenal syndrome. Finally, a subset of antioxidant enzymes, the paraoxonases (PON), deserves special attention due to abundant clinical evidence accumulated regarding reduced serum PON1 activity in CKD as a contributor to the increased burden of cardiovascular disease. Future, meticulously designed studies are needed to assess the effects of antioxidant therapy on patients with CKD.
Collapse
Affiliation(s)
- Anila Duni
- Department of Nephrology, Medical School of the University of Ioannina, Ioannina, Greece
| | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Evangelia Dounousi
- Department of Nephrology, Medical School of the University of Ioannina, Ioannina, Greece
| |
Collapse
|
413
|
Deck LM, Hunsaker LA, Vander Jagt TA, Whalen LJ, Royer RE, Vander Jagt DL. Activation of anti-oxidant Nrf2 signaling by enone analogues of curcumin. Eur J Med Chem 2017; 143:854-865. [PMID: 29223100 DOI: 10.1016/j.ejmech.2017.11.048] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/31/2017] [Accepted: 11/18/2017] [Indexed: 12/24/2022]
Abstract
Inflammation and oxidative stress are common in many chronic diseases. Targeting signaling pathways that contribute to these conditions may have therapeutic potential. The transcription factor Nrf2 is a major regulator of phase II detoxification and anti-oxidant genes as well as anti-inflammatory and neuroprotective genes. Nrf2 is widespread in the CNS and is recognized as an important regulator of brain inflammation. The natural product curcumin exhibits numerous biological activities including ability to induce the expression of Nrf2-dependent phase II and anti-oxidant enzymes. Curcumin has been examined in a number of clinical studies with limited success, mainly owing to limited bioavailability and rapid metabolism. Enone analogues of curcumin were examined with an Nrf2 reporter assay to identify Nrf2 activators. Analogues were separated into groups with a 7-carbon dienone spacer, as found in curcumin; a 5-carbon enone spacer with and without a ring; and a 3-carbon enone spacer. Activators of Nrf2 were found in all three groups, many of which were more active than curcumin. Dose-response studies demonstrated that a range of substituents on the aromatic rings of these enones influenced not only the sensitivity to activation, reflected in EC50 values, but also the extent of activation, which suggests that multiple mechanisms are involved in the activation of Nrf2 by these analogues.
Collapse
Affiliation(s)
- Lorraine M Deck
- Department of Chemistry and Chemical Biology, University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Lucy A Hunsaker
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, MSC08 4670, Fitz Hall, Room 249, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Thomas A Vander Jagt
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, MSC08 4670, Fitz Hall, Room 249, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Lisa J Whalen
- Department of Chemistry and Chemical Biology, University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Robert E Royer
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, MSC08 4670, Fitz Hall, Room 249, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - David L Vander Jagt
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, MSC08 4670, Fitz Hall, Room 249, 1 University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
414
|
Cai W, Zhang Z, Huang Y, Sun H, Qiu L. Vaccarin alleviates hypertension and nephropathy in renovascular hypertensive rats. Exp Ther Med 2017; 15:924-932. [PMID: 29399101 PMCID: PMC5772753 DOI: 10.3892/etm.2017.5442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
The kidney is an important organ in the regulation of blood pressure, and it is also one of the primary target organs of hypertension. Kidney damage in response to hypertension eventually leads to renal insufficiency. The authors previously demonstrated that vaccarin exhibits a protective role in endothelial injury. However, the effects of vaccarin on the two-kidney, one clip (2K1C) renovascular hypertension model and subsequent kidney injury have yet to be fully elucidated. The present study was designed to investigate the roles and mechanisms of vaccarin in attenuating hypertension and whether vaccarin had beneficial effects on kidney injury. The 2K1C rats had greater fibrosis, apoptosis, reactive oxygen species production, inflammation, angiotensin II (Ang II) and angiotensin type 1 (AT1) receptors in the right kidney compared with normotensive rats, which were alleviated by a high dose of vaccarin and captopril. Vaccarin treatment attenuated hypertension, reduced fibrosis markers, NADPH oxidase (NOX)-2, NOX-4, 3-nitrotyrosine, tumor necrosis factor-α, interleukin 1β (IL-1β), and IL-6 protein levels and altered pro-apoptotic protein levels including caspase-3, anti-apoptosis protein B cell lymphoma (Bcl)-2 and Bcl-2 associated X, apoptosis regulator in the right kidney of 2K1C rats. These findings suggest that the protective effects of vaccarin on the right kidney in renovascular hypertension are possibly due to downregulation of fibrosis, inflammatory molecules, oxidative stress, Ang II, and AT1 receptor levels.
Collapse
Affiliation(s)
- Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Zhenpeng Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Yiqi Huang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
415
|
Liao W, Fu Z, Zou Y, Wen D, Ma H, Zhou F, Chen Y, Zhang M, Zhang W. MicroRNA-140-5p attenuated oxidative stress in Cisplatin induced acute kidney injury by activating Nrf2/ARE pathway through a Keap1-independent mechanism. Exp Cell Res 2017; 360:292-302. [DOI: 10.1016/j.yexcr.2017.09.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/21/2017] [Accepted: 09/13/2017] [Indexed: 02/09/2023]
|
416
|
Pereira A, Fernandes R, Crisóstomo J, Seiça RM, Sena CM. The Sulforaphane and pyridoxamine supplementation normalize endothelial dysfunction associated with type 2 diabetes. Sci Rep 2017; 7:14357. [PMID: 29085055 PMCID: PMC5662716 DOI: 10.1038/s41598-017-14733-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
In this study we investigate pyridoxamine (PM) and/or sulforaphane (SFN) as therapeutic interventions to determine whether activators of NFE2-related factor 2 (Nrf2) can be used in addition with inhibitors of advanced glycation end products (AGE) formation to attenuate oxidative stress and improve endothelial dysfunction in type 2 diabetes. Goto-kakizaki (GK) rats, an animal model of non-obese type 2 diabetes, were treated with or without PM and/or SFN during 8 weeks and compared with age-matched Wistar rats. At the end of the treatment, nitric oxide (NO)-dependent and independent vasorelaxation in isolated aorta and mesenteric arteries were evaluated. Metabolic profile, NO bioavailability and vascular oxidative stress, AGE and Nrf2 levels were also assessed. Diabetic GK rats presented significantly lower levels of Nrf2 and concomitantly exhibited higher levels of oxidative stress and endothelial dysfunction. PM and SFN as monotherapy were capable of significantly improving endothelial dysfunction in aorta and mesenteric arteries decreasing vascular oxidative damage, AGE and HbA1c levels. Furthermore, SFN + PM proved more effective reducing systemic free fatty acids levels, normalizing endothelial function, NO bioavailability and glycation in GK rats. Activators of Nrf2 can be used therapeutically in association with inhibitors of AGE and cross-linking formation to normalize endothelial dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Ana Pereira
- Physiology, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rosa Fernandes
- Ophthalmology, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Joana Crisóstomo
- Physiology, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Raquel M Seiça
- Physiology, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cristina M Sena
- Physiology, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
417
|
An L, Zhou M, Marikar FMMT, Hu XW, Miao QY, Li P, Chen J. Salvia miltiorrhiza Lipophilic Fraction Attenuates Oxidative Stress in Diabetic Nephropathy through Activation of Nuclear Factor Erythroid 2-Related Factor 2. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1441-1457. [PMID: 28946766 DOI: 10.1142/s0192415x17500781] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetic nephropathy (DN) is a common cause of chronic kidney disease and end-stage renal disease, which can be triggered by oxidative stress. In this study, we investigated the renoprotective effect of the ethyl acetate extract of Salvia miltiorrhiza (EASM) on DN and examined the underlying molecular mechanism. We observed that EASM treatment attenuated metabolic abnormalities associated with hyperglycemic conditions in the experimental DN model. In streptozotocin (STZ)-induced mice, EASM treatment reduced albuminuria, improved renal function and alleviated the pathological alterations within the glomerulus. To mimic the hyperglycemic conditions in DN patients, we used high glucose (25[Formula: see text]mmol/L) media to stimulate mouse mesangial cells (MMCs), and EASM inhibited high glucose-induced reactive oxygen species. We also observed that EASM enhanced the expression of nuclear factor erythroid-2-related factor 2 (Nrf2), which mediated the anti-oxidant response, and its downstream gene heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) with concomitant decrease of expression of kelch-like ECH-associated protein 1 (keap1) both in vitro and in vivo. Taken together, these results suggest that EASM alleviates the progression of DN and this might be associated with activation of Nrf2.
Collapse
Affiliation(s)
- Lin An
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, P. R. China
| | - Mei Zhou
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, P. R. China
| | - Faiz M M T Marikar
- † Molecular Biology Unit, Sir John Kotelawala Defence University, Kandawala Estate, Ratmalana, Sri Lanka
| | - Xue-Wen Hu
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, P. R. China
| | - Qiu-Yun Miao
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, P. R. China
| | - Ping Li
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, P. R. China
| | - Jun Chen
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, P. R. China
| |
Collapse
|
418
|
He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, Dong Z. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int 2017; 92:1071-1083. [PMID: 28890325 DOI: 10.1016/j.kint.2017.06.030] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected. Although AKI-to-CKD transition has been intensively studied, the information of AKI on CKD is very limited. Nonetheless, AKI, when occurring in patients with CKD, is known to be more severe and difficult to recover. CKD is associated with significant changes in cell signaling in kidney tissues, including the activation of transforming growth factor-β, p53, hypoxia-inducible factor, and major developmental pathways. At the cellular level, CKD is characterized by mitochondrial dysfunction, oxidative stress, and aberrant autophagy. At the tissue level, CKD is characterized by chronic inflammation and vascular dysfunction. These pathologic changes may contribute to the heightened sensitivity of, and nonrecovery from, AKI in patients with CKD.
Collapse
Affiliation(s)
- Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Jing Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Mixuan Yi
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manjeri A Venkatachalam
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA.
| |
Collapse
|
419
|
Abstract
The kidney requires a large number of mitochondria to remove waste from the blood and regulate fluid and electrolyte balance. Mitochondria provide the energy to drive these important functions and can adapt to different metabolic conditions through a number of signalling pathways (for example, mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) pathways) that activate the transcriptional co-activator peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α), and by balancing mitochondrial dynamics and energetics to maintain mitochondrial homeostasis. Mitochondrial dysfunction leads to a decrease in ATP production, alterations in cellular functions and structure, and the loss of renal function. Persistent mitochondrial dysfunction has a role in the early stages and progression of renal diseases, such as acute kidney injury (AKI) and diabetic nephropathy, as it disrupts mitochondrial homeostasis and thus normal kidney function. Improving mitochondrial homeostasis and function has the potential to restore renal function, and administering compounds that stimulate mitochondrial biogenesis can restore mitochondrial and renal function in mouse models of AKI and diabetes mellitus. Furthermore, inhibiting the fission protein dynamin 1-like protein (DRP1) might ameliorate ischaemic renal injury by blocking mitochondrial fission.
Collapse
|
420
|
Jabbari B, Vaziri ND. The nature, consequences, and management of neurological disorders in chronic kidney disease. Hemodial Int 2017; 22:150-160. [PMID: 28799704 DOI: 10.1111/hdi.12587] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Perhaps no other organ in the body is affected as often and in as many ways as the brain is in patients with chronic kidney disease (CKD). Several factors contribute to the neurological disorders in CKD including accumulation of uremic toxins, metabolic and hemodynamic disorders, oxidative stress, inflammation, and impaired blood brain barrier among others. The neurological disorders in CKD involve both peripheral and central nervous system. The peripheral neurological symptoms of CKD are due to somatic and cranial peripheral neuropathies as well as a myopathy. The central neurological symptoms of CKD are due to the cortical predominantly cortical, or subcortical lesions. Cognitive decline, encephalopathy, cortical myoclonus, asterixis and epileptic seizures are distinct features of the cortical disorders of CKD. Diffuse white matter disease due to ischemia and hypoxia may be an important cause of subcortical encephalopathy. A special and more benign form of subcortical disorder caused by brain edema in CKD is termed posterior reversible encephalopathy. Subcortical pathology especially when it affects the basal ganglia causes a number of movement disorders including Parkinsonism, chorea and dystonia. A stimulus-sensitive reflex myoclonus is believed to originate from the medullary structures. Sleep disorder and restless leg syndrome are common in CKD and have both central and peripheral origin. This article provides an overview of the available data on the nature, prevalence, pathophysiology, consequences and treatment of neurological complications of CKD.
Collapse
Affiliation(s)
- Bahman Jabbari
- Department of Neurology, Division of Movement disorders, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nosratola D Vaziri
- Departments of Medicine, Physiology and Biophysics, Division of Nephrology and Hypertension, University of California, Irvine, USA
| |
Collapse
|
421
|
Vaugier C, Amano MT, Chemouny JM, Dussiot M, Berrou C, Matignon M, Ben Mkaddem S, Wang PHM, Fricot A, Maciel TT, Grapton D, Mathieu JRR, Beaumont C, Peraldi MN, Peyssonnaux C, Mesnard L, Daugas E, Vrtovsnik F, Monteiro RC, Hermine O, Ginzburg YZ, Benhamou M, Camara NOS, Flamant M, Moura IC. Serum Iron Protects from Renal Postischemic Injury. J Am Soc Nephrol 2017; 28:3605-3615. [PMID: 28784700 DOI: 10.1681/asn.2016080926] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 06/30/2017] [Indexed: 01/09/2023] Open
Abstract
Renal transplants remain a medical challenge, because the parameters governing allograft outcome are incompletely identified. Here, we investigated the role of serum iron in the sterile inflammation that follows kidney ischemia-reperfusion injury. In a retrospective cohort study of renal allograft recipients (n=169), increased baseline levels of serum ferritin reliably predicted a positive outcome for allografts, particularly in elderly patients. In mice, systemic iron overload protected against renal ischemia-reperfusion injury-associated sterile inflammation. Furthermore, chronic iron injection in mice prevented macrophage recruitment after inflammatory stimuli. Macrophages cultured in high-iron conditions had reduced responses to Toll-like receptor-2, -3, and -4 agonists, which associated with decreased reactive oxygen species production, increased nuclear localization of the NRF2 transcription factor, increased expression of the NRF2-related antioxidant response genes, and limited NF-κB and proinflammatory signaling. In macrophage-depleted animals, the infusion of macrophages cultured in high-iron conditions did not reconstitute AKI after ischemia-reperfusion, whereas macrophages cultured in physiologic iron conditions did. These findings identify serum iron as a critical protective factor in renal allograft outcome. Increasing serum iron levels in patients may thus improve prognosis of renal transplants.
Collapse
Affiliation(s)
- Céline Vaugier
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (UMR)1163, Paris, France.,Sorbonne Paris Cité, Université René Descartes, Imagine Institute, Paris, France.,Centre National de la Recherche Scientifique Equipe de Recherche Labellisée (ERL)8254, Paris, France.,Laboratoire d'excellence GR-Ex, Paris, France
| | - Mariane T Amano
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, Sao Paulo, Brazil
| | - Jonathan M Chemouny
- Université Denis-Diderot, Laboratoire d'excellence INFLAMEX, Paris, France.,UMR1149, Paris, France.,ERL8252, Paris, France.,Departments of Nephrology
| | - Michael Dussiot
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (UMR)1163, Paris, France.,Sorbonne Paris Cité, Université René Descartes, Imagine Institute, Paris, France.,Centre National de la Recherche Scientifique Equipe de Recherche Labellisée (ERL)8254, Paris, France.,Laboratoire d'excellence GR-Ex, Paris, France
| | - Claire Berrou
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (UMR)1163, Paris, France.,Sorbonne Paris Cité, Université René Descartes, Imagine Institute, Paris, France.,Centre National de la Recherche Scientifique Equipe de Recherche Labellisée (ERL)8254, Paris, France.,Laboratoire d'excellence GR-Ex, Paris, France
| | - Marie Matignon
- Department of Nephrology and Transplantation, AP-HP, Hôpital Henri Mondor, Institut Francilien de recherche en Néphrologie et Transplantation, Paris-Est Université, Creteil, France
| | - Sanae Ben Mkaddem
- Université Denis-Diderot, Laboratoire d'excellence INFLAMEX, Paris, France.,UMR1149, Paris, France.,ERL8252, Paris, France
| | - Pamella H M Wang
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (UMR)1163, Paris, France.,Sorbonne Paris Cité, Université René Descartes, Imagine Institute, Paris, France.,Centre National de la Recherche Scientifique Equipe de Recherche Labellisée (ERL)8254, Paris, France.,Laboratoire d'excellence GR-Ex, Paris, France
| | - Aurélie Fricot
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (UMR)1163, Paris, France.,Sorbonne Paris Cité, Université René Descartes, Imagine Institute, Paris, France.,Centre National de la Recherche Scientifique Equipe de Recherche Labellisée (ERL)8254, Paris, France.,Laboratoire d'excellence GR-Ex, Paris, France
| | - Thiago T Maciel
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (UMR)1163, Paris, France.,Sorbonne Paris Cité, Université René Descartes, Imagine Institute, Paris, France.,Centre National de la Recherche Scientifique Equipe de Recherche Labellisée (ERL)8254, Paris, France.,Laboratoire d'excellence GR-Ex, Paris, France
| | - Damien Grapton
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (UMR)1163, Paris, France.,Sorbonne Paris Cité, Université René Descartes, Imagine Institute, Paris, France.,Centre National de la Recherche Scientifique Equipe de Recherche Labellisée (ERL)8254, Paris, France.,Laboratoire d'excellence GR-Ex, Paris, France
| | | | | | | | | | - Laurent Mesnard
- UMR702, Paris, France.,Urgences Néphrologiques et Transplantation Rénale, AP-HP, Hôpital Tenon, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Eric Daugas
- Université Denis-Diderot, Laboratoire d'excellence INFLAMEX, Paris, France.,UMR1149, Paris, France.,ERL8252, Paris, France.,Departments of Nephrology
| | - François Vrtovsnik
- Université Denis-Diderot, Laboratoire d'excellence INFLAMEX, Paris, France.,UMR1149, Paris, France.,ERL8252, Paris, France.,Departments of Nephrology
| | - Renato C Monteiro
- Université Denis-Diderot, Laboratoire d'excellence INFLAMEX, Paris, France.,UMR1149, Paris, France.,ERL8252, Paris, France.,Immunology, and
| | - Olivier Hermine
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (UMR)1163, Paris, France.,Sorbonne Paris Cité, Université René Descartes, Imagine Institute, Paris, France.,Centre National de la Recherche Scientifique Equipe de Recherche Labellisée (ERL)8254, Paris, France.,Laboratoire d'excellence GR-Ex, Paris, France.,Department of Clinical Hematology, AP-HP, Hôpital Necker-Enfants Malades, Paris, France.,Equipe labellisée LIGUE 2015, Paris, France; and
| | - Yelena Z Ginzburg
- Erythropoiesis Laboratory, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Marc Benhamou
- Université Denis-Diderot, Laboratoire d'excellence INFLAMEX, Paris, France.,UMR1149, Paris, France.,ERL8252, Paris, France
| | - Niels O S Camara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, Sao Paulo, Brazil
| | - Martin Flamant
- Université Denis-Diderot, Laboratoire d'excellence INFLAMEX, Paris, France.,UMR1149, Paris, France.,ERL8252, Paris, France.,Physiology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bichat-Claude Bernard, Paris, France
| | - Ivan C Moura
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (UMR)1163, Paris, France; .,Sorbonne Paris Cité, Université René Descartes, Imagine Institute, Paris, France.,Centre National de la Recherche Scientifique Equipe de Recherche Labellisée (ERL)8254, Paris, France.,Laboratoire d'excellence GR-Ex, Paris, France.,Equipe labellisée LIGUE 2015, Paris, France; and
| |
Collapse
|
422
|
Mavangira V, Sordillo LM. Role of lipid mediators in the regulation of oxidative stress and inflammatory responses in dairy cattle. Res Vet Sci 2017; 116:4-14. [PMID: 28807478 DOI: 10.1016/j.rvsc.2017.08.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/20/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
Periparturient dairy cows experience an increased incidence and severity of several inflammatory-based diseases such as mastitis and metritis. Factors associated with the physiological adaptation to the onset of lactation can impact the efficiency of the inflammatory response at a time when it is most needed to eliminate infectious pathogens that cause these economically important diseases. Oxidative stress, for example, occurs when there is an imbalance between the production of oxygen radicals during periods of high metabolic demand and the reduced capabilities of the host's antioxidant defenses. The progressive development of oxidative stress in early lactation cows is thought to be a significant underlying factor leading to dysfunctional inflammatory responses. Reactive oxygen species (ROS) are also produced by leukocytes during inflammation resulting in positive feedback loops that can further escalate oxidative stress during the periparturient period. During oxidative stress, ROS can modify polyunsaturated fatty acids (PUFA) associated with cellular membranes, resulting in the biosynthesis of oxidized products called oxylipids. Depending on the PUFA substrate and oxidation pathway, oxylipids have the capacity of either enhancing or resolving inflammation. In mediating their effects, oxylipids can directly or indirectly target sites of ROS production and thus control the degree of oxidative stress. This review discusses the evidence supporting the roles of oxylipids in the regulation of oxidative stress and the subsequent development of uncontrolled inflammatory responses. Further, the utility of some of the oxylipids as oxidative stress markers that can be exploited in developing and monitoring therapies for inflammatory-based diseases in dairy cattle is discussed. Understanding of the link between some oxylipids and the development or resolution of oxidative stress could provide novel therapeutic targets to limit immunopathology, reduce antibiotic usage, and optimize the resolution of inflammatory-based diseases in periparturient dairy cows.
Collapse
Affiliation(s)
- Vengai Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824, United States
| | - Lorraine M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824, United States.
| |
Collapse
|
423
|
Roushandeh AM, Bahadori M, Roudkenar MH. Mesenchymal Stem Cell-based Therapy as a New Horizon for Kidney Injuries. Arch Med Res 2017. [PMID: 28625316 DOI: 10.1016/j.arcmed.2017.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Today, the prevalence of kidney diseases is increasing around the world, but there has still been no effective medical treatment. The therapeutic choices are confined to supportive cares and preventive strategies. Currently, mesenchymal stem cells (MSCs)-based cell therapy was proposed for the treatment of kidney injuries. However, after the transplantation of MSCs, they are exposed to masses of cytotoxic factors involving an inflammatory cytokine storm, a nutritionally-poor hypoxic environment and oxidative stresses that finally lead to minimize the efficacy of MSCs based cell therapy. Therefore, several innovative strategies were developed in order to potentiate MSCs to withstand the unfavorable microenvironments of the injured kidney tissues and improve their therapeutic potentials. This review aims to introduce MSCs as a new modality in the treatment of renal failure. Here, we discuss the clinical trials of MSCs-based therapy in kidney diseases as well as the in vivo studies dealing with MSCs application in kidney injuries mainly from the proliferation, differentiation, migration and survival points of view. The obstacles and challenges of this new modality in kidney injuries are also discussed.
Collapse
Affiliation(s)
| | - Marzie Bahadori
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehryar Habibi Roudkenar
- Medical Biotechnology Research Center, Paramedicine Faculty, Guilan University of Medical Sciences Rasht, Iran.
| |
Collapse
|
424
|
Chen DQ, Cao G, Chen H, Liu D, Su W, Yu XY, Vaziri ND, Liu XH, Bai X, Zhang L, Zhao YY. Gene and protein expressions and metabolomics exhibit activated redox signaling and wnt/β-catenin pathway are associated with metabolite dysfunction in patients with chronic kidney disease. Redox Biol 2017; 12:505-521. [PMID: 28343144 PMCID: PMC5369369 DOI: 10.1016/j.redox.2017.03.017] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/06/2017] [Accepted: 03/21/2017] [Indexed: 11/27/2022] Open
Abstract
Changes in plasma concentration of small organic metabolites could be due to their altered production or urinary excretion and changes in their urine concentration may be due to the changes in their filtered load, tubular reabsorption, and/or altered urine volume. Therefore, these factors should be considered in interpretation of the changes observed in plasma or urine of the target metabolite(s). Fasting plasma and urine samples from 180 CKD patients and 120 age-matched healthy controls were determined by UPLC-HDMS-metabolomics and quantitative real-time RT-PCR techniques. Compared with healthy controls, patients with CKD showed activation of NF-κB and up-regulation of pro-inflammatory and pro-oxidant mRNA and protein expression as well as down-regulation of Nrf2-associated anti-oxidant gene mRNA and protein expression, accompanied by activated canonical Wnt/β-catenin signaling. 124 plasma and 128 urine metabolites were identified and 40 metabolites were significantly altered in both plasma and urine. Plasma concentration and urine excretion of 25 metabolites were distinctly different between CKD and controls. They were related to amino acid, methylamine, purine and lipid metabolisms. Logistic regression identified four plasma and five urine metabolites. Parts of them were good correlated with eGFR or serum creatinine. 5-Methoxytryptophan and homocystine and citrulline were good correlated with both eGFR and creatinine. Clinical factors were incorporated to establish predictive models. The enhanced metabolite model showed 5-methoxytryptophan, homocystine and citrulline have satisfactory accuracy, sensitivity and specificity for predictive CKD. The dysregulation of CKD was related to amino acid, methylamine, purine and lipid metabolisms. 5-methoxytryptophan, homocystine and citrulline could be considered as additional GFR-associated biomarker candidates and for indicating advanced renal injury. CKD caused dysregulation of the plasma and urine metabolome, activation of inflammatory/oxidative pathway and Wnt/β-catenin signaling and suppression of antioxidant pathway.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Gang Cao
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Dan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Xiao-Yong Yu
- Department of Nephrology, Affiliated Hospital of Shaanxi Institute of Traditional Chinese Medicine, No. 2 Xihuamen, Xi'an, Shaanxi 710003, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, MedSci 1 C352, Irvine, CA 92897, USA
| | - Xiu-Hua Liu
- School of Pharmacy, Henan University, Kaifeng, No. 85 Minglun Road, Henan 475004, China
| | - Xu Bai
- Solution Centre, Waters Technologies (Shanghai) Ltd., No. 1000 Jinhai Road, Shanghai 201203, China
| | - Li Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, No. 21 Jiefang Road, Xi'an 710004, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
425
|
Tin A, Scharpf R, Estrella MM, Yu B, Grove ML, Chang PP, Matsushita K, Köttgen A, Arking DE, Boerwinkle E, Le TH, Coresh J, Grams ME. The Loss of GSTM1 Associates with Kidney Failure and Heart Failure. J Am Soc Nephrol 2017; 28:3345-3352. [PMID: 28720685 DOI: 10.1681/asn.2017030228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/08/2017] [Indexed: 12/19/2022] Open
Abstract
Glutathione S-transferase mu 1 (GSTM1) encodes an enzyme that catalyzes the conjugation of electrophilic compounds with glutathione to facilitate their degradation or excretion. The loss of one or both copies of GSTM1 is common in many populations and has been associated with CKD progression. With the hypothesis that the loss of GSTM1 is also associated with incident kidney failure and heart failure, we estimated GSTM1 copy number using exome sequencing reads in the Atherosclerosis Risk in Communities (ARIC) Study, a community-based prospective cohort of white and black participants. Overall, 51.2% and 39.8% of white participants and 25.6% and 48.5% of black participants had zero or one copy of GSTM1, respectively. Over a median follow-up of 24.6 years, 256 kidney failure events occurred in 5715 participants without prevalent kidney failure, and 1028 heart failure events occurred in 5368 participants without prevalent heart failure. In analysis adjusted for demographics, diabetes, and hypertension, having zero or one copy of GSTM1 associated with higher risk of kidney failure and heart failure (adjusted hazard ratio [95% confidence interval] for zero or one versus two copies of GSTM1: kidney failure, 1.66 [1.27 to 2.17]; heart failure, 1.16 [1.04 to 1.29]). Risk did not differ significantly between participants with zero and one copy of GSTM1 (P>0.10). In summary, the loss of GSTM1 was significantly associated with incident kidney and heart failure, independent of traditional risk factors. These results suggest GSTM1 function is a potential treatment target for the prevention of kidney and heart failure.
Collapse
Affiliation(s)
- Adrienne Tin
- Departments of Epidemiology and .,Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland
| | - Robert Scharpf
- Divisions of Oncology.,Biostatistics and Bioinformatics.,Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Michelle M Estrella
- Kidney Health Research Collaborative, University of California, San Francisco, San Francisco, California.,Kidney Health Research Collaborative, Department of Medicine, School of Medicine, University of California, San Francisco, California
| | - Bing Yu
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas
| | - Megan L Grove
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas
| | - Patricia P Chang
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kunihiro Matsushita
- Departments of Epidemiology and.,Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland
| | - Anna Köttgen
- Departments of Epidemiology and.,Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; and
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland.,Cardiology, and
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas
| | - Thu H Le
- Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Josef Coresh
- Departments of Epidemiology and.,Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland
| | - Morgan E Grams
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland.,Nephrology, and
| |
Collapse
|
426
|
Sutariya B, Taneja N, Saraf M. Betulinic acid, isolated from the leaves of Syzygium cumini (L.) Skeels, ameliorates the proteinuria in experimental membranous nephropathy through regulating Nrf2/NF-κB pathways. Chem Biol Interact 2017; 274:124-137. [PMID: 28711658 DOI: 10.1016/j.cbi.2017.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/04/2017] [Accepted: 07/12/2017] [Indexed: 01/03/2023]
Abstract
Membranous nephropathy (MN) is associated with increased oxidative stress and inflammatory markers in the kidney. Betulinic acid (BA) is a potent antioxidant and anti-inflammatory compound isolated from the leaves of Syzygium cumini (L.) Skeels. In the present study, we investigated the effects of BA on experimental MN in rats and explored the mechanisms by which it enhances antioxidant activities and resolves inflammatory condition in experimental MN. Passive Heymann nephritis (PHN) was induced in Sprague-Dawley rats by a single tail vein injection of anti- Fx1A antiserum. The rats were orally administered BA (25 and 50 mg kg -1 d -1) or dexamethasone (DEX; 0.07 mg kg-1, reference compound) for 4 weeks after the induction of PHN. Blood, urine, and kidney tissue were collected for analysis at the end of the study. Treatment of PHN rats with BA or DEX significantly attenuated renal dysfunction, histopathological alterations and reduced immune complex deposition in the kidneys. Furthermore, BA ameliorated mRNA and protein expression of NF-κB, iNOS, TNF-α, Nrf2, HO-1 and NQO1 in the kidney. BA also restored malondialdehyde level and antioxidant enzyme activities in the kidney. In a nutshell, the protective effect of BA can be explained by its anti-inflammatory and anti-oxidant activities, which in turn is due to downregulation of NF-κB pathway and activation of Nrf2. The results indicated that BA can effectively suppress experimental PHN in rats by regulating Nrf2/NF-κB pathways.
Collapse
Affiliation(s)
- Brijesh Sutariya
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai, 400068, Maharashtra, India
| | - Neetika Taneja
- Department of Pharmaceutics, C.U. Shah College of Pharmacy, Juhu Road, Santacruz (West), Mumbai, 400049, Maharashtra, India
| | - Madhusudan Saraf
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai, 400068, Maharashtra, India.
| |
Collapse
|
427
|
Perez-Leal O, Barrero CA, Merali S. Pharmacological stimulation of nuclear factor (erythroid-derived 2)-like 2 translation activates antioxidant responses. J Biol Chem 2017; 292:14108-14121. [PMID: 28684421 DOI: 10.1074/jbc.m116.770925] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/05/2017] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the master regulator of the antioxidant response, and its function is tightly regulated at the transcriptional, translational, and post-translational levels. It is well-known that Nrf2 is regulated at the protein level by proteasomal degradation via Kelch-like ECH-associated protein 1 (Keap1), but how Nrf2 is regulated at the translational level is less clear. Here, we show that pharmacological stimulation increases Nrf2 levels by overcoming basal translational repression. We developed a novel reporter assay that enabled identification of natural compounds that induce Nrf2 translation by a mechanism independent of Keap1-mediated degradation. Apigenin, resveratrol, and piceatannol all induced Nrf2 translation. More importantly, the pharmacologically induced Nrf2 overcomes Keap1 regulation, translocates to the nucleus, and activates the antioxidant response. We conclude that translational regulation controls physiological levels of Nrf2, and this can be modulated by apigenin, resveratrol, and piceatannol. Also, targeting this mechanism with novel compounds could provide new insights into prevention and treatment of multiple diseases in which oxidative stress plays a significant role.
Collapse
Affiliation(s)
- Oscar Perez-Leal
- From the Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140.
| | - Carlos Alberto Barrero
- From the Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140
| | - Salim Merali
- From the Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140.
| |
Collapse
|
428
|
Esgalhado M, Stenvinkel P, Mafra D. Nonpharmacologic Strategies to Modulate Nuclear Factor Erythroid 2–related Factor 2 Pathway in Chronic Kidney Disease. J Ren Nutr 2017; 27:282-291. [DOI: 10.1053/j.jrn.2017.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/03/2016] [Accepted: 01/06/2017] [Indexed: 01/25/2023] Open
|
429
|
Chen DQ, Chen H, Chen L, Vaziri ND, Wang M, Li XR, Zhao YY. The link between phenotype and fatty acid metabolism in advanced chronic kidney disease. Nephrol Dial Transplant 2017; 32:1154-1166. [PMID: 28339984 DOI: 10.1093/ndt/gfw415] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/12/2016] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND The kidney plays a central role in elimination of metabolic waste products and regulation of low-molecular weight metabolites via glomerular filtration, tubular secretion and reabsorption. Disruption of these processes results in profound changes in the biochemical milieu of the body fluids, which contribute to complications of chronic kidney disease (CKD) by inducing cytotoxicity and inflammation. Insight into the changes of the composition of metabolites and dysregulation of target genes and proteins enhances the understanding of the pathophysiology of CKD and its complications, and the development of novel therapeutic strategies. Chronic interstitial nephropathy is a common cause of CKD. The present study was designed to determine the effect of chronic interstitial nephropathy on the composition of serum metabolites and regulation of oxidative, inflammatory, fibrotic and cytoprotective pathways. METHODS Male Sprague-Dawley rats were randomized to the CKD and control groups ( n = 8/group). CKD was induced by administration of adenine (200 mg/kg body weight/day) by oral gavage for 3 weeks. The control group was treated with the vehicle alone. The animals were then observed for an additional 3 weeks, at which point they were sacrificed and kidney and serum samples were collected. Serum metabolomic and lipidomic analyses were performed using ultra-performance liquid chromatography-quadrupole time-of-flight high-definition mass spectrometry. Kidney tissues were processed for histological and molecular biochemical analyses. RESULTS CKD rats exhibited increased plasma urea and creatinine concentrations, renal interstitial fibrosis, tubular damage and up-regulation of pro-inflammatory, pro-oxidant and pro-fibrotic pathways. Comparison of serum from CKD and control rats revealed significant differences in concentrations of amino acids and lipids including 33 metabolites and 35 lipid species. This was associated with marked abnormalities of fatty acid oxidation, and γ-linolenic acid and linoleic acid metabolism in CKD rats. Logistic regression analysis identified tetracosanoic acid, docosatrienoic acid, PC(18:3/14:1) and l -aspartic acid, tetracosanoic acid and docosatrienoic acid as novel biomarkers of chronic interstitial nephropathy. CONCLUSIONS Advanced CKD in rats with adenine-induced chronic interstitial nephropathy results in profound changes in the serum metabolome, activation of inflammatory, oxidative and fibrotic pathways, and suppression of cytoprotective and antioxidant pathways.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Lin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Ming Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xiang-Ri Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
430
|
Sun W, Liu X, Zhang H, Song Y, Li T, Liu X, Liu Y, Guo L, Wang F, Yang T, Guo W, Wu J, Jin H, Wu H. Epigallocatechin gallate upregulates NRF2 to prevent diabetic nephropathy via disabling KEAP1. Free Radic Biol Med 2017; 108:840-857. [PMID: 28457936 DOI: 10.1016/j.freeradbiomed.2017.04.365] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/04/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022]
Abstract
Epigallocatechin gallate (EGCG) is the most abundant and effective green tea catechin and has been reported to attenuate diabetic nephropathy (DN). However, the mechanism by which EGCG ameliorates DN, till now, has remained unclear. EGCG is known as a potent activator of nuclear factor erythroid 2-related factor 2 (NRF2), which plays a key role in cellular defense against diabetes-induced oxidative stress and in the prevention of DN. In the present study, we tested whether NRF2 is required for EGCG protection against DN. Therefore, C57BL/6 wild type (WT) and Nrf2 knockout mice were induced to diabetes by streptozotocin, in the presence or absence of a 24-week treatment with EGCG. In the WT mice, EGCG activated Nrf2 expression and function without altering the expression of Kelch-like ECH-associated protein 1 (Keap1). Diabetes-induced renal oxidative damage, inflammation, fibrosis and albuminuria were significantly prevented by EGCG. Notably, deletion of the Nrf2 gene completely abrogated these actions of EGCG. To further determine the effect of EGCG on KEAP1/NRF2 signaling, mouse mesangial cells were treated with high glucose, in the presence of both Keap1 siRNA and EGCG. Interestingly, EGCG failed to enhance NRF2 signaling and alleviate oxidative, inflammatory and fibrotic indicators, in the presence of Keap1 siRNA. The present study demonstrated, for the first time, that NRF2 plays a critical role in EGCG protection against DN. Other findings indicated that inactivation of KEAP1 protein by EGCG may mediate EGCG function in activating NRF2.
Collapse
Affiliation(s)
- Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin St., Changchun, Jilin 130021, People's Republic of China
| | - Xiuxia Liu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, 218 Ziqiang St., Changchun, Jilin 130041, People's Republic of China
| | - Haifeng Zhang
- Department of Interventional Therapy, The First Hospital of Jilin University, 71 Xinmin St., Changchun, Jilin 130021, People's Republic of China
| | - Yanyan Song
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang St., Changchun, Jilin 130041, People's Republic of China
| | - Tie Li
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, 1035 Boshuo Rd., Changchun, Jilin 130117, People's Republic of China; Research Institute of Acupuncture and Tuina, Changchun University of Chinese Medicine, 1035 Boshuo Rd., Changchun, Jilin 130117, People's Republic of China
| | - Xiaona Liu
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, 1035 Boshuo Rd., Changchun, Jilin 130117, People's Republic of China; Research Institute of Acupuncture and Tuina, Changchun University of Chinese Medicine, 1035 Boshuo Rd., Changchun, Jilin 130117, People's Republic of China
| | - Yanze Liu
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, 1035 Boshuo Rd., Changchun, Jilin 130117, People's Republic of China; Research Institute of Acupuncture and Tuina, Changchun University of Chinese Medicine, 1035 Boshuo Rd., Changchun, Jilin 130117, People's Republic of China
| | - Le Guo
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, 1035 Boshuo Rd., Changchun, Jilin 130117, People's Republic of China; Research Institute of Acupuncture and Tuina, Changchun University of Chinese Medicine, 1035 Boshuo Rd., Changchun, Jilin 130117, People's Republic of China
| | - Fuchun Wang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, 1035 Boshuo Rd., Changchun, Jilin 130117, People's Republic of China; Research Institute of Acupuncture and Tuina, Changchun University of Chinese Medicine, 1035 Boshuo Rd., Changchun, Jilin 130117, People's Republic of China
| | - Ting Yang
- Department of Nephrology, Affiliated Hospital of Beihua University, 12 Jiefang Rd., Jilin, 132000, People's Republic of China
| | - Weiying Guo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, 71 Xinmin St., Changchun, Jilin 130021, People's Republic of China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang St., Changchun, Jilin 130041, People's Republic of China
| | - Hang Jin
- Department of Neurology, The First Hospital of Jilin University, 71 Xinmin St., Changchun, Jilin 130021, People's Republic of China.
| | - Hao Wu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang St., Changchun, Jilin 130041, People's Republic of China; Research Institute of Acupuncture and Tuina, Changchun University of Chinese Medicine, 1035 Boshuo Rd., Changchun, Jilin 130117, People's Republic of China.
| |
Collapse
|
431
|
Kabel AM, Elkhoely AA. Ameliorative Effect of Coenzyme Q10 and/or Candesartan on Carboplatin-Induced Nephrotoxicity: Roles of Apoptosis, Transforming Growth Factor-Β1, Nuclear Factor Kappa-B And The Nrf2/HO-1 Pathway. Asian Pac J Cancer Prev 2017; 18:1629-1636. [PMID: 28670881 PMCID: PMC6373792 DOI: 10.22034/apjcp.2017.18.6.1629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Carboplatin is a drug that is used for treatment of many types of cancer. However, it may produce serious nephrotoxicity. Candesartan is angiotensin II receptor antagonist employed mainly for control of hypertension. Coenzyme Q10 (CoQ10) is a fat-soluble substance which was proven to have potent antioxidant and anti-inflammatory properties. Aim: Our aim was to study the effects of candesartan and/or CoQ10 on carboplatin-induced nephrotoxicity in mice. Methods: Sixty mice were divided into 6 equal groups: Control untreated; carboplatin; carboplatin + candesartan; carboplatin + CoQ10; carboplatin + carboxymethyl cellulose; and carboplatin + candesartan + CoQ10 group. Kidney weight/body weight ratio, blood urea, serum creatinine, creatinine clearance, urinary N-acetyl beta-D-glucosaminidase (NAG), gamma glutamyl transpeptidase (GGT) and the urinary albumin excretion rate (UAER) were determined. Renal tissue catalase (CAT), glutathione reductase (GR), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase-1 (HO-1), transforming growth factor beta-1 (TGF-β1), tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) were also determined, along with mitochondrial complex I activity. In addition, portions of the kidney were subjected to histopathological and immunohistochemical examination. Results: Candesartan and/or CoQ10 induced significant improvement of renal and mitochondrial functions with significant increase in tissue CAT, GR, Nrf2 and HO-1 content associated with significant decrease in the kidney weight/body weight ratio, tissue TGF-β1, TNF-α and IL-6 and alleviation of the histopathological and immunohistochemical changes as compared to carboplatin alone group. These effects were more significant in candesartan/CoQ10 combination group compared to either candesartan or CoQ10 alone. Conclusion: Candesartan/CoQ10 combination might represent a beneficial therapeutic modality for amelioration of carboplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | |
Collapse
|
432
|
NRF2 Plays a Critical Role in Both Self and EGCG Protection against Diabetic Testicular Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3172692. [PMID: 28698767 PMCID: PMC5494108 DOI: 10.1155/2017/3172692] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/15/2017] [Accepted: 04/06/2017] [Indexed: 01/15/2023]
Abstract
Activation of nuclear factor erythroid 2-related factor 2 (NRF2) has been found to ameliorate diabetic testicular damage (DTD) in rodents. However, it was unclear whether NRF2 is required for these approaches in DTD. Epigallocatechin gallate (EGCG) is a potent activator of NRF2 and has shown beneficial effects on multiple diabetic complications. However, the effect of EGCG has not been studied in DTD. The present study aims to explore the role of NRF2 in both self and EGCG protection against DTD. Therefore, streptozotocin-induced diabetic C57BL/6 wild type (WT) and Nrf2 knockout (KO) mice were treated in the presence or absence of EGCG, for 24 weeks. The Nrf2 KO mice exhibited more significant diabetes-induced loss in testicular weight and spermatozoa count, and increase in testicular apoptotic cell death, as compared with the WT mice. EGCG activated NRF2 expression and function, preserved testicular weight and spermatozoa count, and attenuated testicular apoptotic cell death, endoplasmic reticulum stress, inflammation, and oxidative damage in the WT diabetic mice, but not the Nrf2 KO diabetic mice. The present study demonstrated for the first time that NRF2 plays a critical role in both self and EGCG protection against DTD.
Collapse
|
433
|
Giribabu N, Karim K, Kilari EK, Salleh N. Phyllanthus niruri leaves aqueous extract improves kidney functions, ameliorates kidney oxidative stress, inflammation, fibrosis and apoptosis and enhances kidney cell proliferation in adult male rats with diabetes mellitus. JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:123-137. [PMID: 28483637 DOI: 10.1016/j.jep.2017.05.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phylanthus niruri has been used to treat ailments related to the urogenital organs. In this study, this herb was hypothesized to help to ameliorate kidney disease in diabetes mellitus (DM). AIMS To investigate P. niruri leaves aqueous extract (PN) effects on kidney functions, histopathological changes and levels of oxidative stress, inflammation, fibrosis, apoptosis and proliferation in DM. METHODS PN was orally administered to streptozotocin-nicotinamide-induced male diabetic rats for 28 days. At the end of the treatment, fasting blood glucose (FBG) and kidney functions were measured. Kidney somatic index, histopathological changes and levels of RAGE, Nrf2, oxidative stress markers (TBARS, SOD, CAT and GPx), inflammatory markers (NFkβ-p65, Ikk-β, TNF-α, IL-1β and IL-6), apoptosis markers (caspase-3, caspase-9 and Bax), fibrosis markers (TGF-β1, VEGF and FGF-1) and proliferative markers (PCNA and Ki-67) were determined by biochemical assays, qPCR, Western blotting, immunohistochemistry or immunofluorescence. RESULTS Administration of PN helps to maintain near normal FBG, creatinine clearance (CCr), blood urea nitrogen (BUN), BUN/Cr ratio, serum electrolytes, uric acid and urine protein levels in DM. Decreased RAGE, TBARS and increased Nrf2, SOD-1, CAT and GPx-1 were observed in PN-treated diabetic rat kidneys. Expression of inflammatory, fibrosis and apoptosis markers in the kidney reduced but expression of proliferative markers increased following PN treatment. Lesser histopathological changes were observed in the kidney of PN-treated diabetic rats. CONCLUSION PN helps to preserve near normal kidney function and prevents histopathological changes via ameliorating oxidative stress, inflammation, fibrosis and apoptosis while enhancing proliferation of the kidney in DM.
Collapse
Affiliation(s)
- Nelli Giribabu
- Dept of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kamarulzaman Karim
- Dept of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Eswar Kumar Kilari
- Pharmacology Division, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India
| | - Naguib Salleh
- Dept of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
434
|
Cheng J, Liang J, Qi J. Role of nuclear factor (erythroid-derived 2)-like 2 in the age-resistant properties of the glaucoma trabecular meshwork. Exp Ther Med 2017; 14:791-796. [PMID: 28673001 DOI: 10.3892/etm.2017.4543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a major cause of irreversible blindness. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates the expression of numerous antioxidants within cells and is therefore a focus of current ophthalmic research. To determine the roles of Nrf2 in mediating the glaucoma trabecular meshwork (GTM), the present study evaluated the levels of Nrf2 expression in GTM and human trabecular meshwork (HTM) cells by reverse-transcription-quantitative polymerase chain reaction and western blot analysis. It was principally observed that Nrf2 expression was downregulated in GTM cells. In addition, to determine the influence of Nrf2 on the apoptosis and proliferation of GTM and HTM cells, transfection assays and western blotting were performed to evaluate the expression of apoptosis-related proteins. The results of the current study indicated that Nrf2 may promote viability and reduce apoptosis in GTM and HTM cells. Collectively, these data suggest that Nrf2 may be a novel therapeutic target to treat glaucoma.
Collapse
Affiliation(s)
- Jintao Cheng
- Department of Ophthalmology, Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Jiamei Liang
- Department of Ophthalmology, Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Jinze Qi
- Department of Ophthalmology, Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
435
|
Miranda A, Cordeiro T, dos Santos Lacerda Soares TM, Ferreira R, Simões e Silva A. Kidney–brain axis inflammatory cross-talk: from bench to bedside. Clin Sci (Lond) 2017; 131:1093-1105. [DOI: 10.1042/cs20160927] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Epidemiologic data suggest that individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing neuropsychiatric disorders, cognitive impairment, and dementia. This risk is generally explained by the high prevalence of both symptomatic and subclinical ischemic cerebrovascular lesions. However, other potential mechanisms, including cytokine/chemokine release, production of reactive oxygen species (ROS), circulating and local formation of trophic factors and of renin–angiotensin system (RAS) molecules, could also be involved, especially in the absence of obvious cerebrovascular disease. In this review, we discuss experimental and clinical evidence for the role of these mechanisms in kidney–brain cross-talk. In addition, we hypothesize potential pathways for the interactions between kidney and brain and their pathophysiological role in neuropsychiatric and cognitive changes found in patients with CKD. Understanding the pathophysiologic interactions between renal impairment and brain function is important in order to minimize the risk for future cognitive impairment and to develop new strategies for innovative pharmacological treatment.
Collapse
Affiliation(s)
- Aline Silva Miranda
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | - Thiago Macedo Cordeiro
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | | | - Rodrigo Novaes Ferreira
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Ana Cristina Simões e Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| |
Collapse
|
436
|
Ai F, Zheng J, Zhang Y, Fan T. Inhibition of 12/15-LO ameliorates CVB3-induced myocarditis by activating Nrf2. Chem Biol Interact 2017; 272:65-71. [DOI: 10.1016/j.cbi.2017.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/21/2017] [Accepted: 05/11/2017] [Indexed: 12/29/2022]
|
437
|
Nezu M, Suzuki N, Yamamoto M. Targeting the KEAP1-NRF2 System to Prevent Kidney Disease Progression. Am J Nephrol 2017; 45:473-483. [PMID: 28502971 DOI: 10.1159/000475890] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/14/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (NRF2) is a critical transcription factor for the antioxidative stress response and it activates a variety of cytoprotective genes related to redox and detoxification. NRF2 activity is regulated by the oxidative-stress sensor molecule Kelch-like ECH-associated protein 1 (KEAP1) that induces proteasomal degradation of NRF2 through ubiquitinating NRF2 under unstressed conditions. Because oxidative stress is a major pathogenic and aggravating factor for kidney diseases, the KEAP1-NRF2 system has been proposed to be a therapeutic target for renal protection. SUMMARY Oxidative-stress molecules, such as reactive oxygen species, accumulate in the kidneys of animal models for acute kidney injury (AKI), in which NRF2 is transiently and slightly activated. Genetic or pharmacological enhancement of NRF2 activity in the renal tubules significantly ameliorates damage related to AKI and prevents AKI progression to chronic kidney disease (CKD) by reducing oxidative stress. These beneficial effects of NRF2 activation highlight the KEAP1-NRF2 system as an important target for kidney disease treatment. However, a phase-3 clinical trial of a KEAP1 inhibitor for patients with stage 4 CKD and type-2 diabetes mellitus (T2DM) was terminated due to the occurrence of cardiovascular events. Because recent basic studies have accumulated positive effects of KEAP1 inhibitors in moderate stages of CKD, phase-2 trials have been restarted. The data from the ongoing projects demonstrate that a KEAP1 inhibitor improves the glomerular filtration rate in patients with stage 3 CKD and T2DM without safety concerns. Key Message: The KEAP1-NRF2 system is one of the most promising therapeutic targets for kidney disease, and KEAP1 inhibitors could be part of critical therapies for kidney disease.
Collapse
Affiliation(s)
- Masahiro Nezu
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
438
|
Wang X, Asghar M. Protein disulfide isomerase regulates renal AT 1 receptor function and blood pressure in rats. Am J Physiol Renal Physiol 2017; 313:F461-F466. [PMID: 28468966 DOI: 10.1152/ajprenal.00580.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 12/18/2022] Open
Abstract
The role and mechanism of renal protein disulfide isomerase (PDI) in blood pressure regulation has not been tested before. Here, we test this possibility in Sprague-Dawley rats. Rats were treated with PDI inhibitor bacitracin (100 mg·kg-1 ip·day-1 for 14 days), and then blood pressure and renal angiotensin II type 1 (AT1) receptor function were determined in anesthetized rats. Renal AT1 receptor function was determined as the ability of candesartan (an AT1 receptor blocker) to increase diuresis and natriuresis. A second set of vehicle- and bacitracin-treated rats was used to determine biochemical parameters. Systolic blood pressure as well as diastolic blood pressure increased in bacitracin-treated compared with vehicle-treated rats. Compared with vehicle, bacitracin-treated rats showed increased diuresis and natriuresis in response to candesartan (10-µg iv bolus dose) suggesting higher AT1 receptor function in these rats. These were associated with higher renin activities in the plasma and renal tissues. Furthermore, urinary 8-isoprostane and kidney injury molecule-1 levels were higher and urinary antioxidant capacity was lower in bacitracin-treated rats. Renal protein carbonyl and nitrotyrosine levels also were higher in bacitracin- compared with vehicle-treated rats, suggesting oxidative stress burden in bacitracin-treated rats. Moreover, PDI activity decreased and its protein levels increased in renal tissues of bacitracin-treated rats. Also, nuclear levels of Nrf2 transcription factor, which regulates redox homeostasis, were decreased in bacitracin-treated rats. Furthermore, tissue levels of Keap1, an Nrf2 inhibitory molecule, and tyrosine 216-phosphorylated GSK3β protein, an Nrf2 nuclear export protein, were increased in bacitracin-treated rats. These results suggest that renal PDI by regulating Keap1-Nrf2 pathway acts as an antioxidant, maintaining redox balance, renal AT1 receptor function, and blood pressure in rats.
Collapse
Affiliation(s)
- Xitao Wang
- Heart and Kidney Institute, Department of Pharmacology and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Mohammad Asghar
- Heart and Kidney Institute, Department of Pharmacology and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
439
|
Cui W, Min X, Xu X, Du B, Luo P. Role of Nuclear Factor Erythroid 2-Related Factor 2 in Diabetic Nephropathy. J Diabetes Res 2017; 2017:3797802. [PMID: 28512642 PMCID: PMC5420438 DOI: 10.1155/2017/3797802] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/09/2017] [Accepted: 03/13/2017] [Indexed: 12/30/2022] Open
Abstract
Diabetic nephropathy (DN) is manifested as increased urinary protein level, decreased glomerular filtration rate, and final renal dysfunction. DN is the leading cause of end-stage renal disease worldwide and causes a huge societal healthcare burden. Since satisfied treatments are still limited, exploring new strategies for the treatment of this disease is urgently needed. Oxidative stress takes part in the initiation and development of DN. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) plays a key role in the cellular response to oxidative stress. Thus, activation of Nrf2 seems to be a new choice for the treatment of DN. In current review, we discussed and summarized the therapeutic effects of Nrf2 activation on DN from both basic and clinical studies.
Collapse
Affiliation(s)
- Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xu Min
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xiaohong Xu
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Bing Du
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin 130031, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
440
|
Dietary Metabolites and Chronic Kidney Disease. Nutrients 2017; 9:nu9040358. [PMID: 28375181 PMCID: PMC5409697 DOI: 10.3390/nu9040358] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 01/04/2023] Open
Abstract
Dietary contents and their metabolites are closely related to chronic kidney disease (CKD) progression. Advanced glycated end products (AGEs) are a type of uremic toxin produced by glycation. AGE accumulation is not only the result of elevated glucose levels or reduced renal clearance capacity, but it also promotes CKD progression. Indoxyl sulfate, another uremic toxin derived from amino acid metabolism, accumulates as CKD progresses and induces tubulointerstitial fibrosis and glomerular sclerosis. Specific types of amino acids (d-serine) or fatty acids (palmitate) are reported to be closely associated with CKD progression. Promising therapeutic targets associated with nutrition include uremic toxin absorbents and inhibitors of AGEs or the receptor for AGEs (RAGE). Probiotics and prebiotics maintain gut flora balance and also prevent CKD progression by enhancing gut barriers and reducing uremic toxin formation. Nrf2 signaling not only ameliorates oxidative stress but also reduces elevated AGE levels. Bardoxolone methyl, an Nrf2 activator and NF-κB suppressor, has been tested as a therapeutic agent, but the phase 3 clinical trial was terminated owing to the high rate of cardiovascular events. However, a phase 2 trial has been initiated in Japan, and the preliminary analysis reveals promising results without an increase in cardiovascular events.
Collapse
|
441
|
Sakata F, Ito Y, Mizuno M, Sawai A, Suzuki Y, Tomita T, Tawada M, Tanaka A, Hirayama A, Sagara A, Wada T, Maruyama S, Soga T, Matsuo S, Imai E, Takei Y. Sodium chloride promotes tissue inflammation via osmotic stimuli in subtotal-nephrectomized mice. J Transl Med 2017; 97:432-446. [PMID: 28165470 DOI: 10.1038/labinvest.2017.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/16/2016] [Accepted: 12/27/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation, which is often associated with high all-cause and cardiovascular mortality, is prevalent in patients with renal failure; however, the precise mechanisms remain unclear. High-salt intake was reported to induce lymphangiogenesis and autoimmune diseases via osmotic stimuli with accumulation of sodium or chloride. In addition, sodium was recently reported to be stored in the extremities of dialysis patients. We studied the effects and mechanisms of high salt loading on tissue and systemic inflammation in subtotal-nephrectomized mice (5/6Nx) and in cultured cells. Macrophage infiltration in the peritoneal wall (P<0.001), heart (P<0.05) and para-aortic tissues (P<0.001) was significantly higher in 5/6Nx with salt loading (5/6Nx/NaCl) than in 5/6Nx without salt loading (5/6Nx/Water); however, there were no significant differences in blood pressure and renal function between the groups. Tissue interleukin-6, monocyte chemotactic protein-1 (MCP-1), serum- and glucocorticoid-inducible kinase 1 (Sgk1) and tonicity-responsive enhancer binding protein (TonEBP) mRNA were significantly elevated in the peritoneal wall and heart with 5/6Nx/NaCl when compared with 5/6Nx/Water. Sodium was stored in the abdominal wall, exerting high-osmotic conditions. Reversal of salt loading reduced macrophage infiltration associated with decreased TonEBP in 5/6Nx/NaCl. Macrophage infiltration associated with fibrosis induced by salt loading was decreased in the 5/6Nx/NaCl/CC chemokine receptor 2 (CCR2, receptor of MCP-1)-deficient mice when compared with 5/6Nx/NaCl/Wild mice, suggesting that CCR2 is required for macrophage infiltration in 5/6Nx with NaCl loading. In cultured mesothelial cells and cardiomyocytes, culture media with high NaCl concentration induced MCP-1, Sgk1 and TonEBP mRNA, all of which were suppressed by TonEBP siRNA, indicating that both MCP-1 and Sgk1 are downstream of TonEBP. Our study indicates that high NaCl intake induces MCP-1 expression leading to macrophage infiltration via the TonEBP-MCP-1 pathway in 5/6Nx/NaCl mice, and that TonEBP has a central role in inflammation in patients with renal failure taking high salt.
Collapse
Affiliation(s)
- Fumiko Sakata
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Ito
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Mizuno
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiho Sawai
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Suzuki
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takako Tomita
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuhiro Tawada
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Tanaka
- Department of Pharmacy, Daido General Hospital, Nagoya, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Akihiro Sagara
- Department of Nephrology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Takashi Wada
- Department of Nephrology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Shoichi Maruyama
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Seiichi Matsuo
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Enyu Imai
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Internal Medicine of Nakayamadera Imai Clinic, Takarazuka, Japan.,Department of Nephrology, Fujita Health University, Toyoake, Japan
| | - Yoshifumi Takei
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
442
|
Yang D, Lv Z, Zhang H, Liu B, Jiang H, Tan X, Lu J, Baiyun R, Zhang Z. Activation of the Nrf2 Signaling Pathway Involving KLF9 Plays a Critical Role in Allicin Resisting Against Arsenic Trioxide-Induced Hepatotoxicity in Rats. Biol Trace Elem Res 2017; 176:192-200. [PMID: 27561292 DOI: 10.1007/s12011-016-0821-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/12/2016] [Indexed: 01/03/2023]
Abstract
Arsenic trioxide (As2O3) is both the most prevalent, naturally occurring inorganic arsenical threatening human health and an efficient therapeutic for acute promyelocytic leukemia. Regretfully, As2O3-treated cancer patients often suffer from hepatotoxicity. While effective antioxidant and anticarcinogenic actions of allicin have previously been demonstrated, studies indicating how allicin affects As2O3-induced hepatotoxicity and arsenic accumulation are lacking. Our study, for the first time, elaborates potential details of the hepatoprotective mechanisms of allicin against As2O3-induced liver injury. Wistar rats were administrated allicin (30 mg/kg) 1 h before As2O3 (3 mg/kg) by daily gavage for 2 weeks. Our results indicate that allicin ameliorated As2O3-induced liver dysfunction, oxidative stress, and arsenic accumulation in the liver. Meanwhile, allicin decreased NF-κB level and upregulated expression of proteins reduced by As2O3 including nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1, nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1, and Krüppel-like factor 9 (KLF9). In addition, allicin promoted B cell lymphoma-extra large expression and suppressed B cell lymphoma-2-associated X protein levels regulated by As2O3. However, neither allicin nor As2O3 affected cytochrome P450 2E1 mRNA expression. In conclusion, allicin attenuated As2O3-induced hepatotoxicity by activating the Nrf2 signaling pathway involving KLF9 to inhibit oxidative stress and apoptosis. Our findings elucidate a detailed mechanism by which allicin provides protection against As2O3-induced liver injury and support its potential role as an adjunctive therapy for patients suffering from chronic arsenic exposure.
Collapse
Affiliation(s)
- Daqian Yang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Haili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Biying Liu
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Xiao Tan
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Jingjing Lu
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Ruiqi Baiyun
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.
| |
Collapse
|
443
|
Park JS, Choi HI, Bae EH, Ma SK, Kim SW. Small heterodimer partner attenuates hydrogen peroxide-induced expression of cyclooxygenase-2 and inducible nitric oxide synthase by suppression of activator protein-1 and nuclear factor-κB in renal proximal tubule epithelial cells. Int J Mol Med 2017; 39:701-710. [DOI: 10.3892/ijmm.2017.2883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/06/2017] [Indexed: 11/06/2022] Open
|
444
|
Aouey B, Derbali M, Chtourou Y, Bouchard M, Khabir A, Fetoui H. Pyrethroid insecticide lambda-cyhalothrin and its metabolites induce liver injury through the activation of oxidative stress and proinflammatory gene expression in rats following acute and subchronic exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5841-5856. [PMID: 28058584 DOI: 10.1007/s11356-016-8323-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/21/2016] [Indexed: 05/27/2023]
Abstract
Lambda-cyhalothrin (LTC) [α-cyano-3-phenoxybenzyl-3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-dimethylcyclo-propanecarboxylate] is a synthetic type II pyrethroid insecticide commonly used in residential and agricultural areas. The potential hepatotoxicity of pyrethroids remains unclear and could easily be assessed by measuring common clinical indicators of liver disease. To understand more about the potential risks for humans associated with LTC exposure, male adult rats were orally exposed to 6.2 and 31.1 mg/kg bw of LTC for 7, 30, 45, and 60 days. Histopathological changes and alterations of main parameters related to oxidative stress and inflammatory responses in the liver were evaluated. Further, lambda-cyhalothrin metabolites [3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl-cyclopropane carboxylic acid (CFMP), 4-hydroxyphenoxybenzoic acid (4-OH-3-PBA), and 3-phenoxybenzoic acid (3-PBA)] in the liver tissues were identified and quantified by ultra-high-performance liquid chromatography coupled to quadripole time-of-flight mass spectrometry (UHPLC-MS-Q-ToF). Results revealed that LTC exposure significantly increased markers of hepatic oxidative stress in a time-dependent and dose-dependent manner, and this was associated with an accumulation of CFMP and 3-PBA in the liver tissues. In addition, the levels of tumor necrosis factor-α (TNF-α) and interleukin (IL-6 and IL-1β) gene expressions were significantly increased in the liver of exposed rats compared to controls. Correlation analyses revealed that CFMP and 3-PBA metabolite levels in the liver tissues were significantly correlated with the indexes of oxidative stress, redox status, and inflammatory markers in rats exposed to lambda-cyhalothin. Overall, this study provided novel evidence that hepatic damage is likely due to increased oxidative stress and inflammation under the condition of acute and subchronic exposure to lambda-cyhalothrin and that LTC metabolites (CFMP and 3-PBA) could be used as potential biomarker in human biomonitoring studies.
Collapse
Affiliation(s)
- Bakhta Aouey
- Laboratory of Toxicology and Environmental Health, UR11ES70, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Mohamed Derbali
- Laboratory of Toxicology and Environmental Health, UR11ES70, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Yassine Chtourou
- Laboratory of Toxicology and Environmental Health, UR11ES70, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management and Research Institute of Public Health of the University of Montreal (IRSPUM), University of Montreal, Montreal, QC, Canada
| | - Abdelmajid Khabir
- Laboratory of Histopathology, Habib Bourguiba Hospital, 4010, Medenine, Tunisia
| | - Hamadi Fetoui
- Laboratory of Toxicology and Environmental Health, UR11ES70, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia.
| |
Collapse
|
445
|
Brahmbhatt A, Remuzzi A, Franzoni M, Misra S. The molecular mechanisms of hemodialysis vascular access failure. Kidney Int 2017; 89:303-316. [PMID: 26806833 PMCID: PMC4734360 DOI: 10.1016/j.kint.2015.12.019] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/20/2015] [Indexed: 01/01/2023]
Abstract
The arteriovenous fistula has been used for more than 50 years to provide vascular access for patients undergoing hemodialysis. More than 1.5 million patients worldwide have end stage renal disease and this population will continue to grow. The arteriovenous fistula is the preferred vascular access for patients, but its patency rate at 1 year is only 60%. The majority of arteriovenous fistulas fail because of intimal hyperplasia. In recent years, there have been many studies investigating the molecular mechanisms responsible for intimal hyperplasia and subsequent thrombosis. These studies have identified common pathways including inflammation, uremia, hypoxia, sheer stress, and increased thrombogenicity. These cellular mechanisms lead to increased proliferation, migration, and eventually stenosis. These pathways work synergistically through shared molecular messengers. In this review, we will examine the literature concerning the molecular basis of hemodialysis vascular access malfunction.
Collapse
Affiliation(s)
- Akshaar Brahmbhatt
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea Remuzzi
- Biomedical Engineering Department, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
- Engineering Department, University of Bergamo, Dalmine, Italy
| | - Marco Franzoni
- Biomedical Engineering Department, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
446
|
Xu MX, Wang M, Yang WW. Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-κB signaling and Nrf2 pathway in high fat diet fed mice. Int J Nanomedicine 2017; 12:327-345. [PMID: 28115850 PMCID: PMC5221813 DOI: 10.2147/ijn.s116010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-fat diet-induced metabolic syndrome followed by chronic kidney disease caused by intestinal endotoxemia have received extensive attention. Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) and oxidative stress-related Nrf2/Keap1 were regarded as the key target points involved in metabolic inflammation and kidney injury. However, the molecular mechanism of interaction between TLR4/NF-κB and Nrf2 activation in high-fat diet-induced renal injury is not absolutely understood. Quercetin, a natural product, has been reported to possess antitumor and anti-inflammatory effects. In this regard, this study attempted to prepare poly(d,l-lactide-co-glycolide)-loaded gold nanoparticles precipitated with quercetin (GQ) to investigate the anti-inflammatory and anti-oxidative stress effects in high-fat diet-induced kidney failure. For this study, C57BL/6 mice fed fat-rich fodder were used as the metabolic syndrome model to evaluate the protective effects of GQ on kidney injury and to determine whether TLR4/NF-κB and Nrf2 pathways were associated with the process. Moreover, histological examinations, enzyme-linked immunosorbent assay, Western blot, and basic blood tests and systemic inflammation-related indicators were used to investigate the inhibitory effects of GQ and underlying molecular mechanism by which it may reduce renal injury. Of note, podocyte injury was found to participate in endotoxin-stimulated inflammatory response. TLR4/NF-κB and Nrf2 pathways were upregulated with high-fat diet intake in mice, resulting in reduction of superoxide dismutase activity and increase in superoxide radical, H2O2, malondialdehyde, XO, XDH, and XO/XDH ratio. In addition, upregulation of TLR4/NF-κB and oxidative stress by endotoxin were observed in vitro, which were suppressed by GQ administration, ultimately alleviating podocyte injury. These findings indicated that GQ could restore the metabolic disorders caused by high-fat diet, which suppresses insulin resistance, lipid metabolic imbalance, and proinflammatory cytokine production. Also, it may prevent kidney injury by inhibition of TLR4/NF-κB and oxidative stress, further increasing superoxide dismutase activity.
Collapse
Affiliation(s)
- Min-Xuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing; College of Engineering and Applied Sciences, Nanjing University, Nanjing
| | - Ming Wang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang
| | - Wei-Wei Yang
- Department of Nephrology, Huai'an First People's Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| |
Collapse
|
447
|
Dong W, Jia Y, Liu X, Zhang H, Li T, Huang W, Chen X, Wang F, Sun W, Wu H. Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC. J Endocrinol 2017; 232:71-83. [PMID: 27799462 DOI: 10.1530/joe-16-0322] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 10/25/2016] [Indexed: 01/04/2023]
Abstract
Oxidative stress contributes to the pathogenesis of diabetic nephropathy (DN). Nuclear factor erythroid 2-related factor 2 (NRF2) plays a key role in cellular defense against oxidative stress. NRF2 activators have shown promising preventive effects on DN. Sodium butyrate (NaB) is a known activator of NRF2. However, it is unknown whether NRF2 is required for NaB protection against DN. Therefore, streptozotocin-induced diabetic C57BL/6 Nrf2 knockout and their wild-type mice were treated in the presence or absence of NaB for 20 weeks. Diabetic mice, but not NaB-treated diabetic mice, developed significant renal oxidative damage, inflammation, apoptosis, fibrosis, pathological changes and albuminuria. NaB inhibited histone deacetylase (HDAC) activity and elevated the expression of Nrf2 and its downstream targets heme oxygenase 1 and NAD(P)H dehydrogenase quinone 1. Notably, deletion of the Nrf2 gene completely abolished NaB activation of NRF2 signaling and protection against diabetes-induced renal injury. Interestingly, the expression of Kelch-like ECH-associated protein 1, the negative regulator of NRF2, was not altered by NaB under both diabetic and non-diabetic conditions. Moreover, NRF2 nuclear translocation was not promoted by NaB. Therefore, the present study indicates, for the first time, that NRF2 plays a key role in NaB protection against DN. Other findings suggest that NaB may activate Nrf2 at the transcriptional level, possibly by the inhibition of HDAC activity.
Collapse
Affiliation(s)
- Wenpeng Dong
- Dialysis CenterDaqing Oilfield General Hospital, Daqing, Heilongjiang, People's Republic of China
- Department of NephrologyThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Ye Jia
- Department of NephrologyThe First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xiuxia Liu
- Department of Clinical LaboratoryThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Huan Zhang
- Operating theatreChina-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Tie Li
- Department of Acupuncture and TuinaChangchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Wenlin Huang
- School of Science and TechnologyGeorgia Gwinnett College, Lawrenceville, Georgia, USA
| | - Xudong Chen
- Gastroenterology Department No. 1Jilin Central General Hospital, Jilin, Jilin, People's Republic of China
| | - Fuchun Wang
- Department of Acupuncture and TuinaChangchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Weixia Sun
- Department of NephrologyThe First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hao Wu
- Department of Acupuncture and TuinaChangchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
- Department of NephrologyThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
448
|
Spoto B, Pisano A, Zoccali C. Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Renal Physiol 2016; 311:F1087-F1108. [DOI: 10.1152/ajprenal.00340.2016] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/28/2016] [Indexed: 01/07/2023] Open
Abstract
Insulin resistance (IR) is an early metabolic alteration in chronic kidney disease (CKD) patients, being apparent when the glomerular filtration rate is still within the normal range and becoming almost universal in those who reach the end stage of kidney failure. The skeletal muscle represents the primary site of IR in CKD, and alterations at sites beyond the insulin receptor are recognized as the main defect underlying IR in this condition. Estimates of IR based on fasting insulin concentration are easier and faster but may not be adequate in patients with CKD because renal insufficiency reduces insulin catabolism. The hyperinsulinemic euglycemic clamp is the gold standard for the assessment of insulin sensitivity because this technique allows a direct measure of skeletal muscle sensitivity to insulin. The etiology of IR in CKD is multifactorial in nature and may be secondary to disturbances that are prominent in renal diseases, including physical inactivity, chronic inflammation, oxidative stress, vitamin D deficiency, metabolic acidosis, anemia, adipokine derangement, and altered gut microbiome. IR contributes to the progression of renal disease by worsening renal hemodynamics by various mechanisms, including activation of the sympathetic nervous system, sodium retention, and downregulation of the natriuretic peptide system. IR has been solidly associated with intermediate mechanisms leading to cardiovascular (CV) disease in CKD including left ventricular hypertrophy, vascular dysfunction, and atherosclerosis. However, it remains unclear whether IR is an independent predictor of mortality and CV complications in CKD. Because IR is a modifiable risk factor and its reduction may lower CV morbidity and mortality, unveiling the molecular mechanisms responsible for the pathogenesis of CKD-related insulin resistance is of importance for the identification of novel therapeutic targets aimed at reducing the high CV risk of this condition.
Collapse
Affiliation(s)
- Belinda Spoto
- Consiglio Nazionale delle Ricerche-Istituto di Fisiologia Clinica, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio di Calabria, Italy
| | - Anna Pisano
- Consiglio Nazionale delle Ricerche-Istituto di Fisiologia Clinica, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio di Calabria, Italy
| | - Carmine Zoccali
- Consiglio Nazionale delle Ricerche-Istituto di Fisiologia Clinica, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio di Calabria, Italy
| |
Collapse
|
449
|
Basu A, Bhattacharjee A, Hajra S, Samanta A, Bhattacharya S. Ameliorative effect of an oxovanadium (IV) complex against oxidative stress and nephrotoxicity induced by cisplatin. Redox Rep 2016; 22:377-387. [PMID: 27897082 DOI: 10.1080/13510002.2016.1260192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE The present study was designed to investigate the chemoprotective efficacy of an L-cysteine-based oxovanadium (IV) complex, namely, oxovanadium (IV)-L-cysteine methyl ester complex (VC-IV) against cisplatin (CDDP)-induced renal injury in Swiss albino mice. METHODS CDDP was administered intraperitoneally (5 mg/kg body weight) and VC-IV was administered orally (1 mg/kg body weight) in concomitant and 7 days pre-treatment schedule. RESULTS CDDP-treated mice showed marked kidney damage and renal failure. Administration of VC-IV caused significant attenuation of renal oxidative stress and elevation of antioxidant status. VC-IV also significantly decreased serum levels of creatinine and blood urea nitrogen, and improved histopathological lesions. Western blot analysis of the kidneys showed that VC-IV treatment resulted in nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) through modulation of cytosolic Kelch-like ECH-associated protein 1. Thus, VC-IV stimulated Nrf2-mediated activation of antioxidant response element (ARE) pathway and promoted expression of ARE-driven cytoprotective proteins, heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1, and enhanced activity of antioxidant enzymes. Interestingly, VC-IV did not alter the bioavailability and renal accumulation of CDDP in mice. DISCUSSION In this study, VC-IV exhibited strong nephroprotective efficacy by restoring antioxidant defense mechanisms and hence may serve as a promising chemoprotectant in cancer chemotherapy.
Collapse
Affiliation(s)
- Abhishek Basu
- a Department of Cancer Chemoprevention , Chittaranjan National Cancer Institute , Kolkata , India
| | - Arin Bhattacharjee
- a Department of Cancer Chemoprevention , Chittaranjan National Cancer Institute , Kolkata , India
| | - Subhadip Hajra
- a Department of Cancer Chemoprevention , Chittaranjan National Cancer Institute , Kolkata , India
| | - Amalesh Samanta
- b Division of Microbiology, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - Sudin Bhattacharya
- a Department of Cancer Chemoprevention , Chittaranjan National Cancer Institute , Kolkata , India
| |
Collapse
|
450
|
Tan RJ, Chartoumpekis DV, Rush BM, Zhou D, Fu H, Kensler TW, Liu Y. Keap1 hypomorphism protects against ischemic and obstructive kidney disease. Sci Rep 2016; 6:36185. [PMID: 27804998 PMCID: PMC5090361 DOI: 10.1038/srep36185] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/10/2016] [Indexed: 12/26/2022] Open
Abstract
The Keap1/Nrf2 pathway is a master regulator of antioxidant, anti-inflammatory, and other cytoprotective mechanisms important in protection from kidney disease. For the first time in kidney disease, we describe the use of Keap1 hypomorphic mice, which possess Nrf2 hyperactivation. We exposed these mice and wild type controls to ischemia/reperfusion injury (IRI). The initial tubular injury at 24 hours post-IRI appeared to be unaffected, with the only observed difference being a decrease in inflammatory cytokine expression in the hypomorphs. However, we noted significant improvement in serum creatinine in the hypomorphs at 3 and 10 days after injury, and renal fibrosis was dramatically attenuated at the late timepoint. Assessment of Nrf2-regulated targets (GSTM1, GSTP1, NQO1) revealed higher expression in the hypomorphs at baseline. While injury tended to suppress these genes in wild-type mice, the suppression was attenuated or reversed in Keap1 hypomorphs, suggesting that protection in these mice was mediated by increased Nrf2 transcriptional activity. To assess the generalizability of our findings, we subjected the hypomorphs to unilateral ureteral obstruction (UUO) and again found significant protection and increased expression of Nrf2 targets. Overall, these results support the conclusion that the Nrf2 pathway is protective in a variety of kidney diseases.
Collapse
Affiliation(s)
- Roderick J. Tan
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dionysios V. Chartoumpekis
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brittney M. Rush
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas W. Kensler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|