1
|
Zhang F, Liu YX, Zhu YY, Yu QY, Msigwa SS, Zeng ZH, Zhang X, Wu HM, Zhu JH. Epidemiologic Risk and Prevention and Interventions in Parkinson Disease: From a Nutrition-Based Perspective. J Nutr 2025:S0022-3166(25)00035-5. [PMID: 39900185 DOI: 10.1016/j.tjnut.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Parkinson disease (PD) is a prevalent neurodegenerative disorder associated with aging. Current treatments for PD primarily focus on alleviating symptoms rather than altering the progression of the disease. The sporadic form of PD, which accounts for most cases, is thought to arise from a complex interaction between genetic predispositions and environmental factors. This review aimed to examine epidemiologic evidence regarding nutrition-related exposure factors and their associations with risk of developing PD. We proposed a tentative conclusion for each factor based on the available evidence. These associations may vary by gender and depend on dietary intake patterns and adherence. We also reviewed clinical trials on nutrition-related interventions for PD symptoms and progression. Future clinical trials may benefit from combining nutrition factors in intervention and testing within single-gender cohorts or subgroups defined by epidemiologic outcomes.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu-Xian Liu
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yun-Yue Zhu
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiu-Yan Yu
- Department of Epidemiology and Statistics, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Samwel Sylvester Msigwa
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhi-Hai Zeng
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiong Zhang
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Mei Wu
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian-Hong Zhu
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Chew EG, Liu Z, Li Z, Chung SJ, Lian MM, Tandiono M, Heng YJ, Ng EY, Tan LC, Chng WL, Tan TJ, Peh EK, Ho YS, Chen XY, Lim EY, Chang CH, Leong JJ, Peh TX, Chan LL, Chao Y, Au WL, Prakash KM, Lim JL, Tay YW, Mok V, Chan AY, Lin JJ, Jeon BS, Song K, Tham CC, Pang CP, Ahn J, Park KH, Wiggs JL, Aung T, Tan AH, Ahmad Annuar A, Makarious MB, Blauwendraat C, Nalls MA, Robak LA, Alcalay RN, Gan-Or Z, Reynolds R, Lim SY, Xia Y, Khor CC, Tan EK, Wang Z, Foo JN. Exome sequencing in Asian populations identifies low-frequency and rare coding variation influencing Parkinson's disease risk. NATURE AGING 2025; 5:205-218. [PMID: 39572736 DOI: 10.1038/s43587-024-00760-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/24/2024] [Indexed: 02/21/2025]
Abstract
Parkinson's disease (PD) is an incurable, progressive and common movement disorder that is increasing in incidence globally because of population aging. We hypothesized that the landscape of rare, protein-altering variants could provide further insights into disease pathogenesis. Here we performed whole-exome sequencing followed by gene-based tests on 4,298 PD cases and 5,512 controls of Asian ancestry. We showed that GBA1 and SMPD1 were significantly associated with PD risk, with replication in a further 5,585 PD cases and 5,642 controls. We further refined variant classification using in vitro assays and showed that SMPD1 variants with reduced enzymatic activity display the strongest association (<44% activity, odds ratio (OR) = 2.24, P = 1.25 × 10-15) with PD risk. Moreover, 80.5% of SMPD1 carriers harbored the Asian-specific p.Pro332Arg variant (OR = 2.16; P = 4.47 × 10-8). Our findings highlight the utility of performing exome sequencing in diverse ancestry groups to identify rare protein-altering variants in genes previously unassociated with disease.
Collapse
Affiliation(s)
- Elaine Gy Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Zhehao Liu
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zheng Li
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Michelle M Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Moses Tandiono
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yue Jing Heng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Ebonne Y Ng
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Louis Cs Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Wee Ling Chng
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Tiak Ju Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Esther Kl Peh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Xiao Yin Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Erin Yt Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chu Hua Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jonavan J Leong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Ting Xuan Peh
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ling Ling Chan
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neuroradiology, Singapore General Hospital, Singapore, Singapore
| | - Yinxia Chao
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Wing-Lok Au
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kumar M Prakash
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vincent Mok
- Department of Medicine and Therapeutics, Division of Neurology, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Institute, Li Ka Shing Institute of Health Sciences, Hong Kong, China
| | - Anne Yy Chan
- Department of Medicine and Therapeutics, Division of Neurology, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Juei-Jueng Lin
- Department of Neurology, Chushang Show-Chwan Hospital, Nantou, Taiwan
| | - Beom S Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul Metropolitan Government, Seoul National University Boramae Medical Center, Seoul, South Korea
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Tin Aung
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, LLC, Bethesda, MD, USA
| | - Laurie A Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Roy N Alcalay
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Columbia University Irving Medical Center, New York, NY, USA
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Richard Reynolds
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Chiea Chuen Khor
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
| | - Eng-King Tan
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore.
| | - Zhenxun Wang
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
3
|
Chang CH, Chew EGY, Lian MM, Tandiono M, Li Z, Chung SJ, Tan LC, Au WL, Prakash KM, Ahmad-Annuar A, Tan AH, Mok V, Chan AY, Lin JJ, Jeon BS, Khor CC, Lim SY, Tan EK, Foo JN. Rare SV2C coding variants in Parkinson's disease risk. JOURNAL OF PARKINSON'S DISEASE 2025:1877718X241300298. [PMID: 39973496 DOI: 10.1177/1877718x241300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Genome-wide association studies have identified SV2C as a Parkinson's disease (PD) risk locus, with a common missense variant p.Asp543Asn in the synaptic vesicle glycoprotein 2C (SV2C) protein significantly associated with PD. We examined if other rare SV2C variants also influence PD risk. We analyzed sequencing data of 9810 East Asian individuals comprising 4298 patients and 5512 controls and identified 55 rare nonsynonymous variants. There was no significant association of rare nonsynonymous or loss-of-function variants with PD. Our findings show that besides p.Asp543Asn, other rare coding variants in SV2C do not play a major role in PD susceptibility in East Asia.
Collapse
Affiliation(s)
- Chu Hua Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore, Singapore
| | - Elaine Guo Yan Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Moses Tandiono
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Zheng Li
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, Singapore, Singapore
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Louis Cs Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Wing-Lok Au
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kumar M Prakash
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vincent Mok
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
- Gerald Choa Neuroscience Institute, Li Ka Shing Institute of Health Sciences, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Anne Yy Chan
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Juei-Jueng Lin
- Department of Neurology, Chushang Show-Chwan Hospital, Nantou, Taiwan
| | - Beom S Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, Singapore, Singapore
| |
Collapse
|
4
|
Akçimen F, Paquette K, Crea PW, Saffie-Awad P, Achoru C, Taiwo F, Ozomma S, Onwuegbuzie G, Khani M, Grant S, Owolabi L, Okereke C, Oshinaike O, Iwuozo E, Lee PS, Oyakhire S, Osemwegie N, Daida K, Abubakar S, Olusanya A, Isayan M, Traurig R, Ogunmodede A, Samuel S, Makarious MB, Sa’ad F, Olanigan R, Levine K, Ogbimi EM, Vitale D, Odiase F, Koretsky MJ, Ojini F, Odeniyi O, Fang ZH, Obianozie N, Hall DA, Nwazor E, Xie T, Nwaokorie F, Padmanaban M, Nwani P, Shamim EA, Nnama A, Standaert D, Komolafe M, Dean M, Osaigbovo G, Disbrow E, Ishola I, Rawls A, Imarhiagbe F, Chandra S, Erameh C, Hinson V, Louie N, Idowu A, Solle J, Norris SA, Ibrahim A, Kilbane C, Sukumar G, Shulman LM, Ezuduemoih D, Staisch J, Breaux S, Dalgard C, Foster ER, Bello A, Ameri A, Real R, Ikwenu E, Morris HR, Anyanwu R, Stimming EF, Billingsley K, Alaofin W, Jerez PA, Agabi O, Hernandez DG, Akinyemi R, Arepalli S, Malik L, Owolabi R, Nyandaiti Y, Leonard HL, Wahab K, Step K, Abiodun O, Hernandez CF, Abdulai F, Iwaki H, Bardien S, Klein C, Hardy J, Houlden H, Galvelis KG, Nalls MA, Dahodwala N, Aamodt W, Hill E, Espay A, Factor S, Branson C, Blauwendraat C, Singleton AB, Ojo O, Chahine LM, Okubadejo N, Bandres-Ciga S. Large-scale genetic characterization of Parkinson's disease in the African and African admixed populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.14.25320205. [PMID: 39867380 PMCID: PMC11759243 DOI: 10.1101/2025.01.14.25320205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Elucidating the genetic contributions to Parkinson's disease (PD) etiology across diverse ancestries is a critical priority for the development of targeted therapies in a global context. We conducted the largest sequencing characterization of potentially disease-causing, protein-altering and splicing mutations in 710 cases and 11,827 controls from genetically predicted African or African admixed ancestries. We explored copy number variants (CNVs) and runs of homozygosity (ROHs) in prioritized early onset and familial cases. Our study identified rare GBA1 coding variants to be the most frequent mutations among PD patients, with a frequency of 4% in our case cohort. Out of the 18 GBA1 variants identified, ten were previously classified as pathogenic or likely pathogenic, four were novel, and four were reported as of uncertain clinical significance. The most common known disease-associated GBA1 variants in the Ashkenazi Jewish and European populations, p.Asn409Ser, p.Leu483Pro, p.Thr408Met, and p.Glu365Lys, were not identified among the screened PD cases of African and African admixed ancestry. Similarly, the European and Asian LRRK2 disease-causing mutational spectrum, including LRRK2 p.Gly2019Ser and p.Gly2385Arg genetic risk factors, did not appear to play a major role in PD etiology among West African-ancestry populations. However, we found three heterozygous novel missense LRRK2 variants of uncertain significance overrepresented in cases, two of which - p.Glu268Ala and p.Arg1538Cys - had a higher prevalence in the African ancestry population reference datasets. Structural variant analyses revealed the presence of PRKN CNVs with a frequency of 0.7% in African and African admixed cases, with 66% of CNVs detected being compound heterozygous or homozygous in early-onset cases, providing further insights into the genetic underpinnings in early-onset juvenile PD in these populations. Novel genetic variation overrepresented in cases versus controls among screened genes warrants further replication and functional prioritization to unravel their pathogenic potential. Here, we created the most comprehensive genetic catalog of both known and novel coding and splicing variants potentially linked to PD etiology in an underserved population. Our study has the potential to guide the development of targeted therapies in the emerging era of precision medicine. By expanding genetics research to involve underrepresented populations, we hope that future PD treatments are not only effective but also inclusive, addressing the needs of diverse ancestral groups.
Collapse
Affiliation(s)
- Fulya Akçimen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly Paquette
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter Wild Crea
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Paula Saffie-Awad
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Clínica Santa María, Santiago, Chile
| | - Charles Achoru
- Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | | | - Simon Ozomma
- University of Calabar Teaching Hospital, Calabar, Cross River State, Nigeria
| | | | - Marzieh Khani
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Spencer Grant
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Chiamaka Okereke
- University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu State, Nigeria
| | | | | | - Paul Suhwan Lee
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Kensuke Daida
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Sani Abubakar
- Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Adedunni Olusanya
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
- R-Jolad Hospital, Gbagada, Lagos, Nigeria
| | - Mariam Isayan
- Department of Neurology and Neurosurgery, National Institute of Health, Yerevan, Armenia
| | - Rami Traurig
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Sarah Samuel
- University of Maiduguri Teaching Hospital, Maiduguri, Borno State
| | - Mary B. Makarious
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | | | - Rashidat Olanigan
- Lagos State University Teaching Hospital, Ikeja, Lagos State, Nigeria
| | - Kristin Levine
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | | | - Dan Vitale
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | | | - Mathew J. Koretsky
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Francis Ojini
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi-araba, Lagos State, Nigeria
| | | | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases, DZNE, Tübingen, Germany
| | - Nkechi Obianozie
- University of Abuja Teaching Hospital, Gwagwalada, Federal Capital Territory, Nigeria
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Ernest Nwazor
- Rivers State University Teaching Hospital, Port Harcourt, Rivers State, Nigeria
| | - Tao Xie
- University of Chicago Medicine, Department of Neurology, Chicago, USA
| | | | - Mahesh Padmanaban
- University of Chicago Medicine, Department of Neurology, Chicago, USA
| | - Paul Nwani
- Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| | - Ejaz A. Shamim
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Mid-Atlantic Permanente Medical Group, Department of Neurology, Largo, MD, USA
- Kaiser Permanente, MidAtlantic Permanente Research Institute, Washington, DC, USA
| | - Alero Nnama
- University of Port Harcourt Teaching Hospital, Rivers State, Nigeria
| | - David Standaert
- University of Alabama at Birmingham, Department of Neurology, Birmingham, USA
| | | | - Marissa Dean
- University of Alabama at Birmingham, Department of Neurology, Birmingham, USA
| | | | - Elizabeth Disbrow
- Department of Neurology, LSU Health Shreveport, LSU Health Shreveport Center for Brain Health, Shreveport, USA
| | - Ismaila Ishola
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
| | - Ashley Rawls
- University of Florida Norman Fixel Institute for Neurological Diseases, Neurology Movement Disorders, Gainesville, USA
| | | | - Shivika Chandra
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cyril Erameh
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Vanessa Hinson
- Medical University of South Carolina, Charleston, SC, USA
| | - Naomi Louie
- Michael J. Fox Foundation for Parkinson’s Research, Department of Clinical Research, New York, USA
| | - Ahmed Idowu
- Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun State, Nigeria
| | - J Solle
- Michael J. Fox Foundation for Parkinson’s Research, Department of Clinical Research, New York, USA
| | | | - Abdullahi Ibrahim
- Federal University of Health Sciences Teaching Hospital, Azare, Bauchi State, Nigeria
| | - Camilla Kilbane
- University Hospital in Cleveland Medical Center/Case Western Reserve University (UH)
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services
- University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| | | | | | | | | | - Clifton Dalgard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | - Abiodun Bello
- University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
| | - Andrew Ameri
- Medical University of South Carolina, Charleston, SC, USA
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
| | - Erica Ikwenu
- Lagos University Teaching Hospital, Idi-araba, Lagos State, Nigeria
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurology, Royal Free Hospital, London, UK
| | - Roosevelt Anyanwu
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
| | - Erin Furr Stimming
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kimberley Billingsley
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Pilar Alvarez Jerez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Osigwe Agabi
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi-araba, Lagos State, Nigeria
| | - Dena G. Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Rufus Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Sampath Arepalli
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Laksh Malik
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Yakub Nyandaiti
- University of Maiduguri Teaching Hospital, Maiduguri, Borno State
| | - Hampton L. Leonard
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | | | - Kathryn Step
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Carlos F. Hernandez
- Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Santiago 7610658, Chile
| | - Fatima Abdulai
- University of Abuja Teaching Hospital, Gwagwalada, Federal Capital Territory, Nigeria
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Soraya Bardien
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Christine Klein
- Institute of Neurogenetics and Department of Neurology, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - John Hardy
- Reta Lila Weston Institute, University College London Institute of Neurology, Queen Square, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | | - Mike A. Nalls
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | | | | | - Emily Hill
- University of Cincinnati, Cincinnati, Ohio
| | | | | | | | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Oluwadamilola Ojo
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi-araba, Lagos State, Nigeria
| | - Lana M. Chahine
- University of Pittsburgh, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | | | | | | | | | - Njideka Okubadejo
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi-araba, Lagos State, Nigeria
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Stoccoro A. Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases. BIOLOGY 2025; 14:98. [PMID: 39857328 PMCID: PMC11761232 DOI: 10.3390/biology14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood. Epigenetic mechanisms, including DNA methylation, histone tail modifications, and the activity of non-coding RNAs, are strongly implicated in the pathogenesis of neurodegenerative diseases. While it is known that epigenetic mechanisms play a crucial role in sexual differentiation and that distinct epigenetic patterns characterize females and males, sex-specific epigenetic patterns have been largely overlooked in studies aiming to identify epigenetic alterations associated with neurodegenerative diseases. This review aims to provide an overview of sex differences in epigenetic mechanisms, the role of sex-specific epigenetic processes in the central nervous system, and the main evidence of sex-specific epigenetic alterations in three neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Understanding the sex-related differences of these diseases is essential for developing personalized treatments and interventions that account for the unique epigenetic landscapes of each sex.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
6
|
Hwang YS, Jo S, Lee SH, Park KW, Shin E, Park Y, Seo Y, Kwon K, Kim JS, Jeon SR, Lee J, Chung SJ. Identification of Novel Genetic Loci Affecting Age at Onset of Parkinson's Disease: A Genome-wide Association Study. Mov Disord 2025; 40:77-86. [PMID: 39503264 PMCID: PMC11752982 DOI: 10.1002/mds.30047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The age at onset (AAO) of Parkinson's disease (PD) varies widely among individuals and significantly influences disease progression and prognosis. However, few genome-wide association studies (GWASs) have investigated genetic variants determining AAO, particularly in East Asian populations. OBJECTIVES To identify single-nucleotide polymorphisms (SNPs) affecting AAO of PD in Korean patients. METHODS We conducted a GWAS on AAO of PD in 1048 Korean patients using sex-adjusted linear regression models. Additionally, we conducted downstream analyses of our primary GWAS results. RESULTS rs2134545 demonstrated genome-wide significance (β = -2.459; standard error [SE] = 0.851; P = 1.898 × 10-8) and is an intergenic SNP near the ALCAM gene associated with an average AAO reduction of 3.47 years. Additionally, rs4366309 (LYST; MIR1537) demonstrated suggestive significance (β = 2.949; SE = 1.072; P = 8.68 × 10-8) and was associated with an average delay of 3.05 years. The polygenic risk score based on known PD risk loci also affected the AAO for European and Korean PD risk loci, respectively (β = -0.149; P < 0.001 and β = -0.096; P = 0.002). However, the proportion of variance was small (r2 = 0.022 and 0.009, respectively). CONCLUSION We identified a novel SNP associated with the AAO of PD near the ALCAM gene, distinct from previously reported PD risk loci. These findings need further functional validation; however, they suggest unique genetic pathways influencing the AAO of PD and highlight the need for further research in diverse populations. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yun Su Hwang
- Department of NeurologyJeonbuk National University Medical School and HospitalJeonjuSouth Korea
- Research Institute of Clinical Medicine of Jeonbuk National University – Biomedical Research Institute of Jeonbuk National University HospitalJeonjuSouth Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Seung Hyun Lee
- Department of Neurology, Jeju National University HospitalJeju National University School of MedicineJejuSouth Korea
| | - Kye Won Park
- Department of Neurology, Gangneung Asan HospitalUniversity of Ulsan College of MedicineGangneungSouth Korea
| | | | | | | | - Kyum‐Yil Kwon
- Department of NeurologySoonchunhyang University Seoul HospitalSeoulSouth Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Sang Ryong Jeon
- Department of Neurosurgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Jae‐Hong Lee
- Department of Neurology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| |
Collapse
|
7
|
Deng X, Mehta A, Xiao B, Ray Chaudhuri K, Tan EK, Tan LC. Parkinson's disease subtypes: Approaches and clinical implications. Parkinsonism Relat Disord 2025; 130:107208. [PMID: 39567305 DOI: 10.1016/j.parkreldis.2024.107208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder with significant heterogeneity in disease presentation and progression. Subtype identification remains a top priority in the field of PD clinical research. Several PD subtypes have been identified. Hypothesis-driven subtypes refer to pre-defined subtypes based on specific criteria. Under hypothesis-driven subtypes, motor subtypes are the most common empirical subtype in both research and clinical settings. The concept of the non-motor symptoms (NMS) subtypes is relatively new and less well studied. Mild cognitive impairment (MCI) is one of the more prevalent NMS subtypes of PD. Data-driven subtyping is a hypothesis-free approach, that defines disease phenotypes by comprehensively evaluating multidimensional data. In this review, we summarize the main features for the different PD subtypes: from hypothesis-driven subtypes to data-driven subtypes. NMS and data-driven subtypes are still not yet well understood particularly with regard to biomarker and progression characterization. Future PD subtyping based on specific biological makers will enable us to better reflect the underlying pathophysiological underpinnings and enhance our search for specific therapeutic targets. The goal is to develop a simple algorithm to subtype PD patients at an early stage of PD that will enable good prognostication of their disease course, targeted therapies to be delivered, and proactive prevention of complications. Understanding PD subtypes and heterogeneity will also guide future clinical trial design and aid clinicians to better manage PD patients that will enable targeted disease surveillance and personalized treatment. The graphical abstract can be seen below.
Collapse
Affiliation(s)
- Xiao Deng
- National Neuroscience Institute, Parkinson Foundation International Centre of Excellence, Singapore, Singapore; Duke-NUS Medical School, Singapore, Singapore
| | - Anish Mehta
- Ramaiah Medical College and Hospitals, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Bin Xiao
- National Neuroscience Institute, Parkinson Foundation International Centre of Excellence, Singapore, Singapore; Duke-NUS Medical School, Singapore, Singapore
| | - K Ray Chaudhuri
- Department of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, UK; Parkinson Foundation International Centre of Excellence, King's College Hospital, King's College London, UK
| | - Eng-King Tan
- National Neuroscience Institute, Parkinson Foundation International Centre of Excellence, Singapore, Singapore; Duke-NUS Medical School, Singapore, Singapore
| | - Louis Cs Tan
- National Neuroscience Institute, Parkinson Foundation International Centre of Excellence, Singapore, Singapore; Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
8
|
Hong S, Koretsky MJ, Lichtenberg J, Leonard H, Pitz V. Parkinson's Disease Pathogenic Variants: Cross-Ancestry Analysis and Microarray Data Validation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.16.24319097. [PMID: 39763553 PMCID: PMC11702716 DOI: 10.1101/2024.12.16.24319097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Background Known pathogenic variants in Parkinson's disease (PD) contribute to disease development but have yet to be fully explored by arrays at scale. Objectives This study evaluated genotyping success of the NeuroBooster array (NBA) and determined the frequencies of pathogenic variants across ancestries. Method We analyzed the presence and allele frequency of 34 pathogenic variants in 28,710 PD cases, 9,614 other neurodegenerative disorder cases, and 15,821 controls across 11 ancestries within the Global Parkinson's Genetics Program dataset. Of these, 25 were genotyped on NBA and cluster plots were used to assess their quality. Results Genes previously predicted to have high or very high confidence of causing PD tend to have more pathogenic variants and are present across ancestry groups. Twenty-five of the 34 pathogenic variants were typed by the NBA array and classified "good" (n=12), "medium" (n=4), and "bad" (n=9) variants. Conclusion Our results confirm the likelihood that established PD genes are pathogenic and highlight the importance of ancestrally diverse research in PD. We also show the usefulness of the NBA as a reliable tool for genotyping of rare variants for PD.
Collapse
Affiliation(s)
- Samantha Hong
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, USA
| | - Mathew J. Koretsky
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, USA
- DataTecnica LLC, Washington DC, USA
| | - Jens Lichtenberg
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Hampton Leonard
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, USA
- DataTecnica LLC, Washington DC, USA
| | - Vanessa Pitz
- Integrative Neurogenomics Unit (INU), Laboratory of Neurogenetics, National Institutes of Health, Bethesda, USA
| | | |
Collapse
|
9
|
Lange LM, Cerquera-Cleves C, Schipper M, Panagiotaropoulou G, Braun A, Kraft J, Awasthi S, Bell N, Posthuma D, Ripke S, Blauwendraat C, Heilbron K. Prioritizing Parkinson's disease risk genes in genome-wide association loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.13.24318996. [PMID: 39711693 PMCID: PMC11661345 DOI: 10.1101/2024.12.13.24318996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Recent advancements in Parkinson's disease (PD) drug development have been significantly driven by genetic research. Importantly, drugs supported by genetic evidence are more likely to be approved. While genome-wide association studies (GWAS) are a powerful tool to nominate genomic regions associated with certain traits or diseases, pinpointing the causal biologically relevant gene is often challenging. Our aim was to prioritize genes underlying PD GWAS signals. The polygenic priority score (PoPS) is a similarity-based gene prioritization method that integrates genome-wide information from MAGMA gene-level association tests and more than 57,000 gene-level features, including gene expression, biological pathways, and protein-protein interactions. We applied PoPS to data from the largest published PD GWAS in East Asian- and European-ancestries. We identified 120 independent associations with P < 5×10-8 and prioritized 46 PD genes across these loci based on their PoPS scores, distance to the GWAS signal, and presence of non-synonymous variants in the credible set. Alongside well-established PD genes (e.g., TMEM175 and VPS13C), some of which are targeted in ongoing clinical trials (i.e., SNCA, LRRK2, and GBA1), we prioritized genes with a plausible mechanistic link to PD pathogenesis (e.g., RIT2, BAG3, and SCARB2). Many of these genes hold potential for drug repurposing or novel therapeutic developments for PD (i.e., FYN, DYRK1A, NOD2, CTSB, SV2C, and ITPKB). Additionally, we prioritized potentially druggable genes that are relatively unexplored in PD (XPO1, PIK3CA, EP300, MAP4K4, CAMK2D, NCOR1, and WDR43). We prioritized a high-confidence list of genes with strong links to PD pathogenesis that may represent our next-best candidates for disease-modifying therapeutics. We hope our findings stimulate further investigations and preclinical work to facilitate PD drug development programs.
Collapse
Affiliation(s)
- Lara M. Lange
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Catalina Cerquera-Cleves
- Neurology Unit, Department of Neurosciences, Hospital Universitario San Ignacio, Bogotá, Colombia
- CHU de Québec Research Center, Axe Neurosciences, Laval University, Quebec City, Quebec, Canada
| | | | - Georgia Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Nathaniel Bell
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
- Current address: Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| |
Collapse
|
10
|
Lim SY, Tan AH, Ahmad-Annuar A, Okubadejo NU, Lohmann K, Morris HR, Toh TS, Tay YW, Lange LM, Bandres-Ciga S, Mata I, Foo JN, Sammler E, Ooi JCE, Noyce AJ, Bahr N, Luo W, Ojha R, Singleton AB, Blauwendraat C, Klein C. Uncovering the genetic basis of Parkinson's disease globally: from discoveries to the clinic. Lancet Neurol 2024; 23:1267-1280. [PMID: 39447588 DOI: 10.1016/s1474-4422(24)00378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Knowledge on the genetic basis of Parkinson's disease has grown tremendously since the discovery of the first monogenic form, caused by a mutation in α-synuclein, and with the subsequent identification of multiple other causative genes and associated loci. Genetic studies provide insights into the phenotypic heterogeneity and global distribution of Parkinson's disease. By shedding light on the underlying biological mechanisms, genetics facilitates the identification of new biomarkers and therapeutic targets. Several clinical trials of genetics-informed therapies are ongoing or imminent. International programmes in populations who have been under-represented in Parkinson's disease genetics research are fostering collaboration and capacity-building, and have already generated novel findings. Many challenges remain for genetics research in these populations, but addressing them provides opportunities to obtain a more complete and equitable understanding of Parkinson's disease globally. These advances facilitate the integration of genetics into the clinic, to improve patient management and personalised medicine.
Collapse
Affiliation(s)
- Shen-Yang Lim
- Division of Neurology, Department of Medicine, and The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, and The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Njideka Ulunma Okubadejo
- College of Medicine, University of Lagos and Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology, London, UK
| | - Tzi Shin Toh
- Division of Neurology, Department of Medicine, and The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lara M Lange
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Ignacio Mata
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore; Laboratory of Neurogenetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Esther Sammler
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK; Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joshua Chin Ern Ooi
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Alastair J Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Natascha Bahr
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, People's Republic of China
| | - Rajeev Ojha
- Department of Neurology, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA; Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA; Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
11
|
Ng XY, Cao M. Dysfunction of synaptic endocytic trafficking in Parkinson's disease. Neural Regen Res 2024; 19:2649-2660. [PMID: 38595283 PMCID: PMC11168511 DOI: 10.4103/nrr.nrr-d-23-01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 04/11/2024] Open
Abstract
Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum. The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive. Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease. Notably, several of these genes are linked to the synaptic vesicle recycling process, particularly the clathrin-mediated endocytosis pathway. This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease, followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a "dying back" mechanism. Recently, several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized. These models faithfully recapitulate certain Parkinson's disease-like features at the animal, circuit, and cellular levels, and exhibit defects in synaptic membrane trafficking, further supporting the findings from human genetics and clinical studies. In this review, we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins: auxilin (DNAJC6/PARK19) and synaptojanin 1 (SYNJ1/PARK20). The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect. Subsequently, we will delve into the involvement of several clathrin-mediated endocytosis-related proteins (GAK, endophilin A1, SAC2/INPP5F, synaptotagmin-11), identified as Parkinson's disease risk factors through genome-wide association studies, in Parkinson's disease pathogenesis. We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins (alpha-synuclein (PARK1/4), Parkin (PARK2), and LRRK2 (PARK8)) in synaptic endocytic trafficking. Additionally, we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways, particularly autophagy. Given that synaptic dysfunction is considered as an early event in Parkinson's disease, a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel targets for early diagnosis and the development of interventional therapies for Parkinson's disease. Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Xin Yi Ng
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Mian Cao
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Álvarez Jerez P, Wild Crea P, Ramos DM, Gustavsson EK, Radefeldt M, Damianov A, Makarious MB, Ojo OO, Billingsley KJ, Malik L, Daida K, Bromberek S, Hu F, Schneider Z, Surapaneni AL, Stadler J, Rizig M, Morris HR, Pantazis CB, Leonard HL, Screven L, Qi YA, Nalls MA, Bandres-Ciga S, Hardy J, Houlden H, Eng C, Burchard EG, Kachuri L, Lin CH, Black DL, Singleton AB, Fischer S, Bauer P, Reed X, Ryten M, Beetz C, Ward M, Okubadejo NU, Blauwendraat C. African ancestry neurodegeneration risk variant disrupts an intronic branchpoint in GBA1. Nat Struct Mol Biol 2024; 31:1955-1963. [PMID: 39668204 PMCID: PMC11638064 DOI: 10.1038/s41594-024-01423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/10/2024] [Indexed: 12/14/2024]
Abstract
Recently, an African ancestry-specific Parkinson disease (PD) risk signal was identified at the gene encoding glucocerebrosidase (GBA1). This variant ( rs3115534 -G) is carried by ~50% of West African PD cases and imparts a dose-dependent increase in risk for disease. The risk variant has varied frequencies across African ancestry groups but is almost absent in European and Asian ancestry populations. GBA1 is a gene of high clinical and therapeutic interest. Damaging biallelic protein-coding variants cause Gaucher disease and monoallelic variants confer risk for PD and dementia with Lewy bodies, likely by reducing the function of glucocerebrosidase. Interestingly, the African ancestry-specific GBA1 risk variant is a noncoding variant, suggesting a different mechanism of action. Using full-length RNA transcript sequencing, we identified partial intron 8 expression in risk variant carriers (G) but not in nonvariant carriers (T). Antibodies targeting the N terminus of glucocerebrosidase showed that this intron-retained isoform is likely not protein coding and subsequent proteomics did not identify a shorter protein isoform, suggesting that the disease mechanism is RNA based. Clustered regularly interspaced short palindromic repeats editing of the reported index variant ( rs3115534 ) revealed that this is the sequence alteration responsible for driving the production of these transcripts containing intron 8. Follow-up analysis of this variant showed that it is in a key intronic branchpoint sequence and, therefore, has important implications in splicing and disease. In addition, when measuring glucocerebrosidase activity, we identified a dose-dependent reduction in risk variant carriers. Overall, we report the functional effect of a GBA1 noncoding risk variant, which acts by interfering with the splicing of functional GBA1 transcripts, resulting in reduced protein levels and reduced glucocerebrosidase activity. This understanding reveals a potential therapeutic target in an underserved and underrepresented population.
Collapse
Affiliation(s)
- Pilar Álvarez Jerez
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Peter Wild Crea
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Daniel M Ramos
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Emil K Gustavsson
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | - Andrey Damianov
- Department of Microbiology, Immunology and Molecular Genetics, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mary B Makarious
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica, Washington, DC, USA
| | - Oluwadamilola O Ojo
- College of Medicine, University of Lagos, Lagos, Nigeria
- Lagos University Teaching Hospital, Lagos, Nigeria
| | - Kimberley J Billingsley
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Laksh Malik
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kensuke Daida
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Sarah Bromberek
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Fangle Hu
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zachary Schneider
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Aditya L Surapaneni
- Department of Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Julia Stadler
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mie Rizig
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Huw R Morris
- UCL Movement Disorders Centre, University College London, London, UK
| | - Caroline B Pantazis
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica, Washington, DC, USA
| | - Laurel Screven
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yue A Qi
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica, Washington, DC, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Celeste Eng
- Department of Biotherapeutic Sciences and Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Esteban González Burchard
- Department of Biotherapeutic Sciences and Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology and Molecular Genetics, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas L Black
- Department of Microbiology, Immunology and Molecular Genetics, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | | | | | - Xylena Reed
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Michael Ward
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Njideka U Okubadejo
- College of Medicine, University of Lagos, Lagos, Nigeria
- Lagos University Teaching Hospital, Lagos, Nigeria
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA.
| |
Collapse
|
13
|
Kalia LV, Asis A, Arbour N, Bar-Or A, Bove R, Di Luca DG, Fon EA, Fox S, Gan-Or Z, Gommerman JL, Kang UJ, Klawiter EC, Koch M, Kolind S, Lang AE, Lee KK, Lincoln MR, MacDonald PA, McKeown MJ, Mestre TA, Miron VE, Ontaneda D, Rousseaux MWC, Schlossmacher MG, Schneider R, Stoessl AJ, Oh J. Disease-modifying therapies for Parkinson disease: lessons from multiple sclerosis. Nat Rev Neurol 2024; 20:724-737. [PMID: 39375563 DOI: 10.1038/s41582-024-01023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
The development of disease-modifying therapies (DMTs) for neurological disorders is an important goal in modern neurology, and the associated challenges are similar in many chronic neurological conditions. Major advances have been made in the multiple sclerosis (MS) field, with a range of DMTs being approved for relapsing MS and the introduction of the first DMTs for progressive MS. By contrast, people with Parkinson disease (PD) still lack such treatment options, relying instead on decades-old therapeutic approaches that provide only symptomatic relief. To address this unmet need, an in-person symposium was held in Toronto, Canada, in November 2022 for international researchers and experts in MS and PD to discuss strategies for advancing DMT development. In this Roadmap article, we highlight discussions from the symposium, which focused on therapeutic targets and preclinical models, disease spectra and subclassifications, and clinical trial design and outcome measures. From these discussions, we propose areas for novel or deeper exploration in PD using lessons learned from therapeutic development in MS. In addition, we identify challenges common to the PD and MS fields that need to be addressed to further advance the discovery and development of effective DMTs.
Collapse
Affiliation(s)
- Lorraine V Kalia
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | - Nathalie Arbour
- Department of Neurosciences, Université de Montreal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
| | - Amit Bar-Or
- Division of MS and Related Disorders, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Riley Bove
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Daniel G Di Luca
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Edward A Fon
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Susan Fox
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Jennifer L Gommerman
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Un Jung Kang
- Department of Neurology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Parekh Center for Interdisciplinary Neurology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Fresco Institute for Parkinson's and Movement Disorders, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcus Koch
- University of Calgary MS Clinic, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Shannon Kolind
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony E Lang
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Matthew R Lincoln
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Penny A MacDonald
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiago A Mestre
- Parkinson's Disease and Movement Disorders Clinic, Division of Neurology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Veronique E Miron
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- The United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Maxime W C Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G Schlossmacher
- Parkinson's Disease and Movement Disorders Clinic, Division of Neurology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Raphael Schneider
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Wagen AZ, Reynolds RH, Foo JN, Fairbrother-Browne A, Gustavsson EK, Galgiano-Turin S, Wood NW, Blauwendraat C, Gandhi S, Ryten M. Ancestry-specific gene expression in peripheral monocytes mediates risk of neurodegenerative disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624489. [PMID: 39803567 PMCID: PMC11722246 DOI: 10.1101/2024.11.20.624489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
It is hypothesised that peripheral immune states responding to regional environmental triggers contribute to central neurodegeneration. Region-specific genetic selection pressures require this hypothesis to be assessed in an ancestry specific manner. Here we utilise genome-wide association studies and expression quantitative trait loci from African, East Asian and European ancestries to show that genes causing neurodegeneration are preferentially expressed in innate rather than adaptive immune cells, and that expression of these genes mediates the risk of neurodegenerative disease in monocytes in an ancestry-specific manner.
Collapse
Affiliation(s)
- Aaron Z Wagen
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- The Francis Crick Institute, 1 Midland Road, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Regina H Reynolds
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Aine Fairbrother-Browne
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- The Francis Crick Institute, 1 Midland Road, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
- Dementia Research Institute, Department of Clinical Neuroscience, Cambridge University, Cambridge UK
| | - Emil K Gustavsson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sarah Galgiano-Turin
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- The Francis Crick Institute, 1 Midland Road, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
- Dementia Research Institute, Department of Clinical Neuroscience, Cambridge University, Cambridge UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sonia Gandhi
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Dementia Research Institute, Department of Clinical Neuroscience, Cambridge University, Cambridge UK
| |
Collapse
|
15
|
Wang L, Qin Y, Song J, Xu J, Quan W, Su H, Zeng H, Zhang J, Li J, Chen J. Integrated analysis of single-cell RNA sequencing and bulk transcriptome data identifies a pyroptosis-associated diagnostic model for Parkinson's disease. Sci Rep 2024; 14:28548. [PMID: 39558055 PMCID: PMC11574289 DOI: 10.1038/s41598-024-80185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by an insidious onset. Despite the emphasis on motor symptom-based diagnosis, there remains an unmet clinical need for effective diagnostic approaches during the prodromal phase of PD. Recent advances in single-cell RNA sequencing (scRNA-seq) and bulk transcriptomic analyses of PD patients open avenues for identifying potential diagnostic biomarkers. A comprehensive cell trajectory analysis was conducted using scRNA-seq datasets to identify gene expressions associated with the cellular transition from healthy to PD-associated states. Integration of scRNA-seq datasets with weighted gene co-expression network analysis (WGCNA) allowed extraction of pyroptosis-associated differentially expressed genes (PDEGs). Using LASSO logistic regression, support vector machine recursive feature elimination (SVM-RFE) and random forest methods, we developed a diagnostic model centred on PDEGs. In addition, immunoinfiltration, inflammatory signalling pathways and intercellular communication were detected by scRNA-seq analyses. In PD patients, the number of cells including metencephalic-like cells, excitatory neurons, inhibitory neurons and MHB-like cells was significantly reduced, whereas the proportion of astrocytes and microglia, immunoinfiltration and inflammatory signalling pathways were upregulated compared to healthy individuals. Using scRNA-seq and WGCNA analyses, two pyroptosis-related diagnostic genes, POLR2K and TIMM8B, were identified and a diagnostic model based on them was constructed, which showed promising performance upon validation. This study established a pyroptosis-related diagnostic model for PD through the analyses of scRNA-seq combined with bulk transcriptome data, which improved the understanding of the role of PDEGs in PD and provided new insights into the diagnostic strategies for this neurodegenerative disease.
Collapse
Affiliation(s)
- Lin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Yidan Qin
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jia Song
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jing Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Hang Su
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Huibin Zeng
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jian Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
16
|
Somerville EN, Gan-Or Z. Genetic-based diagnostics of Parkinson's disease and other Parkinsonian syndromes. Expert Rev Mol Diagn 2024:1-13. [PMID: 39545628 DOI: 10.1080/14737159.2024.2427625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Parkinson's disease (PD) is a complex disorder with vast clinical heterogeneity. Recent genetic, imaging and clinical evidence suggest that there are multiple subtypes of PD, and perhaps even distinct clinical entities, which are being diagnosed under the umbrella of PD. These might have similar clinical presentation, but potentially different underlying mechanisms, which, in future, will require different treatments. Despite extensive genetic research progress, genetic testing is still not a common practice in clinical patient care. AREAS COVERED This review examines the numerous genes that have been discovered to affect the risk of, or cause, PD. We also outline genetic variants that affect PD age at onset, its progression, and the presence or severity of motor and non-motor symptoms. We differentiate between PD, other synucleinopathies, and atypical parkinsonism syndromes, and describe genes responsible for familial forms of typical PD and atypical parkinsonism. Lastly, we present current clinical trails that are underway for targeted therapies, particularly for GBA1-PD and LRRK2-PD which are the most significant subtypes. EXPERT OPINION While genetic studies alone cannot be diagnostic for PD, proper utilization of genetic screening for PD could improve diagnostic accuracy and predictions for prognosis, guide treatment, and identify individuals that qualify for clinical trials.
Collapse
Affiliation(s)
- Emma N Somerville
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| |
Collapse
|
17
|
Lázaro-Figueroa A, Hernández-Medrano AJ, Ramírez-Pineda DB, Cadavid AN, Makarious MB, Foo JN, Alvarado CX, Bandres-Ciga S, Periñan MT. Is SH3GL2 p.G276V the Causal Functional Variant Underlying Parkinson's Disease Risk at this Locus? Mov Disord 2024; 39:2117-2119. [PMID: 39133574 PMCID: PMC11568960 DOI: 10.1002/mds.29719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 11/17/2024] Open
Affiliation(s)
- Alejandra Lázaro-Figueroa
- Laboratorio de Neurogenómica Cognitiva, Unidad de Investigación en Psicobiología y Neurociencias, Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ana Jimena Hernández-Medrano
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Diana Berenice Ramírez-Pineda
- Laboratorio de Regulación Genómica y Bioinformática, del Laboratorio Internacional de Investigación sobre el Genoma Humano. Universidad Nacional Autónoma de México (UNAM) campus Juriquilla, Queretaro, Mexico
| | | | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chelsea X Alvarado
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Maria Teresa Periñan
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
18
|
Chahine LM, Louie N, Solle J, Akçimen F, Ameri A, Augenbraun S, Avripas S, Breaux S, Causey C, Chandra S, Dean M, Disbrow EA, Fanty L, Fernandez J, Foster ER, Furr Stimming E, Hall D, Hinson V, Johnson-Turbes A, Jonas C, Kilbane C, Norris SA, Nguyen BT, Padmanaban M, Paquette K, Parry C, Pessoa Rocha N, Rawls A, Shamim EA, Shulman LM, Sipma R, Staisch J, Traurig R, von Coelln R, Wild Crea P, Xie T, Fang ZH, O'Grady A, Kopil CM, McGuire Kuhl M, Singleton A, Blauwendraat C, Bandres-Ciga S. The Black and African American Connections to Parkinson's Disease (BLAAC PD) study protocol. BMC Neurol 2024; 24:403. [PMID: 39434044 PMCID: PMC11492614 DOI: 10.1186/s12883-024-03914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Determining the genetic contributions to Parkinson's disease (PD) across diverse ancestries is a high priority as this work can guide therapeutic development in a global setting. The genetics of PD spans the etiological risk spectrum, from rare, highly deleterious variants linked to monogenic forms with Mendelian patterns of inheritance, to common variation involved in sporadic disease. A major limitation in PD genomics research is lack of racial and ethnic diversity. Enrollment disparities have detrimental consequences on the generalizability of results and exacerbate existing inequities in care. The Black and African American Connections to Parkinson's Disease (BLAAC PD) study is part of the Global Parkinson's Genetics Program, supported by the Aligning Science Across Parkinson's initiative. The goal of the study is to investigate the genetic architecture underlying PD risk and progression in the Black and/or African American populations. This cross-sectional multicenter study in the United States has a recruitment target of up to 2,000 individuals with PD and up to 2,000 controls, all of Black and/or African American ancestry. The study design incorporates several strategies to reduce barriers to research participation. The multifaceted recruitment strategy aims to involve individuals with and without PD in various settings, emphasizing community outreach and engagement. The BLAAC PD study is an important first step toward informing understanding of the genetics of PD in a more diverse population.
Collapse
Affiliation(s)
- Lana M Chahine
- University of Pittsburgh, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA.
| | - Naomi Louie
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - J Solle
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Fulya Akçimen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Ameri
- Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | - Christopher Causey
- Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Shivika Chandra
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Marissa Dean
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth A Disbrow
- Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | | | | | - Erin R Foster
- University of Pittsburgh, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Erin Furr Stimming
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Deborah Hall
- Rush University Medical Center, Chicago, IL, USA
| | - Vanessa Hinson
- Medical University of South Carolina, Charleston, SC, USA
| | | | - Cabell Jonas
- Kaiser Permanente Mid-Atlantic States, Largo, MD, USA
| | - Camilla Kilbane
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | | | | | | | - Kimberly Paquette
- Center for Alzheimer's Disease and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Carly Parry
- NORC at the University of Chicago, Chicago, IL, USA
| | | | | | - Ejaz A Shamim
- Kaiser Permanente Mid-Atlantic States, Largo, MD, USA
| | | | - Rebeka Sipma
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Rami Traurig
- Center for Alzheimer's Disease and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Peter Wild Crea
- Center for Alzheimer's Disease and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tao Xie
- University of Chicago, Chicago, IL, USA
| | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alyssa O'Grady
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Catherine M Kopil
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | | | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's Disease and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Sara Bandres-Ciga
- Center for Alzheimer's Disease and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Kamath SD, Phulpagar P, Holla VV, Kamble N, Yadav R, Muthusamy B, Kumar Pal P. Genetic architecture of a single cohort of 230 Indian Parkinson's Disease patients. Parkinsonism Relat Disord 2024; 129:107157. [PMID: 39378566 DOI: 10.1016/j.parkreldis.2024.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/08/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Indian Parkinson's Disease (PD) patients are severely underrepresented in terms of genetic studies and little is known about the frequency of variants and their impact on motor and nonmotor symptoms (NMS). METHODS This retrospective cross-sectional study was conducted in PD patients undergoing treatment at a tertiary care hospital from India. Patients were advised genetic testing if they had (i) age at onset (AAO) of motor symptoms at or before 50 years (EOPD), (ii) positive family history of PD, parkinsonism or dystonia. All patients underwent whole exome sequencing and potentially pathogenic variants were identified. RESULTS Clinical and genetic data were available for 230 (163 males, 70.4 %) patients. Thirty-five pathogenic and likely pathogenic variants in various PD genes were identified in 47 patients resulting in a yield of 20.4 %. In the remaining, 82 patients had either variants of uncertain significance or had variants in genes not associated with parkinsonism and 101 patients did not have any non-benign variants. Patients with genetically mediated PD had a lower AAO and statistically greater frequency of dystonia (36.2 %), postural instability (29.8 %) and mood disorder (29.8 %) and a higher Hoehn and Yahr score (2.9). Among the 47 patients, 11 patients had PARK-PRKN, six patients had PARK-PLA2G6, and 22 patients had PARK-GBA1. CONCLUSION Around one-fifth of early-onset PD can have an underlying monogenetic cause. PARK-GBA1, PARK-PRKN and PARK-PLA2G6 are the commoner causes of genetically mediated PD in India. Patients with genetic cause had an earlier age at onset, and more frequent dystonia, postural instability and dyskinesia.
Collapse
Affiliation(s)
- Sneha D Kamath
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
| | - Prashant Phulpagar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
| |
Collapse
|
20
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
21
|
Shi C, Ma D, Li M, Wang Z, Hao C, Liang Y, Feng Y, Hu Z, Hao X, Guo M, Li S, Zuo C, Sun Y, Tang M, Mao C, Zhang C, Xu Y, Sun S. Identifying potential causal effects of Parkinson's disease: A polygenic risk score-based phenome-wide association and mendelian randomization study in UK Biobank. NPJ Parkinsons Dis 2024; 10:166. [PMID: 39242620 PMCID: PMC11379879 DOI: 10.1038/s41531-024-00780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
There is considerable uncertainty regarding the associations between various risk factors and Parkinson's Disease (PD). This study systematically screened and validated a wide range of potential PD risk factors from 502,364 participants in the UK Biobank. Baseline data for 1851 factors across 11 categories were analyzed through a phenome-wide association study (PheWAS). Polygenic risk scores (PRS) for PD were used to diagnose Parkinson's Disease and identify factors associated with PD diagnosis through PheWAS. Two-sample Mendelian randomization (MR) analysis was employed to assess causal relationships. PheWAS results revealed 267 risk factors significantly associated with PD-PRS among the 1851 factors, and of these, 27 factors showed causal evidence from MR analysis. Compelling evidence suggests that fluid intelligence score, age at first sexual intercourse, cereal intake, dried fruit intake, and average total household income before tax have emerged as newly identified risk factors for PD. Conversely, maternal smoking around birth, playing computer games, salt added to food, and time spent watching television have been identified as novel protective factors against PD. The integration of phenotypic and genomic data may help to identify risk factors and prevention targets for PD.
Collapse
Affiliation(s)
- Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyun Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chenwei Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanyuan Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanmei Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengnan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuangjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuemeng Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Shilei Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Chang CH, Lim KL, Foo JN. Synaptic Vesicle Glycoprotein 2C: a role in Parkinson's disease. Front Cell Neurosci 2024; 18:1437144. [PMID: 39301216 PMCID: PMC11410587 DOI: 10.3389/fncel.2024.1437144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Synaptic Vesicle Glycoprotein 2C (SV2C), characterized by its selective expression in discrete brain regions such as the midbrain, has recently emerged as a promising player in Parkinson's Disease (PD) - a debilitating neurodegenerative disorder affecting millions worldwide. This review aims to consolidate our current understanding of SV2C's function, its involvement in PD pathogenesis, and to evaluate its potential as a therapeutic target. Integrating previous findings of SV2C, from genetics to molecular studies, and drawing on insights from the largest East Asian genome-wide association study that highlights SV2C as a novel risk factor for PD, we explore the potential pathways through which SV2C may influence the disease. Our discussion extends to the implications of SV2C's role in synaptic vesicle trafficking, neurotransmitter release, and α-synuclein homeostasis, thereby laying the groundwork for future investigations that could pave the way for novel therapeutic strategies in combating PD.
Collapse
Affiliation(s)
- Chu Hua Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
23
|
Jonson C, Levine KS, Lake J, Hertslet L, Jones L, Patel D, Kim J, Bandres‐Ciga S, Terry N, Mata IF, Blauwendraat C, Singleton AB, Nalls MA, Yokoyama JS, Leonard HL. Assessing the lack of diversity in genetics research across neurodegenerative diseases: A systematic review of the GWAS Catalog and literature. Alzheimers Dement 2024; 20:5740-5756. [PMID: 39030740 PMCID: PMC11350004 DOI: 10.1002/alz.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 07/22/2024]
Abstract
The under-representation of non-European cohorts in neurodegenerative disease genome-wide association studies (GWAS) hampers precision medicine efforts. Despite the inherent genetic and phenotypic diversity in these diseases, GWAS research consistently exhibits a disproportionate emphasis on participants of European ancestry. This study reviews GWAS up to 2022, focusing on non-European or multi-ancestry neurodegeneration studies. We conducted a systematic review of GWAS results and publications up to 2022, focusing on non-European or multi-ancestry neurodegeneration studies. Rigorous article inclusion and quality assessment methods were employed. Of 123 neurodegenerative disease (NDD) GWAS reviewed, 82% predominantly featured European ancestry participants. A single European study identified over 90 risk loci, compared to a total of 50 novel loci in identified in all non-European or multi-ancestry studies. Notably, only six of the loci have been replicated. The significant under-representation of non-European ancestries in NDD GWAS hinders comprehensive genetic understanding. Prioritizing genomic diversity in future research is crucial for advancing NDD therapies and understanding. HIGHLIGHTS: Eighty-two percent of neurodegenerative genome-wide association studies (GWAS) focus on Europeans. Only 6 of 50 novel neurodegenerative disease (NDD) genetic loci have been replicated. Lack of diversity significantly hampers understanding of NDDs. Increasing diversity in NDD genetic research is urgently required. New initiatives are aiming to enhance diversity in NDD research.
Collapse
Affiliation(s)
- Caroline Jonson
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
- Pharmaceutical Sciences and Pharmacogenomics Graduate ProgramUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Kristin S. Levine
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
| | - Julie Lake
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- Laboratory of NeurogeneticsNational Institutes on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Linnea Hertslet
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
| | - Lietsel Jones
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
| | - Dhairya Patel
- Integrative Neurogenomics UnitLaboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Jeff Kim
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- Laboratory of NeurogeneticsNational Institutes on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Sara Bandres‐Ciga
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
| | - Nancy Terry
- Division of Library ServicesOffice of Research ServicesNational Institutes of HealthBethesdaMarylandUSA
| | - Ignacio F. Mata
- Genomic Medicine Institute, Lerner Research Institute, Genomic MedicineCleveland Clinic FoundationClevelandOhioUSA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- Integrative Neurogenomics UnitLaboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Andrew B. Singleton
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- Laboratory of NeurogeneticsNational Institutes on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Mike A. Nalls
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
- Laboratory of NeurogeneticsNational Institutes on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Jennifer S. Yokoyama
- Pharmaceutical Sciences and Pharmacogenomics Graduate ProgramUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Hampton L. Leonard
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
- Laboratory of NeurogeneticsNational Institutes on AgingNational Institutes of HealthBethesdaMarylandUSA
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| |
Collapse
|
24
|
Yang Y, Zhou ZD, Yi L, Tan BJW, Tan EK. Interaction between caffeine consumption & genetic susceptibility in Parkinson's disease: A systematic review. Ageing Res Rev 2024; 99:102381. [PMID: 38914264 DOI: 10.1016/j.arr.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Caffeine is one of the most consumed psychoactive substances globally. Caffeine-gene interactions in Parkinson's disease (PD) has not been systematically examined. OBJECTIVES To conduct a systematic review on the interaction between caffeine consumption and genetic susceptibility to PD. METHODOLOGY We conducted PubMed and Embase search using terms "Genetic association studies", "Caffeine", "polymorphism" and "Parkinson's disease", from inception till 2023. Of the initial 2391 studies, 21 case-control studies were included. The demographic, genetic and clinical data were extracted and analyzed. RESULTS We identified 21 studies which involved a total of 607,074 study subjects and 17 gene loci (SNCA, MAPT, HLA-DRA, NOS1, NOS3, GBA, ApoE, BST1, ESR2, NAT2, SLC2A13, LRRK2, NOS2A, GRIN2A, CYP1A2, ESR1, ADORA2A) have been investigated for the effect of gene-caffeine interaction and PD risk. The genes were identified through PD GWAS or involved in caffeine or related metabolism pathways. Based on the genetic association and interaction studies, only MAPT, SLC2A13, LRRK2, ApoE, NOS2A, GRIN2A, CYP1A2, and ADORA2A have been shown by at least one study to have a positive caffeine-gene interaction influencing the risk of PD. CONCLUSION Studies have shown an interaction between caffeine with genetic variants of MAPT, SLC2A13, LRRK2, ApoE, NOS2A, GRIN2A, CYP1A2, and ADORA2A in modulating the risk of PD. Due to the potential limitations of these discovery/pilot studies, further independent replication studies are needed. Better designed genetic association studies in multi-ancestry and admixed cohorts to identify potential shared or unique multivariate gene-environmental interactions, as well as functional studies of gene-caffeine interactions will be useful.
Collapse
Affiliation(s)
- Yujuan Yang
- Department of Neurology, National Neuroscience Institute, Singapore; Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore.
| | - Zhi Dong Zhou
- Department of Neurology, National Neuroscience Institute, Singapore; Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore.
| | - Lingxiao Yi
- Department of Neurology, National Neuroscience Institute, Singapore.
| | | | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore; Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore.
| |
Collapse
|
25
|
Bucher ML, Dicent J, Duarte Hospital C, Miller GW. Neurotoxicology of dopamine: Victim or assailant? Neurotoxicology 2024; 103:175-188. [PMID: 38857676 PMCID: PMC11694735 DOI: 10.1016/j.neuro.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Since the identification of dopamine as a neurotransmitter in the mid-20th century, investigators have examined the regulation of dopamine homeostasis at a basic biological level and in human disorders. Genetic animal models that manipulate the expression of proteins involved in dopamine homeostasis have provided key insight into the consequences of dysregulated dopamine. As a result, we have come to understand the potential of dopamine to act as an endogenous neurotoxin through the generation of reactive oxygen species and reactive metabolites that can damage cellular macromolecules. Endogenous factors, such as genetic variation and subcellular processes, and exogenous factors, such as environmental exposures, have been identified as contributors to the dysregulation of dopamine homeostasis. Given the variety of dysregulating factors that impact dopamine homeostasis and the potential for dopamine itself to contribute to further cellular dysfunction, dopamine can be viewed as both the victim and an assailant of neurotoxicity. Parkinson's disease has emerged as the exemplar case study of dopamine dysregulation due to the genetic and environmental factors known to contribute to disease risk, and due to the evidence of dysregulated dopamine as a pathologic and pathogenic feature of the disease. This review, inspired by the talk, "Dopamine in Durham: location, location, location" presented by Dr. Miller for the Jacob Hooisma Memorial Lecture at the International Neurotoxicology Association meeting in 2023, offers a primer on dopamine toxicity covering endogenous and exogenous factors that disrupt dopamine homeostasis and the actions of dopamine as an endogenous neurotoxin.
Collapse
Affiliation(s)
- Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Jocelyn Dicent
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Carolina Duarte Hospital
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
26
|
Tan MMX, Lawton MA, Pollard MI, Brown E, Real R, Carrasco AM, Bekadar S, Jabbari E, Reynolds RH, Iwaki H, Blauwendraat C, Kanavou S, Hubbard L, Malek N, Grosset KA, Bajaj N, Barker RA, Burn DJ, Bresner C, Foltynie T, Wood NW, Williams-Gray CH, Andreassen OA, Toft M, Elbaz A, Artaud F, Brice A, Corvol JC, Aasly J, Farrer MJ, Nalls MA, Singleton AB, Williams NM, Ben-Shlomo Y, Hardy J, Hu MTM, Grosset DG, Shoai M, Pihlstrøm L, Morris HR. Genome-wide determinants of mortality and motor progression in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:113. [PMID: 38849413 PMCID: PMC11161485 DOI: 10.1038/s41531-024-00729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
There are 90 independent genome-wide significant genetic risk variants for Parkinson's disease (PD) but currently only five nominated loci for PD progression. The biology of PD progression is likely to be of central importance in defining mechanisms that can be used to develop new treatments. We studied 6766 PD patients, over 15,340 visits with a mean follow-up of between 4.2 and 15.7 years and carried out genome-wide survival studies for time to a motor progression endpoint, defined by reaching Hoehn and Yahr stage 3 or greater, and death (mortality). There was a robust effect of the APOE ε4 allele on mortality in PD. We also identified a locus within the TBXAS1 gene encoding thromboxane A synthase 1 associated with mortality in PD. We also report 4 independent loci associated with motor progression in or near MORN1, ASNS, PDE5A, and XPO1. Only the non-Gaucher disease causing GBA1 PD risk variant E326K, of the known PD risk variants, was associated with mortality in PD. Further work is needed to understand the links between these genomic variants and the underlying disease biology. However, these may represent new candidates for disease modification in PD.
Collapse
Affiliation(s)
- Manuela M X Tan
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
- UCL Movement Disorders Centre, University College London, London, UK.
| | - Michael A Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Miriam I Pollard
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Emmeline Brown
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alejandro Martinez Carrasco
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Samir Bekadar
- Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Departement of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Edwin Jabbari
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Regina H Reynolds
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica, Washington DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Sofia Kanavou
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Leon Hubbard
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Naveed Malek
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Katherine A Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Nin Bajaj
- Clinical Neurosciences, University of Nottingham, Nottingham, UK
| | - Roger A Barker
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - David J Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alexis Elbaz
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP, 94807, Villejuif, France
| | - Fanny Artaud
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP, 94807, Villejuif, France
| | - Alexis Brice
- Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Departement of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Christophe Corvol
- Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Departement of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jan Aasly
- Department of Neurology, St. Olavs Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science (INB), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Matthew J Farrer
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Michael A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica, Washington DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Nigel M Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - John Hardy
- UCL Movement Disorders Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, University College London, London, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Michele T M Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Department of Clinical Neurology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Maryam Shoai
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
- UCL Movement Disorders Centre, University College London, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
27
|
Chapman MA, Sorg BA. A Systematic Review of Extracellular Matrix-Related Alterations in Parkinson's Disease. Brain Sci 2024; 14:522. [PMID: 38928523 PMCID: PMC11201521 DOI: 10.3390/brainsci14060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
The role of the extracellular matrix (ECM) in Parkinson's disease (PD) is not well understood, even though it is critical for neuronal structure and signaling. This systematic review identified the top deregulated ECM-related pathways in studies that used gene set enrichment analyses (GSEA) to document transcriptomic, proteomic, or genomic alterations in PD. PubMed and Google scholar were searched for transcriptomics, proteomics, or genomics studies that employed GSEA on data from PD tissues or cells and reported ECM-related pathways among the top-10 most enriched versus controls. Twenty-seven studies were included, two of which used multiple omics analyses. Transcriptomics and proteomics studies were conducted on a variety of tissue and cell types. Of the 17 transcriptomics studies (16 data sets), 13 identified one or more adhesion pathways in the top-10 deregulated gene sets or pathways, primarily related to cell adhesion and focal adhesion. Among the 8 proteomics studies, 5 identified altered overarching ECM gene sets or pathways among the top 10. Among the 4 genomics studies, 3 identified focal adhesion pathways among the top 10. The findings summarized here suggest that ECM organization/structure and cell adhesion (particularly focal adhesion) are altered in PD and should be the focus of future studies.
Collapse
Affiliation(s)
| | - Barbara A. Sorg
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, USA;
| |
Collapse
|
28
|
Saffie Awad P, Makarious MB, Elsayed I, Sanyaolu A, Wild Crea P, Schumacher Schuh AF, Levine KS, Vitale D, Korestky MJ, Kim J, Peixoto Leal T, Perinan MT, Dey S, Noyce AJ, Reyes-Palomares A, Rodriguez-Losada N, Foo JN, Mohamed W, Heilbron K, Norcliffe-Kaufmann L, Rizig M, Okubadejo N, Nalls M, Blauwendraat C, Singleton A, Leonard H, Mata IF, Bandres Ciga S. Insights into Ancestral Diversity in Parkinsons Disease Risk: A Comparative Assessment of Polygenic Risk Scores. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.28.23299090. [PMID: 38076954 PMCID: PMC10705647 DOI: 10.1101/2023.11.28.23299090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Objectives To evaluate and compare different polygenic risk score (PRS) models in predicting Parkinsons disease (PD) across diverse ancestries, focusing on identifying the most suitable approach for each population and potentially contributing to equitable advancements in precision medicine. Methods We constructed a total of 105 PRS across individual level data from seven diverse ancestries. First, a cross-ancestry conventional PRS comparison was implemented by utilizing the 90 known European risk loci with weighted effects from four independent summary statistics including European, East Asian, Latino/Admixed American, and African/Admixed. These models were adjusted by sex, age, and principal components (28 PRS) and by sex, age, and percentage of admixture (28 PRS) for comparison. Secondly, a novel and refined multi-ancestry best-fit PRS approach was then applied across the seven ancestries by leveraging multi-ancestry meta-analyzed summary statistics and using a p-value thresholding approach (49 PRS) to enhance prediction applicability in a global setting. Results European-based PRS models predicted disease status across all ancestries to differing degrees of accuracy. Ashkenazi Jewish had the highest Odds Ratio (OR): 1.96 (95% CI: 1.69-2.25, p < 0.0001) with an AUC (Area Under the Curve) of 68%. Conversely, the East Asian population, despite having fewer predictive variants (84 out of 90), had an OR of 1.37 (95% CI: 1.32-1.42) and an AUC of 62%, illustrating the cross-ancestry transferability of this model. Lower OR alongside broader confidence intervals were observed in other populations, including Africans (OR =1.38, 95% CI: 1.12-1.63, p=0.001). Adjustment by percentage of admixture did not outperform principal components. Multi-ancestry best-fit PRS models improved risk prediction in European, Ashkenazi Jewish, and African ancestries, yet didn't surpass conventional PRS in admixed populations such as Latino/American admixed and African admixed populations. Interpretation The present study represents a novel and comprehensive assessment of PRS performance across seven ancestries in PD, highlighting the inadequacy of a 'one size fits all' approach in genetic risk prediction. We demonstrated that European based PD PRS models are partially transferable to other ancestries and could be improved by a novel best-fit multi-ancestry PRS, especially in non-admixed populations.
Collapse
|
29
|
Chew G, Mai AS, Ouyang JF, Qi Y, Chao Y, Wang Q, Petretto E, Tan EK. Transcriptomic imputation of genetic risk variants uncovers novel whole-blood biomarkers of Parkinson's disease. NPJ Parkinsons Dis 2024; 10:99. [PMID: 38719867 PMCID: PMC11078960 DOI: 10.1038/s41531-024-00698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Blood-based gene expression signatures could potentially be used as biomarkers for PD. However, it is unclear whether genetically-regulated transcriptomic signatures can provide novel gene candidates for use as PD biomarkers. We leveraged on the Genotype-Tissue Expression (GTEx) database to impute whole-blood transcriptomic expression using summary statistics of three large-scale PD GWAS. A random forest classifier was used with the consensus whole-blood imputed gene signature (IGS) to discriminate between cases and controls. Outcome measures included Area under the Curve (AUC) of Receiver Operating Characteristic (ROC) Curve. We demonstrated that the IGS (n = 37 genes) is conserved across PD GWAS studies and brain tissues. IGS discriminated between cases and controls in an independent whole-blood RNA-sequencing study (1176 PD, 254 prodromal, and 860 healthy controls) with mean AUC and accuracy of 64.8% and 69.4% for PD cohort, and 78.8% and 74% for prodromal cohort. PATL2 was the top-performing imputed gene in both PD and prodromal PD cohorts, whose classifier performance varied with biological sex (higher performance for males and females in the PD and prodromal PD, respectively). Single-cell RNA-sequencing studies (scRNA-seq) of healthy humans and PD patients found PATL2 to be enriched in terminal effector CD8+ and cytotoxic CD4+ cells, whose proportions are both increased in PD patients. We demonstrated the utility of GWAS transcriptomic imputation in identifying novel whole-blood transcriptomic signatures which could be leveraged upon for PD biomarker derivation. We identified PATL2 as a potential biomarker in both clinical and prodromic PD.
Collapse
Affiliation(s)
- Gabriel Chew
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Aaron Shengting Mai
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John F Ouyang
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Yueyue Qi
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Yinxia Chao
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Enrico Petretto
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Eng-King Tan
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- Department of Neurology, Singapore General Hospital, Singapore, Singapore.
| |
Collapse
|
30
|
Bucher ML, Dunn AR, Bradner JM, Stout Egerton K, Burkett JP, Johnson MA, Miller GW. Synaptic vesicle glycoprotein 2C enhances vesicular storage of dopamine and counters dopaminergic toxicity. Eur J Neurosci 2024; 59:2483-2501. [PMID: 38532289 PMCID: PMC11647951 DOI: 10.1111/ejn.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
Dopaminergic neurons of the substantia nigra exist in a persistent state of vulnerability resulting from high baseline oxidative stress, high-energy demand, and broad unmyelinated axonal arborisations. Impairments in the storage of dopamine compound this stress because of cytosolic reactions that transform the vital neurotransmitter into an endogenous neurotoxicant, and this toxicity is thought to contribute to the dopamine neuron degeneration that occurs Parkinson's disease. We have previously identified synaptic vesicle glycoprotein 2C (SV2C) as a modifier of vesicular dopamine function, demonstrating that genetic ablation of SV2C in mice results in decreased dopamine content and evoked dopamine release in the striatum. Here, we adapted a previously published in vitro assay utilising false fluorescent neurotransmitter 206 (FFN206) to visualise how SV2C regulates vesicular dopamine dynamics and determined that SV2C promotes the uptake and retention of FFN206 within vesicles. In addition, we present data indicating that SV2C enhances the retention of dopamine in the vesicular compartment with radiolabelled dopamine in vesicles isolated from immortalised cells and from mouse brain. Further, we demonstrate that SV2C enhances the ability of vesicles to store the neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) and that genetic ablation of SV2C results in enhanced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced vulnerability in mice. Together, these findings suggest that SV2C functions to enhance vesicular storage of dopamine and neurotoxicants and helps maintain the integrity of dopaminergic neurons.
Collapse
Affiliation(s)
- Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Amy R Dunn
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Joshua M Bradner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kristen Stout Egerton
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - James P Burkett
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Michelle A Johnson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York NY 10031, USA
| |
Collapse
|
31
|
Khani M, Cerquera-Cleves C, Kekenadze M, Crea PAW, Singleton AB, Bandres-Ciga S. Towards a Global View of Parkinson's Disease Genetics. Ann Neurol 2024; 95:831-842. [PMID: 38557965 PMCID: PMC11060911 DOI: 10.1002/ana.26905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/04/2024]
Abstract
Parkinson's disease (PD) is a global health challenge, yet historically studies of PD have taken place predominantly in European populations. Recent genetics research conducted in non-European populations has revealed novel population-specific genetic loci linked to PD risk, highlighting the importance of studying PD globally. These insights have broadened our understanding of PD etiology, which is crucial for developing disease-modifying interventions. This review comprehensively explores the global genetic landscape of PD, emphasizing the scientific rationale for studying underrepresented populations. It underscores challenges, such as genotype-phenotype heterogeneity and inclusion difficulties for non-European participants, emphasizing the ongoing need for diverse and inclusive research in PD. ANN NEUROL 2024;95:831-842.
Collapse
Affiliation(s)
- Marzieh Khani
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Catalina Cerquera-Cleves
- Pontificia Universidad Javeriana, San Ignacio Hospital, Neurology Unit, Bogotá, Colombia
- CHU de Québec Research Center, Axe Neurosciences, Laval University. Quebec City, Canada
| | - Mariam Kekenadze
- Tbilisi State Medical University, Tbilisi, 0141, Georgia
- University College London, Queen Square Institute of Neurology , WC1N 3BG, London, UK
| | - Peter A. Wild Crea
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Bhore N, Bogacki EC, O'Callaghan B, Plun-Favreau H, Lewis PA, Herbst S. Common genetic risk for Parkinson's disease and dysfunction of the endo-lysosomal system. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220517. [PMID: 38368938 PMCID: PMC10874702 DOI: 10.1098/rstb.2022.0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/18/2023] [Indexed: 02/20/2024] Open
Abstract
Parkinson's disease is a progressive neurological disorder, characterized by prominent movement dysfunction. The past two decades have seen a rapid expansion of our understanding of the genetic basis of Parkinson's, initially through the identification of monogenic forms and, more recently, through genome-wide association studies identifying common risk variants. Intriguingly, a number of cellular pathways have emerged from these analysis as playing central roles in the aetiopathogenesis of Parkinson's. In this review, the impact of data deriving from genome-wide analyses for Parkinson's upon our functional understanding of the disease will be examined, with a particular focus on examples of endo-lysosomal and mitochondrial dysfunction. The challenges of moving from a genetic to a functional understanding of common risk variants for Parkinson's will be discussed, with a final consideration of the current state of the genetic architecture of the disorder. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Noopur Bhore
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
| | - Erin C. Bogacki
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Benjamin O'Callaghan
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Helene Plun-Favreau
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Patrick A. Lewis
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Susanne Herbst
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
33
|
Karunakaran KB, Jain S, Brahmachari SK, Balakrishnan N, Ganapathiraju MK. Parkinson's disease and schizophrenia interactomes contain temporally distinct gene clusters underlying comorbid mechanisms and unique disease processes. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:26. [PMID: 38413605 PMCID: PMC10899210 DOI: 10.1038/s41537-024-00439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Genome-wide association studies suggest significant overlaps in Parkinson's disease (PD) and schizophrenia (SZ) risks, but the underlying mechanisms remain elusive. The protein-protein interaction network ('interactome') plays a crucial role in PD and SZ and can incorporate their spatiotemporal specificities. Therefore, to study the linked biology of PD and SZ, we compiled PD- and SZ-associated genes from the DisGeNET database, and constructed their interactomes using BioGRID and HPRD. We examined the interactomes using clustering and enrichment analyses, in conjunction with the transcriptomic data of 26 brain regions spanning foetal stages to adulthood available in the BrainSpan Atlas. PD and SZ interactomes formed four gene clusters with distinct temporal identities (Disease Gene Networks or 'DGNs'1-4). DGN1 had unique SZ interactome genes highly expressed across developmental stages, corresponding to a neurodevelopmental SZ subtype. DGN2, containing unique SZ interactome genes expressed from early infancy to adulthood, correlated with an inflammation-driven SZ subtype and adult SZ risk. DGN3 contained unique PD interactome genes expressed in late infancy, early and late childhood, and adulthood, and involved in mitochondrial pathways. DGN4, containing prenatally-expressed genes common to both the interactomes, involved in stem cell pluripotency and overlapping with the interactome of 22q11 deletion syndrome (comorbid psychosis and Parkinsonism), potentially regulates neurodevelopmental mechanisms in PD-SZ comorbidity. Our findings suggest that disrupted neurodevelopment (regulated by DGN4) could expose risk windows in PD and SZ, later elevating disease risk through inflammation (DGN2). Alternatively, variant clustering in DGNs may produce disease subtypes, e.g., PD-SZ comorbidity with DGN4, and early/late-onset SZ with DGN1/DGN2.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India.
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| | - Sanjeev Jain
- National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, India.
| | | | - N Balakrishnan
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Madhavi K Ganapathiraju
- Department of Computer Science, Carnegie Mellon University Qatar, Doha, Qatar.
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Jerez PÁ, Wild Crea PA, Ramos DM, Gustavsson EK, Radefeldt M, Makarious MB, Ojo OO, Billingsley KJ, Malik L, Daida K, Bromberek S, Hu C, Schneider Z, Surapaneni AL, Stadler J, Rizig M, Morris HR, Pantazis CB, Leonard HL, Screven L, Qi YA, Nalls MA, Bandres-Ciga S, Hardy J, Houlden H, Eng C, Burchard EG, Kachuri L, Singleton AB, Fischer S, Bauer P, Reed X, Ryten M, Beetz C, Ward M, Okubadejo NU, Blauwendraat C. African ancestry neurodegeneration risk variant disrupts an intronic branchpoint in GBA1. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.20.24302827. [PMID: 39802803 PMCID: PMC11722498 DOI: 10.1101/2024.02.20.24302827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Recently, a novel African ancestry specific Parkinson's disease (PD) risk signal was identified at the gene encoding glucocerebrosidase (GBA1). This variant (rs3115534-G) is carried by ~50% of West African PD cases and imparts a dose-dependent increase in risk for disease. The risk variant has varied frequencies across African ancestry groups, but is almost absent in European and Asian ancestry populations. GBA1 is a gene of high clinical and therapeutic interest. Damaging bi-allelic protein-coding variants cause Gaucher disease and mono-allelic variants confer risk for PD and Dementia with Lewy Bodies, likely by reducing the function of glucocerebrosidase. Interestingly, the novel African ancestry specific GBA1 risk variant is a non-coding variant, suggesting a different mechanism of action. Using full length RNA transcript sequencing, we identified intron 8 expression in risk variant carriers (G) but not in non-variant carriers (T). Antibodies targeting the N-terminus of glucocerebrosidase showed that this intron-retained isoform is likely not protein coding and subsequent proteomics did not identify a shorter protein isoform, suggesting the disease mechanism is RNA-based. CRISPR editing of the reported index variant (rs3115534) revealed that this is the responsible sequence alteration driving production of these intron 8 containing transcripts. Follow-up analysis of this variant showed that it is in a key intronic branchpoint sequence and therefore has important implications in splicing and disease. In addition, when measuring glucocerebrosidase activity we identified a dose-dependent reduction in risk variant carriers (G). Overall, we report the functional effect of a GBA1 non-coding risk variant, which acts by interfering with the splicing of functional GBA1 transcripts, resulting in reduced protein levels and reduced glucocerebrosidase activity. This understanding reveals a novel therapeutic target in an underserved and underrepresented population.
Collapse
Affiliation(s)
- Pilar Álvarez Jerez
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Peter A. Wild Crea
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Daniel M. Ramos
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Emil K. Gustavsson
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | - Mary B. Makarious
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- UCL Movement Disorders Centre, University College London, London, UK
| | - Oluwadamilola O. Ojo
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Kimberley J. Billingsley
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Laksh Malik
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kensuke Daida
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Sarah Bromberek
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Carol Hu
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zachary Schneider
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Aditya L. Surapaneni
- Department of Medicine, New York University Langone School of Medicine, New York, New York, USA
| | - Julia Stadler
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mie Rizig
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Huw R. Morris
- UCL Movement Disorders Centre, University College London, London, UK
| | - Caroline B. Pantazis
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hampton L. Leonard
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Laurel Screven
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yue A. Qi
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike A. Nalls
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Medicine, New York University Langone School of Medicine, New York, New York, USA
| | - Celeste Eng
- Department of Biotherapeutic Sciences and Department of Medicine, University of California, San Francisco, CA, USA
| | - Esteban González Burchard
- Department of Biotherapeutic Sciences and Department of Medicine, University of California, San Francisco, CA, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | | | | | - Xylena Reed
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | | | - Michael Ward
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Njideka U. Okubadejo
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| |
Collapse
|
35
|
He R, Zeng Y, Wang C, Chen L, Cai G, Chen Y, Wang Y, Ye Q, Chen X. Associative role of HLA-DRB1 as a protective factor for susceptibility and progression of Parkinson's disease: a Chinese cross-sectional and longitudinal study. Front Aging Neurosci 2024; 16:1361492. [PMID: 38586829 PMCID: PMC10995924 DOI: 10.3389/fnagi.2024.1361492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/13/2024] [Indexed: 04/09/2024] Open
Abstract
Background Previous genome-wide association studies investigating the relationship between the HLA-DRB1 and the risk of Parkinson's disease (PD) have shown limited racial diversity and have not explored clinical heterogeneity extensively. Methods The study consisted of three parts: a case-control study, a cross-sectional study, and a longitudinal cohort study. The case-control study included 477 PD patients and 477 healthy controls to explore the relationship between rs660895 and PD susceptibility. The cross-sectional study utilized baseline data from 429 PD patients to examine the correlation between rs660895 and PD features. The longitudinal study included 388 PD patients who completed a 3-year follow-up to investigate the effects of rs660895 on PD progression. Results In the case-control study, HLA-DRB1 rs660895-G allele was associated with a decreased risk of PD in allele model (adjusted OR=0.72, p = 0.003) and dominant model (AG + GG vs. AA: adjusted OR = 0.67, p = 0.003). In the cross-sectional analysis, there was no association between rs660895 and the onset age, motor phenotype, or initial motor symptoms. In the longitudinal analysis, PD patients with the G allele exhibited a slower progression of motor symptoms (MDS-UPDRS-III total score: β = -5.42, p < 0.001, interaction ptime × genotype < 0.001) and non-motor symptoms (NMSS score: β = -4.78, p = 0.030, interaction ptime × genotype < 0.001). Conclusion Our findings support HLA-DRB1 rs660895-G allele is a protective genetic factor for PD risk in Chinese population. Furthermore, we also provide new evidence for the protective effect of rs660895-G allele in PD progression.
Collapse
Affiliation(s)
- Raoli He
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Yuqi Zeng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Chaodong Wang
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lina Chen
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ying Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Yingqing Wang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
36
|
Pankratz N, Cole BR, Beutel KM, Liao KP, Ashe J. Parkinson Disease Genetics Extended to African and Hispanic Ancestries in the VA Million Veteran Program. Neurol Genet 2024; 10:e200110. [PMID: 38130828 PMCID: PMC10732342 DOI: 10.1212/nxg.0000000000200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/06/2023] [Indexed: 12/23/2023]
Abstract
Background and Objectives Nearly all genetic analyses of Parkinson disease (PD) have been in populations of European ancestry. We sought to test the ability of a machine learning method to extract accurate PD diagnoses from an electronic medical record (EMR) system, to see whether genetic variants identified in European populations generalize to individuals of African and Hispanic ancestries, and to compare the rates of PD across ancestries. Methods A machine learning method using natural language processing was applied to EMRs of US veterans participating in the VA Million Veteran Program (MVP) to identify individuals with PD. These putative cases were vetted via blind chart review by a movement disorder specialist. A polygenic risk score (PRS) of 90 established genetic variants whose genotypes were imputed from a customized Axiom Biobank Array was evaluated in different case groups. Results The EMR prediction scores had a distinct trimodal distribution, with 97% of the high group and only 30% of the middle group having a credible diagnosis of PD. Using the 3,542 cases from the high group matched 4:1 to controls, the PRS was highly predictive in individuals of European ancestry (n = 3,137 cases; OR = 1.82; p = 8.01E-48), and nearly identical effect sizes were seen in individuals of African (n = 184; OR = 2.07; p = 3.4E-4) and Hispanic ancestries (n = 221; OR = 2.13; p = 3.9E-6). The PRS was much less predictive for the 2,757 European ancestry cases who had an ICD code for PD but for whom the machine learning method had a lower confidence in their diagnosis. No novel ancestry-specific genetic variants were identified. Individuals with African ancestry had one-quarter the rate of PD compared with European or Hispanic ancestries aged 60-70 years and one half the rate in the 70-80 years age range. African American cases had a higher proportion of their DNA originating in Europe compared with African American controls. Discussion Machine learning can reliably classify PD using data from a large EMR. Larger studies of non-European populations are required to confirm the generalizability of PD risk variants identified in populations of European ancestry and the increased risk coming from a higher proportion of European DNA in African Americans.
Collapse
Affiliation(s)
- Nathan Pankratz
- From the Department of Laboratory Medicine and Pathology (N.P., B.R.C., K.M.B.), School of Medicine, University of Minnesota, Minneapolis; Division of Rheumatology (K.P.L.), Immunology, and Allergy, Brigham and Women's Hospital; Department of Biomedical Informatics (K.P.L.), Harvard Medical School; Division of Data Sciences (K.P.L.), VA Boston Healthcare System, MA; Department of Neurology (J.A.), University of Minnesota Medical School; and Department of Neurology (J.A.), Minneapolis Veterans Affairs Health Care System, MN
| | - Benjamin R Cole
- From the Department of Laboratory Medicine and Pathology (N.P., B.R.C., K.M.B.), School of Medicine, University of Minnesota, Minneapolis; Division of Rheumatology (K.P.L.), Immunology, and Allergy, Brigham and Women's Hospital; Department of Biomedical Informatics (K.P.L.), Harvard Medical School; Division of Data Sciences (K.P.L.), VA Boston Healthcare System, MA; Department of Neurology (J.A.), University of Minnesota Medical School; and Department of Neurology (J.A.), Minneapolis Veterans Affairs Health Care System, MN
| | - Kathleen M Beutel
- From the Department of Laboratory Medicine and Pathology (N.P., B.R.C., K.M.B.), School of Medicine, University of Minnesota, Minneapolis; Division of Rheumatology (K.P.L.), Immunology, and Allergy, Brigham and Women's Hospital; Department of Biomedical Informatics (K.P.L.), Harvard Medical School; Division of Data Sciences (K.P.L.), VA Boston Healthcare System, MA; Department of Neurology (J.A.), University of Minnesota Medical School; and Department of Neurology (J.A.), Minneapolis Veterans Affairs Health Care System, MN
| | - Katherine P Liao
- From the Department of Laboratory Medicine and Pathology (N.P., B.R.C., K.M.B.), School of Medicine, University of Minnesota, Minneapolis; Division of Rheumatology (K.P.L.), Immunology, and Allergy, Brigham and Women's Hospital; Department of Biomedical Informatics (K.P.L.), Harvard Medical School; Division of Data Sciences (K.P.L.), VA Boston Healthcare System, MA; Department of Neurology (J.A.), University of Minnesota Medical School; and Department of Neurology (J.A.), Minneapolis Veterans Affairs Health Care System, MN
| | - James Ashe
- From the Department of Laboratory Medicine and Pathology (N.P., B.R.C., K.M.B.), School of Medicine, University of Minnesota, Minneapolis; Division of Rheumatology (K.P.L.), Immunology, and Allergy, Brigham and Women's Hospital; Department of Biomedical Informatics (K.P.L.), Harvard Medical School; Division of Data Sciences (K.P.L.), VA Boston Healthcare System, MA; Department of Neurology (J.A.), University of Minnesota Medical School; and Department of Neurology (J.A.), Minneapolis Veterans Affairs Health Care System, MN
| |
Collapse
|
37
|
Andrews SV, Kukkle PL, Menon R, Geetha TS, Goyal V, Kandadai RM, Kumar H, Borgohain R, Mukherjee A, Wadia PM, Yadav R, Desai S, Kumar N, Joshi D, Murugan S, Biswas A, Pal PK, Oliver M, Nair S, Kayalvizhi A, Samson PL, Deshmukh M, Bassi A, Sandeep C, Mandloi N, Davis OB, Roberts MA, Leto DE, Henry AG, Di Paolo G, Muthane U, Das SK, Peterson AS, Sandmann T, Gupta R, Ramprasad VL. The Genetic Drivers of Juvenile, Young, and Early-Onset Parkinson's Disease in India. Mov Disord 2024; 39:339-349. [PMID: 38014556 DOI: 10.1002/mds.29676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Recent studies have advanced our understanding of the genetic drivers of Parkinson's disease (PD). Rare variants in more than 20 genes are considered causal for PD, and the latest PD genome-wide association study (GWAS) identified 90 independent risk loci. However, there remains a gap in our understanding of PD genetics outside of the European populations in which the vast majority of these studies were focused. OBJECTIVE The aim was to identify genetic risk factors for PD in a South Asian population. METHODS A total of 674 PD subjects predominantly with age of onset (AoO) ≤50 years (encompassing juvenile, young, or early-onset PD) were recruited from 10 specialty movement disorder centers across India over a 2-year period; 1376 control subjects were selected from the reference population GenomeAsia, Phase 2. We performed various case-only and case-control genetic analyses for PD diagnosis and AoO. RESULTS A genome-wide significant signal for PD diagnosis was identified in the SNCA region, strongly colocalizing with SNCA region signal from European PD GWAS. PD cases with pathogenic mutations in PD genes exhibited, on average, lower PD polygenic risk scores than PD cases lacking any PD gene mutations. Gene burden studies of rare, predicted deleterious variants identified BSN, encoding the presynaptic protein Bassoon that has been previously associated with neurodegenerative disease. CONCLUSIONS This study constitutes the largest genetic investigation of PD in a South Asian population to date. Future work should seek to expand sample numbers in this population to enable improved statistical power to detect PD genes in this understudied group. © 2023 Denali Therapeutics and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shan V Andrews
- Denali Therapeutics, South San Francisco, California, USA
| | - Prashanth L Kukkle
- Manipal Hospital, Bangalore, India
- Parkinson's Disease and Movement Disorders Clinic, Bangalore, India
| | | | | | - Vinay Goyal
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Medanta Hospital, New Delhi, India
- Medanta, The Medicity, Gurgaon, India
| | - Rukmini Mridula Kandadai
- Nizams Institute of Medical Sciences (NIMS), Hyderabad, India
- Citi Neuro Centre, Hyderabad, India
| | | | - Rupam Borgohain
- Nizams Institute of Medical Sciences (NIMS), Hyderabad, India
- Citi Neuro Centre, Hyderabad, India
| | - Adreesh Mukherjee
- Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | | | - Ravi Yadav
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Soaham Desai
- Department of Neurology, Shree Krishna Hospital and Pramukhaswami Medical College, Bhaikaka University, Anand, India
| | - Niraj Kumar
- All India Institute of Medical Sciences, Rishikesh, India
- All India Institute of Medical Sciences, Bibinagar (Hyderabad Metropolitan Region), Bibinagar, India
| | - Deepika Joshi
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Atanu Biswas
- Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Pramod K Pal
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | | | | | | | | | | | | | | | - Oliver B Davis
- Denali Therapeutics, South San Francisco, California, USA
| | | | - Dara E Leto
- Denali Therapeutics, South San Francisco, California, USA
| | | | | | - Uday Muthane
- Parkinson and Ageing Research Foundation, Bangalore, India
| | - Shymal K Das
- Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | | | | | | | | |
Collapse
|
38
|
Moore A, Crea PW, Makarious M, Bandres-Ciga S, Blauwendraat C, Diez-Fairen M. A genetic and transcriptomic assessment of the KTN1 gene in Parkinson's disease risk. Neurobiol Aging 2024; 134:66-73. [PMID: 37992546 PMCID: PMC10843739 DOI: 10.1016/j.neurobiolaging.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/29/2023] [Accepted: 11/04/2023] [Indexed: 11/24/2023]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder caused by both genetic and environmental factors. An association has been described between KTN1 genetic variants and changes in its expression in the putamen and substantia nigra brain regions and an increased risk for PD. Here, we examine the link between PD susceptibility and KTN1 using individual-level genotyping data and summary statistics from the most recent genome-wide association studies (GWAS) for PD risk and age at onset from the International Parkinson's Disease Genomics Consortium (IPDGC), as well as whole-genome sequencing data from the Accelerating Medicines Partnership Parkinson's disease (AMP-PD) initiative. To investigate the potential effect of changes in KTN1 expression on PD compared to unaffected individuals, we further assess publicly available expression quantitative trait loci (eQTL) results from GTEx v8 and BRAINEAC and transcriptomics data from AMP-PD. Overall, we found no genetic associations between KTN1 and PD in our cohorts but found potential evidence of differences in mRNA expression, which needs to be further explored.
Collapse
Affiliation(s)
- Anni Moore
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Building 35, Bethesda, MD 20892, USA
| | - Peter Wild Crea
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Building 35, Bethesda, MD 20892, USA
| | - Mary Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Building 35, Bethesda, MD 20892, USA; UCL Movement Disorders Centre, University College London, 33 Queen Square, 6th floor, WC1N 3BG Box 146, London, UK
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Building 35, Bethesda, MD 20892, USA; Center for Alzheimer's and Related Dementias, National Institute on Aging, 9000 Rockville Pike, Building T44, Bethesda, MD 20892, USA.
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Building 35, Bethesda, MD 20892, USA; Center for Alzheimer's and Related Dementias, National Institute on Aging, 9000 Rockville Pike, Building T44, Bethesda, MD 20892, USA
| | - Monica Diez-Fairen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Building 35, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Wu Y, Meng X, Cheng WY, Yan Z, Li K, Wang J, Jiang T, Zhou F, Wong KH, Zhong C, Dong Y, Gao S. Can pluripotent/multipotent stem cells reverse Parkinson's disease progression? Front Neurosci 2024; 18:1210447. [PMID: 38356648 PMCID: PMC10864507 DOI: 10.3389/fnins.2024.1210447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by continuous and selective degeneration or death of dopamine neurons in the midbrain, leading to dysfunction of the nigrostriatal neural circuits. Current clinical treatments for PD include drug treatment and surgery, which provide short-term relief of symptoms but are associated with many side effects and cannot reverse the progression of PD. Pluripotent/multipotent stem cells possess a self-renewal capacity and the potential to differentiate into dopaminergic neurons. Transplantation of pluripotent/multipotent stem cells or dopaminergic neurons derived from these cells is a promising strategy for the complete repair of damaged neural circuits in PD. This article reviews and summarizes the current preclinical/clinical treatments for PD, their efficacies, and the advantages/disadvantages of various stem cells, including pluripotent and multipotent stem cells, to provide a detailed overview of how these cells can be applied in the treatment of PD, as well as the challenges and bottlenecks that need to be overcome in future translational studies.
Collapse
Affiliation(s)
- Yongkang Wu
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Xiangtian Meng
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wai-Yin Cheng
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Zhichao Yan
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keqin Li
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianfang Jiang
- Department of Neurology, Shanghai Eighth People’s Hospital Affiliated to Jiangsu University, Shanghai, China
| | - Fei Zhou
- Department of Neurology, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Ka-Hing Wong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Dong
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Shane Gao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
40
|
Jonson C, Levine KS, Lake J, Hertslet L, Jones L, Patel D, Kim J, Bandres-Ciga S, Terry N, Mata IF, Blauwendraat C, Singleton AB, Nalls MA, Yokoyama JS, Leonard HL. Assessing the lack of diversity in genetics research across neurodegenerative diseases: a systematic review of the GWAS Catalog and literature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.08.24301007. [PMID: 38260595 PMCID: PMC10802650 DOI: 10.1101/2024.01.08.24301007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Importance The under-representation of participants with non-European ancestry in genome-wide association studies (GWAS) is a critical issue that has significant implications, including hindering the progress of precision medicine initiatives. This issue is particularly significant in the context of neurodegenerative diseases (NDDs), where current therapeutic approaches have shown limited success. Addressing this under-representation is crucial to harnessing the full potential of genomic medicine in underserved communities and improving outcomes for NDD patients. Objective Our primary objective was to assess the representation of non-European ancestry participants in genetic discovery efforts related to NDDs. We aimed to quantify the extent of inclusion of diverse ancestry groups in NDD studies and determine the number of associated loci identified in more inclusive studies. Specifically, we sought to highlight the disparities in research efforts and outcomes between studies predominantly involving European ancestry participants and those deliberately targeting non-European or multi-ancestry populations across NDDs. Evidence Review We conducted a systematic review utilizing existing GWAS results and publications to assess the inclusion of diverse ancestry groups in neurodegeneration and neurogenetics studies. Our search encompassed studies published up to the end of 2022, with a focus on identifying research that deliberately included non-European or multi-ancestry cohorts. We employed rigorous methods for the inclusion of identified articles and quality assessment. Findings Our review identified a total of 123 NDD GWAS. Strikingly, 82% of these studies predominantly featured participants of European ancestry. Endeavors specifically targeting non-European or multi-ancestry populations across NDDs identified only 52 risk loci. This contrasts with predominantly European studies, which reported over 90 risk loci for a single disease. Encouragingly, over 65% of these discoveries occurred in 2020 or later, indicating a recent increase in studies deliberately including non-European cohorts. Conclusions and relevance Our findings underscore the pressing need for increased diversity in neurodegenerative research. The significant under-representation of non-European ancestry participants in NDD GWAS limits our understanding of the genetic underpinnings of these diseases. To advance the field of neurodegenerative research and develop more effective therapies, it is imperative that future investigations prioritize and harness the genomic diversity present within and across global populations.
Collapse
Affiliation(s)
- Caroline Jonson
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
- Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA USA
| | - Kristin S. Levine
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
| | - Julie Lake
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD USA 20892
| | - Linnea Hertslet
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
| | - Lietsel Jones
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
| | - Dhairya Patel
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jeff Kim
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD USA 20892
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
| | - Nancy Terry
- Division of Library Services, Office of Research Services, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Ignacio F. Mata
- Genomic Medicine Institute, Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD USA 20892
| | - Mike A. Nalls
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD USA 20892
| | - Jennifer S. Yokoyama
- Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA USA
| | - Hampton L. Leonard
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD USA 20892
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
41
|
Bruno MK, Matsunaga M, Krening E, Gao F, Chen JJ, Seto T, Ross GW. The Prevalence of Hospitalized Parkinson's Disease Patients in All Case Hospitalization among Different Race/Ethnic Subgroups in Hawaii. JOURNAL OF PARKINSON'S DISEASE 2024; 14:725-735. [PMID: 38607763 PMCID: PMC11191512 DOI: 10.3233/jpd-230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
Background Little is known about the epidemiology of Parkinson's disease (PD) patients in Native Hawaiian Or Other Pacific Islander (NHPI) and Asian American (AA) subgroups. Objective To determine if the prevalence of hospitalized PD patients is different across age groups and racial/ethnic subgroups in Hawaii. Methods We conducted a retrospective analysis of Hawaii statewide registry (2016-2020) hospitalization data for patients who were 50 years or older. PD patients were identified using an ICD 10 code: Parkinson's Disease (G20) as their primary/secondary hospitalization discharge diagnosis code. Demographic and clinical characteristics among racial/ethnic subgroups (White, Japanese, Filipino, Chinese, NHPI, or Other) were compared. Results Of 146,844 total hospitalized patients (n = 429,879 records), 1.6% (n = 2,401) had a PD diagnosis. The prevalence of hospitalized PD patients was 2.3% among Japanese and Chinese, followed by 1.7% for Whites, 1.2% for Filipinos and was lowest for NHPI with 0.9% (p < 0.001). As patient's age increased, the prevalence of hospitalized PD patients increased, with 80-84 years old for the highest age range (3.4%). The prevalence of hospitalized PD patients at 80-84 years old varied across the race/ethnic subgroups (Chinese 4.3%, Japanese 4.0%, Whites 3.7%, Filipinos 2.5%, NHPI 2.3%). Conclusions The prevalence of hospitalized PD patients among all case hospitalizations were lower for NHPI and Filipino compared to that of Japanese, Chinese, and Whites. As patients' age increased, the prevalence of hospitalized patients with PD increased, but less so in NHPI and Filipino groups. Further research is warranted to understand the reason for these observed differences among racial/ethnic subgroups.
Collapse
Affiliation(s)
- Michiko Kimura Bruno
- The Queen’s Medical Center, Honolulu, HI, USA
- University of Hawaii John A, Burns School of Medicine, Honolulu, HI, USA
| | - Masako Matsunaga
- University of Hawaii John A, Burns School of Medicine, Honolulu, HI, USA
| | | | - Fay Gao
- The Queen’s Medical Center, Honolulu, HI, USA
- University of Hawaii John A, Burns School of Medicine, Honolulu, HI, USA
| | - John J. Chen
- University of Hawaii John A, Burns School of Medicine, Honolulu, HI, USA
| | - Todd Seto
- The Queen’s Medical Center, Honolulu, HI, USA
- University of Hawaii John A, Burns School of Medicine, Honolulu, HI, USA
| | - G. Webster Ross
- Pacific Health Research and Education Institute, VA Pacific Islands Health CareSystem, Honolulu, HI, USA
| |
Collapse
|
42
|
Welton T, Teo TWJ, Chan LL, Tan EK, Tan LCS. Parkinson's Disease Risk Variant rs9638616 is Non-Specifically Associated with Altered Brain Structure and Function. JOURNAL OF PARKINSON'S DISEASE 2024; 14:713-724. [PMID: 38640170 PMCID: PMC11191537 DOI: 10.3233/jpd-230455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/21/2024]
Abstract
Background A genome-wide association study (GWAS) variant associated with Parkinson's disease (PD) risk in Asians, rs9638616, was recently reported, and maps to WBSCR17/GALNT17, which is involved in synaptic transmission and neurite development. Objective To test the association of the rs9638616 T allele with imaging-derived measures of brain microstructure and function. Methods We analyzed 3-Tesla MRI and genotyping data from 116 early PD patients (aged 66.8±9.0 years; 39% female; disease duration 1.25±0.71 years) and 57 controls (aged 68.7±7.4 years; 54% female), of Chinese ethnicity. We performed voxelwise analyses for imaging-genetic association of rs9638616 T allele with white matter tract fractional anisotropy (FA), grey matter volume and resting-state network functional connectivity. Results The rs9638616 T allele was associated with widespread lower white matter FA (t = -1.75, p = 0.042) and lower functional connectivity of the supplementary motor area (SMA) (t = -5.05, p = 0.001), in both PD and control groups. Interaction analysis comparing the association of rs9638616 and FA between PD and controls was non-significant. These imaging-derived phenotypes mediated the association of rs9638616 to digit span (indirect effect: β= -0.21 [-0.42,-0.05], p = 0.031) and motor severity (indirect effect: β= 0.15 [0.04,0.26], p = 0.045). Conclusions We have shown that a novel GWAS variant which is biologically linked to synaptic transmission is associated with white matter tract and functional connectivity dysfunction in the SMA, supported by changes in clinical motor scores. This provides pathophysiologic clues linking rs9638616 to PD risk and might contribute to future risk stratification models.
Collapse
Affiliation(s)
- Thomas Welton
- National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
| | | | - Ling Ling Chan
- National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Eng-King Tan
- National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
| | - Louis Chew Seng Tan
- National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
| |
Collapse
|
43
|
Lim SY, Klein C. Parkinson's Disease is Predominantly a Genetic Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:467-482. [PMID: 38552119 PMCID: PMC11091652 DOI: 10.3233/jpd-230376] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/10/2024] [Indexed: 04/06/2024]
Abstract
The discovery of a pathogenic variant in the alpha-synuclein (SNCA) gene in the Contursi kindred in 1997 indisputably confirmed a genetic cause in a subset of Parkinson's disease (PD) patients. Currently, pathogenic variants in one of the seven established PD genes or the strongest known risk factor gene, GBA1, are identified in ∼15% of PD patients unselected for age at onset and family history. In this Debate article, we highlight multiple avenues of research that suggest an important - and in some cases even predominant - role for genetics in PD aetiology, including familial clustering, high rates of monogenic PD in selected populations, and complete penetrance with certain forms. At first sight, the steep increase in PD prevalence exceeding that of other neurodegenerative diseases may argue against a predominant genetic etiology. Notably, the principal genetic contribution in PD is conferred by pathogenic variants in LRRK2 and GBA1 and, in both cases, characterized by an overall late age of onset and age-related penetrance. In addition, polygenic risk plays a considerable role in PD. However, it is likely that, in the majority of PD patients, a complex interplay of aging, genetic, environmental, and epigenetic factors leads to disease development.
Collapse
Affiliation(s)
- Shen-Yang Lim
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, Division of Neurology, University of Malaya, Kuala Lumpur, Malaysia
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| |
Collapse
|
44
|
Kim JJ, Vitale D, Otani DV, Lian MM, Heilbron K, Iwaki H, Lake J, Solsberg CW, Leonard H, Makarious MB, Tan EK, Singleton AB, Bandres-Ciga S, Noyce AJ, Blauwendraat C, Nalls MA, Foo JN, Mata I. Multi-ancestry genome-wide association meta-analysis of Parkinson's disease. Nat Genet 2024; 56:27-36. [PMID: 38155330 PMCID: PMC10786718 DOI: 10.1038/s41588-023-01584-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2023] [Indexed: 12/30/2023]
Abstract
Although over 90 independent risk variants have been identified for Parkinson's disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson's disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations.
Collapse
Affiliation(s)
- Jonggeol Jeffrey Kim
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Preventive Neurology Unit, Centre for Prevention Diagnosis and Detection, Wolfson Institute of Population Health, Queen Mary University of London, London, UK.
| | - Dan Vitale
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Diego Véliz Otani
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Institute for Genome Sciences, University of Maryland, Baltimore, MD, USA
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, Singapore, Singapore
| | | | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Julie Lake
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Caroline Warly Solsberg
- Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, UCSF, San Francisco, CA, USA
| | - Hampton Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Duke NUS Medical School, Singapore, Singapore
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alastair J Noyce
- Preventive Neurology Unit, Centre for Prevention Diagnosis and Detection, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Data Tecnica International, Washington, DC, USA.
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, Singapore, Singapore.
| | - Ignacio Mata
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
45
|
Schaeffer E, Yilmaz R, St. Louis EK, Noyce AJ. Ethical Considerations for Identifying Individuals in the Prodromal/Early Phase of Parkinson's Disease: A Narrative Review. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S307-S319. [PMID: 38995800 PMCID: PMC11492008 DOI: 10.3233/jpd-230428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
The ability to identify individuals in the prodromal phase of Parkinson's disease has improved in recent years, raising the question of whether and how those affected should be informed about the risk of future disease. Several studies investigated prognostic counselling for individuals with isolated REM sleep behavior disorder and have shown that most patients want to receive information about prognosis, but autonomy and individual preferences must be respected. However, there are still many unanswered questions about risk disclosure or early diagnosis of PD, including the impact on personal circumstances, cultural preferences and specific challenges associated with different profiles of prodromal symptoms, genetic testing or biomarker assessments. This narrative review aims to summarize the current literature on prognostic counselling and risk disclosure in PD, as well as highlight future perspectives that may emerge with the development of new biomarkers and their anticipated impact on the definition of PD.
Collapse
Affiliation(s)
- Eva Schaeffer
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel and Kiel University, Kiel, Germany
| | - Rezzak Yilmaz
- Department of Neurology, Ankara University School of Medicine, Ankara, Turkey
- Ankara University Brain Research Center, Ankara, Turkey
| | - Erik K. St. Louis
- Mayo Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Health System Southwest Wisconsin, La Crosse, WI, USA
| | - Alastair J. Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
46
|
Ostrožovičová M, Mecheri Y, Al-Mubarak BR, Al-Tassan N, Makarious MB, Periñan MT, Bandres-Ciga S. PTPA variants and the risk for Parkinson's disease in diverse ancestry populations. Brain 2023; 146:e120-e124. [PMID: 37467482 PMCID: PMC10689897 DOI: 10.1093/brain/awad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Affiliation(s)
- Miriam Ostrožovičová
- Department of Neurology, P.J. Safarik University, Kosice 04011, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice 04011, Slovak Republic
| | - Yasser Mecheri
- Neurology Department, Dr Benbadis University Hospital, Constantine 25018, Algeria
| | - Bashayer R Al-Mubarak
- Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Nada Al-Tassan
- Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- UCL Movement Disorders Centre, University College London, WC1N 3BG London, UK
| | - Maria Teresa Periñan
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, 41013 Seville, Spain
- Preventive Neurology Unit, Centre for Prevention, Detection and Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, EC1M 6BQ London, UK
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Li P, Wei J, Zhu Y. CellGO: a novel deep learning-based framework and webserver for cell-type-specific gene function interpretation. Brief Bioinform 2023; 25:bbad417. [PMID: 37995133 PMCID: PMC10790717 DOI: 10.1093/bib/bbad417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
Interpreting the function of genes and gene sets identified from omics experiments remains a challenge, as current pathway analysis tools often fail to consider the critical biological context, such as tissue or cell-type specificity. To address this limitation, we introduced CellGO. CellGO tackles this challenge by leveraging the visible neural network (VNN) and single-cell gene expressions to mimic cell-type-specific signaling propagation along the Gene Ontology tree within a cell. This design enables a novel scoring system to calculate the cell-type-specific gene-pathway paired active scores, based on which, CellGO is able to identify cell-type-specific active pathways associated with single genes. In addition, by aggregating the activities of single genes, CellGO extends its capability to identify cell-type-specific active pathways for a given gene set. To enhance biological interpretation, CellGO offers additional features, including the identification of significantly active cell types and driver genes and community analysis of pathways. To validate its performance, CellGO was assessed using a gene set comprising mixed cell-type markers, confirming its ability to discern active pathways across distinct cell types. Subsequent benchmarking analyses demonstrated CellGO's superiority in effectively identifying cell types and their corresponding cell-type-specific pathways affected by gene knockouts, using either single genes or sets of genes differentially expressed between knockout and control samples. Moreover, CellGO demonstrated its ability to infer cell-type-specific pathogenesis for disease risk genes. Accessible as a Python package, CellGO also provides a user-friendly web interface, making it a versatile and accessible tool for researchers in the field.
Collapse
Affiliation(s)
- Peilong Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Junfeng Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
48
|
Subramaniyan S, Kuriakose BB, Mushfiq S, Prabhu NM, Muthusamy K. Gene Signals and SNPs Associated with Parkinson's Disease: A Nutrigenomics and Computational Prospective Insights. Neuroscience 2023; 533:77-95. [PMID: 37858629 DOI: 10.1016/j.neuroscience.2023.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Parkinson's disease is the most prevalent chronic neurodegenerative disease. Neurological conditions for PD were influenced by a variety of epigenetic factors and SNPs in some of the coexisting genes that were expressed. This article focused on nutrigenomics of PD and the prospective highlighting of how these genes are regulated in terms of nutritive factors and the genetic basis of PD risk, onset, and progression. Multigenetic associations of the following genetic alterations in the genes of SNCA, LRRK2, UCHL1, PARK2,PINK1, DJ-1, and ATP13A2 have been reported with the familial and de novo genetic origins of PD. Over the past two decades, significant attempts have been made to understand the biological mechanisms that are potential causes for this disease, as well as to identify therapeutic substances for the prevention and management of PD. Nutrigenomics has sparked considerable interest due to its nutritional, safe, and therapeutic effects on a variety of chronic diseases. In this study, we summarise some of the nutritive supplements that have an impact on PD.
Collapse
Affiliation(s)
- Swetha Subramaniyan
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | - Sakeena Mushfiq
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | | | | |
Collapse
|
49
|
Lai H, Li XY, Xu F, Zhu J, Li X, Song Y, Wang X, Wang Z, Wang C. Applications of Machine Learning to Diagnosis of Parkinson's Disease. Brain Sci 2023; 13:1546. [PMID: 38002506 PMCID: PMC10670005 DOI: 10.3390/brainsci13111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Accurate diagnosis of Parkinson's disease (PD) is challenging due to its diverse manifestations. Machine learning (ML) algorithms can improve diagnostic precision, but their generalizability across medical centers in China is underexplored. OBJECTIVE To assess the accuracy of an ML algorithm for PD diagnosis, trained and tested on data from different medical centers in China. METHODS A total of 1656 participants were included, with 1028 from Beijing (training set) and 628 from Fuzhou (external validation set). Models were trained using the least absolute shrinkage and selection operator-logistic regression (LASSO-LR), decision tree (DT), random forest (RF), eXtreme gradient boosting (XGboost), support vector machine (SVM), and k-nearest neighbor (KNN) techniques. Hyperparameters were optimized using five-fold cross-validation and grid search techniques. Model performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, accuracy, sensitivity (recall), specificity, precision, and F1 score. Variable importance was assessed for all models. RESULTS SVM demonstrated the best differentiation between healthy controls (HCs) and PD patients (AUC: 0.928, 95% CI: 0.908-0.947; accuracy: 0.844, 95% CI: 0.814-0.871; sensitivity: 0.826, 95% CI: 0.786-0.866; specificity: 0.861, 95% CI: 0.820-0.898; precision: 0.849, 95% CI: 0.807-0.891; F1 score: 0.837, 95% CI: 0.803-0.868) in the validation set. Constipation, olfactory decline, and daytime somnolence significantly influenced predictability. CONCLUSION We identified multiple pivotal variables and SVM as a precise and clinician-friendly ML algorithm for prediction of PD in Chinese patients.
Collapse
Affiliation(s)
- Hong Lai
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xu-Ying Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Fanxi Xu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Junge Zhu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Xian Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Yang Song
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Xianlin Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Zhanjun Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| |
Collapse
|
50
|
Makarious MB, Lake J, Pitz V, Ye Fu A, Guidubaldi JL, Solsberg CW, Bandres-Ciga S, Leonard HL, Kim JJ, Billingsley KJ, Grenn FP, Jerez PA, Alvarado CX, Iwaki H, Ta M, Vitale D, Hernandez D, Torkamani A, Ryten M, Hardy J, Scholz SW, Traynor BJ, Dalgard CL, Ehrlich DJ, Tanaka T, Ferrucci L, Beach TG, Serrano GE, Real R, Morris HR, Ding J, Gibbs JR, Singleton AB, Nalls MA, Bhangale T, Blauwendraat C. Large-scale rare variant burden testing in Parkinson's disease. Brain 2023; 146:4622-4632. [PMID: 37348876 PMCID: PMC10629770 DOI: 10.1093/brain/awad214] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Parkinson's disease has a large heritable component and genome-wide association studies have identified over 90 variants with disease-associated common variants, providing deeper insights into the disease biology. However, there have not been large-scale rare variant analyses for Parkinson's disease. To address this gap, we investigated the rare genetic component of Parkinson's disease at minor allele frequencies <1%, using whole genome and whole exome sequencing data from 7184 Parkinson's disease cases, 6701 proxy cases and 51 650 healthy controls from the Accelerating Medicines Partnership Parkinson's disease (AMP-PD) initiative, the National Institutes of Health, the UK Biobank and Genentech. We performed burden tests meta-analyses on small indels and single nucleotide protein-altering variants, prioritized based on their predicted functional impact. Our work identified several genes reaching exome-wide significance. Two of these genes, GBA1 and LRRK2, have variants that have been previously implicated as risk factors for Parkinson's disease, with some variants in LRRK2 resulting in monogenic forms of the disease. We identify potential novel risk associations for variants in B3GNT3, AUNIP, ADH5, TUBA1B, OR1G1, CAPN10 and TREML1 but were unable to replicate the observed associations across independent datasets. Of these, B3GNT3 and TREML1 could provide new evidence for the role of neuroinflammation in Parkinson's disease. To date, this is the largest analysis of rare genetic variants in Parkinson's disease.
Collapse
Affiliation(s)
- Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
| | - Julie Lake
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Vanessa Pitz
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Allen Ye Fu
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Joseph L Guidubaldi
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Caroline Warly Solsberg
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
- Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Data Tecnica International, Washington, DC 20812, USA
| | - Jonggeol Jeffrey Kim
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Kimberley J Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Francis P Grenn
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Pilar Alvarez Jerez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Data Tecnica International, Washington, DC 20812, USA
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Data Tecnica International, Washington, DC 20812, USA
| | - Michael Ta
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Data Tecnica International, Washington, DC 20812, USA
| | - Dan Vitale
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Data Tecnica International, Washington, DC 20812, USA
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mina Ryten
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - John Hardy
- UK Dementia Research Institute and Department of Neurodegenerative Disease and Reta Lila Weston Institute, UCL Queen Square Institute of Neurology and UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20814, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Bryan J Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Clifton L Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Debra J Ehrlich
- Parkinson’s Disease Clinic, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20814, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - J Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Data Tecnica International, Washington, DC 20812, USA
| | - Tushar Bhangale
- Department of Human Genetics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|