401
|
Simpson MJ, Zhang DC, Mariani M, Landman KA, Newgreen DF. Cell proliferation drives neural crest cell invasion of the intestine. Dev Biol 2006; 302:553-68. [PMID: 17178116 DOI: 10.1016/j.ydbio.2006.10.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/12/2006] [Accepted: 10/09/2006] [Indexed: 10/24/2022]
Abstract
A general mathematical model of cell invasion is developed and validated with an experimental system. The model incorporates two basic cell functions: non-directed (diffusive) motility and proliferation to a carrying capacity limit. The model is used here to investigate cell proliferation and motility differences along the axis of an invasion wave. Mathematical simulations yield surprising and counterintuitive predictions. In this general scenario, cells at the invasive front are proliferative and migrate into previously unoccupied tissues while those behind the front are essentially nonproliferative and do not directly migrate into unoccupied tissues. These differences are not innate to the cells, but are a function of proximity to uninvaded tissue. Therefore, proliferation at the invading front is the critical mechanism driving apparently directed invasion. An appropriate system to experimentally validate these predictions is the directional invasion and colonization of the gut by vagal neural crest cells that establish the enteric nervous system. An assay using gut organ culture with chick-quail grafting is used for this purpose. The experimental results are entirely concordant with the mathematical predictions. We conclude that proliferation at the wavefront is a key mechanism driving the invasive process. This has important implications not just for the neural crest, but for other invasion systems such as epidermal wound healing, carcinoma invasion and other developmental cell migrations.
Collapse
Affiliation(s)
- Matthew J Simpson
- Department of Mathematics and Statistics, University of Melbourne, and The Murdoch Childrens Research Institute, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
402
|
Airaksinen MS, Holm L, Hätinen T. Evolution of the GDNF family ligands and receptors. BRAIN, BEHAVIOR AND EVOLUTION 2006; 68:181-90. [PMID: 16912471 DOI: 10.1159/000094087] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Indexed: 12/25/2022]
Abstract
Four different ligand-receptor binding pairs of the GDNF (glial cell line-derived neurotrophic factor) family exist in mammals, and they all signal via the transmembrane RET receptor tyrosine kinase. In addition, GRAL (GDNF Receptor Alpha-Like) protein of unknown function and Gas1 (growth arrest specific 1) have GDNF family receptor (GFR)-like domains. Orthologs of the four GFRalpha receptors, GRAL and Gas1 are present in all vertebrate classes. In contrast, although bony fishes have orthologs of all four GDNF family ligands (GFLs), one of the ligands, neurturin, is absent in clawed frog and another, persephin, is absent in the chicken genome. Frog GFRalpha2 has selectively evolved possibly to accommodate GDNF as a ligand. The key role of GDNF and its receptor GFRalpha1 in enteric nervous system development is conserved from zebrafish to humans. The role of neurturin, signaling via GFRalpha2, for parasympathetic neuron development is conserved between chicken and mice. The role of artemin and persephin that signal via GFRalpha3 and GFRalpha4, respectively, is unknown in non-mammals. The presence of RET- and GFR-like genes in insects suggests that a ProtoGFR and a ProtoRET arose early in the evolution of bilaterian animals, but when the ProtoGFL diverged from existing transforming growth factor (TGFbeta)-like proteins remains unclear. The four GFLs and GFRalphas were presumably generated by genome duplications at the origin of vertebrates. Loss of neurturin in frog and persephin in chicken suggests functional redundancy in early tetrapods. Functions of non-mammalian GFLs and prechordate RET and GFR-like proteins remain to be explored.
Collapse
|
403
|
Elitt CM, McIlwrath SL, Lawson JJ, Malin SA, Molliver DC, Cornuet PK, Koerber HR, Davis BM, Albers KM. Artemin overexpression in skin enhances expression of TRPV1 and TRPA1 in cutaneous sensory neurons and leads to behavioral sensitivity to heat and cold. J Neurosci 2006; 26:8578-87. [PMID: 16914684 PMCID: PMC6674358 DOI: 10.1523/jneurosci.2185-06.2006] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Artemin, a neuronal survival factor in the glial cell line-derived neurotrophic factor family, binds the glycosylphosphatidylinositol-anchored protein GFRalpha3 and the receptor tyrosine kinase Ret. Expression of the GFRalpha3 receptor is primarily restricted to the peripheral nervous system and is found in a subpopulation of nociceptive sensory neurons of the dorsal root ganglia (DRGs) that coexpress the Ret and TrkA receptor tyrosine kinases and the thermosensitive channel TRPV1. To determine how artemin affects sensory neuron properties, transgenic mice that overexpress artemin in skin keratinocytes (ART-OE mice) were analyzed. Expression of artemin caused a 20.5% increase in DRG neuron number and increased the level of mRNA encoding GFRalpha3, TrkA, TRPV1, and the putative noxious cold-detecting channel TRPA1. Nearly all GFRalpha3-positive neurons expressed TRPV1 immunoreactivity, and most of these neurons were also positive for TRPA1. Interestingly, acid-sensing ion channel (ASIC) 1, 2a, 2b, and 3 mRNAs were decreased in the DRG, and this reduction was strongest in females. Analysis of sensory neuron physiological properties using an ex vivo preparation showed that cutaneous C-fiber nociceptors of ART-OE mice had reduced heat thresholds and increased firing rates in response to a heat ramp. No change in mechanical threshold was detected. Behavioral testing of ART-OE mice showed that they had increased sensitivity to both heat and noxious cold. These results indicate that the level of artemin in the skin modulates gene expression and response properties of afferents that project to the skin and that these changes lead to behavioral sensitivity to both hot and cold stimuli.
Collapse
|
404
|
Knowles PP, Murray-Rust J, Kjaer S, Scott RP, Hanrahan S, Santoro M, Ibáñez CF, McDonald NQ. Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem 2006; 281:33577-87. [PMID: 16928683 DOI: 10.1074/jbc.m605604200] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The RET proto-oncogene encodes a receptor tyrosine kinase for the glial cell line-derived neurotrophic factor family of ligands. Loss-of-function mutations in RET are implicated in Hirschsprung disease, whereas activating mutations in RET are found in human cancers, including familial medullar thyroid carcinoma and multiple endocrine neoplasias 2A and 2B. We report here the biochemical characterization of the human RET tyrosine kinase domain and the structure determination of the non-phosphorylated and phosphorylated forms. Both structures adopt the same active kinase conformation competent to bind ATP and substrate and have a pre-organized activation loop conformation that is independent of phosphorylation status. In agreement with the structural data, enzyme kinetic data show that autophosphorylation produces only a modest increase in activity. Longer forms of RET containing the juxtamembrane domain and C-terminal tail exhibited similar kinetic behavior, implying that there is no cis-inhibitory mechanism within the RET intracellular domain. Our results suggest the existence of alternative inhibitory mechanisms, possibly in trans, for the autoregulation of RET kinase activity. We also present the structures of the RET tyrosine kinase domain bound to two inhibitors, the pyrazolopyrimidine PP1 and the clinically relevant 4-anilinoquinazoline ZD6474. These structures explain why certain multiple endocrine neoplasia 2-associated RET mutants found in patients are resistant to inhibition and form the basis for design of more effective inhibitors.
Collapse
Affiliation(s)
- Phillip P Knowles
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London WC2A 3PX, UK
| | | | | | | | | | | | | | | |
Collapse
|
405
|
Jiang Q, Yan Z, Feng J. Neurotrophic factors stabilize microtubules and protect against rotenone toxicity on dopaminergic neurons. J Biol Chem 2006; 281:29391-400. [PMID: 16887804 DOI: 10.1074/jbc.m602740200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson disease is characterized by the selective degeneration of dopaminergic (DA) neurons in substantia nigra. Long term epidemiological studies have implicated exposure to agricultural pesticides as a significant risk factor. Systemic administration of rotenone, a widely used pesticide, causes selective degeneration of nigral DA neurons and Parkinson disease-like symptoms in rats. Our previous study has shown that the microtubule depolymerizing activity of rotenone plays a critical role in its selective toxicity on DA neurons. Rotenone toxicity is mimicked by the microtubule-depolymerizing drug colchicine and attenuated by the microtubule-stabilizing agent taxol. Here we show that nerve growth factor (NGF) significantly reduced rotenone toxicity on TH(+) neurons in midbrain neuronal cultures. The protective effect of NGF was completely abolished by inhibiting the microtubule-associated protein kinase kinase (MEK) and partially reversed by blocking phosphatidylinositol 3-kinase. In addition, NGF decreased colchicine toxicity on TH(+) neurons in a manner dependent on MEK but not phosphatidylinositol 3-kinase. The protective effect of NGF against rotenone toxicity was occluded by the microtubule-stabilizing drug taxol. In a MEK-dependent manner, NGF significantly attenuated rotenone- or colchicine-induced microtubule depolymerization and ensuing accumulation of vesicles in the soma and elevation in protein carbonyls. Moreover, other neurotrophic factors such as brain-derived neurotrophic factor and glia cell line-derived neurotrophic factor also reduced rotenone- or colchicine-induced microtubule depolymerization and death of TH(+) through a MEK-dependent mechanism. Thus, our results suggest that neurotrophic factors activate the microtubule-associated protein kinase pathway to stabilize microtubules, and this action significantly attenuates rotenone toxicity on dopaminergic neurons.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Physiology and Biophysics, State University of New York, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
406
|
Buch PK, MacLaren RE, Durán Y, Balaggan KS, MacNeil A, Schlichtenbrede FC, Smith AJ, Ali RR. In contrast to AAV-mediated Cntf expression, AAV-mediated Gdnf expression enhances gene replacement therapy in rodent models of retinal degeneration. Mol Ther 2006; 14:700-9. [PMID: 16872907 DOI: 10.1016/j.ymthe.2006.05.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 04/21/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022] Open
Abstract
While AAV- and lentivirus-mediated gene replacement therapy can produce structural and functional improvements in various animal models of inherited retinal degeneration, this approach often has very limited effects on the rate of photoreceptor cell loss. Neurotrophic factors such as ciliary neurotrophic factor (CNTF) and glial cell line-derived neurotrophic factor (GDNF) have been shown to prolong photoreceptor survival in rodent models of retinal degeneration, but AAV-mediated Cntf expression also results in suppression of electrophysiological responses from the retina. In this study using mice, we show that while the deleterious effects mediated by CNTF are dose-dependent, administering a dose of CNTF that does not adversely affect retinal function precludes its ability to delay photoreceptor cell death. In evaluating GDNF as a neuroprotective agent, we show that AAV-mediated Gdnf expression does not produce adverse effects similar to those of CNTF. In addition, we demonstrate the ability of AAV-mediated delivery of Gdnf to slow cell death in two rodent models of retinitis pigmentosa and to enhance retinal function in combination with the relevant gene replacement therapy. These data show for the first time that a combination of these approaches can provide enhanced rescue over gene replacement or growth factor therapy alone.
Collapse
Affiliation(s)
- Prateek K Buch
- Division of Molecular Therapy, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | | | | | | | | | | |
Collapse
|
407
|
Braydich-Stolle L, Nolan C, Dym M, Hofmann MC. Role of glial cell line-derived neurotrophic factor in germ-line stem cell fate. Ann N Y Acad Sci 2006; 1061:94-9. [PMID: 16467260 PMCID: PMC2904487 DOI: 10.1196/annals.1336.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The overall goal of this study is to unravel the role(s) played by glial cell line-derived neurotrophic factor (GDNF) in the fate of spermatogonial stem cells. There is great interest in the biology of spermatogonial stem cells, or A(single) spermatogonia, because of their importance in the treatment of infertility, the development of contraceptives, and the understanding of the etiology of testicular cancer, particularly seminoma. In the mouse, spermatogonial stem cells express GFRalpha-1, the receptor for GDNF, and respond to this growth factor in vivo and in vitro. GDNF is produced by the adjacent Sertoli cells, which are part of the germ-line stem cell niche in vertebrates. We specifically isolated GFRalpha-1-positive spermatogonia using an immunomagnetic bead technique. We then stimulated the cells with 100 ng/mL of rGDNF for 10 hours; unstimulated cells served as negative controls. Microarray analysis, immunocytochemistry, and Western blotting revealed that Numb, a regulator of the Notch pathway, is upregulated by GDNF in spermatogonial stem cells. There are indications that in rats, mice, and humans, the Notch pathway promotes spermatogonial differentiation. We observed that an increase in Numb expression is concomitant with Notch degradation in these cells. Thus, through Numb, GDNF might inhibit differentiation and allows the maintenance of the stem cell pool in the mouse seminiferous epithelium.
Collapse
Affiliation(s)
| | - Courtney Nolan
- Department of Biology, University of Dayton, Dayton, Ohio 45469, USA
| | - Martin Dym
- Department of Cell Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | |
Collapse
|
408
|
Shevtsova Z, Malik I, Garrido M, Schöll U, Bähr M, Kügler S. Potentiation of in vivo neuroprotection by BclXL and GDNF co-expression depends on post-lesion time in deafferentiated CNS neurons. Gene Ther 2006; 13:1569-78. [PMID: 16838029 DOI: 10.1038/sj.gt.3302822] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To elucidate effective and long-lasting neuroprotective strategies, we analysed a combination of mitochondrial protection and neurotrophic support in two well-defined animal models of neurodegeneration, traumatic lesion of optic nerve and complete 6-hydroxydopamine (6-OHDA) lesion of nigrostriatal pathway. Neuroprotection by BclX(L), Glial cell line-derived neurotrophic factor (GDNF) or BclX(L) plus GDNF co-expression were studied at 2 weeks and at 6-8 weeks after lesions. In both lesion paradigms, the efficacy of this combination approach significantly differed depending on post-lesion time. We show that BclX(L) expression is more important for neuronal survival in the early phase after lesions, whereas GDNF-mediated neuroprotection becomes more prominent in the advanced state of neurodegeneration. BclX(L) expression was not sufficient to finally inhibit degeneration of deafferentiated central nervous system neurons. Long-lasting GDNF-mediated neuroprotection depended on BclX(L) co-expression in the traumatic lesion paradigm, but was independent of BclX(L) in the 6-OHDA lesion model. The results demonstrate that neuroprotection studies in animal models of neurodegenerative diseases should generally be performed over extended periods of time in order to reveal the actual potency of a therapeutic approach.
Collapse
Affiliation(s)
- Z Shevtsova
- Department of Neurology, Medical School, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
409
|
Wissel K, Wefstaedt P, Rieger H, Miller JM, Lenarz T, Stöver T. Upregulation of glial cell line-derived neurotrophic factor and artemin mRNA in the auditory nerve of deafened rats. Neuroreport 2006; 17:875-8. [PMID: 16738479 DOI: 10.1097/01.wnr.0000221836.26093.85] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nerve growth factors play key roles in spiral ganglion cells survival and excitability. Our aim was to determine gene expression patterns of glial cell line-derived neurotrophic factor family (GDNF) members and their receptors in the auditory nerve and inferior colliculus of deafened rats. The gene expression of GDNF, persephin, artemin and neurturin, and their receptors GFRalpha1, GFRalpha2, GFRalpha3 and Ret, was determined by semiquantitative reverse transcriptase-polymerase chain reaction using GAPDH expression as an internal standard. Following deafness, no significant changes in expression of GDNF family genes were found in inferior colliculus. In contrast, artemin, GDNF, GFRalpha1-3 and Ret RNA expression were strongly upregulated in the auditory nerve following deafness, indicating their importance in protecting the auditory nerve against cell damage.
Collapse
Affiliation(s)
- Kirsten Wissel
- Department of Otolaryngology, Medical University of Hannover, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
410
|
Yang H, Bernanke JM, Naftel JP. Immunocytochemical evidence that most sensory neurons of the rat molar pulp express receptors for both glial cell line-derived neurotrophic factor and nerve growth factor. Arch Oral Biol 2006; 51:69-78. [PMID: 16444814 DOI: 10.1016/j.archoralbio.2005.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Most pulpal afferent neurons have cytochemical features in common with the class of nociceptors that express neuropeptides and respond to NGF, while very few bind the plant lectin IB4, a widely used marker for the class of nociceptors that respond to the GDNF family of neurotrophic factors. The present study was undertaken to determine whether the GDNF receptor, GFRalpha-1, is expressed by pulpal afferents, and, further, to determine whether tooth injury evokes changes in expression of the GDNF and NGF receptors among pulpal afferents. The tracer, fluoro-gold (FG), was applied to shallow cavities in dentin of first and second maxillary molars. After 4 weeks, the molars of one side received a test injury consisting of a deeper cavity that exposed pulp horns. Animals were perfusion fixed 2 days later, and sections of the trigeminal ganglia were double immunostained with combinations of antibodies against GFRalpha-1, and TrkA. Under control conditions, GFRalpha-1 immunostaining was observed in 72% of neurons that projected to the molar pulp, TrkA in 78%, and immunostaining for both receptors was observed in 65% of pulpal afferents. Tooth injury evoked up-regulation of GFRalpha-1 expression (to 93%) and a slight down-regulation of TrkA expression (67%) among tooth afferents, while there was no discernable change in the proportion of pulpal afferents that expressed both TrkA and GFRalpha-1 (to 61%).
Collapse
Affiliation(s)
- Hong Yang
- Department of Anatomy, University of Mississippi Medical Center, Jackson, 39216, USA
| | | | | |
Collapse
|
411
|
Dziarmaga A, Hueber PA, Iglesias D, Hache N, Jeffs A, Gendron N, Mackenzie A, Eccles M, Goodyer P. Neuronal apoptosis inhibitory protein is expressed in developing kidney and is regulated by PAX2. Am J Physiol Renal Physiol 2006; 291:F913-20. [PMID: 16735463 DOI: 10.1152/ajprenal.00004.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During fetal kidney development, the extent of ureteric bud (UB) branching will determine final nephron endowment for life. Nephron number varies widely among normal humans and those who are born at the low end of the nephron number spectrum may be at risk for essential hypertension in adulthood. Little is known about how nephron number is set. However, we previously showed that the transcription factor, Pax2, suppresses apoptosis in UB cells during kidney development and optimizes branching morphogenesis. Here, we report that PAX2 directly binds to a specific recognition motif in the human neuronal apoptosis inhibitory protein (NAIP) gene promoter. NAIP is an endogenous inhibitor of apoptosis, inactivating caspase-3 and caspase-7 in neuronal tissues. PAX2 activates NAIP gene transcription (7-fold) in vitro and NAIP transcript level is increased fourfold in HEK293 cells stably transfected with PAX2. We show that Naip is expressed in embryonic day 15 (E15) fetal kidney tissue (RT-PCR) and NAIP protein is demonstrated by immunohistochemistry in E15 mouse kidney collecting ducts and P1 proximal tubules. Naip mRNA is significantly reduced (50%) in heterozygous Pax2 mutant mice. Finally, we show that an antisense Naip1 cDNA transfected into murine collecting duct cells doubles caspase-3/7 activity induced by Baxalpha. These observations suggest that the powerful effects of PAX2 on renal branching morphogenesis and final nephron number may be mediated by activation of Naip which then suppresses apoptosis in UB cells.
Collapse
Affiliation(s)
- Alison Dziarmaga
- Department of Human Genetics, McGill University, Montreal Children's Hospital Research Institute, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
412
|
Jain S, Encinas M, Johnson EM, Milbrandt J. Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev 2006; 20:321-33. [PMID: 16452504 PMCID: PMC1361703 DOI: 10.1101/gad.1387206] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular mechanisms that lead to congenital anomalies of kidneys and the lower urinary tract (CAKUT) are poorly understood. To elucidate the molecular basis for signaling specificity of GDNF-mediated RET signaling in kidney development, we characterized mice that exclusively express either the human RET9 or RET51 isoform, or express these isoforms with individual mutations in docking tyrosines for PTB and SH2-domain-containing adaptors Src (Y981), PLCgamma (Y1015), and Shc (Y1062). Our results provide evidence for differential and isoform-specific roles of these docking sites in murine kidney development. Homozygous Ret(RET9) and Ret(RET51) mice were viable and show normally developed kidneys, indicating redundant roles of human RET isoforms in murine kidney development. In the context of the RET51 isoform, only mutation of the docking Tyr 1015 (Y1015F) resulted in severe renal anomalies. These included bilateral megaureters and multicystic kidneys that were caused by supernumerary ureteric buds that fail to separate from the wolffian duct as well as decreased branching morphogenesis. Similar kidney and ureter defects were observed in RET9(Y1015F) mice that contain the Y1015F mutation in the RET9 isoform. Interestingly, loss of RET9(Y1062)-mediated AKT/MAPK activation resulted in renal agenesis or kidney rudiments, whereas mutation of this residue in RET51 had no obvious effect on AKT/MAPK activity and renal development. These results reveal novel roles of key RET-dependent signaling pathways in embryonic kidney development and provide murine models and new insights into the molecular basis for CAKUT.
Collapse
Affiliation(s)
- Sanjay Jain
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
413
|
Kramer ER, Knott L, Su F, Dessaud E, Krull CE, Helmbacher F, Klein R. Cooperation between GDNF/Ret and ephrinA/EphA4 Signals for Motor-Axon Pathway Selection in the Limb. Neuron 2006; 50:35-47. [PMID: 16600854 DOI: 10.1016/j.neuron.2006.02.020] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 10/12/2005] [Accepted: 02/16/2006] [Indexed: 11/30/2022]
Abstract
Establishment of limb innervation by motor neurons involves a series of hierarchical axon guidance decisions by which motor-neuron subtypes evaluate peripheral guidance cues and choose their axonal trajectory. Earlier work indicated that the pathway into the dorsal limb by lateral motor column (LMC[l]) axons requires the EphA4 receptor, which mediates repulsion elicited by ephrinAs expressed in ventral limb mesoderm. Here, we implicate glial-cell-line-derived neurotrophic factor (GDNF) and its receptor, Ret, in the same guidance decision. In Gdnf or Ret mutant mice, LMC(l) axons follow an aberrant ventral trajectory away from dorsal territory enriched in GDNF, showing that the GDNF/Ret system functions as an instructive guidance signal for motor axons. This phenotype is enhanced in mutant mice lacking Ret and EphA4. Thus, Ret and EphA4 signals cooperate to enforce the precision of the same binary choice in motor-axon guidance.
Collapse
Affiliation(s)
- Edgar R Kramer
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
414
|
Cui Q. Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. Mol Neurobiol 2006; 33:155-79. [PMID: 16603794 DOI: 10.1385/mn:33:2:155] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 11/30/1999] [Accepted: 08/15/2005] [Indexed: 02/05/2023]
Abstract
Adult axons in the mammalian central nervous system do not elicit spontaneous regeneration after injury, although many affected neurons have survived the neurotrauma. However, axonal regeneration does occur under certain conditions. These conditions include: (a) modification of regrowth environment, such as supply of peripheral nerve bridges and transplantation of Schwann cells or olfactory ensheathing glia to the injury site; (b) application of neurotrophic factors at the cell soma and axon tips; (c) blockade of growth-inhibitory molecules such as Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein; (d) prevention of chondroitin-sulfate-proteoglycans-related scar tissue formation at the injury site using chondroitinase ABC; and (e) elevation of intrinsic growth potential of injured neurons via increasing intracellular cyclic adenosine monophosphate level. A large body of evidence suggests that these conditions achieve enhanced neuronal survival and axonal regeneration through sometimes overlapping and sometimes distinct signal transduction mechanisms, depending on the targeted neuronal populations and intervention circumstances. This article reviews the available information on signal transduction pathways underlying neurotrophic-factor-mediated neuronal survival and neurite outgrowth/axonal regeneration. Better understanding of signaling transduction is important in helping us develop practical therapeutic approaches for encouraging neuronal survival and axonal regeneration after traumatic injury in clinical context.
Collapse
Affiliation(s)
- Qi Cui
- Laboratory for Neural Repair, Shantou University Medical College, China.
| |
Collapse
|
415
|
Simonetti M, Fabbro A, D'Arco M, Zweyer M, Nistri A, Giniatullin R, Fabbretti E. Comparison of P2X and TRPV1 receptors in ganglia or primary culture of trigeminal neurons and their modulation by NGF or serotonin. Mol Pain 2006; 2:11. [PMID: 16566843 PMCID: PMC1448213 DOI: 10.1186/1744-8069-2-11] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 03/28/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cultured sensory neurons are a common experimental model to elucidate the molecular mechanisms of pain transduction typically involving activation of ATP-sensitive P2X or capsaicin-sensitive TRPV1 receptors. This applies also to trigeminal ganglion neurons that convey pain inputs from head tissues. Little is, however, known about the plasticity of these receptors on trigeminal neurons in culture, grown without adding the neurotrophin NGF which per se is a powerful algogen. The characteristics of such receptors after short-term culture were compared with those of ganglia. Furthermore, their modulation by chronically-applied serotonin or NGF was investigated. RESULTS Rat or mouse neurons in culture mainly belonged to small and medium diameter neurons as observed in sections of trigeminal ganglia. Real time RT-PCR, Western blot analysis and immunocytochemistry showed upregulation of P2X(3) and TRPV1 receptors after 1-4 days in culture (together with their more frequent co-localization), while P2X(2) ones were unchanged. TRPV1 immunoreactivity was, however, lower in mouse ganglia and cultures. Intracellular Ca(2+) imaging and whole-cell patch clamping showed functional P2X and TRPV1 receptors. Neurons exhibited a range of responses to the P2X agonist alpha, beta-methylene-adenosine-5'-triphosphate indicating the presence of homomeric P2X(3) receptors (selectively antagonized by A-317491) and heteromeric P2X(2/3) receptors. The latter were observed in 16 % mouse neurons only. Despite upregulation of receptors in culture, neurons retained the potential for further enhancement of P2X(3) receptors by 24 h NGF treatment. At this time point TRPV1 receptors had lost the facilitation observed after acute NGF application. Conversely, chronically-applied serotonin selectively upregulated TRPV1 receptors rather than P2X(3) receptors. CONCLUSION Comparing ganglia and cultures offered the advantage of understanding early adaptive changes of nociception-transducing receptors of trigeminal neurons. Culturing did not prevent differential receptor upregulation by algogenic substances like NGF or serotonin, indicating that chronic application led to distinct plastic changes in the molecular mechanisms mediating pain on trigeminal nociceptors.
Collapse
Affiliation(s)
- Manuela Simonetti
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| | - Alessandra Fabbro
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| | - Marianna D'Arco
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| | - Marina Zweyer
- Department of Normal Human Morphology, University of Trieste, Via Manzoni 16, 34138 Trieste, Italy
| | - Andrea Nistri
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| | - Rashid Giniatullin
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| | - Elsa Fabbretti
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| |
Collapse
|
416
|
Zhang Y, Zhu W, Wang YG, Liu XJ, Jiao L, Liu X, Zhang ZH, Lu CL, He C. Interaction of SH2-Bbeta with RET is involved in signaling of GDNF-induced neurite outgrowth. J Cell Sci 2006; 119:1666-76. [PMID: 16569669 DOI: 10.1242/jcs.02845] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RET receptor signalling is essential for glial-cell-line-derived neurotrophic factor (GDNF)-induced survival and differentiation of various neurons such as mesencephalic neurons. To identify proteins that mediate RET-dependent signaling, yeast two-hybrid screening was performed with the intracellular domain of RET as bait. We identified a new interaction between RET and the adapter protein SH2-Bbeta. Upon GDNF stimulation of PC12-GFRalpha1-RET cells (that stably overexpress GDNF receptor alpha1 and RET), wild-type SH2-Bbeta co-immunoprecipitated with RET, whereas the dominant-negative SH2-Bbeta mutant R555E did not. RET interacted with endogenous SH2-Bbeta both in PC12-GFRalpha1-RET cells and in rat tissues. Mutagenesis analysis revealed that Tyr981 within the intracellular domain of RET was crucial for the interaction with SH2-Bbeta. Morphological evidence showed that SH2-Bbeta and RET colocalized in mesencephalic neurons. Furthermore, functional analysis indicated that overexpression of SH2-Bbeta facilitated GDNF-induced neurite outgrowth in both PC12-GFRalpha1-RET cells and cultured mesencephalic neurons, whereas the mutant R555E inhibited the effect. Moreover, inhibition of SH2-Bbeta expression by RNA interference caused a significant decrease of GDNF-induced neuronal differentiation in PC12-GFRalpha1-RET cells. Taken together, our results suggest that SH2-Bbeta is a new signaling molecule involved in GDNF-induced neurite outgrowth.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Neurobiology, Second Military Medical University, Shanghai, 200433, PR of China
| | | | | | | | | | | | | | | | | |
Collapse
|
417
|
Petrelli A, Circosta P, Granziero L, Mazzone M, Pisacane A, Fenoglio S, Comoglio PM, Giordano S. Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc Natl Acad Sci U S A 2006; 103:5090-5. [PMID: 16547140 PMCID: PMC1458799 DOI: 10.1073/pnas.0508156103] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Indexed: 11/18/2022] Open
Abstract
Targeting tyrosine kinase receptors (RTKs) with specific Abs is a promising therapeutic approach for cancer treatment, although the molecular mechanism(s) responsible for the Abs' biological activity are not completely known. We targeted the transmembrane RTK for hepatocyte growth factor (HGF) with a monoclonal Ab (DN30). In vitro, chronic treatment of carcinoma cell lines resulted in impairment of HGF-induced signal transduction, anchorage-independent growth, and invasiveness. In vivo, administration of DN30 inhibited growth and metastatic spread to the lung of neoplastic cells s.c. transplanted into immunodeficient nu/nu mice. This Ab efficiently down-regulates HGF receptor through a molecular mechanism involving a double proteolytic cleavage: (i) cleavage of the extracellular portion, resulting in "shedding" of the ectodomain, and (ii) cleavage of the intracellular domain, which is rapidly degraded by the proteasome. Interestingly, the "decoy effect" generated by the shed ectodomain, acting as a dominant negative molecule, enhanced the inhibitory effect of the Ab.
Collapse
Affiliation(s)
| | | | | | | | - Alberto Pisacane
- Unit of Pathology, Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Italy
| | | | | | | |
Collapse
|
418
|
Sawai H, Okada Y, Kazanjian K, Kim J, Hasan S, Hines OJ, Reber HA, Hoon DSB, Eibl G. The G691S RET polymorphism increases glial cell line-derived neurotrophic factor-induced pancreatic cancer cell invasion by amplifying mitogen-activated protein kinase signaling. Cancer Res 2006; 65:11536-44. [PMID: 16357163 DOI: 10.1158/0008-5472.can-05-2843] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations of the RET proto-oncogene are responsible for several inherited human diseases and may function as genetic modifiers of the disease. However, the role of RET mutations in pancreatic cancer has not been studied. Expression of the glial cell line-derived neurotrophic factor (GDNF) receptors RET and GDNF family receptor alpha1 (GFRalpha1) in human pancreatic cancer cells was determined by Western blot, immunofluorescence, and flow cytometry. The effect of GDNF on cell proliferation and invasion was assessed. Small interfering RNA and antibodies were used to evaluate the involvement of RET. The G691S RET polymorphism was analyzed by sequencing and restriction analysis. The modifying effect of G691S RET on GDNF-induced invasion and mitogen-activated protein kinase (MAPK) signaling was evaluated. Transfection studies with wild-type and mutated RET determined the functional role of the G691S polymorphism. Pancreatic cancer specimens and matched tissues were analyzed for the presence of the G691S RET polymorphism. GDNF receptors were found on all cell lines. GDNF increased pancreatic cancer cell proliferation and invasion, which was mediated by RET. The effect of GDNF was more profound in cells with the G691S RET polymorphism (P < 0.01). G691S RET correlated with an enhanced activation of the downstream extracellular signal-regulated kinase pathway. Overexpression of G691S RET increased pancreatic cancer cell invasion. The G691S RET polymorphism was also detected in human pancreatic tumors and represented a somatic mutation in some patients. These findings indicate that the G691S RET single nucleotide polymorphism may directly correlate with the aggressive growth of pancreatic cancers and may function as a genetic modifier or even low-penetrance gene.
Collapse
Affiliation(s)
- Hirozumi Sawai
- Hirshberg Laboratories for Pancreatic Cancer Research, Department of Surgery, David Geffen School of Medicine, University of California at Los Angeles, 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
419
|
Schueler-Furman O, Glick E, Segovia J, Linial M. Is GAS1 a co-receptor for the GDNF family of ligands? Trends Pharmacol Sci 2006; 27:72-7. [PMID: 16406089 DOI: 10.1016/j.tips.2005.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Revised: 10/27/2005] [Accepted: 12/16/2005] [Indexed: 12/31/2022]
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) is a survival and maintenance factor for dopamine-containing neurons and motoneurons. GDNF belongs to a family of structurally related factors that includes neurturin (NRTN), artemin (ARTN) and persephin (PSPN). An initial step in the activation of signaling via the GDNF family of ligands (GFLs) is their binding to their cognate co-receptor GFR alpha. GAS1, an apparently unrelated protein, exhibits homology to GFR alpha and thus we hypothesize that GAS1 can serve as an alternative receptor for GFLs. The functional similarity between GFR alpha and GAS1 extends to their role in embryogenesis, differentiation and glia maintenance, and is substantiated by overlap in their expression profile, subcellular localization and structural details. We propose that the relative expression and localization of the two remote receptors, GFR alpha and GAS1, on the membranes of neuronal and glial cells determines whether these cells survive or undergo apoptotic death.
Collapse
Affiliation(s)
- Ora Schueler-Furman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
420
|
Abstract
Signaling by GDNF through the Ret receptor is required for normal growth of the ureteric bud during kidney development. However, the precise role of GDNF/Ret signaling in renal branching morphogenesis and the specific responses of ureteric bud cells to GDNF remain unclear. Recent studies have provided new insight into these issues. The localized expression of GDNF by the metanephric mesenchyme, together with several types of negative regulation, is important to elicit and correctly position the initial budding event from the Wolffian duct. GDNF also promotes the continued branching of the ureteric bud. However, it does not provide the positional information required to specify the pattern of ureteric bud growth and branching, as its site of synthesis can be drastically altered with minimal effects on kidney development. Cells that lack Ret are unable to contribute to the tip of the ureteric bud, apparently because GDNF-driven proliferation is required for the formation and growth of this specialized epithelial domain.
Collapse
Affiliation(s)
- Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York 10032, USA.
| | | |
Collapse
|
421
|
Maguire-Zeiss KA, Federoff HJ. Novel gene therapeutic strategies for neurodegenerative diseases. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:147-71. [PMID: 16315613 DOI: 10.1007/3-540-27626-2_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The convergent pathobiologic model of Parkinson's disease stipulates that disparate insults initiate a disease process that obligately share a common pathway leading to cell death. A combinatorial treatment which targets various steps in this pathway is likely to be the most successful therapeutic strategy. As advances are made in the field of neuroimaging and pharmacogenomics, early detection of sporadic PD will become a reality. Early intervention will likely spare more dopaminergic neurons and extend the quality of life for the patient. Continued advancements in the fields of pharmacology, neurosurgery, and gene therapy will strengthen the armamentarium available for the treatment of PD patients.
Collapse
Affiliation(s)
- K A Maguire-Zeiss
- Center for Aging and Developmental Biology, University of Rochester, School of Medicine and Dentistry, NY 14642, USA.
| | | |
Collapse
|
422
|
Pugh PC, Margiotta JF. PACAP support of neuronal survival requires MAPK- and activity-generated signals. Mol Cell Neurosci 2006; 31:586-95. [PMID: 16431129 DOI: 10.1016/j.mcn.2005.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 10/31/2005] [Accepted: 11/30/2005] [Indexed: 11/19/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is expressed in the parasympathetic ciliary ganglion (CG) and modulates nicotinic acetylcholine receptor function. PACAP also provides trophic support, promoting partial survival of CG neurons in culture and full survival when accompanied by membrane depolarization. We probed the adenylate cyclase (AC) and phospholipase-C (PLC) transduction cascades stimulated by PACAP to determine their respective roles in supporting neuronal survival and examined their interaction with signals generated by membrane activity. While PLC-dependent signaling was dispensable, AC-generated signals proved critical for PACAP to support neuronal survival. Specifically, PACAP-supported survival was mimicked by 8Br-cAMP and blocked by inhibiting either PKA or the phosphorylation of mitogen-activated protein kinase (MAPK). The ability of PACAP to promote survival was additionally dependent on spontaneous activity as blocking Na+ or Ca2+ channel currents completely abrogated trophic effects. Our results underscore the importance of coordinated MAPK- and activity-generated signals in transducing neuropeptide-mediated parasympathetic neuronal survival.
Collapse
Affiliation(s)
- Phyllis C Pugh
- Department of Neurosciences, Medical University of Ohio, 3035 Arlington Avenue, Toledo, OH 43614, USA.
| | | |
Collapse
|
423
|
Ducray A, Krebs SH, Schaller B, Seiler RW, Meyer M, Widmer HR. GDNF family ligands display distinct action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon. Brain Res 2006; 1069:104-12. [PMID: 16380100 DOI: 10.1016/j.brainres.2005.11.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 11/08/2005] [Accepted: 11/11/2005] [Indexed: 12/29/2022]
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about the effects of GFLs on other neuronal populations in the VM is essential for their potential application as therapeutic molecules for Parkinson's disease. Hence, in a comparative study, we investigated the effects of GFLs on cell densities and morphological differentiation of gamma-aminobutyric acid-immunoreactive (GABA-ir) and serotonin-ir (5-HT-ir) neurons in primary cultures of E14 rat VM. We observed that all GFLs [10 ng/ml] significantly increased GABA-ir cell densities (1.6-fold) as well as neurite length/neuron. However, only GDNF significantly increased the number of primary neurites/neuron, and none of the GFLs affected soma size of GABA-ir neurons. In contrast, only NRTN treatment significantly increased 5-HT-ir cells densities at 10 ng/ml (1.3-fold), while an augmentation was seen for GDNF and PSPN at 100 ng/ml (2.4-fold and 1.7-fold, respectively). ARTN had no effect on 5-HT-ir cell densities. Morphological analysis of 5-HT-ir neurons revealed a significant increase of soma size, number of primary neurites/neuron and neurite length/neuron after GDNF exposure, while PSPN only affected soma size, and NRTN and ARTN failed to exert any effect. In conclusion, we identified GFLs as effective neurotrophic factors for VM GABAergic and serotonergic neurons, demonstrating characteristic individual action profiles emphasizing their important and distinct roles during brain development.
Collapse
Affiliation(s)
- Angélique Ducray
- Department of Neurosurgery, University of Bern, CH-3010 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
424
|
Okun E, Saida H, Albeck M, Sredni B, Avtalion RR. Upregulation of carp GDNF mRNA by the immunomodulator AS101. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:441-6. [PMID: 16169589 DOI: 10.1016/j.dci.2005.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 07/17/2005] [Indexed: 05/04/2023]
Abstract
Although the glia derived neurotrophic factor (GDNF) is defined as a molecule that maintains neuronal cells, it possesses a range of functions outside the nervous system. For example, it is essential for uretric branching in kidney morphogenesis and for regulating the differentiation of stem cells during spermatogenesis, cardiac, hair follicle and vascular differentiation and the maintenance of immune cells. In the present work, the presence of GDNF in carp peripheral blood leukocytes (PBL) and head kidney cells (HK) was evidenced and its evolutionary importance in both neural and immune systems development was suggested. Using the northern-blot technique, we could observe the expression of two different transcripts of this gene. GDNF upregulation was detected using semi-quantitative PCR, following ex vivo treatment of PBL and HK cells with the immunomodulator AS101 which was previously shown to inhibit IL-10 and to up-regulate GDNF protein levels in human SVG astrocyte cell line, in 6-OHDA hemi-parkinsonian mice in vivo and in rat glomerular mesengial cells in vitro.
Collapse
Affiliation(s)
- Eitan Okun
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan, Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
425
|
Wong A, Bogni S, Kotka P, de Graaff E, D'Agati V, Costantini F, Pachnis V. Phosphotyrosine 1062 is critical for the in vivo activity of the Ret9 receptor tyrosine kinase isoform. Mol Cell Biol 2005; 25:9661-73. [PMID: 16227613 PMCID: PMC1265823 DOI: 10.1128/mcb.25.21.9661-9673.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptor tyrosine kinase Ret plays a critical role in the development of the mammalian excretory and enteric nervous systems. Differential splicing of the primary Ret transcript results in the generation of two main isoforms, Ret9 and Ret51, whose C-terminal amino acid tails diverge after tyrosine (Y) 1062. Monoisoformic mice expressing only Ret9 develop normally and are healthy and fertile. In contrast, animals expressing only Ret51 have aganglionosis of the distal gut and hypoplastic kidneys. By generating monoisoformic mice in which Y1062 of Ret9 has been mutated to phenylalanine, we demonstrate that this amino acid has a critical role in Ret9 signaling that is necessary for the development of the kidneys and the enteric nervous system. These findings argue that the distinct activities of Ret9 and Ret51 result from the differential regulation of Y1062 by C-terminal flanking sequences. However, a mutation which places Y1062 of Ret51 in a Ret9 context improves only marginally the ability of Ret51 to support renal and enteric nervous system development. Finally, monoisoformic mice expressing a variant of Ret9 in which a C-terminal PDZ-binding motif was mutated develop normally and are healthy. Our studies identify Y1062 as a critical regulator of Ret9 signaling and suggest that Ret51-specific motifs are likely to inhibit the activity of this isoform.
Collapse
Affiliation(s)
- Adrianne Wong
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
426
|
Kano Y, Otsuka F, Takeda M, Suzuki J, Inagaki K, Miyoshi T, Miyamoto M, Otani H, Ogura T, Makino H. Regulatory roles of bone morphogenetic proteins and glucocorticoids in catecholamine production by rat pheochromocytoma cells. Endocrinology 2005; 146:5332-40. [PMID: 16150914 DOI: 10.1210/en.2005-0474] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We here report a new physiological system that governs catecholamine synthesis involving bone morphogenetic proteins (BMPs) and activin in the rat pheochromocytoma cell line, PC12. BMP type I receptors, including activin receptor-like kinase-2 (ALK-2) (also referred to as ActRIA) and ALK-3 (BMPRIA), both type II receptors, ActRII and BMPRII, as well as the ligands BMP-2, -4, and -7 and inhibin/activin subunits were expressed in PC12 cells. PC12 cells predominantly secrete dopamine, whereas noradrenaline and adrenaline production is negligible. BMP-2, -4, -6, and -7 and activin A each suppressed dopamine and cAMP synthesis in a dose-dependent fashion. The BMP ligands also decreased 3,4-dihydroxyphenylalanine decarboxylase mRNA expression, whereas activin suppressed tyrosine hydroxylase expression. BMPs induced both Smad1/5/8 phosphorylation and Tlx2-Luc activation, whereas activin stimulated 3TP-Luc activity and p38 MAPK phosphorylation. ERK signaling was not affected by BMPs or activin. Dexamethasone enhanced catecholamine synthesis, accompanying increases in tyrosine hydroxylase and 3,4-dihydroxyphenylalanine decarboxylase transcription without cAMP accumulation. In the presence of dexamethasone, BMPs and activin failed to reduce dopamine as well as cAMP production. In addition, dexamethasone modulated mitotic suppression of PC12 induced by BMPs in a ligand-dependent manner. Furthermore, intracellular BMP signaling was markedly suppressed by dexamethasone treatment and the expression of ALK-2, ALK-3, and BMPRII was significantly inhibited by dexamethasone. Collectively, the endogenous BMP/activin system plays a key role in the regulation of catecholamine production. Controlling activity of the BMP system may be critical for glucocorticoid-induced catecholamine synthesis by adrenomedullar cells.
Collapse
Affiliation(s)
- Yoshihiro Kano
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Wang PY, Koishi K, McGeachie AB, Kimber M, Maclaughlin DT, Donahoe PK, McLennan IS. Mullerian inhibiting substance acts as a motor neuron survival factor in vitro. Proc Natl Acad Sci U S A 2005; 102:16421-5. [PMID: 16260730 PMCID: PMC1283469 DOI: 10.1073/pnas.0508304102] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The survival of motor neurons is controlled by multiple factors that regulate different aspects of their physiology. The identification of these factors is important because of their relationship to motor neuron disease. We investigate here whether Mullerian Inhibiting Substance (MIS) is a motor neuron survival factor. We find that motor neurons from adult mice synthesize MIS and express its receptors, suggesting that mature motor neurons use MIS in an autocrine fashion or as a way to communicate with each other. MIS was observed to support the survival and differentiation of embryonic motor neurons in vitro. During development, male-specific MIS may have a hormone effect because the blood-brain barrier has yet to form, raising the possibility that MIS participates in generating sex-specific differences in motor neurons.
Collapse
Affiliation(s)
- Pei-Yu Wang
- Neuromuscular Research Group, Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
428
|
Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 2005; 16:441-67. [PMID: 15982921 DOI: 10.1016/j.cytogfr.2005.05.010] [Citation(s) in RCA: 313] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The variety of diseases caused by mutations in RET receptor tyrosine kinase provides a classic example of phenotypic heterogeneity. Gain-of-function mutations of RET are associated with human cancer. Gene rearrangements juxtaposing the tyrosine kinase domain to heterologous gene partners have been found in sporadic papillary carcinomas of the thyroid (PTC). These rearrangements generate chimeric RET/PTC oncogenes. In the germline, point mutations of RET are responsible for multiple endocrine neoplasia type 2 (MEN 2A and 2B) and familial medullary thyroid carcinoma (FMTC). Both MEN 2 mutations and PTC gene rearrangements potentiate the intrinsic tyrosine kinase activity of RET and, ultimately, activate the RET downstream targets. Loss-of-function mutations of RET cause Hirschsprung's disease (HSCR) or colonic aganglionosis. A deeper understanding of the molecular signaling of normal versus abnormal RET activity in cancer will enable the development of potential new treatments for patients with sporadic and inherited thyroid cancer or MEN 2 syndrome. We now review the role and mechanisms of RET signaling in development and carcinogenesis.
Collapse
Affiliation(s)
- Elena Arighi
- Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
429
|
Lucini C, Maruccio L, Tafuri S, Bevaqua M, Staiano N, Castaldo L. GDNF family ligand immunoreactivity in the gut of teleostean fish. ACTA ACUST UNITED AC 2005; 210:265-74. [PMID: 16193278 DOI: 10.1007/s00429-005-0046-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2005] [Indexed: 02/01/2023]
Abstract
Glial-derived neurotrophic factor (GDNF), neurturin (NRTN), persephin (PSPN), and artemin (ARTN) are a group of proteins belonging to the GDNF family ligands (GFLs). GDNF, NRTN, and ARTN support the survival of central, peripheral, and autonomic neuron populations, while PSPN supports the survival of only several central neuron populations. A common receptor, RET, modulates the action of this family and a co-receptor, GFRalpha, determines RET ligand specificity. GDNF and NRTN appear to be essential for enteric nervous system (ENS) development in mammals, zebrafish, and other teleostean species. GFLs are also essential for the maintenance and plasticity of adult mammalian ENS. In this study, the distribution pattern of GFLs in the intestine of five adult fish (bass, gilt-head, scorpionfish, trout, and zebrafish) was evaluated by immunochemical and immunocytochemical analysis. The results demonstrated the presence of GDNF, NRTN, and ARTN in the gut of all species studied. They appeared to be spread in the ENS and/or endocrine cells of the intestine. These findings suggest that the presence of GFLs in fish gut is not only limited to developmental period, but could be also involved in the enteric physiology of adult species.
Collapse
Affiliation(s)
- C Lucini
- Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Via Veterinaria 1, 80137 Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
430
|
Ryu BY, Kubota H, Avarbock MR, Brinster RL. Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci U S A 2005; 102:14302-7. [PMID: 16183739 PMCID: PMC1242328 DOI: 10.1073/pnas.0506970102] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Self-renewal of spermatogonial stem cells (SSCs) is the foundation for maintenance of spermatogenesis throughout life in males and for continuation of a species. The molecular mechanism underlying stem cell self-renewal is a fundamental question in stem cell biology. Recently, we identified growth factors necessary for self-renewal of mouse SSCs and established a serum-free culture system for their proliferation in vitro. To determine whether the stimulatory signals for SSC replication are conserved among different species, we extended the culture system to rat SSCs. Initially, a method to assess in vitro expansion of SSCs was developed by using flow cytometric analysis, and, subsequently, we found that a combination of glial cell line-derived neurotrophic factor, soluble glial cell line-derived neurotrophic factor-family receptor alpha-1 and basic fibroblast growth factor supports proliferation of rat SSCs. When cultured with the three factors, stem cells proliferated continuously for >7 months, and transplantation of the cultured SSCs to recipient rats generated donor stem cell-derived progeny, demonstrating that the cultured stem cells are normal. The growth factor requirement for replication of rat SSCs is identical to that of mouse; therefore, the signaling factors for SSC self-renewal are conserved in these two species. Because SSCs from many mammals, including human, can replicate in mouse seminiferous tubules after transplantation, the growth factors required for SSC self-renewal may be conserved among many different species. Furthermore, development of a long-term culture system for rat SSCs has established a foundation for germ-line modification of the rat by gene targeting technology.
Collapse
Affiliation(s)
- Buom-Yong Ryu
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
431
|
Abstract
Over the last 15 years, many publications described the use of peptide sequences that have been dubbed cell penetrating peptides (CPP), Trojan Horse peptides, protein transduction domains, or membrane-translocating sequences. These mostly positively charged domains bring attached cargo across biological membranes. One of the reasons for the interest in CPP is their potential as delivery tools to enhance the pharmacodynamics of drugs otherwise poorly bioavailable. In particular, the neuroscientist aiming to deliver a protein or other compound into the brain for analytical or therapeutic reasons is faced with the challenge that few drugs cross the blood-brain barrier. CPP are valuable tools to overcome the plasma membrane or the blood-brain barrier in basic research, and in relevant models of neural disease, and will hopefully help to increase the precious few treatments or even cures for people with diseases of the brain and nervous system. Here, we review applications in neuroscience and recent insights into the mechanism of CPP-mediated trafficking.
Collapse
Affiliation(s)
- Gunnar P H Dietz
- Neurologische Universitätsklinik, Waldweg 33, 37073 Göttingen, Germany.
| | | |
Collapse
|
432
|
Yoong LF, Peng ZN, Wan G, Too HP. Tissue expression of alternatively spliced GFRα1, NCAM and RET isoforms and the distinct functional consequence of ligand-induced activation of GFRα1 isoforms. ACTA ACUST UNITED AC 2005; 139:1-12. [PMID: 15979200 DOI: 10.1016/j.molbrainres.2005.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/08/2005] [Accepted: 05/01/2005] [Indexed: 10/25/2022]
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) exerts its effect through a multi-component receptor system consisting of GFRalpha1, RET and NCAM. Two highly homologous alternatively spliced GFRalpha1 isoforms (GFRalpha1a and GFRalpha1b) have previously been identified. In this study, isoform specific real-time PCR assays were used to quantify the expression levels of GFRalpha1, RET and NCAM isoforms in murine embryonic and adult tissues. The expression levels of GFRalpha1b were found to be comparable to that of GFRalpha1a in peripheral tissues. However, GFRalpha1a was the predominant isoform expressed in the whole brain. The co-expressions of GFRalpha1 and the co-receptors were developmentally regulated and differentially expressed in some tissues. Microarray analyses of GFRalpha1 isoforms transfected cells stimulated with NTN showed distinct and non-overlapping gene profiles. These observations are consistent with the emerging view that the combinatorial interactions of the spliced isoforms of GFRalpha, RET and NCAM may contribute to the pleiotropic biological responses.
Collapse
Affiliation(s)
- Li Foong Yoong
- Department of Biochemistry, National University of Singapore, Lower Kent Ridge Road, Singapore 119260, Singapore
| | | | | | | |
Collapse
|
433
|
Shakya R, Jho EH, Kotka P, Wu Z, Kholodilov N, Burke R, D'Agati V, Costantini F. The role of GDNF in patterning the excretory system. Dev Biol 2005; 283:70-84. [PMID: 15890330 DOI: 10.1016/j.ydbio.2005.04.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/28/2005] [Accepted: 04/06/2005] [Indexed: 11/19/2022]
Abstract
Mesenchymal-epithelial interactions are an important source of information for pattern formation during organogenesis. In the developing excretory system, one of the secreted mesenchymal factors thought to play a critical role in patterning the growth and branching of the epithelial ureteric bud is GDNF. We have tested the requirement for GDNF as a paracrine chemoattractive factor by altering its site of expression during excretory system development. Normally, GDNF is secreted by the metanephric mesenchyme and acts via receptors on the Wolffian duct and ureteric bud epithelium. Misexpression of GDNF in the Wolffian duct and ureteric buds resulted in formation of multiple, ectopic buds, which branched independently of the metanephric mesenchyme. This confirmed the ability of GDNF to induce ureter outgrowth and epithelial branching in vivo. However, in mutant mice lacking endogenous GDNF, kidney development was rescued to a substantial degree by GDNF supplied only by the Wolffian duct and ureteric bud. These results indicate that mesenchymal GDNF is not required as a chemoattractive factor to pattern the growth of the ureteric bud within the developing kidney, and that any positional information provided by the mesenchymal expression of GDNF may provide for renal branching morphogenesis is redundant with other signals.
Collapse
Affiliation(s)
- Reena Shakya
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
434
|
Schaller B, Andres RH, Huber AW, Meyer M, Pérez-Bouza A, Ducray AD, Seiler RW, Widmer HR. Effect of GDNF on differentiation of cultured ventral mesencephalic dopaminergic and non-dopaminergic calretinin-expressing neurons. Brain Res 2005; 1036:163-72. [PMID: 15725414 DOI: 10.1016/j.brainres.2004.12.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 12/13/2004] [Accepted: 12/17/2004] [Indexed: 12/31/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for ventral mesencephalic (VM) dopaminergic neurons. Subpopulations of dopaminergic and non-dopaminergic VM neurons express the calcium-binding proteins calbindin (CB) and calretinin (CR). Characterization of the actions of GDNF on distinct subpopulations of VM cells is of great importance for its potential use as a therapeutic molecule and for understanding its role in neuronal development. The present study investigated the effects of GDNF on the survival and morphological differentiation of dopaminergic and non-dopaminergic neurons in primary cultures of embryonic day (E) 18 rat VM. As expected from our results obtained using E14 VM cells, GDNF significantly increased the morphological complexity of E18 CB-immunoreractive (CB-ir), tyrosine hydroxylase (TH)-ir, and CR-ir neurons and also the densities of CB-ir and TH-ir neurons. Interestingly, densities of E18 CR-ir neurons, contrarily to our previous observations on E14 CR-ir neurons, were significantly higher after GDNF treatment (by 1.5-fold). Colocalization analyses demonstrated that GDNF increased the densitiy of dopaminergic neurons expressing CR (TH+/CR+/CB-), while no significant effects were observed for TH-/CR+/CB- cell densities. In contrast, we found that GDNF significantly increased the total fiber length (2-fold), number of primary neurites (1.4-fold), number of branching points (2.5-fold), and the size of neurite field per neuron (1.8-fold) of the non-dopaminergic CR-expressing neurons (TH-/CR+/CB-). These cells were identified as GABA-expressing neurons. In conclusion, our findings recognize GDNF as a potent differentiation factor for the development of VM dopaminergic and non-dopaminergic CR-expressing neurons.
Collapse
Affiliation(s)
- Benoît Schaller
- Department of Neurosurgery, University of Bern, CH-3010 Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
435
|
Barroso-Chinea P, Cruz-Muros I, Aymerich MS, Rodríguez-Díaz M, Afonso-Oramas D, Lanciego JL, González-Hernández T. Striatal expression of GDNF and differential vulnerability of midbrain dopaminergic cells. Eur J Neurosci 2005; 21:1815-27. [PMID: 15869477 DOI: 10.1111/j.1460-9568.2005.04024.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a member of the transforming growth factor-beta superfamily that when exogenously administrated exerts a potent trophic action on dopaminergic (DA) cells. Although we know a lot about its signalling mechanisms and pharmacological effects, physiological actions of GDNF on the adult brain remain unclear. Here, we have used morphological and molecular techniques, and an experimental model of Parkinson's disease in rats, to investigate whether GDNF constitutively expressed in the adult mesostriatal system plays a neuroprotective role on midbrain DA cells. We found that although all midbrain DA cells express both receptor components of GDNF (GFRalpha1 and Ret), those in the ventral tegmental area (VTA) and rostromedial substantia nigra (SNrm) also contain GDNF but not GDNFmRNA. The levels of GDNFmRNA are significantly higher in the ventral striatum (vSt), the target region of VTA and SNrm cells, than in the dorsal striatum (dSt), the target region of DA cells in the caudoventral substantia nigra (SNcv). After fluoro-gold injection in striatum, VTA and SNrm DA cells show triple labelling for tyrosine hydroxylase, GDNF and fluoro-gold, and after colchicine injection in the lateral ventricle, they become GDNF-immunonegative, suggesting that GDNF in DA somata comes from their striatal target. As DA cells in VTA and SNrm are more resistant than those in SNcv to intracerebroventricular injection of 6-OHDA, as occurs in Parkinson's disease, we can suggest that the fact that they project to vSt, where GDNF expression is significantly higher than in the dSt, is a neuroprotective factor involved in the differential vulnerability of midbrain DA neurons.
Collapse
Affiliation(s)
- Pedro Barroso-Chinea
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, 38207 La Laguna,Tenerife, Spain
| | | | | | | | | | | | | |
Collapse
|
436
|
Falender AE, Freiman RN, Geles KG, Lo KC, Hwang K, Lamb DJ, Morris PL, Tjian R, Richards JS. Maintenance of spermatogenesis requires TAF4b, a gonad-specific subunit of TFIID. Genes Dev 2005; 19:794-803. [PMID: 15774719 PMCID: PMC1074317 DOI: 10.1101/gad.1290105] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The establishment and maintenance of spermatogenesis in mammals requires specialized networks of gene expression programs in the testis. The gonad-specific TAF4b component of TFIID (formerly TAF(II)105) is a transcriptional regulator enriched in the mouse testis. Herein we show that TAF4b is required for maintenance of spermatogenesis in the mouse. While young Taf4b-null males are initially fertile, Taf4b-null males become infertile by 3 mo of age and eventually exhibit seminiferous tubules devoid of germ cells. At birth, testes of Taf4b-null males appear histologically normal; however, at post-natal day 3 gonocyte proliferation is impaired and expression of spermatogonial stem cell markers c-Ret, Plzf, and Stra8 is reduced. Together, these data indicate that TAF4b is required for the precise expression of gene products essential for germ cell proliferation and suggest that TAF4b may be required for the regulation of spermatogonial stem cell specification and proliferation that is obligatory for normal spermatogenic maintenance in the adult.
Collapse
Affiliation(s)
- Allison E Falender
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
437
|
Shakya R, Watanabe T, Costantini F. The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev Cell 2005; 8:65-74. [PMID: 15621530 DOI: 10.1016/j.devcel.2004.11.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 09/17/2004] [Accepted: 10/05/2004] [Indexed: 11/29/2022]
Abstract
While GDNF signaling through the Ret receptor is critical for kidney development, its specific role in branching morphogenesis of the epithelial ureteric bud (UB) is unclear. Ret expression defines a population of UB "tip cells" distinct from cells of the tubular "trunks," but how these cells contribute to UB growth is unknown. We have used time-lapse mosaic analysis to investigate normal cell fates within the growing UB and the developmental potential of cells lacking Ret. We found that normal tip cells are bipotential, contributing to both tips and trunks. Cells lacking Ret are specifically excluded from the tips, although they contribute to the trunks, revealing that the tips form and expand by GDNF-driven cell proliferation. Surprisingly, the mutant cells assumed an asymmetric distribution in the UB trunks, suggesting a model of branching in which the epithelium of the tip and the adjacent trunk is remodeled to form new branches.
Collapse
Affiliation(s)
- Reena Shakya
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
438
|
|
439
|
Yamout A, Spec A, Cosmano J, Kashyap M, Rochlin MW. Neurotrophic factor receptor expression and in vitro nerve growth of geniculate ganglion neurons that supply divergent nerves. Dev Neurosci 2005; 27:288-98. [PMID: 16137986 PMCID: PMC4764251 DOI: 10.1159/000086708] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 11/29/2004] [Indexed: 02/05/2023] Open
Abstract
We investigated which neurotrophic factors may contribute to the divergence of two peripheral nerves emanating from the geniculate ganglion. We compared receptor mRNA profiles of the neurons that supply the nerves, and also the growth of their neurites in response to neurotrophic factors in culture. Three mRNAs, Gfra2, TrkA, and TrkC, were differentially expressed. Only one ligand, Neurturin, promoted substantially different nerve regrowth from the nerves, and therefore may contribute to nerve divergence. Three receptor mRNAs were expressed in 100% of the neurons: TrkB, TrkB.T2 (kinase-lacking isoform), and NCAM-140. Ligands for these Trks and FRalpha-1 promoted more outgrowth than ligands for the other receptors. NT-3 and BDNF synergistically promoted outgrowth. Finally, receptors are coexpressed at random rates, arguing against the existence of neuronal subtypes defined by a combinatorial code of these receptors.
Collapse
Affiliation(s)
- Adam Yamout
- Department of Biology, Loyola University Chicago, Chicago, Ill., USA
| | | | | | | | | |
Collapse
|
440
|
Kamath SG, Chen N, Enkemann SA, Sanchez-Ramos J. Transcriptional profile of NeuroD expression in a human fetal astroglial cell line. Gene Expr 2005; 12:123-36. [PMID: 15892453 PMCID: PMC6009111 DOI: 10.3727/000000005783992133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
NeuroD1, a member of the basic helix-loop-helix (bHLH) protein family, is a transcription factor that plays a pivotal role in terminal differentiation of neural progenitors. The primary objective was to generate an early transcriptional profile triggered by NeuroD1 to guide future studies on mechanisms of neuronal differentiation. The human NeuroD1 coding region was amplified from human fetal brain RNA using specific primers and cloned into a CMV expression vector (CT-GFP-TOPO/pcDNA3.1). Transfection of a fetal glial cell line with this construct resulted in expression of NeuroD1 in 13-15% of the cells. Markers typical of early neuronal development were observed by immunocytochemical staining in a small proportion of transfected cells. To enrich the population of NeuroD1-expressing cells, fluorescence-activated cell sorting (FACS) was used to purify and collect the NeuroD1/GFP+ cells. Total RNA was extracted from the pair of cultures (NeuroD1/GFP vs. control plasmid/GFP) and processed for gene expression studies. A final gene list was composed from those probe sets that were either increased or decreased in the NeuroD1-expressing cells in three independent experiments (p < 0.001). Each gene was investigated further for possible roles in neurogenesis and a subset of 177 genes was chosen based on the following characteristics: a) genes that are potential NeuroD1 dimerization partners, b) genes that modulate other bHLH transcription factors, c) genes related to development, and d) genes associated with neural induction, outgrowth, and terminal differentiation. DNA microarray analysis of NeuroD1 expression in an astroglial cell line produced a "snapshot" transcriptional profile that will be useful in deciphering the complex molecular code that specifies a neuronal fate.
Collapse
Affiliation(s)
- Siddharth G Kamath
- Department of Neurology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
441
|
Zihlmann KB, Ducray AD, Schaller B, Huber AW, Krebs SH, Andres RH, Seiler RW, Meyer M, Widmer HR. The GDNF family members neurturin, artemin and persephin promote the morphological differentiation of cultured ventral mesencephalic dopaminergic neurons. Brain Res Bull 2004; 68:42-53. [PMID: 16325003 DOI: 10.1016/j.brainresbull.2004.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 10/24/2004] [Accepted: 10/24/2004] [Indexed: 01/08/2023]
Abstract
Neurturin (NRTN), artemin (ARTN), persephin (PSPN) and glial cell line-derived neurotrophic factor (GDNF) form a group of neurotrophic factors, also known as the GDNF family ligands (GFLs). They signal through a receptor complex composed of a high-affinity ligand binding subunit, postulated ligand specific, and a common membrane-bound tyrosine kinase RET. Recently, also NCAM has been identified as an alternative signaling receptor. GFLs have been reported to promote survival of cultured dopaminergic neurons. In addition, GDNF treatments have been shown to increase morphological differentiation of tyrosine hydroxylase immunoreactive (TH-ir) neurons. The present comparative study investigated the dose-dependent effects of GFLs on survival and morphological differentiation of TH-ir neurons in primary cultures of E14 rat ventral mesencephalon. Both NRTN and ARTN chronically administered for 5 days significantly increased survival and morphological differentiation of TH-ir cells at all doses investigated [0.1-100 ng/ml], whereas PSPN was found to be slightly less potent with effects on TH-ir cell numbers and morphology at 1.6-100 ng/ml and 6.3-100 ng/ml, respectively. In conclusion, our findings identify NRTN, ARTN and PSPN as potent neurotrophic factors that may play an important role in the structural development and plasticity of ventral mesencephalic dopaminergic neurons.
Collapse
Affiliation(s)
- Karin B Zihlmann
- Department of Neurosurgery, University of Bern, CH-3010 Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
442
|
Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 2004; 101:16489-94. [PMID: 15520394 PMCID: PMC534530 DOI: 10.1073/pnas.0407063101] [Citation(s) in RCA: 702] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) self-renew and produce large numbers of committed progenitors that are destined to differentiate into spermatozoa throughout life. However, the growth factors essential for self-renewal of SSCs remain unclear. In this study, a serum-free culture system and a transplantation assay for SSCs were used to identify exogenous soluble factors that promote proliferation of SSCs. Mouse pup testis cells were enriched for SSCs by selection with an anti-Thy-1 antibody and cultured on STO (SIM mouse embryo-derived thioguanine and ouabain resistant) feeders in a serum-free defined medium. In the presence of glial cell line-derived neurotrophic factor (GDNF), SSCs from DBA/2J strain mice formed densely packed clumps of cells and continuously proliferated. However, other strains of mice required the addition of soluble GDNF-family receptor alpha-1 and basic fibroblast growth factor to support replication. The functional transplantation assay proved that the clump-forming cells are indeed SSCs. Thus, GDNF-induced cell signaling plays a central role in SSC self-renewal. The number of SSCs in culture doubled every 5.6 days, and the clump-forming cells strongly expressed Oct-4. Under these conditions, SSCs proliferated over 6 months, reconstituted long-term spermatogenesis after transplantation into recipient testes, and restored fertility to infertile recipients. The identification of exogenous factors that allow continuous proliferation of SSCs in vitro establishes the foundation to study the basic biology of SSCs and makes possible germ-line modification by sophisticated technologies. Moreover, the ability to recover, culture indefinitely, and transplant SSCs will make the germ-line of individual males available for periods extending beyond a normal lifetime.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
443
|
Hwang ES, Kim DW, Hwang JH, Jung HS, Suh JM, Park YJ, Chung HK, Song JH, Park KC, Park SH, Yun HJ, Kim JM, Shong M. Regulation of Signal Transducer and Activator of Transcription 1 (STAT1) and STAT1-Dependent Genes by RET/PTC (Rearranged in Transformation/Papillary Thyroid Carcinoma) Oncogenic Tyrosine Kinases. Mol Endocrinol 2004; 18:2672-84. [PMID: 15297606 DOI: 10.1210/me.2004-0168] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Chimeric RET/PTC (rearranged in transformation/papillary thyroid carcinoma) oncoproteins are constitutively active tyrosine kinases found in thyroid papillary carcinoma and nonneoplastic Hashimoto’s thyroiditis. Although several proteins have been identified to be substrates of RET/PTC kinases, the pathogenic roles played by RET/PTC in malignant and benign thyroid diseases and the molecular mechanisms that are involved are not fully understood. We found that RET/PTC expression phosphorylates the Y701 residue of STAT1, a type II interferon (IFN)-responsive protein. RET/PTC-mediated signal transducer and activator of transcription 1 (STAT1) phosphorylation requires RET/PTC kinase activity to be intact but other tyrosine kinases, such as Janus kinases or c-Src, are not involved. RET/PTC-induced STAT1 transcriptional activation was not inhibited by suppressor of cytokine signaling-1 or -3, or protein inhibitors of activated STAT3 [(protein inhibitor of activated STAT (PIAS3)], but PIAS1 strongly repressed the RET/PTC-induced transcriptional activity of STAT1. RET/PTC-induced STAT1 activation caused IFN regulatory factor-1 expression. We found that STAT1 and IFN regulatory factor-1 cooperated to significantly increase transcription from type IV IFN-γresponsive promoters of class II transactivator genes. Significantly, cells stably expressing RET/PTC expressed class II transactivator and showed enhanced de novo membrane expression of major histocompatibility complex (MHC) class II proteins. Furthermore, RET/PTC1-bearing papillary thyroid carcinoma cells strongly expressed MHC class II (human leukocyte-associated antigen-DRα) genes, whereas the surrounding normal tissues did not. Thus, RET/PTC is able to phosphorylate and activate STAT1. This may lead to enhanced MHC class II expression, which may explain why the tissues surrounding RET/PTC-positive cancers are infiltrated with lymphocytes. Such immune response-promoting activity of RET/PTC may also relate to the development of Hashimoto’s thyroiditis.
Collapse
Affiliation(s)
- Eun Suk Hwang
- Laboratory of Endocrine Cell Biology, National Research Laboratory Program, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
444
|
Jain S, Naughton CK, Yang M, Strickland A, Vij K, Encinas M, Golden J, Gupta A, Heuckeroth R, Johnson EM, Milbrandt J. Mice expressing a dominant-negative Ret mutation phenocopy human Hirschsprung disease and delineate a direct role of Ret in spermatogenesis. Development 2004; 131:5503-13. [PMID: 15469971 DOI: 10.1242/dev.01421] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The Ret receptor tyrosine kinase mediates physiological signals of glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) and is essential for postnatal survival in mice. It is implicated in a number of human diseases and developmental abnormalities. Here, we describe our analyses of mice expressing a Ret mutant (RetDN) with diminished kinase activity that inhibits wild-type Ret activity, including its activation of AKT. All RetDN/+ mice died by 1 month of age and had distal intestinal aganglionosis reminiscent of Hirschsprung disease (HSCR) in humans. The RetDN/+ proximal small intestine also had severe hypoganglionosis and reduction in nerve fiber density, suggesting a potential mechanism for the continued gastric dysmotility in postsurgical HSCR patients. Unlike Ret-null mice, which have abnormalities in the parasympathetic and sympathetic nervous systems, the RetDN/+ mice only had defects in the parasympathetic nervous system. A small proportion of RetDN/+ mice had renal agenesis, and the remainder had hypoplastic kidneys and developed tubulocystic abnormalities postnatally. Postnatal analyses of the testes revealed a decreased number of germ cells, degenerating seminiferous tubules,maturation arrest and apoptosis, indicating a crucial role for Ret in early spermatogenesis.
Collapse
Affiliation(s)
- Sanjay Jain
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
445
|
Coulpier M, Ibáñez CF. Retrograde propagation of GDNF-mediated signals in sympathetic neurons. Mol Cell Neurosci 2004; 27:132-9. [PMID: 15485769 DOI: 10.1016/j.mcn.2004.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 05/26/2004] [Accepted: 06/01/2004] [Indexed: 11/16/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) family ligands are target-derived trophic factors for several neuronal subpopulations. They promote survival and neurite outgrowth through binding to specific members of the GDNF family receptor alpha (GFR alpha) and subsequent activation of the RET tyrosine kinase receptor. Using compartmentalized cultures of sympathetic neurons, we have studied the mechanism of GDNF retrograde signaling. Our results demonstrate the presence of GDNF receptors RET and GFR alpha 1 in the two cellular compartments, cell bodies and distal axons. Addition of GDNF to either compartment initiated local signaling, including activation of RET and its downstream effectors AKT and ERK1/2. Addition of GDNF to distal axons induced a retrograde signal leading to neuronal survival and neurite outgrowth. Retrograde signaling was associated with retrograde transport of radiolabeled GDNF and GFR alpha 1, as well as activation of RET and AKT, but not of ERK1/2, in cell bodies. No anterograde signal propagation or transport was observed. Our results suggest a general mechanism for retrograde signaling initiated at distal axons through tyrosine kinase receptors.
Collapse
Affiliation(s)
- Muriel Coulpier
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | | |
Collapse
|
446
|
Veit C, Genze F, Menke A, Hoeffert S, Gress TM, Gierschik P, Giehl K. Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells. Cancer Res 2004; 64:5291-300. [PMID: 15289335 DOI: 10.1158/0008-5472.can-04-1112] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pancreatic carcinoma cells exhibit a pronounced tendency to invade along and into intra- and extrapancreatic nerves, even at early stages of the disease. The neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) has been shown to promote pancreatic cancer cell invasion. Here, we demonstrate that pancreatic carcinoma cell lines, such as PANC-1, expressed the RET and GDNF family receptor alpha receptor components for GDNF and that primary pancreatic tumor samples, derived from carcinomas with regional lymph node metastasis, exhibited marked expression of the mRNA encoding the RET51 isoform. Moreover, GDNF was an efficacious and potent chemoattractant for pancreatic carcinoma cells as examined in in vitro and in vivo model systems. Treatment of PANC-1 cells with GDNF resulted in activation of the monomeric GTPases N-Ras, Rac1, and RhoA, in activation of the mitogen-activated protein kinases extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK) and in activation of the phosphatidylinositol 3-kinase/Akt pathway. Both inhibition of the Ras-Raf-MEK (mitogen-activated protein/ERK kinase)-ERK cascade by either stable expression of dominant-negative H-Ras(N17) or addition of the MEK1 inhibitor PD98059 as well as inhibition of the phosphatidylinositol 3-kinase pathway by LY294002 prevented GDNF-induced migration and invasion of PANC-1 cells. These results demonstrate that pancreatic tumor cell migration and possibly perineural invasion in response to GDNF is critically controlled by activation of the Ras-Raf-MEK-ERK and the phosphatidylinositol 3-kinase pathway.
Collapse
Affiliation(s)
- Christine Veit
- Department of Pharmacology and Toxicology, University of Ulm, 89069 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
447
|
Hurtado-Lorenzo A, Millan E, Gonzalez-Nicolini V, Suwelack D, Castro MG, Lowenstein PR. Differentiation and transcription factor gene therapy in experimental parkinson's disease: sonic hedgehog and Gli-1, but not Nurr-1, protect nigrostriatal cell bodies from 6-OHDA-induced neurodegeneration. Mol Ther 2004; 10:507-24. [PMID: 15336651 PMCID: PMC1479772 DOI: 10.1016/j.ymthe.2004.05.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 05/13/2004] [Indexed: 01/09/2023] Open
Abstract
We tested the activity of the dopaminergic neuron differentiation factor sonic hedgehog, its downstream transcription factor target Gli-1, and an orphan nuclear receptor, Nurr-1, necessary for the induction of the dopaminergic phenotype of nigrostriatal neurons, in an in vivo model of nigrostriatal neurodegeneration. Our preliminary experiments demonstrated that all three constructs expressed the proper molecules and that these had the predicted biological activities in vitro. We expressed the N-terminal of sonic hedgehog (ShhN) and the Gli-1 and Nurr-1 entire coding regions from highly purified, and quality controlled, replication-defective adenoviral vectors injected into the brains of rats and used the dopaminergic growth factor GDNF as a positive control. The neurotoxin 6-hydroxydopamine was used to lesion the nigrostriatal dopaminergic innervation; RAd-ShhN and RAd-Gli-1 protected dopaminergic neuronal cell bodies in the substantia nigra, but not axonal terminals in the striatum, from 6-OHDA-induced cell death, while RAd-Nurr-1 was ineffective in protecting either cell bodies or axons. RAd-GDNF was able to protect both the dopaminergic cell bodies and the striatal axon terminals. Our results establish for the first time, to the best of our knowledge, that gene transfer of ShhN and one of its target transcription factors can selectively protect dopaminergic nigrostriatal neuronal cell bodies from a specific neurotoxic insult. Selective protection of nigrostriatal dopaminergic cell bodies by the differentiation factor ShhN and the transcription factor Gli-1 was achieved in a neurotoxic model that eliminates more than 70% of the nigral neurons under consideration. Differentiation and transcription factors can thus be used for the treatment of neurodegeneration by gene therapy.
Collapse
Affiliation(s)
| | | | | | | | - M. G. Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and Department of Medicine, Johnson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - P. R. Lowenstein
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and Department of Medicine, Johnson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
448
|
Kodama Y, Murakumo Y, Ichihara M, Kawai K, Shimono Y, Takahashi M. Induction of CRMP-2 by GDNF and analysis of the CRMP-2 promoter region. Biochem Biophys Res Commun 2004; 320:108-15. [PMID: 15207709 DOI: 10.1016/j.bbrc.2004.05.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Indexed: 10/26/2022]
Abstract
Collapsin response mediator protein-2 (CRMP-2) is a mammalian homologue of UNC-33 of Caenorhabditis elegans. Mutations of CRMP-2 result in abnormal axon termination. Recently, it was demonstrated that CRMP-2 binds to tubulin heterodimers to promote microtubule assembly that is critical for axonal differentiation and growth during development. Here we show that glial cell line-derived neurotrophic factor (GDNF) enhances CRMP-2 expression in TGW human neuroblastoma cells via activation of RET receptor tyrosine kinase. GDNF-mediated CRMP-2 expression was regulated mainly by the extracellular regulated kinase (ERK) pathway, but was independent of activation of phosphatidylinositol 3-kinase and Src family kinases. Analysis of the promoter region of the CRMP-2 gene revealed that the region 214-48 bp upstream of the transcriptional start site is important for CRMP-2 expression. The SP1, E2F, and GATA1/2 binding sites appeared to play some roles in regulation of CRMP-2 expression. As expected, the CRMP-2 protein accumulated in extended neurites of TGW cells treated with GDNF. However, neuritogenesis of TGW cells was mostly dependent on Src family kinase activity and not ERK activity, indicating that the increased expression of CRMP-2 alone was not sufficient for neuritogenesis.
Collapse
Affiliation(s)
- Yoshinori Kodama
- Department of Pathology, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
449
|
Krieglstein K. Factors promoting survival of mesencephalic dopaminergic neurons. Cell Tissue Res 2004; 318:73-80. [PMID: 15300492 DOI: 10.1007/s00441-004-0920-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 05/11/2004] [Indexed: 12/22/2022]
Abstract
Growth factors promoting survival of mesencephalic dopaminergic neurons are discussed in the context of their requirement during development and adulthood. The expression of growth factors should be detectable in the nigrostriatal system during critical periods of development, i.e., during the period of ontogenetic cell death and synaptogenesis and during neurite extension and neurotransmitter synthesis. Growth factors discussed include members of the family of glial-cell-line-derived neurotrophic factors (GDNF), neurotrophins, transforming growth factors beta, and low molecular compounds mimicking growth factor activities. To date, the available data support the notion that GDNF is a highly promising candidate, although GDNF-null mice lack a dopaminergic phenotype. There remains a possibility that endogenous dopaminotrophic factors remain to be discovered.
Collapse
Affiliation(s)
- Kerstin Krieglstein
- Department Neuroanatomy, Medical Faculty, Center for Molecular Physiology of the Brain, University of Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany.
| |
Collapse
|