1
|
Newsome SD, Fitzgerald KC, Hughes A, Beier M, Koshorek J, Wang Y, Maldonado DP, Shoemaker T, Malik T, Bayu T, Ravenna PE, Avornu A, Sotirchos ES, Romba M, Muschelli J, Brown TT, Calabresi PA, Mowry EM. Intranasal insulin for improving cognitive function in multiple sclerosis. Neurotherapeutics 2025:e00581. [PMID: 40253245 DOI: 10.1016/j.neurot.2025.e00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/21/2025] Open
Abstract
Cognitive impairment is common in people with multiple sclerosis (PwMS). There is an urgent need to identify/develop novel therapies that can help cognitive function in MS. Insulin is critical for helping with regulation of multiple CNS functions, including learning and memory. Insulin administrated intranasally has shown to improve memory and learning in healthy people and in those with some neurodegenerative disorders. Hence, there was rationale for investigating intranasal insulin in PwMS who experience cognitive impairment. We completed a phase Ib/II, randomized, double-blind, placebo-controlled trial; participants were randomized in a 1:1:1 fashion, stratified by relapsing versus progressive MS, to intranasal insulin 10 international units (IU) twice a day, 20 IU twice a day, or placebo for 24 weeks. One-hundred and five PwMS were enrolled, 69 of whom had at least one follow up visit during the active treatment phase of the trial (baseline to week 24). The cohort's mean age was 52.4 ± 9.7years, 62 % were female, and ∼60 % had relapsing-remitting MS. The most common side effects amongst treatment groups included headache, rhinorrhea, and dizziness. There were 13 SAEs which were not deemed study drug related; there were no deaths. The main clinical outcome measure, SDMT, did not demonstrate any difference between intranasal insulin and placebo. Similar findings were noted for all secondary outcome measures. Intranasal insulin appeared safe and well-tolerated in PwMS. However, it was not superior to placebo in any of the clinical outcome measures assessed, which could have been impacted by the duration of the trial, small sample size for a three-arm trial design, data missingness (particularly during COVID-19), outcome measure insensitivity to change, baseline cognitive reserve, or other factors. Nonetheless, intranasally-administered therapeutics may be of interest to develop further as a way to get across the blood brain barrier.
Collapse
Affiliation(s)
- Scott D Newsome
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA.
| | - Kathryn C Fitzgerald
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Abbey Hughes
- Johns Hopkins University School of Medicine, Division of Rehabilitation Psychology and Neuropsychology, Baltimore, MD, USA
| | - Meghan Beier
- Johns Hopkins University School of Medicine, Division of Rehabilitation Psychology and Neuropsychology, Baltimore, MD, USA
| | - Jacqueline Koshorek
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Yujie Wang
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | | | - Thomas Shoemaker
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Taimur Malik
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Tarik Bayu
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Pablo E Ravenna
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Ama Avornu
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Elias S Sotirchos
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Meghan Romba
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - John Muschelli
- Johns Hopkins Bloomberg School of Public Health, Department of Biostatistics, Baltimore, MD, USA
| | - Todd T Brown
- Johns Hopkins University School of Medicine, Division of Endocrinology, Baltimore, MD, USA
| | - Peter A Calabresi
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Ellen M Mowry
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| |
Collapse
|
2
|
D'Mello V, Mihailovic J, Ali S, Sanganahalli BG, Coman D, Hyder F, Fernando M, Mampilly A, Kannurpatti SS, Levison SW. Leukemia Inhibitory Factor as a late-stage treatment for delayed white matter loss in concussive head injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647435. [PMID: 40291675 PMCID: PMC12026900 DOI: 10.1101/2025.04.07.647435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Background Leukemia Inhibitory Factor (LIF) is an injury-induced cytokine that peaks 48 hours after a traumatic brain injury (TBI). Juvenile LIF haplodeficient mice exhibit desynchronized glial responses, increased neurodegeneration, decreased axonal conductivity and behavioral deficits after a concussive head injury. Given the necessity of LIF during the acute recovery phase after injury, we hypothesized that intranasal (IN) LIF treatment would prevent neurodegeneration when administered during the chronic recovery period from a mild TBI (mTBI). Methods Young adult male CD1 mice were subjected to a midline, closed-head frontal cortex injury using a flat metal impactor with a 3mm tip to induce a mTBI. In the 6-8 weeks post-mTBI, known to precede axonal atrophy in this mTBI model, two doses of 40 ng and 100 ng of LIF were administered twice daily, 5 days/week for two consecutive weeks. Sensorimotor functions were assessed at 4 and 8 weeks post mTBI, followed by ex-vivo brain magnetic resonance imaging at 9.4T and histopathology. Findings mTBI mice showed sensorimotor deficits at 4 weeks, which worsened by 8 weeks post-injury. IN-LIF treatment prevented the progressive sensorimotor loss seen in the vehicle-treated controls. Increased mean diffusivity (MD) and decreased fractional anisotropy (FA) were observed in the corpus callosum and prefrontal cortex of mTBI brains. In a dose-dependent manner, IN-LIF prevented the mTBI-induced MD increase and FA decrease. Histologically, there was significantly less astrogliosis, microgliosis and axonal injury in the IN-LIF treated mice vs. controls. Interpretation These results support the therapeutic potential of IN-LIF to reduce delayed neurodegeneration and improve neurological outcomes after mTBIs. Funding Supported by R21 NS125201, which was awarded to SWL, SK, and FH, and Rutgers Busch Biomedical Grant IRES 21-002946 to SWL and SK. Research in context Evidence before this study: Earlier studies had shown that LIF haplodeficient mice sustained worse outcomes after brain injury, which supported the hypothesis that LIF was an essential neuroprotective injury induced cytokine. Other studies had shown that acutely administered LIF was neuroprotective and glioprotective in mouse models of multiple sclerosis, neonatal hypoxia-ischemia and pediatric TBI. However, to date most pre-clinical studies for TBI have tested the efficacy of therapeutics delivered during the acute (primary) or sub-acute (secondary) recovery period. Few studies have focused on the mechanisms of delayed neurodegeneration (tertiary neurodegeneration) and therapeutics are entirely lacking. Therefore, we decided to test IN LIF during the chronic recovery period from TBI. With preliminary data, we submitted an NIH exploratory grant (R21) that was awarded to the senior investigators of this manuscript in October of 2021. That grant supported the majority of the studies contained in this submission.A pubmed search performed on Feb. 9th, 2025 using the search string "(traumatic brain injury) AND (axonal damage) AND (magnetic resonance imaging) AND intranasal AND neuroprotection" returned no references.Added value of this study: The standard of care for individuals who have sustained head injuries is to treat their symptoms. They are provided medications to reduce seizures, decrease anxiety, reduce depression and reduce pain and other symptoms. However, none of these medications will prevent tertiary neurodegeneration. Given the number of individuals who have sustained head injuries, new therapeutics, especially therapeutics that can be easily administered, are needed. With the Superbowl having just taken place, there is once again increasing concern that many of these athletes who have sustained head injuries during the course of their careers will go on to develop chronic traumatic encephalopathy, for which there is no treatment.The studies we described herein are innovative as no other group has evaluated any of the cytokines related to LIF for their neuroprotective properties for mTBI and certainly not during the tertiary injury period. Moreover, a Pubmed database search that covered the period from 1966 to 2025 reveals that only a handful of other studies have used intranasal delivery of any compound to treat TBI, and all of these studies administered their therapeutic within 6 hours after an injury. Developing a long-lasting, CNS-targeted therapeutic that can be delivered as a simple nose spray will have a lasting impact on clinical medicine. Our studies presage future clinical trials to assess the therapeutic efficacy of intranasal LIF for individuals who have sustained mild TBIs.
Collapse
|
3
|
de Oliveira Andrade LJ, Matos G, Matos de Oliveira L. Intranasal insulin in Alzheimer disease (diabetes in situ?): a systematic review and meta-analysis. Dement Neuropsychol 2025; 19:e20240191. [PMID: 40195962 PMCID: PMC11975293 DOI: 10.1590/1980-5764-dn-2024-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 04/09/2025] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder. Evidence suggests that AD shares pathophysiological similarities with type 2 diabetes. Intranasal insulin (INI) has emerged as a potential therapeutic approach for AD by directly targeting the brain and modulating insulin signaling pathways. Objective To evaluate the efficacy and safety of INI therapy for AD through a systematic review and meta-analysis of randomized controlled trials. Methods A search of electronic databases, including PubMed, Web of Science, Scopus, and Embase, was conducted to identify relevant studies published up to June 2024. Inclusion criteria encompassed peer-reviewed original research articles focused on humans, investigating the therapeutic effects of INI administration on cognitive impairment associated with AD, and reporting quantitative data on cognitive outcomes, biomarkers, or pathological markers relevant to AD. A meta-analysis was conducted to quantitatively synthesize the effects of INI on cognitive outcomes. Results A total of 647 articles were identified, and eight studies met the inclusion criteria. The overall odds ratio was 3.75 (95%CI 1.49-9.40). The test for overall effect showed a statistically significant difference (p<0.05). However, the I2 value indicated a high level of heterogeneity (85.5%), suggesting significant variability among the studies. Conclusion While the current data is not yet conclusive enough to definitively establish INI as a standard treatment for AD, the evidence supporting its safety, efficacy, and reduced risk of systemic side effects suggests potential cognitive benefits for improving global cognition in patients with AD.
Collapse
Affiliation(s)
| | - Gabriela Matos
- Centro Universitário UniFTC, Faculdade de Medicina, Salvador BA, Brazil
| | | |
Collapse
|
4
|
Dunacka J, Grembecka B, Majkutewicz I, Wrona D. Central Insulin-like Growth Factor-1 Treatment Enhances Working and Reference Memory by Reducing Neuroinflammation and Amyloid Beta Deposition in a Rat Model of Sporadic Alzheimer's Disease. Pharmaceuticals (Basel) 2025; 18:527. [PMID: 40283962 PMCID: PMC12030085 DOI: 10.3390/ph18040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Brain insulin resistance is a potential causal factor for dementia in Alzheimer's disease (AD). Insulin-like growth factor-1 (IGF-1), a neurotrophin, plays a key role in central insulin signaling and neuroprotection. Intracerebrovenitricular (ICV) administration of streptozotocin (STZ) disrupts insulin signal transduction, leading to brain insulin resistance, which may mimic the early pathophysiological changes in sporadic AD (sAD). In this study, we investigated whether restoring insulin signaling through ICV injection of IGF-1 could ameliorate spatial memory deficits during sAD progression in a rat model induced by ICV STZ injection. Methods: Male Wistar rats (n = 40) were subjected to double ICV injections of STZ (0.75 mg/kg/ventricle, days 2 and 4) and IGF-1 (1 μg/single injection, days 1 and 3), and placed at the Morris water maze (MWM) at baseline, 7, 45 and 90 days after injections. Reference (days 1-3 and day 4 MWM)) and working (days 5-8 MWM) memory, microglia activation (CD68+ cells), and amyloid β (Aβ) deposition (immunohistochemistry) were measured. Results: We found that ICVIGF-1 administration protected working memory demonstrated as (1) reduced latency to reach the platform, and reduced swimming distance in trials 3 (p < 0.05) and 4 (p < 0.01) on days 45 and 90 post-injection and (2) a short-term (up to 45 days post-injection) enhancement of reference memory, manifested by a reduction in swimming distance and latency (p < 0.05). Furthermore, IGF-1 treatment reduced neuroinflammation in CA2 (p < 0.05) and Aβ deposition in CA1(p < 0.01) of the hippocampus. Conclusions: Central IGF-1 attenuates spatial memory deficits in the ICVSTZ-induced sAD model by reducing neuroinflammation and Aβ accumulation in the hippocampus.
Collapse
Affiliation(s)
| | | | | | - Danuta Wrona
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza Str, 80-308 Gdansk, Poland; (J.D.); (B.G.); (I.M.)
| |
Collapse
|
5
|
Asimakidou E, Saipuljumri EN, Lo CH, Zeng J. Role of metabolic dysfunction and inflammation along the liver-brain axis in animal models with obesity-induced neurodegeneration. Neural Regen Res 2025; 20:1069-1076. [PMID: 38989938 PMCID: PMC11438328 DOI: 10.4103/nrr.nrr-d-23-01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/26/2024] [Indexed: 07/12/2024] Open
Abstract
The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship. Peripheral lipid accumulation, particularly in the liver, initiates a cascade of inflammatory processes that extend to the brain, influencing critical metabolic regulatory regions. Ceramide and palmitate, key lipid components, along with lipid transporters lipocalin-2 and apolipoprotein E, contribute to neuroinflammation by disrupting blood-brain barrier integrity and promoting gliosis. Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation. Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models. However, translating these findings to clinical practice requires further investigation into human subjects. In conclusion, metabolic dysfunction, peripheral inflammation, and insulin resistance are integral to neuroinflammation and neurodegeneration. Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eka Norfaishanty Saipuljumri
- School of Applied Science, Republic Polytechnic, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Frank-Ito DO. Olfaction and drug delivery to the human olfactory airspace: current challenges and recent advances. Expert Opin Drug Deliv 2025; 22:511-524. [PMID: 39955085 DOI: 10.1080/17425247.2025.2467784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/01/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION Olfactory function, despite its critical role in human survival and quality of life, is often underappreciated. This could be associated with the fact that symptoms of olfactory dysfunction rarely occur in isolation as they are frequently concomitant with comorbidities. Furthermore, effective treatments for olfactory dysfunction largely remain elusive, and no standardized clinical practice for treating this dysfunction currently exist, thus complicating the initiation of appropriate therapeutic modalities. Intranasal administration of topical medication targeting the olfactory cleft represents a safe, noninvasive and potentially efficacious approach, but several challenges impede effective drug delivery. AREAS COVERED This review highlights the importance of human olfaction, assessment of olfactory function, underlying sources of olfactory dysfunction, and challenges involved in developing long-term and effective treatment modalities, particularly in the administration of topical medication to the olfactory cleft intranasally. Advancements in both device-related and administration-related modalities designed to enhance intranasal drug delivery are discussed. EXPERT OPINION Clinical management typically prioritizes comorbid conditions, relegating symptoms pertaining olfactory dysfunction to ancillary concerns. Device manufacturers for intranasal administration likewise underestimate the complexity and variabilities of the nasal cavity, and how these impact drug transport. Synergistic implementation of device and formulation strategies can potentially yield enhanced olfactory cleft drug delivery.
Collapse
Affiliation(s)
- Dennis Onyeka Frank-Ito
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, North Carolina, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
- Computational Biology & Bioinformatics PhD Program, Duke University, Durham, North Carolina, USA
| |
Collapse
|
7
|
Li Y, Zhang Y, Ren Y, Liu H. Optimal Dose of Intranasal Insulin Administration for Reducing Postoperative Delirium Incidence in Older Patients Undergoing Hip Fracture Surgery. Am J Geriatr Psychiatry 2025:S1064-7481(25)00093-4. [PMID: 40222886 DOI: 10.1016/j.jagp.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVES To investigate the effects of administration of different intranasal insulin doses on postoperative delirium (POD) incidence in older patients with hip fractures. DESIGN Prospective, randomized, double-blinded, placebo-controlled trial (23K214-001, NCT06443957). SETTING The First Hospital of Jilin University from July 2023 to February 2024. PATIENTS Patients aged ≥65 years with hip fractures scheduled for elective unilateral hip arthroplasty or closed reduction and intramedullary nailing under spinal anesthesia. INTERVENTIONS Patients were randomly divided into a Control group (n = 43, 1 ml normal saline administered intranasally) or I-20 group (n = 45, 1ml 20U/ml insulin administered intranasally) or I-40 group (n = 42, 1ml 40U/ml insulin administered intranasally). MEASUREMENTS POD incidence within postoperative days 1-3 was recorded. Fingertip blood glucose levels were recorded 40 min after insulin or saline administration the day before surgery, operating room entry and immediately after the procedure. Cerebrospinal fluid (CSF) glucose and lactate levels were also measured. RESULTS Compared with the Control group, the I-20 and I-40 groups showed significantly lower POD incidence (39.5% versus 11.4% versus 14.3%, p = 0.002). Furthermore, no significant difference in POD incidence was observed between the I-20 and I-40 groups. CSF glucose levels were significantly higher in the I-40 group than in the Control group (p <0.0167). CSF lactate and fingertip blood glucose levels were not significantly different among the groups. CONCLUSION Intranasal insulin administration at doses of 20U and 40U effectively reduces the incidence of POD in older patients with hip fractures without lowering peripheral blood glucose levels.
Collapse
Affiliation(s)
- Yue Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yue Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuqi Ren
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Huanqiu Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
8
|
Shen Z, Tolu Mekonne T, Cai X, Milton-McGurk L, Chan HK, Kourmatzis A, Cheng S. Experimental measurements of particle deposition in the human nasal airway. Int J Pharm 2025; 672:125280. [PMID: 39875033 DOI: 10.1016/j.ijpharm.2025.125280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Intranasal drug delivery is a promising non-invasive method for administering both local and systemic medications. While previous studies have extensively investigated the effects of particle size, airflow dynamics, and deposition locations on deposition efficiency, limited attention has been given to the thickness of deposited particles, which can significantly affect drug dissolution, absorption and therapeutic efficacy. This study evaluated the deposition behaviour of three lactose powders in a silicone nasal airway replica under varying flow rates (15, 35, and 55 L/min) using optical coherence tomography (OCT). The main conclusion of these findings is that the anterior region of the nasal airway is the most effective site for capturing particles, exhibiting the highest deposition thickness and particle number density across all conditions. Specifically, deposition thickness exceeded 150 µm in some anterior regions, particularly under high flow rates, reaching up to 230 µm at 55 L/min for the most cohesive particle type (ML001). At 55 L/min, more cohesive particles, such as ML001, formed thicker clusters with deposition thickness 15-24 % greater than less cohesive particles like SV003 and SV010. Larger particles (SV010, D50 = 109 µm) mainly deposited in the anterior region, while smaller particles (SV003, D50 = 61 µm) showed a more uniform distribution, with deposition at location 1 about 10 % thicker than at location 2. Localised flow patterns, including recirculation zones, were identified as critical contributors to particle accumulation, as demonstrated by complementary computational fluid dynamics (CFD) simulations.
Collapse
Affiliation(s)
- Zhiwei Shen
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Taye Tolu Mekonne
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Xinyu Cai
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Liam Milton-McGurk
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Agisilaos Kourmatzis
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
9
|
Rao IY, Hanson LR, Frey WH. Brain Glucose Hypometabolism and Brain Iron Accumulation as Therapeutic Targets for Alzheimer's Disease and Other CNS Disorders. Pharmaceuticals (Basel) 2025; 18:271. [PMID: 40006083 PMCID: PMC11859321 DOI: 10.3390/ph18020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Two common mechanisms contributing to multiple neurological disorders, including Alzheimer's disease, are brain glucose hypometabolism (BGHM) and brain iron accumulation (BIA). Currently, BGHM and BIA are both widely acknowledged as biomarkers that aid in diagnosing CNS disorders, distinguishing between disorders with similar symptoms, and tracking disease progression. Therapeutics targeting BGHM and BIA in Alzheimer's disease can be beneficial in treating neurocognitive symptoms. This review addresses the evidence for the therapeutic potential of targeting BGHM and BIA in multiple CNS disorders. Intranasal insulin, which is anti-inflammatory and increases brain cell energy, and intranasal deferoxamine, which reduces oxidative damage and inflammation, represent promising treatments targeting these mechanisms. Both BGHM and BIA are promising therapeutic targets for AD and other CNS disorders.
Collapse
Affiliation(s)
- Indira Y. Rao
- HealthPartners Center for Memory and Aging, Saint Paul, MN 55130, USA; (I.Y.R.); (L.R.H.)
| | - Leah R. Hanson
- HealthPartners Center for Memory and Aging, Saint Paul, MN 55130, USA; (I.Y.R.); (L.R.H.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| | - William H. Frey
- HealthPartners Center for Memory and Aging, Saint Paul, MN 55130, USA; (I.Y.R.); (L.R.H.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| |
Collapse
|
10
|
Meng X, Zhang H, Zhao Z, Li S, Zhang X, Guo R, Liu H, Yuan Y, Li W, Song Q, Liu J. Type 3 diabetes and metabolic reprogramming of brain neurons: causes and therapeutic strategies. Mol Med 2025; 31:61. [PMID: 39966707 PMCID: PMC11834690 DOI: 10.1186/s10020-025-01101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Abnormal glucose metabolism inevitably disrupts normal neuronal function, a phenomenon widely observed in Alzheimer's disease (AD). Investigating the mechanisms of metabolic adaptation during disease progression has become a central focus of research. Considering that impaired glucose metabolism is closely related to decreased insulin signaling and insulin resistance, a new concept "type 3 diabetes mellitus (T3DM)" has been coined. T3DM specifically refers to the brain's neurons becoming unresponsive to insulin, underscoring the strong link between diabetes and AD. Recent studies reveal that during brain insulin resistance, neurons exhibit mitochondrial dysfunction, reduced glucose metabolism, and elevated lactate levels. These findings suggest that impaired insulin signaling caused by T3DM may lead to a compensatory metabolic shift in neurons toward glycolysis. Consequently, this review aims to explore the underlying causes of T3DM and elucidate how insulin resistance drives metabolic reprogramming in neurons during AD progression. Additionally, it highlights therapeutic strategies targeting insulin sensitivity and mitochondrial function as promising avenues for the successful development of AD treatments.
Collapse
Affiliation(s)
- Xiangyuan Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Hui Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130021, China
| | - Zhenhu Zhao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Siyao Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ruihan Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Huimin Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yiling Yuan
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Wanrui Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qi Song
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
11
|
Stogios N, Wu S, Hahn M, Emami Z, Navagnanavel J, Korann V, PrasannaKumar A, Remington G, Graff-Guerrero A, Agarwal SM. Exploring the effects of an insulin challenge on neuroimaging outcomes: A scoping review. Front Neuroendocrinol 2025; 77:101187. [PMID: 39971163 DOI: 10.1016/j.yfrne.2025.101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Emerging evidence demonstrates that insulin has a modulating effect on metabolic and cognitive function in the brain, highlighting the potential role of aberrant brain insulin signaling in the pathogenesis of various neuropsychiatric illnesses. Neuroimaging paradigms using intranasal insulin (INI) as a pharmacological challenge have allowed us to study the effects of insulin in the human brain. In this scoping review, we conducted a systematic database search to identify relevant research studies that employed an INI-based neuroimaging assay of brain insulin signaling. Thirty-six studies met inclusion criteria for this review. INI was found to significantly modulate activity and cerebral blood flow in brain regions related to homeostatic/hedonic control of food intake, as well as cognition. This review highlights the putative role of insulin signaling in the brain and the potential therapeutic value of INI in patients with mental health, addiction, and co-morbid metabolic disorders.
Collapse
Affiliation(s)
- Nicolette Stogios
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda
| | - Sally Wu
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda
| | - Margaret Hahn
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda; Department of Psychiatry, University of Toronto, Toronto, ON, Cananda; Banting and Best Diabetes Centre (BBDC), University of Toronto, Toronto, ON, Cananda
| | - Zahra Emami
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Cananda
| | - Janani Navagnanavel
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Cananda
| | - Vittal Korann
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda
| | | | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda; Department of Psychiatry, University of Toronto, Toronto, ON, Cananda
| | - Ariel Graff-Guerrero
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda; Department of Psychiatry, University of Toronto, Toronto, ON, Cananda
| | - Sri Mahavir Agarwal
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda; Department of Psychiatry, University of Toronto, Toronto, ON, Cananda; Banting and Best Diabetes Centre (BBDC), University of Toronto, Toronto, ON, Cananda.
| |
Collapse
|
12
|
García-Lluch G, Marseglia A, Royo LM, Albiach JP, Garcia-Zamora M, Baquero M, Peña-Bautista C, Álvarez L, Westman E, Cháfer-Pericás C. Associations between antidiabetic medications and cerebrospinal fluid biomarkers of Alzheimer's disease. J Alzheimers Dis 2025; 103:758-774. [PMID: 39686618 DOI: 10.1177/13872877241304995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND It has been hypothesized that insulin resistance is pivotal in mediating amyloid and tau dysregulations in Alzheimer's disease (AD). OBJECTIVE To investigate the impact of different antidiabetic agents, their daily dosage intake, and treatment duration on cerebrospinal fluid (CSF) AD biomarkers among patients with type 2 diabetes. METHODS This cross-sectional study selected patients between 50 and 80 years with diabetes and CSF AD biomarkers screened between 2017 and 2023 in the VALCODIS Cohort. CSF biomarkers were total tau (t-tau), phosphorylated tau 181 (p-tau), and amyloid-β 42 (Aβ42). Analytical variables were obtained. Antidiabetic prescriptions were recorded in defined daily doses (DDD), according to the ATC/DDD 2021 system, and years of drug exposure duration before lumbar puncture. Logistic regressions were performed to establish the correlations between drug usage and AD biomarker alteration. RESULTS Among patients with diabetes, Insulin consumption was associated with lower odds of abnormal Aβ42 levels (OR 0.36 [95% CI 0.15, 0.76]) and tau pathology (OR 0.49 [95% CI 0.24-0.98]). Metformin was related to lower odds of pathological p-tau when diabetes was uncontrolled, acting on t-tau and t-tau/Aβ42 ratio when it was concomitant with insulin, and patients had controlled diabetes. Lower odds of pathological levels of tau were observed when additional oral antidiabetic drugs were added among metformin users. iSGLT2 was associated with tau pathology. CONCLUSIONS The impact of antidiabetics on AD-related pathological biomarkers may depend on diabetes management.
Collapse
Affiliation(s)
- Gemma García-Lluch
- Research Group in Alzheimer Disease, Health Research Institute La Fe, Valencia, Spain
- Cathedra DeCo MICOF-CEU UCH, University Cardenal Herrera-CEU, Valencia, Spain
- Department of Pharmacy, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Anna Marseglia
- Department of Pharmacy, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Lucrecia Moreno Royo
- Cathedra DeCo MICOF-CEU UCH, University Cardenal Herrera-CEU, Valencia, Spain
- Department of Pharmacy, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Juan Pardo Albiach
- Embedded Systems and Artificial Intelligence Group, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Mar Garcia-Zamora
- Research Group in Alzheimer Disease, Health Research Institute La Fe, Valencia, Spain
- Cathedra DeCo MICOF-CEU UCH, University Cardenal Herrera-CEU, Valencia, Spain
| | - Miquel Baquero
- Research Group in Alzheimer Disease, Health Research Institute La Fe, Valencia, Spain
- Cathedra DeCo MICOF-CEU UCH, University Cardenal Herrera-CEU, Valencia, Spain
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Carmen Peña-Bautista
- Research Group in Alzheimer Disease, Health Research Institute La Fe, Valencia, Spain
| | - Lourdes Álvarez
- Research Group in Alzheimer Disease, Health Research Institute La Fe, Valencia, Spain
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Consuelo Cháfer-Pericás
- Research Group in Alzheimer Disease, Health Research Institute La Fe, Valencia, Spain
- Cathedra DeCo MICOF-CEU UCH, University Cardenal Herrera-CEU, Valencia, Spain
| |
Collapse
|
13
|
Huang C, Wei Z, Zheng N, Yan J, Zhang J, Ye X, Zhao W. The interaction between dysfunction of vasculature and tauopathy in Alzheimer's disease and related dementias. Alzheimers Dement 2025; 21:e14618. [PMID: 39998958 PMCID: PMC11854360 DOI: 10.1002/alz.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/01/2025] [Accepted: 01/12/2025] [Indexed: 02/27/2025]
Abstract
Tauopathy is one of the pathological features of Alzheimer's disease and related dementias (ADRD). At present, there have been many studies on the formation, deposition, and intercellular transmission of tau in neurons and immune cells. The vasculature is an important component of the central nervous system. This review discusses the interaction between vasculature and tau in detail from three aspects. (1) The vascular risk factors (VRFs) discussed in this review include diabetes mellitus (DM), abnormal blood pressure (BP), and hypercholesterolemia. (2) In ADRD pathology, the hyperphosphorylation and deposition of tau interact with disrupted vasculature, such as different cells (endothelial cells, smooth muscular cells, and pericytes), the blood-brain barrier (BBB), and the cerebral lymphatic system. (3) The functions of vasculature are regulated by various signaling transductions. Endothelial nitric oxide synthase/nitric oxide, calcium signaling, Rho/Rho-associated coiled-coil containing Kinase, and receptors for advanced glycation end products are discussed in this review. Our findings indicate that the prevention and treatment of vascular health may be a potential target for ADRD combination therapy. HIGHLIGHTS: Persistent VRFs increase early disruption of vascular mechanisms and are strongly associated with tau pathology in ADRD. Cell dysfunction in the vasculature causes BBB leakage and drainage incapacity of the cerebral lymphatic system, which interacts with tau pathology. Signaling molecules in the vasculature regulate vasodilation and contraction, angiogenesis, and CBF. Abnormal signaling transduction is related to tau hyperphosphorylation and deposition.
Collapse
Affiliation(s)
- Chuyao Huang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Zhenwen Wei
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Ningxiang Zheng
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Jingsi Yan
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Jiayu Zhang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xinyi Ye
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Wei Zhao
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| |
Collapse
|
14
|
Aparajita A, Jain U, Srivastava P. "Current and emerging drug therapies in Alzheimer's disease: A pathophysiological Perspective". Neuroscience 2025; 565:499-518. [PMID: 39662528 DOI: 10.1016/j.neuroscience.2024.11.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/18/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024]
Abstract
The analytical and experimental investigation of several targets and biomarkers that help in explaining significant cognitive deficits, covering drug development and precision medicine aimed at different chronic neurodegenerative conditions such as Alzheimer's disease (AD), Parkinson's disease, synaptic dysfunction, brain damage from neuronal apoptosis, and other disease pathologies; this served as the foundation for all phase studies. The focus of current therapeutic approaches is on developing humanized antibodies, agonist and antagonist drugs, receptors, signaling molecules, major targeted drug-metabolizing enzymes, and other metabolites to treat neurodegeneration in the AD brain brought on by tau hyperphosphorylation, amyloid plagues, or other cholinergic effects. The five A's-amnesia, agnosia, aphasia, apraxia, and anomia-are the typical symptoms associated with AD. While the main goal of drug therapeutics studies is modified amino acids acting as pro-drugs, pharmacokinetics studies and trends in evaluating drug-drug interactions focus on interactions between drugs and antibodies, drugs and therapeutic biologics like metabolites, herbs, interleukin-based, and gene silencing mechanism-based. Studies on the biotransformation of xenobiotic compounds and the metabolism of exogenous and endogenous substances are conducted under Phase I, Phase II, and Phase III trials because the pivotal pharmacokinetic properties of drugs, such as absorption, distribution, metabolism, and excretion (ADME), aid in understanding variations in the crucial improvement of various target drugs. This review also highlights the developments in soon-to-be genetically created targeted medications that may serve as ground-breaking treatments for cholinergic illnesses in the brains of AD patients and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Aparajita Aparajita
- Department of Biosciences, Institute of Management Studies Ghaziabad 9(University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Unnati Jain
- Department of Biosciences, Institute of Management Studies Ghaziabad 9(University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Biosciences, Institute of Management Studies Ghaziabad 9(University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
15
|
Carrillo F, Ghirimoldi M, Fortunato G, Palomba NP, Ianiro L, De Giorgis V, Khoso S, Giloni T, Pietracupa S, Modugno N, Barberis E, Manfredi M, Esposito T. Multiomics approach identifies dysregulated lipidomic and proteomic networks in Parkinson's disease patients mutated in TMEM175. NPJ Parkinsons Dis 2025; 11:23. [PMID: 39856101 PMCID: PMC11760379 DOI: 10.1038/s41531-024-00853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025] Open
Abstract
Parkinson's disease (PD) represents one of the most frequent neurodegenerative disorders for which clinically useful biomarkers remain to be identified and validated. Here, we adopted an untargeted omics approach to disclose lipidomic, metabolomic and proteomic alterations in plasma and in dermal fibroblasts of PD patients carrying mutations in TMEM175 gene. We revealed a wide dysregulation of lysosome, autophagy, and mitochondrial pathways in these patients, supporting a role of this channel in regulating these cellular processes. The most significant altered lipid classes were Fatty acyls, Glycerophospholipids and Phosphosphingolipids. The plasma level of Phosphatidylcholines (PC) and Phosphatidylinositol (PI) 34:1 significantly correlated with an earlier age at onset of the disease in TMEM175 patients (p = 0.008; p = 0.006). In plasma we also observed altered amino acids metabolic pathways in PD patients. We highlighted that increased level of L-glutamate strongly correlated (p < 0.001) with the severity of motor and non-motor symptoms in PD_TMEM175 patients. In dermal fibroblasts, we disclosed alterations of proteins involved in lipids biosynthesis (PAG15, PP4P1, GALC, FYV1, PIGO, PGPS1, PLPP1), in the insulin pathway (IGF2R), in mitochondrial metabolism (ACD10, ACD11, ACADS) and autophagy (RAB7L). Interestingly, we quantified 43 lysosomal or lysosomal-related proteins, which were differentially modulated between TMEM175 patients and controls. Integrative correlation analysis of proteome and lipidome of PD_TMEM175 cellular models identified a strong positive correlation of 13 proteins involved in biosynthetic processes with PC and Ceramides. Altogether, these data provide novel insights into the molecular and metabolic alterations underlying TMEM175 mutations and may be relevant for PD prediction, diagnosis and treatment.
Collapse
Affiliation(s)
- Federica Carrillo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Marco Ghirimoldi
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Giorgio Fortunato
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | | | | | - Veronica De Giorgis
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Shahzaib Khoso
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | | | - Sara Pietracupa
- IRCCS INM Neuromed, Pozzilli, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Piazzale Aldo Moro, Italy
| | | | - Elettra Barberis
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Marcello Manfredi
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- IRCCS Policlinico San Donato, Institute of Molecular and Translational Cardiology, Milan, Italy
| | - Teresa Esposito
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy.
- IRCCS INM Neuromed, Pozzilli, Italy.
| |
Collapse
|
16
|
Aivalioti E, Georgiopoulos G, Tual-Chalot S, Bampatsias D, Delialis D, Sopova K, Drakos SG, Stellos K, Stamatelopoulos K. Amyloid-beta metabolism in age-related neurocardiovascular diseases. Eur Heart J 2025; 46:250-272. [PMID: 39527015 PMCID: PMC11735085 DOI: 10.1093/eurheartj/ehae655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 09/15/2024] [Indexed: 11/16/2024] Open
Abstract
Epidemiological evidence suggests the presence of common risk factors for the development and prognosis of both cardio- and cerebrovascular diseases, including stroke, Alzheimer's disease, vascular dementia, heart, and peripheral vascular diseases. Accumulation of harmful blood signals may induce organotypic endothelial dysfunction affecting blood-brain barrier function and vascular health in age-related diseases. Genetic-, age-, lifestyle- or cardiovascular therapy-associated imbalance of amyloid-beta (Aβ) peptide metabolism in the brain and periphery may be the missing link between age-related neurocardiovascular diseases. Genetic polymorphisms of genes related to Aβ metabolism, lifestyle modifications, drugs used in clinical practice, and Aβ-specific treatments may modulate Aβ levels, affecting brain, vascular, and cardiac diseases. This narrative review elaborates on the effects of interventions on Aβ metabolism in the brain, cerebrospinal fluid, blood, and peripheral heart or vascular tissues. Implications for clinical applicability, gaps in knowledge, and future perspectives of Aβ as the link among age-related neurocardiovascular diseases are also discussed.
Collapse
Affiliation(s)
- Evmorfia Aivalioti
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Department of Physiology, School of Medicine, University of Patras, Patra, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Dimitrios Bampatsias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- Division of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Kateryna Sopova
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT, USA
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| |
Collapse
|
17
|
Inamdar A, Gurupadayya B, Halagali P, Nandakumar S, Pathak R, Singh H, Sharma H. Cutting-edge Strategies for Overcoming Therapeutic Barriers in Alzheimer's Disease. Curr Pharm Des 2025; 31:598-618. [PMID: 39492772 DOI: 10.2174/0113816128344571241018154506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) remains one of the hardest neurodegenerative diseases to treat due to its enduring cognitive deterioration and memory loss. Despite extensive research, few viable treatment approaches have been found; these are mostly due to several barriers, such as the disease's complex biology, limited pharmaceutical efficacy, and the BBB. This presentation discusses current strategies for addressing these therapeutic barriers to enhance AD treatment. Innovative drug delivery methods including liposomes, exosomes, and nanoparticles may be able to pass the blood-brain barrier and allow medicine to enter specific brain regions. These innovative strategies of medicine distribution reduce systemic side effects by improving absorption. Moreover, the development of disease-modifying treatments that target tau protein tangles, amyloid-beta plaques, and neuroinflammation offers the chance to influence the course of the illness rather than only treat its symptoms. Furthermore, gene therapy and CRISPR-Cas9 technologies have surfaced as potentially groundbreaking methods for addressing the underlying genetic defects associated with AD. Furthermore, novel approaches to patient care may involve the utilization of existing medications having neuroprotective properties, such as those for diabetes and cardiovascular conditions. Furthermore, biomarker research and personalized medicine have made individualized therapy approaches possible, ensuring that patients receive the best care possible based on their unique genetic and molecular profiles.
Collapse
Affiliation(s)
- Aparna Inamdar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Prashant Halagali
- Department of Pharmaceutical Quality Assurance, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India
| | - S Nandakumar
- Associate Scientist, Corteva Agriscience, Hyderabad 500081, Telangana, India
| | - Rashmi Pathak
- Department of Pharmacy, Invertis University, Bareilly (UP) 243123, India
| | - Himalaya Singh
- Department of Medicine, Government Institute of Medical Sciences, Greater Noida (UP) 201312, India
| | - Himanshu Sharma
- Department of Pharmacy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad (UP) 244001, India
| |
Collapse
|
18
|
Shang Y, Torrandell‐Haro G, Vitali F, Brinton RD. Combination therapy targeting Alzheimer's disease risk factors is associated with a significant delay in Alzheimer's disease-related cognitive decline. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2025; 11:e70074. [PMID: 40151397 PMCID: PMC11947753 DOI: 10.1002/trc2.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) cognitive decline can be a major contributor to loss of independent living. Therapeutic strategies that alter the course of cognitive deterioration have the potential to sustain activities of daily living, promote quality of life, and delay transition to nursing-home care. METHODS We performed longitudinal linear regression analysis of National Alzheimer's Coordinating Center (NACC) cognitive data from 7653 mild dementia AD participants at baseline with at least one medication for diabetes (DBMD), lipid-lowering (LIPL), anti-hypertensive (AHTN), and non-steroidal anti-inflammatory (NSD) medications or any combination in 5684 (74%) participants and in 1969 (26%) participants with no study-relevant prescriptions over 10 years. Change in cognitive function was determined by Mini-Mental State Examination (MMSE) and CDR® Dementia Staging Instrument Sum of Boxes (CDR-SB) scores relative to non-treated participants stratified by sex and apolipoprotein E (APOE) genotype. Validation analysis was performed using Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. RESULTS Combination of DBMD+LIPL+AHTN+NSD (QuadRx) resulted in a significant 46% MMSE and 32% CDR-SB delay in cognitive decline at 5 years, which was sustained at 10 years with a delay in decline of 47% MMSE and 33% CDR-SB. QuadRx was equally effective for the delay of cognitive decline in both females and males at 5 and 10 years. QuadRx mitigated the impact of the APOE ε4 genotype. Findings were validated in ADNI AD participants in which QuadRx was associated with a significant 60% MMSE delay in cognitive decline at 1 and 2 years. CONCLUSIONS Combination therapy was associated with a significant delay in cognitive decline in NACC AD participants at a magnitude comparable to or greater than amyloid beta immunomodulators. Further, the delay in decline was sustained for 10 years. The impact of QuadRx to delay cognitive decline was validated in deeply characterized ADNI participants. These data support combination therapy in persons with AD risk factors to alter the course of AD that persists for a decade, enabling cognitive function at a magnitude associated with independent living. Highlights QuadRx slowed Alzheimer's disease (AD) cognitive decline by 47% in the National Alzheimer's Coordinating Center NACC and 60% in Alzheimer's Disease Neuroimaging Initiative ADNI participants.Combination therapy exhibited additive and synergistic slowing of cognitive decline.QuadRx was equally effective in females and males at 5 and 10 years.QuadRx mitigated the impact of the apolipoprotein E ε4 genotype.QuadRx was effective in AD participants reporting drug use for their AD risk factor.
Collapse
Affiliation(s)
- Yuan Shang
- Center for Innovation in Brain ScienceUniversity of Arizona Health SciencesTucsonArizonaUSA
| | - Georgina Torrandell‐Haro
- Center for Innovation in Brain ScienceUniversity of Arizona Health SciencesTucsonArizonaUSA
- Department of PharmacologyCollege of MedicineUniversity of ArizonaTucsonArizonaUSA
| | - Francesca Vitali
- Center for Innovation in Brain ScienceUniversity of Arizona Health SciencesTucsonArizonaUSA
- Department of NeurologyCollege of MedicineUniversity of ArizonaTucsonArizonaUSA
- Center for Biomedical Informatics and BiostatisticsUniversity of ArizonaTucsonArizonaUSA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain ScienceUniversity of Arizona Health SciencesTucsonArizonaUSA
- Department of PharmacologyCollege of MedicineUniversity of ArizonaTucsonArizonaUSA
- Department of NeurologyCollege of MedicineUniversity of ArizonaTucsonArizonaUSA
| | | |
Collapse
|
19
|
Yin Q, Yang G, Su R, Bu J, Li Y, Zhang H, Zhang Y, Zhuang P. Zi Shen Wan Fang repaired blood-brain barrier integrity in diabetic cognitive impairment mice via preventing cerebrovascular cells senescence. Chin Med 2024; 19:169. [PMID: 39696612 DOI: 10.1186/s13020-024-01041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) integrity disruption is a key pathological link of diabetes-induced cognitive impairment (DCI), but the detailed mechanism of how the diabetic environment induces BBB integrity disruption is not fully understood. Our previous study found that Zi Shen Wan Fang (ZSWF), an optimized prescription consisting of Anemarrhenae Rhizoma (Anemarrhena asphodeloides Bge.), Phellodendri Chinensis Cortex (Phellodendron chinense Schneid.) and Cistanches Herba (Cistanche deserticola Y.C.Ma) has excellent efficacy in alleviating DCI, however, whether its mechanism is related to repairing BBB integrity remains unclear. This study aims to reveal the mechanism of BBB integrity destruction in DCI mice, and to elucidate the mechanism by which ZSWF repairs BBB integrity and improves cognitive function in DCI mice. METHODS Diabetic mouse model was established by feeding a 60% high-fat diet combined with a single intraperitoneal injection of 120 mg/kg streptozotocin (STZ). DCI mice were screened with morris water maze (MWM) after 8 weeks of sustained hyperglycemic stimulation. ZSWF was administered daily at doses of 9.36 and 18.72 g/kg for 8 weeks. Cognitive function was evaluated using MWM, blood-brain-barrier (BBB) integrity was tested using immunostaining and western blot, the underlying mechanisms were explored using single-cell RNA sequencing (scRNA-seq), validation experiments were performed with immunofluorescence analysis, and the potential active ingredients of ZSWF against cerebrovascular senescence were predicted using molecular docking. Moreover, cerebral microvascular endothelial cells were cultured, and the effects of mangiferin on the expression of p21 and Vcam1 were investigated by immunofluorescence staining and RT-qPCR. RESULTS ZSWF treatment significantly ameliorated cognitive function and repaired BBB integrity in DCI mice. Using scRNA-seq, we identified 14 brain cell types. In BBB constituent cells (endothelial cells and pericytes), we found that Cdkn1a and senescence-associated secretory phenotype (SASP) genes were significantly overexpressed in DCI mice, while ZSWF intervention significantly inhibited the expression of Cdkn1a and SASP genes in cerebrovascular cells of DCI mice. Moreover, we also found that the communication between brain endothelial cells and pericytes was decreased in DCI mice, while ZSWF significantly increased the communication between them, especially the expression of PDGFRβ in pericytes. Molecular docking results showed that mangiferin, the blood component of ZSWF, had a stronger affinity with the upstream proteins of p21. In vitro experiments showed that high glucose significantly increased the expression of p21 and Vcam1 in bEnd.3 cells, while mangiferin significantly inhibited the expression of p21 and Vcam1 induced by high glucose. CONCLUSION Our study reveals that ZSWF can ameliorate cognitive function in DCI mice by repairing BBB integrity, and the specific mechanism of which may be related to preventing cerebrovascular cells senescence, and mangiferin is its key active ingredient.
Collapse
Affiliation(s)
- Qingsheng Yin
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Genhui Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Runtao Su
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jie Bu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ying Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Han Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Department of Integrated Rehabilitation, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Pengwei Zhuang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Department of Integrated Rehabilitation, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
20
|
Schwartz SS, Herman ME, Tun MTH, Barone E, Butterfield DA. The double life of glucose metabolism: brain health, glycemic homeostasis, and your patients with type 2 diabetes. BMC Med 2024; 22:582. [PMID: 39696300 DOI: 10.1186/s12916-024-03763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
The maintenance of cognitive function is essential for quality of life and health outcomes in later years. Cognitive impairment, however, remains an undervalued long-term complication of type 2 diabetes by patients and providers alike. The burden of sustained hyperglycemia includes not only cognitive deficits but also the onset and progression of dementia-related conditions, including Alzheimer's disease (AD). Recent research has shown that the brain maintains an independent glucose "microsystem"-evolved to ensure the availability of fuel for brain neurons without interruption by transient hypoglycemia. When this milieu is perturbed, brain hyperglycemia, brain glucotoxicity, and brain insulin resistance can ensue and interfere with insulin signaling, a key pathway to cognitive function and neuronal integrity. This newly understood brain homeostatic system operates semi-autonomously from the systemic glucoregulatory apparatus. Large-scale clinical studies have shown that systemic dysglycemia is also strongly associated with poorer cognitive outcomes, which can be mitigated through appropriate clinical management of plasma glucose levels. Moreover, these studies demonstrated that glucose-lowering agents are not equally effective at preventing cognitive dysfunction. Glucagon-like peptide-1 (GLP-1) receptor analogs and sodium glucose cotransporter 2 inhibitors (SGLT2is) appear to afford the greatest protection; metformin and dipeptidyl peptidase 4 inhibitors (DPP-4is) also significantly improved cognitive outcomes. Sulfonylureas (SUs) and exogenous insulin, on the other hand, do not provide the same protection and may actually worsen cognitive outcomes. In the creation of a treatment plan, comorbid cognitive conditions should be considered. These efficacious treatments create a new gold standard of managing hyperglycemia-one which is consistent with the "complication-centric prescribing" mandates issued in type 2 diabetes treatment guidelines. The increasing longevity enjoyed by our populace places the onus on clinical care to play the "long game" in using targeted treatments for glucose control in patients with, or at risk for, cognitive decline to maintain cognitive wellness later in life. This article reviews critical emerging data for scientists and trialists and translates new enhancements in patient care for practitioners.
Collapse
Affiliation(s)
- Stanley S Schwartz
- University of Pennsylvania School of Medicine, 771 County Line Road, Villanova, PA, 19085, USA
| | - Mary E Herman
- Social Alchemy: Building Physician Competency Across the Globe, 5 Ave Sur #36, Antigua, Sacatepéquez, Guatemala.
| | - May Thet Hmu Tun
- Maimonides Medical Center, 4802 10th Ave, Brooklyn, NY, 11219, USA
| | - Eugenio Barone
- Sapienza University of Rome, Via Degli Equi 42, Scala A, Int. 5, 00185, Rome, Italy
| | - D Allan Butterfield
- Sanders-Brown Center On Aging, Department of Chemistry, University of Kentucky, 249 Chemistry-Physics Building, Lexington, KY, 40506-0055, USA
| |
Collapse
|
21
|
Kristensen M. Insulin-inspired peptides may open new pathways to treat Alzheimer's disease. Proc Natl Acad Sci U S A 2024; 121:e2419741121. [PMID: 39585998 PMCID: PMC11626187 DOI: 10.1073/pnas.2419741121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Affiliation(s)
- Mie Kristensen
- Central Nervous System Drug Delivery and Barrier Modelling, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, CopenhagenDK-2100, Denmark
| |
Collapse
|
22
|
Salvi V, Tripodi B, Cerveri G, Migliarese G, Bertoni L, Nibbio G, Barlati S, Vita A, Mencacci C. Insulin-resistance as a modifiable pathway to cognitive dysfunction in schizophrenia: A systematic review. Schizophr Res 2024; 274:78-89. [PMID: 39265262 DOI: 10.1016/j.schres.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cognitive deficits are difficult to treat and negatively influence quality of life and functional outcomes of persons with schizophrenia. In the last twenty years, extensive literature demonstrated that persons with diabetes and insulin resistance (IR) also display cognitive deficits. Being type 2 diabetes (T2DM) and IR highly frequent in persons with schizophrenia, it is plausible to hypothesize that these conditions might play a role in determining dyscognition. If that is the case, acting on glucose dysmetabolism may eventually improve cognitive functioning. This review aims at: 1. evaluating the association between IR or T2DM and cognitive dysfunction in schizophrenia; 2. reviewing the evidence that pharmacological treatment of IR or T2DM may improve dyscognition in schizophrenia. METHODS Two systematic searches were conducted in PubMed, PsycInfo, and Scopus. We followed the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. RESULTS From the first search we included 17 studies, 8 on the effects of T2DM and 9 on the effects of IR-other prediabetes measures on cognition in persons with schizophrenia. From the second search we included 12 studies investigating the effect on cognition of glucose (4 studies), insulin (2 studies), metformin (2 studies), PPAR-γ agonists (2 studies), GLP-1 agonist (1 study), bromocriptine (1 study). CONCLUSIONS T2DM was associated with worse cognitive function in persons with schizophrenia, while IR was less strongly associated with cognitive dysfunction. Evidence regarding the efficacy of glucose-lowering medications on cognition in schizophrenia is inconclusive, yet methodological issues likely contribute to explain conflicting results.
Collapse
Affiliation(s)
- Virginio Salvi
- Department of Mental Health and Addiction, ASST Crema, L.go Ugo Dossena 2, 26013 Crema, CR, Italy.
| | - Beniamino Tripodi
- Department of Mental Health and Addiction, ASST Crema, L.go Ugo Dossena 2, 26013 Crema, CR, Italy
| | - Giancarlo Cerveri
- Department of Mental Health and Addiction, ASST Lodi, Via Mosè Bianchi 26, 26900 Lodi, Italy
| | - Giovanni Migliarese
- Department of Mental Health and Addiction, ASST Pavia, C.so Milano 19, 27029 Vigevano, PV, Italy
| | - Lorenzo Bertoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Claudio Mencacci
- Director Emeritus, Department of Neurosciences-Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
23
|
Ghosh M, Roy D, Thakur S, Singh A. Exploring the Potential of Nasal Drug Delivery for Brain Targeted Therapy: A Detailed Analysis. Biopharm Drug Dispos 2024; 45:161-189. [PMID: 39665188 DOI: 10.1002/bdd.2400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
The brain is a sensitive organ with numerous essential functions and complex mechanisms. It is secluded and safeguarded from the external environment as part of the central nervous system (CNS), serving as a sanctuary. By regulating their selective and specific absorption, efflux, and metabolism in the brain, the CNS controls brain homeostasis and the transit of endogenous and foreign substances. The mechanism which protects the brain from environmental chemicals, also prevent the entry of therapeutic chemicals to it. The delivery of molecules to the brain is hindered by several major barriers, such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and blood-tumor barrier. BBB is formed by the combination of cerebral endothelial cells, astrocytes, neurons, pericytes and microglia. It is a tight junction of capillary endothelial cells, preventing the diffusion of solute into the brain. BCSFB is the second barrier, located at the choroid plexus, separating the blood from cerebrospinal fluid (CSF). It is comparatively more permeable than BBB. An uneven distribution of microvasculature across the tumor interstitial compromises drug delivery to neoplastic cells of a solid tumor, resulting in spatially inconsistent drug administration. Nasal drug delivery to the brain is a method of drug delivery that tries to deliver therapeutic substances directly from the nasal cavity to the central nervous system including the brain. In this review, besides the role of barriers we have discussed in detail about approaches adapted to deliver drugs to the brain along with mechanisms through nasal route. Further, different commercial formulations, clinical trials and patents have been thoroughly elaborated to date. The findings suggest that the nose-to-brain drug delivery method holds promise as an evolving approach, potentially contributing to the specific and targeted delivery of drugs into the brain.
Collapse
Affiliation(s)
| | - Debajyoti Roy
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Amrinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| |
Collapse
|
24
|
Morin TM, Allan N, Coutts J, Hooker JM, Langille M, Metcalfe A, Thamboo A, Jackson J, Sharma M, Rees T, Enright K, Irving K. Laminar Fluid Ejection for Olfactory Drug Delivery: A Proof of Concept Study. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:727-738. [PMID: 39698475 PMCID: PMC11655101 DOI: 10.1109/jtehm.2024.3503498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/17/2024] [Accepted: 11/16/2024] [Indexed: 12/20/2024]
Abstract
Focal intranasal drug delivery to the olfactory cleft is a promising avenue for pharmaceuticals targeting the brain. However, traditional nasal sprays often fail to deliver enough medication to this specific area. We present a laminar fluid ejection (LFE) method for precise delivery of medications to the olfactory cleft. Using a 3D-printed model of the nasal passages, we determined the precise velocity and angle of insertion needed to deposit fluid at the olfactory cleft. Then, we conducted three proof-of-concept in-vivo imaging studies to confirm olfactory delivery in humans. First, we used Technetium-99 (a radiolabeled tracer) and methylene blue (a laboratory-made dye) to visualize olfactory deposition. Both tracers showed successful deposition. In a separate study, we used functional MRI (fMRI), to compare our LFE method with a conventional nasal spray while delivering insulin. From the fMRI results, we qualitatively observed focal decreases in brain activity in prefrontal cortex following insulin delivery. Overall, these preliminary results suggest that LFE offers a targeted approach to olfactory drug delivery, opening opportunities for access to the brain.Clinical and Translational Impact Statement - Focal deposition at the olfactory cleft is a promising target for delivering medication to the brain. We present in-human tests of a laminar fluid ejection method for intranasal drug delivery and demonstrate improvements over conventional nasal spray.
Collapse
Affiliation(s)
- Thomas M. Morin
- Massachusetts General HospitalCharlestownMA02129USA
- Department of PsychologyBrandeis UniversityWalthamMA02453USA
| | | | | | - Jacob M. Hooker
- Massachusetts General HospitalCharlestownMA02129USA
- Harvard Medical SchoolBostonMA02115USA
| | - Morgan Langille
- Canadian Imaging Research CentreSaint JohnNBN6A 5B7Canada
- Department of Pharmacology, Department of Microbiology and ImmunologyDalhousie UniversityHalifaxNSB3H 4R2Canada
| | - Arron Metcalfe
- Canadian Imaging Research CentreSaint JohnNBN6A 5B7Canada
| | - Andrew Thamboo
- St. Paul's Sinus CentreSt. Paul's HospitalVancouverBCV6Z 1Y6Canada
| | | | - Manu Sharma
- Rocket Science HealthVictoriaBCV8V 2Y1Canada
| | - Tim Rees
- Rocket Science HealthVictoriaBCV8V 2Y1Canada
| | | | - Ken Irving
- Rocket Science HealthVictoriaBCV8V 2Y1Canada
| |
Collapse
|
25
|
Azimzadeh M, Cheah PS, Ling KH. Brain insulin resistance in Down syndrome: Involvement of PI3K-Akt/mTOR axis in early-onset of Alzheimer's disease and its potential as a therapeutic target. Biochem Biophys Res Commun 2024; 733:150713. [PMID: 39307112 DOI: 10.1016/j.bbrc.2024.150713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024]
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual impairment, characterised by an extra copy of chromosome 21. After the age of 40, DS individuals are highly susceptible to accelerated ageing and the development of early-onset Alzheimer-like neuropathology. In the context of DS, the brain presents a spectrum of neuropathological mechanisms and metabolic anomalies. These include heightened desensitisation of brain insulin and insulin-like growth factor-1 (IGF-1) reactions, compromised mitochondrial functionality, escalated oxidative stress, reduced autophagy, and the accumulation of amyloid beta and tau phosphorylation. These multifaceted factors intertwine to shape the intricate landscape of DS-related brain pathology. Altered brain insulin signalling is linked to Alzheimer's disease (AD). This disruption may stem from anomalies in the extracellular aspect (insulin receptor) or the intracellular facet, involving the inhibition of insulin receptor substrate 1 (IRS1). Both domains contribute to the intricate mechanism underlying this dysregulation. The PI3K-Akt/mammalian target of the rapamycin (mTOR) axis is a crucial intracellular element of the insulin signalling pathway that connects numerous physiological processes in the cell cycle. In age-related neurodegenerative disorders like AD, aberrant modulation of the PI3K-Akt signalling cascade is a key factor contributing to their onset. Aberrant and sustained hyperactivation of the PI3K/Akt-mTOR axis in the DS brain is implicated in early symptoms of AD development. Targeting the PI3K-Akt/mTOR pathway may help delay the onset of early-onset AD in individuals with DS, offering a potential way to slow disease progression and enhance their quality of life.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
26
|
Kciuk M, Kruczkowska W, Gałęziewska J, Wanke K, Kałuzińska-Kołat Ż, Aleksandrowicz M, Kontek R. Alzheimer's Disease as Type 3 Diabetes: Understanding the Link and Implications. Int J Mol Sci 2024; 25:11955. [PMID: 39596023 PMCID: PMC11593477 DOI: 10.3390/ijms252211955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two prevalent conditions that present considerable public health issue in aging populations worldwide. Recent research has proposed a novel conceptualization of AD as "type 3 diabetes", highlighting the critical roles of insulin resistance and impaired glucose metabolism in the pathogenesis of the disease. This article examines the implications of this association, exploring potential new avenues for treatment and preventive strategies for AD. Key evidence linking diabetes to AD emphasizes critical metabolic processes that contribute to neurodegeneration, including inflammation, oxidative stress, and alterations in insulin signaling pathways. By framing AD within this metabolic context, we can enhance our understanding of its etiology, which in turn may influence early diagnosis, treatment plans, and preventive measures. Understanding AD as a manifestation of diabetes opens up the possibility of employing novel therapeutic strategies that incorporate lifestyle modifications and the use of antidiabetic medications to mitigate cognitive decline. This integrated approach has the potential to improve patient outcomes and deepen our comprehension of the intricate relationship between neurodegenerative diseases and metabolic disorders.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Weronika Kruczkowska
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland; (W.K.); (J.G.); (Ż.K.-K.)
| | - Julia Gałęziewska
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland; (W.K.); (J.G.); (Ż.K.-K.)
| | - Katarzyna Wanke
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland; (W.K.); (J.G.); (Ż.K.-K.)
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, 90-136 Lodz, Poland
| | - Marta Aleksandrowicz
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| |
Collapse
|
27
|
Yue Q, Leng X, Xie N, Zhang Z, Yang D, Hoi MPM. Endothelial Dysfunctions in Blood-Brain Barrier Breakdown in Alzheimer's Disease: From Mechanisms to Potential Therapies. CNS Neurosci Ther 2024; 30:e70079. [PMID: 39548663 PMCID: PMC11567945 DOI: 10.1111/cns.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 11/18/2024] Open
Abstract
Recent research has shown the presence of blood-brain barrier (BBB) breakdown in Alzheimer's disease (AD). BBB is a dynamic interface consisting of a continuous monolayer of brain endothelial cells (BECs) enveloped by pericytes and astrocytes. The restricted permeability of BBB strictly controls the exchange of substances between blood and brain parenchyma, which is crucial for brain homeostasis by excluding blood-derived detrimental factors and pumping out brain-derived toxic molecules. BBB breakdown in AD is featured as a series of BEC pathologies such as increased paracellular permeability, abnormal levels and functions of transporters, and inflammatory or oxidative profile, which may disturb the substance transportation across BBB, thereafter induce CNS disorders such as hypometabolism, Aβ accumulation, and neuroinflammation, eventually aggravate cognitive decline. Therefore, it seems important to protect BEC properties for BBB maintenance and neuroprotection. In this review, we thoroughly summarized the pathological alterations of BEC properties reported in AD patients and numerous AD models, including paracellular permeability, influx and efflux transporters, and inflammatory and oxidative profiles, and probably associated underlying mechanisms. Then we reviewed current therapeutic agents that are effective in ameliorating a series of BEC pathologies, and ultimately protecting BBB integrity and cognitive functions. Regarding the current drug development for AD proceeds extremely hard, this review aims to discuss the therapeutic potentials of targeting BEC pathologies and BBB maintenance for AD treatment, therefore expecting to shed a light on the future AD drug development by targeting BEC pathologies and BBB protection.
Collapse
Affiliation(s)
- Qian Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
| | - Xinyue Leng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| | - Ningqing Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Deguang Yang
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
28
|
Tran J, Parekh S, Rockcole J, Wilson D, Parmar MS. Repurposing antidiabetic drugs for Alzheimer's disease: A review of preclinical and clinical evidence and overcoming challenges. Life Sci 2024; 355:123001. [PMID: 39173996 DOI: 10.1016/j.lfs.2024.123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Repurposing antidiabetic drugs for the treatment of Alzheimer's disease (AD) has emerged as a promising therapeutic strategy. This review examines the potential of repurposing antidiabetic drugs for AD treatment, focusing on preclinical evidence, clinical trials, and observational studies. In addition, the review aims to explore challenges and opportunities in repurposing antidiabetic drugs for AD, emphasizing the importance of well-designed clinical trials that consider patient selection criteria, refined outcome measures, adverse effects, and combination therapies to enhance therapeutic efficacy. Preclinical evidence suggests that glucagon-like peptide-1 (GLP-1) analogs, dipeptidyl peptidase-4 (DPP4) inhibitors, metformin, thiazolidinediones, and sodium-glucose co-transporter-2 (SGLT2) inhibitors exhibit neuroprotective effects in AD preclinical models. In preclinical studies, antidiabetic drugs have demonstrated neuroprotective effects by reducing amyloid beta (Aβ) plaques, tau hyperphosphorylation, neuroinflammation, and cognitive impairment. Antidiabetic drug classes, notably GLP-1 analogs and SGLT2 inhibitors, and a reduced risk of dementia in patients with diabetes mellitus. While the evidence for DPP4 inhibitors is mixed, some studies suggest a potential protective effect. On the other hand, alpha-glucosidase inhibitors (AGIs) and sulfonylureas may potentially increase the risk, especially in those experiencing recurrent hypoglycemic events. Repurposing antidiabetic drugs for AD is a promising therapeutic strategy, but challenges such as disease heterogeneity, limited biomarkers, and benefits versus risk evaluation need to be addressed. Ongoing clinical trials in mild cognitive impairment (MCI) and early AD patients without diabetes will be crucial in determining the clinical efficacy and safety of the antidiabetic drugs, paving the way for potential treatments for AD.
Collapse
Affiliation(s)
- Jacky Tran
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Sneh Parekh
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Julia Rockcole
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Danielle Wilson
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Mayur S Parmar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA.
| |
Collapse
|
29
|
Gómez-Guijarro MD, Cavero-Redondo I, Saz-Lara A, Pascual-Morena C, Álvarez-Bueno C, Martínez-García I. Intranasal insulin effect on cognitive and/or memory impairment: a systematic review and meta-analysis. Cogn Neurodyn 2024; 18:3059-3073. [PMID: 39555259 PMCID: PMC11564437 DOI: 10.1007/s11571-024-10138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/21/2024] [Accepted: 06/02/2024] [Indexed: 11/19/2024] Open
Abstract
Background: Cognitive impairment, characterized by deficits in cognitive functions and loss of delayed and immediate recall, disproportionately affects individuals aged 65 years and older, particularly those with comorbid cardiovascular conditions such as hypertension and diabetes mellitus. Objective: This study aimed to investigate the potential association between intranasal insulin and cognitive and/or memory impairment, with a specific focus on delayed and immediate recall, considering the rising prevalence of cognitive disorders in the aging population. Methodology: Employing a rigorous systematic approach, we conducted a thorough search of MEDLINE, Scopus, the Cochrane database, and Web of Science from inception to November 23, 2022, identifying relevant randomized clinical trials. Our analyses encompassed three key aspects: (i) assessing the impact of intranasal insulin on cognitive impairment, (ii) evaluating its effect on delayed recall, and (iii) examining its influence on immediate recall. Results: Five studies meeting the inclusion criteria were included. The results underscored a statistically significant effect of intranasal insulin on delayed memory (effect size: 1.37; 95% CI: 0.65 to 2.09) and overall cognition (effect size: 0.58; 95% CI: 0.08 to 1.08). However, no statistically significant effect was observed for immediate memory (effect size: 0.48; 95% CI: -0.00 to 0.96). Conclusions: This study provides compelling evidence supporting the significance and efficacy of intranasal insulin in enhancing delayed recall and overall cognition. The observed effects hold promise for potential therapeutic interventions in addressing cognitive deficits associated with aging and comorbid conditions. The findings emphasize the need for further research to elucidate the underlying mechanisms and optimize the application of intranasal insulin in cognitive enhancement strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10138-5.
Collapse
Affiliation(s)
| | - Iván Cavero-Redondo
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Alicia Saz-Lara
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
| | | | - Celia Álvarez-Bueno
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Universidad Politécnica y Artística del Paraguay, Asunción, Paraguay
| | | |
Collapse
|
30
|
Popescu R, Dinu-Pîrvu CE, Ghica MV, Anuța V, Popa L. Physico-Chemical Characterization and Initial Evaluation of Carboxymethyl Chitosan-Hyaluronan Hydrocolloid Systems with Insulin Intended for Intranasal Administration. Int J Mol Sci 2024; 25:10452. [PMID: 39408782 PMCID: PMC11476560 DOI: 10.3390/ijms251910452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The nasal route of administration can bypass the blood-brain barrier in order to obtain a higher concentration in the brain, thus offering a feasible alternative route of administration for diseases associated with the central nervous system. The advantages of the intranasal administration and the potential favorable therapeutic effects of intranasally administered insulin led to the formulation of carboxymethyl chitosan (CMC) and sodium hyaluronate (NaHA) hydrocolloidal systems with insulin for nasal administration, targeting nose-to-brain delivery and the initial assessment of these systems. The influence of the formulation variables on the response parameters defined as surface properties, rheology, and in vitro release of insulin were analyzed using experimental design and statistical programs (Modde and Minitab software). The systems recorded good wetting and adhesion capacity, allowing the spread of the hydrocolloidal systems on the nasal mucosa. The samples had a pseudoplastic flow and the rapid release of the insulin was according to our objective. According to the physico-chemical characterization and preliminary assessment, these formulations are appropriate for administration on the nasal mucosa, but further studies are necessary to demonstrate the beneficial therapeutic actions and the safety of using intranasal insulin.
Collapse
Affiliation(s)
- Roxana Popescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (R.P.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (R.P.); (C.-E.D.-P.); (V.A.); (L.P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (R.P.); (C.-E.D.-P.); (V.A.); (L.P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (R.P.); (C.-E.D.-P.); (V.A.); (L.P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (R.P.); (C.-E.D.-P.); (V.A.); (L.P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
31
|
Tabassum A, Badulescu S, Singh E, Asoro R, McIntyre RS, Teopiz KM, Llach CD, Shah H, Mansur RB. Central effects of acute intranasal insulin on neuroimaging, cognitive, and behavioural outcomes: A systematic review. Neurosci Biobehav Rev 2024; 167:105907. [PMID: 39332547 DOI: 10.1016/j.neubiorev.2024.105907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/10/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
The distribution of insulin receptors throughout the brain implicates insulin in physiological functions and disease states, including cognition, appetite, mood, and metabolic disorders. Intranasally administered insulin offers a non-invasive approach for isolating and investigating brain insulin action. This systematic review synthesized the effects of acute intranasal insulin on neuroimaging, cognitive, and behavioural outcomes reported in 48 studies in adults. Age, sex, body mass index, and insulin resistance were found to moderate brain insulin action. Neuroimaging studies showed insulin affects brain activity, cerebral blood flow, and functional connectivity in regions like the hypothalamus, amygdala, and insula. Insulin also modified cognitive function, eating behaviour, and the stress response. Nonetheless, inconsistencies in study designs, dosages, and outcome measures necessitate standardized methodologies to better understand central insulin action. Taken together, insulin's ability to modify stress and fear, appetite and eating behaviour, and cognitive function in both healthy and diseased individuals highlight its potential in the therapeutic and mechanistic exploration of highly prevalent psychiatric, metabolic, and cognitive conditions like mood disorders, obesity, and Alzheimer's disease.
Collapse
Affiliation(s)
- Aniqa Tabassum
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| | - Sebastian Badulescu
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Evanka Singh
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| | - Renee Asoro
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| | - Roger S McIntyre
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada; Department of Psychiatry, University of Toronto, Canada.
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Cristian-Daniel Llach
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| | - Hiya Shah
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| | - Rodrigo B Mansur
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
32
|
Wang LH, Huang CH, Lin IC. Advances in Neuroprotection in Glaucoma: Pharmacological Strategies and Emerging Technologies. Pharmaceuticals (Basel) 2024; 17:1261. [PMID: 39458902 PMCID: PMC11510571 DOI: 10.3390/ph17101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Glaucoma is a major global health concern and the leading cause of irreversible blindness worldwide, characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons. This review focuses on the need for neuroprotective strategies in glaucoma management, addressing the limitations of current treatments that primarily target intraocular pressure (IOP) reduction. Despite effective IOP management, many patients continue to experience RGC degeneration, leading to irreversible blindness. This review provides an overview of both pharmacological interventions and emerging technologies aimed at directly protecting RGCs and the optic nerve, independent of IOP reduction. Pharmacological agents such as brimonidine, neurotrophic factors, memantine, Ginkgo biloba extract, citicoline, nicotinamide, insulin, and resveratrol show promise in preclinical and early clinical studies for their neuroprotective properties. Emerging technologies, including stem cell therapy, gene therapy, mitochondrial-targeted therapies, and nanotechnologies, offer innovative approaches for neuroprotection and regeneration of damaged RGCs. While these interventions hold significant potential, further research and clinical trials are necessary to confirm their efficacy and establish their role in clinical practice. This review highlights the multifaceted nature of neuroprotection in glaucoma, aiming to guide future research and clinical practice toward more effective management of glaucoma-induced neurodegeneration.
Collapse
Affiliation(s)
- Li-Hsin Wang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chun-Hao Huang
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
33
|
Shekho D, Mishra R, Kamal R, Bhatia R, Awasthi A. Breaking Barriers in Alzheimer's Disease: the Role of Advanced Drug Delivery Systems. AAPS PharmSciTech 2024; 25:207. [PMID: 39237748 DOI: 10.1208/s12249-024-02923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive impairment, brain plaques, and tangles, is a global health concern affecting millions. It involves the build-up of amyloid-β (Aβ) and tau proteins, the formation of neuritic plaques and neurofibrillary tangles, cholinergic system dysfunction, genetic variations, and mitochondrial dysfunction. Various signaling pathways and metabolic processes are implicated in AD, along with numerous biomarkers used for diagnosis, risk assessment, and research. Despite these, there is no cure or effective treatment for AD. It is critically important to address this immediately to develop novel drug delivery systems (NDDS) capable of targeting the brain and delivering therapeutic agents to modulate the pathological processes of AD. This review summarizes AD, its pathogenesis, related signaling pathways, biomarkers, conventional treatments, the need for NDDS, and their application in AD treatment. It also covers preclinical, clinical, and ongoing trials, patents, and marketed AD formulations.
Collapse
Affiliation(s)
- Devank Shekho
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ritika Mishra
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
34
|
Chauhan A, Dubey S, Jain S. Association Between Type 2 Diabetes Mellitus and Alzheimer's Disease: Common Molecular Mechanism and Therapeutic Targets. Cell Biochem Funct 2024; 42:e4111. [PMID: 39228117 DOI: 10.1002/cbf.4111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) rates are rising, mirroring the global trend of an aging population. Numerous epidemiological studies have shown that those with Type 2 diabetes (T2DM) have an increased risk of developing dementia. These degenerative and progressive diseases share some risk factors. To a large extent, the amyloid cascade is responsible for AD development. Neurofibrillary tangles induce neurodegeneration and brain atrophy; this chain reaction begins with hyperphosphorylation of tau proteins caused by progressive amyloid beta (Aβ) accumulation. In addition to these processes, it seems that alterations in brain glucose metabolism and insulin signalling lead to cell death and reduced synaptic plasticity in AD, before the onset of symptoms, which may be years away. Due to the substantial evidence linking insulin resistance in the brain with AD, researchers have coined the name "Type 3 diabetes" to characterize the condition. We still know little about the processes involved, even though current animal models have helped illuminate the links between T2DM and AD. This brief overview discusses insulin and IGF-1 signalling disorders and the primary molecular pathways that may connect them. The presence of GSK-3β in AD is intriguing. These proteins' association with T2DM and pancreatic β-cell failure suggests they might be therapeutic targets for both disorders.
Collapse
Affiliation(s)
- Aparna Chauhan
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| | - Sachin Dubey
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| |
Collapse
|
35
|
Ríos JA, Bórquez JC, Godoy JA, Zolezzi JM, Furrianca MC, Inestrosa NC. Emerging role of Metformin in Alzheimer's disease: A translational view. Ageing Res Rev 2024; 100:102439. [PMID: 39074563 DOI: 10.1016/j.arr.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Alzheimer's disease (AD) constitutes a major public-health issue of our time. Regrettably, despite our considerable understanding of the pathophysiological aspects of this disease, current interventions lead to poor outcomes. Furthermore, experimentally promising compounds have continuously failed when translated to clinical trials. Along with increased population ageing, Type 2 Diabetes Mellitus (T2DM) has become an extremely common condition, mainly due to unbalanced dietary habits. Substantial epidemiological evidence correlates T2DM with cognitive impairment as well. Considering that brain insulin resistance, mitochondrial dysfunction, oxidative stress, and amyloidogenesis are common phenomena, further approaching the common features among these pathological conditions. Metformin constitutes the first-choice drug to preclude insulin resistance in T2DM clinical management. Experimental evidence suggests that its functions might include neuroprotective effects, in addition to its hypoglycemic activity. This review aims to summarize and discuss current knowledge of experimental data on metformin on this path towards translational medicine. Finally, we discuss the controversial data of responses to metformin in vitro, and in vivo, animal models and human studies.
Collapse
Affiliation(s)
- Juvenal A Ríos
- Facultad de Medicina y Ciencia, Escuela de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Juan Carlos Bórquez
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile; Facultad de Ciencias de la Salud, Universidad de Magallanes, Punta Arenas, Chile
| | - Juan A Godoy
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | | | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
36
|
Hroudová J, Fišar Z. Alzheimer's disease approaches - Focusing on pathology, biomarkers and clinical trial candidates. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111069. [PMID: 38917881 DOI: 10.1016/j.pnpbp.2024.111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The strategy for the development of new drugs for Alzheimer's disease (AD) recognizes that an effective therapy requires early therapeutic intervention and a multifactorial approach that considers the individual initiators of AD development. Current knowledge of AD includes the understanding of pathophysiology, risk factors, biomarkers, and the evolving patterns of biomarker abnormalities. This knowledge is essential in identifying potential molecular targets for new drug development. This review summarizes promising AD drug candidates, many of which are currently in phase 2 or 3 clinical trials. New agents are classified according to the Common Alzheimer's Disease Research Ontology (CADRO). The main targets of new drugs for AD are processes related to amyloid beta and tau neurotoxicity, neurotransmission, inflammation, metabolism and bioenergetics, synaptic plasticity, and oxidative stress. These interventions are aimed at preventing disease onset and slowing or eliminating disease progression. The efficacy of pharmacotherapy may be enhanced by combining these drugs with other treatments, antioxidants, and dietary supplements. Ongoing research into AD pathophysiology, risk factors, biomarkers, and the dynamics of biomarker abnormalities may contribute to the understanding of AD and offer hope for effective therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| |
Collapse
|
37
|
Lin J, Yu Z, Gao X. Advanced Noninvasive Strategies for the Brain Delivery of Therapeutic Proteins and Peptides. ACS NANO 2024; 18:22752-22779. [PMID: 39133564 DOI: 10.1021/acsnano.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Recent years have witnessed rapid progress in the discovery of therapeutic proteins and peptides for the treatment of central nervous system (CNS) diseases. However, their clinical applications have been considerably hindered by challenges such as low biomembrane permeability, poor stability, short circulation time, and the formidable blood-brain barrier (BBB). Recently, substantial improvements have been made in understanding the dynamics of the BBB and developing efficient approaches for delivering proteins and peptides to the CNS, especially by using various nanoparticles. Herein, we present an overview of the up-to-date understanding of the BBB under physiological and pathological conditions, emphasizing their effects on brain drug delivery. We summarize advanced strategies and elucidate the underlying mechanisms for delivering proteins and peptides to the brain. We highlight the developments and applications of nanocarriers in treating CNS diseases via BBB crossing. We also provide critical opinions on the limitations and obstacles of the current strategies and put forward prospects for future research.
Collapse
Affiliation(s)
- Jiayuan Lin
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
38
|
Affuso F, Micillo F, Fazio S. Insulin Resistance, a Risk Factor for Alzheimer's Disease: Pathological Mechanisms and a New Proposal for a Preventive Therapeutic Approach. Biomedicines 2024; 12:1888. [PMID: 39200352 PMCID: PMC11351221 DOI: 10.3390/biomedicines12081888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Peripheral insulin resistance (IR) is a well-documented, independent risk factor for the development of type 2 diabetes, cardiovascular disease, cancer and cellular senescence. Recently, the brain has also been identified as an insulin-responsive region, where insulin acts as regulator of the brain metabolism. Despite the clear link between IR and the brain, the exact mechanisms underlying this relationship remain unclear. Therapeutic intervention in patients showing symptoms of neurodegenerative diseases has produced little or no results. It has been demonstrated that insulin resistance plays a significant role in the pathogenesis of neurodegenerative diseases, particularly cognitive decline. Peripheral and brain IR may represent a modifiable state that could be used to prevent major brain disorders. In this review, we will analyse the scientific literature supporting IR as a risk factor for Alzheimer's disease and suggest some therapeutic strategies to provide a new proposal for the prevention of brain IR and its consequences.
Collapse
Affiliation(s)
- Flora Affuso
- Independent Researcher, Viale Raffaello, 74, 80129 Napoli, Italy
| | - Filomena Micillo
- UOC of Geriatric Medicine AORN S.G. Moscati, 83100 Avellino, Italy
| | - Serafino Fazio
- Department of Internal Medicine, School of Medicine, Federico II University of Naples, 80138 Naples, Italy;
| |
Collapse
|
39
|
Rhea EM, Leclerc M, Yassine HN, Capuano AW, Tong H, Petyuk VA, Macauley SL, Fioramonti X, Carmichael O, Calon F, Arvanitakis Z. State of the Science on Brain Insulin Resistance and Cognitive Decline Due to Alzheimer's Disease. Aging Dis 2024; 15:1688-1725. [PMID: 37611907 PMCID: PMC11272209 DOI: 10.14336/ad.2023.0814] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is common and increasing in prevalence worldwide, with devastating public health consequences. While peripheral insulin resistance is a key feature of most forms of T2DM and has been investigated for over a century, research on brain insulin resistance (BIR) has more recently been developed, including in the context of T2DM and non-diabetes states. Recent data support the presence of BIR in the aging brain, even in non-diabetes states, and found that BIR may be a feature in Alzheimer's disease (AD) and contributes to cognitive impairment. Further, therapies used to treat T2DM are now being investigated in the context of AD treatment and prevention, including insulin. In this review, we offer a definition of BIR, and present evidence for BIR in AD; we discuss the expression, function, and activation of the insulin receptor (INSR) in the brain; how BIR could develop; tools to study BIR; how BIR correlates with current AD hallmarks; and regional/cellular involvement of BIR. We close with a discussion on resilience to both BIR and AD, how current tools can be improved to better understand BIR, and future avenues for research. Overall, this review and position paper highlights BIR as a plausible therapeutic target for the prevention of cognitive decline and dementia due to AD.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Manon Leclerc
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
| | - Hussein N Yassine
- Departments of Neurology and Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Ana W Capuano
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Han Tong
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA.
| | - Xavier Fioramonti
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Frederic Calon
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
40
|
Peng Y, Yao SY, Chen Q, Jin H, Du MQ, Xue YH, Liu S. True or false? Alzheimer's disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res Rev 2024; 99:102383. [PMID: 38955264 DOI: 10.1016/j.arr.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aβ, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China.
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
41
|
Muntu CM, Avanti C, Hayun, Surini S. Promising brain biodistribution of insulin via intranasal dry powder for nose-to-brain delivery. Heliyon 2024; 10:e33657. [PMID: 39027498 PMCID: PMC11255508 DOI: 10.1016/j.heliyon.2024.e33657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Nose-to-brain delivery (NTBD) offering potential benefits for treating Alzheimer's disease. In previous research, insulin dry powder (IDP) formulation for NTBD was developed, exhibiting favorable stability. This study aims to conduct in vitro and ex vivo assessment of release, permeation, mucoadhesion and histopathology, as well as an in vivo biodistribution study to produce IDP for NTBD and evaluate brain biodistribution. Spray-freeze-dried IDP formulations with varying weight ratios of trehalose-to-inulin were produced and analyzed. The release study was carried out in PBS with a pH of 5.8 stirred at 50 rpm and maintained at 37 °C ± 0.5 °C. Goat nasal mucosa was used for ex vivo permeation and mucoadhesion testing under similar conditions. An ex vivo histopathological examination and an in vivo study using enzyme-linked immunosorbent assay, were also performed. The IDP dissolution study demonstrated complete release of all IDPs within 120 min. The permeation study indicated that steady-state conditions were observed between 30 and 240 min. The mucoadhesion study unveiled that IDP F5 exhibited the fastest mucoadhesion time and the least force required within the fastest time of 43.60 ± 2.57 s. The histopathological study confirmed that none of the tested IDPs induced irritation in the nasal mucosa. Furthermore, the biodistribution study demonstrated the absence of detectable insulin in the plasma, while IDP F3 exhibited the highest deposited concentration of insulin within both the olfactory bulb and the whole brain. The extensive evaluation of the IDP formulations through in vitro, ex vivo, and in vivo studies implies their strength non-invasive NTBD. IDP F3, with a 1:1 wt ratio of trehalose to inulin, exhibited favorable brain biodistribution outcomes and was recommended for further investigation and development in the context of NTBD.
Collapse
Affiliation(s)
- Cynthia Marisca Muntu
- Laboratory of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Surabaya, Surabaya 60293, East Java, Indonesia
| | - Christina Avanti
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Surabaya, Surabaya 60293, East Java, Indonesia
| | - Hayun
- Laboratory of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Silvia Surini
- Laboratory of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| |
Collapse
|
42
|
McMillan NJ, Jacob DW, Shariffi B, Harper JL, Foster GE, Manrique-Acevedo C, Padilla J, Limberg JK. Effect of acute intranasal insulin administration on muscle sympathetic nerve activity in healthy young adults. Am J Physiol Heart Circ Physiol 2024; 327:H000. [PMID: 38787381 PMCID: PMC11390129 DOI: 10.1152/ajpheart.00253.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Systemic insulin increases muscle sympathetic nerve activity (MSNA) via both central actions within the brainstem and peripheral activation of the arterial baroreflex. Augmented MSNA during hyperinsulinemia likely restrains peripheral vasodilation and contributes to the maintenance of blood pressure (BP). However, in the absence of insulin action within the peripheral vasculature, whether central insulin stimulation increases MSNA and influences peripheral hemodynamics in humans remains unknown. Herein, we hypothesized intranasal insulin administration would increase MSNA and BP in healthy young adults. Participants were assigned to time control [TC, n = 13 (5 females/8 males), 28 ± 1 yr] or 160 IU of intranasal insulin administered over 5 min [n = 15 (5 females/10 males), 26 ± 2 yr]; five (1 female/4 males) participants completed both conditions. MSNA (fibular microneurography), BP (finger photoplethysmography), and leg blood flow (LBF, femoral Doppler ultrasound) were assessed at baseline, and 15 and 30 min following insulin administration. Leg vascular conductance [LVC = (LBF ÷ mean BP) × 100] was calculated. Venous insulin and glucose concentrations remained unchanged throughout (P > 0.05). Following intranasal insulin administration, MSNA (burst frequency; baseline = 100%; minute 15, 121 ± 8%; minute 30, 118 ± 6%; P = 0.009, n = 7) and mean BP (baseline = 100%; minute 15, 103 ± 1%; minute 30, 102 ± 1%; P = 0.003) increased, whereas LVC decreased (baseline = 100%; minute 15, 93 ± 3%; minute 30, 99 ± 3%; P = 0.03). In contrast, MSNA, mean BP, and LVC were unchanged in TC participants (P > 0.05). We provide the first evidence that intranasal insulin administration in healthy young adults acutely increases MSNA and BP and decreases LVC. These results enhance mechanistic understanding of the sympathetic and peripheral hemodynamic response to insulin.NEW & NOTEWORTHY Systemic insulin increases muscle sympathetic nerve activity (MSNA) via central actions within the brainstem and peripheral activation of the arterial baroreflex. In the absence of peripheral insulin action, whether central insulin stimulation increases MSNA and influences peripheral hemodynamics in humans was unknown. We provide the first evidence that intranasal insulin administration increases MSNA and blood pressure and reduces leg vascular conductance. These results enhance mechanistic understanding of the sympathetic and hemodynamic response to insulin.
Collapse
Affiliation(s)
- Neil J McMillan
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | - Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Brian Shariffi
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Glen E Foster
- School of Health and Exercise Sciences, Centre for Heart, Lung, and Vascular Health, University of British Columbia, Kelowna, Canada
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
43
|
Gendron WH, Fertan E, Roddick KM, Wong AA, Maliougina M, Hiani YE, Anini Y, Brown RE. Intranasal insulin treatment ameliorates spatial memory, muscular strength, and frailty deficits in 5xFAD mice. Physiol Behav 2024; 281:114583. [PMID: 38750806 DOI: 10.1016/j.physbeh.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The 5xFAD mouse model shows age-related weight loss as well as cognitive and motor deficits. Metabolic dysregulation, especially impaired insulin signaling, is also present in AD. This study examined whether intranasal delivery of insulin (INI) at low (0.875 U) or high (1.750 U) doses would ameliorate these deficits compared to saline in 10-month-old female 5xFAD and B6SJL wildtype (WT) mice. INI increased forelimb grip strength in the wire hang test in 5xFAD mice in a dose-dependent manner but did not improve the performance of 5xFAD mice on the balance beam. High INI doses reduced frailty scores in 5xFAD mice and improved spatial memory in both acquisition and reversal probe trials in the Morris water maze. INI increased swim speed in 5xFAD mice but had no effect on object recognition memory or working memory in the spontaneous alternation task, nor did it improve memory in the contextual or cued fear memory tasks. High doses of insulin increased the liver, spleen, and kidney weights and reduced brown adipose tissue weights. P-Akt signaling in the hippocampus was increased by insulin in a dose-dependent manner. Altogether, INI increased strength, reduced frailty scores, and improved visual spatial memory. Hypoglycemia was not present after INI, however alterations in tissue and organ weights were present. These results are novel and important as they indicate that intra-nasal insulin can reverse cognitive, motor and frailty deficits found in this mouse model of AD.
Collapse
Affiliation(s)
- William H Gendron
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Emre Fertan
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M Roddick
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aimée A Wong
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Maria Maliougina
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yassine El Hiani
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Younes Anini
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Richard E Brown
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
44
|
Wang M, Wei T, Yu C, Li R, Yin Y, Yang H, Di R, Xia X, Qin Q, Tang Y. Integrative Metabolomics and Whole Transcriptome Sequencing Reveal Role for TREM2 in Metabolism Homeostasis in Alzheimer's Disease. Mol Neurobiol 2024; 61:4188-4202. [PMID: 38066402 DOI: 10.1007/s12035-023-03840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/27/2023] [Indexed: 07/11/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia worldwide. Dysregulation of various metabolism pathways may mediate the development of AD pathology and cognitive dysfunction. Variants of triggering receptor expressed on myeloid cells-2 (TREM2) are known to increase the risk of developing AD. TREM2 plays a role in AD development by maintaining cellular energy and biosynthesis, but the precise mechanism through which it accomplishes this is unknown. Metabolomic analysis of hippocampal tissue from APP/PS1 and APP/PS1-TREM2 knockout (KO) mice found that TREM2 KO was associated with abnormalities in several metabolism pathways, and the effect was particularly pronounced in lipid metabolism and glucose metabolism pathways. Consistently, transcriptomic analysis of these mice determined that most differentially expressed genes were involved in energy metabolism pathways. We screened seven differentially expressed genes in APP/PS1-TREM2 KO mice that may influence AD development by altering energy metabolism. Integrative analysis of the metabolomic and transcriptomic profiles showed that TREM2 may regulate lipid metabolism and sphingolipid metabolism by affecting lipoprotein lipase (LPL) expression, thereby influencing AD progression. Our results prompt further studies of the interactions among TREM2, LPL, glucolipid metabolism, and sphingolipid metabolism in AD to identify new diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Meng Wang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Tao Wei
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Chaoji Yu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Ruiyang Li
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yunsi Yin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Hanchen Yang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Run Di
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Xinyi Xia
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Qi Qin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- National Center for Neurological Disorders, 45 Changchun Street, Beijing, 100053, China.
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- National Center for Neurological Disorders, 45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
45
|
Gladding JM, Rafiei N, Mitchell CS, Begg DP. Excision of the endothelial blood-brain barrier insulin receptor does not alter spatial cognition in mice fed either a chow or high-fat diet. Neurobiol Learn Mem 2024; 212:107938. [PMID: 38772444 DOI: 10.1016/j.nlm.2024.107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Insulin is transported across the blood-brain barrier (BBB) endothelium to regulate aspects of metabolism and cognition. Brain insulin resistance often results from high-fat diet (HFD) consumption and is thought to contribute to spatial cognition deficits. To target BBB insulin function, we used Cre-LoxP genetic excision of the insulin receptor (InsR) from endothelial cells in adult male mice. We hypothesized that this excision would impair spatial cognition, and that high-fat diet consumption would exacerbate these effects. Excision of the endothelial InsR did not impair performance in two spatial cognition tasks, the Y-Maze and Morris Water Maze, in tests held both before and after 14 weeks of access to high-fat (or chow control) diet. The HFD increased body weight gain and induced glucose intolerance but did not impair spatial cognition. Endothelial InsR excision tended to increase body weight and reduce sensitivity to peripheral insulin, but these metabolic effects were not associated with impairments to spatial cognition and did not interact with HFD exposure. Instead, all mice showed intact spatial cognitive performance regardless of whether they had been fed chow or a HFD, and whether the InsR had been excised or not. Overall, the results indicate that loss of the endothelial InsR does not impact spatial cognition, which is in line with pharmacological evidence that other mechanisms at the BBB facilitate insulin transport and allow it to exert its pro-cognitive effects.
Collapse
Affiliation(s)
- Joanne M Gladding
- School of Psychology, Faculty of Science, University of New South Wales, Australia.
| | - Neda Rafiei
- School of Psychology, Faculty of Science, University of New South Wales, Australia
| | - Caitlin S Mitchell
- School of Psychology, Faculty of Science, University of New South Wales, Australia
| | - Denovan P Begg
- School of Psychology, Faculty of Science, University of New South Wales, Australia
| |
Collapse
|
46
|
Lanzillotta C, Tramutola A, Lanzillotta S, Greco V, Pagnotta S, Sanchini C, Di Angelantonio S, Forte E, Rinaldo S, Paone A, Cutruzzolà F, Cimini FA, Barchetta I, Cavallo MG, Urbani A, Butterfield DA, Di Domenico F, Paul BD, Perluigi M, Duarte JMN, Barone E. Biliverdin Reductase-A integrates insulin signaling with mitochondrial metabolism through phosphorylation of GSK3β. Redox Biol 2024; 73:103221. [PMID: 38843768 PMCID: PMC11190564 DOI: 10.1016/j.redox.2024.103221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Brain insulin resistance links the failure of energy metabolism with cognitive decline in both type 2 Diabetes Mellitus (T2D) and Alzheimer's disease (AD), although the molecular changes preceding overt brain insulin resistance remain unexplored. Abnormal biliverdin reductase-A (BVR-A) levels were observed in both T2D and AD and were associated with insulin resistance. Here, we demonstrate that reduced BVR-A levels alter insulin signaling and mitochondrial bioenergetics in the brain. Loss of BVR-A leads to IRS1 hyper-activation but dysregulates Akt-GSK3β complex in response to insulin, hindering the accumulation of pGSK3βS9 into the mitochondria. This event impairs oxidative phosphorylation and fosters the activation of the mitochondrial Unfolded Protein Response (UPRmt). Remarkably, we unveil that BVR-A is required to shuttle pGSK3βS9 into the mitochondria. Our data sheds light on the intricate interplay between insulin signaling and mitochondrial metabolism in the brain unraveling potential targets for mitigating the development of brain insulin resistance and neurodegeneration.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Simona Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Viviana Greco
- Department of Basic Biotechnology, Perioperative and Intensive Clinics, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, L.go F.Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A.Gemelli 8, 00168, Rome, Italy
| | - Sara Pagnotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Caterina Sanchini
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Silvia Di Angelantonio
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | | | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | | | - Andrea Urbani
- Department of Basic Biotechnology, Perioperative and Intensive Clinics, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, L.go F.Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A.Gemelli 8, 00168, Rome, Italy
| | - D Allan Butterfield
- Sanders-Brown Center on Aging, Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Joao M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy.
| |
Collapse
|
47
|
Wong CYJ, Baldelli A, Hoyos CM, Tietz O, Ong HX, Traini D. Insulin Delivery to the Brain via the Nasal Route: Unraveling the Potential for Alzheimer's Disease Therapy. Drug Deliv Transl Res 2024; 14:1776-1793. [PMID: 38441832 PMCID: PMC11153287 DOI: 10.1007/s13346-024-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 06/06/2024]
Abstract
This comprehensive review delves into the potential of intranasal insulin delivery for managing Alzheimer's Disease (AD) while exploring the connection between AD and diabetes mellitus (DM). Both conditions share features of insulin signalling dysregulation and oxidative stress that accelerate inflammatory response. Given the physiological barriers to brain drug delivery, including the blood-brain barrier, intranasal administration emerges as a non-invasive alternative. Notably, intranasal insulin has shown neuroprotective effects, impacting Aβ clearance, tau phosphorylation, and synaptic plasticity. In preclinical studies and clinical trials, intranasally administered insulin achieved rapid and extensive distribution throughout the brain, with optimal formulations exhibiting minimal systemic circulation. The detailed mechanism of insulin transport through the nose-to-brain pathway is elucidated in the review, emphasizing the role of olfactory and trigeminal nerves. Despite promising prospects, challenges in delivering protein drugs from the nasal cavity to the brain remain, including enzymes, tight junctions, mucociliary clearance, and precise drug deposition, which hinder its translation to clinical settings. The review encompasses a discussion of the strategies to enhance the intranasal delivery of therapeutic proteins, such as tight junction modulators, cell-penetrating peptides, and nano-drug carrier systems. Moreover, successful translation of nose-to-brain drug delivery necessitates a holistic understanding of drug transport mechanisms, brain anatomy, and nasal formulation optimization. To date, no intranasal insulin formulation has received regulatory approval for AD treatment. Future research should address challenges related to drug absorption, nasal deposition, and the long-term effects of intranasal insulin. In this context, the evaluation of administration devices for nose-to-brain drug delivery becomes crucial in ensuring precise drug deposition patterns and enhancing bioavailability.
Collapse
Affiliation(s)
- Chun Yuen Jerry Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Alberto Baldelli
- Faculty of Land and Food Systems, The University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Camilla M Hoyos
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia
| | - Ole Tietz
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia.
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia.
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
48
|
Schatz S, Gutiérrez GR. Enhancing socio-communicative functions in an MCI patient with intra-nasal insulin: a case report. Front Psychiatry 2024; 15:1326702. [PMID: 39006824 PMCID: PMC11239438 DOI: 10.3389/fpsyt.2024.1326702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
This report examines extended intra-nasal insulin treatment [INI] for an Insulin Resistant early Mild Cognitive Impairment [MCI] patient. Patient [EJ] also had medial temporal lobe [MTL] damage, poor short-term memory, significant irritability, and social and linguistic withdrawal at treatment start. Compared to baseline, nine months INI treatment increased grey matter volume, lowered beta-amyloid levels, and improved MCI and FAS scores. Patient also increased pragmatic capacities in social conversation and procedural memory. These findings align with results from prior clinical trials on INI and suggest that treatment can slow neurodegenerative disease progression in early MCI patients.
Collapse
Affiliation(s)
- Sara Schatz
- International Studies, The Ohio State University, Columbus, OH, United States
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States
| | - Grace Rose Gutiérrez
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
49
|
Aranda-Abreu GE, Rojas-Durán F, Hernández-Aguilar ME, Herrera-Covarrubias D, Chí-Castañeda LD, Toledo-Cárdenas MR, Suárez-Medellín JM. Alzheimer's Disease: Cellular and Pharmacological Aspects. Geriatrics (Basel) 2024; 9:86. [PMID: 39051250 PMCID: PMC11270425 DOI: 10.3390/geriatrics9040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease was described more than 100 years ago and despite the fact that several molecules are being tested for its treatment, which are in phase III trials, the disease continues to progress. The main problem is that these molecules function properly in healthy neurons, while neuronal pathology includes plasma membrane disruption, malfunction of various organelles, and hyperphosphorylation of Tau and amyloid plaques. The main objective of this article is the discussion of a neuronal restoration therapy, where molecules designed for the treatment of Alzheimer's disease would probably be more effective, and the quality of life of people would be better.
Collapse
Affiliation(s)
- Gonzalo Emiliano Aranda-Abreu
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91192, Mexico; (F.R.-D.); (M.E.H.-A.); (D.H.-C.); (L.D.C.-C.); (M.R.T.-C.); (J.M.S.-M.)
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhang H, Zhao L, Li M, Li X, Li R, Wu D. Efficacy and safety of intranasal insulin on postoperative cognitive dysfunction in elderly patients after laparoscopic radical resection of colorectal cancer: a double-blind pilot study. Front Aging Neurosci 2024; 16:1375841. [PMID: 38915348 PMCID: PMC11194343 DOI: 10.3389/fnagi.2024.1375841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024] Open
Abstract
Objective To evaluate the efficacy and safety of intranasal insulin on postoperative cognitive dysfunction (POCD) in elderly patients after laparoscopic radical resection of colorectal cancer. Methods Older patients scheduled for laparoscopic radical resection of colorectal cancer at Beijing Luhe Hospital, Capital Medical University, between August 2023 and November 2023, were enrolled in this double-blind pilot study. Patients were randomized to the control and insulin groups at a 1:1 ratio. The primary outcome was the rate of POCD at postoperative 7 days. Results A total of 61 patients (30 in the insulin group) were analyzed. The insulin group had a significantly lower POCD rate compared with the control group at postoperative day 7 [4(13.3%) vs. 12 (38.7%), p = 0.024]. The serum levels of IL-6, TNF-α and S100β at T2-5 in the insulin group were significantly lower than those of the control group (IL-6: mean difference at T2, -4.14, p = 0.036; T3, -3.84, p = 0.039; T4, -3.37, p = 0.013; T5, -2.57, p = 0.042; TNF-α: mean difference at T2, -3.19, p = 0.002; T3, -2.35, p = 0.028; T4, -2.30, p = 0.019; T5, -1.96, p = 0.0181; S100β: mean difference at T2, -8.30, p = 0.019; T3, -23.95, p = 0.020; T4, -20.01, p = 0.023; T5, -17.67, p = 0.010). No insulin allergic reactions, nasal irritation, or hypoglycemic reactions were observed in either of the groups. Conclusion Intranasal insulin may decrease the risk of POCD and inhibit the elevated serum IL-6, TNF-α, and S100β levels in elderly patients after laparoscopic radical resection of colorectal cancer, which proves that intranasal insulin may be a promising therapeutic option for POCD. Clinical trial registration Identifier, ChiCTR2300074423.
Collapse
Affiliation(s)
- Hailong Zhang
- Department of Anesthesiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Liqin Zhao
- Department of Anesthesiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Min Li
- Department of Anesthesiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xu Li
- Department of Anesthesiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ruofan Li
- Department of Gastrointestinal Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Anesthesiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|