1
|
Bright U, Akirav I. Cannabidiol Modulates Neuroinflammatory and Estrogen-Related Pathways in a Sex-Specific Manner in a Chronic Stress Model of Depression. Cells 2025; 14:99. [PMID: 39851527 PMCID: PMC11763596 DOI: 10.3390/cells14020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Evidence indicates a bidirectional link between depressive symptoms and neuroinflammation. This study evaluated chronic cannabidiol (CBD) treatment effects in male and female rats subjected to the unpredictable chronic mild stress (UCMS) model of depression. We analyzed the gene expression related to neuroinflammation, cannabinoid signaling, estrogen receptors, and specific microRNAs in the ventromedial prefrontal cortex (vmPFC), CA1, and ventral subiculum (VS). UCMS influenced immobility in a sex-specific manner, increasing it in males and decreasing it in females, effects that were reversed by CBD. CBD also normalized the UCMS-induced upregulation of tumor necrosis factor α (TNF-α) in the CA1 and VS in males. In both sexes, UCMS induced the upregulation of the nuclear factor kappa B subunit 1 (NF-κB1) gene in the VS, which was unaffected by CBD. Additionally, CBD reversed CB1 downregulation in the VS of males but not in the vmPFC of either sex. In males, CBD restored the UCMS-induced downregulation of VS estrogen receptor genes ERα and ERβ. UCMS also altered miR-146a-5p expression, downregulating it in females (VS) and upregulating it in males (CA1), with no CBD effect. These findings highlight the sex-specific mechanisms of CBD's antidepressant effect, with hippocampal neuroinflammatory and estrogenic pathways playing a key role in males.
Collapse
Affiliation(s)
- Uri Bright
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
2
|
Cherry AL, Wheeler MJ, Mathisova K, Di Miceli M. In silico analyses of the involvement of GPR55, CB1R and TRPV1: response to THC, contribution to temporal lobe epilepsy, structural modeling and updated evolution. Front Neuroinform 2024; 18:1294939. [PMID: 38404644 PMCID: PMC10894036 DOI: 10.3389/fninf.2024.1294939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction The endocannabinoid (eCB) system is named after the discovery that endogenous cannabinoids bind to the same receptors as the phytochemical compounds found in Cannabis. While endogenous cannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG), exogenous phytocannabinoids include Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). These compounds finely tune neurotransmission following synapse activation, via retrograde signaling that activates cannabinoid receptor 1 (CB1R) and/or transient receptor potential cation channel subfamily V member 1 (TRPV1). Recently, the eCB system has been linked to several neurological diseases, such as neuro-ocular abnormalities, pain insensitivity, migraine, epilepsy, addiction and neurodevelopmental disorders. In the current study, we aim to: (i) highlight a potential link between the eCB system and neurological disorders, (ii) assess if THC exposure alters the expression of eCB-related genes, and (iii) identify evolutionary-conserved residues in CB1R or TRPV1 in light of their function. Methods To address this, we used several bioinformatic approaches, such as transcriptomic (Gene Expression Omnibus), protein-protein (STRING), phylogenic (BLASTP, MEGA) and structural (Phyre2, AutoDock, Vina, PyMol) analyzes. Results Using RNA sequencing datasets, we did not observe any dysregulation of eCB-related transcripts in major depressive disorders, bipolar disorder or schizophrenia in the anterior cingulate cortex, nucleus accumbens or dorsolateral striatum. Following in vivo THC exposure in adolescent mice, GPR55 was significantly upregulated in neurons from the ventral tegmental area, while other transcripts involved in the eCB system were not affected by THC exposure. Our results also suggest that THC likely induces neuroinflammation following in vitro application on mice microglia. Significant downregulation of TPRV1 occurred in the hippocampi of mice in which a model of temporal lobe epilepsy was induced, confirming previous observations. In addition, several transcriptomic dysregulations were observed in neurons of both epileptic mice and humans, which included transcripts involved in neuronal death. When scanning known interactions for transcripts involved in the eCB system (n = 12), we observed branching between the eCB system and neurophysiology, including proteins involved in the dopaminergic system. Our protein phylogenic analyzes revealed that CB1R forms a clade with CB2R, which is distinct from related paralogues such as sphingosine-1-phosphate, receptors, lysophosphatidic acid receptors and melanocortin receptors. As expected, several conserved residues were identified, which are crucial for CB1R receptor function. The anandamide-binding pocket seems to have appeared later in evolution. Similar results were observed for TRPV1, with conserved residues involved in receptor activation. Conclusion The current study found that GPR55 is upregulated in neurons following THC exposure, while TRPV1 is downregulated in temporal lobe epilepsy. Caution is advised when interpreting the present results, as we have employed secondary analyzes. Common ancestors for CB1R and TRPV1 diverged from jawless vertebrates during the late Ordovician, 450 million years ago. Conserved residues are identified, which mediate crucial receptor functions.
Collapse
Affiliation(s)
- Amy L. Cherry
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Michael J. Wheeler
- Sustainable Environments Research Group, School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Karolina Mathisova
- School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Mathieu Di Miceli
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
3
|
Bloch Priel S, Yitzhaky A, Gurwitz D, Hertzberg L. Cannabinoid receptor gene CNR1 is downregulated in subcortical brain samples and upregulated in blood samples of individuals with schizophrenia: A participant data systematic meta-analysis. Eur J Neurosci 2023; 58:3540-3554. [PMID: 37611908 DOI: 10.1111/ejn.16122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/01/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Cannabis use leads to symptom exacerbation in schizophrenia patients, and endocannabinoid ligands have been studied as tentative schizophrenia therapeutics. Here, we aimed to characterise the connection between schizophrenia and the cannabinoid receptor 1 gene (CNR1) and explore possible mechanisms affecting its expression in schizophrenia. We performed a participant data systematic meta-analysis of CNR1 gene expression and additional endocannabinoid system genes in both brain (subcortical areas) and blood samples. We integrated eight brain sample datasets (overall 316 samples; 149 schizophrenia and 167 controls) and two blood sample datasets (overall 90 samples; 53 schizophrenia and 37 controls) while following the PRISMA meta-analysis guidelines. CNR1 was downregulated in subcortical regions and upregulated in blood samples of patients with schizophrenia. CNR2 and genes encoding endocannabinoids synthesis and degradation did not show differential expression in the brain or blood, except fatty acid amide hydrolase (FAAH), which showed a downregulation trend in blood. In addition, the brain expression levels of CNR1 and three GABA receptor genes, GABRA1, GABRA6 and GABRG2, were positively correlated (R = .57, .36, .54; p = 2.7 × 10-14 , 6.9 × 10-6 and 1.1 × 10-12 , respectively). Brain CNR1 downregulation and the positive correlation with three GABA receptor genes suggest an association with GABA neurotransmission and possible effects on negative schizophrenia symptoms. Further studies are required for clarifying the opposite CNR1 dysregulation in the brain and blood of schizophrenia patients and the potential of endocannabinoid ligands as schizophrenia therapeutics.
Collapse
Affiliation(s)
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Libi Hertzberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- Shalvata Mental Health Center, affiliated with the Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Chou S, Fish KN, Lewis DA, Sweet RA. Terminal type-specific cannabinoid CB1 receptor alterations in patients with schizophrenia: A pilot study. Neurobiol Dis 2023; 185:106262. [PMID: 37586566 PMCID: PMC10958392 DOI: 10.1016/j.nbd.2023.106262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Individuals with schizophrenia are at elevated genetic risks for comorbid cannabis use, and often experience exacerbations of cognitive and psychotic symptoms when exposed to cannabis. These findings have led a number of investigators to examine cannabinoid CB1 receptor (CB1R) alterations in schizophrenia, though with conflicting results. We recently demonstrated the presence of CB1R in both excitatory and inhibitory boutons in the human prefrontal cortex, with differential levels of the receptor between bouton types. We hypothesized that the differential enrichment of CB1R between bouton types - a factor previously unaccounted for when examining CB1R changes in schizophrenia - may resolve prior discrepant reports and increase our insight into the effects of CB1R alterations on the pathophysiology of schizophrenia. METHODS Using co-labeling immunohistochemistry and fluorescent microscopy, we examined total CB1R levels and CB1R levels within excitatory (vGlut1-positive) and inhibitory (vGAT-positive) boutons of prefrontal cortex samples from ten pairs of individuals (nine male pairs and one female pair) diagnosed with schizophrenia and non-psychiatric comparisons. RESULTS Significantly higher total CB1R levels were found within samples from individuals with schizophrenia. Terminal type-specific analyses identified significantly higher CB1R levels within excitatory boutons in samples from individuals with schizophrenia relative to comparisons. In contrast, CB1R levels within the subset of inhibitory boutons that normally express high CB1R levels (presumptive cholecystokinin neuron boutons) were lower in samples from individuals with schizophrenia relative to comparison samples. CONCLUSION Given CB1R's role in suppressing neurotransmission upon activation, these results suggest an overall shift in excitatory and inhibitory balance regulation toward a net reduction of excitatory activity in schizophrenia.
Collapse
Affiliation(s)
- Shinnyi Chou
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
5
|
Chou S, Fish KN, Lewis DA, Sweet RA. Terminal type-specific cannabinoid CB1 receptor alterations in patients with schizophrenia: a pilot study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536217. [PMID: 37090672 PMCID: PMC10120624 DOI: 10.1101/2023.04.11.536217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background Individuals with schizophrenia are at elevated genetic risks for comorbid cannabis use, and often experience exacerbations of cognitive and psychotic symptoms when exposed to cannabis. These findings have led a number of investigators to examine cannabinoid CB1 receptor (CB1R) alterations in schizophrenia, though with conflicting results. We recently demonstrated the presence of CB1R in both excitatory and inhibitory boutons in the human prefrontal cortex, with differential levels of the receptor between bouton types. We hypothesized that the differential enrichment of CB1R between bouton types - a factor previously unaccounted for when examining CB1R changes in schizophrenia - may resolve prior discrepant reports and increase our insight into the effects of CB1R alterations on the pathophysiology of schizophrenia. Methods Using co-labeling immunohistochemistry and fluorescent microscopy, we examined total CB1R levels and CB1R levels within excitatory (vGlut1-positive) and inhibitory (vGAT-positive) boutons of prefrontal cortex samples from ten pairs of individuals diagnosed with schizophrenia and non-psychiatric comparisons. Results Significantly higher total CB1R levels were found within samples from individuals with schizophrenia. Terminal type-specific analyses identified significantly higher CB1R levels within excitatory boutons in samples from individuals with schizophrenia relative to comparisons. In contrast, CB1R levels within the subset of inhibitory boutons that normally express high CB1R levels (presumptive cholecystokinin neuron boutons) were lower in samples from individuals with schizophrenia relative to comparison samples. Conclusion Given CB1R's role in suppressing neurotransmission upon activation, these results suggest an overall shift in excitatory and inhibitory balance regulation toward a net reduction of excitatory activity in schizophrenia.
Collapse
Affiliation(s)
- Shinnyi Chou
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
6
|
Di Bartolomeo M, Stark T, Di Martino S, Iannotti FA, Ruda-Kucerova J, Romano GL, Kuchar M, Laudani S, Palivec P, Piscitelli F, Wotjak CT, Bucolo C, Drago F, Di Marzo V, D’Addario C, Micale V. The Effects of Peripubertal THC Exposure in Neurodevelopmental Rat Models of Psychopathology. Int J Mol Sci 2023; 24:ijms24043907. [PMID: 36835313 PMCID: PMC9962163 DOI: 10.3390/ijms24043907] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Adolescent exposure to cannabinoids as a postnatal environmental insult may increase the risk of psychosis in subjects exposed to perinatal insult, as suggested by the two-hit hypothesis of schizophrenia. Here, we hypothesized that peripubertal Δ9-tetrahydrocannabinol (aTHC) may affect the impact of prenatal methylazoxymethanol acetate (MAM) or perinatal THC (pTHC) exposure in adult rats. We found that MAM and pTHC-exposed rats, when compared to the control group (CNT), were characterized by adult phenotype relevant to schizophrenia, including social withdrawal and cognitive impairment, as revealed by social interaction test and novel object recognition test, respectively. At the molecular level, we observed an increase in cannabinoid CB1 receptor (Cnr1) and/or dopamine D2/D3 receptor (Drd2, Drd3) gene expression in the prefrontal cortex of adult MAM or pTHC-exposed rats, which we attributed to changes in DNA methylation at key regulatory gene regions. Interestingly, aTHC treatment significantly impaired social behavior, but not cognitive performance in CNT groups. In pTHC rats, aTHC did not exacerbate the altered phenotype nor dopaminergic signaling, while it reversed cognitive deficit in MAM rats by modulating Drd2 and Drd3 gene expression. In conclusion, our results suggest that the effects of peripubertal THC exposure may depend on individual differences related to dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Tibor Stark
- Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic
- Psychedelic Research Centre, National Institute of Mental Health, Topolová 748, 25067 Klecany, Czech Republic
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Petr Palivec
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Carsten T. Wotjak
- Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine, Agricultural and Food Sciences, CRIUCPQ, INAF and Centre NUTRISS, Université Laval, Quebec City, QC G1V 4G5, Canada
| | - Claudio D’Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence: or ; Tel.: +39-095-4781199
| |
Collapse
|
7
|
D'Souza DC, DiForti M, Ganesh S, George TP, Hall W, Hjorthøj C, Howes O, Keshavan M, Murray RM, Nguyen TB, Pearlson GD, Ranganathan M, Selloni A, Solowij N, Spinazzola E. Consensus paper of the WFSBP task force on cannabis, cannabinoids and psychosis. World J Biol Psychiatry 2022; 23:719-742. [PMID: 35315315 DOI: 10.1080/15622975.2022.2038797] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
OBJECTIVES The liberalisation of cannabis laws, the increasing availability and potency of cannabis has renewed concern about the risk of psychosis with cannabis. METHODS The objective of the WFSBP task force was to review the literature about this relationship. RESULTS Converging lines of evidence suggest that exposure to cannabis increases the risk for psychoses ranging from transient psychotic states to chronic recurrent psychosis. The greater the dose, and the earlier the age of exposure, the greater the risk. For some psychosis outcomes, the evidence supports some of the criteria of causality. However, alternate explanations including reverse causality and confounders cannot be conclusively excluded. Furthermore, cannabis is neither necessary nor sufficient to cause psychosis. More likely it is one of the multiple causal components. In those with established psychosis, cannabis has a negative impact on the course and expression of the illness. Emerging evidence also suggests alterations in the endocannabinoid system in psychotic disorders. CONCLUSIONS Given that exposure to cannabis and cannabinoids is modifiable, delaying or eliminating exposure to cannabis or cannabinoids, could potentially impact the rates of psychosis related to cannabis, especially in those who are at high risk for developing the disorder.
Collapse
Affiliation(s)
- Deepak Cyril D'Souza
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Marta DiForti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK.,South London and Maudsley NHS Mental Health Foundation Trust, London, UK
| | - Suhas Ganesh
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Tony P George
- Addictions Division and Centre for Complex Interventions, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Wayne Hall
- The National Centre for Youth Substance Use Research, University of Queensland, Brisbane, Australia
| | - Carsten Hjorthøj
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University, Copenhagen, Denmark.,Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Institute for Clinical Sciences, Imperial College London, London, UK
| | - Matcheri Keshavan
- Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Timothy B Nguyen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK.,Institute for Clinical Sciences, Imperial College London, London, UK
| | - Godfrey D Pearlson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Olin Neuropsychiatry Ctr. Institute of Living, Hartford, CT, USA
| | - Mohini Ranganathan
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Alex Selloni
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia
| | - Edoardo Spinazzola
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
8
|
Gunasekera B, Diederen K, Bhattacharyya S. Cannabinoids, reward processing, and psychosis. Psychopharmacology (Berl) 2022; 239:1157-1177. [PMID: 33644820 PMCID: PMC9110536 DOI: 10.1007/s00213-021-05801-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Evidence suggests that an overlap exists between the neurobiology of psychotic disorders and the effects of cannabinoids on neurocognitive and neurochemical substrates involved in reward processing. AIMS We investigate whether the psychotomimetic effects of delta-9-tetrahydrocannabinol (THC) and the antipsychotic potential of cannabidiol (CBD) are underpinned by their effects on the reward system and dopamine. METHODS This narrative review focuses on the overlap between altered dopamine signalling and reward processing induced by cannabinoids, pre-clinically and in humans. A systematic search was conducted of acute cannabinoid drug-challenge studies using neuroimaging in healthy subjects and those with psychosis RESULTS: There is evidence of increased striatal presynaptic dopamine synthesis and release in psychosis, as well as abnormal engagement of the striatum during reward processing. Although, acute THC challenges have elicited a modest effect on striatal dopamine, cannabis users generally indicate impaired presynaptic dopaminergic function. Functional MRI studies have identified that a single dose of THC may modulate regions involved in reward and salience processing such as the striatum, midbrain, insular, and anterior cingulate, with some effects correlating with the severity of THC-induced psychotic symptoms. CBD may modulate brain regions involved in reward/salience processing in an opposite direction to that of THC. CONCLUSIONS There is evidence to suggest modulation of reward processing and its neural substrates by THC and CBD. Whether such effects underlie the psychotomimetic/antipsychotic effects of these cannabinoids remains unclear. Future research should address these unanswered questions to understand the relationship between endocannabinoid dysfunction, reward processing abnormalities, and psychosis.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Kelly Diederen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK.
| |
Collapse
|
9
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
10
|
Chand GB, Jiang H, Miller JP, Rhodes CH, Tu Z, Wong DF. Differential Sphingosine-1-Phosphate Receptor-1 Protein Expression in the Dorsolateral Prefrontal Cortex Between Schizophrenia Type 1 and Type 2. Front Psychiatry 2022; 13:827981. [PMID: 35350429 PMCID: PMC8957823 DOI: 10.3389/fpsyt.2022.827981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 11/25/2022] Open
Abstract
Understanding the etiology and treatment approaches in schizophrenia is challenged in part by the heterogeneity of this disorder. One encouraging progress is the growing evidence that there are subtypes of schizophrenia. Recent in vitro findings of messenger ribonucleic acid (mRNA) gene expression on postmortem dorsolateral prefrontal cortex (DLPFC) showed that schizophrenia has two subtypes, those with a relatively normal DLPFC transcriptome (Type 1) and those with differentially expressed genes (Type 2). Sphingosine-1-phosphate receptor-1 (S1PR1) is one of the genes that was highly upregulated in Type 2 compared to Type 1 and controls. The impact of that finding is limited because it only can be confirmed through analysis of autopsy tissue, and the clinical characteristics such as symptoms severity or illness duration except for cause of death was not available from that Medical Examiner based autopsy study. However, S1PR1 has great potential because it is a target gene that can be accessed via positron emission tomography (PET) in vivo using specific radioligands (starting with [11C]CS1P1) successfully developed at our center in human brain imaging. As a preliminary study to validate this PET target in schizophrenia, S1PR1 protein expression was assessed by receptor autoradiography (ARG) using [3H]CS1P1 and immunohistochemistry (IHC) in the DLPFC from patients with schizophrenia classified as Type 1 or Type 2 based on their DLPFC transcriptomes and from controls. Our analyses demonstrate that ARG S1PR1 protein expression is significantly higher in Type 2 compared to Type 1 (p < 0.05) and controls (p < 0.05), which was consistent with previous mRNA S1PR1. These findings support the possibility that PET S1PR1 can be used as a future imaging biomarker to distinguish these subgroups of schizophrenic patients during life with obvious implications for both patient management and the design of clinical trials to validate novel pharmacologic therapies.
Collapse
Affiliation(s)
- Ganesh B. Chand
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Hao Jiang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - J. Philip Miller
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Zhude Tu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Dean Foster Wong
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychiatry, Neuroscience, and Neurology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
11
|
Joaquim HPG, Costa AC, Pereira CAC, Talib LL, Bilt MMV, Loch AA, Gattaz WF. Plasmatic endocannabinoids are decreased in subjects with ultra-high risk of psychosis. Eur J Neurosci 2021; 55:1079-1087. [PMID: 34716624 DOI: 10.1111/ejn.15509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 11/27/2022]
Abstract
The onset of frank psychosis is usually preceded by a prodromal phase characterized by attenuated psychotic symptoms. Currently, research on schizophrenia prodromal phase (ultra-high risk for psychosis [UHR]) has focused on the risk of developing psychosis, on the transition to full blown psychosis and on its prediction. Neurobiological differences between UHR individuals who fully recover (remitters) versus those who show persistent/progressive prodromal symptoms (nonremitters) have been little explored. The endocannabinoid system constitutes a neuromodulatory system that plays a major role in brain development, synaptic plasticity, emotional behaviours and cognition. It comprises two cannabinoid receptors (CB1/CB2), two endocannabinoid ligands, arachidonylethanolamide (AEA) and 2-arachidonoylglycerol (2AG) along with their inactivation enzymes. Despite much evidence that the endocannabinoid system is imbalanced during psychosis, very little is known about it in UHR. Therefore, we aimed to quantify the plasma endocannabinoid levels in UHR and healthy controls (HC) and verify if these metabolites could differentiate between remitters and nonremitters. Circulating concentrations of AEA (p = .003) and 2AG (p < .001) were lower in UHR when compared with HC, with no difference between remitters and nonremitters. Regarding clinical evolution, it was observed that out of 91 UHRs initially considered, 16 had psychiatric complaints (3 years of follow-up). Considering those subjects, there were weak correlations between clinical parameters and plasma concentrations of endocannabinoids. Our results suggest that the endocannabinoids are imbalanced before frank psychosis and that changes can be seen in plasma of UHR individuals. These molecules proved to be potential biomarkers to identify individuals in the prodromal phase of psychosis.
Collapse
Affiliation(s)
- Helena P G Joaquim
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Alana C Costa
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Cícero A C Pereira
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Leda L Talib
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Martinus M V Bilt
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Alexandre A Loch
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Wagner F Gattaz
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
12
|
Ferretjans R, de Souza RP, Panizzutti B, Ferrari P, Mantovani L, de Campos-Carli SM, Santos RR, Guimarães FC, Teixeira AL, Gama CS, Salgado JV. Cannabinoid receptor gene polymorphisms and cognitive performance in patients with schizophrenia and controls. ACTA ACUST UNITED AC 2021; 44:26-34. [PMID: 34190825 PMCID: PMC8827365 DOI: 10.1590/1516-4446-2020-1650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/20/2021] [Indexed: 12/18/2022]
Abstract
Objective: To test the hypothesis that genetic variations of cannabinoid receptors contribute to the pathophysiology of cognitive deficits in schizophrenia. Methods: In this genetic association case-control study, cannabinoid receptor polymorphisms CNR1 rs12720071 and CNR2 rs2229579 were tested for association with neurocognitive performance in 69 patients with schizophrenia and 45 healthy controls. Neurocognition was assessed by the Brief Assessment of Cognition in Schizophrenia (BACS). Results: We found a consistent association between CNR1 rs12720071 polymorphism and the cognitive performance of patients in several cognitive domains. Patients with C/C polymorphism presented significantly worse performance in motor speed, verbal fluency, attention/processing speed and reasoning/problem solving. Conclusion: Although limited, our data support the hypothesis that CNR1 variations may be associated with the pathogenesis of cognitive deficits of schizophrenia.
Collapse
Affiliation(s)
- Rodrigo Ferretjans
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Renan P de Souza
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil
| | - Bruna Panizzutti
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, Australia.,Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Pâmela Ferrari
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento (PPGPSIQ), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratório de Psiquiatria Molecular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Lucas Mantovani
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Salvina M de Campos-Carli
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Rafael R Santos
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fernanda C Guimarães
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Antonio L Teixeira
- Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte, MG, Brazil.,Neuropsychiatry Program, UTHealth Houston, TX, USA
| | - Clarissa S Gama
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento (PPGPSIQ), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - João V Salgado
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil
| |
Collapse
|
13
|
Seillier A. The endocannabinoid system as a therapeutic target for schizophrenia: Failures and potentials. Neurosci Lett 2021; 759:136064. [PMID: 34146641 DOI: 10.1016/j.neulet.2021.136064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Owing to its psychotropic effects, Cannabis has been stigmatized by its recreational use leading to a dramatic decline in the experimentations about its medical use in the twentieth century. The medical properties of the plant - known since ancient times - have received increased attention over recent years; yet, the research on its potential application in the field of psychiatry is still nascent. In this connection, the non-psychotropic cannabidiol (CBD) has emerged as a phytocannabinoid compound with promising antipsychotic effects. In addition, advances in our understanding of the endocannabinoid system, along with accumulating evidence implicating this system in the pathophysiology of schizophrenia, have stimulated research by the pharmaceutical industry to explore whether alteration of this system can be of medical benefit. This review examines the current state of evidence regarding the clinical potential of cannabinoid-based drugs as a treatment for schizophrenia, while discussing various limitations with the therapeutic approaches considered so far. In the second part, the author highlights the most promising strategies, as well as the most interesting directions one could follow, in the emerging field of cannabinoid therapies for schizophrenia.
Collapse
Affiliation(s)
- Alexandre Seillier
- RP1 Experimental Neurobiology, National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic.
| |
Collapse
|
14
|
Song CG, Kang X, Yang F, Du WQ, Zhang JJ, Liu L, Kang JJ, Jia N, Yue H, Fan LY, Wu SX, Jiang W, Gao F. Endocannabinoid system in the neurodevelopment of GABAergic interneurons: implications for neurological and psychiatric disorders. Rev Neurosci 2021; 32:803-831. [PMID: 33781002 DOI: 10.1515/revneuro-2020-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
In mature mammalian brains, the endocannabinoid system (ECS) plays an important role in the regulation of synaptic plasticity and the functioning of neural networks. Besides, the ECS also contributes to the neurodevelopment of the central nervous system. Due to the increase in the medical and recreational use of cannabis, it is inevitable and essential to elaborate the roles of the ECS on neurodevelopment. GABAergic interneurons represent a group of inhibitory neurons that are vital in controlling neural network activity. However, the role of the ECS in the neurodevelopment of GABAergic interneurons remains to be fully elucidated. In this review, we provide a brief introduction of the ECS and interneuron diversity. We focus on the process of interneuron development and the role of ECS in the modulation of interneuron development, from the expansion of the neural stem/progenitor cells to the migration, specification and maturation of interneurons. We further discuss the potential implications of the ECS and interneurons in the pathogenesis of neurological and psychiatric disorders, including epilepsy, schizophrenia, major depressive disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Chang-Geng Song
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Xin Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wan-Qing Du
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jia-Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Long Liu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jun-Jun Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Ning Jia
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Hui Yue
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Lu-Yu Fan
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Sheng-Xi Wu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| |
Collapse
|
15
|
Endocannabinoid system in psychotic and mood disorders, a review of human studies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110096. [PMID: 32898588 PMCID: PMC8582009 DOI: 10.1016/j.pnpbp.2020.110096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Despite widespread evidence of endocannabinoid system involvement in the pathophysiology of psychiatric disorders, our understanding remains rudimentary. Here we review studies of the endocannabinoid system in humans with psychotic and mood disorders. Postmortem, peripheral, cerebrospinal fluid and in vivo imaging studies provide evidence for the involvement of the endocannabinoid system in psychotic and mood disorders. Psychotic disorders and major depressive disorder exhibit alterations of brain cannabinoid CB1 receptors and peripheral blood endocannabinoids. Further, these changes may be sensitive to treatment status, disease state, and symptom severity. Evidence from psychotic disorder extend to endocannabinoid metabolizing enzymes in the brain and periphery, whereas these lines of evidence remain poorly developed in mood disorders. A paucity of studies examining this system in bipolar disorder represents a notable gap in the literature. Despite a growing body of productive work in this field of research, there is a clear need for investigation beyond the CB1 receptor in order to more fully elucidate the role of the endocannabinoid system in psychotic and mood disorders.
Collapse
|
16
|
Thorpe HHA, Talhat MA, Khokhar JY. High genes: Genetic underpinnings of cannabis use phenotypes. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110164. [PMID: 33152387 DOI: 10.1016/j.pnpbp.2020.110164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
Cannabis is one of the most widely used substances across the globe and its use has a substantial heritable component. However, the heritability of cannabis use varies according to substance use phenotype, suggesting that a unique profile of gene variants may contribute to the different stages of use, such as age of use onset, lifetime use, cannabis use disorder, and withdrawal and craving during abstinence. Herein, we review a subset of genes identified by candidate gene, family-based linkage, and genome-wide association studies related to these cannabis use phenotypes. We also describe their relationships with other substances, and their functions at the neurobiological, cognitive, and behavioral levels to hypothesize the role of these genes in cannabis use risk. Delineating genetic risk factors in the various stages of cannabis use will provide insight into the biological mechanisms related to cannabis use and highlight points of intervention prior to and following the development of dependence, as well as identify targets to aid drug development for treating problematic cannabis use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
17
|
Bielawski T, Albrechet-Souza L, Frydecka D. Endocannabinoid system in trauma and psychosis: distant guardian of mental stability. Rev Neurosci 2021; 32:707-722. [PMID: 33656307 DOI: 10.1515/revneuro-2020-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022]
Abstract
Central endocannabinoid system (eCBS) is a neuromodulatory system that inhibits potentially harmful, excessive synaptic activation. Endocannabinoid receptors are abundant among brain structures pivotal in different mental disorders development (for example, hippocampus, amygdala, medial-prefrontal cortex, hypothalamus). Here, we review eCBS function in etiology of psychosis, emphasizing its role in dealing with environmental pressures such as traumatic life events. Moreover, we explore eCBS as a guard against hypothalamic-pituitary-adrenal axis over-activation, and discuss its possible role in etiology of different psychopathologies. Additionally, we review eCBS function in creating adaptive behavioral patterns, as we explore its involvement in the memory formation process, extinction learning and emotional response. We discuss eCBS in the context of possible biomarkers of trauma, and in preclinical psychiatric conditions, such as at-risk mental states and clinical high risk states for psychosis. Finally, we describe the role of eCBS in the cannabinoid self-medication-theory and extinction learning.
Collapse
Affiliation(s)
- Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland.,Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Lucas Albrechet-Souza
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA.,Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland
| |
Collapse
|
18
|
Colangeli R, Teskey GC, Di Giovanni G. Endocannabinoid-serotonin systems interaction in health and disease. PROGRESS IN BRAIN RESEARCH 2021; 259:83-134. [PMID: 33541682 DOI: 10.1016/bs.pbr.2021.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endocannabinoid (eCB) and serotonin (5-HT) neuromodulatory systems work both independently and together to finely orchestrate neuronal activity throughout the brain to strongly sculpt behavioral functions. Surprising parallelism between the behavioral effects of 5-HT and eCB activity has been widely reported, including the regulation of emotional states, stress homeostasis, cognitive functions, food intake and sleep. The distribution pattern of the 5-HT system and the eCB molecular elements in the brain display a strong overlap and several studies report a functional interplay and even a tight interdependence between eCB/5-HT signaling. In this review, we examine the available evidence of the interaction between the eCB and 5-HT systems. We first introduce the eCB system, then we describe the eCB/5-HT crosstalk at the neuronal and synaptic levels. Finally, we explore the potential eCB/5-HT interaction at the behavioral level with the implication for psychiatric and neurological disorders. The precise elucidation of how this neuromodulatory interaction dynamically regulates biological functions may lead to the development of more targeted therapeutic strategies for the treatment of depressive and anxiety disorders, psychosis and epilepsy.
Collapse
Affiliation(s)
- Roberto Colangeli
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - G Campbell Teskey
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
19
|
Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, Mu L, Gan J, Xu H, Fowler CJ, Zhang MR, Vasdev N, Ametamey S, Cravatt BF, Wang L, Liang SH. Positron Emission Tomography Imaging of the Endocannabinoid System: Opportunities and Challenges in Radiotracer Development. J Med Chem 2021; 64:123-149. [PMID: 33379862 PMCID: PMC7877880 DOI: 10.1021/acs.jmedchem.0c01459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Michael A. Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jiefeng Gan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Christopher J. Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
20
|
Terry GE, Raymont V, Horti AG. PET Imaging of the Endocannabinoid System. PET AND SPECT OF NEUROBIOLOGICAL SYSTEMS 2021:319-426. [DOI: 10.1007/978-3-030-53176-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Nie F, Zhang Q, Ma J, Wang P, Gu R, Han J, Zhang R. Schizophrenia risk candidate EGR3 is a novel transcriptional regulator of RELN and regulates neurite outgrowth via the Reelin signal pathway in vitro. J Neurochem 2020; 157:1745-1758. [PMID: 33113163 DOI: 10.1111/jnc.15225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/06/2020] [Accepted: 10/15/2020] [Indexed: 01/09/2023]
Abstract
Schizophrenia is a severe psychiatric disorder with a strong hereditary component that affects approximately 1% of the world's population. The disease is most likely caused by the altered expression of a number of genes that function at the level of biological pathways or gene networks. Transcription factors (TF) are indispensable regulators of gene expression. EGR3 is a TF associated with schizophrenia. In the current study, DNA microarray and ingenuity pathway analyses (IPA) demonstrated that EGR3 regulates Reelin signaling pathway in SH-SY5Y cells. ChIP and luciferase reporter studies confirmed that EGR3 directly binds to the promoter region of RELN thereby activating RELN expression. The expression of both EGR3 and RELN was decreased during neuronal differentiation induced by retinoic acid (RA) in SH-SY5Y cells, and EGR3 over-expression reduced neurite outgrowth which could be partially reversed by the knockdown of RELN. The expression levels of EGR3 and RELN in peripheral blood of subjects with schizophrenia were found to be down-regulated (compared with healthy controls), and were positively correlated. Furthermore, data mining from public databases revealed that the expression levels of EGR3 and RELN were presented a positive correlation in post-mortem brain tissue of subjects with schizophrenia. Taken together, this study suggests that EGR3 is a novel TF of the RELN gene and regulates neurite outgrowth via the Reelin signaling pathway. Our findings contribute to the understanding of the regulatory role of EGR3 in the pathophysiology and molecular mechanisms of schizophrenia, and potentially to the development of new therapies and diagnostic biomarkers for the disorder.
Collapse
Affiliation(s)
- Fayi Nie
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Qiaoxia Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jie Ma
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Medical Research Center, Xi'an No. 3 Hospital, Xi'an, Shaanxi, China
| | - Pengjie Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ruiying Gu
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jing Han
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Rui Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
22
|
Regulation of cannabinoid CB 1 and CB 2 receptors, neuroprotective mTOR and pro-apoptotic JNK1/2 kinases in postmortem prefrontal cortex of subjects with major depressive disorder. J Affect Disord 2020; 276:626-635. [PMID: 32871695 DOI: 10.1016/j.jad.2020.07.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/26/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dysregulations of endocannabinoids and/or cannabinoid (CB) receptors have been implicated in the pathophysiology and treatment of major depressive disorder (MDD). METHODS CB1 and CB2 receptors, neuroprotective mTOR (mechanistic target of rapamycin) and pro-apoptotic JNK1/2 (c-Jun-N-terminal kinases) were quantified by immunoblotting in postmortem prefrontal cortex of MDD and controls, and further compared in antidepressant (AD)-free and AD-treated subjects. Neuroplastic proteins (PSD-95, Arc, spinophilin) were quantified in MDD brains. RESULTS Total cortical CB1 glycosylated (≈54/64 kDa) receptor was increased in MDD (+20%, n=23, p=0.02) when compared with controls (100%, n=19). This CB1 receptor upregulation was quantified in AD-treated (+23%, n=14, p=0.02) but not in AD-free (+14%, n=9, p=0.34) MDD subjects. In the same MDD cortical samples, CB2 glycosylated (≈45 kDa) receptor was unaltered (all MDD: +11%, n=23, p=0.10; AD-free: +12%, n=9, p=0.31; AD-treated: +10%, n=14, p=0.23). In MDD, mTOR activity (p-Ser2448 TOR/t-TOR) was increased (all MDD: +29%, n=18, p=0.002; AD-free: +33%, n=8, p=0.03; AD-treated: +25%, n=10, p=0.04). In contrast, JNK1/2 activity (p-Thr183/Tyr185/t-JNK) was unaltered in MDD subjects. Cortical PSD-95, Arc, and spinophilin contents were unchanged in MDD. LIMITATIONS A relative limited sample size. Some MDD subjects had been treated with a variety of ADs. The results must be understood in the context of suicide victims with MDD. CONCLUSIONS The upregulation of CB1 receptor density, but not that of CB2 receptor, as well as the increased mTOR activity in PFC/BA9 of subjects with MDD (AD-free/treated) support their contributions in the complex pathophysiology of MDD and in the molecular mechanisms of antidepressant drugs.
Collapse
|
23
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
24
|
Scherma M, Muntoni AL, Riedel G, Fratta W, Fadda P. Cannabinoids and their therapeutic applications in mental disorders
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 22:271-279. [PMID: 33162770 PMCID: PMC7605020 DOI: 10.31887/dcns.2020.22.3/pfadda] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mental disorders represent a significant public health burden worldwide due to their high prevalence, chronically disabling nature, and substantial impact on quality of life. Despite growing knowledge of the pathological mechanisms that underlie the development of these disorders, a high percentage of patients do not respond to first-line clinical treatments; thus, there is a strong need for alternative therapeutic approaches. During the past half-century, after the identification of the endocannabinoid system and its role in multiple physiological processes, both natural and synthetic cannabinoids have attracted considerable interest as putative medications in pathological conditions such as, but not exclusive to, mental disorders. Here, we provide a summary of cannabinoid effects in support of possible therapeutic applications for major depression, bipolar disorder, anxiety, posttraumatic stress disorder, and schizophrenia. Considering this evidence, highlighted benefits and risks of cannabinoid use in the management of these illnesses require further experimental study.
.
Collapse
Affiliation(s)
- Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Paola Fadda
- Author affiliations: Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy; Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom (Gernot Riedel); National Neuroscience Institute, Pisa, Italy
| |
Collapse
|
25
|
Appiah-Kusi E, Wilson R, Colizzi M, Foglia E, Klamerus E, Caldwell A, Bossong MG, McGuire P, Bhattacharyya S. Childhood trauma and being at-risk for psychosis are associated with higher peripheral endocannabinoids. Psychol Med 2020; 50:1862-1871. [PMID: 31422779 DOI: 10.1017/s0033291719001946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Evidence has been accumulating regarding alterations in components of the endocannabinoid system in patients with psychosis. Of all the putative risk factors associated with psychosis, being at clinical high-risk for psychosis (CHR) has the strongest association with the onset of psychosis, and exposure to childhood trauma has been linked to an increased risk of development of psychotic disorder. We aimed to investigate whether being at-risk for psychosis and exposure to childhood trauma were associated with altered endocannabinoid levels. METHOD We compared 33 CHR participants with 58 healthy controls (HC) and collected information about previous exposure to childhood trauma as well as plasma samples to analyse endocannabinoid levels. RESULTS Individuals with both CHR and experience of childhood trauma had higher N-palmitoylethanolamine (p < 0.001) and anandamide (p < 0.001) levels in peripheral blood compared to HC and those with no childhood trauma. There was also a significant correlation between N-palmitoylethanolamine levels and symptoms as well as childhood trauma. CONCLUSIONS Our results suggest an association between CHR and/or childhood maltreatment and elevated endocannabinoid levels in peripheral blood, with a greater alteration in those with both CHR status and history of childhood maltreatment compared to those with either of those risks alone. Furthermore, endocannabinoid levels increased linearly with the number of risk factors and elevated endocannabinoid levels correlated with the severity of CHR symptoms and extent of childhood maltreatment. Further studies in larger cohorts, employing longitudinal designs are needed to confirm these findings and delineate the precise role of endocannabinoid alterations in the pathophysiology of psychosis.
Collapse
Affiliation(s)
- E Appiah-Kusi
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| | - R Wilson
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| | - M Colizzi
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Policlinico 'G. B. Rossi', P.le L.A. Scuro 10, 37134, Verona, Italy
| | - E Foglia
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| | - E Klamerus
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| | - A Caldwell
- King's College London, Mass Spectometry Facility, Franklin Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - M G Bossong
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - P McGuire
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| | - S Bhattacharyya
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| |
Collapse
|
26
|
The Cannabinoid CB 1 Receptor in Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:646-659. [PMID: 33077399 DOI: 10.1016/j.bpsc.2020.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/28/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Converging lines of evidence from epidemiological, preclinical, and experimental studies indicate that the endocannabinoid system may be involved in the pathophysiology of schizophrenia and suggest that the cannabinoid CB1 receptor may be a potential therapeutic target. In view of this, we first provide an overview of the endocannabinoid system and systematically review the evidence for CB1 receptor alterations in animal models of schizophrenia and clinical studies in schizophrenia. MEDLINE, EMBASE, PsycArticles, and PsycINFO were systematically searched from inception until January 7, 2020. Of 1187 articles, 24 were included in the systematic review, including 8 preclinical studies measuring the CB1 receptor in the context of an established animal model of schizophrenia and 16 clinical studies investigating the CB1 receptor in schizophrenia. The majority of preclinical studies (6 of 8) have shown that the CB1 receptor is reduced in the context of animal models of schizophrenia. Moreover, the majority of in vivo clinical imaging studies that used arterial blood sampling to quantify the radiotracer kinetics (3 of 4) have shown reduced CB1 receptor availability in schizophrenia. However, mixed findings have been reported in ex vivo literature, including reports of no change in receptor levels (5 of 11), increased receptor levels (4 of 11), and decreased receptor levels (2 of 11). We review methodological reasons for these discrepancies and review how CB1 receptor dysfunction may contribute to the pathophysiology of schizophrenia, drawing on the role of the receptor in regulating synaptic transmission and synaptic plasticity. We also discuss how the CB1 receptor may be a potential therapeutic target.
Collapse
|
27
|
Potvin S, Mahrouche L, Assaf R, Chicoine M, Giguère CÉ, Furtos A, Godbout R. Peripheral Endogenous Cannabinoid Levels Are Increased in Schizophrenia Patients Evaluated in a Psychiatric Emergency Setting. Front Psychiatry 2020; 11:628. [PMID: 32695035 PMCID: PMC7338686 DOI: 10.3389/fpsyt.2020.00628] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/16/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The endogenous cannabinoid system mediates the psychoactive effects of cannabis in the brain. It has been argued that this system may play a key role in the pathophysiology of schizophrenia. While some studies have consistently shown that the levels of anandamide, an endogenous cannabinoid ligand, are increased in the cerebrospinal fluid of schizophrenia patients, inconsistent results have been observed in studies measuring anandamide levels in the periphery. Here, we sought to determine if the assessment of peripheral anandamide levels in patients evaluated in a psychiatric emergency setting would show robust increases. METHODS One hundred seven patients with a schizophrenia-spectrum disorder from the psychiatric emergency settings of the Institut Universitaire en Santé Mentale de Montréal and 36 healthy volunteers were included in the study. A subsample of thirty patients were assessed at two time points: at the emergency and at their discharge from the hospital. Anxious and depressive symptoms, sleep and substance use were assessed using self-report questionnaires. In addition to anandamide, the levels of oleoylethanolamide (OEA), an anorexigenic fatty-acid ethanolamide, were also measured, since the prevalence of the metabolic syndrome is increased in schizophrenia. Plasma levels of anandamide and OEA were measured using liquid chromatography and mass spectrometry. RESULTS Plasma anandamide and OEA levels were significantly increased in schizophrenia patients, relative to controls (Cohen's d=1.0 and 0.5, respectively). Between-group differences remained significant after controlling for metabolic measures. No differences were observed between schizophrenia patients with and without a comorbid substance use disorder at baseline. Importantly, the levels of both endocannabinoids significantly decreased after discharge from the emergency setting. CONCLUSION The current results add to the growing body of evidence of endocannabinoid alterations in schizophrenia. The strong elevation of plasma anandamide levels in schizophrenia patients assessed in the psychiatric emergency setting suggests that anandamide and OEA area potential biomarkers of the psychological turmoil associated with this context.
Collapse
Affiliation(s)
- Stéphane Potvin
- Department of Psychiatry, Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychiatry, University of Montreal, Montreal, QC, Canada
| | - Louiza Mahrouche
- Department of Chemistry, University of Montreal, Montreal, QC, Canada
| | - Roxane Assaf
- Department of Psychiatry, Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychiatry, University of Montreal, Montreal, QC, Canada
| | - Marjolaine Chicoine
- Sleep Laboratory and Clinic, CIUSSS du Nord-de-l'Île-de-Montréal, Hôpital en santé mentale Rivière-des-Prairies, Montréal, QC, Canada
| | - Charles-Édouard Giguère
- Department of Psychiatry, Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
| | - Alexandra Furtos
- Department of Chemistry, University of Montreal, Montreal, QC, Canada
| | - Roger Godbout
- Department of Psychiatry, University of Montreal, Montreal, QC, Canada
- Sleep Laboratory and Clinic, CIUSSS du Nord-de-l'Île-de-Montréal, Hôpital en santé mentale Rivière-des-Prairies, Montréal, QC, Canada
| |
Collapse
|
28
|
Δ-9-Tetrahydrocannabinol treatment during adolescence and alterations in the inhibitory networks of the adult prefrontal cortex in mice subjected to perinatal NMDA receptor antagonist injection and to postweaning social isolation. Transl Psychiatry 2020; 10:177. [PMID: 32488050 PMCID: PMC7266818 DOI: 10.1038/s41398-020-0853-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
The prefrontal cortex (PFC) continues its development during adolescence and alterations in its structure and function, particularly of inhibitory networks, have been detected in schizophrenic patients. Since cannabis use during adolescence is a risk factor for this disease, our main objective was to investigate whether THC administration during this period might exacerbate alterations in prefrontocortical inhibitory networks in mice subjected to a perinatal injection of MK801 and postweaning social isolation. This double-hit model (DHM) combines a neurodevelopmental manipulation and the exposure to an aversive experience during early life; previous work has shown that DHM mice have important alterations in the structure and connectivity of PFC interneurons. In the present study we found that DHM had reductions in prepulse inhibition of the startle reflex (PPI), GAD67 expression and cingulate 1 cortex volume. Interestingly, THC by itself induced increases in PPI and decreases in the dendritic complexity of somatostatin expressing interneurons. Both THC and DHM reduced the density of parvalbumin expressing cells surrounded by perineuronal nets and, when combined, they disrupted the ratio between the density of puncta expressing excitatory and inhibitory markers. Our results support previous work showing alterations in parameters involving interneurons in similar animal models and schizophrenic patients. THC treatment does not modify further these parameters, but changes some others related also to interneurons and their plasticity, in some cases in the opposite direction to those induced by the DHM, suggesting a protective effect.
Collapse
|
29
|
Effects of combined 5-HT 2A and cannabinoid receptor modulation on a schizophrenia-related prepulse inhibition deficit in mice. Psychopharmacology (Berl) 2020; 237:1643-1655. [PMID: 32095916 DOI: 10.1007/s00213-020-05485-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE Prepulse inhibition of the startle reflex (PPI) is disrupted in several psychiatric disorders including schizophrenia. Understanding PPI pharmacology may help elucidate the pathophysiology of these disorders and lead to better treatments. Given the advantages of multi-target approaches for complex mental illnesses treatment, we have investigated the interaction between receptors known to modulate PPI (5-HT1A and 5-HT2A) and the neuromodulatory endocannabinoid system. OBJECTIVES To investigate serotonin and cannabinoid receptor (CBR) co-modulation in a model of PPI disruption relevant to schizophrenia METHODS: Male Swiss mice were pretreated with WIN 55,212-2 (CBR agonist), rimonabant (CB1R inverse agonist), 8-OH-DPAT (5-HT1A/7 agonist), and volinanserin (5-HT2A antagonist) or with a combination of a cannabinoid and a serotonergic drug. PPI disruption was induced by acute administration of MK-801. RESULTS WIN 55,212-2 and rimonabant did not change PPI nor block MK-801-induced deficits. 8-OH-DPAT increased PPI in control mice and, in a higher dose, inhibited MK-801-induced impairments. Volinanserin also increased PPI in control and MK-801-treated mice, presenting an inverted U-shaped dose-response curve. Co-administration of either cannabinoid ligand with 8-OH-DPAT did not change PPI; however, the combination of volinanserin with rimonabant increased PPI in both control and MK-801-exposed mice. CONCLUSIONS WIN 55,212-2 and rimonabant had similar effects in PPI. Moreover, serotonin and cannabinoid receptors interact to modulate PPI. While co-modulation of CBR and 5-HT1A receptors did not change PPI, a beneficial effect of 5-HT2A and CB1R antagonist combination was detected, possibly mediated through potentiation of 5-HT2A blockade effects by concomitant CB1R blockade.
Collapse
|
30
|
Recovery of BDNF and CB1R in the Prefrontal Cortex Underlying Improvement of Working Memory in Prenatal DEHP-Exposed Male Rats after Aerobic Exercise. Int J Mol Sci 2020; 21:ijms21113867. [PMID: 32485872 PMCID: PMC7312003 DOI: 10.3390/ijms21113867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 01/02/2023] Open
Abstract
Early-life exposure to di-(2-ethylhexyl)-phthalate (DEHP) has been suggested to relate to hyperactivity, lack of attention, and working memory deficits in school-age children. Brain-derived neurotrophic factor (BDNF) and endocannabinoids are induced by aerobic exercises to provide beneficial effects on brain functions. This study investigated the mechanisms underlying working memory impairment and the protective role of exercise in prenatal DEHP-exposed male rats. Sprague Dawley dams were fed with vehicle or DEHP during gestation. The male offspring were trained to exercise on a treadmill for 5 weeks, which was followed by an assessment of their working memory with a T-maze delayed non-match-to-sample task. The expressions of BDNF, dopamine D1 receptor (D1R), cannabinoid receptor 1 (CB1R), and fatty acid amide hydrolase (FAAH) in the prefrontal cortex were detected by Western blot. The results showed that DEHP-exposed rats exhibited working memory impairments without significant alterations in locomotor activities. The reduced expressions of prefrontal BDNF and CB1R were obtained in the DEHP-exposed rats, while D1R and FAAH were barely affected. Importantly, aerobic exercise during childhood-adolescence prevented the impairment of working memory in the DEHP-exposed rats by recovering the BDNF and CB1R expressions in the prefrontal cortex. These findings suggest that exercise may provide beneficial effects in ameliorating the impairment of working memory in the prenatal DEHP-exposed male rats at late adolescence.
Collapse
|
31
|
Cannabinoid receptor CNR1 expression and DNA methylation in human prefrontal cortex, hippocampus and caudate in brain development and schizophrenia. Transl Psychiatry 2020; 10:158. [PMID: 32433545 PMCID: PMC7237456 DOI: 10.1038/s41398-020-0832-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
Beyond being one the most widely used psychoactive drugs in the world, cannabis has been identified as an environmental risk factor for psychosis. Though the relationship between cannabis use and psychiatric disorders remains controversial, consistent association between early adolescent cannabis use and the subsequent risk of psychosis suggested adolescence may be a particularly vulnerable period. Previous findings on gene by environment interactions indicated that cannabis use may only increase the risk for psychosis in the subjects who have a specific genetic vulnerability. The type 1 cannabinoid receptor (CB1), encoded by the CNR1 gene, is a key component of the endocannabinoid system. As the primary endocannabinoid receptor in the brain, CB1 is the main molecular target of the endocannabinoid ligand, as well as tetrahydrocannabinol (THC), the principal psychoactive ingredient of cannabis. In this study, we have examined mRNA expression and DNA methylation of CNR1 in human prefrontal cortex (PFC), hippocampus, and caudate samples. The expression of CNR1 is higher in fetal PFC and hippocampus, then drops down dramatically after birth. The lifespan trajectory of CNR1 expression in the DLPFC differentially correlated with age by allelic variation at rs4680, a functional polymorphism in the COMT gene. Compared with COMT methionine158 carriers, Caucasian carriers of the COMT valine158 allele have a stronger negative correlation between the expression of CNR1 in DLPFC and age. In contrast, the methylation level of cg02498983, which is negatively correlated with the expression of CNR1 in PFC, showed the strongest positive correlation with age in PFC of Caucasian carriers of COMT valine158. Additionally, we have observed decreased mRNA expression of CNR1 in the DLPFC of patients with schizophrenia. Further analysis revealed a positive eQTL SNP, rs806368, which predicted the expression of a novel transcript of CNR1 in human DLPFC, hippocampus and caudate. This SNP has been associated with addiction and other psychiatric disorders. THC or ethanol are each significantly associated with dysregulated expression of CNR1 in the PFC of patients with affective disorder, and the expression of CNR1 is significantly upregulated in the PFC of schizophrenia patients who completed suicide. Our results support previous studies that have implicated the endocannabinoid system in the pathology of schizophrenia and provided additional insight into the mechanism of increasing risk for schizophrenia in the adolescent cannabis users.
Collapse
|
32
|
Pinto JV, Saraf G, Frysch C, Vigo D, Keramatian K, Chakrabarty T, Lam RW, Kauer-Sant'Anna M, Yatham LN. [Not Available]. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2020; 65:213-227. [PMID: 31830820 PMCID: PMC7385425 DOI: 10.1177/0706743719895195] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective: To review the current evidence for efficacy of cannabidiol in the treatment of mood disorders. Methods: We systematically searched PubMed, Embase, Web of Science, PsychInfo, Scielo, ClinicalTrials.gov, and The Cochrane Central Register of Controlled Trials for studies published up to July 31, 2019. The inclusion criteria were clinical trials, observational studies, or case reports evaluating the effect of pure cannabidiol or cannabidiol mixed with other cannabinoids on mood symptoms related to either mood disorders or other health conditions. The review was reported in accordance with guidelines from Preferred Reporting Items for Systematic reviews and Meta-Analyses protocol. Results: Of the 924 records initially yielded by the search, 16 were included in the final sample. Among them, six were clinical studies that used cannabidiol to treat other health conditions but assessed mood symptoms as an additional outcome. Similarly, four tested cannabidiol blended with Δ-9-tetrahydrocannabinol in the treatment of general health conditions and assessed affective symptoms as secondary outcomes. Two were case reports testing cannabidiol. Four studies were observational studies that evaluated the cannabidiol use and its clinical correlates. However, there were no clinical trials investigating the efficacy of cannabidiol, specifically in mood disorders or assessing affective symptoms as the primary outcome. Although some articles point in the direction of benefits of cannabidiol to treat depressive symptoms, the methodology varied in several aspects and the level of evidence is not enough to support its indication as a treatment for mood disorders. Conclusions: There is a lack of evidence to recommend cannabidiol as a treatment for mood disorders. However, considering the preclinical and clinical evidence related to other diseases, cannabidiol might have a role as a treatment for mood disorders. Therefore, there is an urgent need for well-designed clinical trials investigating the efficacy of cannabidiol in mood disorders.
Collapse
Affiliation(s)
- Jairo Vinícius Pinto
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gayatri Saraf
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian Frysch
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Vigo
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kamyar Keramatian
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Trisha Chakrabarty
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Márcia Kauer-Sant'Anna
- Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Seillier A, Martinez AA, Giuffrida A. Differential effects of Δ9-tetrahydrocannabinol dosing on correlates of schizophrenia in the sub-chronic PCP rat model. PLoS One 2020; 15:e0230238. [PMID: 32163506 PMCID: PMC7067407 DOI: 10.1371/journal.pone.0230238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/25/2020] [Indexed: 01/01/2023] Open
Abstract
Social withdrawal in the sub-chronic phencyclidine (PCP) rat model, a behavioral correlate of the negative symptoms of schizophrenia, results from deficits in brain endocannabinoid transmission. As cannabis intake has been shown to affect negatively the course and expression of psychosis, we tested whether the beneficial effects of endocannabinoid-mediated CB1 activation on social withdrawal in PCP-treated rats (5 mg/kg, twice daily for 7 days)also occurred after administration of Δ9-tetrahydrocannabinol (THC; 0.1, 0.3, 1.0 mg/kg, i.p.). In addition, we assessed whether THC affected two correlates of positive symptoms: 1) motor activity induced by d-amphetamine (0.5 mg/kg, i.p.), and 2) dopamine neuron population activity in the ventral tegmental area (VTA). After the motor activity test, the brains from d-amphetamine-treated animals were collected and processed for measurements of endocannabinoids and activation of Akt/GSK3β, two molecular markers involved in the pathophysiology of schizophrenia. In control rats, THC dose-dependently produced social interaction deficits and aberrant VTA dopamine neuron population activity similar to those observed in PCP-treated animals. In PCP-treated rats, only the lowest dose of THC reversed PCP-induced deficits, as well as PCP-induced elevation of the endocannabinoid anandamide (AEA) in the nucleus accumbens. Last, THC activated the Akt/GSK3β pathway dose-dependently in both control and PCP-treated animals. Taken together, these data suggest that only low doses of THC have beneficial effects on behavioral, neurochemical and electrophysiological correlates of schizophrenia symptoms. This observation may shed some light on the controversial hypothesis of marijuana use as self-medication in schizophrenic patients.
Collapse
Affiliation(s)
- Alexandre Seillier
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| | - Alex A. Martinez
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Andrea Giuffrida
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
34
|
Cholecystokinin-Expressing Interneurons of the Medial Prefrontal Cortex Mediate Working Memory Retrieval. J Neurosci 2020; 40:2314-2331. [PMID: 32005764 DOI: 10.1523/jneurosci.1919-19.2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Distinct components of working memory are coordinated by different classes of inhibitory interneurons in the PFC, but the role of cholecystokinin (CCK)-positive interneurons remains enigmatic. In humans, this major population of interneurons shows histological abnormalities in schizophrenia, an illness in which deficient working memory is a core defining symptom and the best predictor of long-term functional outcome. Yet, CCK interneurons as a molecularly distinct class have proved intractable to examination by typical molecular methods due to widespread expression of CCK in the pyramidal neuron population. Using an intersectional approach in mice of both sexes, we have succeeded in labeling, interrogating, and manipulating CCK interneurons in the mPFC. Here, we describe the anatomical distribution, electrophysiological properties, and postsynaptic connectivity of CCK interneurons, and evaluate their role in cognition. We found that CCK interneurons comprise a larger proportion of the mPFC interneurons compared with parvalbumin interneurons, targeting a wide range of neuronal subtypes with a distinct connectivity pattern. Phase-specific optogenetic inhibition revealed that CCK, but not parvalbumin, interneurons play a critical role in the retrieval of working memory. These findings shine new light on the relationship between cortical CCK interneurons and cognition and offer a new set of tools to investigate interneuron dysfunction and cognitive impairments associated with schizophrenia.SIGNIFICANCE STATEMENT Cholecystokinin-expressing interneurons outnumber other interneuron populations in key brain areas involved in cognition and memory, including the mPFC. However, they have proved intractable to examination as experimental techniques have lacked the necessary selectivity. To the best of our knowledge, the present study is the first to report detailed properties of cortical cholecystokinin interneurons, revealing their anatomical organization, electrophysiological properties, postsynaptic connectivity, and behavioral function in working memory.
Collapse
|
35
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
36
|
Yu Q, He Z, Zubkov D, Huang S, Kurochkin I, Yang X, Halene T, Willmitzer L, Giavalisco P, Akbarian S, Khaitovich P. Lipidome alterations in human prefrontal cortex during development, aging, and cognitive disorders. Mol Psychiatry 2020; 25:2952-2969. [PMID: 30089790 PMCID: PMC7577858 DOI: 10.1038/s41380-018-0200-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/26/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
Lipids are essential to brain functions, yet they remain largely unexplored. Here we investigated the lipidome composition of prefrontal cortex gray matter in 396 cognitively healthy individuals with ages spanning 100 years, as well as 67 adult individuals diagnosed with autism (ASD), schizophrenia (SZ), and Down syndrome (DS). Of the 5024 detected lipids, 95% showed significant age-dependent concentration differences clustering into four temporal stages, and resulting in a gradual increase in membrane fluidity in individuals ranging from newborn to nonagenarian. Aging affects 14% of the brain lipidome with late-life changes starting predominantly at 50-55 years of age-a period of general metabolic transition. All three diseases alter the brain lipidome composition, leading-among other things-to a concentration decrease in glycerophospholipid metabolism and endocannabinoid signaling pathways. Lipid concentration decreases in SZ were further linked to genetic variants associated with disease, indicating the relevance of the lipidome changes to disease progression.
Collapse
Affiliation(s)
- Qianhui Yu
- grid.9227.e0000000119573309Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.419092.70000 0004 0467 2285CAS Key Laboratory of Compstudy has been deposited in the National Omics Datautational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200031 China
| | - Zhisong He
- grid.419092.70000 0004 0467 2285CAS Key Laboratory of Compstudy has been deposited in the National Omics Datautational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200031 China ,grid.454320.40000 0004 0555 3608Skolkovo Institute of Science and Technology, Moscow, 143028 Russia
| | - Dmitry Zubkov
- grid.454320.40000 0004 0555 3608Skolkovo Institute of Science and Technology, Moscow, 143028 Russia
| | - Shuyun Huang
- grid.419092.70000 0004 0467 2285CAS Key Laboratory of Compstudy has been deposited in the National Omics Datautational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200031 China ,grid.440637.20000 0004 4657 8879ShanghaiTech University, Shanghai, 200031 China
| | - Ilia Kurochkin
- grid.454320.40000 0004 0555 3608Skolkovo Institute of Science and Technology, Moscow, 143028 Russia
| | - Xiaode Yang
- grid.9227.e0000000119573309Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.419092.70000 0004 0467 2285CAS Key Laboratory of Compstudy has been deposited in the National Omics Datautational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200031 China
| | - Tobias Halene
- grid.59734.3c0000 0001 0670 2351Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Lothar Willmitzer
- grid.418390.70000 0004 0491 976XMax Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476 Germany
| | - Patrick Giavalisco
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany.
| | - Schahram Akbarian
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Philipp Khaitovich
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,ShanghaiTech University, Shanghai, 200031, China. .,Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany. .,Comparative Biology Group, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200031, China.
| |
Collapse
|
37
|
Cinquina V, Calvigioni D, Farlik M, Halbritter F, Fife-Gernedl V, Shirran SL, Fuszard MA, Botting CH, Poullet P, Piscitelli F, Máté Z, Szabó G, Yanagawa Y, Kasper S, Di Marzo V, Mackie K, McBain CJ, Bock C, Keimpema E, Harkany T. Life-long epigenetic programming of cortical architecture by maternal 'Western' diet during pregnancy. Mol Psychiatry 2020; 25:22-36. [PMID: 31735910 DOI: 10.1038/s41380-019-0580-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023]
Abstract
The evolution of human diets led to preferences toward polyunsaturated fatty acid (PUFA) content with 'Western' diets enriched in ω-6 PUFAs. Mounting evidence points to ω-6 PUFA excess limiting metabolic and cognitive processes that define longevity in humans. When chosen during pregnancy, ω-6 PUFA-enriched 'Western' diets can reprogram maternal bodily metabolism with maternal nutrient supply precipitating the body-wide imprinting of molecular and cellular adaptations at the level of long-range intercellular signaling networks in the unborn fetus. Even though unfavorable neurological outcomes are amongst the most common complications of intrauterine ω-6 PUFA excess, cellular underpinnings of life-long modifications to brain architecture remain unknown. Here, we show that nutritional ω-6 PUFA-derived endocannabinoids desensitize CB1 cannabinoid receptors, thus inducing epigenetic repression of transcriptional regulatory networks controlling neuronal differentiation. We found that cortical neurons lose their positional identity and axonal selectivity when mouse fetuses are exposed to excess ω-6 PUFAs in utero. Conversion of ω-6 PUFAs into endocannabinoids disrupted the temporal precision of signaling at neuronal CB1 cannabinoid receptors, chiefly deregulating Stat3-dependent transcriptional cascades otherwise required to execute neuronal differentiation programs. Global proteomics identified the immunoglobulin family of cell adhesion molecules (IgCAMs) as direct substrates, with DNA methylation and chromatin accessibility profiling uncovering epigenetic reprogramming at >1400 sites in neurons after prolonged cannabinoid exposure. We found anxiety and depression-like behavioral traits to manifest in adult offspring, which is consistent with genetic models of reduced IgCAM expression, to suggest causality for cortical wiring defects. Overall, our data uncover a regulatory mechanism whose disruption by maternal food choices could limit an offspring's brain function for life.
Collapse
Affiliation(s)
- Valentina Cinquina
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Calvigioni
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Halbritter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Fife-Gernedl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sally L Shirran
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom
| | - Matthew A Fuszard
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom.,Faculty of Medicine, Martin-Luther University, Halle-Wittenberg, Halle, Germany
| | | | | | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University School of Medicine, Maebashi, Japan
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy.,Canada Excellence Research Chair, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Ken Mackie
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Chris J McBain
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, NIH, Bethesda, USA
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria. .,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
38
|
Osborne AL, Solowij N, Babic I, Lum JS, Newell KA, Huang XF, Weston-Green K. Effect of cannabidiol on endocannabinoid, glutamatergic and GABAergic signalling markers in male offspring of a maternal immune activation (poly I:C) model relevant to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109666. [PMID: 31202911 DOI: 10.1016/j.pnpbp.2019.109666] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
The mainstay treatment for schizophrenia is antipsychotic drugs (APDs), which are mostly effective against the positive symptoms (e.g. hallucinations), but provide minimal benefits for the negative symptoms (e.g. social withdrawal) and cognitive deficits. We have recently shown that treatment with the non-intoxicating phytocannabinoid, cannabidiol (CBD), can improve cognition and social interaction deficits in a maternal immune activation (MIA) model relevant to the aetiology of schizophrenia, however, the mechanisms underlying this effect are unknown. An imbalance in the main excitatory (glutamate) and inhibitory (GABA) neurotransmitter systems in the brain plays a role in the pathophysiology of schizophrenia. Therefore, the endocannabinoid system could represent a therapeutic target for schizophrenia as a regulator of glutamate and GABA release via the CB1 receptor (CB1R). This study investigated the effects of chronic CBD treatment on markers of glutamatergic, GABAergic and endocannabinoid signalling in brain regions implicated in social behaviour and cognitive function, including the prefrontal cortex (PFC) and hippocampus (HPC). Time-mated pregnant Sprague-Dawley rats (n = 16) were administered poly I:C (4 mg/kg, i.v.) or saline (control) on gestational day 15. Male offspring were injected with CBD (10 mg/kg, i.p.) or vehicle twice daily from postnatal day 56 for 3 weeks. The prefrontal cortex (PFC) and hippocampus (HPC) were collected for post-mortem receptor binding and Western blot analyses (n = 8 per group). CBD treatment attenuated poly I:C-induced deficits in cannabinoid CB1 receptor binding in the PFC and glutamate decarboxylase 67, the enzyme that converts glutamate to GABA, in the HPC. CBD treatment increased parvalbumin levels in the HPC, regardless of whether offspring were exposed to poly I:C in utero. Conversely, CBD did not affect N-methyl-d-aspartate receptor and gamma-aminobutyric acid (GABA) A receptor binding or protein levels of fatty acid amide hydrolase, the enzyme that degrades the endocannabinoid, anandamide. Overall, these findings show that CBD can restore cannabinoid/GABAergic signalling deficits in regions of the brain implicated in schizophrenia pathophysiology following maternal poly I:C exposure. These findings provide novel evidence for the potential mechanisms underlying the therapeutic effects of CBD treatment in the poly I:C model.
Collapse
Affiliation(s)
- Ashleigh L Osborne
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nadia Solowij
- School of Psychology, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Ilijana Babic
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra and Shoalhaven Health District, Wollongong, NSW 2500, Australia
| | - Jeremy S Lum
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kelly A Newell
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Katrina Weston-Green
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
39
|
Dienel SJ, Lewis DA. Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiol Dis 2019; 131:104208. [PMID: 29936230 PMCID: PMC6309598 DOI: 10.1016/j.nbd.2018.06.020] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/31/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
Certain clinical features of schizophrenia, such as working memory disturbances, appear to emerge from altered gamma oscillatory activity in the prefrontal cortex (PFC). Given the essential role of GABA neurotransmission in both working memory and gamma oscillations, understanding the cellular substrate for their disturbances in schizophrenia requires evidence from in vivo neuroimaging studies, which provide a means to link markers of GABA neurotransmission to gamma oscillations and working memory, and from postmortem studies, which provide insight into GABA neurotransmission at molecular and cellular levels of resolution. Here, we review findings from both types of studies which converge on the notions that 1) inhibitory GABA signaling in the PFC, especially between parvalbumin positive GABAergic basket cells and excitatory pyramidal cells, is required for gamma oscillatory activity and working memory function; and 2) disturbances in this signaling contribute to altered gamma oscillations and working memory in schizophrenia. Because the PFC is only one node in a distributed cortical network that mediates working memory, we also review evidence of GABA abnormalities in other cortical regions in schizophrenia.
Collapse
Affiliation(s)
- Samuel J Dienel
- Medical Scientist Training Program, University of Pittsburgh, United States; Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.
| |
Collapse
|
40
|
Wesołowska A, Jastrzębska-Więsek M, Cios A, Partyka A. The preclinical discovery and development of paliperidone for the treatment of schizophrenia. Expert Opin Drug Discov 2019; 15:279-292. [DOI: 10.1080/17460441.2020.1682994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Anna Wesołowska
- Jagiellonian University Medical College, Department of Clinical Pharmacy, Kraków, Poland
| | | | - Agnieszka Cios
- Jagiellonian University Medical College, Department of Clinical Pharmacy, Kraków, Poland
| | - Anna Partyka
- Jagiellonian University Medical College, Department of Clinical Pharmacy, Kraków, Poland
| |
Collapse
|
41
|
Osborne AL, Solowij N, Babic I, Lum JS, Huang XF, Newell KA, Weston-Green K. Cannabidiol improves behavioural and neurochemical deficits in adult female offspring of the maternal immune activation (poly I:C) model of neurodevelopmental disorders. Brain Behav Immun 2019; 81:574-587. [PMID: 31326506 DOI: 10.1016/j.bbi.2019.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Cognitive impairment is a major source of disability in schizophrenia and current antipsychotic drugs (APDs) have minimal efficacy for this symptom domain. Cannabidiol (CBD), the major non-intoxicating component of Cannabis sativa L., exhibits antipsychotic and neuroprotective properties. We recently reported the effects of CBD on cognition in male offspring of a maternal immune activation (polyinosinic-polycytidilic acid (poly I:C)) model relevant to the aetiology of schizophrenia; however, the effects of CBD treatment in females are unknown. Sex differences are observed in the onset of schizophrenia symptoms and response to APD treatment. Furthermore, the endogenous cannabinoid system, a direct target of CBD, is sexually dimorphic in humans and rodents. Therefore, the present work aimed to assess the therapeutic impact of CBD treatment on behaviour and neurochemical signalling markers in female poly I:C offspring. Time-mated pregnant Sprague-Dawley rats (n = 16) were administered poly I:C (4 mg/kg; i.v.) or saline (control) on gestational day 15. From postnatal day 56, female offspring received CBD (10 mg/kg, i.p.) or vehicle treatment for approximately 3 weeks. Following 2 weeks of CBD treatment, offspring underwent behavioural testing, including the novel object recognition, rewarded alternation T-maze and social interaction tests to assess recognition memory, working memory and sociability, respectively. After 3 weeks of CBD treatment, the prefrontal cortex (PFC) and hippocampus (HPC) were collected to assess effects on endocannabinoid, glutamatergic and gamma-aminobutyric acid (GABA) signalling markers. CBD attenuated poly I:C-induced deficits in recognition memory, social interaction and glutamatergic N-methyl-d-aspartate receptor (NMDAR) binding in the PFC of poly I:C offspring. Working memory performance was similar between treatment groups. CBD also increased glutamate decarboxylase 67, the rate-limiting enzyme that converts glutamate to GABA, and parvalbumin protein levels in the HPC. In contrast to the CBD treatment effects observed in poly I:C offspring, CBD administration to control rats reduced social interaction, cannabinoid CB1 receptor and NMDAR binding density in the PFC, suggesting that CBD administration to healthy rats may have negative consequences on social behaviour and brain maturation in adulthood. Overall, the findings of this study support the therapeutic benefits of CBD on recognition memory and sociability in female poly I:C offspring, and provide insight into the neurochemical changes that may underlie the therapeutic benefits of CBD in the poly I:C model.
Collapse
Affiliation(s)
- Ashleigh L Osborne
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nadia Solowij
- School of Psychology, Faculty of Social Sciences, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Ilijana Babic
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra and Shoalhaven Local Health District, Wollongong, NSW 2500, Australia
| | - Jeremy S Lum
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Kelly A Newell
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Katrina Weston-Green
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
42
|
Borgan F, Laurikainen H, Veronese M, Marques TR, Haaparanta-Solin M, Solin O, Dahoun T, Rogdaki M, Salokangas RKR, Karukivi M, Di Forti M, Turkheimer F, Hietala J, Howes O. In Vivo Availability of Cannabinoid 1 Receptor Levels in Patients With First-Episode Psychosis. JAMA Psychiatry 2019; 76:1074-1084. [PMID: 31268519 PMCID: PMC6613300 DOI: 10.1001/jamapsychiatry.2019.1427] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE Experimental and epidemiological studies implicate the cannabinoid 1 receptor (CB1R) in the pathophysiology of psychosis. However, whether CB1R levels are altered in the early stages of psychosis and whether they are linked to cognitive function or symptom severity remain unknown. OBJECTIVE To investigate CB1R availability in first-episode psychosis (FEP) without the confounds of illness chronicity or the use of illicit substances or antipsychotics. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional, case-control study of 2 independent samples included participants receiving psychiatric early intervention services at 2 independent centers in Turku, Finland (study 1) and London, United Kingdom (study 2). Study 1 consisted of 18 volunteers, including 7 patients with affective or nonaffective psychoses taking antipsychotic medication and 11 matched controls; study 2, 40 volunteers, including 20 antipsychotic-naive or antipsychotic-free patients with schizophrenia or schizoaffective disorder and 20 matched controls. Data were collected from January 5, 2015, through September 26, 2018, and analyzed from June 20, 2016, through February 12, 2019. MAIN OUTCOMES AND MEASURES The availability of CB1R was indexed using the distribution volume (VT, in milliliters per cubic centimeter) of 2 CB1R-selective positron emission tomography radiotracers: fluoride 18-labeled FMPEP-d2 (study 1) and carbon 11-labeled MePPEP (study 2). Cognitive function was measured using the Wechsler Digit Symbol Coding Test. Symptom severity was measured using the Brief Psychiatric Rating Scale for study 1 and the Positive and Negative Syndrome Scale for study 2. RESULTS A total of 58 male individuals were included in the analyses (mean [SD] age of controls, 27.16 [5.93] years; mean [SD] age of patients, 26.96 [4.55] years). In study 1, 7 male patients with FEP (mean [SD] age, 26.80 [5.40] years) were compared with 11 matched controls (mean [SD] age, 27.18 [5.86] years); in study 2, 20 male patients with FEP (mean [SD] age, 27.00 [5.06] years) were compared with 20 matched controls (mean [SD] age, 27.15 [6.12] years). In study 1, a significant main effect of group on [18F]FMPEP-d2 VT was found in the anterior cingulate cortex (ACC) (t16 = -4.48; P < .001; Hedges g = 1.2), hippocampus (t16 = -2.98; P = .006; Hedges g = 1.4), striatum (t16 = -4.08; P = .001; Hedges g = 1.9), and thalamus (t16 = -4.67; P < .001; Hedges g = 1.4). In study 2, a significant main effect of group on [11C]MePPEP VT was found in the ACC (Hedges g = 0.8), hippocampus (Hedges g = 0.5), striatum (Hedges g = 0.4), and thalamus (Hedges g = 0.7). In patients, [11C]MePPEP VT in the ACC was positively associated with cognitive functioning (R = 0.60; P = .01), and [11C]MePPEP VT in the hippocampus was inversely associated with Positive and Negative Syndrome Scale total symptom severity (R = -0.50; P = .02). CONCLUSIONS AND RELEVANCE The availability of CB1R was lower in antipsychotic-treated and untreated cohorts relative to matched controls. Exploratory analyses indicated that greater reductions in CB1R levels were associated with greater symptom severity and poorer cognitive functioning in male patients. These findings suggest that CB1R may be a potential target for the treatment of psychotic disorders.
Collapse
Affiliation(s)
- Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Heikki Laurikainen
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Tiago Reis Marques
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Merja Haaparanta-Solin
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Olof Solin
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Tarik Dahoun
- MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Maria Rogdaki
- MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Raimo KR Salokangas
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Max Karukivi
- Department of Psychiatry, Turku University, Satakunta Hospital District, Turku, Finland
| | - Marta Di Forti
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Jarmo Hietala
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | |
Collapse
|
43
|
Almeida V, Levin R, Peres FF, Suiama MA, Vendramini AM, Santos CM, Silva ND, Zuardi AW, Hallak JEC, Crippa JA, Abílio VC. Role of the endocannabinoid and endovanilloid systems in an animal model of schizophrenia-related emotional processing/cognitive deficit. Neuropharmacology 2019; 155:44-53. [DOI: 10.1016/j.neuropharm.2019.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
|
44
|
Muguruza C, Morentin B, Meana JJ, Alexander SP, Callado LF. Endocannabinoid system imbalance in the postmortem prefrontal cortex of subjects with schizophrenia. J Psychopharmacol 2019; 33:1132-1140. [PMID: 31237179 DOI: 10.1177/0269881119857205] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The endocannabinoid system - comprising cannabinoid receptors, endocannabinoid ligands and their synthesis and inactivation enzymes - has been widely implicated in the pathophysiology of schizophrenia. However, little is known regarding the status of the different elements of the endocannabinoid system in the brain of schizophrenic patients. We have previously reported altered endocannabinoid levels in the postmortem brain of subjects with schizophrenia compared with matched controls. AIMS Our aim was to further examine the status of the main elements of the endocannabinoid system in the postmortem prefrontal cortex of the same cohort of subjects. METHODS Gene expression and function of the cannabinoid receptor type-1 (CB1) and the endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have been assessed. RESULTS A significant decrease in CB1 mRNA levels in schizophrenia was found, without alteration of FAAH or MAGL mRNA expression. Moreover, positive correlations among mRNA expressions of the three genes studied were found in the prefrontal cortex of controls but not in schizophrenic subjects. No alteration was found in CB1 receptor mediated functional coupling to G-proteins, but a significant increase of FAAH activity was found in schizophrenic subjects compared with controls. 2-arachidonoylglycerol levels and MAGL activity were found to positively correlate in controls but not in schizophrenic subjects. CONCLUSIONS The present findings reveal an imbalance in the expression and function of different elements of the endocannabinoid system in schizophrenia. This outcome highlights the relevance of the endocannabinoid system in the pathophysiology of schizophrenia and emphasises its elements as potential targets in the search for new therapeutic strategies.
Collapse
Affiliation(s)
- Carolina Muguruza
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Benito Morentin
- Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Stephen Ph Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
45
|
Affiliation(s)
- David W Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
- Veterans Integrated Service Network 4 Mental Illness Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
46
|
Gene-environment interaction between an endocannabinoid system genetic polymorphism and cannabis use in first episode of psychosis. Eur Neuropsychopharmacol 2019; 29:786-794. [PMID: 31076188 DOI: 10.1016/j.euroneuro.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 03/27/2019] [Accepted: 04/23/2019] [Indexed: 11/27/2022]
Abstract
Alterations of the endocannabinoid system (ECS) may play an important role in the development of schizophrenia and other psychotic disorders. Cannabis use is one of the environmental factors more repeatedly related to an increase the risk of developing a psychotic episode, while its use modifies the ECS normal function. In the present study we purposed to examine the gene by environment (GxE) interaction between 15 selected single nucleotide polymorphisms (SNPs) related to the ECS and cannabis use in a cohort of 321 patients with a first episode of psychosis (FEP) and 241 matched healthy controls. We found the fatty-acid amide hydrolase (FAAH) rs2295633 SNP genetic polymorphism was associated with a greater risk of presenting a FEP in subjects with relevant cannabis use, but not in subjects without a history of cannabis use. The probability of presenting a FEP was tenfold higher (OR: 10.69) in cannabis users who were homozygote carriers of the T allele of the FAAH rs2295633 SNP, compared to users of cannabis without this genotype. We also found that a higher a proportion of TT carriers of the FAAH rs2295633 SNP with a positive history of cannabis use was treated with high potency antipsychotic. This study has identified a GxE-environment interaction between a genetic polymorphism from the ECS and cannabis use involved in the risk of presenting a FEP. Although this preliminary data should be replicated with independent samples, our results highlight the importance of the pro-psychotic effects of exogenous cannabis use over the ECS in certain subjects.
Collapse
|
47
|
Jouroukhin Y, Zhu X, Shevelkin AV, Hasegawa Y, Abazyan B, Saito A, Pevsner J, Kamiya A, Pletnikov MV. Adolescent Δ 9-Tetrahydrocannabinol Exposure and Astrocyte-Specific Genetic Vulnerability Converge on Nuclear Factor-κB-Cyclooxygenase-2 Signaling to Impair Memory in Adulthood. Biol Psychiatry 2019; 85:891-903. [PMID: 30219209 PMCID: PMC6525084 DOI: 10.1016/j.biopsych.2018.07.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although several studies have linked adolescent cannabis use to long-term cognitive dysfunction, there are negative reports as well. The fact that not all users develop cognitive impairment suggests a genetic vulnerability to adverse effects of cannabis, which are attributed to action of Δ9-tetrahydrocannabinol (Δ9-THC), a cannabis constituent and partial agonist of brain cannabinoid receptor 1. As both neurons and glial cells express cannabinoid receptor 1, genetic vulnerability could influence Δ9-THC-induced signaling in a cell type-specific manner. METHODS Here we use an animal model of inducible expression of dominant-negative disrupted in schizophrenia 1 (DN-DISC1) selectively in astrocytes to evaluate the molecular mechanisms, whereby an astrocyte genetic vulnerability could interact with adolescent Δ9-THC exposure to impair recognition memory in adulthood. RESULTS Selective expression of DN-DISC1 in astrocytes and adolescent treatment with Δ9-THC synergistically affected recognition memory in adult mice. Similar deficits in recognition memory were observed following knockdown of endogenous Disc1 in hippocampal astrocytes in mice treated with Δ9-THC during adolescence. At the molecular level, DN-DISC1 and Δ9-THC synergistically activated the nuclear factor-κB-cyclooxygenase-2 pathway in astrocytes and decreased immunoreactivity of parvalbumin-positive presynaptic inhibitory boutons around pyramidal neurons of the hippocampal CA3 area. The cognitive abnormalities were prevented in DN-DISC1 mice exposed to Δ9-THC by simultaneous adolescent treatment with the cyclooxygenase-2 inhibitor, NS398. CONCLUSIONS Our data demonstrate that individual vulnerability to cannabis can be exclusively mediated by astrocytes. Results of this work suggest that genetic predisposition within astrocytes can exaggerate Δ9-THC-produced cognitive impairments via convergent inflammatory signaling, suggesting possible targets for preventing adverse effects of cannabis within susceptible individuals.
Collapse
Affiliation(s)
- Yan Jouroukhin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexey V Shevelkin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuto Hasegawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bagrat Abazyan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Atsushi Saito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan Pevsner
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Kennedy Krieger Institute, Baltimore, Maryland
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
48
|
Jacobson MR, Watts JJ, Boileau I, Tong J, Mizrahi R. A systematic review of phytocannabinoid exposure on the endocannabinoid system: Implications for psychosis. Eur Neuropsychopharmacol 2019; 29:330-348. [PMID: 30635160 DOI: 10.1016/j.euroneuro.2018.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 07/17/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
Cannabis, the most widely used illicit drug worldwide, produces psychoactive effects through its component cannabinoids, which act on the endocannabinoid system. Research on how cannabinoid exposure affects the endocannabinoid system is limited. Substantial evidence indicates cannabis use as a risk factor for psychosis, and the mechanism(s) by which this is occurring is/are currently unknown. Here, we conduct the first review of the effects of exogenous cannabinoids on the endocannabinoid system in humans with and without psychotic disorders. The most well established finding is the down-regulation of cannabinoid CB1 receptors (CB1R) after chronic and recent cannabis exposure, but it remains uncertain whether this effect is present in cannabis users with schizophrenia. We highlight where cannabis exposure affects the endocannabinoid system in a pattern that may mirror what is seen in psychosis, and how further research can push this field forward. In these times of changing cannabis legislation, research highlighting the biological effects of cannabinoids is greatly needed.
Collapse
Affiliation(s)
- Maya R Jacobson
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Jeremy J Watts
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Isabelle Boileau
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, Faculty of Medicine, 1 King's College Circle, University of Toronto, Ontario M5S 1A8, Canada.
| | - Junchao Tong
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario M5T 1R8, Canada.
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Institute of Medical Science, Faculty of Medicine, 1 King's College Circle, University of Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
49
|
Stark T, Ruda-Kucerova J, Iannotti FA, D'Addario C, Di Marco R, Pekarik V, Drazanova E, Piscitelli F, Bari M, Babinska Z, Giurdanella G, Di Bartolomeo M, Salomone S, Sulcova A, Maccarrone M, Wotjak CT, Starcuk Z, Drago F, Mechoulam R, Di Marzo V, Micale V. Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia. Neuropharmacology 2019; 146:212-221. [DOI: 10.1016/j.neuropharm.2018.11.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/14/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022]
|
50
|
Selective Activation of Cholecystokinin-Expressing GABA (CCK-GABA) Neurons Enhances Memory and Cognition. eNeuro 2019; 6:eN-NWR-0360-18. [PMID: 30834305 PMCID: PMC6397954 DOI: 10.1523/eneuro.0360-18.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/04/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Cholecystokinin-expressing GABAergic (CCK-GABA) neurons are perisomatic inhibitory cells that have been argued to regulate emotion and sculpt the network oscillations associated with cognition. However, no study has selectively manipulated CCK-GABA neuron activity during behavior in freely-moving animals. To explore the behavioral effects of activating CCK-GABA neurons on emotion and cognition, we utilized a novel intersectional genetic mouse model coupled with a chemogenetic approach. Specifically, we generated triple transgenic CCK-Cre;Dlx5/6-Flpe;RC::FL-hM3Dq (CCK-GABA/hM3Dq) mice that expressed the synthetic excitatory hM3Dq receptor in CCK-GABA neurons. Results showed that clozapine-N-oxide (CNO)-mediated activation of CCK-GABA neurons did not alter open field (OF) or tail suspension (TS) performance and only slightly increased anxiety in the elevated plus maze (EPM). Although CNO treatment had only modestly affected emotional behavior, it significantly enhanced multiple cognitive and memory behaviors including social recognition, contextual fear conditioning, contextual discrimination, object recognition, and problem-solving in the puzzle box. Collectively, these findings suggest that systemic activation of CCK-GABA neurons minimally affects emotion but significantly enhances cognition and memory. Our results imply that CCK-GABA neurons are more functionally diverse than originally expected and could serve as a potential therapeutic target for the treatment of cognitive/memory disorders.
Collapse
|