401
|
Miteva D, Kitanova M, Batselova H, Lazova S, Chervenkov L, Peshevska-Sekulovska M, Sekulovski M, Gulinac M, Vasilev GV, Tomov L, Velikova T. The End or a New Era of Development of SARS-CoV-2 Virus: Genetic Variants Responsible for Severe COVID-19 and Clinical Efficacy of the Most Commonly Used Vaccines in Clinical Practice. Vaccines (Basel) 2023; 11:1181. [PMID: 37514997 PMCID: PMC10385722 DOI: 10.3390/vaccines11071181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Although the chief of the World Health Organization (WHO) has declared the end of the coronavirus disease 2019 (COVID-19) as a global health emergency, the disease is still a global threat. To be able to manage such pandemics in the future, it is necessary to develop proper strategies and opportunities to protect human life. The data on the SARS-CoV-2 virus must be continuously analyzed, and the possibilities of mutation and the emergence of new, more infectious variants must be anticipated, as well as the options of using different preventive and therapeutic techniques. This is because the fast development of severe acute coronavirus 2 syndrome (SARS-CoV-2) variants of concern have posed a significant problem for COVID-19 pandemic control using the presently available vaccinations. This review summarizes data on the SARS-CoV-2 variants that are responsible for severe COVID-19 and the clinical efficacy of the most commonly used vaccines in clinical practice. The consequences after the disease (long COVID or post-COVID conditions) continue to be the subject of studies and research, and affect social and economic life worldwide.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov str., 1164 Sofia, Bulgaria; (D.M.); (M.K.)
| | - Meglena Kitanova
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov str., 1164 Sofia, Bulgaria; (D.M.); (M.K.)
| | - Hristiana Batselova
- Department of Epidemiology and Disaster Medicine, University Hospital “Saint George”, Medical University, 6000 Plovdiv, Bulgaria;
| | - Snezhina Lazova
- Pediatric Department, University Hospital “N. I. Pirogov,” 21 “General Eduard I. Totleben” Blvd, 1606 Sofia, Bulgaria;
- Department of Healthcare, Faculty of Public Health “Prof. Tsekomir Vodenicharov, MD, DSc”, Medical University of Sofia, Bialo More 8 str., 1527 Sofia, Bulgaria
| | - Lyubomir Chervenkov
- Department of Diagnostic Imaging, Medical University Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria;
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, 1407 Sofia, Bulgaria;
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria;
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria;
- Department of Anesthesiology and Intensive Care, University Hospital Lozenetz, 1 Kozyak str., 1407 Sofia, Bulgaria
| | - Milena Gulinac
- Department of General and Clinical Pathology, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria;
| | - Georgi V. Vasilev
- Clinic of Endocrinology and Metabolic Disorders, UMHAT “Sv. Georgi”, 4000 Plovdiv, Bulgaria;
| | - Luchesar Tomov
- Department of Informatics, New Bulgarian University, Montevideo 21 str., 1618 Sofia, Bulgaria;
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria;
| |
Collapse
|
402
|
Halfmann PJ, Loeffler K, Duffy A, Kuroda M, Kawaoka Y, Kane RS. Broad Protection Against Clade 1 Sarbecoviruses After a Single Immunization with Cocktail Spike-Protein-Nanoparticle Vaccine. RESEARCH SQUARE 2023:rs.3.rs-3088907. [PMID: 37461652 PMCID: PMC10350183 DOI: 10.21203/rs.3.rs-3088907/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The 2002 SARS outbreak, the 2019 emergence of COVID-19, and the continuing evolution of immune-evading SARS-CoV-2 variants together highlight the need for a broadly protective vaccine against ACE2-utilizing sarbecoviruses. While updated variant-matched formulations such as Pfizer-BioNTech's bivalent vaccine are a step in the right direction, protection needs to extend beyond SARS-CoV-2 and its variants to include SARS-like viruses. Here, we introduce bivalent and trivalent vaccine formulations using our spike protein nanoparticle platform that completely protected hamsters against BA.5 and XBB.1 challenges with no detectable virus in the lungs. The trivalent cocktails elicited highly neutralizing responses against all tested Omicron variants and the bat sarbecoviruses SHC014 and WIV1. Finally, our 614D/SHC014/XBB trivalent spike formulation completely protected human ACE2-transgenic hamsters against challenges with WIV1 and SHC014 with no detectable virus in the lungs. Collectively, these results illustrate that our trivalent protein-nanoparticle cocktail can provide broad protection against SARS-CoV-2-like and SARS-CoV-1-like sarbecoviruses.
Collapse
Affiliation(s)
- Peter J. Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Kathryn Loeffler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Augustine Duffy
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Ravi S. Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
403
|
Alfonso-Dunn R, Lin J, Lei J, Liu J, Roche M, De Oliveira A, Raisingani A, Kumar A, Kirschner V, Feuer G, Malin M, Sadiq SA. Humoral and cellular responses to repeated COVID-19 exposure in multiple sclerosis patients receiving B-cell depleting therapies: a single-center, one-year, prospective study. Front Immunol 2023; 14:1194671. [PMID: 37449202 PMCID: PMC10338057 DOI: 10.3389/fimmu.2023.1194671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Multiple sclerosis patients treated with anti-CD20 therapy (aCD20-MS) are considered especially vulnerable to complications from SARS-CoV-2 infection due to severe B-cell depletion with limited viral antigen-specific immunoglobulin production. Therefore, multiple vaccine doses as part of the primary vaccination series and booster updates have been recommended for this group of immunocompromised individuals. Even though much less studied than antibody-mediated humoral responses, T-cell responses play an important role against CoV-2 infection and are induced efficiently in vaccinated aCD20-MS patients. For individuals with such decoupled adaptive immunity, an understanding of the contribution of T-cell mediated immunity is essential to better assess protection against CoV-2 infection. Here, we present results from a prospective, single-center study for the assessment of humoral and cellular immune responses induced in aCD20-MS patients (203 donors/350 samples) compared to a healthy control group (43/146) after initial exposure to CoV-2 spike antigen and subsequent re-challenges. Low rates of seroconversion and RBD-hACE2 blocking activity were observed in aCD20-MS patients, even after multiple exposures (responders after 1st exposure = 17.5%; 2nd exposure = 29.3%). Regarding cellular immunity, an increase in the number of spike-specific monofunctional IFNγ+-, IL-2+-, and polyfunctional IFNγ+/IL-2+-secreting T-cells after 2nd exposure was found most noticeably in healthy controls. Nevertheless, a persistently higher T-cell response was detected in aCD20-MS patients compared to control individuals before and after re-exposure (mean fold increase in spike-specific IFNγ+-, IL-2+-, and IFNγ+/IL-2+-T cells before re-exposure = 3.9X, 3.6X, 3.5X/P< 0.001; after = 3.2X, 1.4X, 2.2X/P = 0.002, P = 0.05, P = 0.004). Moreover, cellular responses against sublineage BA.2 of the currently circulating omicron variant were maintained, to a similar degree, in both groups (15-30% T-cell response drop compared to ancestral). Overall, these results highlight the potential for a severely impaired humoral response in aCD20-MS patients even after multiple exposures, while still generating a strong T-cell response. Evaluating both humoral and cellular responses in vaccinated or infected MS patients on B-cell depletion therapy is essential to better assess individual correlations of immune protection and has implications for the design of future vaccines and healthcare strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Saud A. Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, United States
| |
Collapse
|
404
|
Cheung CKM, Law KWT, Law AWH, Law MF, Ho R, Wong SH. Efficacy of Vaccine Protection Against COVID-19 Virus Infection in Patients with Chronic Liver Diseases. J Clin Transl Hepatol 2023; 11:718-735. [PMID: 36969905 PMCID: PMC10037513 DOI: 10.14218/jcth.2022.00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/22/2022] [Accepted: 11/14/2022] [Indexed: 01/19/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has resulted in significant morbidity and mortality worldwide. Vaccination against coronavirus disease 2019 is a useful weapon to combat the virus. Patients with chronic liver diseases (CLDs), including compensated or decompensated liver cirrhosis and noncirrhotic diseases, have a decreased immunologic response to coronavirus disease 2019 vaccines. At the same time, they have increased mortality if infected. Current data show a reduction in mortality when patients with chronic liver diseases are vaccinated. A suboptimal vaccine response has been observed in liver transplant recipients, especially those receiving immunosuppressive therapy, so an early booster dose is recommended to achieve a better protective effect. Currently, there are no clinical data comparing the protective efficacy of different vaccines in patients with chronic liver diseases. Patient preference, availability of the vaccine in the country or area, and adverse effect profiles are factors to consider when choosing a vaccine. There have been reports of immune-mediated hepatitis after coronavirus disease 2019 vaccination, and clinicians should be aware of that potential side effect. Most patients who developed hepatitis after vaccination responded well to treatment with prednisolone, but an alternative type of vaccine should be considered for subsequent booster doses. Further prospective studies are required to investigate the duration of immunity and protection against different viral variants in patients with chronic liver diseases or liver transplant recipients, as well as the effect of heterologous vaccination.
Collapse
Affiliation(s)
- Carmen Ka Man Cheung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
| | | | | | - Man Fai Law
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
| | - Rita Ho
- Department of Medicine, North District Hospital, Hong Kong, China
| | - Sunny Hei Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
405
|
Nahab F, Bayakly R, Sexton ME, Lemuel-Clarke M, Henriquez L, Rangaraju S, Ido M. Factors associated with stroke after COVID-19 vaccination: a statewide analysis. Front Neurol 2023; 14:1199745. [PMID: 37448752 PMCID: PMC10337778 DOI: 10.3389/fneur.2023.1199745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Background The objective of our study was to evaluate vaccine type, COVID-19 infection, and their association with stroke soon after COVID-19 vaccination. Methods In a retrospective cohort study, we estimated the 21-day post-vaccination incidence of stroke among the recipients of the first dose of a COVID-19 vaccine. We linked the Georgia Immunization Registry with the Georgia Coverdell Acute Stroke Registry and the Georgia State Electronic Notifiable Disease Surveillance System data to assess the relative risk of stroke by the vaccine type. Results Approximately 5 million adult Georgians received at least one COVID-19 vaccine between 1 December 2020 and 28 February 2022: 54% received BNT162b2, 41% received mRNA-1273, and 5% received Ad26.COV2.S. Those with concurrent COVID-19 infection within 21 days post-vaccination had an increased risk of ischemic (OR = 8.00, 95% CI: 4.18, 15.31) and hemorrhagic stroke (OR = 5.23, 95% CI: 1.11, 24.64) with no evidence for interaction between the vaccine type and concurrent COVID-19 infection. The 21-day post-vaccination incidence of ischemic stroke was 8.14, 11.14, and 10.48 per 100,000 for BNT162b2, mRNA-1273, and Ad26.COV2.S recipients, respectively. After adjusting for age, race, gender, and COVID-19 infection status, there was a 57% higher risk (OR = 1.57, 95% CI: 1.02, 2.42) for ischemic stroke within 21 days of vaccination associated with the Ad26.COV2.S vaccine compared to BNT162b2; there was no difference in stroke risk between mRNA-1273 and BNT162b2. Conclusion Concurrent COVID-19 infection had the strongest association with early ischemic and hemorrhagic stroke after the first dose of COVID-19 vaccination. Although not all determinants of stroke, particularly comorbidities, were considered in this analysis, the Ad26.COV2.S vaccine was associated with a higher risk of early post-vaccination ischemic stroke than BNT162b2.
Collapse
Affiliation(s)
- Fadi Nahab
- Departments of Neurology & Pediatrics, Emory University, Atlanta, GA, United States
| | - Rana Bayakly
- Georgia Department of Public Health, Atlanta, GA, United States
| | | | | | - Laura Henriquez
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Srikant Rangaraju
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Moges Ido
- Georgia Department of Public Health, Atlanta, GA, United States
| |
Collapse
|
406
|
Mu Y, Wu H, Jiang Z, Liu K, Xue X, Zhang W, Chen Z. Serological Responses after a Fourth Dose of SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2023; 11:1130. [PMID: 37514946 PMCID: PMC10385971 DOI: 10.3390/vaccines11071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The humoral immune response and safety of the fourth dose of the coronavirus disease 2019 (COVID-19) vaccine in solid organ transplant (SOT) recipients need to be fully elucidated. We conducted a systematic review and meta-analysis to assess the efficacy and safety associated with this additional dose of the COVID-19 vaccine in the SOT recipients. A comprehensive search was conducted to identify studies on SOT patients without prior natural SARS-CoV-2 infection who received the fourth dose of the COVID-19 vaccine. Serological antibody responses following vaccination were synthesized by a meta-analysis of proportions. The proportions for each outcome were integrated by using a random-effects model. Approximately 56-92% of the SOT patients developed a humoral immune response, and the pooled seroprevalence rate was 75% (95% confidence interval [CI], 62-82%) after administering the third vaccine dose. Following the fourth dose of vaccination, approximately 76-95% of the patients developed a humoral immune response. The pooled seroprevalence rate after the fourth dose was 85% (95% CI, 79-91%). Of the patients who initially tested seronegative after the second dose, approximately 22-76% of patients subsequently became seropositive after the third dose. The pooled seroconversion rate for the third dose was 47% (95% CI, 31-64%). Among the patients who were seronegative after the third dose, approximately 25-76% turned seropositive after the fourth dose. The pooled seroconversion rate after the fourth dose was 51% (95% CI, 40-63%). Safety data were reported in three studies, demonstrating that adverse effects following the fourth dose were generally mild, and patients with these adverse effects did not require hospitalization. No transplant rejection or serious adverse events were observed. A fourth dose of the COVID-19 vaccine in SOT recipients was associated with an improved humoral immune response, and the vaccine was considered relatively safe.
Collapse
Affiliation(s)
- Yameng Mu
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100102, China
| | - Hongxiao Wu
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100102, China
| | - Zhouling Jiang
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100102, China
| | - Kehang Liu
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100102, China
| | - Xiaoyu Xue
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100102, China
| | - Wei Zhang
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100102, China
| | - Zhihai Chen
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100102, China
| |
Collapse
|
407
|
Smolic M, Dawood R, Salum G, Abd El Meguid M, Omran M, Smolic R. Therapeutic Interventions for COVID-19. POST COVID-19 - EFFECTS ON HUMAN HEALTH 2023. [DOI: 10.5772/intechopen.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
SARS-CoV-2, a novel coronavirus, is currently represented a major public health concern. The high transmission rate of this virus increases the mortality rate worldwide. To date, significant efforts and restricted regulations were performed around the world to control this crisis effectively, but unfortunately, there is no specific and successful therapy for COVID-19. Many approaches have been repurposed for SARS-CoV-2 treatment such as antivirals and anti-inflammatories. Furthermore, antibody therapies are one of the main and important approaches of SARS-CoV-2 infection treatment. In recent trials, various immunotherapeutic interventions such as convalescent plasma therapy and monoclonal antibodies, as well as immunomodulatory agents are being proposed. However, the development of a vaccine that provides durable protective immunity will be the most effective therapy for controlling possible epidemics of this virus. The current review summarized all the proposed therapeutic approaches together with information on their safety and efficacy in treating COVID-19, as well as the vaccine candidates. The provided comprehensive information regarding the applied therapeutic strategies against COVID-19 might help the scientific community in any progress toward the treatment of COVID-19 infection.
Collapse
|
408
|
Warkentin L, Werner F, Zeschick N, Kühlein T, Steininger P, Überla K, Kaiser I, Sebastião M, Hueber S. Reactogenicity and safety of COVID-19 primary immunisation and booster vaccination regimens: a comparative observational cohort study. BMC Med 2023; 21:218. [PMID: 37340463 DOI: 10.1186/s12916-023-02924-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Since the beginning of the COVID-19 vaccination campaigns, recommendations regarding the vaccination have been very dynamic. Although the safety and efficacy of different vaccines have been analysed, data were scarce for vaccine regimens combining different vaccines. We therefore aimed to evaluate and compare the perceived reactogenicity and need for medical consultation after the most frequently applied homologous and heterologous COVID-19 vaccination regimens. METHODS In an observational cohort study, reactogenicity and safety were assessed within a maximum follow-up time of 124 days using web-based surveys. Reactogenicity was assessed for different vaccination regimens 2 weeks after a vaccination (short-term survey). The following surveys, long-term and follow-up surveys, focused on the utilisation of medical services, including those that were not suspected to be vaccine-related. RESULTS Data of 17,269 participants were analysed. The least local reactions were seen after a ChAdOx1 - ChAdOx1 regimen (32.6%, 95% CI [28.2, 37.2]) and the most after the first dose with mRNA-1273 (73.9%, 95% CI [70.5, 77.2]). Systemic reactions were least frequent in participants with a BNT162b2 booster after a homologous primary immunisation with ChAdOx1 (42.9%, 95% CI [32.1, 54.1]) and most frequent after a ChAdOx1 - mRNA-1273 (85.5%, 95% CI [82.9, 87.8]) and mRNA-1273/mRNA-1273 regimen (85.1%, 95% CI [83.2, 87.0]). In the short-term survey, the most common consequences were medication intake and sick leave (after local reactions 0% to 9.9%; after systemic reactions 4.5% to 37.9%). In the long-term and follow-up surveys, between 8.2 and 30.9% of participants reported consulting a doctor and between 0% and 5.4% seeking hospital care. The regression analyses 124 days after the first and after the third dose showed that the odds for reporting medical consultation were comparable between the vaccination regimens. CONCLUSIONS Our analysis revealed differences in reactogenicity between the COVID-19 vaccines and vaccination regimens in Germany. The lowest reactogenicity as reported by participants was seen with BNT162b2, especially in homologous vaccination regimens. However, in all vaccination regimens reactogenicity rarely led to medical consultations. Small differences in seeking any medical consultation after 6 weeks diminished during the follow-up period. In the end, none of the vaccination regimens was associated with a higher risk for medical consultation. TRIAL REGISTRATION DRKS DRKS00025881 ( https://drks.de/search/de/trial/DRKS00025373 ). Registered on 14 October 2021. DRKS DRKS00025373 ( https://drks.de/search/de/trial/DRKS00025881 ). Registered on 21 May 2021. Registered retrospectively.
Collapse
Affiliation(s)
- Lisette Warkentin
- Institute of General Practice, Friedrich-Alexander-Universität Erlangen-Nürnberg, Uniklinikum Erlangen, Universitätsstraße 29, Erlangen, Germany.
| | - Felix Werner
- Institute of General Practice, Friedrich-Alexander-Universität Erlangen-Nürnberg, Uniklinikum Erlangen, Universitätsstraße 29, Erlangen, Germany
| | - Nikoletta Zeschick
- Institute of General Practice, Friedrich-Alexander-Universität Erlangen-Nürnberg, Uniklinikum Erlangen, Universitätsstraße 29, Erlangen, Germany
| | - Thomas Kühlein
- Institute of General Practice, Friedrich-Alexander-Universität Erlangen-Nürnberg, Uniklinikum Erlangen, Universitätsstraße 29, Erlangen, Germany
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Uniklinikum Erlangen, Schloßgarten 4, Erlangen, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Uniklinikum Erlangen, Schloßgarten 4, Erlangen, Germany
| | - Isabelle Kaiser
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, Erlangen, Germany
| | - Maria Sebastião
- Institute of General Practice, Friedrich-Alexander-Universität Erlangen-Nürnberg, Uniklinikum Erlangen, Universitätsstraße 29, Erlangen, Germany
| | - Susann Hueber
- Institute of General Practice, Friedrich-Alexander-Universität Erlangen-Nürnberg, Uniklinikum Erlangen, Universitätsstraße 29, Erlangen, Germany
| |
Collapse
|
409
|
Xue W, Li T, Gu Y, Li S, Xia N. Molecular engineering tools for the development of vaccines against infectious diseases: current status and future directions. Expert Rev Vaccines 2023. [PMID: 37339445 DOI: 10.1080/14760584.2023.2227699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION The escalating global changes have fostered conditions for the expansion and transmission of diverse biological factors, leading to the rise of emerging and reemerging infectious diseases. Complex viral infections, such as COVID-19, influenza, HIV, and Ebola, continue to surface, necessitating the development of effective vaccine technologies. AREAS COVERED This review article highlights recent advancements in molecular biology, virology, and genomics that have propelled the design and development of innovative molecular tools. These tools have promoted new vaccine research platforms and directly improved vaccine efficacy. The review summarizes the cutting-edge molecular engineering tools used in creating novel vaccines and explores the rapidly expanding molecular tools landscape and potential directions for future vaccine development. EXPERT OPINION The strategic application of advanced molecular engineering tools can address conventional vaccine limitations, enhance the overall efficacy of vaccine products, promote diversification in vaccine platforms, and form the foundation for future vaccine development. Prioritizing safety considerations of these novel molecular tools during vaccine development is crucial.
Collapse
Affiliation(s)
- Wenhui Xue
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen, China
| |
Collapse
|
410
|
Lin TC, Fu PA, Hsu YT, Chen TY. Vaccine-Induced Immune Thrombotic Thrombocytopenia following BNT162b2 mRNA COVID-19 Booster: A Case Report. Vaccines (Basel) 2023; 11:1115. [PMID: 37376504 DOI: 10.3390/vaccines11061115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a life-threatening complication caused by platelet activation via platelet factor 4 (PF4) antibodies. We report a healthy 28-year-old man who developed hemoptysis, bilateral leg pain, and headaches three weeks after his third dose of the COVID-19 vaccine with the first BNT162b2 (from Pfizer-BioNTech) injection. He had previously had the first and second doses with ChAdOx1 nCov-19 without any discomfort. Serial investigations demonstrated pulmonary embolisms, cerebral sinus, and deep iliac venous thrombosis. Positive PF4 antibody assay (ELISA) confirmed the diagnosis of VITT. He had a prompt response to intravenous immunoglobulins (IVIGs) at a total dose of 2 g/kg and his symptoms are now in remission with anticoagulant. Although the definite mechanism is unknown, the VITT was most likely triggered by his COVID-19 vaccine. We report this case of VITT following BNT162b2, a mRNA-based vaccine, and suggest that VITT could still happen without the adenoviral vector vaccines.
Collapse
Affiliation(s)
- Tzu-Chien Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pei-An Fu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ya-Ting Hsu
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Tsai-Yun Chen
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
411
|
Perdiguero B, Marcos-Villar L, López-Bravo M, Sánchez-Cordón PJ, Zamora C, Valverde JR, Sorzano CÓS, Sin L, Álvarez E, Ramos M, Del Val M, Esteban M, Gómez CE. Immunogenicity and efficacy of a novel multi-patch SARS-CoV-2/COVID-19 vaccine candidate. Front Immunol 2023; 14:1160065. [PMID: 37404819 PMCID: PMC10316789 DOI: 10.3389/fimmu.2023.1160065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction While there has been considerable progress in the development of vaccines against SARS-CoV-2, largely based on the S (spike) protein of the virus, less progress has been made with vaccines delivering different viral antigens with cross-reactive potential. Methods In an effort to develop an immunogen with the capacity to induce broad antigen presentation, we have designed a multi-patch synthetic candidate containing dominant and persistent B cell epitopes from conserved regions of SARS-CoV-2 structural proteins associated with long-term immunity, termed CoV2-BMEP. Here we describe the characterization, immunogenicity and efficacy of CoV2-BMEP using two delivery platforms: nucleic acid DNA and attenuated modified vaccinia virus Ankara (MVA). Results In cultured cells, both vectors produced a main protein of about 37 kDa as well as heterogeneous proteins with size ranging between 25-37 kDa. In C57BL/6 mice, both homologous and heterologous prime/boost combination of vectors induced the activation of SARS-CoV-2-specific CD4 and CD8 T cell responses, with a more balanced CD8+ T cell response detected in lungs. The homologous MVA/MVA immunization regimen elicited the highest specific CD8+ T cell responses in spleen and detectable binding antibodies (bAbs) to S and N antigens of SARS-CoV-2. In SARS-CoV-2 susceptible k18-hACE2 Tg mice, two doses of MVA-CoV2-BMEP elicited S- and N-specific bAbs as well as cross-neutralizing antibodies against different variants of concern (VoC). After SARS-CoV-2 challenge, all animals in the control unvaccinated group succumbed to the infection while vaccinated animals with high titers of neutralizing antibodies were fully protected against mortality, correlating with a reduction of virus infection in the lungs and inhibition of the cytokine storm. Discussion These findings revealed a novel immunogen with the capacity to control SARS-CoV-2 infection, using a broader antigen presentation mechanism than the approved vaccines based solely on the S antigen.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María López-Bravo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pedro J. Sánchez-Cordón
- Veterinary Pathology Department, Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Zamora
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José Ramón Valverde
- Scientific Computing, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit and Computational Genomics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Laura Sin
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Enrique Álvarez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manuel Ramos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Margarita Del Val
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
412
|
Follmann D, O'Brien MP, Fintzi J, Fay MP, Montefiori D, Mateja A, Herman GA, Hooper AT, Turner KC, Chan KC, Forleo-Neto E, Isa F, Baden LR, El Sahly HM, Janes H, Doria-Rose N, Miller J, Zhou H, Dang W, Benkeser D, Fong Y, Gilbert PB, Marovich M, Cohen MS. Examining protective effects of SARS-CoV-2 neutralizing antibodies after vaccination or monoclonal antibody administration. Nat Commun 2023; 14:3605. [PMID: 37330602 PMCID: PMC10276829 DOI: 10.1038/s41467-023-39292-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023] Open
Abstract
While new vaccines for SARS-CoV-2 are authorized based on neutralizing antibody (nAb) titer against emerging variants of concern, an analogous pathway does not exist for preventative monoclonal antibodies. In this work, nAb titers were assessed as correlates of protection against COVID-19 in the casirivimab + imdevimab monoclonal antibody (mAb) prevention trial (ClinicalTrials.gov #NCT4452318) and in the mRNA-1273 vaccine trial (ClinicalTrials.gov #NCT04470427). In the mAb trial, protective efficacy of 92% (95% confidence interval (CI): 84%, 98%) is associated with a nAb titer of 1000 IU50/ml, with lower efficacy at lower nAb titers. In the vaccine trial, protective efficacies of 93% [95% CI: 91%, 95%] and 97% (95% CI: 95%, 98%) are associated with nAb titers of 100 and 1000 IU50/ml, respectively. These data quantitate a nAb titer correlate of protection for mAbs benchmarked alongside vaccine induced nAb titers and support nAb titer as a surrogate endpoint for authorizing new mAbs.
Collapse
Affiliation(s)
- Dean Follmann
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | - Jonathan Fintzi
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael P Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Allyson Mateja
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | | | | | | | - Flonza Isa
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Hana M El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - David Benkeser
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Mary Marovich
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, USA
| | - Myron S Cohen
- Institute for Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
413
|
Tan CW, Valkenburg SA, Poon LLM, Wang LF. Broad-spectrum pan-genus and pan-family virus vaccines. Cell Host Microbe 2023; 31:902-916. [PMID: 37321173 PMCID: PMC10265776 DOI: 10.1016/j.chom.2023.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Although the development and clinical application of SARS-CoV-2 vaccines during the COVID-19 pandemic demonstrated unprecedented vaccine success in a short time frame, it also revealed a limitation of current vaccines in their inability to provide broad-spectrum or universal protection against emerging variants. Broad-spectrum vaccines, therefore, remain a dream and challenge for vaccinology. This review will focus on current and future efforts in developing universal vaccines targeting different viruses at the genus and/or family levels, with a special focus on henipaviruses, influenza viruses, and coronaviruses. It is evident that strategies for developing broad-spectrum vaccines will be virus-genus or family specific, and it is almost impossible to adopt a universal approach for different viruses. On the other hand, efforts in developing broad-spectrum neutralizing monoclonal antibodies have been more successful and it is worth considering broad-spectrum antibody-mediated immunization, or "universal antibody vaccine," as an alternative approach for early intervention for future disease X outbreaks.
Collapse
Affiliation(s)
- Chee Wah Tan
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Sophie A Valkenburg
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China.
| | - Lin-Fa Wang
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore; Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Singhealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
414
|
Noh Y, Ko HY, Kim JH, Yoon D, Choe YJ, Choe SA, Jung J, Shin JY. Barriers to COVID-19 vaccine surveillance: the issue of under-reporting adverse events. Epidemiol Health 2023; 45:e2023054. [PMID: 37309115 PMCID: PMC10593585 DOI: 10.4178/epih.e2023054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/10/2023] [Indexed: 06/14/2023] Open
Abstract
OBJECTIVES This study investigated the reporting rates of adverse events following immunization (AEFIs) to the spontaneous reporting system (SRS) and its predictors among individuals with AEFIs after coronavirus disease 2019 (COVID-19) vaccination. METHODS A cross-sectional, web-based survey was conducted from December 2, 2021 to December 20, 2021, recruiting participants >14 days after completion of a primary COVID-19 vaccination series. Reporting rates were calculated by dividing the number of participants who reported AEFIs to the SRS by the total number of participants who experienced AEFIs. We estimated adjusted odds ratios (aORs) using multivariate logistic regression to determine factors associated with spontaneous AEFIs reporting. RESULTS Among 2,993 participants, 90.9% and 88.7% experienced AEFIs after the first and second vaccine doses, respectively (reporting rates, 11.6 and 12.7%). Furthermore, 3.3% and 4.2% suffered moderate to severe AEFIs, respectively (reporting rates, 50.5 and 50.0%). Spontaneous reporting was more prevalent in female (aOR, 1.54; 95% confidence interval [CI], 1.31 to 1.81); those with moderate to severe AEFIs (aOR, 5.47; 95% CI, 4.45 to 6.73), comorbidities (aOR, 1.31; 95% CI, 1.09 to 1.57), a history of severe allergic reactions (aOR, 2.02; 95% CI, 1.47 to 2.77); and those who had received mRNA-1273 (aOR, 1.25; 95% CI, 1.05 to 1.49) or ChAdOx1 (aOR, 1.62; 95% CI, 1.15 to 2.30) vaccines versus BNT162b2. Reporting was less likely in older individuals (aOR, 0.98; 95% CI, 0.98 to 0.99 per 1-year age increment). CONCLUSIONS Spontaneous reporting of AEFIs after COVID-19 vaccination was associated with younger age, female sex, moderate to severe AEFIs, comorbidities, history of allergic reactions, and vaccine type. AEFIs under-reporting should be considered when delivering information to the community and in public health decision-making.
Collapse
Affiliation(s)
- Yunha Noh
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Hwa Yeon Ko
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Ju Hwan Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Dongwon Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Young June Choe
- Department of Pediatrics, Korea University Anam Hospital, Seoul, Korea
| | - Seung-Ah Choe
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Jaehun Jung
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Ju-Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, Korea
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
415
|
Huang W, Hernandez I, Tang S, Dickson S, Berenbrok LA, Guo J. Association between distance to community health care facilities and COVID-19-related mortality across U.S. counties in the COVID-19-vaccine era. BMC Res Notes 2023; 16:96. [PMID: 37277859 DOI: 10.1186/s13104-023-06366-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
OBJECTIVE COVID-19 has caused tremendous damage to U.S. public health, but COVID vaccines can effectively reduce the risk of COVID-19 infections and related mortality. Our study aimed to quantify the association between proximity to a community healthcare facility and COVID-19 related mortality after COVID vaccines became publicly available and explore how this association varied across racial and ethnic groups. RESULTS Residents living farther from a facility had higher COVID-19-related mortality across U.S. counties. This increased mortality incidence associated with longer distances was particularly pronounced in counties with higher proportions of Black and Hispanic populations.
Collapse
Affiliation(s)
- Wenxi Huang
- Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Inmaculada Hernandez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Shangbin Tang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | | | - Lucas A Berenbrok
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Jingchuan Guo
- Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, FL, USA.
| |
Collapse
|
416
|
Bannick MS, Gao F, Brown ER, Janes HE. Retrospective, Observational Studies for Estimating Vaccine Effects on the Secondary Attack Rate of SARS-CoV-2. Am J Epidemiol 2023; 192:1016-1028. [PMID: 36883907 PMCID: PMC10505422 DOI: 10.1093/aje/kwad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/21/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) vaccines are highly efficacious at preventing symptomatic infection, severe disease, and death. Most of the evidence that COVID-19 vaccines also reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is based on retrospective, observational studies. Specifically, an increasing number of studies are evaluating vaccine effectiveness against the secondary attack rate of SARS-CoV-2 using data available in existing health-care databases or contact-tracing databases. Since these types of databases were designed for clinical diagnosis or management of COVID-19, they are limited in their ability to provide accurate information on infection, infection timing, and transmission events. We highlight challenges with using existing databases to identify transmission units and confirm potential SARS-CoV-2 transmission events. We discuss the impact of common diagnostic testing strategies, including event-prompted and infrequent testing, and illustrate their potential biases in estimating vaccine effectiveness against the secondary attack rate of SARS-CoV-2. We articulate the need for prospective observational studies of vaccine effectiveness against the SARS-CoV-2 secondary attack rate, and we provide design and reporting considerations for studies using retrospective databases.
Collapse
Affiliation(s)
- Marlena S Bannick
- Correspondence to Marlena Bannick, Department of Biostatistics, Hans Rosling Center for Population Health, Box 357232, University of Washington, Seattle, WA 98195 (e-mail: )
| | | | | | | |
Collapse
|
417
|
Dulfer EA, Geckin B, Taks EJ, GeurtsvanKessel CH, Dijkstra H, van Emst L, van der Gaast – de Jongh CE, van Mourik D, Koopmans PC, Domínguez-Andrés J, van Crevel R, van de Maat JS, de Jonge MI, Netea MG. Timing and sequence of vaccination against COVID-19 and influenza (TACTIC): a single-blind, placebo-controlled randomized clinical trial. THE LANCET REGIONAL HEALTH. EUROPE 2023; 29:100628. [PMID: 37261212 PMCID: PMC10091277 DOI: 10.1016/j.lanepe.2023.100628] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 06/02/2023]
Abstract
Background Novel mRNA-based vaccines have been used to protect against SARS-CoV-2, especially in vulnerable populations who also receive an annual influenza vaccination. The TACTIC study investigated potential immune interference between the mRNA COVID-19 booster vaccine and the quadrivalent influenza vaccine, and determined if concurrent administration would have effects on safety or immunogenicity. Methods TACTIC was a single-blind, placebo-controlled randomized clinical trial conducted at the Radboud University Medical Centre, the Netherlands. Individuals ≥60 years, fully vaccinated against COVID-19 were eligible for participation and randomized into one of four study groups: 1) 0.5 ml influenza vaccination Vaxigrip Tetra followed by 0.3 ml BNT162b2 COVID-19 booster vaccination 21 days later, (2) COVID-19 booster vaccination followed by influenza vaccination, (3) influenza vaccination concurrent with the COVID-19 booster vaccination, and (4) COVID-19 booster vaccination only (reference group). Primary outcome was the geometric mean concentration (GMC) of IgG against the spike (S)-protein of the SARS-CoV-2 virus, 21 days after booster vaccination. We performed a non-inferiority analysis of concurrent administration compared to booster vaccines alone with a predefined non-inferiority margin of -0.3 on the log10-scale. Findings 154 individuals participated from October, 4, 2021, until November, 5, 2021. Anti-S IgG GMCs for the co-administration and reference group were 1684 BAU/ml and 2435 BAU/ml, respectively. Concurrent vaccination did not meet the criteria for non-inferiority (estimate -0.1791, 95% CI -0.3680 to -0.009831) and antibodies showed significantly lower neutralization capacity compared to the reference group. Reported side-effects were mild and did not differ between study groups. Interpretation Concurrent administration of both vaccines is safe, but the quantitative and functional antibody responses were marginally lower compared to booster vaccination alone. Lower protection against COVID-19 with concurrent administration of COVID-19 and influenza vaccination cannot be excluded, although additional larger studies would be required to confirm this. Trial registration number EudraCT: 2021-002186-17. Funding The study was supported by the ZonMw COVID-19 Programme.
Collapse
Affiliation(s)
- Elisabeth A. Dulfer
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Büsra Geckin
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther J.M. Taks
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Helga Dijkstra
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Liesbeth van Emst
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christa E. van der Gaast – de Jongh
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Djenolan van Mourik
- Laboratory of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Petra C. Koopmans
- Department of Biostatistics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Josephine S. van de Maat
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marien I. de Jonge
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| |
Collapse
|
418
|
Mezlini AM, Caddigan E, Shapiro A, Ramirez E, Kondow-McConaghy HM, Yang J, DeMarco K, Naraghi-Arani P, Foschini L. Precision recruitment for high-risk participants in a COVID-19 cohort study. Contemp Clin Trials Commun 2023; 33:101113. [PMID: 36938318 PMCID: PMC10008035 DOI: 10.1016/j.conctc.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Background Studies for developing diagnostics and treatments for infectious diseases usually require observing the onset of infection during the study period. However, when the infection base rate incidence is low, the cohort size required to measure an effect becomes large, and recruitment becomes costly and prolonged. We developed a model for reducing recruiting time and resources in a COVID-19 detection study by targeting recruitment to high-risk individuals. Methods We conducted an observational longitudinal cohort study at individual sites throughout the U.S., enrolling adults who were members of an online health and research platform. Through direct and longitudinal connection with research participants, we applied machine learning techniques to compute individual risk scores from individually permissioned data about socioeconomic and behavioral data, in combination with predicted local prevalence data. The modeled risk scores were then used to target candidates for enrollment in a hypothetical COVID-19 detection study. The main outcome measure was the incidence rate of COVID-19 according to the risk model compared with incidence rates in actual vaccine trials. Results When we used risk scores from 66,040 participants to recruit a balanced cohort of participants for a COVID-19 detection study, we obtained a 4- to 7-fold greater COVID-19 infection incidence rate compared with similar real-world study cohorts. Conclusion This risk model offers the possibility of reducing costs, increasing the power of analyses, and shortening study periods by targeting for recruitment participants at higher risk.
Collapse
Affiliation(s)
- Aziz M Mezlini
- Evidation Health, Inc., 63 Bovet Rd. #146, San Mateo, CA 94402, USA
| | - Eamon Caddigan
- Evidation Health, Inc., 63 Bovet Rd. #146, San Mateo, CA 94402, USA
| | - Allison Shapiro
- Evidation Health, Inc., 63 Bovet Rd. #146, San Mateo, CA 94402, USA
| | - Ernesto Ramirez
- Evidation Health, Inc., 63 Bovet Rd. #146, San Mateo, CA 94402, USA
| | | | - Justin Yang
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, 200 Independence Ave., Washington, DC 20201, USA
| | - Kerry DeMarco
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, 200 Independence Ave., Washington, DC 20201, USA
| | - Pejman Naraghi-Arani
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, 200 Independence Ave., Washington, DC 20201, USA
| | - Luca Foschini
- Evidation Health, Inc., 63 Bovet Rd. #146, San Mateo, CA 94402, USA
| |
Collapse
|
419
|
Rafati A, Pasebani Y, Jameie M, Yang Y, Jameie M, Ilkhani S, Amanollahi M, Sakhaei D, Rahimlou M, Kheradmand A. Association of SARS-CoV-2 Vaccination or Infection With Bell Palsy: A Systematic Review and Meta-analysis. JAMA Otolaryngol Head Neck Surg 2023; 149:493-504. [PMID: 37103913 PMCID: PMC10141297 DOI: 10.1001/jamaoto.2023.0160] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 04/28/2023]
Abstract
Importance Bell palsy (BP) has been reported as an adverse event following the SARS-CoV-2 vaccination, but neither a causative relationship nor a higher prevalence than in the general population has been established. Objective To compare the incidence of BP in SARS-CoV-2 vaccine recipients vs unvaccinated individuals or placebo recipients. Data Sources A systematic search of MEDLINE (via PubMed), Web of Science, Scopus, Cochrane Library, and Google Scholar from the inception of the COVID-19 report (December 2019) to August 15, 2022. Study Selection Articles reporting BP incidence with SARS-CoV-2 vaccination were included. Data Extraction and Synthesis This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline and was conducted with the random- and fixed-effect models using the Mantel-Haenszel method. The quality of the studies was evaluated by the Newcastle-Ottawa Scale. Main Outcomes and Measures The outcomes of interest were to compare BP incidence among (1) SARS-CoV-2 vaccine recipients, (2) nonrecipients in the placebo or unvaccinated cohorts, (3) different types of SARS-CoV-2 vaccines, and (4) SARS-CoV-2-infected vs SARS-CoV-2-vaccinated individuals. Results Fifty studies were included, of which 17 entered the quantitative synthesis. Pooling 4 phase 3 randomized clinical trials showed significantly higher BP in recipients of SARS-CoV-2 vaccines (77 525 vaccine recipients vs 66 682 placebo recipients; odds ratio [OR], 3.00; 95% CI, 1.10-8.18; I2 = 0%). There was, however, no significant increase in BP after administration of the messenger RNA SARS-CoV-2 vaccine in pooling 8 observational studies (13 518 026 doses vs 13 510 701 unvaccinated; OR, 0.70; 95% CI, 0.42-1.16; I2 = 94%). No significant difference was found in BP among 22 978 880 first-dose recipients of the Pfizer/BioNTech vaccine compared with 22 978 880 first-dose recipients of the Oxford/AstraZeneca vaccine (OR, 0.97; 95% CI, 0.82-1.15; I2 = 0%). Bell palsy was significantly more common after SARS-CoV-2 infection (n = 2 822 072) than after SARS-CoV-2 vaccinations (n = 37 912 410) (relative risk, 3.23; 95% CI, 1.57-6.62; I2 = 95%). Conclusions and Relevance This systematic review and meta-analysis suggests a higher incidence of BP among SARS-CoV-2-vaccinated vs placebo groups. The occurrence of BP did not differ significantly between recipients of the Pfizer/BioNTech vs Oxford/AstraZeneca vaccines. SARS-CoV-2 infection posed a significantly greater risk for BP than SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Ali Rafati
- School of Medicine, Iran University of Medical Sciences, Tehran
| | | | - Melika Jameie
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran
| | - Yuchen Yang
- Department of Neurology and Otolaryngology–Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Mana Jameie
- Cardiovascular Diseases Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Ilkhani
- Center for Surgery and Public Health, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mobina Amanollahi
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran
| | - Delaram Sakhaei
- School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Mehran Rahimlou
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Kheradmand
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland
- Department of Otolaryngology–Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| |
Collapse
|
420
|
Stollenwerk N, Estadilla CDS, Mar J, Bidaurrazaga Van-Dierdonck J, Ibarrondo O, Blasco-Aguado R, Aguiar M. The effect of mixed vaccination rollout strategy: A modelling study. Infect Dis Model 2023; 8:318-340. [PMID: 36945695 PMCID: PMC9998287 DOI: 10.1016/j.idm.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Vaccines have measurable efficacy obtained first from vaccine trials. However, vaccine efficacy (VE) is not a static measure and long-term population studies are needed to evaluate its performance and impact. COVID-19 vaccines have been developed in record time and the currently licensed vaccines are extremely effective against severe disease with higher VE after the full immunization schedule. To assess the impact of the initial phase of the COVID-19 vaccination rollout programmes, we used an extended Susceptible - Hospitalized - Asymptomatic/mild - Recovered (SHAR) model. Vaccination models were proposed to evaluate different vaccine types: vaccine type 1 which protects against severe disease only but fails to block disease transmission, and vaccine type 2 which protects against both severe disease and infection. VE was assumed as reported by the vaccine trials incorporating the difference in efficacy between one and two doses of vaccine administration. We described the performance of the vaccine in reducing hospitalizations during a momentary scenario in the Basque Country, Spain. With a population in a mixed vaccination setting, our results have shown that reductions in hospitalized COVID-19 cases were observed five months after the vaccination rollout started, from May to June 2021. Specifically in June, a good agreement between modelling simulation and empirical data was well pronounced.
Collapse
Affiliation(s)
- Nico Stollenwerk
- BCAM-Basque Center for Applied Mathematics, Bilbao, Basque Country, Spain
- Dipartimento di Matematica, Universitá degli Studi di Trento, Povo, Trento, Italy
| | - Carlo Delfin S Estadilla
- BCAM-Basque Center for Applied Mathematics, Bilbao, Basque Country, Spain
- Preventive Medicine and Public Health Department, University of the Basque Country, Leioa, Basque Country, Spain
| | - Javier Mar
- Osakidetza Basque Health Service, Guipúzcoa, Basque Country, Spain
- Biodonostia Health Research Institute, Guipúzcoa, Basque Country, Spain
| | | | - Oliver Ibarrondo
- Osakidetza Basque Health Service, Guipúzcoa, Basque Country, Spain
| | | | - Maíra Aguiar
- BCAM-Basque Center for Applied Mathematics, Bilbao, Basque Country, Spain
- Dipartimento di Matematica, Universitá degli Studi di Trento, Povo, Trento, Italy
- Ikerbasque, Basque Foundation for Science, Bilbao, Basque Country, Spain
| |
Collapse
|
421
|
Dmitrieva K, Maslennikov R, Vasilieva E, Aliev S, Bakhitov V, Marcinkevich V, Levshina A, Kozlov E, Ivashkin V, Poluektova E. Impact of vaccination against the novel coronavirus infection (COVID-19) with Sputnik V on mortality during the delta variant surge. J Infect Public Health 2023; 16:922-927. [PMID: 37086551 PMCID: PMC10098368 DOI: 10.1016/j.jiph.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023] Open
Abstract
OBJECTIVES The aim is to study impact of vaccination against the novel coronavirus disease (COVID-19) with Sputnik V on mortality during the period of predominance of the delta variant of SARS-CoV-2. METHODS This was a retrospective cohort study of individuals with state health insurance at the Moscow Ambulatory Center. The cohorts included 41,444 persons vaccinated with Sputnik V, 15,566 survivors of COVID-19, and 71,377 non-immune persons. The deaths of patients that occurred from June 1, 2021, to August 31, 2021, were analyzed. RESULTS Overall (0.39 % vs. 1.92 %; p < 0.001), COVID-19-related (0.06 % vs. 0.83 %; p < 0.001), and non-COVID mortality (0.33 % vs. 1.09 %; p < 0.001) was lower among vaccinated individuals than among non-immune individuals. The efficacy of vaccination against death from COVID-19 was 96 % [95 % CI 91-98 %] in the general population, 100 % among those aged 18-50 years, 97 % [95 % CI 76-100 %] among those aged 51-70 years, 98 % [95 % CI 90-100 %] among those aged 71-85 years, and 88 % [95 % CI 49-97 %] among those aged > 85 years. CONCLUSION COVID-19 vaccination with Sputnik V is associated with a decrease in overall and COVID-19-related mortality and is not with increased non-COVID mortality.
Collapse
Affiliation(s)
- Ksenia Dmitrieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 1-1 Pogodinskaya st., Moscow 119435, Russian Federation; Consultative and Diagnostic Center № 2 of Department of Health of the City of Moscow, 6 Millionnaya st., Moscow 107764, Russian Federation
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 1-1 Pogodinskaya st., Moscow 119435, Russian Federation; Consultative and Diagnostic Center № 2 of Department of Health of the City of Moscow, 6 Millionnaya st., Moscow 107764, Russian Federation; The Scientific Community for Human Microbiome Research, 1-1 Pogodinskaya st., Moscow 119435, Russian Federation.
| | - Ekaterina Vasilieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 1-1 Pogodinskaya st., Moscow 119435, Russian Federation
| | - Salekh Aliev
- Consultative and Diagnostic Center № 2 of Department of Health of the City of Moscow, 6 Millionnaya st., Moscow 107764, Russian Federation; First Hospital Surgery Department, Pirogov Russian National Research Medical University, 1 Ostrovityanova st., Moscow 117997, Russian Federation
| | - Vyacheslav Bakhitov
- Consultative and Diagnostic Center № 2 of Department of Health of the City of Moscow, 6 Millionnaya st., Moscow 107764, Russian Federation
| | - Vadim Marcinkevich
- Consultative and Diagnostic Center № 2 of Department of Health of the City of Moscow, 6 Millionnaya st., Moscow 107764, Russian Federation
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 1-1 Pogodinskaya st., Moscow 119435, Russian Federation; Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, 2 Bolshaya Pirogovskaya st., Moscow 119991, Russian Federation
| | - Evgenii Kozlov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, 2 Bolshaya Pirogovskaya st., Moscow 119991, Russian Federation
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 1-1 Pogodinskaya st., Moscow 119435, Russian Federation
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 1-1 Pogodinskaya st., Moscow 119435, Russian Federation; The Scientific Community for Human Microbiome Research, 1-1 Pogodinskaya st., Moscow 119435, Russian Federation
| |
Collapse
|
422
|
Al-Hatamleh MA, Abusalah MA, Hatmal MM, Alshaer W, Ahmad S, Mohd-Zahid MH, Rahman ENSE, Yean CY, Alias IZ, Uskoković V, Mohamud R. Understanding the challenges to COVID-19 vaccines and treatment options, herd immunity and probability of reinfection. J Taibah Univ Med Sci 2023; 18:600-638. [PMID: 36570799 PMCID: PMC9758618 DOI: 10.1016/j.jtumed.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Unlike pandemics in the past, the outbreak of coronavirus disease 2019 (COVID-19), which rapidly spread worldwide, was met with a different approach to control and measures implemented across affected countries. The lack of understanding of the fundamental nature of the outbreak continues to make COVID-19 challenging to manage for both healthcare practitioners and the scientific community. Challenges to vaccine development and evaluation, current therapeutic options, convalescent plasma therapy, herd immunity, and the emergence of reinfection and new variants remain the major obstacles to combating COVID-19. This review discusses these challenges in the management of COVID-19 at length and highlights the mechanisms needed to provide better understanding of this pandemic.
Collapse
Affiliation(s)
- Mohammad A.I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mai A. Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Ma'mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Manali H. Mohd-Zahid
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Engku Nur Syafirah E.A. Rahman
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Chan Y. Yean
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Iskandar Z. Alias
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
423
|
Childs MR, Wong TE. Assessing parameter sensitivity in a university campus COVID-19 model with vaccinations. Infect Dis Model 2023; 8:374-389. [PMID: 37064014 PMCID: PMC10085012 DOI: 10.1016/j.idm.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023] Open
Abstract
From the beginning of the COVID-19 pandemic, universities have experienced unique challenges due to their dual nature as a place of education and residence. Current research has explored non-pharmaceutical approaches to combating COVID-19, including representing in models different categories such as age groups. One key area not currently well represented in models is the effect of pharmaceutical preventative measures, specifically vaccinations, on COVID-19 spread on college campuses. There remain key questions on the sensitivity of COVID-19 infection rates on college campuses to potentially time-varying vaccine immunity. Here we introduce a compartment model that decomposes a campus population into constituent subpopulations and implements vaccinations with time-varying efficacy. We use this model to represent a campus population with both vaccinated and unvaccinated individuals, and we analyze this model using two metrics of interest: maximum isolation population and symptomatic infection. We demonstrate a decrease in symptomatic infections occurs for vaccinated individuals when the frequency of testing for unvaccinated individuals is increased. We find that the number of symptomatic infections is insensitive to the frequency of testing of the unvaccinated subpopulation once about 80% or more of the population is vaccinated. Through a Sobol' global sensitivity analysis, we characterize the sensitivity of modeled infection rates to these uncertain parameters. We find that in order to manage symptomatic infections and the maximum isolation population campuses must minimize contact between infected and uninfected individuals, promote high vaccine protection at the beginning of the semester, and minimize the number of individuals developing symptoms.
Collapse
Affiliation(s)
- Meghan Rowan Childs
- Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY, 14623, USA
| | - Tony E Wong
- Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY, 14623, USA
| |
Collapse
|
424
|
Li F, Xu W, Zhang X, Wang W, Su S, Han P, Wang H, Xu Y, Li M, Fan L, Zhang H, Dai Q, Lin H, Qi X, Liang J, Wang X, Jiang S, Xie Y, Lu L, Yang X. A spike-targeting bispecific T cell engager strategy provides dual layer protection against SARS-CoV-2 infection in vivo. Commun Biol 2023; 6:592. [PMID: 37264086 PMCID: PMC10234585 DOI: 10.1038/s42003-023-04955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
Neutralizing antibodies exert a potent inhibitory effect on viral entry; however, they are less effective in therapeutic models than in prophylactic models, presumably because of their limited efficacy in eliminating virus-producing cells via Fc-mediated cytotoxicity. Herein, we present a SARS-CoV-2 spike-targeting bispecific T-cell engager (S-BiTE) strategy for controlling SARS-CoV-2 infection. This approach blocks the entry of free virus into permissive cells by competing with membrane receptors and eliminates virus-infected cells via powerful T cell-mediated cytotoxicity. S-BiTE is effective against both the original and Delta variant of SARS-CoV2 with similar efficacy, suggesting its potential application against immune-escaping variants. In addition, in humanized mouse model with live SARS-COV-2 infection, S-BiTE treated mice showed significantly less viral load than neutralization only treated group. The S-BiTE strategy may have broad applications in combating other coronavirus infections.
Collapse
Affiliation(s)
- Fanlin Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Xiaoqing Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Physiology, Naval Medical University, Shanghai, 200433, China
| | - Wanting Wang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Ping Han
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyong Wang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanqin Xu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Min Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lilv Fan
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huihui Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Dai
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Lin
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyue Qi
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Liang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Wang
- Shanghai Longyao Biotechnology Limited, Shanghai, 201203, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China.
| | - Xuanming Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
425
|
Jiménez-Bambague EM, Madera-Parra CA, Machuca-Martinez F. The occurrence of emerging compounds in real urban wastewater before and after the COVID-19 pandemic in Cali, Colombia. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 33:100457. [PMID: 37020893 PMCID: PMC9998129 DOI: 10.1016/j.coesh.2023.100457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 06/05/2023]
Abstract
The COVID-19 pandemic is considered one of the most significant global disasters in the last years. The rapid increase in infections, deaths, treatment, and the vaccination process has resulted in the excessive use of pharmaceuticals that have entered the environment as micropollutants. Considering the prior information about the presence of pharmaceuticals found in the wastewater of Cali, Colombia, which was collected from 2015 to 2022. The data monitored after the COVID-19 pandemic showed an increase in the concentration of analgesics and anti-inflammatory drugs of up to 91%. This increase was associated with the consumption of pharmaceuticals for mild symptoms, such as fever and pain. Moreover, the increase in concentration of pharmaceuticals poses a highly ecological threat, which was up to 14 times higher than that reported before of COVID-19 pandemic. These results showed that the COVID-19 had not only impacted human health but also had an effect on environmental health.
Collapse
|
426
|
Hoang TNA, Quach HL, Hoang VN, Tran VT, Pham QT, Vogt F. Assessing the robustness of COVID-19 vaccine efficacy trials: systematic review and meta-analysis, January 2023. Euro Surveill 2023; 28:2200706. [PMID: 37261728 PMCID: PMC10236928 DOI: 10.2807/1560-7917.es.2023.28.22.2200706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
BackgroundVaccines play a crucial role in the response to COVID-19 and their efficacy is thus of great importance.AimTo assess the robustness of COVID-19 vaccine efficacy (VE) trial results using the fragility index (FI) and fragility quotient (FQ) methodology.MethodsWe conducted a Cochrane and PRISMA-compliant systematic review and meta-analysis of COVID-19 VE trials published worldwide until 22 January 2023. We calculated the FI and FQ for all included studies and assessed their associations with selected trial characteristics using Wilcoxon rank sum tests and Kruskal-Wallis H tests. Spearman correlation coefficients and scatter plots were used to quantify the strength of correlation of FIs and FQs with trial characteristics.ResultsOf 6,032 screened records, we included 40 trials with 54 primary outcomes, comprising 909,404 participants with a median sample size per outcome of 13,993 (interquartile range (IQR): 8,534-25,519). The median FI and FQ was 62 (IQR: 22-123) and 0.50% (IQR: 0.24-0.92), respectively. FIs were positively associated with sample size (p < 0.001), and FQs were positively associated with type of blinding (p = 0.023). The Spearman correlation coefficient for FI with sample size was moderately strong (0.607), and weakly positive for FI and FQ with VE (0.138 and 0.161, respectively).ConclusionsThis was the largest study on trial robustness to date. Robustness of COVID-19 VE trials increased with sample size and varied considerably across several other important trial characteristics. The FI and FQ are valuable complementary parameters for the interpretation of trial results and should be reported alongside established trial outcome measures.
Collapse
Affiliation(s)
- Thi Ngoc Anh Hoang
- Faculty of Medicine, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi, Vietnam
| | - Ha-Linh Quach
- National Centre for Epidemiology and Population Health, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
- Department of Communicable Diseases Control and Prevention, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
- Centre for Ageing Research and Education (CARE), Duke-NUS Medical School, Singapore, Singapore
| | - Van Ngoc Hoang
- The General Department of Preventive Medicine, Ministry of Health, Hanoi, Vietnam
| | | | - Quang Thai Pham
- Department of Communicable Diseases Control and Prevention, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Florian Vogt
- National Centre for Epidemiology and Population Health, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
427
|
Li H, Ping F, Li X, Wang Z, Xiao J, Jiang H, Xue Y, Quan J, Yao H, Zheng X, Chen Y, Li Y, Yu X, Xu L, Feng X, Wang S, Li Y, Xiao X. COVID-19 vaccine coverage, safety, and perceptions among patients with diabetes mellitus in China: a cross-sectional study. Front Endocrinol (Lausanne) 2023; 14:1172089. [PMID: 37334292 PMCID: PMC10270113 DOI: 10.3389/fendo.2023.1172089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Aims Diabetes mellitus (DM), one of the most common chronic diseases in China, is a risk factor for SARS-COV-2 infection and poor prognosis of COVID-19. The COVID-19 vaccine is one of the key measures to control the pandemic. However, the actual coverage of COVID-19 vaccination and associated factors remain unclear among DM patients in China. We conducted this study to investigate the COVID-19 vaccine coverage, safety, and perceptions among patients with DM in China. Methods A cross-sectional study of a sample of 2200 DM patients from 180 tertiary hospitals in China was performed using a questionnaire developed through the Wen Juan Xing survey platform to collect information regarding their coverage, safety, and perceptions of COVID-19 vaccination. A multinomial logistic regression analysis model was performed to determine any independent relationships with COVID-19 vaccination behavior among DM patients. Results In total, 1929 (87.7%) DM patients have received at least one dose COVID-19 vaccine, and 271 (12.3%) DM patients were unvaccinated. In addition, 65.2% (n = 1434) were booster vaccinated against COVID-19, while 16.2% (n = 357) were only fully vaccinated and 6.3% (n = 138) were only partially vaccinated. The prevalence of adverse effects after the first dose of vaccine, the second dose of vaccine, and the third dose of vaccine were 6.0%, 6.0%, and 4.3% respectively. Multinomial logistic regression analysis showed that DM patients complicated with immune and inflammatory diseases (partially vaccinated: OR = 0.12; fully vaccinated: OR = 0.11; booster vaccinated: OR = 0.28), diabetic nephropathy (partially vaccinated: OR = 0.23; fully vaccinated: OR = 0.50; booster vaccinated: OR = 0.30), and perceptions on the safety of COVID-19 vaccine (partially vaccinated: OR = 0.44; fully vaccinated: OR = 0.48; booster vaccinated: OR = 0.45) were all associated with the three of vaccination status. Conclusion This study showed that higher proportion of COVID-19 vaccine coverage among patients with DM in China. The concern about the safety of the COVID-19 vaccine affected the vaccine behavior in patients with DM. The COVID-19 vaccine was relatively safe for DM patients due to all side effects were self-limiting.
Collapse
Affiliation(s)
- Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fan Ping
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Xiaomeng Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhihong Wang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianzhong Xiao
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Hongwei Jiang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinxing Quan
- Department of Endocrinology, Gansu Provincial People’s Hospital, Lanzhou, Gansu, China
| | - Hebin Yao
- Department of Endocrinology, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Xianling Zheng
- Department of Endocrinology, Handan Central Hospital, Handan, China
| | - Yanming Chen
- Department of Endocrinology & Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yufeng Li
- Department of Endocrinology, Capital Medical University, Beijing, China
| | - Xiaohua Yu
- Department of Endocrinology, Liaoyang Central Hospital, Liaoyang, Liaoning, China
| | - Lingling Xu
- Department of Endocrinology, ShenZhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xinxin Feng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Siyu Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
428
|
Rajasi RS, Chandran P, Sivakumar CP, George B, Amrutha D, Elizabeth M, George AM. Profile of COVID-19 breakthrough cases and its comparison with unvaccinated COVID-19 cases among healthcare workers in a tertiary care centre in North Kerala. J Family Med Prim Care 2023; 12:1118-1124. [PMID: 37636199 PMCID: PMC10451569 DOI: 10.4103/jfmpc.jfmpc_1725_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 08/29/2023] Open
Abstract
Background Healthcare workers (HCWs) were the most vulnerable group during COVID-19 pandemic and had faced many challenges including high rate of breakthrough infections. Aims To study the incidence of reported breakthrough infections among HCWs in Government Medical College, Kozhikode and to compare profile of COVID-19 infection between fully vaccinated and unvaccinated COVID-19 positive HCWs. Settings and Design The research was conducted as a prospective study for a duration of 78 weeks from 1st of March 2020 through 31st of August 2021 in Government Medical College, Kozhikode. Methods and Material The study was conducted among HCWs in a COVID-19 tertiary care institute. Real-time data were collected from 401 breakthrough cases and 390 unvaccinated COVID-19 positive HCWs through telephonic interviews. Statistical Analysis Used Univariate analysis was done using frequency for categorical variables and mean and standard deviation for quantitative variables. Chi-square test was used to find out statistical significance. Results Incidence of breakthrough infection was found to be 5.62% with 43.3% being asymptomatic. Fever was the most predominant symptom (62.5%). None of the breakthrough cases developed complication requiring intensive care (ICU). There was a reduction in incidence of acute post-COVID-19 syndrome in vaccinated group (17.45%) compared to unvaccinated group (57.2%). Conclusions COVID-19 vaccination plays a key role in preventing severity, complication, and ICU admissions in COVID-19 infection. Incidence of post-COVID-19 syndrome is also less among fully vaccinated compared to unvaccinated individuals.
Collapse
Affiliation(s)
- RS Rajasi
- Department of Community Medicine, Government Medical College, Kozhikode, Kerala, India
| | - Priya Chandran
- Department of Community Medicine, Government Medical College, Kozhikode, Kerala, India
| | - CP Sivakumar
- Department of Community Medicine, Government Medical College, Kozhikode, Kerala, India
| | - Biju George
- Department of Community Medicine, Government Medical College, Kozhikode, Kerala, India
| | - D Amrutha
- Department of Community Medicine, Government Medical College, Kozhikode, Kerala, India
| | - Milu Elizabeth
- Department of Community Medicine, Government Medical College, Kozhikode, Kerala, India
| | - Ardra M George
- Department of Community Medicine, Government Medical College, Kozhikode, Kerala, India
| |
Collapse
|
429
|
Singh RB, Parmar UPS, Ichhpujani P, Jeng BH, Jhanji V. Herpetic Eye Disease After SARS-CoV-2 Vaccination: A CDC-VAERS Database Analysis. Cornea 2023; 42:731-738. [PMID: 36706232 DOI: 10.1097/ico.0000000000003246] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/26/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE The aim of this study was to evaluate the cases of herpes simplex and zoster ophthalmicus after SARS-CoV-2 vaccination and assess the clinical presentations in patients. METHODS A retrospective analysis of cases reported to the Centers for Disease Control and Prevention (CDC) Vaccine Adverse Event Reporting System (VAERS) between December 11, 2020, and July 1, 2022. Patients diagnosed with herpes simplex ophthalmicus (HSO) and herpes zoster ophthalmicus (HZO) after vaccination with BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna), and Ad26.COV2.S (Janssen) were included in the study. We performed a descriptive analysis of patient demographics, history, and ophthalmic and systemic clinical presentations. The correlations between vaccine type and continuous variables were assessed by the one-way analysis of variance test. In addition, we used the Pearson χ 2 test to assess the association between 3 vaccines and categorical variables. A post hoc analysis was performed between HSO and HZO onset intervals after vaccination, dose, and vaccine type. The 30-day risk analysis was also performed for HSO and HZO onset postvaccination using the reverse Kaplan-Meier analysis. RESULTS A total of 1180 cases of HZO (983, 83.30%) and HSO (180, 15.25%) were reported. The mean age of patients with HZO and HSO was 59.02 ± 19.05 and 52.68 ± 17.83 years, respectively. Most of the cases of HZO (795, 80.87%) and HSO (131, 72.78%) were reported in patients who received BNT162b2. In the cohort, 63.28% and 65.56% diagnosed with HZO and HSO were women. About one third of HZO (36.52%) and HSO (35.56%) cases were reported after the first dose. More than half of the cases of HZO (61.34%) and HSO (64.45%) were reported within the first 2 weeks after vaccination. The estimated crude reporting rate (per million doses) in the United States was 0.25, 0.22, and 0.47 for BNT162b2, mRNA-1273, and Ad26.COV2.S, respectively. The onset interval for HZO was significantly shorter in patients who received BNT162b2 (20.51 ± 56.20 days, P = 0.030) compared with patients who received mRNA-1273 (36.56 ± 108.67 days) and Ad26.COV2.S (39.66 ± 60.15 days) vaccines. The 30-day risk analysis showed a significantly higher risk of HZO after BNT162b2 than the other 2 vaccines ( P = 0.011). CONCLUSIONS The low crude reporting rate suggests that HZO and HSO after SARS-CoV-2 vaccination occur rarely. This study provides insights into the possible temporal association between reported HSO and HZO after SARS-CoV-2 vaccines; however, further investigations are required to delineate the possible underlying immunological mechanisms.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
- Discipline of Ophthalmology and Visual Sciences, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Australia
| | | | - Parul Ichhpujani
- Department of Ophthalmology, Government Medical College and Hospital, Chandigarh, India
| | - Bennie H Jeng
- Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
430
|
Mabila S, Patel D, Fan M, Stahlman S, Seliga N, Nowak G, Wells N. Post -acute sequalae of COVID-19 and cardiac outcomes in U. S. military members. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2023; 17:200183. [PMID: 36936859 PMCID: PMC10014478 DOI: 10.1016/j.ijcrp.2023.200183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Post -acute sequalae of COVID-19 (PASC) among U.S. military members remains unexplored. A cohort study of U. S. military members who had a COVID-19 test result, with the specimen collected between March 1, 2020 and November 30, 2021 was conducted. Demographic, inpatient and outpatient data including cardiac event diagnoses were extracted from electronic medical records and compared COVID-19 test-positive and COVID-19 test-negative service members. We used univariate and multivariable logistic regression methods to determine the effect PASC on select cardiac events. Among 997,785 service members, 15,779 (1.6%) were diagnosed with a cardiac event. In fully adjusted models, PASC was significantly associated with increased odds of any cardiac event [OR =1.64 (95% CI: 1.57, 1.71]. PASC was associated with increased odds of myocarditis [OR = 5.86 (95% CI: 4.22, 8.15)], pericarditis [OR =3.08 (95% CI: 2.31, 4.11)], syncope [OR =1.52 (95% CI: 1.41, 1.63)], tachycardia [OR =1.72 (95% CI: 1.56, 1.89)], heart failure [OR =2.15 (95% CI: 1.76, 2.63)], bradycardia [OR =1.71 (95% CI: 1.50, 1.96)], and atrial fibrillation [OR =1.33(95% CI: 1.02, 1.74)] in fully adjusted models. In a sensitivity analysis of military members with no history of cardiac events, PASC was still significantly associated with increased odds of any cardiac event [OR =1.75 (95% CI: 1.67, 1.84)]. In conclusion, we observed a significant association between PASC and cardiac outcomes including; myocarditis, pericarditis, and heart failure. These associations were observed in a relatively young and healthy population and among those without pre-existing cardiac diagnoses.
Collapse
Affiliation(s)
- Sithembile Mabila
- Defense Health Agency, Public Health Directorate, Armed Forces Health Surveillance Division, Epidemiology and Analysis Division, USA
| | - Deven Patel
- Defense Health Agency, Public Health Directorate, Armed Forces Health Surveillance Division, Epidemiology and Analysis Division, USA
| | - Michael Fan
- Defense Health Agency, Public Health Directorate, Armed Forces Health Surveillance Division, Epidemiology and Analysis Division, USA
| | - Shauna Stahlman
- Defense Health Agency, Public Health Directorate, Armed Forces Health Surveillance Division, Epidemiology and Analysis Division, USA
| | - Nicholas Seliga
- Defense Health Agency, Defense Centers for Public Health-Portsmouth, EpiData Center, USA
| | - Gosia Nowak
- Defense Health Agency, Defense Centers for Public Health-Portsmouth, EpiData Center, USA
| | - Natalie Wells
- Defense Health Agency, Public Health Directorate, Armed Forces Health Surveillance Division, Epidemiology and Analysis Division, USA
| |
Collapse
|
431
|
Magaret C, Li L, deCamp A, Rolland M, Juraska M, Williamson B, Ludwig J, Molitor C, Benkeser D, Luedtke A, Simpkins B, Carpp L, Bai H, Deariove B, Greninger A, Roychoudhury P, Sadoff J, Gray G, Roels S, Vandebosch A, Stieh D, Le Gars M, Vingerhoets J, Grinsztejn B, Goepfert P, Truyers C, Van Dromme I, Swann E, Marovich M, Follmann D, Neuzil K, Corey L, Hyrien O, Paiva de Sousa L, Casapia M, Losso M, Little S, Gaur A, Bekker LG, Garrett N, Heng F, Sun Y, Gilbert P. Quantifying how single dose Ad26.COV2.S vaccine efficacy depends on Spike sequence features. RESEARCH SQUARE 2023:rs.3.rs-2743022. [PMID: 37398105 PMCID: PMC10312950 DOI: 10.21203/rs.3.rs-2743022/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
It is of interest to pinpoint SARS-CoV-2 sequence features defining vaccine resistance. In the ENSEMBLE randomized, placebo-controlled phase 3 trial, estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were measured from 484 vaccine and 1,067 placebo recipients who acquired COVID-19 during the trial. In Latin America, where Spike diversity was greatest, VE was significantly lower against Lambda than against Reference and against all non-Lambda variants [family-wise error rate (FWER) p < 0.05]. VE also differed by residue match vs. mismatch to the vaccine-strain residue at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20). VE significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 different antibody-epitope escape scores and by 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccine recipient sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against viruses with greatest distances. These results help map antigenic specificity of in vivo vaccine protection.
Collapse
Affiliation(s)
| | - Li Li
- Fred Hutchinson Cancer Center
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Beatriz Grinsztejn
- Evandro Chagas National Institute of Infectious Diseases-Fundacao Oswaldo Cruz
| | - Paul Goepfert
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham
| | | | | | | | - Mary Marovich
- National Institute of Allergy and Infectious Diseases
| | | | | | | | | | | | | | | | - Susan Little
- Department of Medicine, University of California, San Diego, CA 92903
| | | | | | - Nigel Garrett
- Centre for the AIDS Program of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa 4041
| | | | | | | |
Collapse
|
432
|
Pavlidis G, Giannoulis V, Pirounaki M, Lampropoulos IC, Siafi E, Nitsa A, Pavlou E, Xanthaki A, Perlepe G, Fortis SP, Charalambous G, Kampolis CF, Pantazopoulos I. Evaluation of Antibody Kinetics Following COVID-19 Vaccination in Greek SARS-CoV-2 Infected and Naïve Healthcare Workers. J Pers Med 2023; 13:910. [PMID: 37373899 DOI: 10.3390/jpm13060910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
We investigated the antibody kinetics after vaccination against COVID-19 in healthcare workers of a Greek tertiary hospital. Eight hundred and three subjects were included, of whom 758 (94.4%) received the BNT162b2 vaccine (Pfizer-BioNTech), eight (1%) mRNA-1273 (Moderna), 14 (1.7%) ChAdOx1 (Oxford-AstraZeneca) and 23 (2.9%) Ad26.COV2.S (Janssen). Before the second dose, at 2, 6 and 9 months after the second dose and at 2 and 6 months after the third dose, anti-spike IgG were quantified by the chemiluminescence microparticle immunoassay method. One hundred subjects were infected before vaccination (group A), 335 were infected after receiving at least one vaccine dose (group B), while 368 had never been infected (group C). Group A presented a greater number of hospitalizations and reinfections compared to group B (p < 0.05). By multivariate analysis, younger age was associated with an increased risk of reinfection (odds ratio: 0.956, p = 0.004). All subjects showed the highest antibody titers at 2 months after the second and third dose. Group A showed higher antibody titers pre-second dose, which remained elevated 6 months post-second dose compared to groups B and C (p < 0.05). Pre-vaccine infection leads to rapid development of high antibody titer and a slower decline. Vaccination is associated with fewer hospitalizations and fewer reinfections.
Collapse
Affiliation(s)
- George Pavlidis
- Department of Emergency Medicine, Hippokration General Hospital, 11527 Athens, Greece
| | - Vasileios Giannoulis
- Transfusion and Haemophilia Centre, Hippokration General Hospital, 11527 Athens, Greece
| | - Maria Pirounaki
- Second Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, Hippokration General Hospital, 11527 Athens, Greece
| | - Ioannis C Lampropoulos
- Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Eirini Siafi
- Department of Emergency Medicine, Hippokration General Hospital, 11527 Athens, Greece
| | - Alkippi Nitsa
- Microbiology Department, Hippokration General Hospital, 11527 Athens, Greece
| | - Efthymia Pavlou
- Transfusion and Haemophilia Centre, Hippokration General Hospital, 11527 Athens, Greece
| | - Anna Xanthaki
- Microbiology Department, Hippokration General Hospital, 11527 Athens, Greece
| | - Garyfallia Perlepe
- Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Sotirios P Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, 12243 Egaleo, Greece
| | - George Charalambous
- Department of Emergency Medicine, Hippokration General Hospital, 11527 Athens, Greece
| | - Christos F Kampolis
- Department of Emergency Medicine, Hippokration General Hospital, 11527 Athens, Greece
| | - Ioannis Pantazopoulos
- Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
433
|
Gupta A, Singh AP, Singh VK, Sinha RP. Recent Developments and Future Perspectives of Vaccines and Therapeutic Agents against SARS-CoV2 Using the BCOV_S1_CTD of the S Protein. Viruses 2023; 15:1234. [PMID: 37376534 DOI: 10.3390/v15061234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, the virus kept developing and mutating into different variants over time, which also gained increased transmissibility and spread in populations at a higher pace, culminating in successive waves of COVID-19 cases. The scientific community has developed vaccines and antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease. Realizing that growing SARS-CoV-2 variations significantly impact the efficacy of antiviral therapies and vaccines, we summarize the appearance and attributes of SARS-CoV-2 variants for future perspectives in drug design, providing up-to-date insights for developing therapeutic agents targeting the variants. The Omicron variant is among the most mutated form; its strong transmissibility and immune resistance capacity have prompted international worry. Most mutation sites currently being studied are in the BCOV_S1_CTD of the S protein. Despite this, several hurdles remain, such as developing vaccination and pharmacological treatment efficacies for emerging mutants of SARS-CoV-2 strains. In this review, we present an updated viewpoint on the current issues faced by the emergence of various SARS-CoV-2 variants. Furthermore, we discuss the clinical studies conducted to assist the development and dissemination of vaccines, small molecule therapeutics, and therapeutic antibodies having broad-spectrum action against SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Amit Gupta
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashish P Singh
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinay K Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- University Center for Research & Development (UCRD), Chandigarh University, Chandigarh 140413, India
| |
Collapse
|
434
|
Frahm N, Fneish F, Ellenberger D, Haas J, Löbermann M, Peters M, Pöhlau D, Röper AL, Schilling S, Stahmann A, Temmes H, Paul F, Zettl UK. Frequency and Predictors of Relapses following SARS-CoV-2 Vaccination in Patients with Multiple Sclerosis: Interim Results from a Longitudinal Observational Study. J Clin Med 2023; 12:jcm12113640. [PMID: 37297838 DOI: 10.3390/jcm12113640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Despite protection from severe COVID-19 courses through vaccinations, some people with multiple sclerosis (PwMS) are vaccination-hesitant due to fear of post-vaccination side effects/increased disease activity. The aim was to reveal the frequency and predictors of post-SARS-CoV-2-vaccination relapses in PwMS. This prospective, observational study was conducted as a longitudinal Germany-wide online survey (baseline survey and two follow-ups). Inclusion criteria were age ≥18 years, MS diagnosis, and ≥1 SARS-CoV-2 vaccination. Patient-reported data included socio-demographics, MS-related data, and post-vaccination phenomena. Annualized relapse rates (ARRs) of the study cohort and reference cohorts from the German MS Registry were compared pre- and post-vaccination. Post-vaccination relapses were reported by 9.3% PwMS (247/2661). The study cohort's post-vaccination ARR was 0.189 (95% CI: 0.167-0.213). The ARR of a matched unvaccinated reference group from 2020 was 0.147 (0.129-0.167). Another reference cohort of vaccinated PwMS showed no indication of increased post-vaccination relapse activity (0.116; 0.088-0.151) compared to pre-vaccination (0.109; 0.084-0.138). Predictors of post-vaccination relapses (study cohort) were missing immunotherapy (OR = 2.09; 1.55-2.79; p < 0.001) and shorter time from the last pre-vaccination relapse to the first vaccination (OR = 0.87; 0.83-0.91; p < 0.001). Data on disease activity of the study cohort in the temporal context are expected for the third follow-up.
Collapse
Affiliation(s)
- Niklas Frahm
- MS Forschungs- und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]), 30171 Hannover, Germany
- Department of Neurology, Neuroimmunological Section, University Medical Center of Rostock, 18147 Rostock, Germany
| | - Firas Fneish
- MS Forschungs- und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]), 30171 Hannover, Germany
| | - David Ellenberger
- MS Forschungs- und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]), 30171 Hannover, Germany
| | - Judith Haas
- Deutsche Multiple Sklerose Gesellschaft, Bundesverband e.V. (German MS Society Federal Association [DMSG]), 30171 Hannover, Germany
| | - Micha Löbermann
- Department of Tropical Medicine, Infectious Diseases and Nephrology, University Medical Center of Rostock, 18057 Rostock, Germany
| | - Melanie Peters
- MS Forschungs- und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]), 30171 Hannover, Germany
- Gesellschaft für Versorgungsforschung mbH (Society for Health Care Research [GfV]), 30171 Hannover, Germany
| | - Dieter Pöhlau
- Deutsche Multiple Sklerose Gesellschaft, Bundesverband e.V. (German MS Society Federal Association [DMSG]), 30171 Hannover, Germany
| | - Anna-Lena Röper
- MS Forschungs- und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]), 30171 Hannover, Germany
- Deutsche Multiple Sklerose Gesellschaft, Bundesverband e.V. (German MS Society Federal Association [DMSG]), 30171 Hannover, Germany
| | - Sarah Schilling
- MS Forschungs- und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]), 30171 Hannover, Germany
| | - Alexander Stahmann
- MS Forschungs- und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]), 30171 Hannover, Germany
| | - Herbert Temmes
- Deutsche Multiple Sklerose Gesellschaft, Bundesverband e.V. (German MS Society Federal Association [DMSG]), 30171 Hannover, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a Joint Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Medical Faculty, Campus Berlin-Buch, 13125 Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin, 10117 Berlin, Germany
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Uwe Klaus Zettl
- Department of Neurology, Neuroimmunological Section, University Medical Center of Rostock, 18147 Rostock, Germany
| |
Collapse
|
435
|
Yap DL, Mandell C, Behar E. The Role of Perceived Risk in the Relationship Between Disgust Sensitivity and COVID-19 Vaccine Hesitancy. COGNITIVE THERAPY AND RESEARCH 2023; 47:1-12. [PMID: 37363746 PMCID: PMC10206364 DOI: 10.1007/s10608-023-10391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/28/2023]
Abstract
Background Despite widespread availability of COVID vaccines and evidence of their efficacy, vaccine hesitancy remains prevalent. Several studies have examined the relationship between disgust sensitivity and vaccine hesitancy. Although results from studies using data collected prior to the COVID pandemic indicate that higher disgust sensitivity is related to greater vaccine hesitancy, results from studies using data collected during the COVID pandemic are equivocal. The present study examined whether perceived risk of contracting COVID moderated the relationship between disgust sensitivity and vaccine hesitancy. Methods Participants (n = 152) completed self-report measures of disgust sensitivity, perceived risk of contracting COVID, and COVID vaccine hesitancy (defined as both vaccine confidence and vaccine complacency). Results Perceived risk of contracting COVID significantly moderated the relationship between disgust sensitivity and vaccine complacency, with the association strengthened at low levels of perceived risk. Perceived risk of contracting COVID also marginally moderated the relationship between disgust sensitivity and vaccine confidence, with the association strengthened at low and average levels of perceived risk. Conclusions Results suggest that individuals with elevated disgust sensitivity who also report low levels of perceived risk of contracting COVID are more likely to express vaccine hesitancy. Implications of these findings are discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s10608-023-10391-8.
Collapse
Affiliation(s)
- David L. Yap
- Hunter College, City University of New York, New York, USA
- The Graduate Center, City University of New York, New York, USA
- Department of Psychology, Hunter College of The City University of New York, 695 Park Avenue, 611HN, New York, NY 10065 USA
| | | | - Evelyn Behar
- Hunter College, City University of New York, New York, USA
- The Graduate Center, City University of New York, New York, USA
| |
Collapse
|
436
|
Patel B, Chapman S, Neumann J, Visaria A, Ogungbe O, Wen S, Khodaverdi M, Makwana P, Singh JA, Sokos G. Outcomes of Patients with Active Cancers and Pre-Existing Cardiovascular Diseases Infected with SARS-CoV-2. RESEARCH SQUARE 2023:rs.3.rs-2952641. [PMID: 37292998 PMCID: PMC10246256 DOI: 10.21203/rs.3.rs-2952641/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Objective To determine the impact of acute SARS-CoV-2 infection on patient with concomitant active cancer and CVD. Methods The researchers extracted and analyzed data from the National COVID Cohort Collaborative (N3C) database between January 1, 2020, and July 22, 2022. They included only patients with acute SARS-CoV-2 infection, defined as a positive test by PCR 21 days before and 5 days after the day of index hospitalization. Active cancers were defined as last cancer drug administered within 30 days of index admission. The "Cardioonc" group consisted of patients with CVD and active cancers. The cohort was divided into four groups: (1) CVD (-), (2) CVD (+), (3) Cardioonc (-), and (4) Cardioonc (+), where (-) or (+) denotes acute SARS-CoV-2 infection status. The primary outcome of the study was major adverse cardiovascular events (MACE), including acute stroke, acute heart failure, myocardial infarction, or all-cause mortality. The researchers analyzed the outcomes by different phases of the pandemic and performed competing-risk analysis for other MACE components and death as a competing event. Results The study analyzed 418,306 patients, of which 74%, 10%, 15.7%, and 0.3% had CVD (-), CVD (+), Cardioonc (-), and Cardioonc (+), respectively. The Cardioonc (+) group had the highest MACE events in all four phases of the pandemic. Compared to CVD (-), the Cardioonc (+) group had an odds ratio of 1.66 for MACE. However, during the Omicron era, there was a statistically significant increased risk for MACE in the Cardioonc (+) group compared to CVD (-). Competing risk analysis showed that all-cause mortality was significantly higher in the Cardioonc (+) group and limited other MACE events from occurring. When the researchers identified specific cancer types, patients with colon cancer had higher MACE. Conclusion In conclusion, the study found that patients with both CVD and active cancer suffered relatively worse outcomes when they had acute SARS-CoV-2 infection during early and alpha surges in the United States. These findings highlight the need for improved management strategies and further research to better understand the impact of the virus on vulnerable populations during the COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | | | | | - Sijin Wen
- West Virginia Clinical and Transitional Science Institute
| | | | - Priyal Makwana
- West Virginia Clinical and Transitional Science Institute
| | | | | |
Collapse
|
437
|
Lutz M, Lazarus S, Caldera F. COVID-19 vaccination in adults with inflammatory bowel disease. Therap Adv Gastroenterol 2023; 16:17562848231173130. [PMID: 37234702 PMCID: PMC10203854 DOI: 10.1177/17562848231173130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/16/2023] [Indexed: 05/28/2023] Open
Abstract
Patients with inflammatory bowel disease (IBD) are not at increased risk of SARS-CoV-2 infection compared to the general population, and most are not at increased risk for severe disease. COVID-19 is nonetheless common, and vaccination is critical. Four safe and efficacious vaccines are now available for the prevention of COVID-19, with most data available for mRNA vaccines. Patients with IBD have a robust humoral response to vaccination with rates of seroconversion exceeding 95% following a two-dose mRNA vaccine series and 99% following a three-dose mRNA series, although those on certain therapies including anti-tumor necrosis factor α agents may have lower antibody concentrations and waning of antibodies over time. Additionally, rates of cell-mediated immune response, even in those patients with IBD who did not have evidence of humoral immunity, are high. Vaccines are safe and have not been associated with flares in disease activity. Gastroenterology providers should take an active role in ensuring patients with IBD are appropriately vaccinated against COVID-19.
Collapse
Affiliation(s)
| | - Sarah Lazarus
- School of Medicine & Public Health, Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Freddy Caldera
- School of Medicine & Public Health, Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
438
|
Soheili M, Khateri S, Moradpour F, Mohammadzedeh P, Zareie M, Mortazavi SMM, Manifar S, Kohan HG, Moradi Y. The efficacy and effectiveness of COVID-19 vaccines around the world: a mini-review and meta-analysis. Ann Clin Microbiol Antimicrob 2023; 22:42. [PMID: 37208749 DOI: 10.1186/s12941-023-00594-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
OBJECTIVES This meta-analysis evaluated the Efficacy and Effectiveness of several COVID-19 vaccines, including AstraZeneca, Pfizer, Moderna, Bharat, and Johnson & Johnson, to better estimate their immunogenicity, benefits, or side effects. METHODS Studies reporting the Efficacy and Effectiveness of COVID-19 vaccines from November 2020 to April 2022 were included. The pooled Effectiveness/Efficacy with a 95% confidence interval (95% CI) with Metaprop order was calculated. The results were presented in forest plots. Predefined subgroup analyses and sensitivity analyses were also performed. RESULTS A total of twenty articles were included in this meta-analysis. After the first dose of the vaccine, the total effectiveness of all COVID-19 vaccines in our study was 71% (95% CI 0.65, 0.78). The total effectiveness of vaccines after the second dose was 91% (95% CI 0.88, 0.94)). The total efficacy of vaccines after the first and second doses was 81% (95% CI 0.70, 0.91) and 71% (95% CI 0.62, 0.79), respectively. The effectiveness of the Moderna vaccine after the first and second dose was the highest among other studied vaccines ((74% (95% CI, 0.65, 0.83) and 93% (95% CI, 0.89, 0.97), respectively). The highest first dose overall effectiveness of the studied vaccines was against the Gamma variant (74% (95% CI, 0.73, 0.75)), and the highest effectiveness after the second dose was observed against the Beta variant (96% (95% CI, 0.96, 0.96)). The Efficacy for AstraZeneca and Pfizer vaccines after the first dose was 78% (95% CI, 0.62, 0.95) and 84% (95% CI, 0.77, 0.92), respectively. The second dose Efficacy for AstraZeneca, Pfizer, and Bharat was 67% (95% CI, 0.54, 0.80), 93% (95% CI, 0.85, 1.00), and 71% (95% CI, 0.61, 0.82), respectively. The overall efficacy of first and second dose vaccination against the Alfa variant was 84% (95% CI, 0.84, 0.84) and 77% (95% CI, 0.57, 0.97), respectively, the highest among other variants. CONCLUSION mRNA-based vaccines against COVID-19 showed the highest total efficacy and effectiveness than other vaccines. In general, administering the second dose produced a more reliable response and higher effectiveness than a single dose.
Collapse
Affiliation(s)
- Marzieh Soheili
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, 1215 Wilbraham Road, Springfield, MA, 01119, USA
| | - Sorour Khateri
- Department of Physical Medicine and Rehabilitation, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Farhad Moradpour
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Pardis Mohammadzedeh
- Department of Epidemiology and Biostatistics, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mostafa Zareie
- Department of Epidemiology and Biostatistics, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyede Maryam Mahdavi Mortazavi
- Pediatric Gastroenterology Fellowship, Department of Pediatrics, School of Medicine, Namazi teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Manifar
- Massachusetts College of Pharmacy and Health Sciences (MCPHS), 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Hamed Gilzad Kohan
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, 1215 Wilbraham Road, Springfield, MA, 01119, USA.
| | - Yousef Moradi
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
439
|
Benn CS, Schaltz-Buchholzer F, Nielsen S, Netea MG, Aaby P. Randomized clinical trials of COVID-19 vaccines: Do adenovirus-vector vaccines have beneficial non-specific effects? iScience 2023; 26:106733. [PMID: 37163200 PMCID: PMC10125209 DOI: 10.1016/j.isci.2023.106733] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/24/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
We examined the possible non-specific effects of novel mRNA- and adenovirus-vector COVID-19 vaccines by reviewing the randomized control trials (RCTs) of mRNA and adenovirus-vector COVID-19 vaccines. We calculated mortality risk ratios (RRs) for mRNA COVID-19 vaccines vs. placebo recipients and compared them with the RR for adenovirus-vector COVID-19 vaccine recipients vs. controls. The RR for overall mortality of mRNA vaccines vs. placebo was 1.03 (95% confidence interval [CI]: 0.63-1.71). In the adenovirus-vector vaccine RCTs, the RR for overall mortality was 0.37 (0.19-0.70). The two vaccine types differed significantly with respect to impact on overall mortality (p = 0.015). The RCTs of COVID-19 vaccines were unblinded rapidly, and controls were vaccinated. The results may therefore not be representative of the long-term effects. However, the data argue for performing RCTs of mRNA and adenovirus-vector vaccines head-to-head comparing long-term effects on overall mortality.
Collapse
Affiliation(s)
- Christine S Benn
- Bandim Health Project, Indepth Network, Apartado 861, Bissau, Guinea-Bissau
- OPEN, Odense Patient Data Explorative Network, Institute of Clinical Research Odense University Hospital/ University of Southern Denmark, Odense, Denmark
- Danish Institute of Advanced Science, University of Southern Denmark, Odense, Denmark
| | - Frederik Schaltz-Buchholzer
- Bandim Health Project, Indepth Network, Apartado 861, Bissau, Guinea-Bissau
- OPEN, Odense Patient Data Explorative Network, Institute of Clinical Research Odense University Hospital/ University of Southern Denmark, Odense, Denmark
| | - Sebastian Nielsen
- Bandim Health Project, Indepth Network, Apartado 861, Bissau, Guinea-Bissau
- OPEN, Odense Patient Data Explorative Network, Institute of Clinical Research Odense University Hospital/ University of Southern Denmark, Odense, Denmark
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Science Institute, University of Bonn, Bonn, Germany
| | - Peter Aaby
- Bandim Health Project, Indepth Network, Apartado 861, Bissau, Guinea-Bissau
- OPEN, Odense Patient Data Explorative Network, Institute of Clinical Research Odense University Hospital/ University of Southern Denmark, Odense, Denmark
| |
Collapse
|
440
|
Kalodimou G, Jany S, Freudenstein A, Schwarz JH, Limpinsel L, Rohde C, Kupke A, Becker S, Volz A, Tscherne A, Sutter G. Short- and Long-Interval Prime-Boost Vaccination with the Candidate Vaccines MVA-SARS-2-ST and MVA-SARS-2-S Induces Comparable Humoral and Cell-Mediated Immunity in Mice. Viruses 2023; 15:v15051180. [PMID: 37243266 DOI: 10.3390/v15051180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The COVID-19 pandemic caused significant human health and economic consequences. Due to the ability of SARS-CoV-2 to spread rapidly and to cause severe disease and mortality in certain population groups, vaccines are essential for controlling the pandemic in the future. Several licensed vaccines have shown improved protection against SARS-CoV-2 after extended-interval prime-boost immunizations in humans. Therefore, in this study, we aimed to compare the immunogenicity of our two Modified Vaccinia virus Ankara (MVA) based COVID-19 candidate vaccines MVA-SARS-2-S and MVA-SARS-2-ST after short- and long-interval prime-boost immunization schedules in mice. We immunized BALB/c mice using 21-day (short-interval) or 56-day (long-interval) prime-boost vaccination protocols and analyzed spike (S)-specific CD8 T cell immunity and humoral immunity. The two schedules induced robust CD8 T cell responses with no significant differences in their magnitude. Furthermore, both candidate vaccines induced comparable levels of total S, and S2-specific IgG binding antibodies. However, MVA-SARS-2-ST consistently elicited higher amounts of S1-, S receptor binding domain (RBD), and SARS-CoV-2 neutralizing antibodies in both vaccination protocols. Overall, we found very comparable immune responses following short- or long-interval immunization. Thus, our results suggest that the chosen time intervals may not be suitable to observe potential differences in antigen-specific immunity when testing different prime-boost intervals with our candidate vaccines in the mouse model. Despite this, our data clearly showed that MVA-SARS-2-ST induced superior humoral immune responses relative to MVA-SARS-2-S after both immunization schedules.
Collapse
Affiliation(s)
- Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 85764 Oberschleißheim, Germany
| | - Sylvia Jany
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| | - Jan Hendrik Schwarz
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps University of Marburg, 35043 Marburg, Germany
- German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, 35043 Marburg, Germany
| | - Alexandra Kupke
- Institute of Virology, Philipps University of Marburg, 35043 Marburg, Germany
- German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, 35043 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University of Marburg, 35043 Marburg, Germany
- German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, 35043 Marburg, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 85764 Oberschleißheim, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 85764 Oberschleißheim, Germany
| |
Collapse
|
441
|
Roytenberg R, García-Sastre A, Li W. Vaccine-induced immune thrombotic thrombocytopenia: what do we know hitherto? Front Med (Lausanne) 2023; 10:1155727. [PMID: 37261122 PMCID: PMC10227460 DOI: 10.3389/fmed.2023.1155727] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT), also known as thrombosis with thrombocytopenia syndrome, is a catastrophic and life-threatening reaction to coronavirus disease 2019 (COVID-19) vaccines, which occurs disproportionately in response to vaccination with non-replicating adenovirus vector (AV) vaccines. The mechanism of VITT is not well defined and it has not been resolved why cases of VITT are predominated by vaccination with AV vaccines. However, virtually all VITT patients have positive platelet-activating anti-platelet factor 4 (PF4) antibody titers. Subsequently, platelets are activated and depleted in an Fcγ-receptor IIa (FcγRIIa or CD32a)-dependent manner, but it is not clear why or how the anti-PF4 response is mounted. This review describes the pathogenesis of VITT and provides insight into possible mechanisms that prompt the formation of a PF4/polyanion complex, which drives VITT pathology, as an amalgam of current experimental data or hypotheses.
Collapse
Affiliation(s)
- Renat Roytenberg
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States
| |
Collapse
|
442
|
Kaplonek P, Deng Y, Shih-Lu Lee J, Zar HJ, Zavadska D, Johnson M, Lauffenburger DA, Goldblatt D, Alter G. Hybrid immunity expands the functional humoral footprint of both mRNA and vector-based SARS-CoV-2 vaccines. Cell Rep Med 2023; 4:101048. [PMID: 37182520 PMCID: PMC10126214 DOI: 10.1016/j.xcrm.2023.101048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Despite the successes of current coronavirus disease 2019 (COVID-19) vaccines, waning immunity, the emergence of variants of concern, and breakthrough infections among vaccinees have begun to highlight opportunities to improve vaccine platforms. Real-world vaccine efficacy studies have highlighted the reduced risk of breakthrough infections and diseases among individuals infected and vaccinated, referred to as hybrid immunity. Thus, we sought to define whether hybrid immunity shapes the humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following Pfizer/BNT162b2, Moderna mRNA-1273, ChadOx1/AZD1222, and Ad26.COV2.S vaccination. Each vaccine exhibits a unique functional humoral profile in vaccination only or hybrid immunity. However, hybrid immunity shows a unique augmentation of S2-domain-specific functional immunity that was poorly induced for the vaccination only. These data highlight the importance of natural infection in breaking the immunodominance away from the evolutionarily unstable S1 domain and potentially affording enhanced cross-variant protection by targeting the more highly conserved S2 domain of SARS-CoV-2.
Collapse
Affiliation(s)
- Paulina Kaplonek
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Yixiang Deng
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Heather J Zar
- Department of Pediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; SA MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dace Zavadska
- Children's Clinical University Hospital, Riga, Latvia
| | - Marina Johnson
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Goldblatt
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK.
| | - Galit Alter
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
443
|
Diallo BK, Ní Chasaide C, Wong TY, Schmitt P, Lee KS, Weaver K, Miller O, Cooper M, Jazayeri SD, Damron FH, Mills KHG. Intranasal COVID-19 vaccine induces respiratory memory T cells and protects K18-hACE mice against SARS-CoV-2 infection. NPJ Vaccines 2023; 8:68. [PMID: 37179389 PMCID: PMC10182552 DOI: 10.1038/s41541-023-00665-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Current COVID-19 vaccines prevent severe disease, but do not induce mucosal immunity or prevent infection with SARS-CoV-2, especially with recent variants. Furthermore, serum antibody responses wane soon after immunization. We assessed the immunogenicity and protective efficacy of an experimental COVID-19 vaccine based on the SARS-CoV-2 Spike trimer formulated with a novel adjuvant LP-GMP, comprising TLR2 and STING agonists. We demonstrated that immunization of mice twice by the intranasal (i.n.) route or by heterologous intramuscular (i.m.) prime and i.n. boost with the Spike-LP-GMP vaccine generated potent Spike-specific IgG, IgA and tissue-resident memory (TRM) T cells in the lungs and nasal mucosa that persisted for at least 3 months. Furthermore, Spike-LP-GMP vaccine delivered by i.n./i.n., i.m./i.n., or i.m./i.m. routes protected human ACE-2 transgenic mice against respiratory infection and COVID-19-like disease following lethal challenge with ancestral or Delta strains of SARS-CoV-2. Our findings underscore the potential for nasal vaccines in preventing infection with SARS-CoV-2 and other respiratory pathogen.
Collapse
Affiliation(s)
- Béré K Diallo
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Caitlín Ní Chasaide
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Pauline Schmitt
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Katherine S Lee
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Kelly Weaver
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Olivia Miller
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Melissa Cooper
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Seyed D Jazayeri
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
444
|
George TK, Nair NP, Singh AK, Dilesh Kumar A, Roy AD, Mohan VN, Kang G. Development of a Choice-framework for Covid vaccines in India using a multi-criteria decision analysis approach. Vaccine 2023:S0264-410X(23)00486-3. [PMID: 37183072 PMCID: PMC10179113 DOI: 10.1016/j.vaccine.2023.04.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/03/2023] [Accepted: 04/22/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Vaccines were crucial in controlling the Covid-19 pandemic. As more vaccines receive regulatory approval, stakeholders will be faced with several options and must make an appropriate choice for themselves. We proposed a multi-criteria decision analysis (MCDA) framework to guide decision-makers in comparing vaccines for the Indian context. METHODS We adhered to the ISPOR guidance for the MCDA process. Seven vaccine options were compared under ten criteria. Through three virtual workshops, we obtained opinions and weights from citizens, private-sector hospitals, and public health organisations. Available evidence was rescaled and incorporated into the performance matrix. The final score for each vaccine was calculated for the different groups. We performed different sensitivity analyses to assess the consistency of the rank list. RESULTS The cost, efficacy and operational score of the vaccines had the highest weights among the stakeholders. From the six scenario groups, Janssen had the highest score in four. This was driven by the advantage of having a single dose of vaccination. In the probabilistic sensitivity analysis for the overall group, Covaxin, Janssen, and Sputnik were the first three options. The participants expressed that availability, WHO approvals and safety, among others, would be crucial when considering vaccines. CONCLUSIONS The MCDA process has not been capitalised on in healthcare decision-making in India and LMICs. Considering the available data and stakeholder preference at the time of the study, Covaxin, Janssen, and Sputnik were preferred options. The choice framework with the dynamic performance matrix is a valuable tool that could be adapted to different population groups and extended based on increasing vaccine options and emerging evidence. *ISPOR - The Professional Society for Health Economics and Outcomes Research.
Collapse
Affiliation(s)
- Tarun K George
- Department of General Medicine, Christian Medical College, Vellore, Tamil Nadu 632002, India.
| | - Nayana P Nair
- Wellcome Trust Laboratories, Department of GI Sciences, Christian Medical College, Vellore, Tamil Nadu 632002, India.
| | | | - A Dilesh Kumar
- Wellcome Trust Laboratories, Department of GI Sciences, Christian Medical College, Vellore, Tamil Nadu 632002, India.
| | | | | | - Gagandeep Kang
- Wellcome Trust Laboratories, Department of GI Sciences, Christian Medical College, Vellore, Tamil Nadu 632002, India.
| |
Collapse
|
445
|
Rodilla AM, Tavolacci S, Cagan J, Shah T, Mittan S, Mack PC, Hirsch FR. Serological Response to SARS-CoV-2 after COVID-19 Vaccination in Lung Cancer Patients: Short Review. Vaccines (Basel) 2023; 11:969. [PMID: 37243073 PMCID: PMC10223259 DOI: 10.3390/vaccines11050969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
In comparison to the general population, lung cancer patients are more likely to suffer from severe Coronavirus disease (COVID-19) and associated mortality. Considering this increased risk, and in order to prevent symptoms and severe disease, patients with lung cancer have been prioritized for COVID-19 vaccination primary and booster doses. Despite this, the pivotal clinical trials did not include these patients, which leaves open questions regarding vaccine efficacy and humoral immune response. This review outlines the findings of recent investigations into the humoral responses of lung cancer patients to COVID-19 vaccination, particularly the primary doses and first boost.
Collapse
Affiliation(s)
- Ananda M. Rodilla
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sooyun Tavolacci
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jazz Cagan
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tanay Shah
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sandeep Mittan
- Department of Obstetrics, Gynecology and Medical Oncology, Montefiore Medical Center, The University Hospital for Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Philip C. Mack
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fred R. Hirsch
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
446
|
Datar RS, Fette LM, Hinkelman AN, Hammershaimb EA, Friedman-Klabanoff DJ, Mongraw-Chaffin M, Weintraub WS, Ahmed N, Gibbs MA, Runyon MS, Plumb ID, Thompson W, Saydah S, Edelstein SL, Berry AA. Factors associated with COVID-19 vaccination during June-October 2021: A multi-site prospective study. Vaccine 2023; 41:3204-3214. [PMID: 37069033 PMCID: PMC10063571 DOI: 10.1016/j.vaccine.2023.03.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
INTRODUCTION Vaccine hesitancy presents a challenge to COVID-19 control efforts. To identify beliefs associated with delayed vaccine uptake, we developed and implemented a vaccine hesitancy survey for the COVID-19 Community Research Partnership. METHODS In June 2021, we assessed attitudes and beliefs associated with COVID-19 vaccination using an online survey. Self-reported vaccination data were requested daily through October 2021. We compared responses between vaccinated and unvaccinated respondents using absolute standardized mean differences (ASMD). We assessed validity and reliability using exploratory factor analysis and identified latent factors associated with a subset of survey items. Cox proportional hazards models and mediation analyses assessed predictors of subsequent vaccination among those initially unvaccinated. RESULTS In June 2021, 29,522 vaccinated and 1,272 unvaccinated participants completed surveys. Among those unvaccinated in June 2021, 559 (43.9 %) became vaccinated by October 31, 2021. In June, unvaccinated participants were less likely to feel "very concerned" about getting COVID-19 than vaccinated participants (10.6 % vs. 43.3 %, ASMD 0.792). Among those initially unvaccinated, greater intent to become vaccinated was associated with getting vaccinated and shorter time to vaccination. However, even among participants who reported no intention to become vaccinated, 28.5 % reported vaccination before study end. Two latent factors predicted subsequent vaccination-being 'more receptive' was derived from motivation to protect one's own or others' health and resume usual activities; being 'less receptive' was derived from concerns about COVID-19 vaccines. In a Cox model, both factors were partially mediated by vaccination intention. CONCLUSION This study characterizes vaccine hesitant individuals and identifies predictors of eventual COVID-19 vaccination through October 31, 2021. Even individuals with no intention to be vaccinated can shift to vaccine uptake. Our data suggest factors of perceived severity of COVID-19 disease, vaccine safety, and trust in the vaccine development process are predictive of vaccination and may be important opportunities for ongoing interventions.
Collapse
Affiliation(s)
- Reva S Datar
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lida M Fette
- The Biostatistics Center, George Washington University, Rockville, MD, USA
| | - Amy N Hinkelman
- Jerry M. Wallace School of Osteopathic Medicine, Campbell University, Lillington, NC, USA
| | - E Adrianne Hammershaimb
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - DeAnna J Friedman-Klabanoff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Morgana Mongraw-Chaffin
- Department of Epidemiology & Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - William S Weintraub
- MedStar Health Research Institute, Georgetown University, Washington, DC, USA
| | - Naheed Ahmed
- Center for Health Equity Research, MedStar Health Research Institute, Hyattsville, MD, USA
| | | | | | - Ian D Plumb
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - William Thompson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Sharon Saydah
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Sharon L Edelstein
- The Biostatistics Center, George Washington University, Rockville, MD, USA
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
447
|
Prather AA, Dutcher EG, Robinson J, Lin J, Blackburn E, Hecht FM, Mason AE, Fromer E, Merino B, Frazier R, O'Bryan J, Drury S, Epel ES. Predictors of long-term neutralizing antibody titers following COVID-19 vaccination by three vaccine types: the BOOST study. Sci Rep 2023; 13:6505. [PMID: 37160978 PMCID: PMC10170073 DOI: 10.1038/s41598-023-33320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
As concerns related to the COVID-19 pandemic continue, it is critical to understand the impact of vaccination type on neutralizing antibody response durability as well as to identify individual difference factors related to decline in neutralization. This was a head-to-head comparison study following 498 healthy, community volunteers who received the BNT162b2 (n = 287), mRNA-1273 (n = 149), and Ad26.COV2.S (n = 62). Participants completed questionnaires and underwent blood draws prior to vaccination, 1 month, and 6 months after the vaccination series, and neutralizing antibody (nAB) titers at 1- and 6-months post vaccination were quantified using a high-throughput pseudovirus assay. Over 6 months of follow-up, nABs declined in recipients of BNT162b2 and mRNA-1273, while nABs in recipients of Ad26.COV2.S showed a significant increase. At the 6-month time point, nABs to Ad26.COV2.S were significantly higher than nABs to BNT162b2 and equivalent to mRNA-1273. Irrespective of follow-up timing, being older was associated with lower nAB for participants who received BNT162b2 and Ad26.COV2.S but not for those who received mRNA-1273. A higher baseline BMI was associated with a lower nAB for Ad26.COV2.S recipients but not for recipients of other vaccines. Women and non-smokers showed higher nAB compared to men and current smokers, respectively. The durability of neutralizing antibody responses differed by vaccine type and several sociodemographic factors that predicted response. These findings may inform booster recommendations in the future.
Collapse
Affiliation(s)
- Aric A Prather
- Center for Health and Community, University of California, 675 18th St., San Francisco, CA, 94107, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, USA.
| | - Ethan G Dutcher
- Center for Health and Community, University of California, 675 18th St., San Francisco, CA, 94107, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, USA
| | - James Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
| | - Elizabeth Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
| | - Frederick M Hecht
- Department of Medicine, University of California, San Francisco, USA
- Osher Center for Integrative Health, University of California, San Francisco, USA
| | - Ashley E Mason
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, USA
- Osher Center for Integrative Health, University of California, San Francisco, USA
| | - Elena Fromer
- Center for Health and Community, University of California, 675 18th St., San Francisco, CA, 94107, USA
| | - Bresh Merino
- Center for Health and Community, University of California, 675 18th St., San Francisco, CA, 94107, USA
| | - Remi Frazier
- Academic Research Systems, University of California, San Francisco, USA
| | - Julia O'Bryan
- Center for Health and Community, University of California, 675 18th St., San Francisco, CA, 94107, USA
| | - Stacy Drury
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, USA
- Department of Psychiatry, Tulane University School of Medicine, New Orleans, USA
| | - Elissa S Epel
- Center for Health and Community, University of California, 675 18th St., San Francisco, CA, 94107, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, USA.
| |
Collapse
|
448
|
Rimmer MP, Teh JJ, Mackenzie SC, Al Wattar BH. The risk of miscarriage following COVID-19 vaccination: a systematic review and meta-analysis. Hum Reprod 2023; 38:840-852. [PMID: 36794918 PMCID: PMC10152171 DOI: 10.1093/humrep/dead036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
STUDY QUESTION What is the risk of miscarriage among pregnant women who received any of the COVID-19 vaccines? SUMMARY ANSWER There is no evidence that COVID-19 vaccines are associated with an increased risk of miscarriage. WHAT IS KNOWN ALREADY In response to the COVID-19 pandemic, the mass roll-out of vaccines helped to boost herd immunity and reduced hospital admissions, morbidity, and mortality. Still, many were concerned about the safety of vaccines for pregnancy, which may have limited their uptake among pregnant women and those planning a pregnancy. STUDY DESIGN, SIZE, DURATION For this systematic review and meta-analysis, we searched MEDLINE, EMBASE, and Cochrane CENTRAL from inception until June 2022 using a combination of keywords and MeSH terms. PARTICIPANTS/MATERIALS, SETTING, METHODS We included observational and interventional studies that enrolled pregnant women and evaluated any of the available COVID-19 vaccines compared to placebo or no vaccination. We primarily reported on miscarriage in addition to ongoing pregnancy and/or live birth. MAIN RESULTS AND THE ROLE OF CHANCE We included data from 21 studies (5 randomized trials and 16 observational studies) reporting on 149 685 women. The pooled rate of miscarriage among women who received a COVID-19 vaccine was 9% (n = 14 749/123 185, 95% CI 0.05-0.14). Compared to those who received a placebo or no vaccination, women who received a COVID-19 vaccine did not have a higher risk of miscarriage (risk ratio (RR) 1.07, 95% CI 0.89-1.28, I2 35.8%) and had comparable rates for ongoing pregnancy or live birth (RR 1.00, 95% CI 0.97-1.03, I2 10.72%). LIMITATIONS, REASONS FOR CAUTION Our analysis was limited to observational evidence with varied reporting, high heterogeneity and risk of bias across included studies, which may limit the generalizability and confidence in our findings. WIDER IMPLICATIONS OF THE FINDINGS COVID-19 vaccines are not associated with an increase in the risk of miscarriage or reduced rates of ongoing pregnancy or live birth among women of reproductive age. The current evidence remains limited and larger population studies are needed to further evaluate the effectiveness and safety of COVID-19 vaccination in pregnancy. STUDY FUNDING/COMPETING INTEREST(S) No direct funding was provided to support this work. M.P.R. was funded by the Medical Research Council Centre for Reproductive Health Grant No: MR/N022556/1. B.H.A.W. hold a personal development award from the National Institute of Health Research in the UK. All authors declare no conflict of interest. REGISTRATION NUMBER CRD42021289098.
Collapse
Affiliation(s)
- Michael P Rimmer
- Medical Research Council Centre for Reproductive Health, Institute of Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, UK
| | - Jhia J Teh
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Scott C Mackenzie
- Medical Research Council Centre for Reproductive Health, Institute of Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, UK
| | - Bassel H Al Wattar
- Beginnings Assisted Conception Unit, Epson and St Helier University Hospitals, London, UK
- Comprehensive Clinical Trials Unit, Institute for Clinical Trials and Methodology, University College London, London, UK
| |
Collapse
|
449
|
McNamee M, Wong S, Guy O, Sharma S. Microneedle technology for potential SARS-CoV-2 vaccine delivery. Expert Opin Drug Deliv 2023:1-16. [PMID: 37128730 DOI: 10.1080/17425247.2023.2209718] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Microneedle fabrication was conceptualised in the 1970s as devices for painless transdermal drug delivery. The last two decades have seen considerable research and financial investment in this area with SARS-CoV-2 and other vaccines catalysing their application to in vivo intradermal vaccine delivery. Microneedle arrays have been fabricated in different shapes, geometries, formats, and out of different materials. AREAS COVERED The recent pandemic has offered microneedle platforms the opportunity to be employed as a vehicle for SARS-CoV-2 vaccine administration. The various modes of vaccination delivery and the potential of microneedle arrays-based vaccines will be presented, with a specific focus placed on recent SARS-CoV-2 research. The advantages of microneedle-based vaccine administration, in addition to the major hurdles to their en masse implementation, will be examined. EXPERT OPINION Considering the widely acknowledged disadvantages of current vaccine delivery, such as anxiety, pain, and the requirement for professional administration, a large shift in this research sphere is imminent. The SARS-CoV-2 pandemic has catalysed the development of alternate vaccination platforms, working to avoid the requirement for mass vaccination centres. As microneedle vaccine patches are transitioning through clinical study phases, research will be required to ready this technology for a more mass production environment.
Collapse
Affiliation(s)
- Megan McNamee
- School of Engineering and Applied Sciences, Faculty of Science and Engineering , Fabian Way, Bay Campus, Swansea University, Swansea SA1 8EN, UK
| | - Shuyi Wong
- School of Engineering and Applied Sciences, Faculty of Science and Engineering , Fabian Way, Bay Campus, Swansea University, Swansea SA1 8EN, UK
| | - Owen Guy
- School of Engineering and Applied Sciences, Faculty of Science and Engineering , Fabian Way, Bay Campus, Swansea University, Swansea SA1 8EN, UK
| | - Sanjiv Sharma
- School of Engineering and Applied Sciences, Faculty of Science and Engineering , Fabian Way, Bay Campus, Swansea University, Swansea SA1 8EN, UK
| |
Collapse
|
450
|
Virk A, Johnson MG, Roellinger DL, Scott CG, Sampathkumar P, Breeher LE, Swift M. Hybrid Immunity Provides Protective Advantage Over Vaccination or Prior Remote Coronavirus Disease 2019 Alone. Open Forum Infect Dis 2023; 10:ofad161. [PMID: 37180597 PMCID: PMC10167982 DOI: 10.1093/ofid/ofad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Background The protective efficacy of prior coronavirus disease 2019 (COVID-19) with or without vaccination remains unknown. This study sought to understand if 2 or more messenger RNA (mRNA) vaccine doses provide additional protection in patients with prior infection, or if infection alone provides comparable protection. Methods We conducted a retrospective cohort study of the risk of COVID-19 from 16 December 2020 through 15 March 2022, among vaccinated and unvaccinated patients of all ages with and without prior infection. A Simon-Makuch hazard plot illustrated the incidence of COVID-19 between groups. Multivariable Cox proportional hazards regression was used to examine the association of demographics, prior infection, and vaccination status with new infection. Results Among 101 941 individuals with at least 1 COVID-19 polymerase chain reaction test prior to 15 March 2022, 72 361 (71.0%) received mRNA vaccination and 5957 (5.8%) were previously infected. The cumulative incidence of COVID-19 was substantially higher throughout the study period for those previously uninfected and unvaccinated, and lowest for those previously infected and vaccinated. After accounting for age, sex, and the interaction between vaccination and prior infection, a reduction in reinfection risk was noted during the Omicron and pre-Omicron phases of 26% (95% confidence interval [CI], 8%-41%; P = .0065) to 36% (95% CI, 10%-54%; P = .0108), respectively, among previously infected and vaccinated individuals, compared to previously infected subjects without vaccination. Conclusions Vaccination was associated with lower risk of COVID-19, including in those with prior infection. Vaccination should be encouraged for all including those with prior infection, especially as new variants emerge and variant-specific booster vaccines become available.
Collapse
Affiliation(s)
- Abinash Virk
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Christopher G Scott
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Priya Sampathkumar
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura E Breeher
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Melanie Swift
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|