1
|
Yang H, Chen L, Liu Y. Association of leukocyte telomere length with the risk of digestive diseases: A large-scale cohort study. Chin Med J (Engl) 2025; 138:60-67. [PMID: 39647990 PMCID: PMC11717523 DOI: 10.1097/cm9.0000000000002994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Leukocyte telomere length (LTL) shortening, a biomarker of telomere attrition, has been linked to multiple diseases. However, the relationship between LTL and digestive diseases remains uncertain. This study aimed to investigate the association between LTL and the risk of digestive diseases. METHODS A cohort analysis of over 500,000 participants from the UK Biobank (UKB) between 2006 and 2021 was conducted to estimate the associations of LTL with more than 90 common digestive diseases. LTL was quantified using multiplex quantitative polymerase chain reaction, and cases of each disease were determined according to inpatient and primary care data. Multivariable Cox proportional hazards regression analysis was used to evaluate the associations of LTL with the risk of digestive diseases. Furthermore, such associations were also evaluated after stratification by sex and ethnicity. RESULTS After a mean follow-up time of 11.8 years, over 20 International Classification of Diseases, 10th Revision ( ICD-10 ) codes were showed to be associated with telomere attrition. LTL shortening is associated with an increased risk of several digestive diseases, including gastroesophageal reflux disease (K21: hazard ratio [HR] = 1.30, 95% confidence interval [95% CI]: 1.19-1.42), esophageal ulcer (K221: HR = 1.81, 95% CI: 1.22-2.71), Barrett's esophagus (K227: HR = 1.58, 95% CI: 1.14-2.17), gastritis (K29: HR = 1.39, 95% CI: 1.26-1.52), duodenal ulcer (K26: HR = 1.55, 95% CI: 1.14-2.12), functional dyspepsia (K30X: HR = 1.36, 95% CI: 1.06-1.69), non-alcoholic fatty liver disease (NAFLD) (K760: HR = 1.39, 95% CI: 1.09-1.78), liver cirrhosis (K74: HR = 4.73, 95% CI: 3.27-6.85), cholangitis (K830: HR = 2.55, 95% CI: 1.30-5.00), and hernia (K43: HR = 1.50, 95% CI: 1.17-1.94; K44: HR = 1.29, 95% CI: 1.17-1.42). The risk of rectal polyps (K621: HR = 0.77, 95% CI: 0.63-0.92) decreased per unit shortening of LTL. CONCLUSIONS This study suggests that LTL shortening is associated with an increased risk of most digestive diseases except for rectal polyps. These findings may provide some clues for understanding the pathogenesis of digestive diseases.
Collapse
Affiliation(s)
- Hongqun Yang
- The Secondary Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lanlan Chen
- The First Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yahui Liu
- The Secondary Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
2
|
Djelmis J, Ivanisevic M. Influence of subclinical hypothyroidism and brain-derived neurotropic factor on telomere length dynamics in type 1 diabetic pregnancies and their newborns. Sci Rep 2025; 15:194. [PMID: 39747616 PMCID: PMC11696295 DOI: 10.1038/s41598-024-84430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Thyroid dysfunctions are common in type 1 diabetes mellitus (T1DM) pregnancies, impacting embryogenesis and fetal neurodevelopment. This study investigates the effects of subclinical hypothyroidism and BDNF (Brain-derived neurotrophic factor) telomere length in T1DM mothers and their newborns. In a recent study, researchers found an inverse relationship between TSH (thyroid-stimulating hormone) levels and telomere length in the cord blood of newborns. This was prospective cohort analysis of 70 mothers and their newborns with T1DM. The study measured leukocyte telomere length (LTL) in maternal and neonatal samples. Subclinical hypothyroidism during the first trimester was characterized by TSH levels ranging from 2.5 to 5.0 mIU/L alongside normal free thyroxine (FT4) concentrations. In this study, we proved that maternal telomere length predicts telomere length in the newborn. Furthermore, we investigated the influence of maternal hypothyroidism on telomere length in the newborn. Maternal hypothyroidism in the first trimester of pregnancy has a strong influence on the shortening of newborn telomeres. BDNF has a positive effect on maternal and newborn telomere length. These results can have an important impact on the subsequent development of a child born to a diabetic mother. Health and disease associated with telomere length later in life may be programmed at birth.
Collapse
Affiliation(s)
- Josip Djelmis
- School of Medicine, University of Zagreb, 10000, Zagreb, Croatia.
| | - Marina Ivanisevic
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10000, Zagreb, Croatia
| |
Collapse
|
3
|
Yang MM, Boin F, Wolters PJ. Molecular underpinnings of aging contributing to systemic sclerosis pathogenesis. Curr Opin Rheumatol 2025; 37:86-92. [PMID: 39600291 DOI: 10.1097/bor.0000000000001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
PURPOSE OF REVIEW Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by diffuse organ fibrosis and vasculopathy. Aberrant aging has been increasingly implicated in fibrotic diseases of the lung and other organs. The aim of this review is to summarize the established mechanisms of aging and how they may contribute to the pathogenesis of SSc. RECENT FINDINGS Shortened telomeres are present in SSc patients with interstitial lung disease (SSc-ILD) and associate with disease severity and mortality. Although the cause of telomere length shortening is unknown, immune mechanisms may be at play. Senescent cells accumulate in affected organs of SSc patients and contribute to a pathologic cellular phenotype that can be profibrotic and inflammatory. In addition to identifying patients with a more severe phenotype, biomarkers of aging may help identify patients who have worse outcomes with immunosuppression. SUMMARY Aging mechanisms, including telomere dysfunction and cellular senescence, likely contribute to the progressive fibrosis, vasculopathy, and immune dysfunction of SSc. Further work is needed to understand whether aberrant aging is an initiator or perpetuator of disease, and whether this is cell or organ specific. A better understanding of the role aging mechanisms play in SSc will contribute to our understanding of the underlying pathobiology and may also influence management of patients exhibiting the aging phenotype.
Collapse
Affiliation(s)
- Monica M Yang
- Division of Rheumatology, Department of Medicine, University of California, San Francisco
| | - Francesco Boin
- Division of Rheumatology, Kao Autoimmunity Institute, Cedar Sinai Medical Center, Los Angeles
| | - Paul J Wolters
- Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
4
|
Yi J, Guo H, Jiang C, Duan J, Xue J, Zhao Y, He W, Xia L. Leukocyte telomere length decreased the risk of mortality in patients with alcohol-associated liver disease. Front Endocrinol (Lausanne) 2024; 15:1462591. [PMID: 39735642 PMCID: PMC11672197 DOI: 10.3389/fendo.2024.1462591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/12/2024] [Indexed: 12/31/2024] Open
Abstract
Background It is necessary to find latent indicators to predict the survival of alcohol-associated liver disease (ALD) patients. Leukocyte telomere length (LTL) was regarded as an indicator of prognosis in several diseases. However, the relationships between LTL and survival as well as cause-specific mortality in ALD patients were still unknown. Objective This study aimed at exploring the underlying link between LTL and the risk of mortality in patients with ALD. Methods The LTL and survival data were gathered from the National Health and Nutrition Examination Survey (NHANES) 1999-2002. The connection between LTL and mortality was assessed by Cox regression models and stratified analyses. The non-linear relationship was explored by restricted cubic spline (RCS) analysis. Sensitivity analyses were used to evaluate the robustness of our findings. Results LTL was a negative factor for all-cause mortality (all p-value < 0.05). The risk of cardiovascular disease (CVD)-related death was decreased in Q3 (p < 0.001) and Q4 levels of LTL (p < 0.001) compared with the Q1 group. Shorter LTL resulted in higher cancer-caused mortality (p = 0.03) in the Q2 group. Longer LTL improved survival especially for elder patients (p for trend < 0.001) or men (p for trend = 0.001). Moreover, there were L-shaped correlations between LTL and all-cause mortality (p for non-linearity = 0.02), as well as cancer-related mortality (p for non-linearity < 0.001). Four sensitivity analyses proved the robustness of our findings. Conclusion Our research found that longer LTL improved survival in patients with ALD and decreased CVD and cancer-related mortality. LTL decreased all-cause mortality especially for patients older than 65 years or men. LTL might be a useful biomarker for prognosis among patients with ALD. More prospective studies are needed to assess the relevance between LTL and mortality and explore the underlying mechanisms between them.
Collapse
Affiliation(s)
- Jiahong Yi
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Guo
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chang Jiang
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junyi Duan
- Department of Obstetrics and Gynecology, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Ju Xue
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yue Zhao
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenzhuo He
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liangping Xia
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
5
|
Arosio B, Picca A. The biological roots of the sex-frailty paradox. Exp Gerontol 2024; 198:112619. [PMID: 39490699 DOI: 10.1016/j.exger.2024.112619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Aging is a dynamic process that requires a continuous response and adaptation to internal and external stimuli over the life course. This eventually results in people aging differently and women aging differently than men. The "gender paradox" describes how women experience greater longevity than men, although linked with higher rates of disability and poor health status. Recently, the concept of frailty has been incorporated into this paradox giving rise to the "sex-frailty paradox" which describes how women are frailer because they manifest worse health status but, at the same time, appear less susceptible to death than men of the same age. However, very little is known about the biological roots of this sex-related difference in frailty. Inflamm-aging, the chronic low-grade inflammatory state associated with age, plays a key pathophysiological role in several age-related diseases/conditions, including Alzheimer's disease (AD), for which women have a higher lifetime risk than men. Interestingly, inflamm-aging develops at a different rate in women compared to men, with features that could play a critical role in the development of AD in women. According to this view, a continuum between aging and age-related diseases that probably lacks clear boundaries can be envisioned in which several shared biological mechanisms that progress at different pace may lead to different aging trajectories in women than in men. It, therefore, becomes urgent to consider a holistic approach in the study of aging, and decline it from a gender medicine perspective also considering the biological roots of the sex-frailty paradox.
Collapse
Affiliation(s)
- Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Anna Picca
- Department of Medicine and Surgery, LUM University, Casamassima, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
6
|
Ungvari Z, Kunutsor SK. Coffee consumption and cardiometabolic health: a comprehensive review of the evidence. GeroScience 2024; 46:6473-6510. [PMID: 38963648 PMCID: PMC11493900 DOI: 10.1007/s11357-024-01262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
This review provides a comprehensive synthesis of longitudinal observational and interventional studies on the cardiometabolic effects of coffee consumption. It explores biological mechanisms, and clinical and policy implications, and highlights gaps in the evidence while suggesting future research directions. It also reviews evidence on the causal relationships between coffee consumption and cardiometabolic outcomes from Mendelian randomization (MR) studies. Findings indicate that while coffee may cause short-term increases in blood pressure, it does not contribute to long-term hypertension risk. There is limited evidence indicating that coffee intake might reduce the risk of metabolic syndrome and non-alcoholic fatty liver disease. Furthermore, coffee consumption is consistently linked with reduced risks of type 2 diabetes (T2D) and chronic kidney disease (CKD), showing dose-response relationships. The relationship between coffee and cardiovascular disease is complex, showing potential stroke prevention benefits but ambiguous effects on coronary heart disease. Moderate coffee consumption, typically ranging from 1 to 5 cups per day, is linked to a reduced risk of heart failure, while its impact on atrial fibrillation remains inconclusive. Furthermore, coffee consumption is associated with a lower risk of all-cause mortality, following a U-shaped pattern, with the largest risk reduction observed at moderate consumption levels. Except for T2D and CKD, MR studies do not robustly support a causal link between coffee consumption and adverse cardiometabolic outcomes. The potential beneficial effects of coffee on cardiometabolic health are consistent across age, sex, geographical regions, and coffee subtypes and are multi-dimensional, involving antioxidative, anti-inflammatory, lipid-modulating, insulin-sensitizing, and thermogenic effects. Based on its beneficial effects on cardiometabolic health and fundamental biological processes involved in aging, moderate coffee consumption has the potential to contribute to extending the healthspan and increasing longevity. The findings underscore the need for future research to understand the underlying mechanisms and refine health recommendations regarding coffee consumption.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Setor K Kunutsor
- Leicester Real World Evidence Unit, Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Saint Boniface Hospital, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
7
|
Denham J, Bliss ES, Bryan TM, O'Brien BJ, Mills D. Exercise to combat cancer: focusing on the ends. Physiol Genomics 2024; 56:869-875. [PMID: 39374082 DOI: 10.1152/physiolgenomics.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Cancer remains a leading cause of death worldwide and although prognosis and survivorship after therapy have improved significantly, current cancer treatments have long-term health consequences. For decades telomerase-mediated telomere maintenance has been an attractive anti-cancer therapeutic target due to its abundance and role in telomere maintenance, pathogenesis, and growth in neoplasms. Telomere maintenance-specific cancer therapies, however, are marred by off-target side effects that must be addressed before they reach clinical practice. Regular exercise training is associated with telomerase-mediated telomere maintenance in normal cells, which is associated with healthy aging. A single bout of endurance exercise training dynamically, but temporarily, increases TERT mRNA and telomerase activity, as well as several molecules that control genomic stability and telomere length (i.e., shelterin and TERRA). Considering the epidemiological findings and accumulating research highlighting that exercise significantly reduces the risk of many types of cancers and the anti-carcinogenic effects of exercise on tumor growth in vitro, investigating the governing molecular mechanisms of telomerase control in context with exercise and cancer may provide important new insights to explain these findings. Specifically, the molecular mechanisms controlling telomerase in both healthy cells and tumors after exercise could reveal novel therapeutic targets for tumor-specific telomere maintenance and offer important evidence that may refine current physical activity and exercise guidelines for all stages of cancer care.
Collapse
Affiliation(s)
- Joshua Denham
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, Toowoomba, Queensland, Australia
| | - Edward S Bliss
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, Toowoomba, Queensland, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Brendan J O'Brien
- Institute of Health and Wellbeing, Federation University Australia, Ballarat, Victoria, Australia
| | - Dean Mills
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, Toowoomba, Queensland, Australia
| |
Collapse
|
8
|
Zhao CN, Jiang LQ, Musonye HA, Meng SY, He YS, Wang P, Ni J, Pan HF. Associations of accelerated biological aging and metabolic heterogeneity of obesity with rheumatoid arthritis: a prospective cohort study. Clin Rheumatol 2024; 43:3615-3623. [PMID: 39367918 DOI: 10.1007/s10067-024-07167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
OBJECTIVE To evaluate the associations between biological aging, metabolic heterogeneity of obesity, and rheumatoid arthritis (RA). METHODS This prospective cohort study analyzed 268,184 individuals from the UK Biobank. Biological age was estimated using phenotypic age (PhenoAge), Klemera-Doubal methods (KDM-BA), and telomere length. We calculated KDM-BA acceleration and PhenoAge acceleration after subtracting the effect of chronological age by regression residual. The metabolic heterogeneity of obesity can be evaluated by four BMI metabolic phenotypes, namely metabolically unhealthy normal weight (MUNW), metabolically healthy normal weight (MHNW), metabolically unhealthy overweight/obesity (MUOO), and metabolically healthy overweight/obesity (MHOO). Cox models were employed to estimate the associations between biological aging, metabolic heterogeneity of obesity, and RA risk. RESULTS A total of 2842 patients experienced RA during a mean follow-up time of 12.21 years. A standard deviation (SD) increase in KDM-BA acceleration and PhenoAge acceleration was associated with an increased risk of RA by 13% (hazard ratio = 1.13; 95% CI, 1.09-1.17) and 39% (HR = 1.39; 95% CI, 1.34-1.44), respectively. A SD increase in telomere length was associated with a reduced risk of RA by 5% (HR = 0.95; 95% CI, 0.91-0.98). Compared to the MHNW group, the MUOO group was associated with a 51% increase in the risk of incident RA. In the joint effect analysis, compared to the MHNW + KDM-BA younger subgroup, the HR (95% CI) for RA was 1.68 (1.48, 1.90) in the MUOO + KDM-BA older subgroup. CONCLUSION Accelerated biological aging may heighten the susceptibility to RA, particularly in individuals with obesity or metabolic dysfunction. Key Points •Accelerated biological aging increases the risk of developing RA. •Overweight/obese people with a healthy metabolism have a higher risk of RA than those with normal weight and healthy metabolism. •The BMI metabolic phenotype has a strong modifying effect on the association between KDM-BA/PhenoAge and RA risk.
Collapse
Affiliation(s)
- Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ling-Qiong Jiang
- Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Harry Asena Musonye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shi-Yin Meng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Wang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
9
|
Tharmapalan V, Wagner W. Biomarkers for aging of blood - how transferable are they between mice and humans? Exp Hematol 2024; 140:104600. [PMID: 39128692 DOI: 10.1016/j.exphem.2024.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Aging significantly impacts the hematopoietic system, reducing its regenerative capacity and ability to restore homeostasis after stress. Mouse models have been invaluable in studying this process due to their shorter lifespan and the ability to explore genetic, treatment, and environmental influences on aging. However, not all aspects of aging are mirrored between species. This review compares three key aging biomarkers in the hematopoietic systems of mice and humans: myeloid bias, telomere attrition, and epigenetic clocks. Myeloid bias, marked by an increased fraction of myeloid cells and decreased lymphoid cells, is a significant aging marker in mice but is scarcely observed in humans after childhood. Conversely, telomere length is a robust aging biomarker in humans, whereas mice exhibit significantly different telomere dynamics, making telomere length less reliable in the murine system. Epigenetic clocks, based on DNA methylation changes at specific genomic regions, provide precise estimates of chronologic age in both mice and humans. Notably, age-associated regions in mice and humans occur at homologous genomic locations. Epigenetic clocks, depending on the epigenetic signatures used, also capture aspects of biological aging, offering powerful tools to assess genetic and environmental impacts on aging. Taken together, not all blood aging biomarkers are transferable between mice and humans. When using murine models to extrapolate human aging, it may be advantageous to focus on aging phenomena observed in both species. In conclusion, although mouse models offer significant insights, selecting appropriate biomarkers is crucial for translating findings to human aging.
Collapse
Affiliation(s)
- Vithurithra Tharmapalan
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
10
|
Liu X, Jin M, Yang Z, Zhang Z, Huang N, Huang T, Li N. Association of early-life factors with biological age acceleration and the mediating effect of social environment risks in middle-aged and older adults. Age Ageing 2024; 53:afae272. [PMID: 39686681 DOI: 10.1093/ageing/afae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Adverse early-life events influence the health with ageing throughout the life course. However, the effects of combined early-life risks on ageing acceleration in adults and the roles of social environment risks remain unknown. OBJECTIVE To investigate associations of maternal smoking, breastfeeding and birth weight with accelerated biological age (BA), and to explore genetic-predicted effect and mediating effect of social environment risks. DESIGN Population-based prospective cohort. SETTING UK Biobank. SUBJECTS 151 773 participants. METHODS We used Klemera-Doubal BA (KDM-BA), PhenoAge and leukocyte telomere length (LTL) as BA biomarkers. Associations of early-life risk factors and score with BA acceleration were estimated using linear regression models. Genetic risk score (GRS) was calculated based on genetic variations for maternal smoking and birth weight. Polysocial risk scores (PsRS) for each BA were calculated by summing the number of dichotomised social environment factors significantly associated with each of the three BA biomarkers. RESULTS Maternal smoking, non-breastfeeding and low birth weight were individually associated with BA acceleration. The early-life risk score was significantly associated with accelerated KDM-BA and PhenoAge and shorter LTL. The effects of GRS on accelerated BA were in the same direction. The BA-specific PsRS mediated the accelerated KDM-BA and PhenoAge and shorter LTL by 8.37%, 22.34% and 7.90%, respectively. CONCLUSIONS Our findings demonstrated a dose-dependent association of combined early-life risks with accelerated BA in middle-aged and older adults, partially mediated by social environment risks. The findings highlight the importance of early identification and surveillance of high-risk individuals for ageing acceleration during adulthood.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China
| | - Ming Jin
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China
| | - Zeping Yang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China
| | - Ziyi Zhang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China
| | - Ninghao Huang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University
| | - Nan Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China
| |
Collapse
|
11
|
da Cunha Agostini L, da Silva GN. Telomere length as a biomarker for cerebrovascular diseases: current evidence. Mol Biol Rep 2024; 51:1150. [PMID: 39538053 DOI: 10.1007/s11033-024-10077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Cerebrovascular disease (CVD) includes a range of conditions affecting the brain's blood vessels, which can result in reduced blood flow to brain tissue. The most common manifestation of CVD is stroke, the second leading cause of death and the third leading cause of disability worldwide. Major risk factors for CVD encompass gender, age, smoking, hypertension, diabetes, physical inactivity, obesity, alcohol consumption, and metabolic syndrome. Research suggests a link between telomere length and an increased risk of CVD, particularly in ischemic stroke cases. This review highlights key findings on the relationship between telomere length and CVD, underscoring its clinical importance. The analysis utilizes scientific literature from PubMed, Scopus, and SciELO up to 2024. Results show that shorter telomere length is associated with various types of CVD, including stroke, ischemic stroke, hemorrhagic stroke, and cardioembolic stroke. Some studies propose that telomere length measurement could be a valuable biomarker for CVD, potentially improving prevention, diagnosis, and management strategies.
Collapse
Affiliation(s)
- Lívia da Cunha Agostini
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Glenda Nicioli da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, s/nº, Ouro Preto, Minas Gerais, CEP 35402-163, Brazil.
| |
Collapse
|
12
|
Li J, Hu L, Huang X. Causal relationship between leukocyte telomere length and two cardiomyopathies based on a bidirectional Mendelian randomization approach. Medicine (Baltimore) 2024; 103:e40308. [PMID: 39533571 PMCID: PMC11556983 DOI: 10.1097/md.0000000000040308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
This study aims to employ the Mendelian randomization (MR) approach to investigate the relationship between leukocyte telomere length (TL) and 2 prevalent forms of cardiomyopathies. Using R software (4.3.1) for MR study, independent genetic variants associated with leukocyte TL were extracted from the Integrative Epidemiology Unit database, while cardiomyopathies data were pooled from FinnGen and European Bioinformatics Institute databases. Analytical methodologies included inverse-variance weighting, MR-Egger regression, and weighted median methods. Further analyses involved MR-Egger intercept and MR-PRESSO for handling horizontal pleiotropy and Cochran Q test for study heterogeneity. Our forward Mendelian randomization study indicates a positive correlation between longer leukocyte TL and the risk of 2 forms of cardiomyopathies: the longer the leukocyte telomere, the higher is the risk of cardiomyopathies. Specifically, for hypertrophic obstructive cardiomyopathy the OR is 2.23 (95% CI: 1.19-4.14, P = .01), for hypertrophic cardiomyopathy the OR is 1.80 (95% CI: 1.14-2.85, P = .01), and for dilated cardiomyopathy the OR is 1.32 (95% CI: 1.01-1.71, P = .04). In contrast, our reverse Mendelian randomization showed that cardiomyopathies were not directly associated with TL, and the inverse-variance-weighted test was not statistically significant for any of the 3 (P > .05). The reliability tests for the forward Mendelian randomization, including both MR-Egger intercept and MR-PRESSO tests, show no evidence of horizontal pleiotropy, and Cochran Q test indicates no heterogeneity. The "leave-one-out" sensitivity analysis revealed no outlier genes. The reliability tests for the reverse Mendelian randomization, including both MR-Egger intercept and MR-PRESSO tests, also indicate no genetic pleiotropy. Despite the heterogeneity shown in our study between hypertrophic cardiomyopathy and leukocyte TL, the sensitivity analysis did not identify any anomalies. Our Mendelian randomization study suggests that longer leukocyte TL is associated with an increased risk of hypertrophic obstructive cardiomyopathy, hypertrophic cardiomyopathy, and dilated cardiomyopathy. However, the onset of these 2 kinds of disease does not directly lead to changes in leukocyte TL.
Collapse
Affiliation(s)
- Jun Li
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Lanshuo Hu
- Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Xuanchun Huang
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Wang Z, Xiong F, Zhang Q, Wang H. Dynamic changes in hs-CRP and risk of all-cause mortality among middle-aged and elderly adults: findings from a nationwide prospective cohort and mendelian randomization. Aging Clin Exp Res 2024; 36:210. [PMID: 39460870 PMCID: PMC11512892 DOI: 10.1007/s40520-024-02865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION The general population experiences mortality rates that are related to high levels of high-sensitivity C-reactive protein (hs-CRP). We aim to assess the linkage of longitudinal trajectories in hs-CRP levels with all-cause mortality in Chinese participants. METHODS We utilized data from the China Health and Retirement Longitudinal Study (CHARLS). The exposures were dynamic changes in the hs-CRP and cumulative hs-CRP from 2012 to 2015, and the outcome was all-cause mortality. All participants were categorized into four trajectories according to hs-CRP levels. Multivariable logistic regression analysis, adjusted for potential confounders, was employed to evaluate the relationship of different trajectories of hs-CRP with mortality risk. A two-sample Mendelian randomization (TSMR) method and SHapley Additive exPlanations (SHAP) for identifying determinants of mortality risk were also employed. RESULTS The study included 5,445 participants with 233 deaths observed, yielding a mortality proportion of 4.28%. Compared to individuals maintaining low, stable levels of hs-CRP (Class 1), individuals with sustained elevated levels of hs-CRP (Class 4), those experiencing a progressive rise in hs-CRP levels (Class 2), or those transitioning from elevated to reduced hs-CRP levels (Class 3) all faced a significantly heighted death risk, with adjusted Odds Ratios (ORs) ranging from 2.34 to 2.47 across models. Moreover, a non-linear relationship was found between them. Further TSMR analysis also supported these findings. SHAP showed that hs-CRP was the fifth most important determinant of mortality risk. CONCLUSIONS Our study shows all-cause mortality increases with dynamic changes in hs-CRP levels among middle-aged and elderly adults in China, and cumulative hs-CRP shows an L-shaped relationship with all-cause mortality.
Collapse
Affiliation(s)
- Zhonghai Wang
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
- Department of Geriatrics, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Feng Xiong
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Quanbo Zhang
- Department of Geriatrics, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Han Wang
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Coulter T, Hill C, McKnight AJ. Insights into the length and breadth of methodologies harnessed to study human telomeres. Biomark Res 2024; 12:127. [PMID: 39438947 PMCID: PMC11515763 DOI: 10.1186/s40364-024-00668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Telomeres are protective structures at the end of eukaryotic chromosomes that are strongly implicated in ageing and ill health. They attrition upon every cellular reproductive cycle. Evidence suggests that short telomeres trigger DNA damage responses that lead to cellular senescence. Accurate methods for measuring telomeres are required to fully investigate the roles that shortening telomeres play in the biology of disease and human ageing. The last two decades have brought forth several techniques that are used for measuring telomeres. This editorial highlights strengths and limitations of traditional and emerging techniques, guiding researchers to choose the most appropriate methodology for their research needs. These methods include Quantitative Polymerase Chain Reaction (qPCR), Omega qPCR (Ω-qPCR), Terminal Restriction Fragment analysis (TRF), Single Telomere Absolute-length Rapid (STAR) assays, Single TElomere Length Analysis (STELA), TElomere Shortest Length Assays (TESLA), Telomere Combing Assays (TCA), and Long-Read Telomere Sequencing. Challenges include replicating telomere measurement within and across cohorts, measuring the length of telomeres on individual chromosomes, and standardised reporting for publications. Areas of current and future focus have been highlighted, with recent methodical advancements, such as long-read sequencing, providing significant scope to study telomeres at an individual chromosome level.
Collapse
Affiliation(s)
- Tiernan Coulter
- Centre for Public Health, Queen's University Belfast, Institute of Clinical Sciences - Block A, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BJ, UK
| | - Claire Hill
- Centre for Public Health, Queen's University Belfast, Institute of Clinical Sciences - Block A, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BJ, UK.
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University Belfast, Institute of Clinical Sciences - Block A, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BJ, UK.
| |
Collapse
|
15
|
Fu H, Zhu Y, Lin L, Jiang P, Cai G, Zeng L, Li X, Zhang Y, Li C, Zhan H, Zhang B, Yang Z. Shorter Leukocyte Telomere Length Is Associated with Increased Major Adverse Cardiovascular Events or Mortality in Patients with Essential Hypertension. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10558-y. [PMID: 39422841 DOI: 10.1007/s12265-024-10558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
The association between leukocyte telomere length (LTL) alteration and major adverse cardiovascular events (MACE) or mortality in patients with hypertension is still unclear. 20,034 patients with essential hypertension were enrolled from UK biobank. Multivariable COX regression models were performed to assess the association. LTL was shorter in hypertensive patients with MACE compared to those without MACE. Hypertensive patients in the lowest LTL quartile were at higher risk to develop MACE (adjusted HR 1.15 [95% CI 1.02-1.29], vs top LTL quartile, p-trend = 0.03). Similarly, shorter LTL was related with increased mortality (adjusted HR 1.18[95% CI 1.06-1.3], lowest vs top LTL quartile, p-trend < 0.001). This investigation demonstrated that shorter LTL is associated with increased risk of MACE or mortality in patients with essential hypertension, which indicates that LTL may be a potential predictor of prognosis or underlying therapeutic target for hypertension.
Collapse
Affiliation(s)
- Hongna Fu
- Division of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Yuanting Zhu
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Luyang Lin
- Division of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Peng Jiang
- Division of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Guoyi Cai
- Division of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Lijin Zeng
- Division of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Xinyu Li
- Division of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Yuchun Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Chunhao Li
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Hong Zhan
- Division of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, P. R. China.
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, Guangzhou, 510080, P. R. China.
| | - Bo Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Zhen Yang
- Division of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, P. R. China.
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, Guangzhou, 510080, P. R. China.
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, P. R. China.
| |
Collapse
|
16
|
Lee SH, Kim TK, Yoo JH, Park HJ, Kim JH, Lee JH. Analysis of the Association between Telomere Length and Neurological Disability in Stroke Types. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1657. [PMID: 39459444 PMCID: PMC11509859 DOI: 10.3390/medicina60101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: The association between neurological disability, prognosis, and telomere length (TL) in patients with stroke has been investigated in various ways. However, analysis of the type of stroke and ischemic stroke subgroups is limited. In this study, we aimed to determine the association between TL and neurological disability according to stroke type. Materials and Methods: This prospective study included patients with stroke who visited a single-center emergency department (ED) between January 2022 and December 2023. The association between TL and neurological disabilities, using the Modified Rankin Scale (mRS) and National Institutes of Health Stroke Scale (NIHSS), was evaluated according to the patient's stroke type and subgroup of ischemic stroke. Multivariate analysis was performed to determine the association between neurological disabilities in patients with ischemic stroke and the subgroups. Results: A total of 271 patients with stroke were enrolled. The NIHSS score was found to be higher at the time of ED visit (adjusted odds ratio [OR], 5.23; 95% confidence interval [CI], 1.59-17.2, p < 0.01) and 1 day later (adjusted OR, 7.78; 95% CI, 1.97-30.70, p < 0.01) in the ischemic stroke group with a short TL. In the other determined etiology (OD) or undetermined etiology (UD) group, the NIHSS was higher in the short TL group at the ED visit (adjusted OR, 7.89; 95% CI, 1.32-47.25, p = 0.02) and 1 day after (adjusted OR, 7.02; 95% CI, 1.14-43.47, p = 0.04). Conclusions: TL is associated with neurological disability in early ischemic stroke and is prominent in the UD and OD subgroups.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Department of Emergency Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea; (T.-K.K.); (J.-H.Y.)
| | - Tae-Kwon Kim
- Department of Emergency Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea; (T.-K.K.); (J.-H.Y.)
| | - Jong-Hoon Yoo
- Department of Emergency Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea; (T.-K.K.); (J.-H.Y.)
| | - Hyung-Jong Park
- Department of Neurology, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea;
| | - Jae-Hyun Kim
- Department of Neurosurgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea;
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, Daegu 42601, Republic of Korea;
| |
Collapse
|
17
|
Han F, Riaz F, Pu J, Gao R, Yang L, Wang Y, Song J, Liang Y, Wu Z, Li C, Tang J, Xu X, Wang X. Connecting the Dots: Telomere Shortening and Rheumatic Diseases. Biomolecules 2024; 14:1261. [PMID: 39456194 PMCID: PMC11506250 DOI: 10.3390/biom14101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Telomeres, repetitive sequences located at the extremities of chromosomes, play a pivotal role in sustaining chromosomal stability. Telomerase is a complex enzyme that can elongate telomeres by appending telomeric repeats to chromosome ends and acts as a critical factor in telomere dynamics. The gradual shortening of telomeres over time is a hallmark of cellular senescence and cellular death. Notably, telomere shortening appears to result from the complex interplay of two primary mechanisms: telomere shelterin complexes and telomerase activity. The intricate interplay of genetic, environmental, and lifestyle influences can perturb telomere replication, incite oxidative stress damage, and modulate telomerase activity, collectively resulting in shifts in telomere length. This age-related process of telomere shortening plays a considerable role in various chronic inflammatory and oxidative stress conditions, including cancer, cardiovascular disease, and rheumatic disease. Existing evidence has shown that abnormal telomere shortening or telomerase activity abnormalities are present in the pathophysiological processes of most rheumatic diseases, including different disease stages and cell types. The impact of telomere shortening on rheumatic diseases is multifaceted. This review summarizes the current understanding of the link between telomere length and rheumatic diseases in clinical patients and examines probable telomere shortening in peripheral blood mononuclear cells and histiocytes. Therefore, understanding the intricate interaction between telomere shortening and various rheumatic diseases will help in designing personalized treatment and control measures for rheumatic disease.
Collapse
Affiliation(s)
- Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Farooq Riaz
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518000, China;
- Center for Cancer Immunology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Ronglin Gao
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Yanqing Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Chunrui Li
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China;
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| |
Collapse
|
18
|
Liu C, Yang Z, He L, Xiao Y, Zhao H, Zhang L, Liu T, Chen R, Zhang K, Luo B. Optimal lifestyle patterns for delaying ageing and reducing all-cause mortality: insights from the UK Biobank. Eur Rev Aging Phys Act 2024; 21:27. [PMID: 39369207 PMCID: PMC11456244 DOI: 10.1186/s11556-024-00362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND With the rapid aging of the global population, identifying lifestyle patterns that effectively delay aging and reduce mortality risk is of paramount importance. This study utilizes the UK Biobank to analyze the associations of the Dietary Inflammatory Index, physical activity, and sleep on biological aging and all-cause mortality. METHODS A prospective cohort study was conducted using data from over half a million UK Biobank participants. Two datasets were created by subjective and objective measurements of physical activity: the Subjective Physical Activity (SPA) and Objective Physical Activity (OPA) datasets. Lifestyle patterns, including diet habits, exercise levels, and sleep quality, were assessed within these datasets. Biological aging was quantified using validated methods, including Homeostatic Dysregulation, Klemera-Doubal Method Biological Age, Phenotypic Age, and Telomere Length. All-cause mortality data were obtained from the National Health Service. Statistical analyses included weighted linear regression and Cox proportional hazard models, adjusted for a range of covariates. RESULTS The findings indicate that, in most cases, maintaining an anti-inflammatory diet, engaging in at least moderate physical activity, and ensuring healthy sleep conditions are associated with delayed physiological aging (Cohen's d ranging from 0.274 to 0.633) and significantly reduced risk of all-cause mortality (HR-SPA: 0.690, 95% CI: 0.538, 0.884; HR-OPA: 0.493, 95% CI: 0.293, 0.828). These effects are particularly pronounced in individuals under 60 years of age and in women. However, it was observed that the level of physical activity recommended by the World Health Organization (600 MET-minutes/week) does not achieve the optimal effect in delaying biological aging. The best effect in decelerating biological aging was seen in the high-level physical activity group (≥ 3000 MET-minutes/week). The study also highlights the potential of biological age acceleration and telomere length as biomarkers for predicting the risk of mortality. CONCLUSIONS Choosing healthy lifestyle patterns, especially an anti-inflammatory diet, at least moderate physical activity, and healthy sleep patterns, is crucial for delaying aging and reducing mortality risk. These findings support the development of targeted interventions to improve public health outcomes. Future research should focus on objective assessments of lifestyle to further validate these associations.
Collapse
Affiliation(s)
- Ce Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Zhaoru Yang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Li He
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Ya Xiao
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Hao Zhao
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Ling Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Tong Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Rentong Chen
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, United States
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, People's Republic of China.
| |
Collapse
|
19
|
Kim D, Danpanichkul P, Wijarnpreecha K, Cholankeril G, Ahmed A. Leukocyte telomere shortening in metabolic dysfunction-associated steatotic liver disease and all-cause/cause-specific mortality. Clin Mol Hepatol 2024; 30:982-986. [PMID: 39188229 PMCID: PMC11540404 DOI: 10.3350/cmh.2024.0691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024] Open
Affiliation(s)
- Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Pojsakorn Danpanichkul
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Karn Wijarnpreecha
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Arizona College of Medicine, Phoenix, AZ, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Banner University Medical Center, Phoenix, AZ, USA
| | - George Cholankeril
- Liver Center, Division of Abdominal Transplantation, Michael E De-Bakey Department of General Surgery, Baylor College of Medicine, Houston, TX, USA
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
20
|
Alarabi M, Pan Z, Romero-Gómez M, George J, Eslam M. Telomere length and mortality in lean MAFLD: the other face of metabolic adaptation. Hepatol Int 2024; 18:1448-1458. [PMID: 38900410 DOI: 10.1007/s12072-024-10701-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND AIMS Healthy weight (lean) patients with metabolic dysfunction-associated fatty liver disease (MAFLD) have a more favorable metabolic and histological profile in cross-sectional studies compared with their non-lean counterparts. Paradoxically, they also have higher overall mortality. The underpinning pathophysiology of this paradox is not understood. Telomere attrition is associated with increased mortality in various diseases. METHODS We investigated the role of telomere length in the pathogenesis of lean MAFLD in cohorts with biopsy-proven MAFLD (n = 303). We measured serum malondialdehyde (MDA) levels and hepatic 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (4-HNE) expression (reactive oxygen species (ROS) markers), growth/differentiation factor-15 (GDF-15) and tested the effect of H2O2 on telomere length and activity in hepatocyte cell lines. The association between leukocyte telomere length and mortality was examined. RESULTS Telomere length was significantly lower in patients with lean MAFLD (p < 0.001). They also demonstrated an increase in ROS levels and decreases in GDF-15. H2O2 induced telomere shortening and reducing telomere activity in hepatocyte cell lines. We subsequently confirmed that telomere length shortening at baseline is associated with increased hazards of all-cause mortality; the deleterious effect was more profound in lean people. CONCLUSION Differences in telomere length in part explain the increased mortality of lean compared to non-lean patients with MAFLD. The effect is in part mediated through ROS activation and provide opportunities for therapy.
Collapse
Affiliation(s)
- Mohammad Alarabi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Sydney, 2145 NSW, Australia
| | - Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Sydney, 2145 NSW, Australia
| | - Manuel Romero-Gómez
- Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Sydney, 2145 NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Sydney, 2145 NSW, Australia.
| |
Collapse
|
21
|
Fernández de la Puente M, Marti A, Canudas S, Zalba G, Razquin C, Boccardi V, Mecocci P, Babio N, Castañer-Niño O, Toledo E, Buil-Cosiales P, Salas-Salvadó J, García-Calzón S. Telomere length and 4-year changes in cognitive function in an older Mediterranean population at high risk of cardiovascular disease. Age Ageing 2024; 53:afae216. [PMID: 39385582 DOI: 10.1093/ageing/afae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Cognitive decline, a common process of brain ageing, has been associated with telomere length (TL). Delving into the identification of reliable biomarkers of brain ageing is essential to prevent accelerated cognitive impairment. METHODS We selected 317 non-smoking 'Prevención con Dieta Mediterránea-Plus' (PREDIMED-Plus) participants (mean age, 65.8 ± 5.0 years) with metabolic syndrome from two trial centres who were following a lifestyle intervention. We measured TL and cognitive function at baseline and after 3 and 4 years of follow-up, respectively. Associations between baseline or 3-year changes in TL and baseline or 4-year changes in cognitive function were analysed using multivariable regression models. RESULTS Baseline TL was not associated with baseline cognitive performance. Nevertheless, longer baseline TL was associated with improved 4-year changes in the Executive Function domain (β: 0.29; 95%CI: 0.12 to 0.44; P < 0.001) and the Global Cognitive Function domain (β: 0.19; 95%CI: 0.05 to 0.34; P = 0.010). Besides, a positive association was found between longer baseline TL and improved 4-year changes in the animal version of the Verbal Fluency Test (β: 0.33; 95%CI: 0.12 to 0.52; P = 0.002). By contrast, 3-year changes in TL were not associated with changes in cognitive function after 4 years. CONCLUSIONS Longer baseline TL could protect from cognitive decline and be used as a useful biomarker of brain ageing function in an older Mediterranean population at risk of cardiovascular disease and cognitive impairment.
Collapse
Affiliation(s)
- María Fernández de la Puente
- Consorcio CIBER, M.P. Fisiopatología de La Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Unitat de Nutrició Humana, 43201, Reus, Spain
- Institut D'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, 43204, Reus, Spain
| | - Amelia Marti
- Consorcio CIBER, M.P. Fisiopatología de La Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
- Department of Nutrition, Food Sciences and Physiology, Center for Nutrition and Research, University of Navarra, 31009, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008, Pamplona, Spain
| | - Silvia Canudas
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, 08921, Santa Coloma de Gramenet, Spain
- Institute of Nutrition and Food Safety, University of Barcelona, INSA-UB Maria de Maeztu Unit of Excellence, 08921, Santa Coloma de Gramenet, Spain
| | - Guillermo Zalba
- Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, 31009, Pamplona, Spain
| | - Cristina Razquin
- Consorcio CIBER, M.P. Fisiopatología de La Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008, Pamplona, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, 31009, Pamplona, Spain
| | - Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet 171 77, Stockholm, Sweden
| | - Nancy Babio
- Consorcio CIBER, M.P. Fisiopatología de La Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Unitat de Nutrició Humana, 43201, Reus, Spain
- Institut D'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, 43204, Reus, Spain
| | - Olga Castañer-Niño
- Consorcio CIBER, M.P. Fisiopatología de La Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital Del Mar Research Institute (IMIM), 08003, Barcelona, Spain
| | - Estefanía Toledo
- Consorcio CIBER, M.P. Fisiopatología de La Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008, Pamplona, Spain
| | - Pilar Buil-Cosiales
- Consorcio CIBER, M.P. Fisiopatología de La Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008, Pamplona, Spain
- Servicio Navarro de Salud, Atención Primaria Pamplona, 31003, Pamplona, Spain
| | - Jordi Salas-Salvadó
- Consorcio CIBER, M.P. Fisiopatología de La Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Unitat de Nutrició Humana, 43201, Reus, Spain
- Institut D'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, 43204, Reus, Spain
| | - Sonia García-Calzón
- Consorcio CIBER, M.P. Fisiopatología de La Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
- Department of Nutrition, Food Sciences and Physiology, Center for Nutrition and Research, University of Navarra, 31009, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008, Pamplona, Spain
- Epigenetic and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Center, Scania University Hospital, 214 28, Malmö, Sweden
| |
Collapse
|
22
|
Penrice DD, Jalan-Sakrikar N, Jurk D, Passos JF, Simonetto DA. Telomere dysfunction in chronic liver disease: The link from aging. Hepatology 2024; 80:951-964. [PMID: 37102475 PMCID: PMC10848919 DOI: 10.1097/hep.0000000000000426] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Daniel D. Penrice
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - João F. Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Douglas A. Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
23
|
Yun Z, Liu Z, Shen Y, Sun Z, Zhao H, Du X, Lv L, Zhang Y, Hou L. Genetic analysis from multiple cohorts implies causality between 2200 druggable genes, telomere length, and leukemia. Comput Biol Med 2024; 181:109064. [PMID: 39216403 DOI: 10.1016/j.compbiomed.2024.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Clinical therapeutic targets for leukemia remain to be identified and the causality between leukemia and telomere length is unclear. METHODS This work employed cis expression quantitative trait locus (eQTL) for 2,200 druggable genes from the eQTLGen Consortium and genome-wide association studies (GWAS) summary data for telomere length in seven blood cell types from the UK Biobank, Netherlands Cohort as exposures. GWAS data for lymphoid leukemia (LL) and myeloid leukemia (ML) from FinnGen and Lee Lab were used as outcomes for discovery and replication cohorts, respectively. Robust Mendelian randomization (MR) findings were generated from seven MR models and a series of sensitivity analyses. Summary-data-based MR (SMR) analysis and transcriptome-wide association studies (TWAS) were further implemented to verify the association between identified druggable genes and leukemia. Single-cell type expression analysis was employed to identify the specific expression of leukemia casual genes on human bone marrow and peripheral blood immune cells. Multivariable MR analysis, linkage disequilibrium score regression (LDSC), and Bayesian colocalization analysis were performed to further validate the relationship between telomere length and leukemia. Mediation analysis was used to assess the effects of identified druggable genes affecting leukemia via telomere length. Phenome-wide MR (Phe-MR) analysis for assessing the effect of leukemia causal genes and telomere length on 1,403 disease phenotypes. RESULTS Combining the results of the meta-analysis for MR estimates from two cohorts, SMR and TWAS analysis, we identified five LL causal genes (TYMP, DSTYK, PPIF, GDF15, FAM20A) and three ML causal genes (LY75, ADA, ABCA2) as promising drug targets for leukemia. Univariable MR analysis showed genetically predicted higher leukocyte telomere length increased the risk of LL (odds ratio [OR] = 2.33, 95 % confidence interval [95 % CI] 1.70-3.18; P = 1.33E-07), and there was no heterogeneity and horizontal pleiotropy. Evidence from the meta-analysis of two cohorts strengthened this finding (OR = 1.88, 95 % CI 1.06-3.05; P = 0.01). Multivariable MR analysis showed the causality between leukocyte telomere length and LL without interference from the other six blood cell telomere length (OR = 2.72, 95 % CI 1.88-3.93; P = 1.23E-07). Evidence from LDSC supported the positive genetic correlation between leukocyte telomere length and LL (rg = 0.309, P = 0.0001). Colocalization analysis revealed that the causality from leukocyte telomere length on LL was driven by the genetic variant rs770526 in the TERT region. The mediation analysis via two-step MR showed that the causal effect from TYMP on LL was partly mediated by leukocyte telomere length, with a mediated proportion of 12 %. CONCLUSION Our study identified several druggable genes associated with leukemia risk and provided new insights into the etiology and drug development of leukemia. We also found that genetically predicted higher leukocyte telomere length increased LL risk and its potential mechanism of action.
Collapse
Affiliation(s)
- Zhangjun Yun
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Graduate School of Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Zhu Liu
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Graduate School of Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yang Shen
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ziyi Sun
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Hongbin Zhao
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Graduate School of Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaofeng Du
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Graduate School of Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Liyuan Lv
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yayue Zhang
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Li Hou
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
24
|
Sánchez-González JL, Juárez-Vela R, Dutil Muñoz de la Torre V, Andrés-Olivera MDP, Martín-Vallejo J, Morán-Bayón Á, Gonçalves-Cerejeira JI, Gestoso-Uzal N, González-Sarmiento R, Pérez J. Effect of strength-based physical exercise on telomere length as a marker of premature ageing in patients with schizophrenia: study protocol for a pilot randomised controlled trial. BJPsych Open 2024; 10:e162. [PMID: 39324245 PMCID: PMC11457242 DOI: 10.1192/bjo.2024.753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Patients with schizophrenia die decades earlier than the general population. Among the factors involved in this mortality gap, evidence suggests a telomere length shortening in this clinical population, which is associated with premature ageing. Recent studies support the use of strength-based training exercise programmes to maintain, or even elongate, telomere length in healthy elderly populations. However, studies aiming at modifying telomere length in severe mental illnesses, such as schizophrenia, are still very scarce. AIMS To investigate the effect of a strength-based physical exercise programme on the telomere length of individuals with schizophrenia. METHOD We propose a pragmatic, randomised controlled trial including 40 patients aged ≥18 years, with a stable diagnosis of schizophrenia, attending the Complejo de Rehabilitación Psicosocial (CRPS, Psychosocial Rehabilitation Centre) in Salamanca, Spain. These patients will be randomly assigned (1:1) to either receive the usual treatment and rehabilitation programmes offered by CRPS (treatment-as-usual group) or these plus twice weekly sessions of an evidence-based, strength-based training exercise programme for 12 weeks (intervention group). The primary outcome will be effect on telomere length. Secondary outcomes will include impact on cognitive function, frailty and quality of life. RESULTS We expect to show the importance of implementing strength-based physical exercise programmes for patients with schizophrenia. We could find that such programmes induce biological and genetic changes that may lengthen life expectancy and decrease physical fragility. CONCLUSIONS We anticipate that our trial findings could contribute to parity of esteem for mental health, reducing premature ageing in patients with severe mental illnesses, such as schizophrenia.
Collapse
Affiliation(s)
- Juan Luis Sánchez-González
- Department of Nursing and Physiotherapy, University of Salamanca, Spain; and Department of Neuroscience, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Raúl Juárez-Vela
- Faculty of Health Sciences, University of La Rioja, Logroño, Spain; and Department of Neuroscience, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | | | | | - Álvaro Morán-Bayón
- Department of Medicine, University of Salamanca, Spain; and Department of Neuroscience, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | - Nerea Gestoso-Uzal
- Department of Molecular Medicine, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Rogelio González-Sarmiento
- Department of Medicine, University of Salamanca, Spain; and Department of Molecular Medicine, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jesús Pérez
- Department of Medicine, University of Salamanca, Spain; Department of Neuroscience, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Department of Psychiatry, University of Cambridge, UK; and Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
25
|
Song T, Liu J, Zhao K, Li S, Qiu M, Zhang M, Wang H. The causal effect of telomere length on the risk of malignant lymphoma: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39584. [PMID: 39312382 PMCID: PMC11419458 DOI: 10.1097/md.0000000000039584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Telomere length (TL) has been implicated in the risk assessment of numerous cancers in observational studies. Nevertheless, the relationship between TL and malignant lymphoma remains unclear, displaying inconsistent patterns across different studies. A summary dataset for genome-wide association study of TL and malignant lymphoma was acquired from the OpenGWAS website. An extensive 2-sample Mendelian randomization (MR) analysis was performed, encompassing various methodologies such as MR-Egger, weighted median, weighted mode, simple mode, and the primary method of inverse-variance weighting (IVW). Sensitivity evaluations were performed using the Cochran Q test, MR-Egger regression, and leave-one-out analysis. The main method IVW revealed that TL substantially increased the risk of Hodgkin lymphoma (HL; odds ratio [OR] = 2.135; 95% confidence interval [CI] = 1.181-3.859; P = .012). Both the IVW and weighted median methods indicated statistical associations between genetically predicted TL and other types of non-HL (OR = 1.671, 95% CI = 1.009-2.768, P = .045; OR = 2.310, 95% CI = 1.033-5.169, P = .042). However, there was no association between TL and diffuse large B-cell lymphoma, follicular lymphoma, or mature T/natural Killer-cell lymphoma, and sensitivity analysis revealed no heterogeneity or horizontal pleiotropy, indicating that the causal effect was robust. Our study shows that TL plays different roles in different types of lymphomas. A longer TL significantly increases the risk of HL and other types of non-HL.
Collapse
Affiliation(s)
- Teng Song
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Jie Liu
- Department of Cardiology, Tianjin Bei Chen Hospital, Tianjin, China
| | - Ke Zhao
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shuping Li
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Minghan Qiu
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Miao Zhang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Huaqing Wang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| |
Collapse
|
26
|
Dupoué A, Koechlin H, Huber M, Merrien P, Le Grand J, Corporeau C, Fleury E, Bernay B, de Villemereuil P, Morga B, Le Luyer J. Reproductive aging weakens offspring survival and constrains the telomerase response to herpesvirus in Pacific oysters. SCIENCE ADVANCES 2024; 10:eadq2311. [PMID: 39259784 PMCID: PMC11389786 DOI: 10.1126/sciadv.adq2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Telomere length (TL) is increasingly recognized as a molecular marker that reflects how reproductive aging affects intergenerational transmissions. Here, we investigated the effects of parental age on offspring survival and the regulation of TL by examining the telomere-elongating activity of telomerase in the Pacific oyster. We assessed the classical hallmarks of aging in parents at three age classes (young, middle-aged, and old) and crossbred them using a split-brood design to examine the consequences of the nine maternal-by-paternal age combinations on their offspring. Reproductive aging leads to increased larval mortality and accelerated telomere shortening in spats, rendering them more susceptible to infection by the Ostreid herpesvirus. Viral exposure stimulates telomerase activity, a response that we identified as adaptive, but weakened by parental aging. While telomerase lengthens a spat's telomere, paradoxically, longer individual TL predicts higher mortality in adults. The telomerase-telomere complex appeared as a conservative biomarker for distinguishing survivors and losers upon exposure to polymicrobial diseases.
Collapse
Affiliation(s)
- Andréaz Dupoué
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Hugo Koechlin
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Matthias Huber
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Pauline Merrien
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | | | | | - Elodie Fleury
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Benoît Bernay
- Plateforme Proteogen US EMerode, Université de Caen Normandie, Caen, France
| | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études, PSL, MNHN, CNRS, SU, UA, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Benjamin Morga
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Jérémy Le Luyer
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| |
Collapse
|
27
|
Pérez-López FR, Fernández-Alonso AM, Ulloque-Badaracco JR, Benites-Zapata VA, Varikasuvu SR. Telomere length in subjects with and without SARS-CoV-2 infection: a systematic review and meta-analysis. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240387. [PMID: 39292074 PMCID: PMC11404998 DOI: 10.1590/1806-9282.20240387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 09/19/2024]
Affiliation(s)
| | | | | | - Vicente Aleixandre Benites-Zapata
- Universidad San Ignacio de Loyola, Research Unit for the Generation and Synthesis of Health Evidence, Vice-rector for Research – Lima, Peru
| | | |
Collapse
|
28
|
Wang J, Han X, Yang Y, Zeng Y, Qu Y, Yang H, Song J, Qiu C, Song H. The association of psychological and trauma-related factors with biological and facial aging acceleration: evidence from the UK Biobank. BMC Med 2024; 22:359. [PMID: 39227814 PMCID: PMC11373276 DOI: 10.1186/s12916-024-03578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Psychological and trauma-related factors are associated with many diseases and mortality. However, a comprehensive assessment of the association between psycho-trauma exposures and aging acceleration is currently lacking. METHODS Using data from 332,359 UK Biobank participants, we calculated biological aging acceleration, indexed by the presence of leukocyte telomere length (LTL) deviation (i.e., the difference between genetically determined and observed LTL > 0). The acceleration of facial aging (i.e., looking older than the chronological age) was assessed using a self-report question. Then, we estimated the associations of each psycho-trauma factor with biological and facial aging acceleration, using logistic regression models adjusted for multiple important covariates. Furthermore, restricted to 99,180 participants with complete psychological and trauma-related data, we identified clusters of individuals with distinct psycho-trauma patterns using the latent class analysis method and assessed their associations with aging acceleration using similar models. RESULTS We observed most of the studied psycho-trauma factors were associated with biological and facial aging acceleration. Compared to the "Absence of trauma and psychopathology" cluster, the "adverse childhood experiences (ACEs) with psychopathology" cluster showed strong associations with those aging measurements (odds ratio [OR] = 1.13 [1.05 - 1.23] for biological and 1.52 [1.18 - 1.95] for facial aging acceleration), while no such association was observed for the "ACEs without psychopathology" cluster (1.04 [0.99 - 1.09] and 1.02 [0.84 - 1.24]. CONCLUSIONS Our study demonstrated significant associations of psycho-trauma factors with both biological and facial aging acceleration. The differential aging consequences observed among ACEs exposed individuals with and without psychopathology prompt interventions aimed to improve individuals' psychological resilience to prevent aging acceleration.
Collapse
Affiliation(s)
- Junren Wang
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Xin Han
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yao Yang
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yu Zeng
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yuanyuan Qu
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Huazhen Yang
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Jie Song
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Changjian Qiu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huan Song
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, China.
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
29
|
Sun JY, Xu Q, Shen H, Huang W, Qu Q, Sun W, Kong XQ. The Association between Leucocyte Telomere Length and Survival Outcomes in Patients with Cardiovascular Disease. Rev Cardiovasc Med 2024; 25:333. [PMID: 39355591 PMCID: PMC11440408 DOI: 10.31083/j.rcm2509333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 10/03/2024] Open
Abstract
Background We explore the association between leucocyte telomere length (LTL) and all-cause and cardiovascular disease (CVD)-specific death in CVD patients. Methods We acquired 1599 CVD patients from a nationally representative US population survey for this study. We applied Kaplan-Meier curves, adjusted weighted Cox regression models, and restricted cubic spline to investigate the association between LTL and all-cause death. Additionally, we employed competing risk regression to assess the impact of LTL on cardiovascular-specific death, setting non-cardiovascular death as a competing event. Results The overall mortality rate was 31.0% after a median follow-up of 13.9 years. Patients with shorter LTL exhibited a higher risk of all-cause death, with an adjusted hazard ratio (HR) of 1.25 (95% confidence interval (CI): 1.05-1.48). Restricted cubic spline illustrated a linear dose-response relationship. In gender-specific analyses, female patients with shorter LTL showed a higher risk of death (weighted HR, 1.79; 95% CI, 1.29-2.48), whereas this association was not observed in males (weighted HR, 0.90; 95% CI, 0.61-1.32). The Fine-Gray competing risk model revealed no significant relationship between LTL and cardiovascular-specific mortality but a significant association with non-cardiovascular death (adjusted HR, 1.24; 95% CI, 1.02-1.51). Conclusions LTL is inversely associated with all-cause death in female CVD patients. The significant correlation between reduced LTL and increased all-cause mortality emphasizes LTL as a potential marker for tertiary prevention against cardiovascular disease.
Collapse
Affiliation(s)
- Jin-Yu Sun
- Department of Cardiology, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, Jiangsu, China
| | - Qian Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, Jiangsu, China
| | - Hui Shen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, Jiangsu, China
| | - Wen Huang
- Department of Cardiology, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, Jiangsu, China
| | - Qiang Qu
- Department of Cardiology, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, Jiangsu, China
| | - Wei Sun
- Department of Cardiology, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, Jiangsu, China
| | - Xiang-Qing Kong
- Department of Cardiology, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Rodríguez-Fernández B, Sánchez-Benavides G, Genius P, Minguillon C, Fauria K, De Vivo I, Navarro A, Molinuevo JL, Gispert JD, Sala-Vila A, Vilor-Tejedor N, Crous-Bou M. Association between telomere length and cognitive function among cognitively unimpaired individuals at risk of Alzheimer's disease. Neurobiol Aging 2024; 141:140-150. [PMID: 38936230 DOI: 10.1016/j.neurobiolaging.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Leukocyte telomere length (LTL) is an objective biomarker of biological aging, and it is proposed to play a crucial role in Alzheimer's disease (AD) risk. We aimed at evaluating the cross-sectional association between LTL and cognitive performance in middle-aged cognitively unimpaired individuals at increased risk of AD. METHODS A total of 1520 participants from the ALFA cohort were included. Relative telomere length was measured in leukocytes through qPCR. LTL was residualized against age and sex, and associations with cognitive performance were assessed in short and long groups based on residualized LTL (rLTL). Interactions with sex and genetic risk of AD were tested. RESULTS Non-linear associations were found between LTL and episodic memory (EM). Better EM was associated with longer rLTL among women in the short rLTL group. DISCUSSION Results suggest a potential role of telomeres in the cognitive aging process with sex-specific patterns.
Collapse
Affiliation(s)
- Blanca Rodríguez-Fernández
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ de Wellington, 30, Barcelona 08005, Spain; IMIM - Hospital del Mar Medical Research Institute, C/ del Dr. Aiguader, 88, 2nd floor, Campus Mar, Barcelona 08003, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, C/ del Dr. Aiguader, 88, Barcelona 08003, Spain; Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ de Wellington, 30, Barcelona 08005, Spain; IMIM - Hospital del Mar Medical Research Institute, C/ del Dr. Aiguader, 88, 2nd floor, Campus Mar, Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBER-FES). Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11, Planta 0, Madrid 28029, Spain
| | - Patricia Genius
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ de Wellington, 30, Barcelona 08005, Spain; IMIM - Hospital del Mar Medical Research Institute, C/ del Dr. Aiguader, 88, 2nd floor, Campus Mar, Barcelona 08003, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, C/ del Dr. Aiguader, 88, Barcelona 08003, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ de Wellington, 30, Barcelona 08005, Spain; IMIM - Hospital del Mar Medical Research Institute, C/ del Dr. Aiguader, 88, 2nd floor, Campus Mar, Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBER-FES). Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11, Planta 0, Madrid 28029, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ de Wellington, 30, Barcelona 08005, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBER-FES). Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11, Planta 0, Madrid 28029, Spain
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health. School of Public Health 2, 677 Huntington Ave, Boston, MA 02115, USA; Channing Division of Network Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Arcadi Navarro
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ de Wellington, 30, Barcelona 08005, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, C/ del Dr. Aiguader, 88, Barcelona 08003, Spain; Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Pg. Marítim de la Barceloneta, 37, Barcelona 08003, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jose Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ de Wellington, 30, Barcelona 08005, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ de Wellington, 30, Barcelona 08005, Spain; IMIM - Hospital del Mar Medical Research Institute, C/ del Dr. Aiguader, 88, 2nd floor, Campus Mar, Barcelona 08003, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina. Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11, Planta 0, Madrid 28029, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), C. de Melchor Fernández Almagro, 3, Madrid 28029, Spain
| | - Aleix Sala-Vila
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ de Wellington, 30, Barcelona 08005, Spain; IMIM - Hospital del Mar Medical Research Institute, C/ del Dr. Aiguader, 88, 2nd floor, Campus Mar, Barcelona 08003, Spain
| | - Natalia Vilor-Tejedor
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ de Wellington, 30, Barcelona 08005, Spain; IMIM - Hospital del Mar Medical Research Institute, C/ del Dr. Aiguader, 88, 2nd floor, Campus Mar, Barcelona 08003, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, C/ del Dr. Aiguader, 88, Barcelona 08003, Spain; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Universitat Pompeu Fabra, C/ de Ramon Trias Fargas, 25, 27, Barcelona 08005, Spain.
| | - Marta Crous-Bou
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ de Wellington, 30, Barcelona 08005, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBER-FES). Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5. Pabellón 11, Planta 0, Madrid 28029, Spain; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Catalan Institute of Oncology (ICO)-Bellvitge Biomedical Research Center (IDIBELL), Hospital Duran i Reynals, Avinguda de la Granvia de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona 08908, Spain.
| |
Collapse
|
31
|
Vernasco BJ, Long KM, Braun MJ, Brawn JD. Genetic and telomeric variability: Insights from a tropical avian hybrid zone. Mol Ecol 2024; 33:e17491. [PMID: 39192633 DOI: 10.1111/mec.17491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024]
Abstract
Telomere lengths and telomere dynamics can correlate with lifespan, behaviour and individual quality. Such relationships have spurred interest in understanding variation in telomere lengths and their dynamics within and between populations. Many studies have identified how environmental processes can influence telomere dynamics, but the role of genetic variation is much less well characterized. To provide a novel perspective on how telomeric variation relates to genetic variability, we longitudinally sampled individuals across a narrow hybrid zone (n = 127 samples), wherein two Manacus species characterized by contrasting genome-wide heterozygosity interbreed. We measured individual (n = 66) and population (n = 3) differences in genome-wide heterozygosity and, among hybrids, amount of genetic admixture using RADseq-generated SNPs. We tested for population differences in telomere lengths and telomere dynamics. We then examined how telomere lengths and telomere dynamics covaried with genome-wide heterozygosity within populations. Hybrid individuals exhibited longer telomeres, on average, than individuals sampled in the adjacent parental populations. No population differences in telomere dynamics were observed. Within the parental population characterized by relatively low heterozygosity, higher genome-wide heterozygosity was associated with shorter telomeres and higher rates of telomere shortening-a pattern that was less apparent in the other populations. All of these relationships were independent of sex, despite the contrasting life histories of male and female manakins. Our study highlights how population comparisons can reveal interrelationships between genetic variation and telomeres, and how naturally occurring hybridization and genome-wide heterozygosity can relate to telomere lengths and telomere dynamics.
Collapse
Affiliation(s)
- Ben J Vernasco
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Kira M Long
- Program in Ecology, Evolution and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael J Braun
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biology and Biology Graduate Program, University of Maryland, College Park, Maryland, USA
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
32
|
Panelli DM, Mayo JA, Wong RJ, Becker M, Feyaerts D, Marić I, Wu E, Gotlib IH, Gaudillière B, Aghaeepour N, Druzin ML, Stevenson DK, Shaw GM, Bianco K. Mode of delivery predicts postpartum maternal leukocyte telomere length. Eur J Obstet Gynecol Reprod Biol 2024; 300:224-229. [PMID: 39032311 PMCID: PMC11347108 DOI: 10.1016/j.ejogrb.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Recent studies have suggested that pregnancy accelerates biologic aging, yet little is known about how biomarkers of aging are affected by events during the peripartum period. Given that immune shifts are known to occur following surgery, we explored the relation between mode of delivery and postpartum maternal leukocyte telomere length (LTL), a marker of biologic aging. STUDY DESIGN Postpartum maternal blood samples were obtained from a prospective cohort of term, singleton livebirths without hypertensive disorders or peripartum infections between 2012 and 2018. The primary outcome was postpartum LTLs from one blood sample drawn between postpartum week 1 and up to 6 months postpartum, measured from thawed frozen peripheral blood mononuclear cells using quantitative PCR in basepairs (bp). Multivariable linear regression models compared LTLs between vaginal versus cesarean births, adjusting for age, body mass index, and nulliparity as potential confounders. Analyses were conducted in two mutually exclusive groups: those with LTL measured postpartum week 1 and those measured up to 6 months postpartum. Secondarily, we compared multiomics by mode of delivery using machine-learning methods to evaluate whether other biologic changes occurred following cesarean. These included transcriptomics, metabolomics, microbiomics, immunomics, and proteomics (serum and plasma). RESULTS Of 67 included people, 50 (74.6 %) had vaginal and 17 (25.4 %) had cesarean births. LTLs were significantly shorter after cesarean in postpartum week 1 (5755.2 bp cesarean versus 6267.8 bp vaginal, p = 0.01) as well as in the later draws (5586.6 versus 5945.6 bp, p = 0.04). After adjusting for confounders, these differences persisted in both week 1 (adjusted beta -496.1, 95 % confidence interval [CI] -891.1, -101.1, p = 0.01) and beyond (adjusted beta -396.8; 95 % CI -727.2, -66.4. p = 0.02). Among the 15 participants who also had complete postpartum multiomics data available, there were predictive signatures of vaginal versus cesarean births in transcriptomics (cell-free [cf]RNA), metabolomics, microbiomics, and proteomics that did not persist after false discovery correction. CONCLUSION Maternal LTLs in postpartum week 1 were nearly 500 bp shorter following cesarean. This difference persisted several weeks postpartum, even though other markers of inflammation had normalized. Mode of delivery should be considered in any analyses of postpartum LTLs and further investigation into this phenomenon is warranted.
Collapse
Affiliation(s)
- Danielle M Panelli
- Division of Maternal-Fetal Medicine and Obstetrics, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA.
| | - Jonathan A Mayo
- Division of Maternal-Fetal Medicine and Obstetrics, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Computer Science and Electrical Engineering, University of Rostock, Germany; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ivana Marić
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Erica Wu
- Division of Maternal-Fetal Medicine and Obstetrics, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Maurice L Druzin
- Division of Maternal-Fetal Medicine and Obstetrics, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine Bianco
- Division of Maternal-Fetal Medicine and Obstetrics, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| |
Collapse
|
33
|
Zhuang X, Chen P, Yang R, Man X, Wang R, Shi Y. Mendelian randomization analysis reveals the combined effects of epigenetics and telomere biology in hematologic cancers. Clin Epigenetics 2024; 16:120. [PMID: 39192284 DOI: 10.1186/s13148-024-01728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Telomere shortening and epigenetic modifications are key factors in aging and hematologic diseases. This study investigates the relationship of telomere length and epigenetic age acceleration (EAA) with hematologic cancers, blood cells, and biochemical markers through the epigenetic clocks. METHODS This study primarily utilizes genome-wide association studies of populations of European descent as instrumental variables, exploring the causal relationships between exposures and outcomes through a bidirectional two-sample Mendelian randomization (MR) approach. MR techniques include inverse variance weighted (IVW), MR Egger, and weighted median modes. Heterogeneity and pleiotropy in MR are assessed using Cochran's Q test and the MR Egger intercept, with the robustness of the conclusions further validated by multivariable MR (MVMR). RESULTS Our research shows that longer telomere lengths significantly increase the risk of multiple myeloma, leukemia, and lymphoma (OR > 1, P < 0.05) and establish a causal relationship between telomere length and red blood cell indices such as RBC (OR = 1.121, PIVW = 0.034), MCH (OR = 0.801, PIVW = 2.046e-06), MCV (OR = 0.801, PIVW = 0.001), and MCHC (OR = 0.813, PIVW = 0.002). Additionally, MVMR analysis revealed an association between DNA methylation PhenoAge acceleration and alkaline phosphatase (OR = 1.026, PIVW = 0.007). CONCLUSION The study clarifies the relationships between telomere length, EAA, and hematological malignancies, further emphasizing the prognostic significance of telomere length and EAA. This deepens our understanding of the pathogenesis of hematological diseases, which can inform risk assessment and therapeutic strategies.
Collapse
Affiliation(s)
- Xin Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rong Yang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Man
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruochen Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Qinghai Province Women and Children's Hospital, Wenzhou, China.
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Wenzhou, China.
| |
Collapse
|
34
|
Virseda-Berdices A, Behar-Lagares R, Martínez-González O, Blancas R, Bueno-Bustos S, Brochado-Kith O, Manteiga E, Mallol Poyato MJ, López Matamala B, Martín Parra C, Resino S, Jiménez-Sousa MÁ, Fernández-Rodríguez A. Longer ICU stay and invasive mechanical ventilation accelerate telomere shortening in COVID-19 patients 1 year after recovery. Crit Care 2024; 28:267. [PMID: 39113075 PMCID: PMC11308640 DOI: 10.1186/s13054-024-05051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes virus-induced-senescence. There is an association between shorter telomere length (TL) in coronavirus disease 2019 (COVID-19) patients and hospitalization, severity, or even death. However, it remains unknown whether virus-induced-senescence is reversible. We aim to evaluate the dynamics of TL in COVID-19 patients 1 year after recovery from intensive care units (ICU). Longitudinal study enrolling 49 patients admitted to ICU due to COVID-19 (August 2020 to April 2021). Relative telomere length (RTL) quantification was carried out in whole blood by monochromatic multiplex real-time quantitative PCR (MMqPCR) assay at hospitalization (baseline) and 1 year after discharge (1-year visit). The association between RTL and ICU length of stay (LOS), invasive mechanical ventilation (IMV), prone position, and pulmonary fibrosis development at 1-year visit was evaluated. The median age was 60 years, 71.4% were males, median ICU-LOS was 12 days, 73.5% required IMV, and 38.8% required a prone position. Patients with longer ICU-LOS or who required IMV showed greater RTL shortening during follow-up. Patients who required pronation had a greater RTL shortening during follow-up. IMV patients who developed pulmonary fibrosis showed greater RTL reduction and shorter RTL at the 1-year visit. Patients with longer ICU-LOS and those who required IMV had a shorter RTL in peripheral blood, as observed 1 year after hospital discharge. Additionally, patients who required IMV and developed pulmonary fibrosis had greater telomere shortening, showing shorter telomeres at the 1-year visit. These patients may be more prone to develop cellular senescence and lung-related complications; therefore, closer monitoring may be needed.
Collapse
Affiliation(s)
- Ana Virseda-Berdices
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Behar-Lagares
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Oscar Martínez-González
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain.
- Department of Medicine, Alfonso X el Sabio University, Villanueva de la Cañada, Madrid, Spain.
| | - Rafael Blancas
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
- Department of Medicine, Alfonso X el Sabio University, Villanueva de la Cañada, Madrid, Spain
| | - Soraya Bueno-Bustos
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Oscar Brochado-Kith
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Manteiga
- Critical Care Department, Hospital Universitario Infanta Cristina, Parla, Madrid, Spain
| | | | | | | | - Salvador Resino
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Á Jiménez-Sousa
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Majadahonda, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
35
|
Coukos A, Saglietti C, Sempoux C, Haubitz M, Greuter T, Mittaz-Crettol L, Maurer F, Mdawar-Bailly E, Moradpour D, Alberio L, Good JM, Baerlocher GM, Fraga M. High prevalence of short telomeres in idiopathic porto-sinusoidal vascular disorder. Hepatol Commun 2024; 8:e0500. [PMID: 39037376 PMCID: PMC11265777 DOI: 10.1097/hc9.0000000000000500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/01/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Telomeres prevent damage to coding DNA as end-nucleotides are lost during mitosis. Mutations in telomere maintenance genes cause excessive telomere shortening, a condition known as short telomere syndrome (STS). One hepatic manifestation documented in STS is porto-sinusoidal vascular disorder (PSVD). METHODS As the etiology of many cases of PSVD remains unknown, this study explored the extent to which short telomeres are present in patients with idiopathic PSVD. RESULTS This monocentric cross-sectional study included patients with histologically defined idiopathic PSVD. Telomere length in 6 peripheral blood leukocyte subpopulations was assessed using fluorescent in situ hybridization and flow cytometry. Variants of telomere-related genes were identified using high-throughput exome sequencing. In total, 22 patients were included, of whom 16 (73%) had short (9/22) or very short (7/22) telomeres according to age-adjusted reference ranges. Fourteen patients (64%) had clinically significant portal hypertension. Shorter telomeres were more frequent in males (p = 0.005) and patients with concomitant interstitial lung disease (p < 0.001), chronic kidney disease (p < 0.001), and erythrocyte macrocytosis (p = 0.007). Portal hypertension (p = 0.021), low serum albumin level (p < 0.001), low platelet count (p = 0.007), and hyperbilirubinemia (p = 0.053) were also associated with shorter telomeres. Variants in known STS-related genes were identified in 4 patients with VSTel and 1 with STel. CONCLUSIONS Short and very short telomeres were highly prevalent in patients with idiopathic PSVD, with 31% presenting with variants in telomere-related genes. Telomere biology may play an important role in vascular liver disease development. Clinicians should consider measuring telomeres in any patient presenting with PSVD.
Collapse
Affiliation(s)
- Alexander Coukos
- Divisions of Gastroenterology and Hepatology, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chiara Saglietti
- Institute of Pathology, Department of Laboratory Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christine Sempoux
- Institute of Pathology, Department of Laboratory Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Monika Haubitz
- Department of Biomedical Research, Laboratory for Hematopoiesis and Molecular Genetics, University of Bern, Bern, Switzerland
| | - Thomas Greuter
- Divisions of Gastroenterology and Hepatology, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Division of Gastroenterology and Hepatology, Department of Medicine, GZO-Zurich Regional Health Center, Wetzikon, Switzerland
| | - Laureane Mittaz-Crettol
- Genetic Medicine, Department of Laboratory Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabienne Maurer
- Genetic Medicine, Department of Laboratory Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Elise Mdawar-Bailly
- Divisions of Gastroenterology and Hepatology, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Darius Moradpour
- Divisions of Gastroenterology and Hepatology, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lorenzo Alberio
- Department of Oncology, Hematology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Good
- Genetic Medicine, Department of Laboratory Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gabriela M. Baerlocher
- Department of Biomedical Research, Laboratory for Hematopoiesis and Molecular Genetics, University of Bern, Bern, Switzerland
| | - Montserrat Fraga
- Divisions of Gastroenterology and Hepatology, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Marina Arroyo M, Ramírez Gallegos I, López-González ÁA, Vicente-Herrero MT, Vallejos D, Sastre-Alzamora T, Ramírez Manent JI. Usefulness of the ECORE-BF Scale to Determine Atherogenic Risk in 386,924 Spanish Workers. Nutrients 2024; 16:2434. [PMID: 39125315 PMCID: PMC11314428 DOI: 10.3390/nu16152434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Cardiovascular diseases are the leading cause of death worldwide. Obesity and atherosclerosis are considered risk factors for this pathology. There are multiple methods to evaluate obesity, in the same way as there are different formulas to determine atherogenic risk. Since both pathologies are closely related, the objective of our work was to evaluate whether the ECORE-BF scale is capable of predicting atherogenic risk. METHODS Observational, descriptive, and cross-sectional study in which 386,924 workers from several autonomous communities in Spain participated. The association between the ECORE-BF scale and five atherogenic risk indices was evaluated. The relationship between variables was assessed using the chi-square test and Student's t test in independent samples. Multivariate analysis was performed with the multinomial logistic regression test, calculating the odds ratio and 95% confidence intervals, with the Hosmer-Lemeshow goodness-of-fit test. ROC curves established the cut-off points for moderate and high vascular age and determined the Youden index. RESULTS The mean values of the ECORE-BF scale were higher in individuals with atherogenic dyslipidemia and the lipid triad, as well as in those with elevated values of the three atherogenic indices studied, with p <0.001 in all cases. As atherogenic risk increased across the five evaluated scales, the prevalence of obesity also significantly increased, with p <0.001 in all cases. In the ROC curve analysis, the AUCs for atherogenic dyslipidemia and the lipid triad were above 0.75, indicating a good association between these scales and the ECORE-BF. Although the Youden indices were not exceedingly high, they were around 0.5. CONCLUSIONS There is a good association between atherogenic risk scales, atherogenic dyslipidemia, and lipid triad, and the ECORE-BF scale. The ECORE-BF scale can be a useful and quick tool to evaluate atherogenic risk in primary care and occupational medicine consultations without the need for blood tests.
Collapse
Affiliation(s)
- Marta Marina Arroyo
- Research ADEMA SALUD Group, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain; (M.M.A.); (I.R.G.); (M.T.V.-H.); (D.V.); (T.S.-A.); (J.I.R.M.)
| | - Ignacio Ramírez Gallegos
- Research ADEMA SALUD Group, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain; (M.M.A.); (I.R.G.); (M.T.V.-H.); (D.V.); (T.S.-A.); (J.I.R.M.)
| | - Ángel Arturo López-González
- Research ADEMA SALUD Group, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain; (M.M.A.); (I.R.G.); (M.T.V.-H.); (D.V.); (T.S.-A.); (J.I.R.M.)
- Faculty of Dentistry, ADEMA University School, 07010 Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària de les Illes Balears (IDISBA), Health Research Institute of the Balearic Islands, 07010 Palma, Balearic Islands, Spain
- Health Service of the Balearic Islands, 07010 Palma, Balearic Islands, Spain
| | - María Teófila Vicente-Herrero
- Research ADEMA SALUD Group, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain; (M.M.A.); (I.R.G.); (M.T.V.-H.); (D.V.); (T.S.-A.); (J.I.R.M.)
| | - Daniela Vallejos
- Research ADEMA SALUD Group, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain; (M.M.A.); (I.R.G.); (M.T.V.-H.); (D.V.); (T.S.-A.); (J.I.R.M.)
| | - Tomás Sastre-Alzamora
- Research ADEMA SALUD Group, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain; (M.M.A.); (I.R.G.); (M.T.V.-H.); (D.V.); (T.S.-A.); (J.I.R.M.)
| | - José Ignacio Ramírez Manent
- Research ADEMA SALUD Group, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain; (M.M.A.); (I.R.G.); (M.T.V.-H.); (D.V.); (T.S.-A.); (J.I.R.M.)
- Institut d’Investigació Sanitària de les Illes Balears (IDISBA), Health Research Institute of the Balearic Islands, 07010 Palma, Balearic Islands, Spain
- Health Service of the Balearic Islands, 07010 Palma, Balearic Islands, Spain
- Faculty of Medicine, University of the Balearic Islands, 07010 Palma, Balearic Islands, Spain
| |
Collapse
|
37
|
Ibraheem Shelash Al-Hawary S, Ali Alzahrani A, Ghaleb Maabreh H, Abed Jawad M, Alsaadi SB, Kareem Jabber N, Alawadi A, Alsalamy A, Alizadeh F. The association of metabolic syndrome with telomere length as a marker of cellular aging: a systematic review and meta-analysis. Front Genet 2024; 15:1390198. [PMID: 39045323 PMCID: PMC11263212 DOI: 10.3389/fgene.2024.1390198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024] Open
Abstract
Background It has been suggested that metabolic syndrome (MetS) accelerates the aging process, potentially contributing to the development of age-related complications. Available studies examining the relation of MetS to telomere length (TL), a putative biological marker of aging, have yielded inconclusive findings. This meta-analysis was performed to investigate the association between MetS and TL. Methods A comprehensive systematic search was conducted in PubMed and Scopus databases to identify relevant literature published up to February 2024. Standard mean difference (SMD) and standardized beta coefficient (β) with their 95% confidence intervals (CI) were used as effect sizes to measure the associations using the random effects model. Results A total of nine studies, comprising a total sample size of 8,606 participants, were eligible for the meta-analysis. No significant difference in mean TL was found between patients with and without MetS (SMD = -0.03, 95%CI = -0.17 to 0.10), with a significant heterogeneity across the studies (I 2 = 89.7.0%, p ≤ 0.001). In contrast, it was revealed that MetS is negatively related to TL (β = -0.08, 95%CI = -0.15 to -0.004). In the subgroup analysis, this finding was supported by the International Diabetes Federation (IDF) definition of MetS. Conclusion This meta-analysis highlighted that MetS may be linked to a shorter TL. Additional studies are required to confirm this finding.
Collapse
Affiliation(s)
| | | | - Hatem Ghaleb Maabreh
- Department of Dermatovenerology, Foreign Languages, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Salim B. Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, Iraq
| | - Noura Kareem Jabber
- College of Health and Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al‐Sadiq University, Samawah, Iraq
| | - Farideh Alizadeh
- Department of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Wong JYY, Blechter B, Liu Z, Shi J, Roger VL. Genetic susceptibility to chronic diseases leads to heart failure among Europeans: the influence of leukocyte telomere length. Hum Mol Genet 2024; 33:1262-1272. [PMID: 38676403 PMCID: PMC11227624 DOI: 10.1093/hmg/ddae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Genetic susceptibility to various chronic diseases has been shown to influence heart failure (HF) risk. However, the underlying biological pathways, particularly the role of leukocyte telomere length (LTL), are largely unknown. We investigated the impact of genetic susceptibility to chronic diseases and various traits on HF risk, and whether LTL mediates or modifies the pathways. METHODS We conducted prospective cohort analyses on 404 883 European participants from the UK Biobank, including 9989 incident HF cases. Multivariable Cox regression was used to estimate associations between HF risk and 24 polygenic risk scores (PRSs) for various diseases or traits previously generated using a Bayesian approach. We assessed multiplicative interactions between the PRSs and LTL previously measured in the UK Biobank using quantitative PCR. Causal mediation analyses were conducted to estimate the proportion of the total effect of PRSs acting indirectly through LTL, an integrative marker of biological aging. RESULTS We identified 9 PRSs associated with HF risk, including those for various cardiovascular diseases or traits, rheumatoid arthritis (P = 1.3E-04), and asthma (P = 1.8E-08). Additionally, longer LTL was strongly associated with decreased HF risk (P-trend = 1.7E-08). Notably, LTL strengthened the asthma-HF relationship significantly (P-interaction = 2.8E-03). However, LTL mediated only 1.13% (P < 0.001) of the total effect of the asthma PRS on HF risk. CONCLUSIONS Our findings shed light onto the shared genetic susceptibility between HF risk, asthma, rheumatoid arthritis, and other traits. Longer LTL strengthened the genetic effect of asthma in the pathway to HF. These results support consideration of LTL and PRSs in HF risk prediction.
Collapse
Affiliation(s)
- Jason Y Y Wong
- Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, United States
| | - Zhonghua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY 10032, United States
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, United States
| | - Véronique L Roger
- Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, 10 Center Drive, Bethesda, MD 20892, United States
| |
Collapse
|
39
|
Vaghefi E, An S, Corbett R, Squirrell D. Association of retinal image-based, deep learning cardiac BioAge with telomere length and cardiovascular biomarkers. Optom Vis Sci 2024; 101:464-469. [PMID: 38935034 PMCID: PMC11462873 DOI: 10.1097/opx.0000000000002158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
SIGNIFICANCE Our retinal image-based deep learning (DL) cardiac biological age (BioAge) model could facilitate fast, accurate, noninvasive screening for cardiovascular disease (CVD) in novel community settings and thus improve outcome with those with limited access to health care services. PURPOSE This study aimed to determine whether the results issued by our DL cardiac BioAge model are consistent with the known trends of CVD risk and the biomarker leukocyte telomere length (LTL), in a cohort of individuals from the UK Biobank. METHODS A cross-sectional cohort study was conducted using those individuals in the UK Biobank who had LTL data. These individuals were divided by sex, ranked by LTL, and then grouped into deciles. The retinal images were then presented to the DL model, and individual's cardiac BioAge was determined. Individuals within each LTL decile were then ranked by cardiac BioAge, and the mean of the CVD risk biomarkers in the top and bottom quartiles was compared. The relationship between an individual's cardiac BioAge, the CVD biomarkers, and LTL was determined using traditional correlation statistics. RESULTS The DL cardiac BioAge model was able to accurately stratify individuals by the traditional CVD risk biomarkers, and for both males and females, those issued with a cardiac BioAge in the top quartile of their chronological peer group had a significantly higher mean systolic blood pressure, hemoglobin A 1c , and 10-year Pooled Cohort Equation CVD risk scores compared with those individuals in the bottom quartile (p<0.001). Cardiac BioAge was associated with LTL shortening for both males and females (males: -0.22, r2 = 0.04; females: -0.18, r2 = 0.03). CONCLUSIONS In this cross-sectional cohort study, increasing CVD risk whether assessed by traditional biomarkers, CVD risk scoring, or our DL cardiac BioAge, CVD risk model, was inversely related to LTL. At a population level, our data support the growing body of evidence that suggests LTL shortening is a surrogate marker for increasing CVD risk and that this risk can be captured by our novel DL cardiac BioAge model.
Collapse
Affiliation(s)
- Ehsan Vaghefi
- Department of Optometry and Ophthalmology, University of Auckland, Auckland, New Zealand
- Department of Ophthalmology, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | - Songyang An
- Department of Optometry and Ophthalmology, University of Auckland, Auckland, New Zealand
- Toku Eyes, Auckland, New Zealand
| | | | - David Squirrell
- Toku Eyes, Auckland, New Zealand
- Department of Ophthalmology, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| |
Collapse
|
40
|
Thasneem A, Sif S, Rahman MM, Crovella S. Can telomeric changes orchestrate the development of autoinflammatory skin diseases? Ital J Dermatol Venerol 2024; 159:318-328. [PMID: 38502535 DOI: 10.23736/s2784-8671.23.07689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Telomeres, the safeguarding caps at the tips of chromosomes, are pivotal in the aging process of cells and have been linked to skin ailments and inflammatory conditions. Telomeres undergo a gradual reduction in length and factors such as oxidative stress hasten this diminishing process. Skin diseases including inflammatory conditions can be correlated with the shortening of telomeres and the persistent activation of DNA damage response in skin tissues. Telomere dysfunction could disrupt the balance of the skin, impairs wound healing, and may contribute to abnormal cytokine production. Skin aging and processes related to telomeres may function as one of the triggers for skin diseases. The presence of proinflammatory cytokines and dysfunctional telomeres in conditions such as Dyskeratosis Congenita implies a possible connection between the shortening of telomeres and the onset of chronic inflammatory skin disorders. In autoinflammatory skin diseases, chronic inflammation hinders wound healing thus aggravating the progression of the disease. The NF-ĸB pathway might contribute to the initiation or progression of chronic disorders by influencing mechanisms associated with telomere biology. The intricate connections between telomeres, telomerase, telomere-associated proteins, and skin diseases are still a complex puzzle to be solved. Here, we provide an overview of the impact of telomeres on both health and disease with a specific emphasis on their role in skin, inflammation and autoinflammatory skin disorders.
Collapse
Affiliation(s)
- Ayshath Thasneem
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Said Sif
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar -
| |
Collapse
|
41
|
Mori JO, Platz EA, Lu J, Brame A, Han M, Joshu CE, De Marzo AM, Meeker AK, Heaphy CM. Longer prostate stromal cell telomere length is associated with increased risk of death from other cancers. Front Med (Lausanne) 2024; 11:1390769. [PMID: 38895181 PMCID: PMC11184561 DOI: 10.3389/fmed.2024.1390769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Background Telomeres are located at chromosomal termini and function to maintain genomic integrity. Telomere dysfunction is a well-recognized contributor to aging and age-related diseases, such as prostate cancer. Since telomere length is highly heritable, we postulate that stromal cell telomere length in the tissue of a particular solid organ may generally reflect constitutive stromal cell telomere length in other solid organs throughout the body. Even with telomere loss occurring with each round of cell replication, in general, telomere length in prostate stromal cells in mid-life would still be correlated with the telomere length in stromal cells in other organs. Thus, we hypothesize that prostate stromal cell telomere length and/or telomere length variability is a potential indicator of the likelihood of developing future solid cancers, beyond prostate cancer, and especially lethal cancer. Methods To explore this hypothesis, we conducted a cohort study analysis of 1,175 men who were surgically treated for prostate cancer and were followed for death, including from causes other than their prostate cancer. Results In this cohort study with a median follow-up of 19 years, we observed that longer prostate stromal cell telomere length measured in tissue microarray spots containing prostate cancer was associated with an increased risk of death from other solid cancers. Variability in telomere length among these prostate stromal cells was possibly positively associated with risk of death from other solid cancers. Conclusion Studying the link between stromal cell telomere length and cancer mortality may be important for guiding the development of cancer interception and prevention strategies.
Collapse
Affiliation(s)
- Joakin O. Mori
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Alexandria Brame
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Misop Han
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Corinne E. Joshu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Angelo M. De Marzo
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alan K. Meeker
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christopher M. Heaphy
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, United States
- Department of Pathology and Laboratory, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
42
|
Huang Y, Peng H, Wu Y, Deng S, Ge F, Ma W, Zhou X, Songyang Z. Rosa roxburghii Fruit Extracts Upregulate Telomerase Activity and Ameliorate Cell Replicative Senescence. Foods 2024; 13:1673. [PMID: 38890904 PMCID: PMC11171777 DOI: 10.3390/foods13111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Anti-aging functional foods benefit the elderly. Telomeres are chromosomal ends that maintain genome stability extended by telomerase catalytic subunit TERT. Due to the end-replication problem, telomeres shorten after each cell cycle without telomerase in most human cells, and eventually the cell enters the senescence stage. Natural products can attenuate the aging process by increasing telomerase activity, such as TA-65. However, TA-65 is expensive. Other Chinese natural products may achieve comparable effects. Here, we found that Rosa roxburghii fruit extracts effectively increase TERT expression and telomerase activity in cultured human mesenchymal stem cells. Both R. roxburghii fruit extracts obtained by freeze-drying and spray-drying increased the activity of telomerase. R. roxburghii fruit extracts were able to reduce reactive oxygen species levels, enhance superoxide dismutase activity, and reduce DNA damage caused by oxidative stress or radiation. R. roxburghii fruit extracts promoted cell proliferation, improved senescent cell morphology, delayed replicative cellular senescence, attenuated cell cycle suppressors, and alleviated the senescence-associated secretory phenotype. Transcriptome and metabolic profiling revealed that R. roxburghii fruit extracts promote DNA replication and telomere maintenance pathways and decrease triglyceride levels. Overall, we provide a theoretical basis for the application of R. roxburghii fruit as an anti-aging product.
Collapse
Affiliation(s)
- Yan Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (H.P.); (Y.W.); (S.D.); (W.M.); (Z.S.)
| | - Haoyue Peng
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (H.P.); (Y.W.); (S.D.); (W.M.); (Z.S.)
| | - Yifan Wu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (H.P.); (Y.W.); (S.D.); (W.M.); (Z.S.)
| | - Shengcheng Deng
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (H.P.); (Y.W.); (S.D.); (W.M.); (Z.S.)
| | - Fahuan Ge
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (H.P.); (Y.W.); (S.D.); (W.M.); (Z.S.)
| | - Xue Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (H.P.); (Y.W.); (S.D.); (W.M.); (Z.S.)
| |
Collapse
|
43
|
Cui F, Tang L, Li D, Ma Y, Wang J, Xie J, Su B, Tian Y, Zheng X. Early-life exposure to tobacco, genetic susceptibility, and accelerated biological aging in adulthood. SCIENCE ADVANCES 2024; 10:eadl3747. [PMID: 38701212 PMCID: PMC11068008 DOI: 10.1126/sciadv.adl3747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Early-life tobacco exposure serves as a non-negligible risk factor for aging-related diseases. To understand the underlying mechanisms, we explored the associations of early-life tobacco exposure with accelerated biological aging and further assessed the joint effects of tobacco exposure and genetic susceptibility. Compared with those without in utero exposure, participants with in utero tobacco exposure had an increase in Klemera-Doubal biological age (KDM-BA) and PhenoAge acceleration of 0.26 and 0.49 years, respectively, but a decrease in telomere length of 5.34% among 276,259 participants. We also found significant dose-response associations between the age of smoking initiation and accelerated biological aging. Furthermore, the joint effects revealed that high-polygenic risk score participants with in utero exposure and smoking initiation in childhood had the highest accelerated biological aging. There were interactions between early-life tobacco exposure and age, sex, deprivation, and diet on KDM-BA and PhenoAge acceleration. These findings highlight the importance of reducing early-life tobacco exposure to improve healthy aging.
Collapse
Affiliation(s)
- Feipeng Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Linxi Tang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Dankang Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Yudiyang Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Jianing Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Junqing Xie
- Center for Statistics in Medicine, NDORMS, University of Oxford, The Botnar Research Centre, Oxford, UK
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Beijige-3, Dongcheng District, Beijing 100730, PR China
| | - Yaohua Tian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Xiaoying Zheng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Beijige-3, Dongcheng District, Beijing 100730, PR China
| |
Collapse
|
44
|
Bian L, Ma Z, Fu X, Ji C, Wang T, Yan C, Dai J, Ma H, Hu Z, Shen H, Wang L, Zhu M, Jin G. Associations of combined phenotypic aging and genetic risk with incident cancer: A prospective cohort study. eLife 2024; 13:RP91101. [PMID: 38687190 PMCID: PMC11060710 DOI: 10.7554/elife.91101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Background Age is the most important risk factor for cancer, but aging rates are heterogeneous across individuals. We explored a new measure of aging-Phenotypic Age (PhenoAge)-in the risk prediction of site-specific and overall cancer. Methods Using Cox regression models, we examined the association of Phenotypic Age Acceleration (PhenoAgeAccel) with cancer incidence by genetic risk group among 374,463 participants from the UK Biobank. We generated PhenoAge using chronological age and nine biomarkers, PhenoAgeAccel after subtracting the effect of chronological age by regression residual, and an incidence-weighted overall cancer polygenic risk score (CPRS) based on 20 cancer site-specific polygenic risk scores (PRSs). Results Compared with biologically younger participants, those older had a significantly higher risk of overall cancer, with hazard ratios (HRs) of 1.22 (95% confidence interval, 1.18-1.27) in men, and 1.26 (1.22-1.31) in women, respectively. A joint effect of genetic risk and PhenoAgeAccel was observed on overall cancer risk, with HRs of 2.29 (2.10-2.51) for men and 1.94 (1.78-2.11) for women with high genetic risk and older PhenoAge compared with those with low genetic risk and younger PhenoAge. PhenoAgeAccel was negatively associated with the number of healthy lifestyle factors (Beta = -1.01 in men, p<0.001; Beta = -0.98 in women, p<0.001). Conclusions Within and across genetic risk groups, older PhenoAge was consistently related to an increased risk of incident cancer with adjustment for chronological age and the aging process could be retarded by adherence to a healthy lifestyle. Funding This work was supported by the National Natural Science Foundation of China (82230110, 82125033, 82388102 to GJ; 82273714 to MZ); and the Excellent Youth Foundation of Jiangsu Province (BK20220100 to MZ).
Collapse
Affiliation(s)
- Lijun Bian
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health Nanjing Medical UniversityNanjingChina
| | - Zhimin Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
| | - Xiangjin Fu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
| | - Chen Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health Nanjing Medical UniversityNanjingChina
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health Nanjing Medical UniversityNanjingChina
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health Nanjing Medical UniversityNanjingChina
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health Nanjing Medical UniversityNanjingChina
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health Nanjing Medical UniversityNanjingChina
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical SciencesBeijingChina
| | - Lu Wang
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health Nanjing Medical UniversityNanjingChina
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health Nanjing Medical UniversityNanjingChina
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
| |
Collapse
|
45
|
Li C, Yang J, Chu L, Tian J, Xiao J, Huang Y, Wang Q, Guo B, Huang L, Hu Y, Luo Y. The function of Bazhen decoction in rescuing progeroid cell senescence via facilitating G-quadruplex resolving and telomere elongation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117694. [PMID: 38163559 DOI: 10.1016/j.jep.2023.117694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Bazhen decoction is one of the most extensively used Traditional Chinese medicine (TCM) prescriptions for treatment of aging related diseases. However, due to the complexity of the components, the pharmacological mechanism of Bazhen decoction is still limited. AIM OF THE STUDY In this study, with the aim of helping the clinical precision medicine of TCM, we try out a systematic analysis for dissecting the molecular mechanism of complicated TCM prescription: Bazhen decoction. We identify the pharmacological mechanism of Bazhen decoction in telomere elongation as revealed by systematic analysis. MATERIALS AND METHODS By RNA sequencing and transcriptome analysis of Bazhen decoction treated wild type cells, we reveal the transcriptome profile induced by Bazhen decoction. We utilized the cells derived from Werner syndrome (WS) mice, which is known to be dysfunctional in telomere elongation due to the deficiency of DNA helicase Wrn. By Western blot, qPCR, Immunofluorescence, flow cytometry, telomere FISH, and SA-β-Gal staining, we verify the transcriptome data and confirm the pharmacological function of Bazhen decoction and its drug containing serum in telomere elongation and reversing progeroid cell senescence. RESULTS We reveal that Bazhen decoction may systematically regulate multiple anti-aging pathways, including stem cell regulation, protein homeostasis, cardiovascular function, neuronal function, anti-inflammation, anti-DNA damage induced stress, DNA helicase activity and telomere lengthening. We find that Bazhen decoction and its drug containing serum could up-regulate multiple DNA helicases and telomere regulating proteins. The increased DNA helicases promote the resolving of G-quadruplex (G4) structures, and facilitate DNA replication and telomere elongation. These improvements also endow the cellular resistance to DNA damages induced by replication stress, and rescue the WS caused cellular senescence. CONCLUSIONS Together these data suggest that Bazhen decoction up-regulate the expression of DNA helicases, thus facilitate G4 resolving and telomere maintenance, which rescue the progeroid cellular senescence and contribute to its anti-aging properties. Our data reveal a new molecular mechanism of Bazhen decoction in anti-aging related diseases via elongating telomere, this may shed light in the application of Bazhen decoction in multiple degenerative diseases caused by telomere erosion.
Collapse
Affiliation(s)
- Chuanbiao Li
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guizhou, China
| | - Jun Yang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guizhou, China
| | - Lili Chu
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guizhou, China
| | - Jie Tian
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guizhou, China
| | - Jinchao Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guizhou, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guizhou, China
| | - Qianqian Wang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guizhou, China
| | - Bing Guo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guizhou, China
| | - Liming Huang
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Ying Hu
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guizhou, China.
| | - Ying Luo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guizhou, China.
| |
Collapse
|
46
|
Liu D, Aziz NA, Imtiaz MA, Pehlivan G, Breteler MMB. Associations of measured and genetically predicted leukocyte telomere length with vascular phenotypes: a population-based study. GeroScience 2024; 46:1947-1970. [PMID: 37782440 PMCID: PMC10828293 DOI: 10.1007/s11357-023-00914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Shorter leukocyte telomere length (LTL) is associated with cardiovascular dysfunction. Whether this association differs between measured and genetically predicted LTL is still unclear. Moreover, the molecular processes underlying the association remain largely unknown. We used baseline data of the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany [56.2% women, age: 55.5 ± 14.0 years (range 30 - 95 years)]. We calculated genetically predicted LTL in 4180 participants and measured LTL in a subset of 1828 participants with qPCR. Using multivariable regression, we examined the association of measured and genetically predicted LTL, and the difference between measured and genetically predicted LTL (ΔLTL), with four vascular functional domains and the overall vascular health. Moreover, we performed epigenome-wide association studies of three LTL measures. Longer measured LTL was associated with better microvascular and cardiac function. Longer predicted LTL was associated with better cardiac function. Larger ΔLTL was associated with better microvascular and cardiac function and overall vascular health, independent of genetically predicted LTL. Several CpGs were associated (p < 1e-05) with measured LTL (n = 5), genetically predicted LTL (n = 8), and ΔLTL (n = 27). Genes whose methylation status was associated with ΔLTL were enriched in vascular endothelial signaling pathways and have been linked to environmental exposures, cardiovascular diseases, and mortality. Our findings suggest that non-genetic causes of LTL contribute to microvascular and cardiac function and overall vascular health, through an effect on the vascular endothelial signaling pathway. Interventions that counteract LTL may thus improve vascular function.
Collapse
Affiliation(s)
- Dan Liu
- German Center for Neurodegenerative Diseases (DZNE), Population Health Sciences, Bonn, Germany
| | - N Ahmad Aziz
- German Center for Neurodegenerative Diseases (DZNE), Population Health Sciences, Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Mohammed Aslam Imtiaz
- German Center for Neurodegenerative Diseases (DZNE), Population Health Sciences, Bonn, Germany
| | - Gökhan Pehlivan
- German Center for Neurodegenerative Diseases (DZNE), Population Health Sciences, Bonn, Germany
| | - Monique M B Breteler
- German Center for Neurodegenerative Diseases (DZNE), Population Health Sciences, Bonn, Germany.
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
47
|
Ninni S, Dombrowicz D, de Winther M, Staels B, Montaigne D, Nattel S. Genetic Factors Altering Immune Responses in Atrial Fibrillation: JACC Review Topic of the Week. J Am Coll Cardiol 2024; 83:1163-1176. [PMID: 38508850 DOI: 10.1016/j.jacc.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 03/22/2024]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide and is associated with a range of adverse clinical outcomes. Accumulating evidence points to inflammatory processes resulting from innate immune responses as a cornerstone in AF pathogenesis. Genetic and epigenetic factors affecting leukocytes have been identified as key modulators of the inflammatory response. Inherited variants in genes encoding proteins involved in the innate immune response have been associated with increased risk for AF recurrence and stroke in AF patients. Furthermore, acquired somatic mutations associated with clonal hematopoiesis of indeterminate potential, leukocyte telomere shortening, and epigenetic age acceleration contribute to increased AF risk. In individuals carrying clonal hematopoiesis of indeterminate potential, myocardial monocyte-derived macrophage shift toward a proinflammatory phenotype may precipitate AF. Further studies are needed to better understand the role of genetic regulation of the native immune response in atrial arrhythmogenesis and its therapeutic potential as a target for personalized medicine.
Collapse
Affiliation(s)
- Sandro Ninni
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France; Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - David Dombrowicz
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Menno de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences: Atherosclerosis & Ischemic Syndromes; Amsterdam Infection and Immunity: Inflammatory diseases; Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - David Montaigne
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada; Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital Essen, Essen, Germany; Institut hospitalo-universitaire Liryc and Fondation Bordeaux Université, Bordeaux, France.
| |
Collapse
|
48
|
Martin NA, McLester-Davis LWY, Roy TR, Magruder MG, Hastings WJ, Drury SS. Monochrome Multiplex Quantitative PCR Telomere Length Measurement. J Vis Exp 2024:10.3791/66545. [PMID: 38587381 PMCID: PMC11080955 DOI: 10.3791/66545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
Telomeres are ribonucleoprotein structures at the end of all eukaryotic chromosomes that protect DNA from damage and preserve chromosome stability. Telomere length (TL) has been associated with various exposures, biological processes, and health outcomes. This article describes the monochrome multiplex quantitative polymerase chain reaction (MMqPCR) assay protocol routinely conducted in our laboratory for measuring relative mean TL from human DNA. There are several different PCR-based TL measurement methods, but the specific protocol for the MMqPCR method presented in this publication is repeatable, efficient, cost-effective, and suitable for population-based studies. This detailed protocol outlines all information necessary for investigators to establish this assay in their laboratory. In addition, this protocol provides specific steps to increase the reproducibility of TL measurement by this assay, defined by the intraclass correlation coefficient (ICC) across repeated measurements of the same sample. The ICC is a critical factor in evaluating expected power for a specific study population; as such, reporting cohort-specific ICCs for any TL assay is a necessary step to enhance the overall rigor of population-based studies of TL. Example results utilizing DNA samples extracted from peripheral blood mononuclear cells demonstrate the feasibility of generating highly repeatable TL data using this MMqPCR protocol.
Collapse
Affiliation(s)
| | - Lauren W Y McLester-Davis
- Native American Center for Health Professions, University of Wisconsin-Madison; Department of Medicine, University of Wisconsin-Madison; Department of Biochemistry, University of Wisconsin-Madison
| | | | | | | | - Stacy S Drury
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital;
| |
Collapse
|
49
|
Lieber SB, Lipschultz RA, Syed S, Rajan M, Venkatraman S, Lin M, Reid MC, Lue NF, Mandl LA. Association of phenotypic frailty and hand grip strength with telomere length in SLE. Lupus Sci Med 2024; 11:e001008. [PMID: 38519061 PMCID: PMC10961526 DOI: 10.1136/lupus-2023-001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/09/2023] [Indexed: 03/24/2024]
Abstract
OBJECTIVE Frailty and objective hand grip strength (one of the components of the frailty phenotype) are both risk factors for worse health outcomes in SLE. Whether telomere length, an established cellular senescence marker, is a biologic correlate of the frailty phenotype and hand grip strength in patients with SLE is not clear. First, we aimed to evaluate differences in telomere length between frail and non-frail women with SLE and then assessed whether frailty or hand grip strength is differentially associated with telomere length after adjusting for relevant confounders. METHODS Women ≥18 years of age with validated SLE enrolled at a single medical centre. Fried frailty status (which includes hand grip strength), clinical characteristics and telomere length were assessed cross-sectionally. Differences between frail and non-frail participants were evaluated using Fisher's exact or Wilcoxon rank-sum tests. The associations between frailty and hand grip strength and telomere length were determined using linear regression. RESULTS Of the 150 enrolled participants, 131 had sufficient data for determination of frailty classification; 26% were frail with a median age of 45 years. There was a non-significant trend towards shorter telomere length in frail versus non-frail participants (p=0.07). Hand grip strength was significantly associated with telomere length (beta coefficient 0.02, 95% CI 0.004, 0.04), including after adjustment for age, SLE disease activity and organ damage, and comorbidity (beta coefficient 0.02, 95% CI 0.002, 0.04). CONCLUSIONS Decreased hand grip strength, but not frailty, was independently associated with shortened telomere length in a cohort of non-elderly women with SLE. Frailty in this middle-aged cohort may be multifactorial rather than strictly a manifestation of accelerated ageing.
Collapse
Affiliation(s)
- Sarah B Lieber
- Division of Rheumatology, Hospital for Special Surgery, New York city, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York city, New York, USA
| | - Robyn A Lipschultz
- New York University Grossman School of Medicine, New York city, New York, USA
| | - Shahrez Syed
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Mangala Rajan
- Department of Medicine, Weill Cornell Medicine, New York city, New York, USA
- Division of General Internal Medicine, Weill Cornell Medicine, New York city, New York, USA
| | - Sara Venkatraman
- Department of Medicine, Weill Cornell Medicine, New York city, New York, USA
- Division of General Internal Medicine, Weill Cornell Medicine, New York city, New York, USA
- Department of Statistics and Data Science, Cornell University, Ithaca, New York, USA
| | - Myriam Lin
- Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - M Carrington Reid
- Department of Medicine, Weill Cornell Medicine, New York city, New York, USA
- Division of Geriatrics and Palliative Medicine, Weill Cornell Medicine, New York city, New York, USA
| | - Neal F Lue
- Department of Medicine, Weill Cornell Medicine, New York city, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York city, New York, USA
| | - Lisa A Mandl
- Division of Rheumatology, Hospital for Special Surgery, New York city, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York city, New York, USA
| |
Collapse
|
50
|
An G, Zhao X, Zhao C. Unraveling the causal association between leukocyte telomere length and infertility: A two-sample Mendelian randomization study. PLoS One 2024; 19:e0298997. [PMID: 38512957 PMCID: PMC10956861 DOI: 10.1371/journal.pone.0298997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/04/2024] [Indexed: 03/23/2024] Open
Abstract
Infertility is a significant challenge in modern society, and observed studies have reported the association between telomere length and infertility. Whether this relationship is causal remains controversial.We employed two-sample mendelian randomization (MR) to investigate the causal relationship between leukocyte telomere length (LTL) and major causes of infertility, including male and female infertility, sperm abnormalities, and endometriosis. MR analyses were mainly performed using the inverse variance weighted (IVW) method and complemented with other MR methods.Our findings demonstrate a causal association between LTL and endometriosis (OR1.304, 95% CI (1.122,1.517), p = 0.001), suggesting its potential as a biomarker for this condition. However, we did not observe a significant causal relationship between LTL and other infertility causes.Our study presents compelling evidence on the relationship between LTL and endometriosis. Meanwhile, our study demonstrates that there is no causal relationship between LTL and infertility. This research contributes to the field by shedding light on the importance of LTL in the early diagnosis and intervention of endometriosis.
Collapse
Affiliation(s)
- Gaole An
- Information Department, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Xingnan Zhao
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Chenghui Zhao
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|