401
|
Ratziu V, Heurtier A, Bonyhay L, Poynard T, Giral P. Review article: an unexpected virus-host interaction--the hepatitis C virus-diabetes link. Aliment Pharmacol Ther 2005; 22 Suppl 2:56-60. [PMID: 16225475 DOI: 10.1111/j.1365-2036.2005.02598.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is now consistent epidemiological evidence for an association between chronic hepatitis C and diabetes. Important, although so far limited longitudinal data, have documented an increased risk for diabetes in patients infected by hepatitis C virus (HCV) especially in those with metabolic risk factors such as a high BMI and older age. HCV encoded proteins might alter insulin signalling thus explaining impaired insulin sensitivity and the occurrence of glycaemic dysregulation even before the cirrhotic stage. The consequences of the association between diabetes and HCV infection are an increased liver fibrosis stage and faster fibrosis progression rate. This article reviews recent human and experimental data on the HCV-diabetes association.
Collapse
Affiliation(s)
- V Ratziu
- Service d'hépatogastroentérologie, Hopital Pitié Salpetriere and Université Pierre et Marie Curie, Paris, France.
| | | | | | | | | |
Collapse
|
402
|
Koonen DPY, Glatz JFC, Bonen A, Luiken JJFP. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1736:163-80. [PMID: 16198626 DOI: 10.1016/j.bbalip.2005.08.018] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 08/18/2005] [Accepted: 08/30/2005] [Indexed: 12/22/2022]
Abstract
Cellular long-chain fatty acid (LCFA) uptake constitutes a process that is not yet fully understood. LCFA uptake likely involves both passive diffusion and protein-mediated transport. Several lines of evidence support the involvement of a number of plasma membrane-associated proteins, including fatty acid translocase (FAT)/CD36, plasma membrane-bound fatty acid binding protein (FABPpm), and fatty acid transport protein (FATP). In heart and skeletal muscle primary attention has been given to unravel the mechanisms by which FAT/CD36 expression and function are regulated. It appears that both insulin and contractions induce the translocation of intracellular stored FAT/CD36 to the plasma membrane to increase cellular LCFA uptake. This review focuses on this novel mechanism of regulation of LCFA uptake in heart and skeletal muscle in health and disease. The distinct signaling pathways underlying insulin-induced and contraction-induced FAT/CD36 translocation will be discussed and a comparison will be made with the well-defined glucose transport system involving the glucose transporter GLUT4. Finally, it is hypothesized that malfunctioning of recycling of these transporters may lead to intracellular triacylglycerol (TAG) accumulation and cellular insulin resistance. Current data indicate a pivotal role for FAT/CD36 in the regulation of LCFA utilization in heart and skeletal muscle under normal conditions as well as during the altered LCFA utilization observed in obesity and insulin resistance. Hence, FAT/CD36 might provide a useful therapeutic target for the prevention or treatment of insulin resistance.
Collapse
Affiliation(s)
- Debby P Y Koonen
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, NL-6200 MD Maastricht, The Netherlands
| | | | | | | |
Collapse
|
403
|
Suzuki M, Kakuta H, Takahashi A, Shimano H, Tada-Iida K, Yokoo T, Kihara R, Yamada N. Effects of atorvastatin on glucose metabolism and insulin resistance in KK/Ay mice. J Atheroscler Thromb 2005; 12:77-84. [PMID: 15942117 DOI: 10.5551/jat.12.77] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Insulin resistance plays an important role not only in the development and progression of diabetes mellitus but also in the establishment of metabolic syndrome. Improvement of insulin resistance is thus of great importance both in improving glucose metabolism and preventing atherosclerosis. Although HMG-CoA reductase inhibitors appear to favorably affect glucose metabolism, as indicated by the results of a subanalysis in the West of Scotland Coronary Prevention Study (WOSCOPS), their effects on glucose metabolism and insulin resistance have not been thoroughly investigated in animal models. In this study, the effects of atorvastatin on the glucose metabolism and insulin resistance of KK/Ay mice, an animal model of type II diabetes, were investigated. Atorvastatin significantly decreased the non-HDL-cholesterol level in the oral glucose tolerance test, inhibited increase in the 30-min glucose level, decreased plasma insulin levels before and 30 and 60 minutes after glucose loading, and decreased the insulin resistance index, compared with corresponding values in controls, indicating that atorvastatin appeared to improve glucose metabolism by improving insulin resistance. Northern blot analysis revealed decreases in levels of mRNA of sterol regulatory element binding protein-1 (SREBP-1) and glucose-6-phosphatase (G6Pase), and it may play a role in the improvement of glucose metabolism and insulin resistance.
Collapse
MESH Headings
- Animals
- Arteriosclerosis/blood
- Arteriosclerosis/etiology
- Arteriosclerosis/prevention & control
- Atorvastatin
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Blotting, Northern
- CCAAT-Enhancer-Binding Proteins/genetics
- CCAAT-Enhancer-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Gene Expression Regulation, Enzymologic
- Glucose Tolerance Test
- Glucose-6-Phosphatase/genetics
- Glucose-6-Phosphatase/metabolism
- Heptanoic Acids/pharmacology
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Insulin Resistance/physiology
- Lipids/blood
- Male
- Mice
- Mice, Inbred Strains
- Pyrroles/pharmacology
- RNA, Messenger/genetics
- Sterol Regulatory Element Binding Protein 1
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Masatsune Suzuki
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
404
|
Park SY, Cho YR, Finck BN, Kim HJ, Higashimori T, Hong EG, Lee MK, Danton C, Deshmukh S, Cline GW, Wu JJ, Bennett AM, Rothermel B, Kalinowski A, Russell KS, Kim YB, Kelly DP, Kim JK. Cardiac-specific overexpression of peroxisome proliferator-activated receptor-alpha causes insulin resistance in heart and liver. Diabetes 2005; 54:2514-2524. [PMID: 16123338 DOI: 10.2337/diabetes.54.9.2514] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diabetic heart failure may be causally associated with alterations in cardiac energy metabolism and insulin resistance. Mice with heart-specific overexpression of peroxisome proliferator-activated receptor (PPAR)alpha showed a metabolic and cardiomyopathic phenotype similar to the diabetic heart, and we determined tissue-specific glucose metabolism and insulin action in vivo during hyperinsulinemic-euglycemic clamps in awake myosin heavy chain (MHC)-PPARalpha mice (12-14 weeks of age). Basal and insulin-stimulated glucose uptake in heart was significantly reduced in the MHC-PPARalpha mice, and cardiac insulin resistance was mostly attributed to defects in insulin-stimulated activities of insulin receptor substrate (IRS)-1-associated phosphatidylinositol (PI) 3-kinase, Akt, and tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3). Interestingly, MHC-PPARalpha mice developed hepatic insulin resistance associated with defects in insulin-mediated IRS-2-associated PI 3-kinase activity, increased hepatic triglyceride, and circulating interleukin-6 levels. To determine the underlying mechanism, insulin clamps were conducted in 8-week-old MHC-PPARalpha mice. Insulin-stimulated cardiac glucose uptake was similarly reduced in 8-week-old MHC-PPARalpha mice without changes in cardiac function and hepatic insulin action compared with the age-matched wild-type littermates. Overall, these findings indicate that increased activity of PPARalpha, as occurs in the diabetic heart, leads to cardiac insulin resistance associated with defects in insulin signaling and STAT3 activity, subsequently leading to reduced cardiac function. Additionally, age-associated hepatic insulin resistance develops in MHC-PPARalpha mice that may be due to altered cardiac metabolism, functions, and/or inflammatory cytokines.
Collapse
Affiliation(s)
- So-Young Park
- Yale University School of Medicine, Department of Internal Medicine, Section of Endocrinology and Metabolism, The Anlyan Center, S269C, P.O. Box 208020, 300 Cedar St., New Haven, CT 06520-8020, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
405
|
Abstract
Nonalcoholic fatty liver disease is an umbrella term that includes steatosis, nonalcoholic steatohepatitis and advanced fibrosis or cirrhosis. The terminology, although cumbersome, was intended to differentiate these disorders from alcohol-related liver disorders, as they are histologically similar. The term was first used by Ludwig in 1980, but has received a tremendous amount of attention in the past several years as a result of a better understanding of the scope of the problem. Although the pathogenesis has not been fully elucidated, there is a tremendous amount of research ongoing in this arena, both clinical and basic, to determine how the course of the disease can be altered. This text reviews the epidemiology of the disease, leading theories of pathogenesis, and treatment options.
Collapse
Affiliation(s)
- F Fred Poordad
- Cedars-Sinai Medical Center, 8635 W. 3rd Street, 590W, Los Angeles, CA 90048, USA.
| |
Collapse
|
406
|
Abstract
The challenges of growing prevalence and evident trend to progressive damage of primary nonalcoholic fatty liver disease confront a poorly understood pathogenesis. It appears to develop in two steps. First, a high adipocyte protein production in the context of a silent inflammatory background causes insulin resistance in adipose tissue. It leads both to lipolysis, with increase of the circulating and hepatic uptake of free fatty acids, and hyperinsulinemia. Within hepatocytes, the subsequent lipogenesis, together with a decreased secretion of lipoproteins, induces an accumulation of excessive hepatic triglycerides (steatosis), impliying some oxidative damage, but it remain balanced by uncoupling protein upregulation and antioxidant systems activation. Second, a more forceful fat catabolism by beta and omega oxidation results in respiratory chain hyperactivity with overproduction of free radicals and reactive oxygen species that exceed the antioxidant capacity. These agents lead to hepatocellular injury and necrosis, inflammatory infiltration and fibrosis (steatohepatitis) through induction of Fas ligand and cytokines (tumor necrosis factor alpha, transforming growth factor beta, interleukin-8), and lipid peroxidation and by-products (malondialdehyde and 4-hydroxynonenal). Other mechanisms (hepatic iron, Kupffer cells dysfunction or endotoxemia) play uncertain roles.
Collapse
Affiliation(s)
- Diego Moreno Sánchez
- Sección de Aparato Digestivo, Hospital General de Móstoles, Móstoles, Madrid, España.
| |
Collapse
|
407
|
Saravanan N, Haseeb A, Ehtesham NZ. Differential effects of dietary saturated and trans-fatty acids on expression of genes associated with insulin sensitivity in rat adipose tissue. Eur J Endocrinol 2005; 153:159-65. [PMID: 15998628 DOI: 10.1530/eje.1.01946] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Trans-fatty acids (TFAs) are formed during partial hydrogenation of vegetable oils and are shown to be more atherogenic than saturated fatty acids (SFAs). Our previous study showed that dietary TFAs decrease adipose tissue insulin sensitivity to a greater extent than SFAs in rats. We hypothesized that the effects of these fatty acids on insulin sensitivity could be mediated through an alteration in gene expression. In the current study we have investigated the effects of dietary TFAs or SFAs on expression of genes associated with insulin sensitivity in rat adipose tissue. DESIGN AND METHODS Male weanling Wistar/NIN rats were divided into four groups and fed one of the following diets containing 10% fat (g/100 g diet) differing only in the fatty acid composition for 3 months: control diet (3.7% linoleic acid (LA)), SFA diet (5% SFA), TFA diet 1 (1.5% TFA + 1% LA) and TFA diet 2 (1.5% TFA + 2% LA). The mRNA expression of peroxisome proliferator-activated receptor gamma (PPARgamma), lipoprotein lipase (LPL), glucose transporter-4 (GLUT4), resistin and adiponectin was analyzed in epididymal fat using RT-PCR. The effects of TFA were studied at two levels of LA to understand the beneficial effects of LA over the effects of TFA. RESULTS Both dietary SFA and TFA upregulated the mRNA levels of resistin. Dietary SFA downregulated adiponectin and GLUT4 and upregulated LPL, while TFA downregulated PPARgamma and LPL. The effects of dietary TFA on PPARgamma and resistin were not counteracted by increased LA (TFA diet 2). CONCLUSION The effects of SFAs on the aforementioned genes except PPARgamma could be extrapolated towards decreased insulin sensitivity, while only the alteration in the mRNA levels of PPARgamma and resistin could be associated with insulin resistance in TFA-fed rats. These findings suggest that dietary SFAs and TFAs alter the expression of different genes associated with insulin sensitivity in adipose tissue.
Collapse
Affiliation(s)
- Natarajan Saravanan
- Department of Biochemistry, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad- 500 007, AP India
| | | | | |
Collapse
|
408
|
Park SY, Kim HJ, Wang S, Higashimori T, Dong J, Kim YJ, Cline G, Li H, Prentki M, Shulman GI, Mitchell GA, Kim JK. Hormone-sensitive lipase knockout mice have increased hepatic insulin sensitivity and are protected from short-term diet-induced insulin resistance in skeletal muscle and heart. Am J Physiol Endocrinol Metab 2005; 289:E30-9. [PMID: 15701680 DOI: 10.1152/ajpendo.00251.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Insulin resistance in skeletal muscle and heart plays a major role in the development of type 2 diabetes and diabetic heart failure and may be causally associated with altered lipid metabolism. Hormone-sensitive lipase (HSL) is a rate-determining enzyme in the hydrolysis of triglyceride in adipocytes, and HSL-deficient mice have reduced circulating fatty acids and are resistant to diet-induced obesity. To determine the metabolic role of HSL, we examined the changes in tissue-specific insulin action and glucose metabolism in vivo during hyperinsulinemic euglycemic clamps after 3 wk of high-fat or normal chow diet in awake, HSL-deficient (HSL-KO) mice. On normal diet, HSL-KO mice showed a twofold increase in hepatic insulin action but a 40% decrease in insulin-stimulated cardiac glucose uptake compared with wild-type littermates. High-fat feeding caused a similar increase in whole body fat mass in both groups of mice. Insulin-stimulated glucose uptake was reduced by 50-80% in skeletal muscle and heart of wild-type mice after high-fat feeding. In contrast, HSL-KO mice were protected from diet-induced insulin resistance in skeletal muscle and heart, and these effects were associated with reduced intramuscular triglyceride and fatty acyl-CoA levels in the fat-fed HSL-KO mice. Overall, these findings demonstrate the important role of HSL on skeletal muscle, heart, and liver glucose metabolism.
Collapse
Affiliation(s)
- So-Young Park
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT 06520-8020, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
409
|
Curtis R, Geesaman BJ, DiStefano PS. Ageing and metabolism: drug discovery opportunities. Nat Rev Drug Discov 2005; 4:569-80. [PMID: 15976816 DOI: 10.1038/nrd1777] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There has recently been significant progress in our understanding of the mechanisms that regulate ageing, and it has been shown that changes in single genes can dramatically extend lifespan and increase resistance to many diseases. Furthermore, many of these genes belong to evolutionarily conserved pathways that also control energy metabolism. In this review, we describe the shared molecular machinery that regulates ageing and energy metabolism. Although drugs to slow ageing face severe regulatory hurdles, it is likely that an understanding of ageing pathways will help to identify novel drug targets to treat metabolic disorders and other age-related diseases.
Collapse
Affiliation(s)
- Rory Curtis
- Elixir Pharmaceuticals, One Kendall Square, Building 1000, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
410
|
Kim JK, Kim HJ, Park SY, Cederberg A, Westergren R, Nilsson D, Higashimori T, Cho YR, Liu ZX, Dong J, Cline GW, Enerback S, Shulman GI. Adipocyte-specific overexpression of FOXC2 prevents diet-induced increases in intramuscular fatty acyl CoA and insulin resistance. Diabetes 2005; 54:1657-63. [PMID: 15919786 DOI: 10.2337/diabetes.54.6.1657] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin resistance plays a major role in the development of type 2 diabetes and may be causally associated with increased intracellular fat content. Transgenic mice with adipocyte-specific overexpression of FOXC2 (forkhead transcription factor) have been generated and shown to be protected against diet-induced obesity and glucose intolerance. To understand the underlying mechanism, we examined the effects of chronic high-fat feeding on tissue-specific insulin action and glucose metabolism in the FOXC2 transgenic (Tg) mice. Whole-body fat mass were significantly reduced in the FOXC2 Tg mice fed normal diet or high-fat diet compared with the wild-type mice. Diet-induced insulin resistance in skeletal muscle of the wild-type mice was associated with defects in insulin signaling and significant increases in intramuscular fatty acyl CoA levels. In contrast, FOXC2 Tg mice were completely protected from diet-induced insulin resistance and intramuscular accumulation of fatty acyl CoA. High-fat feeding also blunted insulin-mediated suppression of hepatic glucose production in the wild-type mice, whereas FOXC2 Tg mice were protected from diet-induced hepatic insulin resistance. These findings demonstrate an important role of adipocyte-expressed FOXC2 on whole-body glucose metabolism and further suggest FOXC2 as a novel therapeutic target for the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Jason K Kim
- Yale University School of Medicine, Department of Internal Medicine, Section of EndocrinologyMetabolism, The Anlyan Center, S269C, 300 Cedar St., P.O. Box 208020, New Haven, CT 06520-8020, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Lin X, Yue P, Chen Z, Schonfeld G. Hepatic triglyceride contents are genetically determined in mice: results of a strain survey. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1179-89. [PMID: 15591160 DOI: 10.1152/ajpgi.00411.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To assess whether genetic factor(s) determine liver triglyceride (TG) levels, a 10-mouse strain survey of liver TG contents was performed. Hepatic TG contents were highest in BALB/cByJ, medium in C57BL/6J, and lowest in SWR/J in both genders. Ninety and seventy-six percent of variance in hepatic TG in males and females, respectively, was due to strain (genetic) effects. To understand the physiological/biochemical basis for differences in hepatic TG among the three strains, studies were performed in males of the BALB/cByJ, C57BL/6J, and SWR/J strains. In vivo hepatic fatty acid (FA) synthesis rates and hepatic TG secretion rates ranked BALB/cByJ approximately C57BL/6J > SWR/J. Hepatic 1-(14)C-labeled palmitate oxidation rates and plasma beta-hydroxybutyrate concentrations ranked in reverse order: SWR/J > BALB/cByJ approximately C57BL/6J. After 14 h of fasting, plasma-free FA and hepatic TG contents rose most in BALB/cByJ and least in SWR/J. beta-Hydroxybutyrate concentrations rose least in BALB/cByJ and most in SWR/J. Adaptation to fasting was most effective in SWR/J and least in BALB/cByJ, perhaps because BALB/cByJ are known to be deficient in SCAD, a short-chain FA oxidizing enzyme. To assess the role of insulin action, glucose tolerance test (GTT) was performed. GTT-glucose levels ranked C57BL/6J > BALB/cByJ approximately SWR/J. Thus strain-dependent (genetic) factors play a major role in setting hepatic TG levels in mice. Processes such as FA production and hepatic export in VLDL on the one hand and FA oxidation on the other, explain some of the strain-related differences in hepatic TG contents. Additional factor(s) in the development of fatty liver in BALB/cByJ remain to be demonstrated.
Collapse
Affiliation(s)
- Xiaobo Lin
- 660 S. Euclid, Campus Box 8046, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
412
|
An D, Kewalramani G, Qi D, Pulinilkunnil T, Ghosh S, Abrahani A, Wambolt R, Allard M, Innis SM, Rodrigues B. beta-Agonist stimulation produces changes in cardiac AMPK and coronary lumen LPL only during increased workload. Am J Physiol Endocrinol Metab 2005; 288:E1120-7. [PMID: 15687106 DOI: 10.1152/ajpendo.00588.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Given the importance of lipoprotein lipase (LPL) in cardiac and vascular pathology, the objective of the present study was to investigate whether the beta-agonist isoproterenol (Iso) influences cardiac LPL. Incubation of quiescent cardiomyocytes with Iso for 60 min had no effect on basal, intracellular, or heparin-releasable (HR)-LPL activity. Similarly, Iso did not change HR-LPL in Langendorff isolated hearts that do not beat against an afterload. In the intact animal, LPL activity at the vascular lumen increased significantly in the Iso-treated group, together with a substantial increase in rate-pressure product. This LPL increase was likely via mechanisms regulated by activation of AMP-activated protein kinase (AMPK) and inactivation of acetyl-CoA carboxylase (ACC280). In glucose-perfused hearts, simply switching from Langendorff to the isolated working heart (that beats against an afterload) induced increases in AMPK and ACC280 phosphorylation and enhanced HR-LPL activity. Provision of insulin and albumin-bound palmitic acid to the working heart was able to reverse these effects. In these hearts, introduction of Iso to the buffer perfusate duplicated the effects seen when this beta-agonist was given in vivo. Our data suggest that Iso can influence HR-LPL only during conditions of increased workload, mechanical performance and excessive energy expenditure, and likely in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Ding An
- Faculty of Pharmaceutical Sciences, The Univ. of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | | | | | | | |
Collapse
|
413
|
Watts LM, Manchem VP, Leedom TA, Rivard AL, McKay RA, Bao D, Neroladakis T, Monia BP, Bodenmiller DM, Cao JXC, Zhang HY, Cox AL, Jacobs SJ, Michael MD, Sloop KW, Bhanot S. Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism. Diabetes 2005; 54:1846-53. [PMID: 15919808 DOI: 10.2337/diabetes.54.6.1846] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucocorticoids (GCs) increase hepatic gluconeogenesis and play an important role in the regulation of hepatic glucose output. Whereas systemic GC inhibition can alleviate hyperglycemia in rodents and humans, it results in adrenal insufficiency and stimulation of the hypothalamic-pituitary-adrenal axis. In the present study, we used optimized antisense oligonucleotides (ASOs) to cause selective reduction of the glucocorticoid receptor (GCCR) in liver and white adipose tissue (WAT) and evaluated the resultant changes in glucose and lipid metabolism in several rodent models of diabetes. Treatment of ob/ob mice with GCCR ASOs for 4 weeks resulted in approximately 75 and approximately 40% reduction in GCCR mRNA expression in liver and WAT, respectively. This was accompanied by approximately 65% decrease in fed and approximately 30% decrease in fasted glucose levels, a 60% decrease in plasma insulin concentration, and approximately 20 and 35% decrease in plasma resistin and tumor necrosis factor-alpha levels, respectively. Furthermore, GCCR ASO reduced hepatic glucose production and inhibited hepatic gluconeogenesis in liver slices from basal and dexamethasone-treated animals. In db/db mice, a similar reduction in GCCR expression caused approximately 40% decrease in fed and fasted glucose levels and approximately 50% reduction in plasma triglycerides. In ZDF and high-fat diet-fed streptozotocin-treated (HFD-STZ) rats, GCCR ASO treatment caused approximately 60% reduction in GCCR expression in the liver and WAT, which was accompanied by a 40-70% decrease in fasted glucose levels and a robust reduction in plasma triglyceride, cholesterol, and free fatty acids. No change in circulating corticosterone levels was seen in any model after GCCR ASO treatment. To further demonstrate that GCCR ASO does not cause systemic GC antagonism, normal Sprague-Dawley rats were challenged with dexamethasone after treating with GCCR ASO. Dexamethasone increased the expression of GC-responsive genes such as PEPCK in the liver and decreased circulating lymphocytes. GCCR ASO treatment completely inhibited the increase in dexamethasone-induced PEPCK expression in the liver without causing any change in the dexamethasone-induced lymphopenia. These studies demonstrate that tissue-selective GCCR antagonism with ASOs may be a viable therapeutic strategy for the treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- Lynnetta M Watts
- Executive Antisense Drug Discovery, Isis Pharmaceuticals, 2292, Faraday Ave., Carlsbad, CA 92008, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
414
|
Plum L, Wunderlich FT, Baudler S, Krone W, Brüning JC. Transgenic and Knockout Mice in Diabetes Research: Novel Insights into Pathophysiology, Limitations, and Perspectives. Physiology (Bethesda) 2005; 20:152-61. [PMID: 15888572 DOI: 10.1152/physiol.00049.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Insulin resistance and type 2 diabetes are serious public health threats. Although enormous research efforts have been focused on the pathogenesis of these diseases, the underlying mechanisms remain only partly understood. Here we review mouse phenotypes resulting from inactivation of molecules responsible for the control of glucose metabolism that have led to novel insights into insulin action and the development of insulin resistance. In addition, more sophisticated strategies to manipulate genes in mice in the future are presented.
Collapse
Affiliation(s)
- L Plum
- Department of Mouse Genetics and Metabolism, Institute for Genetics, University of Cologne, Cologne, Germany
| | | | | | | | | |
Collapse
|
415
|
Maeda K, Ishihara K, Miyake K, Kaji Y, Kawamitsu H, Fujii M, Sugimura K, Ohara T. Inverse correlation between serum adiponectin concentration and hepatic lipid content in Japanese with type 2 diabetes. Metabolism 2005; 54:775-80. [PMID: 15931613 DOI: 10.1016/j.metabol.2005.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Adiponectin is an adipose tissue-specific protein and plays an important role in insulin sensitivity. On the other hand, intramyocellular lipid content and hepatic lipid content (HLC) are related to insulin resistance in humans. In the present study, the possible relations between the serum concentration of adiponectin and intracellular triglyceride content in skeletal muscle and in the liver were investigated in individuals with type 2 diabetes mellitus. Fifty Japanese sedentary subjects (34 men, 16 women) with type 2 diabetes who had neither been treated with insulin nor with thiazolidinediones were enrolled in the study. Insulin sensitivity in vivo was evaluated by measurement of the glucose infusion rate during a hyperinsulinemic-euglycemic clamp and of the homeostasis model of assessment-insulin resistance index. The intracellular triglyceride content in skeletal muscle and the liver was determined by nuclear magnetic resonance. The serum adiponectin concentration was inversely correlated with both HLC ( r = -0.39, P < .01) and the homeostasis model of assessment-insulin resistance index ( r = -0.32, P < .05), but it was not significantly related to either intramyocellular lipid content or glucose infusion rate during the hyperinsulinemic-euglycemic clamp in individuals with type 2 diabetes. These results suggest that adiponectin might play an important role in the regulation of HLC and basal insulin sensitivity in individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Kengo Maeda
- Division of Diabetes and Digestive and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
416
|
Abstract
Subclinical, low-grade systemic inflammation has been observed in patients with type 2 diabetes and in those at increased risk of the disease. This may be more than an epiphenomenon. Alleles of genes encoding immune/inflammatory mediators are associated with the disease, and the two major environmental factors the contribute to the risk of type 2 diabetes-diet and physical activity-have a direct impact on levels of systemic immune mediators. In animal models, targeting of immune genes enhanced or suppressed the development of obesity or diabetes. Obesity is associated with the infiltration and proinflammatory activity of macrophages in adipose tissue, and immune mediators may be important regulators of insulin resistance, mitochondrial function, ectopic lipid storage and beta cell dysfunction or death. Intervention studies targeting these pathways would help to determine the contribution of an activated innate immune system to the development of type 2 diabetes.
Collapse
Affiliation(s)
- H Kolb
- German Diabetes Center, Leibniz-Institute at the University of Düsseldorf, Düsseldorf, Germany.
| | | |
Collapse
|
417
|
Assimacopoulos-Jeannet F. Fat storage in pancreas and in insulin-sensitive tissues in pathogenesis of type 2 diabetes. Int J Obes (Lond) 2005; 28 Suppl 4:S53-7. [PMID: 15592487 DOI: 10.1038/sj.ijo.0802857] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Obesity is associated with increased storage of lipids in nonadipose tissues like skeletal muscle, liver, and pancreatic beta cells. These lipids constitute a continuous source of long-chain fatty acyl CoA (LC-CoA) and derived metabolites like diacylglycerol and ceramide, acting as signalling molecules on protein kinases activities (in particular, the family of PKCs), ion channel, gene expression, and protein acylation. In skeletal muscle, the increase in LC-CoA and diacylglycerol translocates and activates specific protein kinase C (PKC) isoforms, which will phosphorylate IRS-1 on serine, preventing its phosphorylation on tyrosine and association with PI3 kinase. This interrupts the insulin signalling pathway leading to the stimulation of glucose transport. In pancreatic beta cells, short-term excess of fatty acids or LC-CoA activates PKC and also directly stimulates insulin exocytosis. Long-term exposure to free fatty acids (FFA) leads to an increased basal and blunted glucose-stimulated insulin secretion by affecting gene expression, increase in K(ATP) channel activity, and uncoupling of the mitochondria. In addition, the saturated FFA palmitate increases cell death by apoptosis via increase in ceramide synthesis.
Collapse
Affiliation(s)
- F Assimacopoulos-Jeannet
- Department of Cellular Physiology and Metabolism, Medical Faculty, University of Geneva, Switzerland.
| |
Collapse
|
418
|
Ding SY, Shen ZF, Chen YT, Sun SJ, Liu Q, Xie MZ. Pioglitazone can ameliorate insulin resistance in low-dose streptozotocin and high sucrose-fat diet induced obese rats. Acta Pharmacol Sin 2005; 26:575-80. [PMID: 15842776 DOI: 10.1111/j.1745-7254.2005.00090.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIM To investigate the effect of the peroxisome proliferator-activator receptor (PPAR)-gamma agonist, pioglitazone, on insulin resistance in low-dose streptozotocin and high sucrose-fat diet induced obese rats. METHODS Normal female Wistar rats were injected intraperitoneally with low-dose streptozotocin (STZ, 30 mg/kg) and fed with a high sucrose-fat diet for 8 weeks. Pioglitazone (20 mg/kg) was administered orally to the obese and insulin-resistant rats for 28 d. Intraperitoneal glucose tolerance tests, insulin tolerance tests and gluconeogenesis tests were carried out over the last 14 d. At the end of d 28 of the treatment, serums were collected for biochemical analysis. Glucose transporter 4 (GLUT4) and insulin receptor substrate-1 (IRS-1) protein expression in the liver and skeletal muscle were detected using Western blotting. RESULTS Significant insulin resistance and obesity were observed in low-dose STZ and high sucrose-fat diet induced obese rats. Pioglitazone (20 mg/kg) treatment significantly decreased serum insulin, triglyceride and free fatty acid levels, and elevated high density lipoprotein-cholesterol (HDL-C) levels. Pioglitazone also lowered the lipid contents in the liver and muscles of rats undergoing treatment. Gluconeogenesis was inhibited and insulin sensitivity was improved markedly. The IRS-1 protein contents in the liver and skeletal muscles and the GLUT4 contents in skeletal muscle were elevated significantly. CONCLUSION The data suggest that treatment with pioglitazone improves insulin sensitivity in low-dose STZ and high sucrose-fat diet induced obese rats. The insulin sensitizing effect may be associated with ameliorating lipid metabolism, reducing hyperinsulinemia, inhibiting gluconeogenesis, and increasing IRS-1 and GLUT4 protein expression in insulin-sensitive tissues.
Collapse
Affiliation(s)
- Shi-ying Ding
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | | | | | | | | | | |
Collapse
|
419
|
Binnert C, Genoud M, Seematter G, Fekirini A, Mooser V, Waeber G, Tappy L. Glucose-induced insulin secretion in dyslipidemic and normolipidemic patients with normal glucose tolerance. Diabetes Care 2005; 28:1225-7. [PMID: 15855598 DOI: 10.2337/diacare.28.5.1225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Christophe Binnert
- Department of Physiology, Medical School, University of Lausanne, 7 rue du Bugnon, 1005 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
420
|
Savage DB, Petersen KF, Shulman GI. Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension 2005; 45:828-33. [PMID: 15824195 DOI: 10.1161/01.hyp.0000163475.04421.e4] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin resistance is a major player in the pathogenesis of the metabolic syndrome and type 2 diabetes, and yet, the mechanisms responsible for it remain poorly understood. Magnetic resonance spectroscopy studies in humans suggest that a defect in insulin-stimulated glucose transport in skeletal muscle is the primary metabolic abnormality in insulin-resistant type 2 diabetics. Fatty acids appear to cause this defect in glucose transport by inhibiting insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1 associated phosphatidylinositol 3-kinase activity. A number of different metabolic abnormalities may increase intramyocellular/intrahepatic fatty acid metabolites; these include increased fat delivery to muscle/liver as a consequence of either excess energy intake or defects in adipocyte fat metabolism and acquired or inherited defects in mitochondrial fatty acid oxidation. Understanding the molecular/biochemical defects responsible for insulin resistance is beginning to unveil novel therapeutic targets for treatment of the metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- David B Savage
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Conn 06510, USA
| | | | | |
Collapse
|
421
|
Ranalletta M, Jiang H, Li J, Tsao TS, Stenbit AE, Yokoyama M, Katz EB, Charron MJ. Altered hepatic and muscle substrate utilization provoked by GLUT4 ablation. Diabetes 2005; 54:935-43. [PMID: 15793230 DOI: 10.2337/diabetes.54.4.935] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studies were conducted to explore altered substrate utilization and metabolism in GLUT4 null mice. Liver fatty acid synthase mRNA and fatty acid synthesis rates were dramatically increased in GLUT4 null mice compared with control mice and were supported by increased rates of the pentose phosphate pathway oxidative phase and sterol regulatory binding protein mRNA expression. Increased GLUT2 protein content, glucokinase mRNA, and glucose-6-phosphate in GLUT4 null mice may provide substrate for the enhanced fatty acid synthesis. Increased fatty acid synthesis, however, did not lead to hepatic triglyceride accumulation in GLUT4 null mice because of increased hepatic triglyceride secretion rates. GLUT4 null mice rapidly cleared orally administered olive oil, had reduced serum triglyceride concentrations in the fed and the fasted state, and increased skeletal muscle lipoprotein lipase when compared with controls. Oleate oxidation rates were increased in GLUT4 null skeletal muscle in association with mitochondrial hyperplasia/hypertrophy. This study demonstrated that GLUT4 null mice had increased hepatic glucose uptake and conversion into triglyceride for subsequent use by muscle. The ability of GLUT4 null mice to alter hepatic carbohydrate and lipid metabolism to provide proper nutrients for peripheral tissues may explain (in part) their ability to resist diabetes when fed a normal diet.
Collapse
Affiliation(s)
- Mollie Ranalletta
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10462, USA
| | | | | | | | | | | | | | | |
Collapse
|
422
|
Ravikumar B, Carey PE, Snaar JEM, Deelchand DK, Cook DB, Neely RDG, English PT, Firbank MJ, Morris PG, Taylor R. Real-time assessment of postprandial fat storage in liver and skeletal muscle in health and type 2 diabetes. Am J Physiol Endocrinol Metab 2005; 288:E789-97. [PMID: 15572652 DOI: 10.1152/ajpendo.00557.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liver and skeletal muscle triglyceride stores are elevated in type 2 diabetes and correlate with insulin resistance. As postprandial handling of dietary fat may be a critical determinant of tissue triglyceride levels, we quantified postprandial fat storage in normal and type 2 diabetes subjects. Healthy volunteers (n = 8) and diet-controlled type 2 diabetes subjects (n = 12) were studied using a novel 13C magnetic resonance spectroscopy protocol to measure the postprandial increment in liver and skeletal muscle triglyceride following ingestion of 13C-labeled fatty acids given with a standard mixed meal. The postprandial increment in hepatic triglyceride was rapid in both groups (peak increment controls: +7.3 +/- 1.5 mmol/l at 6 h, P = 0.002; peak increment diabetics: +10.8 +/- 3.4 mmol/l at 4 h, P = 0.009). The mean postprandial incremental AUC of hepatic 13C enrichment between the first and second meals (0 and 4 h) was significantly higher in the diabetes group (6.1 +/- 1.4 vs. 1.7 +/- 0.6 mmol x l(-1) x h(-1), P = 0.019). Postprandial increment in skeletal muscle triglyceride in the control group was small compared with the diabetic group, the mean 24-h postprandial incremental AUC being 0.2 +/- 0.3 vs. 1.7 +/- 0.4 mmol x l(-1) x h(-1) (P = 0.009). We conclude that the postprandial uptake of fatty acids by liver and skeletal muscle is increased in type 2 diabetes and may underlie the elevated tissue triglyceride stores and consequent insulin resistance.
Collapse
Affiliation(s)
- B Ravikumar
- School of Clinical Medical Sciences (Diabete)s Medical School, University of Newcastle, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
423
|
Chavez JA, Holland WL, Bär J, Sandhoff K, Summers SA. Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J Biol Chem 2005; 280:20148-53. [PMID: 15774472 DOI: 10.1074/jbc.m412769200] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent studies indicate that insulin resistance and type 2 diabetes result from the accumulation of lipids in tissues not suited for fat storage, such as skeletal muscle and the liver. To elucidate the mechanisms linking exogenous fats to the inhibition of insulin action, we evaluated the effects of free fatty acids (FFAs) on insulin signal transduction in cultured C2C12 myotubes. As we described previously (Chavez, J. A., and Summers, S. A. (2003) Arch. Biochem. Biophys. 419, 101-109), long-chain saturated FFAs inhibited insulin stimulation of Akt/protein kinase B, a central regulator of glucose uptake and anabolic metabolism. Moreover, these FFAs stimulated the de novo synthesis of ceramide and sphingosine, two sphingolipids shown previously to inhibit insulin action. To determine the contribution of either sphingolipid in FFA-dependent inhibition of insulin action, we generated C2C12 myotubes that constitutively overexpress acid ceramidase (AC), an enzyme that catalyzes the lysosomal conversion of ceramide to sphingosine. AC overexpression negated the inhibitory effects of saturated FFAs on insulin signaling while blocking their stimulation of ceramide accumulation. By contrast, AC overexpression stimulated the accrual of sphingosine. These results support a role for aberrant accumulation of ceramide, but not sphingosine, in the inhibition of muscle insulin sensitivity by exogenous FFAs.
Collapse
Affiliation(s)
- Jose Antonio Chavez
- Department of Internal Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Utah, Salt Lake City, 84132, USA
| | | | | | | | | |
Collapse
|
424
|
Duivenvoorden I, Teusink B, Rensen PC, Romijn JA, Havekes LM, Voshol PJ. Apolipoprotein C3 deficiency results in diet-induced obesity and aggravated insulin resistance in mice. Diabetes 2005; 54:664-71. [PMID: 15734841 DOI: 10.2337/diabetes.54.3.664] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our aim was to study whether the absence of apolipoprotein (apo) C3, a strong inhibitor of lipoprotein lipase (LPL), accelerates the development of obesity and consequently insulin resistance. Apoc3(-/-) mice and wild-type littermates were fed a high-fat (46 energy %) diet for 20 weeks. After 20 weeks of high-fat feeding, apoc3(-/-) mice showed decreased plasma triglyceride levels (0.11 +/- 0.02 vs. 0.29 +/- 0.04 mmol, P < 0.05) and were more obese (42.8 +/- 3.2 vs. 35.2 +/- 3.3 g; P < 0.05) compared with wild-type littermates. This increase in body weight was entirely explained by increased body lipid mass (16.2 +/- 5.9 vs. 10.0 +/- 1.8 g; P < 0.05). LPL-dependent uptake of triglyceride-derived fatty acids by adipose tissue was significantly higher in apoc3(-/-) mice. LPL-independent uptake of albumin-bound fatty acids did not differ. It is interesting that whole-body insulin sensitivity using hyperinsulinemic-euglycemic clamps was decreased by 43% and that suppression of endogenous glucose production was decreased by 25% in apoc3(-/-) mice compared with control mice. Absence of apoC3, the natural LPL inhibitor, enhances fatty acid uptake from plasma triglycerides in adipose tissue, which leads to higher susceptibility to diet-induced obesity followed by more severe development of insulin resistance. Therefore, apoC3 is a potential target for treatment of obesity and insulin resistance.
Collapse
|
425
|
Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 2005; 54:603-8. [PMID: 15734833 PMCID: PMC2995496 DOI: 10.2337/diabetes.54.3.603] [Citation(s) in RCA: 653] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To examine the mechanism by which moderate weight reduction improves basal and insulin-stimulated rates of glucose metabolism in patients with type 2 diabetes, we used (1)H magnetic resonance spectroscopy to assess intrahepatic lipid (IHL) and intramyocellular lipid (IMCL) content in conjunction with hyperinsulinemic-euglycemic clamps using [6,6-(2)H(2)]glucose to assess rates of glucose production and insulin-stimulated peripheral glucose uptake. Eight obese patients with type 2 diabetes were studied before and after weight stabilization on a moderately hypocaloric very-low-fat diet (3%). The diabetic patients were markedly insulin resistant in both liver and muscle compared with the lean control subjects. These changes were associated with marked increases in IHL (12.2 +/- 3.4 vs. 0.6 +/- 0.1%; P = 0.02) and IMCL (2.0 +/- 0.3 vs. 1.2 +/- 0.1%; P = 0.02) compared with the control subjects. A weight loss of only approximately 8 kg resulted in normalization of fasting plasma glucose concentrations (8.8 +/- 0.5 vs. 6.4 +/- 0.3 mmol/l; P < 0.0005), rates of basal glucose production (193 +/- 7 vs. 153 +/- 10 mg/min; P < 0.0005), and the percentage suppression of hepatic glucose production during the clamp (29 +/- 22 vs. 99 +/- 3%; P = 0.003). These improvements in basal and insulin-stimulated hepatic glucose metabolism were associated with an 81 +/- 4% reduction in IHL (P = 0.0009) but no significant change in insulin-stimulated peripheral glucose uptake or IMCL (2.0 +/- 0.3 vs. 1.9 +/- 0.3%; P = 0.21). In conclusion, these data support the hypothesis that moderate weight loss normalizes fasting hyperglycemia in patients with poorly controlled type 2 diabetes by mobilizing a relatively small pool of IHL, which reverses hepatic insulin resistance and normalizes rates of basal glucose production, independent of any changes in insulin-stimulated peripheral glucose metabolism.
Collapse
Affiliation(s)
- Kitt Falk Petersen
- Yale University School of Medicine, Department of Internal Medicine, 300 Cedar St., S263 TAC, P.O. Box 9812, New Haven, CT 06520-8020, USA.
| | | | | | | | | | | |
Collapse
|
426
|
Summers SA, Nelson DH. A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing's syndrome. Diabetes 2005; 54:591-602. [PMID: 15734832 DOI: 10.2337/diabetes.54.3.591] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metabolic syndrome X and type 2 diabetes share many metabolic and morphological similarities with Cushing's syndrome, a rare disorder caused by systemic glucocorticoid excess. Pathologies frequently associated with these diseases include insulin resistance, atherosclerosis, susceptibility to infection, poor wound healing, and hypertension. The similarity of the clinical profiles associated with these disorders suggests the influence of a common molecular mechanism for disease onset. Interestingly, numerous studies identify ceramides and other sphingolipids as potential contributors to these sequelae. Herein we review studies demonstrating that aberrant ceramide accumulation contributes to the development of the deleterious clinical manifestations associated with these diseases.
Collapse
Affiliation(s)
- Scott A Summers
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA.
| | | |
Collapse
|
427
|
Pappan KL, Pan Z, Kwon G, Marshall CA, Coleman T, Goldberg IJ, McDaniel ML, Semenkovich CF. Pancreatic β-Cell Lipoprotein Lipase Independently Regulates Islet Glucose Metabolism and Normal Insulin Secretion. J Biol Chem 2005; 280:9023-9. [PMID: 15637076 DOI: 10.1074/jbc.m409706200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipid and glucose metabolism are adversely affected by diabetes, a disease characterized by pancreatic beta-cell dysfunction. To clarify the role of lipids in insulin secretion, we generated mice with beta-cell-specific overexpression (betaLPL-TG) or inactivation (betaLPL-KO) of lipoprotein lipase (LPL), a physiologic provider of fatty acids. LPL enzyme activity and triglyceride content were increased in betaLPL-TG islets; decreased LPL enzyme activity in betaLPL-KO islets did not affect islet triglyceride content. Surprisingly, both betaLPL-TG and betaLPL-KO mice were strikingly hyperglycemic during glucose tolerance testing. Impaired glucose tolerance in betaLPL-KO mice was present at one month of age, whereas betaLPL-TG mice did not develop defective glucose homeostasis until approximately five months of age. Glucose-simulated insulin secretion was impaired in islets isolated from both mouse models. Glucose oxidation, critical for ATP production and triggering of insulin secretion mediated by the ATP-sensitive potassium (KATP) channel, was decreased in betaLPL-TG islets but increased in betaLPL-KO islets. Islet ATP content was not decreased in either model. Insulin secretion was defective in both betaLPL-TG and betaLPL-KO islets under conditions causing calcium-dependent insulin secretion independent of the KATP channel. These results show that beta-cell-derived LPL has two physiologically relevant effects in islets, the inverse regulation of glucose metabolism and the independent mediation of insulin secretion through effects distal to membrane depolarization.
Collapse
Affiliation(s)
- Kirk L Pappan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
428
|
Dobrzyn A, Dobrzyn P, Lee SH, Miyazaki M, Cohen P, Asilmaz E, Hardie DG, Friedman JM, Ntambi JM. Stearoyl-CoA desaturase-1 deficiency reduces ceramide synthesis by downregulating serine palmitoyltransferase and increasing beta-oxidation in skeletal muscle. Am J Physiol Endocrinol Metab 2005; 288:E599-607. [PMID: 15562249 DOI: 10.1152/ajpendo.00439.2004] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stearoyl-CoA desaturase (SCD) has recently been shown to be a critical control point of lipid partitioning and body weight regulation. Lack of SCD1 function significantly increases insulin sensitivity in skeletal muscles and corrects the hypometabolic phenotype of leptin-deficient ob/ob mice, indicating the direct antilipotoxic action of SCD1 deficiency. The mechanism underlying the metabolic effects of SCD1 mutation is currently unknown. Here we show that SCD1 deficiency reduced the total ceramide content in oxidative skeletal muscles (soleus and red gastrocnemius) by approximately 40%. The mRNA levels and activity of serine palmitoyltransferase (SPT), a key enzyme in ceramide synthesis, as well as the incorporation of [14C]palmitate into ceramide were decreased by approximately 50% in red muscles of SCD1-/- mice. The content of fatty acyl-CoAs, which contribute to de novo ceramide synthesis, was also reduced. The activity and mRNA levels of carnitine palmitoyltransferase I (CPT I) and the rate of beta-oxidation were increased in oxidative muscles of SCD1-/- mice. Furthermore, SCD1 deficiency increased phosphorylation of AMP-activated protein kinase (AMPK), suggesting that AMPK activation may be partially responsible for the increased fatty acid oxidation and decreased ceramide synthesis in red muscles of SCD1-/- mice. SCD1 deficiency also reduced SPT activity and ceramide content and increased AMPK phosphorylation and CPT I activity in muscles of ob/ob mice. Taken together, these results indicate that SCD1 deficiency reduces ceramide synthesis by decreasing SPT expression and increasing the rate of beta-oxidation in oxidative muscles.
Collapse
MESH Headings
- AMP-Activated Protein Kinases
- Acyl Coenzyme A/chemistry
- Acyl Coenzyme A/metabolism
- Acyltransferases/genetics
- Acyltransferases/metabolism
- Animals
- Blotting, Western
- Carnitine O-Palmitoyltransferase/genetics
- Carnitine O-Palmitoyltransferase/metabolism
- Ceramides/biosynthesis
- Ceramides/metabolism
- Down-Regulation/genetics
- Fatty Acids/analysis
- Fatty Acids/metabolism
- Fatty Acids, Nonesterified/analysis
- Fatty Acids, Nonesterified/metabolism
- Gene Expression/genetics
- Leptin/genetics
- Leptin/physiology
- Male
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Models, Biological
- Multienzyme Complexes/metabolism
- Muscle Fibers, Fast-Twitch/chemistry
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/physiology
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Oxidation-Reduction
- Palmitic Acid/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases/metabolism
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Serine C-Palmitoyltransferase
- Sphingomyelins/metabolism
- Stearoyl-CoA Desaturase/deficiency
- Stearoyl-CoA Desaturase/genetics
Collapse
Affiliation(s)
- Agnieszka Dobrzyn
- Dept. of Biochemistry, Univ. of Wisconsin, 433 Babcock Dr., Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
429
|
Affiliation(s)
- A M Diehl
- Duke University Medical Center, Box 3256, Snyderman/GSRB-1, 595 LaSalle St, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
430
|
Finck BN, Bernal-Mizrachi C, Han DH, Coleman T, Sambandam N, LaRiviere LL, Holloszy JO, Semenkovich CF, Kelly DP. A potential link between muscle peroxisome proliferator- activated receptor-alpha signaling and obesity-related diabetes. Cell Metab 2005; 1:133-44. [PMID: 16054054 DOI: 10.1016/j.cmet.2005.01.006] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 12/08/2004] [Accepted: 01/24/2005] [Indexed: 10/25/2022]
Abstract
The role of the peroxisome proliferator-activated receptor-alpha (PPARalpha) in the development of insulin-resistant diabetes was evaluated using gain- and loss-of-function approaches. Transgenic mice overexpressing PPARalpha in muscle (MCK-PPARalpha mice) developed glucose intolerance despite being protected from diet-induced obesity. Conversely, PPARalpha null mice were protected from diet-induced insulin resistance in the context of obesity. In skeletal muscle, MCK-PPARalpha mice exhibited increased fatty acid oxidation rates, diminished AMP-activated protein kinase activity, and reduced insulin-stimulated glucose uptake without alterations in the phosphorylation status of key insulin-signaling proteins. These effects on muscle glucose uptake involved transcriptional repression of the GLUT4 gene. Pharmacologic inhibition of fatty acid oxidation or mitochondrial respiratory coupling prevented the effects of PPARalpha on GLUT4 expression and glucose homeostasis. These results identify PPARalpha-driven alterations in muscle fatty acid oxidation and energetics as a potential link between obesity and the development of glucose intolerance and insulin resistance.
Collapse
Affiliation(s)
- Brian N Finck
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
431
|
Yu X, Burgess SC, Ge H, Wong KK, Nassem RH, Garry DJ, Sherry AD, Malloy CR, Berger JP, Li C. Inhibition of cardiac lipoprotein utilization by transgenic overexpression of Angptl4 in the heart. Proc Natl Acad Sci U S A 2005; 102:1767-72. [PMID: 15659544 PMCID: PMC547881 DOI: 10.1073/pnas.0409564102] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the role of Angptl4, an inhibitor of lipoprotein lipase that is induced by >3-fold in the heart after rosiglitazone treatment, we generated transgenic mice that overexpress Angptl4 in the heart (MHC-Angptl4). We show that MHC-Angptl4 mice exhibit cardiac-restricted expression of the transgene and inhibition of cardiac lipoprotein lipase (LPL) activity. However, LPL activities in other tissues or that released into plasma by heparin are not affected. In addition, MHC-Angptl4 mice also exhibit hypertriglyceridemia after 6 h of fasting. We use echocardiography to show that MHC-Angptl4 mice develop left-ventricular dysfunction. Comparison of the metabolic profiles of isolated working hearts demonstrates that cardiac impairment in MHC-Angptl4 mice is positively associated with decreased triglyceride (TG) utilization. When bred to transgenic mice that overexpress acyl-CoA synthetase in the heart, a strain that exhibits elevated cardiac TG accumulation, cardiac TG content in double transgenic mice is reversed to that of wild-type mice. Taken together, our data support the hypothesis that induction of Angptl4 in the heart inhibits lipoprotein-derived fatty acid delivery. This mouse model will be useful to elucidate the role of reduced fatty acid supply in the pathogenesis of heart failure and related disorders.
Collapse
Affiliation(s)
- Xinxin Yu
- Department of Physiology, Touchstone Center for Diabetes Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
432
|
Oh WK, Lee CH, Lee MS, Bae EY, Sohn CB, Oh H, Kim BY, Ahn JS. Antidiabetic effects of extracts from Psidium guajava. JOURNAL OF ETHNOPHARMACOLOGY 2005; 96:411-415. [PMID: 15619559 DOI: 10.1016/j.jep.2004.09.041] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 08/18/2004] [Accepted: 09/02/2004] [Indexed: 05/24/2023]
Abstract
During a screening of medicinal plants for inhibition of protein tyrosine phosphatase1B (PTP1B), an extract from Psidium guajava (Myrtaceae) leaves exhibited significant inhibitory effect on PTP1B. Thus, its antidiabetic effect on Lepr(db)/Lepr(db) mice was evaluated. Significant blood glucose lowering effects of the extract were observed after intraperitoneal injection of the extract at a dose of 10mg/kg in both 1- and 3-month-old Lepr(db)/Lepr(db) mice. In addition, histological analysis of the liver from the butanol-soluble fraction treated Lepr(db)/Lepr(db) mice revealed a significant decrease in the number of lipid droplets compared to the control mice. Taken together, it was suggested that the extract from Psidium guajava leaves possesses antidiabetic effect in type 2 diabetic mice model and these effect is, at least in part, mediated via the inhibition of PTP1B.
Collapse
Affiliation(s)
- Won Keun Oh
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), P.O. Box 115, Yusong, Daejeon 305-600, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
433
|
Abstract
Insulin resistance in humans is not always accompanied by obesity, since severe insulin resistance also characterizes patients lacking subcutaneous fat such as those with HAART- (highly-active antiretroviral therapy)-associated lipodystrophy. Both obese and lipodystrophic patients, however, have an increase in the amount of fat hidden in the liver. Liver fat content can be accurately quantified non-invasively by proton magnetic resonance spectroscopy. It is closely correlated with fasting insulin concentrations and direct measures of hepatic insulin sensitivity while the amount of subcutaneous adipose tissue is not. An increase in liver fat content has been shown to predict type 2 diabetes, independently of other cardiovascular risk factors. This is easily explained by the fact that the liver, once fatty, overproduces most of the known cardiovascular risk factors such as very low density lipoprotein (VLDL), glucose, C-reactive protein (CRP), plasminogen activator inhibitor-1 (PAI-1), fibrinogen and coagulation factors. The causes of inter-individual variation in liver fat content, independent of obesity, are largely unknown but could involve differences in signals from adipose tissue such as in the amount of adiponectin produced and differences in fat intake. Adiponectin deficiency characterizes both lipodystrophic and obese insulin-resistant individuals, and serum levels correlate with liver fat content. Liver fat content can be decreased by weight loss and by a low as compared to a high fat diet. In addition, treatment of both lipodystrophic and type 2 diabetic patients with peroxisome proliferators activator receptor-gamma (PPARgamma) agonists, but not metformin, decreases liver fat and markedly increases adiponectin levels. The fatty liver may help to explain why some but not all obese individuals are insulin resistant and why even lean individuals may be insulin resistant, and thereby at risk of developing type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Hannele Yki-Järvinen
- Department of Medicine, Division of Diabetes, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
434
|
Liu E, Kitajima S, Higaki Y, Morimoto M, Sun H, Watanabe T, Yamada N, Fan J. High lipoprotein lipase activity increases insulin sensitivity in transgenic rabbits. Metabolism 2005; 54:132-8. [PMID: 15562391 DOI: 10.1016/j.metabol.2004.07.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lipoprotein lipase (LPL) is the rate-limiting enzyme in the hydrolysis of triglyceride-rich lipoproteins and plays an important role in glucose metabolism. To examine the hypothesis that increased LPL activity may alter insulin sensitivity, we investigated glucose metabolism and insulin sensitivity in transgenic (Tg) rabbits expressing the human LPL gene under the control of a I(2) -actin promoter. An intravenous glucose tolerance test showed that the plasma glucose clearance rate was not significantly different between Tg and non-Tg rabbits; however, the area under the curve for insulin and free fatty acids in Tg rabbits was significantly reduced compared with that of non-Tg rabbits (P < .05). Using the intravenous insulin tolerance test, we found that the area of under the curve of glucose of Tg rabbits was also significantly reduced (P < .01). Furthermore, euglycemic-hyperinsulinemic clamp test revealed that the mean glucose infusion rate in Tg rabbits was significantly higher than in non-Tg rabbits (P < .05). These results demonstrate that systemic overexpression of LPL increases whole-body insulin sensitivity and genetic manipulation of LPL genes may be a potential target for the treatment of diabetic patients.
Collapse
Affiliation(s)
- Enqi Liu
- Analytical Rsearch Center for Experimental Sciences, Saga University, Saga 849-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
435
|
Kuriyama H, Liang G, Engelking LJ, Horton JD, Goldstein JL, Brown MS. Compensatory increase in fatty acid synthesis in adipose tissue of mice with conditional deficiency of SCAP in liver. Cell Metab 2005; 1:41-51. [PMID: 16054043 DOI: 10.1016/j.cmet.2004.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 10/22/2004] [Accepted: 11/09/2004] [Indexed: 11/20/2022]
Abstract
The escort protein SCAP transports SREBPs from ER to Golgi where the active domains are released to activate genes for fatty acid (FA) and cholesterol synthesis. Mice with conditional SCAP deficiency in liver (L-Scap-) manifest marked reductions in hepatic lipid synthesis. Here, we show that the decreased FA synthesis in liver is balanced by an equal increase in nonhepatic tissues, primarily adipose tissue. Extrahepatic synthesis of FAs preserves adipose mass, even when L-Scap- mice consume a fat-free diet. This compensatory response disappears upon fasting, implicating a role for insulin, the major hormonal activator of FA synthesis. This response is mediated by an insulin-dependent increase in adipocyte SREBP-1c and its target mRNAs. In epididymal fat of L-Scap- mice, phosphorylated Akt, Glut-4 mRNA, and glucose uptake are also increased, indicating insulin hypersensitivity. Plasma VLDL triglycerides are dramatically reduced in L-Scap- mice, underscoring the benefits of synthesizing FAs in fat rather than liver.
Collapse
Affiliation(s)
- Hiroshi Kuriyama
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|
436
|
Kim JK, Fillmore JJ, Sunshine MJ, Albrecht B, Higashimori T, Kim DW, Liu ZX, Soos TJ, Cline GW, O'Brien WR, Littman DR, Shulman GI. PKC-theta knockout mice are protected from fat-induced insulin resistance. J Clin Invest 2004; 114:823-7. [PMID: 15372106 PMCID: PMC516267 DOI: 10.1172/jci22230] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 07/28/2004] [Indexed: 11/17/2022] Open
Abstract
Insulin resistance plays a primary role in the development of type 2 diabetes and may be related to alterations in fat metabolism. Recent studies have suggested that local accumulation of fat metabolites inside skeletal muscle may activate a serine kinase cascade involving protein kinase C-theta (PKC-theta), leading to defects in insulin signaling and glucose transport in skeletal muscle. To test this hypothesis, we examined whether mice with inactivation of PKC-theta are protected from fat-induced insulin resistance in skeletal muscle. Skeletal muscle and hepatic insulin action as assessed during hyperinsulinemic-euglycemic clamps did not differ between WT and PKC-theta KO mice following saline infusion. A 5-hour lipid infusion decreased insulin-stimulated skeletal muscle glucose uptake in the WT mice that was associated with 40-50% decreases in insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1-associated PI3K activity. In contrast, PKC-theta inactivation prevented fat-induced defects in insulin signaling and glucose transport in skeletal muscle. In conclusion, our findings demonstrate that PKC-theta is a crucial component mediating fat-induced insulin resistance in skeletal muscle and suggest that PKC-theta is a potential therapeutic target for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Jason K Kim
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
437
|
Gondret F, Jadhao SB, Damon M, Herpin P, Viglietta C, Houdebine LM, Hocquette JF. Unusual metabolic characteristics in skeletal muscles of transgenic rabbits for human lipoprotein lipase. Lipids Health Dis 2004; 3:27. [PMID: 15588304 PMCID: PMC543452 DOI: 10.1186/1476-511x-3-27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 12/09/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The lipoprotein lipase (LPL) hydrolyses circulating triacylglycerol-rich lipoproteins. Thereby, LPL acts as a metabolic gate-keeper for fatty acids partitioning between adipose tissue for storage and skeletal muscle primarily for energy use. Transgenic mice that markedly over-express LPL exclusively in muscle, show increases not only in LPL activity, but also in oxidative enzyme activities and in number of mitochondria, together with an impaired glucose tolerance. However, the role of LPL in intracellular nutrient pathways remains uncertain. To examine differences in muscle nutrient uptake and fatty acid oxidative pattern, transgenic rabbits harboring a DNA fragment of the human LPL gene (hLPL) and their wild-type littermates were compared for two muscles of different metabolic type, and for perirenal fat. RESULTS Analyses of skeletal muscles and adipose tissue showed the expression of the hLPL DNA fragment in tissues of the hLPL group only. Unexpectedly, the activity level of LPL in both tissues was similar in the two groups. Nevertheless, mitochondrial fatty acid oxidation rate, measured ex vivo using [1-(14C)]oleate as substrate, was lower in hLPL rabbits than in wild-type rabbits for the two muscles under study. Both insulin-sensitive glucose transporter GLUT4 and muscle fatty acid binding protein (H-FABP) contents were higher in hLPL rabbits than in wild-type littermates for the pure oxidative semimembranosus proprius muscle, but differences between groups did not reach significance when considering the fast-twitch glycolytic longissimus muscle. Variations in both glucose uptake potential, intra-cytoplasmic binding of fatty acids, and lipid oxidation rate observed in hLPL rabbits compared with their wild-type littermates, were not followed by any modifications in tissue lipid content, body fat, and plasma levels in energy-yielding metabolites. CONCLUSIONS Expression of intracellular binding proteins for both fatty acids and glucose, and their following oxidation rates in skeletal muscles of hLPL rabbits were not fully consistent with the physiology rules. The modifications observed in muscle metabolic properties might not be directly associated with any LPL-linked pathways, but resulted likely of transgene random insertion into rabbit organism close to any regulatory genes. Our findings enlighten the risks for undesirable phenotypic modifications in micro-injected animals and difficulties of biotechnology in mammals larger than mice.
Collapse
Affiliation(s)
| | - Sanjay B Jadhao
- INRA, Unité de Recherche sur les Herbivores, 63122 Saint-Genès Champanelle, France
| | - Marie Damon
- INRA, UMR sur le Veau et le Porc, 35590 Saint Gilles, France
| | - Patrick Herpin
- INRA, UMR sur le Veau et le Porc, 35590 Saint Gilles, France
| | - Céline Viglietta
- INRA, Biologie du Développement et Reproduction, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | - Louis-Marie Houdebine
- INRA, Biologie du Développement et Reproduction, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | | |
Collapse
|
438
|
Cleasby ME, Dzamko N, Hegarty BD, Cooney GJ, Kraegen EW, Ye JM. Metformin prevents the development of acute lipid-induced insulin resistance in the rat through altered hepatic signaling mechanisms. Diabetes 2004; 53:3258-66. [PMID: 15561958 DOI: 10.2337/diabetes.53.12.3258] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metformin reduces the incidence of progression to type 2 diabetes in humans with obesity or impaired glucose tolerance. We used an animal model to investigate whether metformin could prevent acute lipid-induced insulin resistance and the mechanisms involved. Metformin or vehicle was administered to rats daily for 1 week. Rats were studied basally, after 3.75 h of intralipid-heparin or glycerol infusion, or after 5 h of infusion with a hyperinsulinemic-euglycemic clamp between 3 and 5 h. Metformin had no effect on plasma triacylglycerol or nonesterified fatty acid concentrations and did not alter glucose turnover or gluconeogenic enzyme mRNA after lipid infusion. However, metformin normalized hepatic glucose output and increased liver glycogen during lipid infusion and clamp. Basal liver (but not muscle or fat) AMP-activated protein kinase activity was increased by metformin (by 310%; P < 0.01), associated with increased phosphorylation of acetyl CoA carboxylase. Postclamp liver but not muscle phosphorylated/total Akt protein was increased, whereas basal c-Jun NH2-terminal kinase-1 and -2 protein expression were reduced (by 39 and 53%, respectively; P < 0.05). Metformin also increased hepatic basal IkappaBalpha levels (by 260%; P < 0.001) but had no effect on tyrosine phosphorylation or expression of insulin receptor substrate-1 (IRS-1). In summary, metformin opposes the development of acute lipid-induced insulin resistance in the liver through alterations in multiple signaling pathways.
Collapse
Affiliation(s)
- Mark E Cleasby
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
439
|
Lessard SJ, Lo Giudice SL, Lau W, Reid JJ, Turner N, Febbraio MA, Hawley JA, Watt MJ. Rosiglitazone enhances glucose tolerance by mechanisms other than reduction of fatty acid accumulation within skeletal muscle. Endocrinology 2004; 145:5665-70. [PMID: 15375026 DOI: 10.1210/en.2004-0659] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We hypothesized that improved glucose tolerance with rosiglitazone treatment would coincide with decreased levels of i.m. triacylglycerol (IMTG), diacylglycerol, and ceramide. Obese Zucker rats were randomly divided into two experimental groups: control (n = 9) and rosiglitazone (n = 9), with lean Zucker rats (n = 9) acting as a control group for obese controls. Rats received either vehicle or 3 mg/kg rosiglitazone for 6 wk. Glucose tolerance was impaired (P < 0.01) in obese compared with lean rats, but was normalized after rosiglitazone treatment. IMTG content was higher in obese compared with lean rats (70.5 +/- 5.1 vs. 27.5 +/- 2.0 micromol/g dry mass; P < 0.05) and increased an additional 30% (P < 0.05) with rosiglitazone treatment. Intramuscular fatty acid composition shifted toward a higher proportion of monounsaturates (P < 0.05) in obese rosiglitazone-treated rats due to an increase in palmitoleate (16:1; P < 0.05). Rosiglitazone treatment increased (P < 0.05) skeletal muscle diacylglycerol and ceramide levels by 65% and 100%, respectively, compared with obese rats, but elevated muscle diacylglycerol was not associated with changes in the total or membrane contents of the diacylglycerol-sensitive protein kinase C isoforms theta;, delta, alpha, and beta. In summary, we observed a disassociation among skeletal muscle IMTG, diacylglycerol and ceramide content, and glucose tolerance with rosiglitazone treatment in obese Zucker rats. Our data suggest, therefore, that rosiglitazone enhances glucose tolerance by mechanisms other than reduction of fatty acid accumulation within skeletal muscle.
Collapse
Affiliation(s)
- Sarah J Lessard
- Exercise Metabolism Group, RMIT University School of Medical Sciences, Bundoora, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
440
|
Lin X, Taguchi A, Park S, Kushner JA, Li F, Li Y, White MF. Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes. J Clin Invest 2004; 114:908-16. [PMID: 15467829 PMCID: PMC518668 DOI: 10.1172/jci22217] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 07/20/2004] [Indexed: 01/17/2023] Open
Abstract
The molecular link between obesity and beta cell failure that causes diabetes is difficult to establish. Here we show that a conditional knockout of insulin receptor substrate 2 (Irs2) in mouse pancreas beta cells and parts of the brain--including the hypothalamus--increased appetite, lean and fat body mass, linear growth, and insulin resistance that progressed to diabetes. Diabetes resolved when the mice were between 6 and 10 months of age: functional beta cells expressing Irs2 repopulated the pancreas, restoring sufficient beta cell function to compensate for insulin resistance in the obese mice. Thus, Irs2 signaling promotes regeneration of adult beta cells and central control of nutrient homeostasis, which can prevent obesity and diabetes in mice.
Collapse
Affiliation(s)
- Xueying Lin
- Howard Hughes Medical Institute Children's Hospital, Division of Endocrinology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
441
|
Abstract
That obesity is associated with insulin resistance and type II diabetes mellitus is well accepted. Overloading of white adipose tissue beyond its storage capacity leads to lipid disorders in non-adipose tissues, namely skeletal and cardiac muscles, pancreas, and liver, effects that are often mediated through increased non-esterified fatty acid fluxes. This in turn leads to a tissue-specific disordered insulin response and increased lipid deposition and lipotoxicity, coupled to abnormal plasma metabolic and (or) lipoprotein profiles. Thus, the importance of functional adipocytes is crucial, as highlighted by the disorders seen in both "too much" (obesity) and "too little" (lipodystrophy) white adipose tissue. However, beyond its capacity for fat storage, white adipose tissue is now well recognised as an endocrine tissue producing multiple hormones whose plasma levels are altered in obese, insulin-resistant, and diabetic subjects. The consequence of these hormonal alterations with respect to both glucose and lipid metabolism in insulin target tissues is just beginning to be understood. The present review will focus on a number of these hormones: acylation-stimulating protein, leptin, adiponectin, tumour necrosis factor alpha, interleukin-6, and resistin, defining their changes induced in obesity and diabetes mellitus and highlighting their functional properties that may protect or worsen lipid metabolism.
Collapse
Affiliation(s)
- May Faraj
- Mike Rosenbloom Laboratory for Cardiovascular Research, McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada
| | | | | |
Collapse
|
442
|
Nakahara I, Matsuhisa M, Shiba Y, Kuroda A, Nakatani Y, Hatazaki M, Kajimoto Y, Kubota M, Yamasaki Y, Hori M. Acute elevation of free fatty acids impairs hepatic glucose uptake in conscious rats. Diabetes Res Clin Pract 2004; 66:109-18. [PMID: 15533577 DOI: 10.1016/j.diabres.2004.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 01/26/2004] [Accepted: 02/25/2004] [Indexed: 11/22/2022]
Abstract
To investigate the dose-dependent effect of free fatty acid (FFA) on the hepatic glucose uptake (HGU), we determined hepatic glucose fluxes by a dual tracer technique during the basal state and euglycemic hyperinsulinemic clamp combined with a portal glucose load in three groups of rats given saline (saline), low-dose lipid (lipid-L), or high-dose lipid infusion (lipid-H). In the basal state, lipid infusion dose-dependently increased plasma FFA (saline, 400 +/- 50; lipid-L, 550 +/- 30; lipid-H, 1700 +/- 270 micromol l(-1); mean +/- S.E). Endogenous glucose production (EGP) in lipid-H was 63.5 +/- 5.5 micromol kg(-1) min(-1) and significantly higher than in the saline and lipid-L (40.2 +/- 2.9, 47.6 +/- 3.1 micromol kg(-1) min(-1), respectively). During euglycemic hyperinsulinemic clamp, plasma FFA decreased to 130 +/- 30 micromol l(-1) in saline, but remained at basal levels in lipid-L and lipid-H (470 +/- 30 and 1110 +/- 180 micromol l(-1), respectively). Insulin-suppressed EGP was complete in saline and lipid-L, but impaired in lipid-H (38.0 +/- 6.4 micromol kg(-1) min(-1)). Elevated FFA dose-dependently reduced HGU (saline, 12.2 +/- 0.9; lipid-L, 8.6 +/- 0.6; lipid-H, 4.7 +/- 1.4 micromol kg(-1) min(-1)). In conclusion, acutely elevated FFA impairs HGU as well as insulin-mediated suppression of EGP during hyperinsulinemic clamp with portal glucose loading. Impaired hepatic glucose uptake associated with elevated FFA may contribute to the development of insulin resistance in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Itsuro Nakahara
- Department of Internal Medicine and Therapeutics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka Prefecture 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
443
|
Capell WH, Spiegelman KP, Eckel RH. Therapeutic targets in severe hypertriglyceridemia. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ddmec.2004.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
444
|
Abstract
Maturity-onset diabetes of the young (MODY) is a rare subtype of type 2 diabetes that is characterized by autosomal-dominant inheritance and can be caused by mutations in hepatocyte nuclear factor 4alpha (HNF-4alpha). Odom and colleagues have combined chromatin immunoprecipitation with promoter microarrays to identify numerous promoters occupied by HNF-4alpha in the human liver and islet, suggesting a very broad role for HNF-4alpha in glucose homeostasis. This notion is supported by recent genetic studies linking HNF-4alpha to the much more common late-onset type 2 diabetes.
Collapse
Affiliation(s)
- Rana K Gupta
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | | |
Collapse
|
445
|
Erol E, Cline GW, Kim JK, Taegtmeyer H, Binas B. Nonacute effects of H-FABP deficiency on skeletal muscle glucose uptake in vitro. Am J Physiol Endocrinol Metab 2004; 287:E977-82. [PMID: 15198933 DOI: 10.1152/ajpendo.00139.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart-type fatty acid-binding protein (H-FABP) is required for high rates of skeletal muscle long-chain fatty acid (LCFA) oxidation and esterification. Here we assessed whether H-FABP affects soleus muscle glucose uptake when measured in vitro in the absence of LCFA. Wild-type and H-FABP null mice were fed a standard chow or high-fat diet before muscle isolation. With the chow, the mutation increased insulin-dependent deoxyglucose uptake by 141% (P < 0.01) at 0.02 mU/ml of insulin but did not cause a significant effect at 2 mU/ml of insulin; skeletal muscle triglyceride and long-chain acyl-CoA (LCA-CoA) levels remained normal. With the high-fat diet, the mutation increased insulin-dependent deoxyglucose uptake by 190% (P < 0.01) at 2 mU/ml of insulin, thus partially preventing insulin resistance, and it completely prevented the threefold (P < 0.001) diet-induced increase of muscle triglyceride levels; however, muscle LCA-CoA levels showed little or no reduction. With both diets, the mutation reduced the basal (insulin-independent) soleus muscle deoxyglucose uptake by 28% (P < 0.05). These results establish a close relation between FABP-dependent lipid pools and insulin sensitivity and indicate the existence of a nonacute, antagonistic, and H-FABP-dependent fatty acid regulation of basal and insulin-dependent muscle glucose uptake.
Collapse
Affiliation(s)
- Erdal Erol
- Dept. of Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4467, USA
| | | | | | | | | |
Collapse
|
446
|
Kobayashi M, Ohno T, Tsuchiya T, Horio F. Characterization of diabetes-related traits in MSM and JF1 mice on high-fat diet. J Nutr Biochem 2004; 15:614-21. [PMID: 15542353 DOI: 10.1016/j.jnutbio.2004.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 04/22/2004] [Accepted: 05/19/2004] [Indexed: 10/26/2022]
Abstract
We examined the effect of a high-fat diet on the diabetes-related traits of the Japanese Fancy mouse 1 (JF1), MSM, and C57BL/6J (B6J) mice. MSM and JF1 mice were derived from Mus musculus molossinus. B6J is a commonly used laboratory strain, with the vast majority of genome segments derived from Mus musculus domesticus and Mus musculus musculus, and is susceptible to high-fat diet-induced type 2 diabetes. None of the strains showed symptoms of diabetes or obesity when fed a laboratory chow diet. Under a high-fat diet, JF1 mice developed impaired glucose tolerance, hyperglycemia, hyperinsulinemia, and obesity. B6J mice fed a high-fat diet mildly developed these diabetes-related traits compared to JF1 mice fed a high-fat diet. JF1 mice fed a high-fat diet were classified as having type 2 diabetes and were susceptible to high-fat diet-induced diabetes and obesity. On the other hand, MSM mice were resistant to high-fat diet-induced diabetes. These results indicate that the JF1 strain, with its unique genetic origin, is a useful new animal model of high-fat diet-induced diabetes and obesity. Further investigations using JF1 mice will help to clarify the role of the high-fat diet on human diabetes and obesity.
Collapse
Affiliation(s)
- Misato Kobayashi
- Department of Applied Molecular Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
447
|
de Fourmestraux V, Neubauer H, Poussin C, Farmer P, Falquet L, Burcelin R, Delorenzi M, Thorens B. Transcript profiling suggests that differential metabolic adaptation of mice to a high fat diet is associated with changes in liver to muscle lipid fluxes. J Biol Chem 2004; 279:50743-53. [PMID: 15377667 DOI: 10.1074/jbc.m408014200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetically homogenous C57Bl/6 mice display differential metabolic adaptation when fed a high fat diet for 9 months. Most become obese and diabetic, but a significant fraction remains lean and diabetic or lean and non-diabetic. Here, we performed microarray analysis of "metabolic" transcripts expressed in liver and hindlimb muscles to evaluate: (i) whether expressed transcript patterns could indicate changes in metabolic pathways associated with the different phenotypes, (ii) how these changes differed from the early metabolic adaptation to short term high fat feeding, and (iii) whether gene classifiers could be established that were characteristic of each metabolic phenotype. Our data indicate that obesity/diabetes was associated with preserved hepatic lipogenic gene expression and increased plasma levels of very low density lipoprotein and, in muscle, with an increase in lipoprotein lipase gene expression. This suggests increased muscle fatty acid uptake, which may favor insulin resistance. In contrast, the lean mice showed a strong reduction in the expression of hepatic lipogenic genes, in particular of Scd-1, a gene linked to sensitivity to diet-induced obesity; the lean and non-diabetic mice presented an additional increased expression of eNos in liver. After 1 week of high fat feeding the liver gene expression pattern was distinct from that seen at 9 months in any of the three mouse groups, thus indicating progressive establishment of the different phenotypes. Strikingly, development of the obese phenotype involved re-expression of Scd-1 and other lipogenic genes. Finally, gene classifiers could be established that were characteristic of each metabolic phenotype. Together, these data suggest that epigenetic mechanisms influence gene expression patterns and metabolic fates.
Collapse
|
448
|
Kim JK, Fillmore JJ, Sunshine MJ, Albrecht B, Higashimori T, Kim DW, Liu ZX, Soos TJ, Cline GW, O’Brien WR, Littman DR, Shulman GI. PKC-θ knockout mice are protected from fat-induced insulin resistance. J Clin Invest 2004. [DOI: 10.1172/jci200422230] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
449
|
Oliveira MRM, Maranhão RC. Relationships in women between body mass index and the intravascular metabolism of chylomicron-like emulsions. Int J Obes (Lond) 2004; 28:1471-8. [PMID: 15486570 DOI: 10.1038/sj.ijo.0802780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To investigate whether increasing body mass index (BMI) produces increasingly intense disturbances in the metabolism of chylomicrons, the lipoproteins that carry the dietary lipids absorbed by the intestine in the circulation. SUBJECTS Four groups of 10 normolipidemic nondiabetic women at the normal (BMI<25 kg/m(2)), preobese (BMI 25-30), obese (BMI 30-40) and morbid obese (BMI>40). METHODS Chylomicron metabolism was studied using the method of triglyceride-rich emulsions that mimic chylomicrons. The chylomicron-like emulsion doubly labeled with (3)H-triolein (TO) and (14)C-cholesteryl-oleate (CO) was intravenously injected to calculate the plasma fractional clearance rates (FCR, in min(-1)) by a compartmental analysis model. FCR-TO mirrors both the lipolysis from lipoprotein lipase that the emulsion suffers while still in the circulation, and the triglycerides portion that is not broken down and is removed from the plasma together with the remnant particles. Lipolysis index is calculated subtracting CO from TO areas under the curve. RESULTS FCR-TO did not differ among the four groups. The lipolysis index was positively correlated with BMI (r=0.310; P=0.05). On the other hand, FCR-CO progressively diminished from the normal to the morbid obese group (0.069+/-0.01; 0.064+/-0.01; 0.031+/-0.003; 0.029+/-0.005 min(-1), respectively, P=0.003) and there was a negative correlation between FCR-CO and BMI (r=-0.388; P=0.01). CONCLUSION In obesity, the capacity to break down chylomicron triglycerides by lipoprotein lipase in vivo increases, but the ability of the organism to remove the resulting chylomicron remnants particles progressively diminishes as the BMI rises. Remnant accumulation most likely predisposes to coronary artery disease development.
Collapse
Affiliation(s)
- M R M Oliveira
- Faculty of Pharmaceutical Sciences, and Heart Institute of the Medical School Hospital (INCOR-HCFMUSP), University of São Paulo (USP), São Paulo, Brazil
| | | |
Collapse
|
450
|
Inoue Y, Inoue J, Lambert G, Yim SH, Gonzalez FJ. Disruption of hepatic C/EBPalpha results in impaired glucose tolerance and age-dependent hepatosteatosis. J Biol Chem 2004; 279:44740-8. [PMID: 15292250 DOI: 10.1074/jbc.m405177200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C/EBPalpha is highly expressed in liver and regulates many genes that are preferentially expressed in liver. Because C/EBPalpha-null mice die soon after birth, it is impossible to analyze the function of C/EBPalpha in the adult with this model. To address the function of C/EBPalpha in adult hepatocytes, liver-specific C/EBPalpha-null mice were produced using a floxed C/EBPalpha allele and the albumin-Cre transgene. Unlike whole body C/EBPalpha-null mice, mice lacking hepatic C/EBPalpha expression did not exhibit hypoglycemia, nor did they show reduced hepatic glycogen in adult. Expression of liver glycogen synthase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase remained at normal levels. However, these mice exhibited impaired glucose tolerance due in part to reduced expression of hepatic glucokinase, and hyperammonemia from reduced expression of hepatic carbamoyl phosphate synthase-I. These mice also had reduced serum cholesterol and steatotic livers that was exacerbated with aging. This phenotype could be explained by increased expression of hepatic lipoprotein lipase and reduced expression of microsomal triglyceride transfer protein, apolipoproteins B100, and A-IV. These data demonstrate that hepatic C/EBPalpha is critical for ammonia detoxification and glucose and lipid homeostasis in adult mice.
Collapse
Affiliation(s)
- Yusuke Inoue
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|