1
|
Aynekulu Mersha DG, van der Sterren I, van Leeuwen LPM, Langerak T, Hakim MS, Martina B, van Lelyveld SFL, van Gorp ECM. The role of antibody-dependent enhancement in dengue vaccination. Trop Dis Travel Med Vaccines 2024; 10:22. [PMID: 39482727 PMCID: PMC11529159 DOI: 10.1186/s40794-024-00231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 11/03/2024] Open
Abstract
Dengue is the most rapidly spreading vector-borne disease worldwide, with over half the global population at risk for an infection. Antibody-dependent enhancement (ADE) is associated with increased disease severity and may also be attributable to the deterioration of disease in vaccinated people. Two dengue vaccines are approved momentarily, with more in development. The increasing use of vaccines against dengue, combined with the development of more, makes a thorough understanding of the processes behind ADE more important than ever. Above that, due to the lack of treatment options, this method of prevention is of great importance. This review aims to explore the impact of ADE in dengue vaccinations, with the goal of enhancing potential vaccination strategies in the fight against dengue.
Collapse
Affiliation(s)
- D G Aynekulu Mersha
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands.
| | - I van der Sterren
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - L P M van Leeuwen
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - T Langerak
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - M S Hakim
- Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - B Martina
- Artemis Bioservices and Athenavax B.V, Delft, the Netherlands
| | - S F L van Lelyveld
- Department of internal medicine, Spaarne Gasthuis, Haarlem/Hoofddorp, the Netherlands
| | - E C M van Gorp
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| |
Collapse
|
2
|
Edgar JE, Bournazos S. Fc-FcγR interactions during infections: From neutralizing antibodies to antibody-dependent enhancement. Immunol Rev 2024. [PMID: 39268652 DOI: 10.1111/imr.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Advances in antibody technologies have resulted in the development of potent antibody-based therapeutics with proven clinical efficacy against infectious diseases. Several monoclonal antibodies (mAbs), mainly against viruses such as SARS-CoV-2, HIV-1, Ebola virus, influenza virus, and hepatitis B virus, are currently undergoing clinical testing or are already in use. Although these mAbs exhibit potent neutralizing activity that effectively blocks host cell infection, their antiviral activity results not only from Fab-mediated virus neutralization, but also from the protective effector functions mediated through the interaction of their Fc domains with Fcγ receptors (FcγRs) on effector leukocytes. Fc-FcγR interactions confer pleiotropic protective activities, including the clearance of opsonized virions and infected cells, as well as the induction of antiviral T-cell responses. However, excessive or inappropriate activation of specific FcγR pathways can lead to disease enhancement and exacerbated pathology, as seen in the context of dengue virus infections. A comprehensive understanding of the diversity of Fc effector functions during infection has guided the development of engineered antiviral antibodies optimized for maximal effector activity, as well as the design of targeted therapeutic approaches to prevent antibody-dependent enhancement of disease.
Collapse
Affiliation(s)
- Julia E Edgar
- The London School of Hygiene and Tropical Medicine, London, UK
| | - Stylianos Bournazos
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
3
|
Dillard JA, Taft-Benz SA, Knight AC, Anderson EJ, Pressey KD, Parotti B, Martinez SA, Diaz JL, Sarkar S, Madden EA, De la Cruz G, Adams LE, Dinnon KH, Leist SR, Martinez DR, Schäfer A, Powers JM, Yount BL, Castillo IN, Morales NL, Burdick J, Evangelista MKD, Ralph LM, Pankow NC, Linnertz CL, Lakshmanane P, Montgomery SA, Ferris MT, Baric RS, Baxter VK, Heise MT. Adjuvant-dependent impact of inactivated SARS-CoV-2 vaccines during heterologous infection by a SARS-related coronavirus. Nat Commun 2024; 15:3738. [PMID: 38702297 PMCID: PMC11068739 DOI: 10.1038/s41467-024-47450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/02/2024] [Indexed: 05/06/2024] Open
Abstract
Whole virus-based inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous coronavirus infection, the emergence of novel variants and the presence of large zoonotic reservoirs harboring novel heterologous coronaviruses provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes like vaccine-associated enhanced respiratory disease. Here, we use a female mouse model of coronavirus disease to evaluate inactivated vaccine performance against either homologous challenge with SARS-CoV-2 or heterologous challenge with a bat-derived coronavirus that represents a potential emerging disease threat. We show that inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide can cause enhanced respiratory disease during heterologous infection, while use of an alternative adjuvant does not drive disease and promotes heterologous viral clearance. In this work, we highlight the impact of adjuvant selection on inactivated vaccine safety and efficacy against heterologous coronavirus infection.
Collapse
Affiliation(s)
- Jacob A Dillard
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharon A Taft-Benz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Audrey C Knight
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth J Anderson
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katia D Pressey
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Breantié Parotti
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sabian A Martinez
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer L Diaz
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily A Madden
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriela De la Cruz
- Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lily E Adams
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Izabella N Castillo
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Noah L Morales
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jane Burdick
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Lauren M Ralph
- Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas C Pankow
- Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Premkumar Lakshmanane
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Dallas Tissue Research, Farmers Branch, TX, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria K Baxter
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Mark T Heise
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Mahalingam G, Rachamalla HK, Arjunan P, Karuppusamy KV, Periyasami Y, Mohan A, Subramaniyam K, M S, Rajendran V, Moorthy M, Varghese GM, Mohankumar KM, Thangavel S, Srivastava A, Marepally S. SMART-lipid nanoparticles enabled mRNA vaccine elicits cross-reactive humoral responses against the omicron sub-variants. Mol Ther 2024; 32:1284-1297. [PMID: 38414245 PMCID: PMC11081802 DOI: 10.1016/j.ymthe.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 02/29/2024] Open
Abstract
The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has necessitated the development of broad cross-reactive vaccines. Recent findings suggest that enhanced antigen presentation could lead to cross-reactive humoral responses against the emerging variants. Toward enhancing the antigen presentation to dendritic cells (DCs), we developed a novel shikimoylated mannose receptor targeting lipid nanoparticle (SMART-LNP) system that could effectively deliver mRNAs into DCs. To improve the translation of mRNA, we developed spike domain-based trimeric S1 (TS1) mRNA with optimized codon sequence, base modification, and engineered 5' and 3' UTRs. In a mouse model, SMART-LNP-TS1 vaccine could elicit robust broad cross-reactive IgGs against Omicron sub-variants, and induced interferon-γ-producing T cells against SARS-CoV-2 virus compared with non-targeted LNP-TS1 vaccine. Further, T cells analysis revealed that SMART-LNP-TS1 vaccine induced long-lived memory T cell subsets, T helper 1 (Th1)-dominant and cytotoxic T cells immune responses against the SARS-CoV-2 virus. Importantly, SMART-LNP-TS1 vaccine produced strong Th1-predominant humoral and cellular immune responses. Overall, SMART-LNPs can be explored for precise antigenic mRNA delivery and robust immune responses. This platform technology can be explored further as a next-generation delivery system for mRNA-based immune therapies.
Collapse
Affiliation(s)
- Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Hari Krishnareddy Rachamalla
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Porkizhi Arjunan
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Karthik V Karuppusamy
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Aruna Mohan
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Kanimozhi Subramaniyam
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Salma M
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Vigneshwar Rajendran
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Mahesh Moorthy
- Department of Clinical Virology, Christian Medical College and Hospital, Vellore, TN 632002, India
| | - George M Varghese
- Department of Infectious Diseases, Christian Medical College and Hospital, Vellore, TN 632002, India
| | - Kumarasamypet M Mohankumar
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Alok Srivastava
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India.
| |
Collapse
|
5
|
Heise M, Dillard J, Taft-Benz S, Knight A, Anderson E, Pressey K, Parotti B, Martinez S, Diaz J, Sarkar S, Madden E, De la Cruz G, Adams L, Dinnon K, Leist S, Martinez D, Schaefer A, Powers J, Yount B, Castillo I, Morales N, Burdick J, Evangelista MK, Ralph L, Pankow N, Linnertz C, Lakshmanane P, Montgomery S, Ferris M, Baric R, Baxter V. Adjuvant-dependent effects on the safety and efficacy of inactivated SARS-CoV-2 vaccines during heterologous infection by a SARS-related coronavirus. RESEARCH SQUARE 2023:rs.3.rs-3401539. [PMID: 37961507 PMCID: PMC10635311 DOI: 10.21203/rs.3.rs-3401539/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Inactivated whole virus SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide (Alum) are among the most widely used COVID-19 vaccines globally and have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous virus infection in healthy recipients, the emergence of novel SARS-CoV-2 variants and the presence of large zoonotic reservoirs provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes including vaccine-associated enhanced respiratory disease (VAERD). To evaluate this possibility, we tested the performance of an inactivated SARS-CoV-2 vaccine (iCoV2) in combination with Alum against either homologous or heterologous coronavirus challenge in a mouse model of coronavirus-induced pulmonary disease. Consistent with human results, iCoV2 + Alum protected against homologous challenge. However, challenge with a heterologous SARS-related coronavirus, Rs-SHC014-CoV (SHC014), up to at least 10 months post-vaccination, resulted in VAERD in iCoV2 + Alum-vaccinated animals, characterized by pulmonary eosinophilic infiltrates, enhanced pulmonary pathology, delayed viral clearance, and decreased pulmonary function. In contrast, vaccination with iCoV2 in combination with an alternative adjuvant (RIBI) did not induce VAERD and promoted enhanced SHC014 clearance. Further characterization of iCoV2 + Alum-induced immunity suggested that CD4+ T cells were a major driver of VAERD, and these responses were partially reversed by re-boosting with recombinant Spike protein + RIBI adjuvant. These results highlight potential risks associated with vaccine breakthrough in recipients of Alum-adjuvanted inactivated vaccines and provide important insights into factors affecting both the safety and efficacy of coronavirus vaccines in the face of heterologous virus infections.
Collapse
Affiliation(s)
- Mark Heise
- University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Boyd Yount
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | | - Prem Lakshmanane
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | | | | | - Victoria Baxter
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
6
|
Dormeshkin D, Katsin M, Stegantseva M, Golenchenko S, Shapira M, Dubovik S, Lutskovich D, Kavaleuski A, Meleshko A. Design and Immunogenicity of SARS-CoV-2 DNA Vaccine Encoding RBD-PVXCP Fusion Protein. Vaccines (Basel) 2023; 11:1014. [PMID: 37376403 DOI: 10.3390/vaccines11061014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 06/29/2023] Open
Abstract
The potential of immune-evasive mutation accumulation in the SARS-CoV-2 virus has led to its rapid spread, causing over 600 million confirmed cases and more than 6.5 million confirmed deaths. The huge demand for the rapid development and deployment of low-cost and effective vaccines against emerging variants has renewed interest in DNA vaccine technology. Here, we report the rapid generation and immunological evaluation of novel DNA vaccine candidates against the Wuhan-Hu-1 and Omicron variants based on the RBD protein fused with the Potato virus X coat protein (PVXCP). The delivery of DNA vaccines using electroporation in a two-dose regimen induced high-antibody titers and profound cellular responses in mice. The antibody titers induced against the Omicron variant of the vaccine were sufficient for effective protection against both Omicron and Wuhan-Hu-1 virus infections. The PVXCP protein in the vaccine construct shifted the immune response to the favorable Th1-like type and provided the oligomerization of RBD-PVXCP protein. Naked DNA delivery by needle-free injection allowed us to achieve antibody titers comparable with mRNA-LNP delivery in rabbits. These data identify the RBD-PVXCP DNA vaccine platform as a promising solution for robust and effective SARS-CoV-2 protection, supporting further translational study.
Collapse
Affiliation(s)
- Dmitri Dormeshkin
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 220084 Minsk, Belarus
| | - Mikalai Katsin
- Immunofusion, LLC, 210004 Vitebsk, Belarus
- Imunovakcina, UAB, LT-08102 Vilnius, Lithuania
| | | | | | - Michail Shapira
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 220084 Minsk, Belarus
| | - Simon Dubovik
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 220084 Minsk, Belarus
| | | | - Anton Kavaleuski
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Alexander Meleshko
- Immunofusion, LLC, 210004 Vitebsk, Belarus
- Imunovakcina, UAB, LT-08102 Vilnius, Lithuania
| |
Collapse
|
7
|
Thomas S, Smatti MK, Ouhtit A, Cyprian FS, Almaslamani MA, Thani AA, Yassine HM. Antibody-Dependent Enhancement (ADE) and the role of complement system in disease pathogenesis. Mol Immunol 2022; 152:172-182. [PMID: 36371813 PMCID: PMC9647202 DOI: 10.1016/j.molimm.2022.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Antibody-dependent enhancement (ADE) has been associated with severe disease outcomes in several viral infections, including respiratory infections. In vitro and in vivo studies showed that antibody-response to SARS-CoV and MERS-CoV could exacerbate infection via ADE. Recently in SARS CoV-2, the in vitro studies and structural analysis shows a risk of disease severity via ADE. This phenomenon is partially attributed to non-neutralizing antibodies or antibodies at sub-neutralizing levels. These antibodies result in antigen-antibody complexes' deposition and propagation of a chronic inflammatory process that destroys affected tissues. Further, antigen-antibody complexes may enhance the internalization of the virus into cells through the Fc gamma receptor (FcγR) and lead to further virus replication. Thus, ADE occur via two mechanisms; 1. Antibody mediated replication and 2. Enhanced immune activation. Antibody-mediated effector functions are mainly driven by complement activation, and the first complement in the cascade is complement 1q (C1q) which binds to the virus-antibody complex. Reports say that deficiency in circulating plasma levels of C1q, an independent predictor of mortality in high-risk patients, including diabetes, is associated with severe viral infections. Complement mediated ADE is reported in several viral infections such as dengue, West Nile virus, measles, RSV, Human immunodeficiency virus (HIV), and Ebola virus. This review discusses ADE in viral infections and the in vitro evidence of ADE in coronaviruses. We outline the mechanisms of ADE, emphasizing the role of complements, especially C1q in the outcome of the enhanced disease.
Collapse
Affiliation(s)
- Swapna Thomas
- Biomedical Research Center, Qatar University, Qatar; Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | | | - Allal Ouhtit
- Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | - Farhan S Cyprian
- Basic Medical Science Department, College of Medicine-QU Health, Qatar University, Qatar.
| | | | - Asmaa Al Thani
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| |
Collapse
|
8
|
Gavitt TD, Mara AB, Goodridge ML, Ozyck RG, Reinhardt E, Miller JM, Hunte M, Tulman ER, Frasca Jr S, Silbart LK, Geary SJ, Szczepanek SM. B cells oppose Mycoplasma pneumoniae vaccine enhanced disease and limit bacterial colonization of the lungs. NPJ Vaccines 2022; 7:130. [PMID: 36310317 PMCID: PMC9618410 DOI: 10.1038/s41541-022-00556-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Development of an effective vaccine for Mycoplasma pneumoniae has been hindered by reports of Vaccine Enhanced Disease (VED) in test subjects vaccinated and challenged in studies conducted in the 1960s. The exact mechanism of disease exacerbation has yet to be fully described, but host immune responses to Lipid-Associated Membrane Proteins (LAMPs) lipoprotein lipid moieties have been implicated. LAMPs-induced exacerbation appears to involve helper T cell recall responses, due in part to their influence on neutrophil recruitment and subsequent inflammatory responses in the lung. Herein, we characterized the functions of host B cell responses to M. pneumoniae LAMPs and delipidated-LAMPs (dLAMPs) by conducting passive transfer and B cell depletion studies to assess their contribution to disease exacerbation or protection using a BALB/c mouse model. We found that antibody responses to M. pneumoniae LAMPs and dLAMPs differ in magnitude, but not in isotype or subclass. Passive transfer, dLAMP denaturation, and monoclonal antibody studies indicate that antibodies do not cause VED, but do appear to contribute to control of bacterial loads in the lungs. Depletion of B cells prior to LAMPs-vaccination results in significantly enhanced pathology in comparison to B cell competent controls, suggesting a possible regulatory role of B cells distinct from antibody secretion. Taken together, our findings suggest that B cell antibody responses to M. pneumoniae contribute to, but are insufficient for protection against challenge on their own, and that other functional properties of B cells are necessary to limit exacerbation of disease in LAMPs-vaccinated mice after infection.
Collapse
Affiliation(s)
- Tyler D. Gavitt
- grid.63054.340000 0001 0860 4915Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06238 USA ,grid.63054.340000 0001 0860 4915Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT 06238 USA ,US Animal Vaccinology Research Coordination Network, Storrs, CT 06238 USA
| | - Arlind B. Mara
- grid.63054.340000 0001 0860 4915Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06238 USA ,grid.63054.340000 0001 0860 4915Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT 06238 USA ,US Animal Vaccinology Research Coordination Network, Storrs, CT 06238 USA
| | - Meagan L. Goodridge
- grid.63054.340000 0001 0860 4915Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06238 USA ,grid.63054.340000 0001 0860 4915Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT 06238 USA
| | - Rosemary Grace Ozyck
- grid.63054.340000 0001 0860 4915Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06238 USA ,grid.63054.340000 0001 0860 4915Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT 06238 USA
| | - Emily Reinhardt
- grid.63054.340000 0001 0860 4915Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06238 USA ,Connecticut Veterinary Medical Diagnostic Laboratory, Storrs, CT 06238 USA
| | - Jeremy M. Miller
- grid.63054.340000 0001 0860 4915Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06238 USA ,grid.63054.340000 0001 0860 4915Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT 06238 USA ,US Animal Vaccinology Research Coordination Network, Storrs, CT 06238 USA
| | - Morgan Hunte
- grid.63054.340000 0001 0860 4915Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06238 USA ,grid.63054.340000 0001 0860 4915Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT 06238 USA ,grid.417555.70000 0000 8814 392XPresent Address: Sanofi, Meriden, CT 06450 USA
| | - Edan R. Tulman
- grid.63054.340000 0001 0860 4915Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06238 USA ,grid.63054.340000 0001 0860 4915Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT 06238 USA ,US Animal Vaccinology Research Coordination Network, Storrs, CT 06238 USA
| | - Salvatore Frasca Jr
- grid.63054.340000 0001 0860 4915Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06238 USA
| | - Lawrence K. Silbart
- grid.63054.340000 0001 0860 4915Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT 06238 USA ,grid.63054.340000 0001 0860 4915Department of Allied of Health Sciences, University of Connecticut, Storrs, CT 06238 USA
| | - Steven J. Geary
- grid.63054.340000 0001 0860 4915Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06238 USA ,grid.63054.340000 0001 0860 4915Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT 06238 USA ,US Animal Vaccinology Research Coordination Network, Storrs, CT 06238 USA
| | - Steven M. Szczepanek
- grid.63054.340000 0001 0860 4915Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06238 USA ,grid.63054.340000 0001 0860 4915Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT 06238 USA ,US Animal Vaccinology Research Coordination Network, Storrs, CT 06238 USA
| |
Collapse
|
9
|
Bigay J, Le Grand R, Martinon F, Maisonnasse P. Vaccine-associated enhanced disease in humans and animal models: Lessons and challenges for vaccine development. Front Microbiol 2022; 13:932408. [PMID: 36033843 PMCID: PMC9399815 DOI: 10.3389/fmicb.2022.932408] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The fight against infectious diseases calls for the development of safe and effective vaccines that generate long-lasting protective immunity. In a few situations, vaccine-mediated immune responses may have led to exacerbated pathology upon subsequent infection with the pathogen targeted by the vaccine. Such vaccine-associated enhanced disease (VAED) has been reported, or at least suspected, in animal models, and in a few instances in humans, for vaccine candidates against the respiratory syncytial virus (RSV), measles virus (MV), dengue virus (DENV), HIV-1, simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and the Middle East respiratory syndrome coronavirus (MERS-CoV). Although alleviated by clinical and epidemiological evidence, a number of concerns were also initially raised concerning the short- and long-term safety of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is causing the ongoing COVID-19 pandemic. Although the mechanisms leading to this phenomenon are not yet completely understood, the individual and/or collective role of antibody-dependent enhancement (ADE), complement-dependent enhancement, and cell-dependent enhancement have been highlighted. Here, we review mechanisms that may be associated with the risk of VAED, which are important to take into consideration, both in the assessment of vaccine safety and in finding ways to define models and immunization strategies that can alleviate such concerns.
Collapse
Affiliation(s)
| | | | - Frédéric Martinon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud-INSERM U1184, CEA, Fontenay-Aux-Roses, France
| | | |
Collapse
|
10
|
Lopez-Cantu DO, Wang X, Carrasco-Magallanes H, Afewerki S, Zhang X, Bonventre JV, Ruiz-Esparza GU. From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines. NANO-MICRO LETTERS 2022; 14:41. [PMID: 34981278 PMCID: PMC8722410 DOI: 10.1007/s40820-021-00771-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/12/2021] [Indexed: 05/02/2023]
Abstract
During the last decades, the use of nanotechnology in medicine has effectively been translated to the design of drug delivery systems, nanostructured tissues, diagnostic platforms, and novel nanomaterials against several human diseases and infectious pathogens. Nanotechnology-enabled vaccines have been positioned as solutions to mitigate the pandemic outbreak caused by the novel pathogen severe acute respiratory syndrome coronavirus 2. To fast-track the development of vaccines, unprecedented industrial and academic collaborations emerged around the world, resulting in the clinical translation of effective vaccines in less than one year. In this article, we provide an overview of the path to translation from the bench to the clinic of nanotechnology-enabled messenger ribonucleic acid vaccines and examine in detail the types of delivery systems used, their mechanisms of action, obtained results during each phase of their clinical development and their regulatory approval process. We also analyze how nanotechnology is impacting global health and economy during the COVID-19 pandemic and beyond.
Collapse
Affiliation(s)
- Diana O Lopez-Cantu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Boston, MA, 02115, USA
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, NL, Mexico
| | - Xichi Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Boston, MA, 02115, USA
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Hector Carrasco-Magallanes
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Tecnologico de Monterrey, School of Medicine and Health Sciences, 64849, Monterrey, NL, Mexico
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Boston, MA, 02115, USA
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Joseph V Bonventre
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Boston, MA, 02115, USA.
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Boston, MA, 02115, USA.
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Gartlan C, Tipton T, Salguero FJ, Sattentau Q, Gorringe A, Carroll MW. Vaccine-Associated Enhanced Disease and Pathogenic Human Coronaviruses. Front Immunol 2022; 13:882972. [PMID: 35444667 PMCID: PMC9014240 DOI: 10.3389/fimmu.2022.882972] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 01/14/2023] Open
Abstract
Vaccine-associated enhanced disease (VAED) is a difficult phenomenon to define and can be confused with vaccine failure. Using studies on respiratory syncytial virus (RSV) vaccination and dengue virus infection, we highlight known and theoretical mechanisms of VAED, including antibody-dependent enhancement (ADE), antibody-enhanced disease (AED) and Th2-mediated pathology. We also critically review the literature surrounding this phenomenon in pathogenic human coronaviruses, including MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Poor quality histopathological data and a lack of consistency in defining severe pathology and VAED in preclinical studies of MERS-CoV and SARS-CoV-1 vaccines in particular make it difficult to interrogate potential cases of VAED. Fortuitously, there have been only few reports of mild VAED in SARS-CoV-2 vaccination in preclinical models and no observations in their clinical use. We describe the problem areas and discuss methods to improve the characterisation of VAED in the future.
Collapse
Affiliation(s)
- Cillian Gartlan
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Francisco J Salguero
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Quentin Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Andrew Gorringe
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Miles W Carroll
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Liu J, Xu K, Xing M, Zhuo Y, Guo J, Du M, Wang Q, An Y, Li J, Gao P, Wang Y, He F, Guo Y, Li M, Zhang Y, Zhang L, Gao GF, Dai L, Zhou D. Heterologous prime-boost immunizations with chimpanzee adenoviral vectors elicit potent and protective immunity against SARS-CoV-2 infection. Cell Discov 2021; 7:123. [PMID: 34923570 PMCID: PMC8684349 DOI: 10.1038/s41421-021-00360-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/04/2021] [Indexed: 02/04/2023] Open
Abstract
A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is urgently needed to tackle the COVID-19 global pandemic. Here, we describe the development of chimpanzee adenovirus serotypes 6 and 68 (AdC6 and AdC68) vector-based vaccine candidates expressing the full-length transmembrane spike glycoprotein. We assessed the vaccine immunogenicity, protective efficacy, and immune cell profiles using single-cell RNA sequencing in mice. Mice were vaccinated via the intramuscular route with the two vaccine candidates using prime-only regimens or heterologous prime-boost regimens. Both chimpanzee adenovirus-based vaccines elicited strong and long-term antibody and T cell responses, balanced Th1/Th2 cell responses, robust germinal center responses, and provided effective protection against SARS-CoV-2 infection in mouse lungs. Strikingly, we found that heterologous prime-boost immunization induced higher titers of protective antibodies, and more spike-specific memory CD8+ T cells in mice. Potent neutralizing antibodies produced against the highly transmissible SARS-CoV-2 variants B.1.1.7 lineage (also known as N501Y.V1) and B.1.351 lineage (also known as N501Y.V2) were detectable in mouse sera over 6 months after prime immunization. Our results demonstrate that the heterologous prime-boost strategy with chimpanzee adenovirus-based vaccines is promising for further development to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jiaojiao Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kun Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Hainan, China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yue Zhuo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingao Guo
- University of Chinese Academy of Sciences, Beijing, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Meng Du
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qi Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yaling An
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhe Li
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Furong He
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yingying Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mingxi Li
- Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine and Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Yuchao Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Fudan University, Shanghai, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine and Vanke School of Public Health, Tsinghua University, Beijing, China
| | - George F Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.
| | - Lianpan Dai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Hainan, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Lin HT, Chen CC, Chiao DJ, Chang TY, Chen XA, Young JJ, Kuo SC. Nanoparticular CpG-adjuvanted SARS-CoV-2 S1 protein elicits broadly neutralizing and Th1-biased immunoreactivity in mice. Int J Biol Macromol 2021; 193:1885-1897. [PMID: 34774590 PMCID: PMC8580573 DOI: 10.1016/j.ijbiomac.2021.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023]
Abstract
The spike (S) protein is a leading vaccine candidate against SARS-CoV-2 infection. The S1 domain of S protein, which contains a critical receptor-binding domain (RBD) antigen, potentially induces protective immunoreactivities against SARS-CoV-2. In this study, we presented preclinical evaluations of a novel insect cell-derived SARS-CoV-2 recombinant S1 (rS1) protein as a potent COVID-19 vaccine candidate. The native antigenicity of rS1 was characterized by enzyme-linked immunosorbent assay with a neutralizing monoclonal antibody targeting the RBD antigen. To improve its immunogenicity, rS1-adjuvanted with fucoidan/trimethylchitosan nanoparticles (FUC-TMC NPs) and cytosine-phosphate-guanosine-oligodeoxynucleotides (CpG-ODNs) were investigated using a mouse model. The S1-specific immunoglobulin G (IgG) titers, FluoroSpot assay, pseudovirus- and prototype SARS-CoV-2-based neutralization assays were assessed. The results showed that the rS1/CpG/ FUC-TMC NPs (rS1/CpG/NPs) formulation induced a broad-spectrum IgG response with potent, long-lasting, and cross-protective neutralizing activity against the emerging SARS-CoV-2 variant of concern, along with a Th1-biased cellular response. Thus, the rS1/CpG/NPs formulation presents a promising vaccination approach against COVID-19.
Collapse
Affiliation(s)
- Hui-Tsu Lin
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC,Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Der-Jiang Chiao
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Xin-An Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Jenn-Jong Young
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC,Corresponding authors at: Institute of Preventive Medicine, National Defense Medical Center, PO Box 90048-700, Sanhsia District, New Taipei City 23742, Taiwan, ROC
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC,Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan, ROC,Corresponding authors at: Institute of Preventive Medicine, National Defense Medical Center, PO Box 90048-700, Sanhsia District, New Taipei City 23742, Taiwan, ROC
| |
Collapse
|
14
|
Swanson PA, Padilla M, Hoyland W, McGlinchey K, Fields PA, Bibi S, Faust SN, McDermott AB, Lambe T, Pollard AJ, Durham NM, Kelly EJ. AZD1222/ChAdOx1 nCoV-19 vaccination induces a polyfunctional spike protein-specific T H1 response with a diverse TCR repertoire. Sci Transl Med 2021; 13:eabj7211. [PMID: 34591596 PMCID: PMC9924073 DOI: 10.1126/scitranslmed.abj7211] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
AZD1222 (ChAdOx1 nCoV-19), a replication-deficient simian adenovirus–vectored vaccine, has demonstrated safety, efficacy, and immunogenicity against coronavirus disease 2019 in clinical trials and real-world studies. We characterized CD4+ and CD8+ T cell responses induced by AZD1222 vaccination in peripheral blood mononuclear cells from 296 unique vaccine recipients aged 18 to 85 years who enrolled in the phase 2/3 COV002 trial. Total spike protein–specific CD4+ T cell helper type 1 (TH1) and CD8+ T cell responses were increased in AZD1222-vaccinated adults of all ages after two doses of AZD1222. CD4+ TH2 responses after AZD1222 vaccination were not detected. Furthermore, AZD1222-specific TH1 and CD8+ T cells both displayed a high degree of polyfunctionality in all adult age groups. T cell receptor β (TCRβ) sequences from vaccinated participants mapped against TCR sequences known to react to SARS-CoV-2 revealed substantial breadth and depth across the SARS-CoV-2 spike protein for both AZD1222-induced CD4+ and CD8+ T cell responses. Overall, AZD1222 vaccination induced a polyfunctional TH1-dominated T cell response, with broad CD4+ and CD8+ T cell coverage across the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Phillip A. Swanson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcelino Padilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wesley Hoyland
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly McGlinchey
- Discovery, Research and Early Development, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | | | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and NIHR Oxford Biomedical Research Centre, Oxford OX4 6PG, UK
| | - Saul N. Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and NIHR Oxford Biomedical Research Centre, Oxford OX4 6PG, UK
| | - Nicholas M. Durham
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Elizabeth J. Kelly
- Translational Medicine, Microbial Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | | |
Collapse
|
15
|
Lai CY, To A, Wong TAS, Lieberman MM, Clements DE, Senda JT, Ball AH, Pessaint L, Andersen H, Furuyama W, Marzi A, Donini O, Lehrer AT. Recombinant protein subunit SARS-CoV-2 vaccines formulated with CoVaccine HT adjuvant induce broad, Th1 biased, humoral and cellular immune responses in mice. Vaccine X 2021; 9:100126. [PMID: 34778744 PMCID: PMC8570651 DOI: 10.1016/j.jvacx.2021.100126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
The speed at which several COVID-19 vaccines went from conception to receiving FDA and EMA approval for emergency use is an achievement unrivaled in the history of vaccine development. Mass vaccination efforts using the highly effective vaccines are currently underway to generate sufficient herd immunity and reduce transmission of the SARS-CoV-2 virus. Despite the most advanced vaccine technology, global recipient coverage, especially in resource-poor areas remains a challenge as genetic drift in naïve population pockets threatens overall vaccine efficacy. In this study, we described the production of insect-cell expressed SARS-CoV-2 spike protein ectodomain constructs and examined their immunogenicity in mice. We demonstrated that, when formulated with CoVaccine HTTM adjuvant, an oil-in-water nanoemulsion compatible with lyophilization, our vaccine candidates elicit a broad-spectrum IgG response, high neutralizing antibody (NtAb) titers against SARS-CoV-2 prototype and variants of concern, specifically B.1.351 (Beta) and P.1. (Gamma), and an antigen-specific IFN-γ secreting response in outbred mice. Of note, different ectodomain constructs yielded variations in NtAb titers against the prototype strain and some VOC. Dose response experiments indicated that NtAb titers increased with antigen dose, but not adjuvant dose, and may be higher with a lower adjuvant dose. Our findings lay the immunological foundation for the development of a dry-thermostabilized vaccine that is deployable without refrigeration.
Collapse
Affiliation(s)
- Chih-Yun Lai
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
- Pacific Center for Emerging Infectious Disease Research, John A. Burns
School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Albert To
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | - Michael M. Lieberman
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | | | | | - Aquena H. Ball
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | | | | | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH,
Hamilton, Montana, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH,
Hamilton, Montana, MT, USA
| | | | - Axel T. Lehrer
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
- Pacific Center for Emerging Infectious Disease Research, John A. Burns
School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
16
|
Langellotto F, Dellacherie MO, Yeager C, Ijaz H, Yu J, Cheng C, Dimitrakakis N, Seiler BT, Gebre MS, Gilboa T, Johnson R, Storm N, Bardales S, Graveline A, White D, Tringides CM, Cartwright MJ, Doherty EJ, Honko A, Griffiths A, Barouch DH, Walt DR, Mooney DJ. A Modular Biomaterial Scaffold-Based Vaccine Elicits Durable Adaptive Immunity to Subunit SARS-CoV-2 Antigens. Adv Healthc Mater 2021; 10:e2101370. [PMID: 34605223 PMCID: PMC8652677 DOI: 10.1002/adhm.202101370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Indexed: 12/14/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic demonstrates the importance of generating safe and efficacious vaccines that can be rapidly deployed against emerging pathogens. Subunit vaccines are considered among the safest, but proteins used in these typically lack strong immunogenicity, leading to poor immune responses. Here, a biomaterial COVID-19 vaccine based on a mesoporous silica rods (MSRs) platform is described. MSRs loaded with granulocyte-macrophage colony-stimulating factor (GM-CSF), the toll-like receptor 4 (TLR-4) agonist monophosphoryl lipid A (MPLA), and SARS-CoV-2 viral protein antigens slowly release their cargo and form subcutaneous scaffolds that locally recruit and activate antigen-presenting cells (APCs) for the generation of adaptive immunity. MSR-based vaccines generate robust and durable cellular and humoral responses against SARS-CoV-2 antigens, including the poorly immunogenic receptor binding domain (RBD) of the spike (S) protein. Persistent antibodies over the course of 8 months are found in all vaccine configurations tested and robust in vitro viral neutralization is observed both in a prime-boost and a single-dose regimen. These vaccines can be fully formulated ahead of time or stored lyophilized and reconstituted with an antigen mixture moments before injection, which can facilitate its rapid deployment against emerging SARS-CoV-2 variants or new pathogens. Together, the data show a promising COVID-19 vaccine candidate and a generally adaptable vaccine platform against infectious pathogens.
Collapse
Affiliation(s)
- Fernanda Langellotto
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Maxence O. Dellacherie
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Chyenne Yeager
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Hamza Ijaz
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Jingyou Yu
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02115USA
| | - Chi‐An Cheng
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's HospitalBostonMA02115USA
- Harvard Medical SchoolBostonMA02115USA
| | - Nikolaos Dimitrakakis
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Benjamin T. Seiler
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Makda S. Gebre
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02115USA
| | - Tal Gilboa
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's HospitalBostonMA02115USA
- Harvard Medical SchoolBostonMA02115USA
| | - Rebecca Johnson
- Department of MicrobiologyBoston University School of Medicine and National Emerging Infectious Diseases LaboratoriesBostonMA02118USA
| | - Nadia Storm
- Department of MicrobiologyBoston University School of Medicine and National Emerging Infectious Diseases LaboratoriesBostonMA02118USA
| | - Sarai Bardales
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Amanda Graveline
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Des White
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Christina M. Tringides
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- Harvard Program in BiophysicsHarvard UniversityCambridgeMA02138USA
- Harvard–MIT Division in Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Mark J. Cartwright
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Edward J. Doherty
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Anna Honko
- Department of MicrobiologyBoston University School of Medicine and National Emerging Infectious Diseases LaboratoriesBostonMA02118USA
| | - Anthony Griffiths
- Department of MicrobiologyBoston University School of Medicine and National Emerging Infectious Diseases LaboratoriesBostonMA02118USA
| | - Dan H. Barouch
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02115USA
- Ragon Institute of MGHMIT, and HarvardCambridgeMA02139USA
- Massachusetts Consortium on Pathogen ReadinessBostonMA02215USA
| | - David R. Walt
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's HospitalBostonMA02115USA
- Harvard Medical SchoolBostonMA02115USA
| | - David J. Mooney
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
17
|
Lam JH, Khan AK, Cornell TA, Chia TW, Dress RJ, Yeow WWW, Mohd-Ismail NK, Venkataraman S, Ng KT, Tan YJ, Anderson DE, Ginhoux F, Nallani M. Polymersomes as Stable Nanocarriers for a Highly Immunogenic and Durable SARS-CoV-2 Spike Protein Subunit Vaccine. ACS NANO 2021; 15:15754-15770. [PMID: 34618423 PMCID: PMC8525042 DOI: 10.1021/acsnano.1c01243] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/30/2021] [Indexed: 05/05/2023]
Abstract
Multiple successful vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed to address the ongoing coronavirus disease 2019 (Covid-19) pandemic. In the present work, we describe a subunit vaccine based on the SARS-CoV-2 spike protein coadministered with CpG adjuvant. To enhance the immunogenicity of our formulation, both antigen and adjuvant were encapsulated with our proprietary artificial cell membrane (ACM) polymersome technology. Structurally, ACM polymersomes are self-assembling nanoscale vesicles made up of an amphiphilic block copolymer comprising poly(butadiene)-b-poly(ethylene glycol) and a cationic lipid, 1,2-dioleoyl-3-trimethylammonium-propane. Functionally, ACM polymersomes serve as delivery vehicles that are efficiently taken up by dendritic cells (DC1 and DC2), which are key initiators of the adaptive immune response. Two doses of our formulation elicit robust neutralizing antibody titers in C57BL/6 mice that persist at least 40 days. Furthermore, we confirm the presence of functional memory CD4+ and CD8+ T cells that produce T helper type 1 cytokines. This study is an important step toward the development of an efficacious vaccine in humans.
Collapse
Affiliation(s)
| | - Amit K. Khan
- ACM
Biolabs Pte Ltd, Singapore 638075, Singapore
| | | | | | - Regine J. Dress
- Singapore Immunology
Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | | | - Nur Khairiah Mohd-Ismail
- Infectious
Diseases Translational Research Program, Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University
Health System, National University of Singapore, Singapore 117545, Singapore
| | | | - Kim Tien Ng
- Infectious
Diseases Translational Research Program, Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University
Health System, National University of Singapore, Singapore 117545, Singapore
| | - Yee-Joo Tan
- Infectious
Diseases Translational Research Program, Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University
Health System, National University of Singapore, Singapore 117545, Singapore
- Institute
of Molecular and Cell Biology, Agency for Science, Technology
and Research, Singapore 138673, Singapore
| | - Danielle E. Anderson
- Program
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Florent Ginhoux
- Singapore Immunology
Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- SingHealth
Translational Immunology and Inflammation Centre, Singapore 169856, Singapore
| | | |
Collapse
|
18
|
Abdoli A, Aalizadeh R, Aminianfar H, Kianmehr Z, Teimoori A, Azimi E, Emamipour N, Eghtedardoost M, Siavashi V, Jamshidi H, Hosseinpour M, Taqavian M, Jalili H. Safety and potency of BIV1-CovIran inactivated vaccine candidate for SARS-CoV-2: A preclinical study. Rev Med Virol 2021; 32:e2305. [PMID: 34699647 PMCID: PMC8646699 DOI: 10.1002/rmv.2305] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/26/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
The development of effective and safe COVID‐19 vaccines is a major move forward in our global effort to control the SARS‐CoV‐2 pandemic. The aims of this study were (1) to develop an inactivated whole‐virus SARS‐CoV‐2 candidate vaccine named BIV1‐CovIran and (2) to determine the safety and potency of BIV1‐CovIran inactivated vaccine candidate against SARS‐CoV‐2. Infectious virus was isolated from nasopharyngeal swab specimen and propagated in Vero cells with clear cytopathic effects in a biosafety level‐3 facility using the World Health Organization’s laboratory biosafety guidance related to COVID‐19. After characterisation of viral seed stocks, the virus working seed was scaled‐up in Vero cells. After chemical inactivation and purification, it was formulated with alum adjuvant. Finally, different animal species were used to determine the toxicity and immunogenicity of the vaccine candidate. The study showed the safety profile in studied animals including guinea pig, rabbit, mice and monkeys. Immunisation at two different doses (3 or 5 μg per dose) elicited a high level of SARS‐CoV‐2 specific and neutralising antibodies in mice, rabbits and nonhuman primates. Rhesus macaques were immunised with the two‐dose schedule of 5 or 3 μg of the BIV1‐CovIran vaccine and showed highly efficient protection against 104 TCID50 of SARS‐CoV‐2 intratracheal challenge compared with the control group. These results highlight the BIV1‐CovIran vaccine as a potential candidate to induce a strong and potent immune response that may be a promising and feasible vaccine to protect against SARS‐CoV‐2 infection.
Collapse
Affiliation(s)
- Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.,Amirabad Virology Laboratory, Vaccine Unit, Tehran, Iran
| | - Reza Aalizadeh
- Biochemistry Department, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | | | - Zahra Kianmehr
- Department of Biochemistry, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Azimi
- Department of Biotechnology, Darou Pakhsh Pharmaceutical Co., Tehran, Iran
| | - Nabbi Emamipour
- Department of Biotechnology, Darou Pakhsh Pharmaceutical Co., Tehran, Iran
| | | | - Vahid Siavashi
- Azma Teb Gostar Sorena Research Company, Basic Medical Science Research Center, Tehran, Iran
| | - Hamidreza Jamshidi
- Department of Pharmacology, Faculty of Medicine, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Hasan Jalili
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
19
|
Fathizadeh H, Afshar S, Masoudi MR, Gholizadeh P, Asgharzadeh M, Ganbarov K, Köse Ş, Yousefi M, Kafil HS. SARS-CoV-2 (Covid-19) vaccines structure, mechanisms and effectiveness: A review. Int J Biol Macromol 2021; 188:740-750. [PMID: 34403674 PMCID: PMC8364403 DOI: 10.1016/j.ijbiomac.2021.08.076] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
The world has been suffering from COVID-19 disease for more than a year, and it still has a high mortality rate. In addition to the need to minimize transmission of the virus through non-pharmacological measures such as the use of masks and social distance, many efforts are being made to develop a variety of vaccines to prevent the disease worldwide. So far, several vaccines have reached the final stages of safety and efficacy in various phases of clinical trials, and some, such as Moderna/NIAID and BioNTech/Pfizer, have reported very high safety and protection. The important point is that comparing different vaccines is not easy because there is no set standard for measuring neutralization. In this study, we have reviewed the common platforms of COVID-19 vaccines and tried to present the latest reports on the effectiveness of these vaccines.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- Department of laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Saman Afshar
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mahmood Reza Masoudi
- Department of Internal Medicine, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Pourya Gholizadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Iran
| | | | | | - Şükran Köse
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Tepecik Training and Research Hospital, İzmir, Turkey
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Iran.
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
20
|
Vaccine-Associated Enhanced Viral Disease: Implications for Viral Vaccine Development. BioDrugs 2021; 35:505-515. [PMID: 34499320 PMCID: PMC8427162 DOI: 10.1007/s40259-021-00495-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 11/17/2022]
Abstract
Vaccine-associated enhanced disease (VAED) is a serious barrier to attaining successful virus vaccines in human and veterinary medicine. VAED occurs as two different immunopathologies, antibody-dependent enhancement (ADE) and vaccine-associated hypersensitivity (VAH). ADE contributes to the pathology of disease caused by four dengue viruses (DENV) through control of the intensity of cellular infection. Products of virus-infected cells are toxic. A partially protective yellow fever chimeric tetravalent DENV vaccine sensitized seronegative children to ADE breakthrough infections. A live-attenuated tetravalent whole virus vaccine in phase III testing appears to avoid ADE by providing durable protection against the four DENV. VAH sensitization by viral vaccines occurred historically. Children given formalin-inactivated measles or respiratory syncytial virus (RSV) vaccines experienced severe disease during breakthrough infections. Tissue responses demonstrated that VAH not ADE caused these vaccine safety problems. Subsequently, measles was successfully and safely contained by a live-attenuated virus vaccine. The difficulty in formulating a safe and effective RSV vaccine is troublesome evidence that avoiding VAH is a major research challenge. VAH-like tissue responses were observed during breakthrough homologous virus infections in monkeys given severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS) vaccines.
Collapse
|
21
|
DiPiazza AT, Leist SR, Abiona OM, Moliva JI, Werner A, Minai M, Nagata BM, Bock KW, Phung E, Schäfer A, Dinnon KH, Chang LA, Loomis RJ, Boyoglu-Barnum S, Alvarado GS, Sullivan NJ, Edwards DK, Morabito KM, Mascola JR, Carfi A, Corbett KS, Moore IN, Baric RS, Graham BS, Ruckwardt TJ. COVID-19 vaccine mRNA-1273 elicits a protective immune profile in mice that is not associated with vaccine-enhanced disease upon SARS-CoV-2 challenge. Immunity 2021; 54:1869-1882.e6. [PMID: 34270939 PMCID: PMC8249710 DOI: 10.1016/j.immuni.2021.06.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/30/2021] [Accepted: 06/25/2021] [Indexed: 12/03/2022]
Abstract
Vaccine-associated enhanced respiratory disease (VAERD) was previously observed in some preclinical models of severe acute respiratory syndrome (SARS) and MERS coronavirus vaccines. We used the SARS coronavirus 2 (SARS-CoV-2) mouse-adapted, passage 10, lethal challenge virus (MA10) mouse model of acute lung injury to evaluate the immune response and potential for immunopathology in animals vaccinated with research-grade mRNA-1273. Whole-inactivated virus or heat-denatured spike protein subunit vaccines with alum designed to elicit low-potency antibodies and Th2-skewed CD4+ T cells resulted in reduced viral titers and weight loss post challenge but more severe pathological changes in the lung compared to saline-immunized animals. In contrast, a protective dose of mRNA-1273 induced favorable humoral and cellular immune responses that protected from viral replication in the upper and lower respiratory tract upon challenge. A subprotective dose of mRNA-1273 reduced viral replication and limited histopathological manifestations compared to animals given saline. Overall, our findings demonstrate an immunological signature associated with antiviral protection without disease enhancement following vaccination with mRNA-1273.
Collapse
Affiliation(s)
- Anthony T DiPiazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olubukola M Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anne Werner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily Phung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenneth H Dinnon
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lauren A Chang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca J Loomis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriela S Alvarado
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
DNA Vaccine Administered by Cationic Lipoplexes or by In Vivo Electroporation Induces Comparable Antibody Responses against SARS-CoV-2 in Mice. Vaccines (Basel) 2021; 9:vaccines9080874. [PMID: 34451998 PMCID: PMC8402479 DOI: 10.3390/vaccines9080874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
In view of addressing the global necessity of an effective vaccine in the SARS-CoV-2 pandemic, a plasmid DNA vaccine, expressing for the spike (S) protein and formulated in lipoplexes, was manufactured and tested for in vitro transfection and in vivo immunogenicity. Blank cationic liposomes of 130.9 ± 5.8 nm in size and with a zeta potential of +48 ± 12 mV were formulated using the thin-film layer rehydration method. Liposomes were complexed with pCMVkan-S at different N/P ratios. Ratios of 0.25:1 and 1:1 were selected according to their complex stability and controlled size compared to other ratios and tested in vitro for transfection studies and in vivo for immunogenicity. Both selected formulations showed enhanced neutralizing antibody responses compared to pCMVkan-S injected alone, as well as an increased T cell response. The titers observed were similar to those of intramuscular electroporation (IM-EP), which was set as an efficacy goal.
Collapse
|
23
|
Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol 2021; 21:475-484. [PMID: 34211186 PMCID: PMC8246128 DOI: 10.1038/s41577-021-00578-z] [Citation(s) in RCA: 359] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Most COVID-19 vaccines are designed to elicit immune responses, ideally neutralizing antibodies (NAbs), against the SARS-CoV-2 spike protein. Several vaccines, including mRNA, adenoviral-vectored, protein subunit and whole-cell inactivated virus vaccines, have now reported efficacy in phase III trials and have received emergency approval in many countries. The two mRNA vaccines approved to date show efficacy even after only one dose, when non-NAbs and moderate T helper 1 cell responses are detectable, but almost no NAbs. After a single dose, the adenovirus vaccines elicit polyfunctional antibodies that are capable of mediating virus neutralization and of driving other antibody-dependent effector functions, as well as potent T cell responses. These data suggest that protection may require low levels of NAbs and might involve other immune effector mechanisms including non-NAbs, T cells and innate immune mechanisms. Identifying the mechanisms of protection as well as correlates of protection is crucially important to inform further vaccine development and guide the use of licensed COVID-19 vaccines worldwide.
Collapse
Affiliation(s)
- Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital, Vancouver, British Columbia, Canada.
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
| | - Tobias R Kollmann
- Telethon Kids Institute, Perth Children's Hospital, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
24
|
Swanson PA, Padilla M, Hoyland W, McGlinchey K, Fields PA, Bibi S, Faust SN, McDermott AB, Lambe T, Pollard AJ, Durham NM, Kelly EJ. T-cell mediated immunity after AZD1222 vaccination: A polyfunctional spike-specific Th1 response with a diverse TCR repertoire. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34189538 DOI: 10.1101/2021.06.17.21259027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AZD1222 (ChAdOx1 nCoV-19), a replication-deficient simian adenovirus-vectored vaccine, has demonstrated safety, efficacy, and immunogenicity against coronavirus disease 2019 (COVID-19) in clinical trials and real-world studies. We characterized CD4+ and CD8+ T-cell responses induced by AZD1222 vaccination in peripheral blood mononuclear cells (PBMCs) from 280 unique vaccine recipients aged 18-85 years who enrolled in the phase 2/3 COV002 trial. Total spike-specific CD4+ T cell helper type 1 (Th1) and CD8+ T-cell responses were significantly increased in AZD1222-vaccinated adults of all ages following two doses of AZD1222. CD4+ Th2 responses following AZD1222 vaccination were not detected. Furthermore, AZD1222-specific Th1 and CD8+ T cells both displayed a high degree of polyfunctionality in all adult age groups. T-cell receptor (TCR) β sequences from vaccinated participants mapped against TCR sequences known to react to SARS-CoV-2 revealed substantial breadth and depth across the SARS-CoV-2 spike protein for the AZD1222-induced CD4+ and CD8+ T-cell responses. Overall, AZD1222 vaccination induced a robust, polyfunctional Th1-dominated T-cell response, with broad CD4+ and CD8+ T-cell coverage across the SARS-CoV-2 spike protein. One Sentence Summary Polyfunctional CD4+ and CD8+ T-cell responses are elicited against the SARS-CoV-2 spike protein following vaccination with AZD1222.
Collapse
|
25
|
Jamrozik E, Heriot G, Bull S, Parker M. Vaccine-enhanced disease: case studies and ethical implications for research and public health. Wellcome Open Res 2021; 6:154. [PMID: 34235275 PMCID: PMC8250497 DOI: 10.12688/wellcomeopenres.16849.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Vaccination is a cornerstone of global public health. Although licensed vaccines are generally extremely safe, both experimental and licensed vaccines are sometimes associated with rare serious adverse events. Vaccine-enhanced disease (VED) is a type of adverse event in which disease severity is increased when a person who has received the vaccine is later infected with the relevant pathogen. VED can occur during research with experimental vaccines and/or after vaccine licensure, sometimes months or years after a person receives a vaccine. Both research ethics and public health policy should therefore address the potential for disease enhancement. Significant VED has occurred in humans with vaccines for four pathogens: measles virus, respiratory syncytial virus, Staphylococcus aureus, and dengue virus; it has also occurred in veterinary research and in animal studies of human coronavirus vaccines. Some of the immunological mechanisms involved are now well-described, but VED overall remains difficult to predict with certainty, including during public health implementation of novel vaccines. This paper summarises the four known cases in humans and explores key ethical implications. Although rare, VED has important ethical implications because it can cause serious harm, including death, and such harms can undermine vaccine confidence more generally – leading to larger public health problems. The possibility of VED remains an important challenge for current and future vaccine development and deployment. We conclude this paper by summarising approaches to the reduction of risks and uncertainties related to VED, and the promotion of public trust in vaccines.
Collapse
Affiliation(s)
- Euzebiusz Jamrozik
- The Ethox Centre & Wellcome Centre for Ethics and Humanities, University of Oxford, Oxford, UK.,Monash Bioethics Centre, Monash University, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - George Heriot
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Susan Bull
- The Ethox Centre & Wellcome Centre for Ethics and Humanities, University of Oxford, Oxford, UK
| | - Michael Parker
- The Ethox Centre & Wellcome Centre for Ethics and Humanities, University of Oxford, Oxford, UK
| | | |
Collapse
|
26
|
Dey A, Chozhavel Rajanathan TM, Chandra H, Pericherla HPR, Kumar S, Choonia HS, Bajpai M, Singh AK, Sinha A, Saini G, Dalal P, Vandriwala S, Raheem MA, Divate RD, Navlani NL, Sharma V, Parikh A, Prasath S, Sankar Rao M, Maithal K. Immunogenic potential of DNA vaccine candidate, ZyCoV-D against SARS-CoV-2 in animal models. Vaccine 2021; 39:4108-4116. [PMID: 34120764 PMCID: PMC8166516 DOI: 10.1016/j.vaccine.2021.05.098] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), initially originated in China in year 2019 and spread rapidly across the globe within 5 months, causing over 96 million cases of infection and over 2 million deaths. Huge efforts were undertaken to bring the COVID-19 vaccines in clinical development, so that it can be made available at the earliest, if found to be efficacious in the trials. We developed a candidate vaccine ZyCoV-D comprising of a DNA plasmid vector carrying the gene encoding the spike protein (S) of the SARS-CoV-2 virus. The S protein of the virus includes the receptor binding domain (RBD), responsible for binding to the human angiotensin converting enzyme (ACE-2) receptor. The DNA plasmid construct was transformed into E. coli cells for large scale production. The immunogenicity potential of the plasmid DNA has been evaluated in mice, guinea pig, and rabbit models by intradermal route at 25, 100 and 500 µg dose. Based on the animal studies proof-of-concept has been established and preclinical toxicology (PCT) studies were conducted in rat and rabbit model. Preliminary animal study demonstrates that the candidate DNA vaccine induces antibody response including neutralizing antibodies against SARS-CoV-2 and also elicited Th-1 response as evidenced by elevated IFN-γ levels.
Collapse
Affiliation(s)
- Ayan Dey
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | | | - Harish Chandra
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | | | - Sanjeev Kumar
- Zydus Research Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | | | - Mayank Bajpai
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Arun K Singh
- Zydus Research Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Anuradha Sinha
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Gurwinder Saini
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Parth Dalal
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | | | | | - Rupesh D Divate
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Neelam L Navlani
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Vibhuti Sharma
- Zydus Research Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Aashini Parikh
- Zydus Research Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Siva Prasath
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - M Sankar Rao
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Kapil Maithal
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India.
| |
Collapse
|
27
|
Chai KM, Tzeng TT, Shen KY, Liao HC, Lin JJ, Chen MY, Yu GY, Dou HY, Liao CL, Chen HW, Liu SJ. DNA vaccination induced protective immunity against SARS CoV-2 infection in hamsterss. PLoS Negl Trop Dis 2021; 15:e0009374. [PMID: 34043618 PMCID: PMC8158926 DOI: 10.1371/journal.pntd.0009374] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/08/2021] [Indexed: 01/07/2023] Open
Abstract
The development of efficient vaccines against COVID-19 is an emergent need for global public health. The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major target for the COVID-19 vaccine. To quickly respond to the outbreak of the SARS-CoV-2 pandemic, a nucleic acid-based vaccine is a novel option, beyond the traditional inactivated virus vaccine or recombinant protein vaccine. Here, we report a DNA vaccine containing the spike gene for delivery via electroporation. The spike genes of SARS-CoV and SARS-CoV-2 were codon optimized for mammalian cell expression and then cloned into mammalian cell expression vectors, called pSARS-S and pSARS2-S, respectively. Spike protein expression was confirmed by immunoblotting after transient expression in HEK293T cells. After immunization, sera were collected for antigen-specific antibody and neutralizing antibody titer analyses. We found that both pSARS-S and pSARS2-S immunization induced similar levels of antibodies against S2 of SARS-CoV-2. In contrast, only pSARS2-S immunization induced antibodies against the receptor-binding domain of SARS-CoV-2. We further found that pSARS2-S immunization, but not pSARS-S immunization, could induce very high titers of neutralizing antibodies against SARS-CoV-2. We further analyzed SARS-CoV-2 S protein-specific T cell responses and found that the immune responses were biased toward Th1. Importantly, pSARS2-S immunization in hamsters could induce protective immunity against SARS-CoV-2 challenge in vivo. These data suggest that DNA vaccination could be a promising approach for protecting against COVID-19.
Collapse
Affiliation(s)
- Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Tsai-Teng Tzeng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Kuan-Yin Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Jhe-Jhih Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (H-WC); (S-JL)
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (H-WC); (S-JL)
| |
Collapse
|
28
|
Chakraborty S, Mallajosyula V, Tato CM, Tan GS, Wang TT. SARS-CoV-2 vaccines in advanced clinical trials: Where do we stand? Adv Drug Deliv Rev 2021; 172:314-338. [PMID: 33482248 PMCID: PMC7816567 DOI: 10.1016/j.addr.2021.01.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
The ongoing SARS-CoV-2 pandemic has led to the focused application of resources and scientific expertise toward the goal of developing investigational vaccines to prevent COVID-19. The highly collaborative global efforts by private industry, governments and non-governmental organizations have resulted in a number of SARS-CoV-2 vaccine candidates moving to Phase III trials in a period of only months since the start of the pandemic. In this review, we provide an overview of the preclinical and clinical data on SARS-CoV-2 vaccines that are currently in Phase III clinical trials and in few cases authorized for emergency use. We further discuss relevant vaccine platforms and provide a discussion of SARS-CoV-2 antigens that may be targeted to increase the breadth and durability of vaccine responses.
Collapse
Affiliation(s)
- Saborni Chakraborty
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Cristina M Tato
- Infectious Disease Initiative, Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gene S Tan
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA; Department of Infectious Diseases, University of California San Diego, La Jolla, CA 92037, USA
| | - Taia T Wang
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
29
|
Rauch S, Roth N, Schwendt K, Fotin-Mleczek M, Mueller SO, Petsch B. mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents. NPJ Vaccines 2021; 6:57. [PMID: 33863911 PMCID: PMC8052455 DOI: 10.1038/s41541-021-00311-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/07/2021] [Indexed: 02/02/2023] Open
Abstract
mRNA technologies have recently proven clinical efficacy against coronavirus disease 2019 and are among the most promising technologies to address the current pandemic. Here, we show preclinical data for our clinical candidate CVnCoV, a lipid nanoparticle-encapsulated mRNA vaccine that encodes full-length, pre-fusion stabilised severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein. In contrast to previously published approaches, CVnCoV is exclusively composed of naturally occurring nucleotides. Immunisation with CVnCoV induced strong humoral responses with high titres of virus-neutralising antibodies and robust T-cell responses. CVnCoV vaccination protected hamsters from challenge with wild-type SARS-CoV-2, demonstrated by the absence of viral replication in the lungs. Hamsters vaccinated with a suboptimal dose of CVnCoV leading to breakthrough viral replication exhibited no evidence of vaccine-enhanced disease. Overall, data presented here provide evidence that CVnCoV represents a potent and safe vaccine candidate against SARS-CoV-2.
Collapse
|
30
|
Seo YB, Suh YS, Ryu JI, Jang H, Oh H, Koo BS, Seo SH, Hong JJ, Song M, Kim SJ, Sung YC. Soluble Spike DNA Vaccine Provides Long-Term Protective Immunity against SARS-CoV-2 in Mice and Nonhuman Primates. Vaccines (Basel) 2021; 9:307. [PMID: 33804981 PMCID: PMC8063950 DOI: 10.3390/vaccines9040307] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
The unprecedented and rapid spread of SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) has motivated the need for a rapidly producible and scalable vaccine. Here, we developed a synthetic soluble SARS-CoV-2 spike (S) DNA-based vaccine candidate, GX-19. In mice, immunization with GX-19 elicited not only S-specific systemic and pulmonary antibody responses but also Th1-biased T cell responses in a dose-dependent manner. GX-19-vaccinated nonhuman primates seroconverted rapidly and exhibited a detectable neutralizing antibody response as well as multifunctional CD4+ and CD8+ T cell responses. Notably, when the immunized nonhuman primates were challenged at 10 weeks after the last vaccination with GX-19, they had reduced viral loads in contrast to non-vaccinated primates as a control. These findings indicate that GX-19 vaccination provides a durable protective immune response and also support further development of GX-19 as a vaccine candidate for SARS-CoV-2.
Collapse
Affiliation(s)
- Yong Bok Seo
- Research Institute, SL VaxiGen Inc., Korea Bio Park, Seongnam 13488, Korea; (Y.B.S.); (J.I.R.); (H.J.)
| | - You Suk Suh
- Research Institute, Genexine Inc., Korea Bio Park, Seongnam 13488, Korea;
| | - Ji In Ryu
- Research Institute, SL VaxiGen Inc., Korea Bio Park, Seongnam 13488, Korea; (Y.B.S.); (J.I.R.); (H.J.)
| | - Hwanhee Jang
- Research Institute, SL VaxiGen Inc., Korea Bio Park, Seongnam 13488, Korea; (Y.B.S.); (J.I.R.); (H.J.)
| | - Hanseul Oh
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 34141, Korea; (H.O.); (B.-S.K.); (J.J.H.)
| | - Bon-Sang Koo
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 34141, Korea; (H.O.); (B.-S.K.); (J.J.H.)
| | - Sang-Hwan Seo
- Science Unit, International Vaccine Institute, Seoul 08826, Korea; (S.-H.S.); (M.S.)
| | - Jung Joo Hong
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 34141, Korea; (H.O.); (B.-S.K.); (J.J.H.)
| | - Manki Song
- Science Unit, International Vaccine Institute, Seoul 08826, Korea; (S.-H.S.); (M.S.)
| | | | - Young Chul Sung
- Research Institute, SL VaxiGen Inc., Korea Bio Park, Seongnam 13488, Korea; (Y.B.S.); (J.I.R.); (H.J.)
- Research Institute, Genexine Inc., Korea Bio Park, Seongnam 13488, Korea;
| |
Collapse
|
31
|
Prompetchara E, Ketloy C, Tharakhet K, Kaewpang P, Buranapraditkun S, Techawiwattanaboon T, Sathean-anan-kun S, Pitakpolrat P, Watcharaplueksadee S, Phumiamorn S, Wijagkanalan W, Patarakul K, Palaga T, Ruxrungtham K. DNA vaccine candidate encoding SARS-CoV-2 spike proteins elicited potent humoral and Th1 cell-mediated immune responses in mice. PLoS One 2021; 16:e0248007. [PMID: 33750975 PMCID: PMC7984610 DOI: 10.1371/journal.pone.0248007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
More than 65 million people have been confirmed infection with SARS-CoV-2 and more than 1 million have died from COVID-19 and this pandemic remains critical worldwide. Effective vaccines are one of the most important strategies to limit the pandemic. Here, we report a construction strategy of DNA vaccine candidates expressing full length wild type SARS-CoV-2 spike (S) protein, S1 or S2 region and their immunogenicity in mice. All DNA vaccine constructs of pCMVkan-S, -S1 and -S2 induced high levels of specific binding IgG that showed a balance of IgG1/IgG2a response. However, only the sera from mice vaccinated with pCMKkan-S or -S1 DNA vaccines could inhibit viral RBD and ACE2 interaction. The highest neutralizing antibody (NAb) titer was found in pCMVkan-S group, followed by -S1, while -S2 showed the lowest PRNT50 titers. The geometric mean titers (GMTs) were 2,551, 1,005 and 291 for pCMVkan-S, -S1 and -S2, respectively. pCMVkan-S construct vaccine also induced the highest magnitude and breadth of T cells response. Analysis of IFN-γ positive cells after stimulation with SARS-CoV-2 spike peptide pools were 2,991, 1,376 and 1,885 SFC/106 splenocytes for pCMVkan-S, -S1 and -S2, respectively. Our findings highlighted that full-length S antigen is more potent than the truncated spike (S1 or S2) in inducing of neutralizing antibody and robust T cell responses.
Collapse
Affiliation(s)
- Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, Thailand
| | - Chutitorn Ketloy
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, Thailand
| | - Kittipan Tharakhet
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Papatsara Kaewpang
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supranee Buranapraditkun
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Teerasit Techawiwattanaboon
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suwitra Sathean-anan-kun
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patrawadee Pitakpolrat
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supaporn Watcharaplueksadee
- Thai Red Cross Emerging Infectious Diseases-Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supaporn Phumiamorn
- Institute of Biological Product, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Kanitha Patarakul
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kiat Ruxrungtham
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
32
|
Sir Karakus G, Tastan C, Dilek Kancagi D, Yurtsever B, Tumentemur G, Demir S, Turan RD, Abanuz S, Cakirsoy D, Seyis U, Ozer S, Elibol O, Elek M, Ertop G, Arbak S, Acikel Elmas M, Hemsinlioglu C, Kocagoz AS, Hatirnaz Ng O, Akyoney S, Sahin I, Ozbek U, Telci D, Sahin F, Yalcin K, Ratip S, Ovali E. Preclinical efficacy and safety analysis of gamma-irradiated inactivated SARS-CoV-2 vaccine candidates. Sci Rep 2021; 11:5804. [PMID: 33707532 PMCID: PMC7970959 DOI: 10.1038/s41598-021-83930-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/04/2021] [Indexed: 12/27/2022] Open
Abstract
COVID-19 outbreak caused by SARS-CoV-2 created an unprecedented health crisis since there is no vaccine for this novel virus. Therefore, SARS-CoV-2 vaccines have become crucial for reducing morbidity and mortality. In this study, in vitro and in vivo safety and efficacy analyzes of lyophilized vaccine candidates inactivated by gamma-irradiation were performed. The candidate vaccines in this study were OZG-3861 version 1 (V1), an inactivated SARS-CoV-2 virus vaccine, and SK-01 version 1 (V1), a GM-CSF adjuvant added vaccine. The candidate vaccines were applied intradermally to BALB/c mice to assess toxicity and immunogenicity. Preliminary results in vaccinated mice are reported in this study. Especially, the vaccine models containing GM-CSF caused significant antibody production with neutralization capacity in absence of the antibody-dependent enhancement feature, when considered in terms of T and B cell responses. Another important finding was that the presence of adjuvant was more important in T cell in comparison with B cell response. Vaccinated mice showed T cell response upon restimulation with whole inactivated SARS-CoV-2 or peptide pool. This study shows that the vaccines are effective and leads us to start the challenge test to investigate the gamma-irradiated inactivated vaccine candidates for infective SARS-CoV-2 virus in humanized ACE2 + mice.
Collapse
Affiliation(s)
| | - Cihan Tastan
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
- Molecular Biology and Genetics Department, Uskudar University, Istanbul, Turkey
| | | | - Bulut Yurtsever
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - Gamze Tumentemur
- Vocational School of Health Services, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Sevda Demir
- Genetic and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Raife Dilek Turan
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
- Genetic and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Selen Abanuz
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
- Medical Biochemistry Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Didem Cakirsoy
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
- Medical Biotechnology Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Utku Seyis
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - Samed Ozer
- Animal Application and Research Center, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Omer Elibol
- Acibadem Altunizade Hospital, Istanbul, Turkey
| | - Muhammer Elek
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
- Genetic and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Gurcan Ertop
- Vocational School of Health Services, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Serap Arbak
- Histology and Embryology Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Merve Acikel Elmas
- Histology and Embryology Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | | | - Ozden Hatirnaz Ng
- Medical Biology Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Sezer Akyoney
- Medical Biology Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Biostatistics and Bioinformatics Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ilayda Sahin
- Medical Biotechnology Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Medical Genetics Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ugur Ozbek
- Medical Genetics Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Dilek Telci
- Genetic and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Sahin
- Genetic and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Koray Yalcin
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
- Medical Park Goztepe Hospital, Pediatric Bone Marrow Transplantation Unit, Istanbul, Turkey
| | - Siret Ratip
- Hematology Department, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ercument Ovali
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey.
| |
Collapse
|
33
|
Zmerli O, Chamieh A, Maasri E, Azar E, Afif C. A challenging modified measles outbreak in vaccinated healthcare providers. Infect Prev Pract 2021; 3:100105. [PMID: 34368732 PMCID: PMC8336165 DOI: 10.1016/j.infpip.2020.100105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Modified measles is rarely reported and thought to be an attenuated, less transmissible form of measles. The occupational safety and management of previously immunized healthcare providers (HCP) facing the global reemergence of measles is controversial and unclear.Aim: We report a measles outbreak with an unusual presentation among our vaccinated HCP at Saint George Hospital University Medical Center (SGHUMC) in Lebanon that occurred during a nationwide measles epidemic. METHODS We recorded cases at SGHUMC, a 333-bed tertiary-care center, from April 2018 to June 2018. We established a measles clinic for investigating all febrile patients. HCP exposure was linked to influx of index cases through our Emergency Department. Modified measles was defined as any variation in the classic presentation with a pinpoint/vesicular rash, documented exposure and evidence of prior immunity. We performed serology testing to diagnose and/or document immunity and implemented outbreak controls measures including PPE, airborne isolation, and mass notification. FINDINGS We diagnosed 8 inpatients with classic measles, and 9 affected HCP. We diagnosed 8 HCP with modified measles. One previously immunized HCP developed classic measles despite being immunized and having a positive IgG titer. Our contact tracing revealed a total of 96 exposed HCP with 27 HCP showing non-specific signs of viral illness. We required all the 9 affected HCP to undergo home isolation. CONCLUSION We believe it is a top priority to achieve adequate measles immunity, especially among HCP that are at the frontline of healthcare systems. This necessitates revisiting vaccination schedules and achieving seroprotective titers to reclaim proper herd immunity.
Collapse
Affiliation(s)
- Omar Zmerli
- Division of Infectious Diseases, Saint George Hospital University Medical Center, Beirut, Lebanon
- Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - Amanda Chamieh
- Division of Infectious Diseases, Saint George Hospital University Medical Center, Beirut, Lebanon
- Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
- Mediterranean University Hospital Institute for Infectious Diseases, Marseille, 13915, France
| | - Eliane Maasri
- Infection Control Department, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Eid Azar
- Division of Infectious Diseases, Saint George Hospital University Medical Center, Beirut, Lebanon
- Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - Claude Afif
- Division of Infectious Diseases, Saint George Hospital University Medical Center, Beirut, Lebanon
- Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| |
Collapse
|
34
|
Steinbuck MP, Seenappa LM, Jakubowski A, McNeil LK, Haqq CM, DeMuth PC. A lymph node-targeted Amphiphile vaccine induces potent cellular and humoral immunity to SARS-CoV-2. SCIENCE ADVANCES 2021; 7:7/6/eabe5819. [PMID: 33547083 PMCID: PMC7864572 DOI: 10.1126/sciadv.abe5819] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/17/2020] [Indexed: 05/17/2023]
Abstract
The profound consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mandate urgent development of effective vaccines. Here, we evaluated an Amphiphile (AMP) vaccine adjuvant, AMP-CpG, composed of diacyl lipid-modified CpG, admixed with the SARS-CoV-2 Spike-2 receptor binding domain protein as a candidate vaccine (ELI-005) in mice. AMP modification efficiently delivers CpG to lymph nodes, where innate and adaptive immune responses are generated. Compared to alum, immunization with AMP-CpG induced >25-fold higher antigen-specific T cells that produced multiple T helper 1 (TH1) cytokines and trafficked into lung parenchyma. Antibody responses favored TH1 isotypes (IgG2c and IgG3) and potently neutralized Spike-2-ACE2 receptor binding, with titers 265-fold higher than natural convalescent patient COVID-19 responses; T cell and antibody responses were maintained despite 10-fold dose reduction in Spike antigen. Both cellular and humoral immune responses were preserved in aged mice. These advantages merit clinical translation to SARS-CoV-2 and other protein subunit vaccines.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/immunology
- Female
- HEK293 Cells
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunogenicity, Vaccine
- Lymph Nodes/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neutralization Tests
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/immunology
- Protein Interaction Domains and Motifs/immunology
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Surface-Active Agents/administration & dosage
- Treatment Outcome
- Vaccination/methods
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Martin P Steinbuck
- Elicio Therapeutics, One Kendall Square, Suite 14303, Cambridge, MA 02139, USA
| | - Lochana M Seenappa
- Elicio Therapeutics, One Kendall Square, Suite 14303, Cambridge, MA 02139, USA
| | - Aniela Jakubowski
- Elicio Therapeutics, One Kendall Square, Suite 14303, Cambridge, MA 02139, USA
| | - Lisa K McNeil
- Elicio Therapeutics, One Kendall Square, Suite 14303, Cambridge, MA 02139, USA
| | - Christopher M Haqq
- Elicio Therapeutics, One Kendall Square, Suite 14303, Cambridge, MA 02139, USA.
| | - Peter C DeMuth
- Elicio Therapeutics, One Kendall Square, Suite 14303, Cambridge, MA 02139, USA
| |
Collapse
|
35
|
Gresham LM, Marzario B, Dutz J, Kirchhof MG. An evidence-based guide to SARS-CoV-2 vaccination of patients on immunotherapies in dermatology. J Am Acad Dermatol 2021; 84:1652-1666. [PMID: 33482251 PMCID: PMC7816618 DOI: 10.1016/j.jaad.2021.01.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Immune-mediated diseases and immunotherapeutics can negatively affect normal immune functioning and, consequently, vaccine safety and response. The COVID-19 pandemic has incited research aimed at developing a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. As SARS-CoV-2 vaccines are developed and made available, the assessment of anticipated safety and efficacy in patients with immune-mediated dermatologic diseases and requiring immunosuppressive and/or immunomodulatory therapy is particularly important. A review of the literature was conducted by a multidisciplinary committee to provide guidance on the safety and efficacy of SARS-CoV-2 vaccination for dermatologists and other clinicians when prescribing immunotherapeutics. The vaccine platforms being used to develop SARS-CoV-2 vaccines are expected to be safe and potentially effective for dermatology patients on immunotherapeutics. Current guidelines for the vaccination of an immunocompromised host remain appropriate when considering future administration of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Louise M Gresham
- Division of Dermatology, Department of Medicine, University of Ottawa and The Ottawa Hospital, Ottawa, Canada
| | - Barbara Marzario
- Division of Dermatology, Department of Medicine, University of Ottawa and The Ottawa Hospital, Ottawa, Canada
| | - Jan Dutz
- Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, Canada
| | - Mark G Kirchhof
- Division of Dermatology, Department of Medicine, University of Ottawa and The Ottawa Hospital, Ottawa, Canada.
| |
Collapse
|
36
|
Izda V, Jeffries MA, Sawalha AH. COVID-19: A review of therapeutic strategies and vaccine candidates. Clin Immunol 2021; 222:108634. [PMID: 33217545 PMCID: PMC7670907 DOI: 10.1016/j.clim.2020.108634] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 02/09/2023]
Abstract
The world is engulfed by one of the most widespread and significant public health crises in decades as COVID-19 has become among the leading causes of death internationally. The novel SARS-CoV-2 coronavirus which causes COVID-19 has unified the scientific community in search of therapeutic and preventative solutions. The top priorities at the moment are twofold: first, to repurpose already-approved pharmacologic agents or develop novel therapies to reduce the morbidity and mortality associated with the ever-spreading virus. Secondly, the scientific and larger pharmaceutical community have been tasked with the development, testing, and production of a safe and effective vaccine as a longer-term solution to prevent further spread and recurrence throughout the populace. The purpose of this article is to review the most up-to-date published data regarding both the leading pharmacological therapies undergoing clinical trials and vaccine candidates in development to stem the threat of COVID-19.
Collapse
Affiliation(s)
- Vladislav Izda
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, United States of America
| | - Matlock A Jeffries
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, United States of America; University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK, United States of America.
| | - Amr H Sawalha
- University of Pittsburgh, Departments of Pediatrics, Medicine, and Immunology, and Lupus Center of Excellence, Pittsburgh, PA, United States of America
| |
Collapse
|
37
|
Halstead SB, Katzelnick L. COVID-19 Vaccines: Should We Fear ADE? J Infect Dis 2020; 222:1946-1950. [PMID: 32785649 PMCID: PMC7454712 DOI: 10.1093/infdis/jiaa518] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 11/15/2022] Open
Abstract
Might COVID-19 vaccines sensitize humans to antibody-dependent enhanced (ADE) breakthrough infections? This is unlikely because coronavirus diseases in humans lack the clinical, epidemiological, biological, or pathological attributes of ADE disease exemplified by dengue viruses (DENV). In contrast to DENV, SARS and MERS CoVs predominantly infect respiratory epithelium, not macrophages. Severe disease centers on older persons with preexisting conditions and not infants or individuals with previous coronavirus infections. Live virus challenge of animals given SARS or MERS vaccines resulted in vaccine hypersensitivity reactions (VAH), similar to those in humans given inactivated measles or respiratory syncytial virus vaccines. Safe and effective COVID-19 vaccines must avoid VAH.
Collapse
Affiliation(s)
- Scott B Halstead
- Independent Consultant, University of California Berkeley, Berkeley, California, USA
| | - Leah Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA.,Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
38
|
Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, Himansu S, Schäfer A, Ziwawo CT, DiPiazza AT, Dinnon KH, Elbashir SM, Shaw CA, Woods A, Fritch EJ, Martinez DR, Bock KW, Minai M, Nagata BM, Hutchinson GB, Wu K, Henry C, Bahl K, Garcia-Dominguez D, Ma L, Renzi I, Kong WP, Schmidt SD, Wang L, Zhang Y, Phung E, Chang LA, Loomis RJ, Altaras NE, Narayanan E, Metkar M, Presnyak V, Liu C, Louder MK, Shi W, Leung K, Yang ES, West A, Gully KL, Stevens LJ, Wang N, Wrapp D, Doria-Rose NA, Stewart-Jones G, Bennett H, Alvarado GS, Nason MC, Ruckwardt TJ, McLellan JS, Denison MR, Chappell JD, Moore IN, Morabito KM, Mascola JR, Baric RS, Carfi A, Graham BS. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020; 586:567-571. [PMID: 32756549 PMCID: PMC7581537 DOI: 10.1038/s41586-020-2622-0] [Citation(s) in RCA: 1031] [Impact Index Per Article: 257.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
Abstract
A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the coronavirus disease 2019 (COVID-19) global pandemic. Structural studies have led to the development of mutations that stabilize Betacoronavirus spike proteins in the prefusion state, improving their expression and increasing immunogenicity1. This principle has been applied to design mRNA-1273, an mRNA vaccine that encodes a SARS-CoV-2 spike protein that is stabilized in the prefusion conformation. Here we show that mRNA-1273 induces potent neutralizing antibody responses to both wild-type (D614) and D614G mutant2 SARS-CoV-2 as well as CD8+ T cell responses, and protects against SARS-CoV-2 infection in the lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a phase III trial to evaluate its efficacy.
Collapse
Affiliation(s)
- Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Sarah R Leist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Olubukola M Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Alexandra Schäfer
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia T Ziwawo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anthony T DiPiazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth H Dinnon
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | - Ethan J Fritch
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kevin W Bock
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahnaz Minai
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bianca M Nagata
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Geoffrey B Hutchinson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kai Wu
- Moderna Inc, Cambridge, MA, USA
| | | | | | | | | | | | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emily Phung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Institute for Biomedical Sciences, George Washington University, Washington, DC, USA
| | - Lauren A Chang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca J Loomis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ande West
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L Gully
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura J Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Gabriela S Alvarado
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Mark R Denison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ian N Moore
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
39
|
Cox RM, Sourimant J, Toots M, Yoon JJ, Ikegame S, Govindarajan M, Watkinson RE, Thibault P, Makhsous N, Lin MJ, Marengo JR, Sticher Z, Kolykhalov AA, Natchus MG, Greninger AL, Lee B, Plemper RK. Orally efficacious broad-spectrum allosteric inhibitor of paramyxovirus polymerase. Nat Microbiol 2020; 5:1232-1246. [PMID: 32661315 PMCID: PMC7529989 DOI: 10.1038/s41564-020-0752-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Paramyxoviruses such as human parainfluenza virus type-3 (HPIV3) and measles virus (MeV) are a substantial health threat. In a high-throughput screen for inhibitors of HPIV3 (a major cause of acute respiratory infection), we identified GHP-88309-a non-nucleoside inhibitor of viral polymerase activity that possesses unusual broad-spectrum activity against diverse paramyxoviruses including respiroviruses (that is, HPIV1 and HPIV3) and morbilliviruses (that is, MeV). Resistance profiles of distinct target viruses overlapped spatially, revealing a conserved binding site in the central cavity of the viral polymerase (L) protein that was validated by photoaffinity labelling-based target mapping. Mechanistic characterization through viral RNA profiling and in vitro MeV polymerase assays identified a block in the initiation phase of the viral polymerase. GHP-88309 showed nanomolar potency against HPIV3 isolates in well-differentiated human airway organoid cultures, was well tolerated (selectivity index > 7,111) and orally bioavailable, and provided complete protection against lethal infection in a Sendai virus mouse surrogate model of human HPIV3 disease when administered therapeutically 48 h after infection. Recoverees had acquired robust immunoprotection against reinfection, and viral resistance coincided with severe attenuation. This study provides proof of the feasibility of a well-behaved broad-spectrum allosteric antiviral and describes a chemotype with high therapeutic potential that addresses major obstacles of anti-paramyxovirus drug development.
Collapse
Affiliation(s)
- Robert M Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Julien Sourimant
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Mart Toots
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Jeong-Joong Yoon
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Satoshi Ikegame
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ruth E Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patricia Thibault
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Negar Makhsous
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Michelle J Lin
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Jose R Marengo
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | - Zachary Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | | | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
40
|
Affiliation(s)
- Mark J Mulligan
- NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
41
|
Xia S, Duan K, Zhang Y, Zhao D, Zhang H, Xie Z, Li X, Peng C, Zhang Y, Zhang W, Yang Y, Chen W, Gao X, You W, Wang X, Wang Z, Shi Z, Wang Y, Yang X, Zhang L, Huang L, Wang Q, Lu J, Yang Y, Guo J, Zhou W, Wan X, Wu C, Wang W, Huang S, Du J, Meng Z, Pan A, Yuan Z, Shen S, Guo W, Yang X. Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes: Interim Analysis of 2 Randomized Clinical Trials. JAMA 2020; 324:951-960. [PMID: 32789505 PMCID: PMC7426884 DOI: 10.1001/jama.2020.15543] [Citation(s) in RCA: 568] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE A vaccine against coronavirus disease 2019 (COVID-19) is urgently needed. OBJECTIVE To evaluate the safety and immunogenicity of an investigational inactivated whole-virus COVID-19 vaccine in China. INTERVENTIONS In the phase 1 trial, 96 participants were assigned to 1 of the 3 dose groups (2.5, 5, and 10 μg/dose) and an aluminum hydroxide (alum) adjuvant-only group (n = 24 in each group), and received 3 intramuscular injections at days 0, 28, and 56. In the phase 2 trial, 224 adults were randomized to 5 μg/dose in 2 schedule groups (injections on days 0 and 14 [n = 84] vs alum only [n = 28], and days 0 and 21 [n = 84] vs alum only [n = 28]). DESIGN, SETTING, AND PARTICIPANTS Interim analysis of ongoing randomized, double-blind, placebo-controlled, phase 1 and 2 clinical trials to assess an inactivated COVID-19 vaccine. The trials were conducted in Henan Province, China, among 96 (phase 1) and 224 (phase 2) healthy adults aged between 18 and 59 years. Study enrollment began on April 12, 2020. The interim analysis was conducted on June 16, 2020, and updated on July 27, 2020. MAIN OUTCOMES AND MEASURES The primary safety outcome was the combined adverse reactions 7 days after each injection, and the primary immunogenicity outcome was neutralizing antibody response 14 days after the whole-course vaccination, which was measured by a 50% plaque reduction neutralization test against live severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS Among 320 patients who were randomized (mean age, 42.8 years; 200 women [62.5%]), all completed the trial up to 28 days after the whole-course vaccination. The 7-day adverse reactions occurred in 3 (12.5%), 5 (20.8%), 4 (16.7%), and 6 (25.0%) patients in the alum only, low-dose, medium-dose, and high-dose groups, respectively, in the phase 1 trial; and in 5 (6.0%) and 4 (14.3%) patients who received injections on days 0 and 14 for vaccine and alum only, and 16 (19.0%) and 5 (17.9%) patients who received injections on days 0 and 21 for vaccine and alum only, respectively, in the phase 2 trial. The most common adverse reaction was injection site pain, followed by fever, which were mild and self-limiting; no serious adverse reactions were noted. The geometric mean titers of neutralizing antibodies in the low-, medium-, and high-dose groups at day 14 after 3 injections were 316 (95% CI, 218-457), 206 (95% CI, 123-343), and 297 (95% CI, 208-424), respectively, in the phase 1 trial, and were 121 (95% CI, 95-154) and 247 (95% CI, 176-345) at day 14 after 2 injections in participants receiving vaccine on days 0 and 14 and on days 0 and 21, respectively, in the phase 2 trial. There were no detectable antibody responses in all alum-only groups. CONCLUSIONS AND RELEVANCE In this interim report of the phase 1 and phase 2 trials of an inactivated COVID-19 vaccine, patients had a low rate of adverse reactions and demonstrated immunogenicity; the study is ongoing. Efficacy and longer-term adverse event assessment will require phase 3 trials. TRIAL REGISTRATION Chinese Clinical Trial Registry Identifier: ChiCTR2000031809.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/adverse effects
- Adolescent
- Adult
- Aluminum Hydroxide/administration & dosage
- Aluminum Hydroxide/adverse effects
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Dose-Response Relationship, Immunologic
- Double-Blind Method
- Female
- Humans
- Immunogenicity, Vaccine
- Injections, Intramuscular
- Male
- Pandemics/prevention & control
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Propiolactone
- SARS-CoV-2
- Vaccines, Inactivated/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/adverse effects
- Viral Vaccines/immunology
- Young Adult
Collapse
Affiliation(s)
- Shengli Xia
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
| | - Yuntao Zhang
- China National Biotec Group Company Limited, Beijing, China
| | - Dongyang Zhao
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Huajun Zhang
- Chinese Academy of Sciences Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhiqiang Xie
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
| | - Cheng Peng
- Chinese Academy of Sciences Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yanbo Zhang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Zhang
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Yunkai Yang
- China National Biotec Group Company Limited, Beijing, China
| | - Wei Chen
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
| | - Xiaoxiao Gao
- Chinese Academy of Sciences Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wangyang You
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Xuewei Wang
- China National Biotec Group Company Limited, Beijing, China
| | - Zejun Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
| | - Zhengli Shi
- Chinese Academy of Sciences Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yanxia Wang
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Xuqin Yang
- China National Biotec Group Company Limited, Beijing, China
| | - Lianghao Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
| | - Lili Huang
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Qian Wang
- China National Biotec Group Company Limited, Beijing, China
| | - Jia Lu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Guo
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
| | - Wei Zhou
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
| | - Xin Wan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
| | - Cong Wu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
| | - Wenhui Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
| | - Jianhui Du
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
| | - Ziyan Meng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiming Yuan
- Chinese Academy of Sciences Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shuo Shen
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
| | - Wanshen Guo
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, Hubei, China
- China National Biotec Group Company Limited, Beijing, China
| |
Collapse
|
42
|
Abstract
In this review, we address issues that relate to the rapid "Warp Speed" development of vaccines to counter the COVID-19 pandemic. We review the antibody response that is triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of humans and how it may inform vaccine research. The isolation and properties of neutralizing monoclonal antibodies from COVID-19 patients provide additional information on what vaccines should try to elicit. The nature and longevity of the antibody response to coronaviruses are relevant to the potency and duration of vaccine-induced immunity. We summarize the immunogenicity of leading vaccine candidates tested to date in animals and humans and discuss the outcome and interpretation of virus challenge experiments in animals. By far the most immunogenic vaccine candidates for antibody responses are recombinant proteins, which were not included in the initial wave of Warp Speed immunogens. A substantial concern for SARS-CoV-2 vaccines is adverse events, which we review by considering what was seen in studies of SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV) vaccines. We conclude by outlining the possible outcomes of the Warp Speed vaccine program, which range from the hoped-for rapid success to a catastrophic adverse influence on vaccine uptake generally.
Collapse
Affiliation(s)
- John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
43
|
Jang YH, Seong BL. Call for a paradigm shift in the design of universal influenza vaccines by harnessing multiple correlates of protection. Expert Opin Drug Discov 2020; 15:1441-1455. [PMID: 32783765 DOI: 10.1080/17460441.2020.1801629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The genetic variability and diversity of influenza viruses, and the expansion of their hosts, present a significant threat to human health. The development of a universal influenza vaccine is urgently needed to tackle seasonal epidemics, pandemics, vaccine mismatch, and zoonotic transmissions to humans. AREAS COVERED Despite the identification of broadly neutralizing antibodies against influenza viruses, designing a universal influenza vaccine that induces such broadly neutralizing antibodies at protective levels in humans has remained challenging. Besides neutralizing antibodies, multiple correlates of protection have recently emerged as crucially important for eliciting broad protection against diverse influenza viruses. This review discusses the immune responses required for broad protection against influenza viruses, and suggests a paradigm shift from an HA stalk-based approach to other approaches that can induce multiple immunological correlates of protection for the development of a universal influenza vaccine. EXPERT OPINION To develop a truly universal influenza vaccine, multiple correlates of protection should be considered, including antibody responses and T cell immunity. Balanced induction of neutralizing antibodies, antibody effector functions, and T cell immunity will contribute to the most effective vaccination strategy. Live-attenuated influenza vaccines provide an attractive platform to improve the breadth and potency of vaccines for broader protection.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University , Andong, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University , Seoul, South Korea.,Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University , Seoul, South Korea
| |
Collapse
|
44
|
Bournazos S, Gupta A, Ravetch JV. The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol 2020; 20:633-643. [PMID: 32782358 PMCID: PMC7418887 DOI: 10.1038/s41577-020-00410-0] [Citation(s) in RCA: 345] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Antibody-dependent enhancement (ADE) is a mechanism by which the pathogenesis of certain viral infections is enhanced in the presence of sub-neutralizing or cross-reactive non-neutralizing antiviral antibodies. In vitro modelling of ADE has attributed enhanced pathogenesis to Fcγ receptor (FcγR)-mediated viral entry, rather than canonical viral receptor-mediated entry. However, the putative FcγR-dependent mechanisms of ADE overlap with the role of these receptors in mediating antiviral protection in various viral infections, necessitating a detailed understanding of how this diverse family of receptors functions in protection and pathogenesis. Here, we discuss the diversity of immune responses mediated upon FcγR engagement and review the available experimental evidence supporting the role of FcγRs in antiviral protection and pathogenesis through ADE. We explore FcγR engagement in the context of a range of different viral infections, including dengue virus and SARS-CoV, and consider ADE in the context of the ongoing SARS-CoV-2 pandemic. Antibody-dependent enhancement (ADE) has been described as a mechanism that contributes to the pathogenesis of dengue virus infection. Limited evidence also suggests that it can also occur in other viral infections. Here, the authors explore the history of the ADE phenomenon, discuss the diversity of Fc effector functions and consider its potential relevance in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Aaron Gupta
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
45
|
Corbett KS, Edwards D, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, Himansu S, Schäfer A, Ziwawo CT, DiPiazza AT, Dinnon KH, Elbashir SM, Shaw CA, Woods A, Fritch EJ, Martinez DR, Bock KW, Minai M, Nagata BM, Hutchinson GB, Bahl K, Garcia-Dominguez D, Ma L, Renzi I, Kong WP, Schmidt SD, Wang L, Zhang Y, Stevens LJ, Phung E, Chang LA, Loomis RJ, Altaras NE, Narayanan E, Metkar M, Presnyak V, Liu C, Louder MK, Shi W, Leung K, Yang ES, West A, Gully KL, Wang N, Wrapp D, Doria-Rose NA, Stewart-Jones G, Bennett H, Nason MC, Ruckwardt TJ, McLellan JS, Denison MR, Chappell JD, Moore IN, Morabito KM, Mascola JR, Baric RS, Carfi A, Graham BS. SARS-CoV-2 mRNA Vaccine Development Enabled by Prototype Pathogen Preparedness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.11.145920. [PMID: 32577634 PMCID: PMC7301911 DOI: 10.1101/2020.06.11.145920] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A SARS-CoV-2 vaccine is needed to control the global COVID-19 public health crisis. Atomic-level structures directed the application of prefusion-stabilizing mutations that improved expression and immunogenicity of betacoronavirus spike proteins. Using this established immunogen design, the release of SARS-CoV-2 sequences triggered immediate rapid manufacturing of an mRNA vaccine expressing the prefusion-stabilized SARS-CoV-2 spike trimer (mRNA-1273). Here, we show that mRNA-1273 induces both potent neutralizing antibody and CD8 T cell responses and protects against SARS-CoV-2 infection in lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a Phase 2 clinical trial with a trajectory towards Phase 3 efficacy evaluation.
Collapse
Affiliation(s)
- Kizzmekia S. Corbett
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Darin Edwards
- Moderna Inc., Cambridge, MA, 02139; United States of America
| | - Sarah R. Leist
- Department of Epidemiology; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599; United States of America
| | - Olubukola M. Abiona
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Rebecca A. Gillespie
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Sunny Himansu
- Moderna Inc., Cambridge, MA, 02139; United States of America
| | - Alexandra Schäfer
- Department of Epidemiology; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599; United States of America
| | - Cynthia T. Ziwawo
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Anthony T. DiPiazza
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Kenneth H. Dinnon
- Department of Epidemiology; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599; United States of America
| | | | | | - Angela Woods
- Moderna Inc., Cambridge, MA, 02139; United States of America
| | - Ethan J. Fritch
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599; United States of America
| | - David R. Martinez
- Department of Epidemiology; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599; United States of America
| | - Kevin W. Bock
- National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Mahnaz Minai
- National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Bianca M. Nagata
- National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Geoffrey B. Hutchinson
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Kapil Bahl
- Moderna Inc., Cambridge, MA, 02139; United States of America
| | | | - LingZhi Ma
- Moderna Inc., Cambridge, MA, 02139; United States of America
| | - Isabella Renzi
- Moderna Inc., Cambridge, MA, 02139; United States of America
| | - Wing-Pui Kong
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Stephen D. Schmidt
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Lingshu Wang
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Yi Zhang
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Laura J. Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, 37212; United States of America
| | - Emily Phung
- Institute for Biomedical Sciences, George Washington University, Washington, DC 20052, United States of America
| | - Lauren A. Chang
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Rebecca J. Loomis
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | | | | | - Mihir Metkar
- Moderna Inc., Cambridge, MA, 02139; United States of America
| | - Vlad Presnyak
- Moderna Inc., Cambridge, MA, 02139; United States of America
| | - Catherine Liu
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Mark K. Louder
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Wei Shi
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Kwanyee Leung
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Eun Sung Yang
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Ande West
- Department of Epidemiology; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599; United States of America
| | - Kendra L. Gully
- Department of Epidemiology; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599; United States of America
| | - Nianshuang Wang
- Department of Molecular Biosciences; University of Texas at Austin; Austin, Texas, 78712; United States of America
| | - Daniel Wrapp
- Department of Molecular Biosciences; University of Texas at Austin; Austin, Texas, 78712; United States of America
| | - Nicole A. Doria-Rose
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | | | | | - Martha C. Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Tracy J. Ruckwardt
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Jason S. McLellan
- Department of Molecular Biosciences; University of Texas at Austin; Austin, Texas, 78712; United States of America
| | - Mark R. Denison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, 37212; United States of America
| | - James D. Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, 37212; United States of America
| | - Ian N. Moore
- National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Kaitlyn M. Morabito
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - John R. Mascola
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Ralph S. Baric
- Department of Epidemiology; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599; United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599; United States of America
| | - Andrea Carfi
- Moderna Inc., Cambridge, MA, 02139; United States of America
| | - Barney S. Graham
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| |
Collapse
|
46
|
Affiliation(s)
- Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
47
|
Pal S, Ausar SF, Tifrea DF, Cheng C, Gallichan S, Sanchez V, de la Maza LM, Visan L. Protection of outbred mice against a vaginal challenge by a Chlamydia trachomatis serovar E recombinant major outer membrane protein vaccine is dependent on phosphate substitution in the adjuvant. Hum Vaccin Immunother 2020; 16:2537-2547. [PMID: 32118511 PMCID: PMC7644203 DOI: 10.1080/21645515.2020.1717183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Chlamydia trachomatis is the most common bacterial sexually-transmitted pathogen for which there is no vaccine. We previously demonstrated that the degree of phosphate substitution in an aluminum hydroxide adjuvant in a TLR-4-based C. trachomatis serovar E (Ser E) recombinant major outer membrane protein (rMOMP) formulation had an impact on the induced antibody titers and IFN-γ levels. Here, we have extended these observations using outbreed CD-1 mice immunized with C. trachomatis Ser E rMOMP formulations to evaluate the impact on bacterial challenge. The results confirmed that the rMOMP vaccine containing the adjuvant with the highest phosphate substitution induced the highest neutralizing antibody titers while the formulation with the lowest phosphate substitution induced the highest IFN-γ production. The most robust protection was observed in mice vaccinated with the formulation containing the adjuvant with the lowest phosphate substitution, as shown by the number of mice with positive vaginal cultures, number of positive cultures and number of C. trachomatis inclusion forming units recovered. This is the first report showing that vaccination of an outbred strain of mice with rMOMP induces protection against a vaginal challenge with C. trachomatis.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California , Irvine, CA, USA
| | | | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, University of California , Irvine, CA, USA
| | - Chunmei Cheng
- Department of Pathology and Laboratory Medicine, University of California , Irvine, CA, USA
| | - Scott Gallichan
- Analytical Research and Development Department, Sanofi Pasteur , Toronto, Ontario, Canada
| | - Violette Sanchez
- Research & Non Clinical Safety Department, Sanofi Pasteur , Marcy l'Etoile, France
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California , Irvine, CA, USA
| | - Lucian Visan
- Research & Non Clinical Safety Department, Sanofi Pasteur , Marcy l'Etoile, France
| |
Collapse
|
48
|
|
49
|
Abstract
Vaccines are considered one of the most important advances in modern medicine and have greatly improved our quality of life by reducing or eliminating many serious infectious diseases. Successful vaccines have been developed against many of the most common human pathogens, and this success has not been dependent upon any one specific class of vaccine since subunit vaccines, non-replicating whole-virus or whole-bacteria vaccines, and attenuated live vaccines have all been effective for particular vaccine targets. After completing the initial immunization series, one common aspect of successful vaccines is that they induce long-term protective immunity. In contrast, several partially successful vaccines appear to induce protection that is relatively short-lived and it is likely that long-term protective immunity will be critical for making effective vaccines against our most challenging diseases such as AIDS and malaria.
Collapse
Affiliation(s)
- Ian J Amanna
- Najít Technologies, Inc, Beaverton, OR, 97006, USA
| | - Mark K Slifka
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA.
| |
Collapse
|
50
|
|