1
|
Yin Y, Tang Q, Yang J, Gui S, Zhang Y, Shen Y, Zhou X, Yu S, Chen G, Sun J, Han Z, Zhang L, Chen L. Endothelial BMAL1 decline during aging leads to bone loss by destabilizing extracellular fibrillin-1. J Clin Invest 2024; 134:e176660. [PMID: 39680455 DOI: 10.1172/jci176660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/15/2024] [Indexed: 12/18/2024] Open
Abstract
The occurrence of aging is intricately associated with alterations in circadian rhythms that coincide with stem cell exhaustion. Nonetheless, the extent to which the circadian system governs skeletal aging remains inadequately understood. Here, we noticed that skeletal aging in male mice was accompanied by a decline in a core circadian protein, BMAL1, especially in bone marrow endothelial cells (ECs). Using male mice with endothelial KO of aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1), we ascertained that endothelial BMAL1 in bone played a crucial role in ensuring the stability of an extracellular structural component, fibrillin-1 (FBN1), through regulation of the equilibrium between the extracellular matrix (ECM) proteases thrombospondin type 1 domain-containing protein 4 (THSD4) and metalloproteinase with thrombospondin motifs 4 (ADAMTS4), which promote FBN1 assembly and breakdown, respectively. The decline of endothelial BMAL1 during aging prompted excessive breakdown of FBN1, leading to persistent activation of TGF-β/SMAD3 signaling and exhaustion of bone marrow mesenchymal stem cells. Meanwhile, the free TGF-β could promote osteoclast formation. Further analysis revealed that activation of ADAMTS4 in ECs lacking BMAL1 was stimulated by TGF-β/SMAD3 signaling through an ECM-positive feedback mechanism, whereas THSD4 was under direct transcriptional control by endothelial BMAL1. Our investigation has elucidated the etiology of bone aging in male mice by defining the role of ECs in upholding the equilibrium within the ECM, consequently coordinating osteogenic and osteoclastic activities and retarding skeletal aging.
Collapse
Affiliation(s)
- Ying Yin
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jingxi Yang
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shiqi Gui
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yifan Zhang
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yufeng Shen
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xin Zhou
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhenshuo Han
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
2
|
Wang X, Wang M, Zhi H, Li J, Guo D. REV-ERBα inhibitor rescues MPTP/MPP +-induced ferroptosis of dopaminergic neuron through regulating FASN/SCD1 signaling pathway. Heliyon 2024; 10:e40388. [PMID: 39654780 PMCID: PMC11625126 DOI: 10.1016/j.heliyon.2024.e40388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Circadian disruption is a risk factor for Parkinson's disease (PD). Ferroptosis, a cellular death process, assumes a pivotal role in the degeneration of dopaminergic neurons in PD. Despite its significance, the potential contribution of circadian clock proteins to PD through the modulation of ferroptosis remains elusive. Our investigation unveiled a reduction in the circadian clock protein REV-ERBα in both MPTP/MPP+ and ferroptosis models. REV-ERBα actively promotes ferroptosis by binding to the RORE cis-element and suppressing the transcription of Fasn and Scd1, two genes that inhibit ferroptosis. Notably, inhibiting REV-ERBα exhibited a discernible mitigating effect on ferroptosis and the ensuing dopaminergic neuron damage induced by MPTP/MPP+. Consequently, targeting REV-ERBα emerges as a promising strategy for inhibiting ferroptosis and presents a novel therapeutic avenue for PD.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Mingmei Wang
- College of Biological and Food Engineering, Changshu Institute of Technology, Changshu, 215500, China
| | - Hui Zhi
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Jingwei Li
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Dongkai Guo
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| |
Collapse
|
3
|
Landvreugd A, Nivard MG, Bartels M. The Effect of Light on Wellbeing: A Systematic Review and Meta-analysis. JOURNAL OF HAPPINESS STUDIES 2024; 26:1. [PMID: 39664799 PMCID: PMC11628446 DOI: 10.1007/s10902-024-00838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Due to the dominant presence of studies and reviews exploring the impact of light on physical and mental illness, studies specifically investigating the effect of light on wellbeing are often overshadowed. The aim of this review is to give an overview of specifically these studies conducted on light and wellbeing, and to summarize the reported effects. After a literature search in PubMed, PsycInfo, and Web of Science, 74 studies were found eligible to be included in this systematic review, i.e. they included surveys assessing wellbeing, happiness, life satisfaction, positive affect, or quality of life. Of these 74 studies, 30 were included in the meta-analysis and assessed for their risk of bias. The meta-analysis showed a pooled effect size of 0.46 (CI = 0.29-0.62), indicating that light has a small-to-moderate positive effect on wellbeing. After removing outliers and studies with a high risk of bias, the sensitivity analysis showed the pooled effect size to be robust (0.53, CI = 0.35-0.72). Although the sensitivity analysis indicated a robust effect, the results might still be biased due to the relatively small sample sizes, risk of bias in the designs (due to e.g. difficulties handling confounders and the reporting of the outcomes), and publication bias. We encourage future studies to replicate these positive results in larger samples, and to give extensive details about the light design and statistical outcomes, to increase the number of studies that can be included in these types of systematic reviews. Supplementary Information The online version contains supplementary material available at 10.1007/s10902-024-00838-4.
Collapse
Affiliation(s)
- A. Landvreugd
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Van Der Boechorstraat 7-9, 1081 BT Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Van Der Boechorstraat 7-9, 1081 BT Amsterdam, The Netherlands
| | - M. G. Nivard
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Van Der Boechorstraat 7-9, 1081 BT Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Van Der Boechorstraat 7-9, 1081 BT Amsterdam, The Netherlands
| | - M. Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Van Der Boechorstraat 7-9, 1081 BT Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Van Der Boechorstraat 7-9, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
4
|
de Assis LVM, Kramer A. Circadian de(regulation) in physiology: implications for disease and treatment. Genes Dev 2024; 38:933-951. [PMID: 39419580 PMCID: PMC11610937 DOI: 10.1101/gad.352180.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Time plays a crucial role in the regulation of physiological processes. Without a temporal control system, animals would be unprepared for cyclic environmental changes, negatively impacting their survival. Experimental studies have demonstrated the essential role of the circadian system in the temporal coordination of physiological processes. Translating these findings to humans has been challenging. Increasing evidence suggests that modern lifestyle factors such as diet, sedentarism, light exposure, and social jet lag can stress the human circadian system, contributing to misalignment; i.e., loss of phase coherence across tissues. An increasing body of evidence supports the negative impact of circadian disruption on several human health parameters. This review aims to provide a comprehensive overview of how circadian disruption influences various physiological processes, its long-term health consequences, and its association with various diseases. To illustrate the relevant consequences of circadian disruption, we focused on describing the many physiological consequences faced by shift workers, a population known to experience high levels of circadian disruption. We also discuss the emerging field of circadian medicine, its founding principles, and its potential impact on human health.
Collapse
Affiliation(s)
| | - Achim Kramer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Laboratory of Chronobiology, Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
5
|
Duret LC, Nagoshi E. The intertwined relationship between circadian dysfunction and Parkinson's disease. Trends Neurosci 2024:S0166-2236(24)00203-0. [PMID: 39578132 DOI: 10.1016/j.tins.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Neurodegenerative disorders represent a leading cause of disability among the elderly population, and Parkinson's disease (PD) is the second most prevalent. Emerging evidence suggests a frequent co-occurrence of circadian disruption and PD. However, the nature of this relationship remains unclear: is circadian disruption a cause, consequence, or a parallel feature of the disease that shares the same root cause? This review seeks to address this question by highlighting and discussing clinical evidence and findings from experiments using vertebrate and invertebrate animal models. While research on causality is still in its early stages, the available data suggest reciprocal interactions between PD progression and circadian disruption.
Collapse
Affiliation(s)
- Lou C Duret
- Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland.
| |
Collapse
|
6
|
Willis GL, Endo T, Sakoda S. Circadian re-set repairs long-COVID in a prodromal Parkinson's parallel: a case series. J Med Case Rep 2024; 18:496. [PMID: 39438926 PMCID: PMC11520186 DOI: 10.1186/s13256-024-04812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND In this case series, results from daily visual exposure to intense polychromatic light of 2000 to 4000 LUX is presented. Bright light treatment is a standard procedure for treating seasonal affective disorder and prodromal Parkinson's disease with high success. With the post-encephalitic symptoms of long-COVID closely approximating those of prodromal Parkinson's disease, we treated insomnia and sleep-related parameters in these patients, including total sleep, number of awakenings, tendency to fall back to sleep, and fatigue, to determine whether mending sleep could improve quality of life. CASE PRESENTATION We present three female and two male Caucasian patients aged 42-70 years with long-COVID that persisted from 12 weeks to 139 weeks after contracting coronavirus disease. CONCLUSION A light presentation protocol was adapted for long-COVID that not only restored sleep in all patients, but also unexpectedly repaired the depression, anxiety, and cognitive changes (brain fog) as well. A robust pattern of recovery commencing 4-5 days after treatment and was maintained for weeks to months without relapse. These preliminary findings represent a novel, minimally invasive approach for managing the most debilitating symptoms of long-COVID, making it an ideal candidate for the drug hypersensitive, post-encephalitic brain. That a compromised circadian mechanism seen in Parkinson's disease may also underlie post-encephalitic long-COVID implicates a compromised role of the circadian system in these disorders.
Collapse
Affiliation(s)
- Gregory L Willis
- The Bronowski Institute of Behavioural Neuroscience, Woodend, VIC, 3442, Australia.
| | - Takuyuki Endo
- Department of Neurology, Osaka Toneyama Medical Center, 5-1-1, Toneyama, Toyonaka, Osaka, 560-8552, Japan
| | - Saburo Sakoda
- Organic Clinic, 3-1-57 Honmachi, Toyonaka, Osaka, 560-0021, Japan
| |
Collapse
|
7
|
Chuang HH, Lin YH, Lee LA, Chang HC, She GJ, Lin C. The optimal measurement period of actigraphy for circadian rhythm in relation to adiposity: A retrospective case-control study. Sleep Med 2024; 122:1-7. [PMID: 39089170 DOI: 10.1016/j.sleep.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND This study focused on the relationship between adiposity and Rest-Activity Rhythms (RAR), utilizing both parametric cosine-based models and non-parametric algorithms. The emphasis was on the impact of varying measurement periods (7-28 days) on this relationship. METHODS We retrieved actigraphy data from two datasets, encompassing a diverse cohort recruited from an obesity outpatient clinic and a workplace health promotion program. Participants were required to wear a research-grade wrist actigraphy device continuously for a minimum of four weeks. The final dataset included 115 individuals (mean age 40.7 ± 9.5 years, 51 % female). We employed both parametric and non-parametric methods to quantify RAR using six standard variables. Additionally, the study evaluated the correlations between three key adiposity indices - Body Mass Index (BMI), Visceral Adipose Tissue (VAT) area, and Body Fat Percentage (BF%) - and circadian rhythm indicators, controlling for factors like physical activity, age, and gender. RESULTS The obesity group displayed a significantly lower relative amplitude (RA) as per non-parametric algorithm findings, with a decreased amplitude noted in the parametric algorithm analysis, in comparison to the overweight and control groups. The relationship between circadian rhythm indicators and adiposity metrics over 7- to 28-day periods was examined. A notable negative correlation was observed between RA and both BMI and VAT, while correlation coefficients between adiposity indicators and non-parametric circadian parameters increased with extended durations of actigraphy data. Specifically, RA over a 28-day period was significantly correlated with BF%, a trend not seen in the 7-day measurement (p = 0.094) in multivariate linear regression. The strength of the correlation between BF% and 28-day RA was more pronounced than that in the 7-day period (p = 0.044). However, replacing RA with amplitude as per parametric cosinor fitting yielded no significant correlations for any of the measurement periods. CONCLUSION The study concludes that a 28-day measurement period more effectively captures the link between disrupted circadian rhythms and adiposity. Non-parametric algorithms, in particular, were more effective in characterizing disrupted circadian rhythms, especially when extending the measurement period beyond the standard 7 days.
Collapse
Affiliation(s)
- Hai-Hua Chuang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Family Medicine, Chang Gung Memorial Hospital, Taipei Branch and Linkou Main Branch, Taoyuan, Taiwan; Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Hsuan Lin
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Li-Ang Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu, Taiwan; Department of Otorhinolaryngology - Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
| | - Hsiang-Chih Chang
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Guan-Jie She
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Chen Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan.
| |
Collapse
|
8
|
Zhang JB, Wan XJ, Duan WX, Dai XQ, Xia D, Fu X, Hu LF, Wang F, Liu CF. Circadian disruption promotes the neurotoxicity of oligomeric alpha-synuclein in mice. NPJ Parkinsons Dis 2024; 10:179. [PMID: 39333201 PMCID: PMC11437279 DOI: 10.1038/s41531-024-00798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/15/2024] [Indexed: 09/29/2024] Open
Abstract
Circadian disruption often arises prior to the onset of typical motor deficits in patients with Parkinson's disease (PD). It remains unclear whether such a prevalent non-motor manifestation would contribute to the progression of PD. Diffusible oligomeric alpha-synuclein (O-αSyn) is perceived as the most toxic and rapid-transmitted species in the early stages of PD. Exploring the factors that influence the spread and toxicity of O-αSyn should be helpful for developing effective interventions for the disease. The aim of this study was to explore the effects of circadian disruption on PD pathology and parkinsonism-like behaviors in a novel mouse model induced by O-αSyn. We discovered that O-αSyn could enter the brain rapidly following intranasal administration, resulting in the formation of nitrated-αSyn pathology and non-motor symptoms of the mice. Meanwhile, circadian disruption exacerbated the burden of nitrated-αSyn pathology and accelerated the loss of dopaminergic neurons in O-αSyn-treated mice. Subsequent experiments demonstrated that circadian disruption might act via promoting nitrative stress and neuroinflammation. These findings could highlight the circadian rhythms as a potential diagnostic and therapeutic target in early-stage PD.
Collapse
Affiliation(s)
- Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China
| | - Xiao-Jie Wan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
| | - Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
| | - Xue-Qin Dai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China
| | - Dong Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China
| | - Xiang Fu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
| | - Li-Fang Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China.
- Department of Neurology, Xiongan Xuanwu Hospital, 071700, Xiongan, China.
| |
Collapse
|
9
|
Huang L, Li Y, Xu X, Chen W, Zhang Z, Sun L, Gao X. Longitudinal association between accelerometer-derived rest-activity rhythm and atherosclerotic cardiovascular disease. Sleep Med 2024; 121:8-14. [PMID: 38901303 DOI: 10.1016/j.sleep.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE Rest-activity rhythm is an essential behavior for human health. However, the association between rest-activity rhythm and atherosclerotic cardiovascular disease (ASCVD) risk remains unclear. Therefore, this study aimed to elucidate the association. METHODS This study included 87,039 participants from the UK Biobank who had 7-day accelerometry data and were free of ASCVD at baseline. Relative amplitude was calculated as the difference between the most active continuous 10-h period (M10) and the least active continuous 5-h period (L5) in 24 h, and lower relative amplitude indicated the disruption of rest-activity rhythm. Cox proportional hazard model was used to examine the association of relative amplitude with ASCVD. Further, the linear association between relative amplitude and arterial stiffness measurements, including arterial stiffness index (ASI) and carotid intima-media thickness (cIMT), was examined. RESULTS During a mean follow-up period of 6.80 ± 1.10 years, 2798 ASCVD cases were identified. A dose-response relationship was observed between relative amplitude and ASCVD risk (P for trend<0.001). The adjusted hazard ratio, for the highest vs the lowest quintile of relative amplitude, was 1.54 (95 % confidence interval: 1.31, 1.79). Further, we found significant association of lower relative amplitude with ASI and cIMT. The onset timing of M10 at ≤06:00, 09:00, 10:00, or ≥11:00, as opposed to the reference time of 07:00, was associated with higher ASCVD risk. CONCLUSIONS Low rest-activity rhythm amplitude was associated with a higher risk of ASCVD. Rest-activity rhythm amplitude may provide a method to identify individuals at risk of ASCVD in public health and clinical practice.
Collapse
Affiliation(s)
- Lili Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Yaqi Li
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Xinming Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhicheng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Liang Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China.
| | - Xiang Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Iranzo A, Cochen De Cock V, Fantini ML, Pérez-Carbonell L, Trotti LM. Sleep and sleep disorders in people with Parkinson's disease. Lancet Neurol 2024; 23:925-937. [PMID: 38942041 DOI: 10.1016/s1474-4422(24)00170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 06/30/2024]
Abstract
Sleep disorders are common in people with Parkinson's disease. These disorders, which increase in frequency throughout the course of the neurodegenerative disease and impair quality of life, include insomnia, excessive daytime sleepiness, circadian disorders, obstructive sleep apnoea, restless legs syndrome, and rapid eye movement (REM) sleep behaviour disorder. The causes of these sleep disorders are complex and multifactorial, including the degeneration of the neural structures that modulate sleep, the detrimental effect of some medications on sleep, the parkinsonian symptoms that interfere with mobility and comfort in bed, and comorbidities that disrupt sleep quality and quantity. The clinical evaluation of sleep disorders include both subjective (eg, questionnaires or diaries) and objective (eg, actigraphy or video polysomnography) assessments. The management of patients with Parkinson's disease and a sleep disorder is challenging and should be individualised. Treatment can include education aiming at changes in behaviour (ie, sleep hygiene), cognitive behavioural therapy, continuous dopaminergic stimulation at night, and specific medications. REM sleep behaviour disorder can occur several years before the onset of parkinsonism, suggesting that the implementation of trials of neuroprotective therapies should focus on people with this sleep disorder.
Collapse
Affiliation(s)
- Alex Iranzo
- Sleep Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; IDIBAPS, Universitat de Barcelona, Barcelona, Spain; CIBERNED, Universitat de Barcelona, Barcelona, Spain.
| | - Valerie Cochen De Cock
- Sleep and Neurology Department, Beau Soleil Clinic, Montpellier, France; EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - María Livia Fantini
- Neurophysiology Unit, Neurology Department, Université Clermont Auvergne, CNRS, Institut Pascal, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Laura Pérez-Carbonell
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Lynn Marie Trotti
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Emory Sleep Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
11
|
Duan X, Liu H, Hu X, Yu Q, Kuang G, Liu L, Zhang S, Wang X, Li J, Yu D, Huang J, Wang T, Lin Z, Xiong N. Insomnia in Parkinson's Disease: Causes, Consequences, and Therapeutic Approaches. Mol Neurobiol 2024:10.1007/s12035-024-04400-4. [PMID: 39103716 DOI: 10.1007/s12035-024-04400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Sleep disorders represent prevalent non-motor symptoms in Parkinson's disease (PD), affecting over 90% of the PD population. Insomnia, characterized by difficulties in initiating and maintaining sleep, emerges as the most frequently reported sleep disorder in PD, with prevalence rates reported from 27 to 80% across studies. Insomnia not only significantly impacts the quality of life of PD patients but is also associated with cognitive impairment, motor disabilities, and emotional deterioration. This comprehensive review aims to delve into the mechanisms underlying insomnia in PD, including neurodegenerative changes, basal ganglia beta oscillations, and circadian rhythms, to gain insights into the neural pathways involved. Additionally, the review explores the risk factors and comorbidities associated with insomnia in PD, providing valuable insights into its management. Special attention is given to the challenges faced by healthcare providers in delivering care to PD patients and the impact of caregiving roles on patients' quality of life. Overall, this review provides a comprehensive understanding of insomnia in PD and highlights the importance of addressing this common sleep disorder in PD patients.
Collapse
Affiliation(s)
- Xiaoyu Duan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Duke Kunshan University, No. 8 Duke Avenue, Kunshan, 215316, Jiangsu, China
| | - Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyu Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qinwei Yu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Guiying Kuang
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Long Liu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Shurui Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Danfang Yu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Canever JB, Queiroz LY, Soares ES, de Avelar NCP, Cimarosti HI. Circadian rhythm alterations affecting the pathology of neurodegenerative diseases. J Neurochem 2024; 168:1475-1489. [PMID: 37358003 DOI: 10.1111/jnc.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023]
Abstract
The circadian rhythm is a nearly 24-h oscillation found in various physiological processes in the human brain and body that is regulated by environmental and genetic factors. It is responsible for maintaining body homeostasis and it is critical for essential functions, such as metabolic regulation and memory consolidation. Dysregulation in the circadian rhythm can negatively impact human health, resulting in cardiovascular and metabolic diseases, psychiatric disorders, and premature death. Emerging evidence points to a relationship between the dysregulation circadian rhythm and neurodegenerative diseases, suggesting that the alterations in circadian function might play crucial roles in the pathogenesis and progression of neurodegenerative diseases. Better understanding this association is of paramount importance to expand the knowledge on the pathophysiology of neurodegenerative diseases, as well as, to provide potential targets for the development of new interventions based on the dysregulation of circadian rhythm. Here we review the latest findings on dysregulation of circadian rhythm alterations in Parkinson's disease, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, spinocerebellar ataxia and multiple-system atrophy, focusing on research published in the last 3 years.
Collapse
Affiliation(s)
- Jaquelini Betta Canever
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Letícia Yoshitome Queiroz
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ericks Sousa Soares
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Núbia Carelli Pereira de Avelar
- Laboratory of Aging, Resources and Rheumatology, Department of Health Sciences, Federal University of Santa Catarina, Araranguá, Santa Catarina, Brazil
| | - Helena Iturvides Cimarosti
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
13
|
Yalçin M, Peralta AR, Bentes C, Silva C, Guerreiro T, Ferreira JJ, Relógio A. Molecular characterization of the circadian clock in patients with Parkinson's disease-CLOCK4PD Study protocol. PLoS One 2024; 19:e0305712. [PMID: 39028707 PMCID: PMC11259294 DOI: 10.1371/journal.pone.0305712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/02/2024] [Indexed: 07/21/2024] Open
Abstract
INTRODUCTION Circadian rhythms (CRs) orchestrate intrinsic 24-hour oscillations which synchronize an organism's physiology and behaviour with respect to daily cycles. CR disruptions have been linked to Parkinson's Disease (PD), the second most prevalent neurodegenerative disorder globally, and are associated to several PD-symptoms such as sleep disturbances. Studying molecular changes of CR offers a potential avenue for unravelling novel insights into the PD progression, symptoms, and can be further used for optimization of treatment strategies. Yet, a comprehensive characterization of the alterations at the molecular expression level for core-clock and clock-controlled genes in PD is still missing. METHODS AND ANALYSIS The proposed study protocol will be used to characterize expression profiles of circadian genes obtained from saliva samples in PD patients and controls. For this purpose, 20 healthy controls and 70 PD patients will be recruited. Data from clinical assessment, questionnaires, actigraphy tracking and polysomnography will be collected and clinical evaluations will be repeated as a follow-up in one-year time. We plan to carry out sub-group analyses considering several clinical factors (e.g., biological sex, treatment dosages, or fluctuation of symptoms), and to correlate reflected changes in CR of measured genes with distinct PD phenotypes (diffuse malignant and mild/motor-predominant). Additionally, using NanoStringⓇ multiplex technology on a subset of samples, we aim to further explore potential CR alterations in hundreds of genes involved in neuropathology pathways. DISCUSSION CLOCK4PD is a mono-centric, non-interventional observational study aiming at the molecular characterization of CR alterations in PD. We further plan to determine physiological modifications in sleep and activity patterns, and clinical factors correlating with the observed CR changes. Our study may provide valuable insights into the intricate interplay between CR and PD with a potential to be used as a predictor of circadian alterations reflecting distinct disease phenotypes, symptoms, and progression outcomes.
Collapse
Affiliation(s)
- Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Ana Rita Peralta
- EEG/Sleep Laboratory, Department Neurosciences and Mental Health, Unidade Local de Saude Santa Maria—ULSSM, Lisbon, Portugal
- Department of Neurology, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Fisiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- CNS-Campus Neurológico, Torres Vedras, Portugal
- Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Carla Bentes
- EEG/Sleep Laboratory, Department Neurosciences and Mental Health, Unidade Local de Saude Santa Maria—ULSSM, Lisbon, Portugal
- Department of Neurology, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Tiago Guerreiro
- LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim J. Ferreira
- Department of Neurology, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- CNS-Campus Neurológico, Torres Vedras, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
14
|
Chen LH, Liu T. Association of accelerometer-measured physical activity and incident Parkinson's disease: insights and future research directions. NPJ Digit Med 2024; 7:158. [PMID: 38890480 PMCID: PMC11187200 DOI: 10.1038/s41746-024-01154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Li-Hua Chen
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China.
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China.
| |
Collapse
|
15
|
Chuang HH, Lin C, Lee LA, Chang HC, She GJ, Lin YH. Comparing Human-Smartphone Interactions and Actigraphy Measurements for Circadian Rhythm Stability and Adiposity: Algorithm Development and Validation Study. J Med Internet Res 2024; 26:e50149. [PMID: 38838328 PMCID: PMC11187513 DOI: 10.2196/50149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 03/20/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND This study aimed to investigate the relationships between adiposity and circadian rhythm and compare the measurement of circadian rhythm using both actigraphy and a smartphone app that tracks human-smartphone interactions. OBJECTIVE We hypothesized that the app-based measurement may provide more comprehensive information, including light-sensitive melatonin secretion and social rhythm, and have stronger correlations with adiposity indicators. METHODS We enrolled a total of 78 participants (mean age 41.5, SD 9.9 years; 46/78, 59% women) from both an obesity outpatient clinic and a workplace health promotion program. All participants (n=29 with obesity, n=16 overweight, and n=33 controls) were required to wear a wrist actigraphy device and install the Rhythm app for a minimum of 4 weeks, contributing to a total of 2182 person-days of data collection. The Rhythm app estimates sleep and circadian rhythm indicators by tracking human-smartphone interactions, which correspond to actigraphy. We examined the correlations between adiposity indices and sleep and circadian rhythm indicators, including sleep time, chronotype, and regularity of circadian rhythm, while controlling for physical activity level, age, and gender. RESULTS Sleep onset and wake time measurements did not differ significantly between the app and actigraphy; however, wake after sleep onset was longer (13.5, SD 19.5 minutes) with the app, resulting in a longer actigraphy-measured total sleep time (TST) of 20.2 (SD 66.7) minutes. The obesity group had a significantly longer TST with both methods. App-measured circadian rhythm indicators were significantly lower than their actigraphy-measured counterparts. The obesity group had significantly lower interdaily stability (IS) than the control group with both methods. The multivariable-adjusted model revealed a negative correlation between BMI and app-measured IS (P=.007). Body fat percentage (BF%) and visceral adipose tissue area (VAT) showed significant correlations with both app-measured IS and actigraphy-measured IS. The app-measured midpoint of sleep showed a positive correlation with both BF% and VAT. Actigraphy-measured TST exhibited a positive correlation with BMI, VAT, and BF%, while no significant correlation was found between app-measured TST and either BMI, VAT, or BF%. CONCLUSIONS Our findings suggest that IS is strongly correlated with various adiposity indicators. Further exploration of the role of circadian rhythm, particularly measured through human-smartphone interactions, in obesity prevention could be warranted.
Collapse
Affiliation(s)
- Hai-Hua Chuang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chen Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Li-Ang Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Otorhinolaryngology - Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
| | - Hsiang-Chih Chang
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Guan-Jie She
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Yu-Hsuan Lin
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Haghayegh S, Gao C, Sugg E, Zheng X, Yang HW, Saxena R, Rutter MK, Weedon M, Ibanez A, Bennett DA, Li P, Gao L, Hu K. Association of Rest-Activity Rhythm and Risk of Developing Dementia or Mild Cognitive Impairment in the Middle-Aged and Older Population: Prospective Cohort Study. JMIR Public Health Surveill 2024; 10:e55211. [PMID: 38713911 PMCID: PMC11109857 DOI: 10.2196/55211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/16/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND The relationship between 24-hour rest-activity rhythms (RARs) and risk for dementia or mild cognitive impairment (MCI) remains an area of growing interest. Previous studies were often limited by small sample sizes, short follow-ups, and older participants. More studies are required to fully explore the link between disrupted RARs and dementia or MCI in middle-aged and older adults. OBJECTIVE We leveraged the UK Biobank data to examine how RAR disturbances correlate with the risk of developing dementia and MCI in middle-aged and older adults. METHODS We analyzed the data of 91,517 UK Biobank participants aged between 43 and 79 years. Wrist actigraphy recordings were used to derive nonparametric RAR metrics, including the activity level of the most active 10-hour period (M10) and its midpoint, the activity level of the least active 5-hour period (L5) and its midpoint, relative amplitude (RA) of the 24-hour cycle [RA=(M10-L5)/(M10+L5)], interdaily stability, and intradaily variability, as well as the amplitude and acrophase of 24-hour rhythms (cosinor analysis). We used Cox proportional hazards models to examine the associations between baseline RAR and subsequent incidence of dementia or MCI, adjusting for demographic characteristics, comorbidities, lifestyle factors, shiftwork status, and genetic risk for Alzheimer's disease. RESULTS During the follow-up of up to 7.5 years, 555 participants developed MCI or dementia. The dementia or MCI risk increased for those with lower M10 activity (hazard ratio [HR] 1.28, 95% CI 1.14-1.44, per 1-SD decrease), higher L5 activity (HR 1.15, 95% CI 1.10-1.21, per 1-SD increase), lower RA (HR 1.23, 95% CI 1.16-1.29, per 1-SD decrease), lower amplitude (HR 1.32, 95% CI 1.17-1.49, per 1-SD decrease), and higher intradaily variability (HR 1.14, 95% CI 1.05-1.24, per 1-SD increase) as well as advanced L5 midpoint (HR 0.92, 95% CI 0.85-0.99, per 1-SD advance). These associations were similar in people aged <70 and >70 years, and in non-shift workers, and they were independent of genetic and cardiovascular risk factors. No significant associations were observed for M10 midpoint, interdaily stability, or acrophase. CONCLUSIONS Based on findings from a large sample of middle-to-older adults with objective RAR assessment and almost 8-years of follow-up, we suggest that suppressed and fragmented daily activity rhythms precede the onset of dementia or MCI and may serve as risk biomarkers for preclinical dementia in middle-aged and older adults.
Collapse
Affiliation(s)
- Shahab Haghayegh
- Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute, Cambridge, MA, United States
- Brigham and Women's Hospital, Boston, MA, United States
| | - Chenlu Gao
- Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute, Cambridge, MA, United States
- Brigham and Women's Hospital, Boston, MA, United States
| | - Elizabeth Sugg
- Massachusetts General Hospital, Boston, MA, United States
| | - Xi Zheng
- Brigham and Women's Hospital, Boston, MA, United States
| | - Hui-Wen Yang
- Brigham and Women's Hospital, Boston, MA, United States
| | - Richa Saxena
- Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute, Cambridge, MA, United States
| | - Martin K Rutter
- Faculty of Medicine, Biology and Health, University of Manchester, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | | | | | | | - Peng Li
- Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute, Cambridge, MA, United States
- Brigham and Women's Hospital, Boston, MA, United States
| | - Lei Gao
- Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Kun Hu
- Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute, Cambridge, MA, United States
- Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
17
|
McDermott JE, Jacobs JM, Merrill NJ, Mitchell HD, Arshad OA, McClure R, Teeguarden J, Gajula RP, Porter KI, Satterfield BC, Lundholm KR, Skene DJ, Gaddameedhi S, Dongen HPAV. Molecular-Level Dysregulation of Insulin Pathways and Inflammatory Processes in Peripheral Blood Mononuclear Cells by Circadian Misalignment. J Proteome Res 2024; 23:1547-1558. [PMID: 38619923 DOI: 10.1021/acs.jproteome.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Circadian misalignment due to night work has been associated with an elevated risk for chronic diseases. We investigated the effects of circadian misalignment using shotgun protein profiling of peripheral blood mononuclear cells taken from healthy humans during a constant routine protocol, which was conducted immediately after participants had been subjected to a 3-day simulated night shift schedule or a 3-day simulated day shift schedule. By comparing proteomic profiles between the simulated shift conditions, we identified proteins and pathways that are associated with the effects of circadian misalignment and observed that insulin regulation pathways and inflammation-related proteins displayed markedly different temporal patterns after simulated night shift. Further, by integrating the proteomic profiles with previously assessed metabolomic profiles in a network-based approach, we found key associations between circadian dysregulation of protein-level pathways and metabolites of interest in the context of chronic metabolic diseases. Endogenous circadian rhythms in circulating glucose and insulin differed between the simulated shift conditions. Overall, our results suggest that circadian misalignment is associated with a tug of war between central clock mechanisms controlling insulin secretion and peripheral clock mechanisms regulating insulin sensitivity, which may lead to adverse long-term outcomes such as diabetes and obesity. Our study provides a molecular-level mechanism linking circadian misalignment and adverse long-term health consequences of night work.
Collapse
Affiliation(s)
- Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Jon M Jacobs
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Nathaniel J Merrill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Hugh D Mitchell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Osama A Arshad
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Justin Teeguarden
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Rajendra P Gajula
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Kenneth I Porter
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Brieann C Satterfield
- Sleep and Performance Research Center, Washington State University, Spokane, Washington 99202, United States
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Kirsie R Lundholm
- Sleep and Performance Research Center, Washington State University, Spokane, Washington 99202, United States
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Debra J Skene
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Shobhan Gaddameedhi
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hans P A Van Dongen
- Sleep and Performance Research Center, Washington State University, Spokane, Washington 99202, United States
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
18
|
Bai P, Zhou S, Shao X, Lin Y, Liu H, Yu P. Ideal 24-h physical activity trajectory reduces all-cause, cause-specific mortality and cardiovascular outcomes through aging deceleration and inflammation regulation: A UK biobank study. Int J Cardiol 2024; 399:131770. [PMID: 38211679 DOI: 10.1016/j.ijcard.2024.131770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Physical activity (PA) is associated with mortality and cardiovascular disease (CVD). However, the effect of circadian PA trajectories remains ambiguous. This study aimed to explore ideal circadian PA patterns to reduce mortality and CVD, and potential mediators. METHODS 502,400 participants from UK Biobank were recruited between 2006 and 2010. Among them, 102,323 participants got valid continuously capturing acceleration data over 7 days by wrist-worn accelerometer. K-means cluster analysis was used to identify PA trajectories. The associations of PA with all-cause, cause-specific mortality and CVD were assessed by cox regression. A sensitivity test was also conducted, starting from the time of acceleration collection and excluding participants with corresponding disease prior to it. Furthermore, the mediation of aging and inflammation were explored. RESULTS During a median follow-up of 12.9 years, 3482 deaths were recorded (704 were due to CVD). Five distinct PA trajectories were identified: Persistently Low, Moderate and Stable, Single Increase, Double Increase, and Vigorous patterns. Ideal PA trajectory patterns offered progressively protective benefits against all-cause, CVD caused mortality and CVD, especially in Double Increase and Vigorous patterns. Other cause-specific mortality and renal failure incidence showed similar trend. The sensitivity result was consistent. The mediating effects of phenotypic age and inflammation markers were statistically significant. CONCLUSION Ideal PA trajectories offered protective benefits against all-cause, cause-specific mortality and CVD. The protection was associated with both intensity and circadian distribution. Double Increase and Vigorous activity patterns decreased these risks more significantly. Crucially, this protection was mediated by aging deceleration and inflammation regulation.
Collapse
Affiliation(s)
- Pufei Bai
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Xian Shao
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Yao Lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Hongyan Liu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
19
|
Marrie RA, Maxwell CJ, Rotstein DL, Tsai CC, Tremlett H. Prodromes in demyelinating disorders, amyotrophic lateral sclerosis, Parkinson disease, and Alzheimer's dementia. Rev Neurol (Paris) 2024; 180:125-140. [PMID: 37567819 DOI: 10.1016/j.neurol.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 08/13/2023]
Abstract
A prodrome is an early set of symptoms, which indicates the onset of a disease; these symptoms are often non-specific. Prodromal phases are now recognized in multiple central nervous system diseases. The depth of understanding of the prodromal phase varies across diseases, being more nascent for multiple sclerosis for example, than for Parkinson disease or Alzheimer's disease. Key challenges when identifying the prodromal phase of a disease include the lack of specificity of prodromal symptoms, and consequent need for accessible and informative biomarkers. Further, heterogeneity of the prodromal phase may be influenced by age, sex, genetics and other poorly understood factors. Nonetheless, recognition that an individual is in the prodromal phase of disease offers the opportunity for earlier diagnosis and with it the opportunity for earlier intervention.
Collapse
Affiliation(s)
- R A Marrie
- Departments of Internal Medicine and Community Health Sciences, Rady Faculty of Health Sciences, Max-Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - C J Maxwell
- Schools of Pharmacy and Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada; ICES, Toronto, Ontario, Canada
| | - D L Rotstein
- Department of Medicine, University of Toronto, 6, Queen's Park Crescent West, 3rd floor, M5S 3H2 Toronto, Ontario, Canada; Saint-Michael's Hospital, 30, Bond Street, M5B 1W8 Toronto, Ontario, Canada
| | - C-C Tsai
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - H Tremlett
- Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Chen LH, Sun SY, Li G, Gao X, Luo W, Tian H, Zhang X, Yin X, Liu Z, Chen GC, Xu G, Liu T, Li FR. Physical activity and sleep pattern in relation to incident Parkinson's disease: a cohort study. Int J Behav Nutr Phys Act 2024; 21:17. [PMID: 38355565 PMCID: PMC10867998 DOI: 10.1186/s12966-024-01568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/28/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND How physical activity (PA) and different sleep traits and overall sleep pattern interact in the development of Parkinson's disease (PD) remain unknown. OBJECTIVE To prospectively investigate the joint associations of PA and sleep pattern with risk of PD. METHODS Included were 339,666 PD-free participants from the UK Biobank. Baseline PA levels were grouped into low (< 600 MET-mins/week), medium (600 to < 3000 MET-mins/week) and high (≥ 3000 MET-mins/week) according to the instructions of the UK Biobank. Healthy sleep traits (chronotype, sleep duration, insomnia, snoring, and daytime sleepiness) were scored from 0 to 5 and were categorized into "ideal sleep pattern" (≥ 3 sleep scores) and "poor sleep pattern" (0-2 sleep scores). Hazard ratios (HRs) and 95% confidence intervals (CIs) of PD were estimated by Cox proportional hazards models. RESULTS During a median of 11.8 years of follow-up, 1,966 PD events were identified. The PD risk was lower in participants with high PA (HR = 0.73; 95% CI: 0.64, 0.84), compared to those with low PA; and participants with ideal sleep pattern also had a lower risk of PD (HR = 0.78; 95% CI: 0.69, 0.87), compared to those with poor sleep pattern. When jointly investigating the combined effect, participants with both high PA and ideal sleep pattern had the lowest risk of incident PD (HR = 0.55; 95% CI: 0.44, 0.69), compared to those with low PA and poor sleep pattern; notably, participants with high PA but poor sleep pattern also gained benefit on PD risk reduction (HR = 0.74; 95% CI: 0.55, 0.99). CONCLUSIONS Both high PA and ideal sleep pattern were independently associated with lower risk of developing PD, and those with both high PA level and ideal sleep pattern had the lowest risk. Our results suggest that improving PA levels and sleep quality may be promising intervention targets for the prevention of PD.
Collapse
Affiliation(s)
- Li-Hua Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, 9 Seyuan Road, Chongchuan District, 226019, Nantong, China
| | - Shi-Yu Sun
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, 9 Seyuan Road, Chongchuan District, 226019, Nantong, China
| | - Guijie Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Xiang Gao
- Department of Nutritional Sciences, The Pennsylvania State University, 16801, State College, PA, USA
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xuanhao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Xi Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Ziwei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Guangfei Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, 9 Seyuan Road, Chongchuan District, 226019, Nantong, China.
| | - Fu-Rong Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, 1088 Xueyuan Avenue, Fuguang community, Taoyuan Street, Nanshan District, Shenzhen, China.
| |
Collapse
|
21
|
Winer JR, Lok R, Weed L, He Z, Poston KL, Mormino EC, Zeitzer JM. Impaired 24-h activity patterns are associated with an increased risk of Alzheimer's disease, Parkinson's disease, and cognitive decline. Alzheimers Res Ther 2024; 16:35. [PMID: 38355598 PMCID: PMC10865579 DOI: 10.1186/s13195-024-01411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Sleep-wake regulating circuits are affected during prodromal stages in the pathological progression of both Alzheimer's disease (AD) and Parkinson's disease (PD), and this disturbance can be measured passively using wearable devices. Our objective was to determine whether accelerometer-based measures of 24-h activity are associated with subsequent development of AD, PD, and cognitive decline. METHODS This study obtained UK Biobank data from 82,829 individuals with wrist-worn accelerometer data aged 40 to 79 years with a mean (± SD) follow-up of 6.8 (± 0.9) years. Outcomes were accelerometer-derived measures of 24-h activity (derived by cosinor, nonparametric, and functional principal component methods), incident AD and PD diagnosis (obtained through hospitalization or primary care records), and prospective longitudinal cognitive testing. RESULTS One hundred eighty-seven individuals progressed to AD and 265 to PD. Interdaily stability (a measure of regularity, hazard ratio [HR] per SD increase 1.25, 95% confidence interval [CI] 1.05-1.48), diurnal amplitude (HR 0.79, CI 0.65-0.96), mesor (mean activity; HR 0.77, CI 0.59-0.998), and activity during most active 10 h (HR 0.75, CI 0.61-0.94), were associated with risk of AD. Diurnal amplitude (HR 0.28, CI 0.23-0.34), mesor (HR 0.13, CI 0.10-0.16), activity during least active 5 h (HR 0.24, CI 0.08-0.69), and activity during most active 10 h (HR 0.20, CI 0.16-0.25) were associated with risk of PD. Several measures were additionally predictive of longitudinal cognitive test performance. CONCLUSIONS In this community-based longitudinal study, accelerometer-derived metrics were associated with elevated risk of AD, PD, and accelerated cognitive decline. These findings suggest 24-h rhythm integrity, as measured by affordable, non-invasive wearable devices, may serve as a scalable early marker of neurodegenerative disease.
Collapse
Affiliation(s)
- Joseph R Winer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA.
| | - Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Lara Weed
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Zihuai He
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
22
|
Willis GL, Armstrong SM. Fine-tuning the circadian system with light treatment for Parkinson's disease: an in-depth, critical review. Rev Neurosci 2024; 35:57-84. [PMID: 37609845 DOI: 10.1515/revneuro-2023-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023]
Abstract
Late in the twentieth century, interest intensified regarding the involvement of the circadian system in the aetiology and treatment of Parkinson's disease (PD). It has been envisaged that this approach might provide relief beyond the limited benefits and severe side effects achieved by dopamine (DA) replacement. In the first clinical article, published in 1996, polychromatic light was used to shift the circadian clock as it is considered to be the most powerful zeitgeber (time keeper) that can be implemented to realign circadian phase. Since that time, 11 additional articles have implemented light treatment (LT) in various forms as an adjuvant to DA replacement. In spite of the growing interest in this area, the systematic exploration of LT in PD has been stymied by several methodological factors. Such factors include time of LT presentation, duration of studies undertaken, frequency of light employed, dose of light prescribed and relevance of experimental design to the prolonged course of the illness. On this basis, it is the purpose of this review to provide an in-depth examination of these papers, and the underlying preclinical work, to provide critique, thereby giving direction for future studies in therapeutic applications of LT for PD. Consideration of this collective work may serve to carve a path for future research and thereby improve the lives of those suffering from this debilitating disorder.
Collapse
Affiliation(s)
- Gregory L Willis
- The Bronowski Institute of Behavioural Neuroscience, 40 Davy Street, Woodend, VIC 3442, Australia
| | - Stuart M Armstrong
- The Bronowski Institute of Behavioural Neuroscience, 40 Davy Street, Woodend, VIC 3442, Australia
| |
Collapse
|
23
|
Chen YC, Wang WS, Lewis SJG, Wu SL. Fighting Against the Clock: Circadian Disruption and Parkinson's Disease. J Mov Disord 2024; 17:1-14. [PMID: 37989149 PMCID: PMC10846969 DOI: 10.14802/jmd.23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023] Open
Abstract
Circadian disruption is being increasingly recognized as a critical factor in the development and progression of Parkinson's disease (PD). This review aims to provide an in-depth overview of the relationship between circadian disruption and PD by exploring the molecular, cellular, and behavioral aspects of this interaction. This review will include a comprehensive understanding of how the clock gene system and transcription-translation feedback loops function and how they are diminished in PD. The article also discusses the role of clock genes in the regulation of circadian rhythms, as well as the impact of clock gene dysregulation on mitochondrial function, oxidative stress, and neuroinflammation, including the microbiota-gut-brain axis, which have all been proposed as being crucial mechanisms in the pathophysiology of PD. Finally, this review highlights potential therapeutic strategies targeting the clock gene system and circadian rhythm for the treatment of PD.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Sheng Wang
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Simon J G Lewis
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Electrical Engineering, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
24
|
Besin V, Humardani FM, Yulianti T, Justyn M. Genomic profile of Parkinson's disease in Asians. Clin Chim Acta 2024; 552:117682. [PMID: 38016627 DOI: 10.1016/j.cca.2023.117682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Parkinson's Disease (PD) has witnessed an alarming rise in prevalence, highlighting the suboptimal nature of early diagnostic and therapeutic strategies. To address this issue, genetic testing has emerged as a potential avenue. In this comprehensive review, we have meticulously summarized the variants associated with PD in Asian populations. Our review reveals that these variants exert their influence on diverse biological pathways, encompassing the autophagy-lysosome pathway, cholesterol metabolism, circadian rhythm regulation, immune system response, and synaptic function. Conventionally, PD has been linked to other diseases; however, our findings shed light on a shared genetic susceptibility among these conditions, implying an underlying pathophysiological mechanism that unifies them. Moreover, it is noteworthy that these PD-associated variants can significantly impact drug responses during therapeutic interventions. This review not only provides a consolidated overview of the genetic variants associated with PD in Asian populations but also contributes novel insights into the intricate relationships between PD and other diseases by elucidating shared genetic components. These findings underscore the importance of personalized approaches in diagnosing and treating PD based on individual genetic profiles to optimize patient outcomes.
Collapse
Affiliation(s)
- Valentinus Besin
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia
| | - Farizky Martriano Humardani
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia; Magister in Biomedical Science Program, Faculty of Medicine Universitas Brawijaya, Malang 65112, Indonesia.
| | - Trilis Yulianti
- Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Matthew Justyn
- Faculty of Pharmacy, Padjajaran University, Sumedang 45363, Indonesia
| |
Collapse
|
25
|
Chen J, Zhou J, Li M, Zhang K, Dai J, Zhao Y. Systematic analysis of circadian disrupting substances with a high-throughput zebrafish circadian behavior screening approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167037. [PMID: 37709093 DOI: 10.1016/j.scitotenv.2023.167037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Circadian rhythm aligns numerous biological functions in majority of animals. Aside from well-known external factors such as the light-dark cycle and temperature, circadian rhythm can also be regulated by rarely explored factors such as synthetic substances. Here, we established a circadian behavior screening approach utilizing zebrafish larvae model, which integrated high-throughput capabilities with automated batch processing. With this approach, we systematically analyzed the circadian disruptive effects of >60 synthetic substances commonly detected in aquatic environment by assessing both the circadian period length and amplitude of circadian behavior, with an exposure concentration set at 100 μg/L. Among tested substances, a series of circadian disrupting compounds (circadian disruptors) were identified. Several categories of the hit compounds can be recognized, such as phthalate (diisopentyl phthalate (DIPP), with 10.1 % and 49.6 % increases for circadian period length and amplitude, respectively), neuroactive substance (mirtazapine, with 10.6 % and 63.1 % increases, respectively), and biocides (thiamethoxam, with 100.3 % increase for amplitude). Among these compounds, DIPP increased circadian period length and amplitude with a high degree. Aside from DIPP, we further examined eleven other phthalates and demonstrated that benzyl butyl phthalate, diisobutyl phthalate and diisohexyl phthalate could also significantly increase the zebrafish circadian period length by 7.9 %, 3.7 % and 8.5 %, respectively. Collectively, the present findings substantiated the feasibility of this high throughput screening strategy for circadian disruptor's discovery and provided novel insights into understanding of the potential risks of synthetic substances.
Collapse
Affiliation(s)
- Jierong Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Zhou
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Minjia Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
26
|
Otaiku AI. Religiosity and Risk of Parkinson's Disease in England and the USA. JOURNAL OF RELIGION AND HEALTH 2023; 62:4192-4208. [PMID: 35763200 PMCID: PMC10682218 DOI: 10.1007/s10943-022-01603-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 05/11/2023]
Abstract
Parkinson's disease (PD) is associated with low religiosity cross-sectionally. Whether low religiosity might be associated with an increased risk for developing PD is unknown. This study investigated whether low religiosity in adulthood is associated with increased risk for developing PD. A population-based prospective cohort study was conducted. Participants from the English Longitudinal Study of Aging and the Midlife in the United States study who were free from PD at baseline (2004-2011) and completed questionnaires on self-reported religiosity, were included in a pooled analysis. Incident PD was based on self-report. Multivariable logistic regression was used to estimate odds ratios (OR) for developing PD according to baseline religiosity, with adjustment for sociodemographic characteristics, health and lifestyle factors and engagement in religious practices. Among 9,796 participants in the pooled dataset, 74 (0.8%) cases of incident PD were identified during a median follow-up of 8.1 years. In the fully adjusted model, compared with participants who considered religion very important in their lives at baseline, it was found that participants who considered religion "not at all important" in their lives had a tenfold risk of developing PD during follow-up (OR, 9.99; 95% CI 3.28-30.36). Moreover, there was a dose-response relationship between decreasing religiosity and increasing PD risk (P < 0.001 for trend). These associations were similar when adjusting for religious upbringing and when cases occurring within the first two years of follow-up were excluded from the analysis. The association was somewhat attenuated when religious practices were removed from the model as covariates, though it remained statistically significant (OR for "not at all important" vs. "very important", 2.26; 95% CI 1.03-4.95) (P < 0.029 for trend). This longitudinal study provides evidence for the first time that low religiosity in adulthood may be a strong risk factor for developing PD.
Collapse
Affiliation(s)
- Abidemi I Otaiku
- Department of Neurology, Birmingham City Hospital, Dudley Road, Birmingham, B18 7QH, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
27
|
Pan Y, Feng ZQ, Yuan Y, Hu GM, Jiang Y, Dong JC. Bidirectional Relationship Between Circadian Rhythm and Frailty. Nat Sci Sleep 2023; 15:949-953. [PMID: 38021211 PMCID: PMC10676114 DOI: 10.2147/nss.s436488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Coupled with the ageing population, frailty, characterized by high prevalence and difficult treatment, has progressively evolved into a significant public health concern. Frail individuals can often observe serious metabolic disorders and sleep-wake cycle disruption, which may be caused by the decline in physiological reserve and increased vulnerability. Moreover, sleep-wake cycle disruptions and metabolic dysfunctions associated with circadian rhythm disorders are considered to be a central part of the disorder. Previous studies have documented a correlation between frailty and sleep-wake disruptions; nevertheless, the association between circadian rhythm disorders and frailty has not yet been definitively established. Hence, we hypothesize a bidirectional link between circadian rhythm disorders and frailty, with each condition exerting a significant influence on the progression of the other's disease trajectory.
Collapse
Affiliation(s)
- Yu Pan
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Zhu Qing Feng
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Yan Yuan
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Gui Ming Hu
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Yi Jiang
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Jiang Chuan Dong
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|
28
|
Cai R, Gao L, Gao C, Yu L, Zheng X, Bennett DA, Buchman AS, Hu K, Li P. Circadian disturbances and frailty risk in older adults. Nat Commun 2023; 14:7219. [PMID: 37973796 PMCID: PMC10654720 DOI: 10.1038/s41467-023-42727-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
Frailty is characterized by diminished resilience to stressor events. It is associated with adverse future health outcomes and impedes healthy aging. The circadian system orchestrates ~24-h rhythms in bodily functions in synchrony with the day-night cycle, and disturbed circadian regulation plays an important role in many age-related health consequences. We investigated prospective associations of circadian disturbances with incident frailty in over 1000 older adults who had been followed annually for up to 16 years. We found that decreased rhythm strength, reduced stability, or increased variation were associated with a higher risk of incident frailty and faster progress of frailty over time. Perturbed circadian rest-activity rhythms may be an early sign or risk factor for frailty in older adults.
Collapse
Affiliation(s)
- Ruixue Cai
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- School of Public Health, Southeast University, Nanjing, Jiangsu, 210000, China.
| | - Lei Gao
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Chenlu Gao
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Xi Zheng
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kun Hu
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Peng Li
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
29
|
Majcin Dorcikova M, Duret LC, Pottié E, Nagoshi E. Circadian clock disruption promotes the degeneration of dopaminergic neurons in male Drosophila. Nat Commun 2023; 14:5908. [PMID: 37737209 PMCID: PMC10516932 DOI: 10.1038/s41467-023-41540-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Sleep and circadian rhythm disruptions are frequent comorbidities of Parkinson's disease (PD), a disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. However, the causal role of circadian clocks in the degenerative process remains uncertain. We demonstrated here that circadian clocks regulate the rhythmicity and magnitude of the vulnerability of DA neurons to oxidative stress in male Drosophila. Circadian pacemaker neurons are presynaptic to a subset of DA neurons and rhythmically modulate their susceptibility to degeneration. The arrhythmic period (per) gene null mutation exacerbates the age-dependent loss of DA neurons and, in combination with brief oxidative stress, causes premature animal death. These findings suggest that circadian clock disruption promotes dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Michaëla Majcin Dorcikova
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland
| | - Lou C Duret
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland
| | - Emma Pottié
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland.
| |
Collapse
|
30
|
Malhan D, Schoenrock B, Yalçin M, Blottner D, Relόgio A. Circadian regulation in aging: Implications for spaceflight and life on earth. Aging Cell 2023; 22:e13935. [PMID: 37493006 PMCID: PMC10497835 DOI: 10.1111/acel.13935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Alterations in the circadian system are characteristic of aging on Earth. With the decline in physiological processes due to aging, several health concerns including vision loss, cardiovascular disorders, cognitive impairments, and muscle mass loss arise in elderly populations. Similar health risks are reported as "red flag" risks among astronauts during and after a long-term Space exploration journey. However, little is known about the common molecular alterations underlying terrestrial aging and space-related aging in astronauts, and controversial conclusions have been recently reported. In light of the regulatory role of the circadian clock in the maintenance of human health, we review here the overlapping role of the circadian clock both on aging on Earth and spaceflight with a focus on the four most affected systems: visual, cardiovascular, central nervous, and musculoskeletal systems. In this review, we briefly introduce the regulatory role of the circadian clock in specific cellular processes followed by alterations in those processes due to aging. We next summarize the known molecular alterations associated with spaceflight, highlighting involved clock-regulated genes in space flown Drosophila, nematodes, small mammals, and astronauts. Finally, we discuss common genes that are altered in terms of their expression due to aging on Earth and spaceflight. Altogether, the data elaborated in this review strengthen our hypothesis regarding the timely need to include circadian dysregulation as an emerging hallmark of aging on Earth and beyond.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
| | - Britt Schoenrock
- Institute of Integrative NeuroanatomyCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Müge Yalçin
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
- Institute for Theoretical Biology (ITB)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dieter Blottner
- Institute of Integrative NeuroanatomyCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Neuromuscular System and Neuromuscular SignalingBerlin Center of Space Medicine & Extreme EnvironmentsBerlinGermany
| | - Angela Relόgio
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
- Institute for Theoretical Biology (ITB)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
31
|
Thangaleela S, Sivamaruthi BS, Kesika P, Mariappan S, Rashmi S, Choeisoongnern T, Sittiprapaporn P, Chaiyasut C. Neurological Insights into Sleep Disorders in Parkinson's Disease. Brain Sci 2023; 13:1202. [PMID: 37626558 PMCID: PMC10452387 DOI: 10.3390/brainsci13081202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a common multidimensional neurological disorder characterized by motor and non-motor features and is more prevalent in the elderly. Sleep disorders and cognitive disturbances are also significant characteristics of PD. Sleep is an important physiological process for normal human cognition and physical functioning. Sleep deprivation negatively impacts human physical, mental, and behavioral functions. Sleep disturbances include problems falling asleep, disturbances occurring during sleep, abnormal movements during sleep, insufficient sleep, and excessive sleep. The most recognizable and known sleep disorders, such as rapid-eye-movement behavior disorder (RBD), insomnia, excessive daytime sleepiness (EDS), restless legs syndrome (RLS), sleep-related breathing disorders (SRBDs), and circadian-rhythm-related sleep-wake disorders (CRSWDs), have been associated with PD. RBD and associated emotional disorders are common non-motor symptoms of PD. In individuals, sleep disorders and cognitive impairment are important prognostic factors for predicting progressing neurodegeneration and developing dementia conditions in PD. Studies have focused on RBD and its associated neurological changes and functional deficits in PD patients. Other risks, such as cognitive decline, anxiety, and depression, are related to RBD. Sleep-disorder diagnosis is challenging, especially in identifying the essential factors that disturb the sleep-wake cycle and the co-existence of other concomitant sleep issues, motor symptoms, and breathing disorders. Focusing on sleep patterns and their disturbances, including genetic and other neurochemical changes, helps us to better understand the central causes of sleep alterations and cognitive functions in PD patients. Relations between α-synuclein aggregation in the brain and gender differences in sleep disorders have been reported. The existing correlation between sleep disorders and levels of α-synuclein in the cerebrospinal fluid indicates the risk of progression of synucleinopathies. Multidirectional approaches are required to correlate sleep disorders and neuropsychiatric symptoms and diagnose sensitive biomarkers for neurodegeneration. The evaluation of sleep pattern disturbances and cognitive impairment may aid in the development of novel and effective treatments for PD.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Subramanian Rashmi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| | - Thiwanya Choeisoongnern
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| |
Collapse
|
32
|
Cardinali DP, Garay A. Melatonin as a Chronobiotic/Cytoprotective Agent in REM Sleep Behavior Disorder. Brain Sci 2023; 13:brainsci13050797. [PMID: 37239269 DOI: 10.3390/brainsci13050797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Dream-enactment behavior that emerges during episodes of rapid eye movement (REM) sleep without muscle atonia is a parasomnia known as REM sleep behavior disorder (RBD). RBD constitutes a prodromal marker of α-synucleinopathies and serves as one of the best biomarkers available to predict diseases such as Parkinson disease, multiple system atrophy and dementia with Lewy bodies. Most patients showing RBD will convert to an α-synucleinopathy about 10 years after diagnosis. The diagnostic advantage of RBD relies on the prolonged prodromal time, its predictive power and the absence of disease-related treatments that could act as confounders. Therefore, patients with RBD are candidates for neuroprotection trials that delay or prevent conversion to a pathology with abnormal α-synuclein metabolism. The administration of melatonin in doses exhibiting a chronobiotic/hypnotic effect (less than 10 mg daily) is commonly used as a first line treatment (together with clonazepam) of RBD. At a higher dose, melatonin may also be an effective cytoprotector to halt α-synucleinopathy progression. However, allometric conversion doses derived from animal studies (in the 100 mg/day range) are rarely employed clinically regardless of the demonstrated absence of toxicity of melatonin in phase 1 pharmacological studies with doses up to 100 mg in normal volunteers. This review discusses the application of melatonin in RBD: (a) as a symptomatic treatment in RBD; (b) as a possible disease-modifying treatment in α-synucleinopathies. To what degree melatonin has therapeutic efficacy in the prevention of α-synucleinopathies awaits further investigation, in particular multicenter double-blind trials.
Collapse
Affiliation(s)
- Daniel P Cardinali
- CENECON, Faculty of Medical Sciences, University of Buenos Aires, Buenos Aires C1431FWO, Argentina
| | - Arturo Garay
- Unidad de Medicina del Sueño-Sección Neurología, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Buenos Aires C1431FWO, Argentina
| |
Collapse
|
33
|
Xiang Y, Huang J, Wang Y, Huang X, Zeng Q, Li L, Zhao Y, Pan H, Xu Q, Liu Z, Sun Q, Wang J, Tan J, Shen L, Jiang H, Yan X, Li J, Tang B, Guo J. Evaluating the Genetic Role of Circadian Clock Genes in Parkinson's Disease. Mol Neurobiol 2023; 60:2729-2736. [PMID: 36717479 DOI: 10.1007/s12035-023-03243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/21/2023] [Indexed: 02/01/2023]
Abstract
Increasing evidence suggests that circadian dysfunction is related to Parkinson's disease (PD). However, the role of circadian clock genes in PD is still poorly understood. This study aimed to illustrate the association between genetic variants of circadian clock genes and PD in a large Chinese population cohort. Ten circadian clock genes were included in this study. Whole-exome sequencing (WES) was conducted in 1997 early-onset or familial PD patients and 1652 controls (WES cohort), and whole-genome sequencing (WGS) was conducted in 1962 sporadic late-onset PD patients and 1279 controls (WGS cohort). Analyses were completed using the optimized sequence kernel association test and regression analyses. In the burden analysis of the circadian clock gene set, we found suggestive significant associations between the circadian clock genes and PD in the WES cohort when considering missense, damaging missense (Dmis), and deleterious variants. Moreover, the burden analysis of single genes revealed suggestive significant associations between PD and the loss-of-function variants of the CRY1 gene, missense, Dmis, and deleterious variants of the PER1 gene, and Dmis and deleterious variants of the PER2 gene in the WES cohort. Rare variants in the WGS cohort and all common variants in the WGS and WES cohorts were unrelated to PD. Phenotypic analysis indicated that deleterious variants of the PER1 gene were associated with dyskinesia in the WES cohort. Our study provides evidence of a potential link between circadian clock genes and PD from a genetic perspective.
Collapse
Affiliation(s)
- Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - JuanJuan Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - XiuRong Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lizhi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Centre for Medical Genetics, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Centre for Medical Genetics, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Centre for Medical Genetics, Central South University, Changsha, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.
| |
Collapse
|
34
|
Feng H, Yang L, Ai S, Liu Y, Zhang W, Lei B, Chen J, Liu Y, Chan JWY, Chan NY, Tan X, Wang N, Benedict C, Jia F, Wing YK, Zhang J. Association between accelerometer-measured amplitude of rest-activity rhythm and future health risk: a prospective cohort study of the UK Biobank. THE LANCET. HEALTHY LONGEVITY 2023; 4:e200-e210. [PMID: 37148892 DOI: 10.1016/s2666-7568(23)00056-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The health effects of rest-activity rhythm are of major interest to public health, but its associations with health outcomes remain elusive. We aimed to examine the associations between accelerometer-measured rest-activity rhythm amplitude and health risks among the general UK population. METHODS We did a prospective cohort analysis of UK Biobank participants aged 43-79 years with valid wrist-worn accelerometer data. Low rest-activity rhythm amplitude was defined as the first quintile of relative amplitude; all other quintiles were classified as high rest-activity rhythm amplitude. Outcomes of interest were defined using International Classification of Diseases 10th Revision codes and consisted of incident cancer and cardiovascular, infectious, respiratory, and digestive diseases, and all-cause and disease-specific (cardiovascular, cancer, and respiratory) mortality. Participants with a current diagnosis of any outcome of interest were excluded. We assessed the associations between decreased rest-activity rhythm amplitude and outcomes using Cox proportional hazards models. FINDINGS Between June 1, 2013, and Dec 23, 2015, 103 682 participants with available raw accelerometer data were enrolled. 92 614 participants (52 219 [56·4%] women and 40 395 [42·6%] men) with a median age of 64 years (IQR 56-69) were recruited. Median follow-up was 6·4 years (IQR 5·8-6·9). Decreased rest-activity rhythm amplitude was significantly associated with increased incidence of cardiovascular diseases (adjusted hazard ratio 1·11 [95% CI 1·05-1·16]), cancer (1·08 [1·01-1·16]), infectious diseases (1·31 [1·22-1·41]), respiratory diseases (1·26 [1·19-1·34]), and digestive diseases (1·08 [1·03-1·14]), as well as all-cause mortality (1·54 [1·40-1·70]) and disease-specific mortality (1·73 [1·34-2·22] for cardiovascular diseases, 1·32 [1·13-1·55] for cancer, and 1·62 [1·25-2·09] for respiratory diseases). Most of these associations were not modified by age older than 65 years or sex. Among 16 accelerometer-measured rest-activity parameters, low rest-activity rhythm amplitude had the strongest or second- strongest associations with nine health outcomes. INTERPRETATION Our results suggest that low rest-activity rhythm amplitude might contribute to major health outcomes and provide further evidence to promote risk-modifying strategies associated with rest-activity rhythm to improve health and longevity. FUNDING National Natural Science Foundation of China and China Postdoctoral Science Foundation.
Collapse
Affiliation(s)
- Hongliang Feng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Li Chiu Kong Family Sleep Assessment Unit, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lulu Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Sizhi Ai
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Department of Cardiology, Heart Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yue Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weijie Zhang
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Binbin Lei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie Chen
- Li Chiu Kong Family Sleep Assessment Unit, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yaping Liu
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Li Chiu Kong Family Sleep Assessment Unit, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Joey W Y Chan
- Li Chiu Kong Family Sleep Assessment Unit, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ngan Yin Chan
- Li Chiu Kong Family Sleep Assessment Unit, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiao Tan
- Department of Big Data in Health Science, Zhejiang University School of Public Health, and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Christian Benedict
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Fujun Jia
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yun Kwok Wing
- Li Chiu Kong Family Sleep Assessment Unit, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jihui Zhang
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Codoñer-Franch P, Gombert M, Martínez-Raga J, Cenit MC. Circadian Disruption and Mental Health: The Chronotherapeutic Potential of Microbiome-Based and Dietary Strategies. Int J Mol Sci 2023; 24:ijms24087579. [PMID: 37108739 PMCID: PMC10146651 DOI: 10.3390/ijms24087579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Mental illness is alarmingly on the rise, and circadian disruptions linked to a modern lifestyle may largely explain this trend. Impaired circadian rhythms are associated with mental disorders. The evening chronotype, which is linked to circadian misalignment, is a risk factor for severe psychiatric symptoms and psychiatric metabolic comorbidities. Resynchronization of circadian rhythms commonly improves psychiatric symptoms. Furthermore, evidence indicates that preventing circadian misalignment may help reduce the risk of psychiatric disorders and the impact of neuro-immuno-metabolic disturbances in psychiatry. The gut microbiota exhibits diurnal rhythmicity, as largely governed by meal timing, which regulates the host's circadian rhythms. Temporal circadian regulation of feeding has emerged as a promising chronotherapeutic strategy to prevent and/or help with the treatment of mental illnesses, largely through the modulation of gut microbiota. Here, we provide an overview of the link between circadian disruption and mental illness. We summarize the connection between gut microbiota and circadian rhythms, supporting the idea that gut microbiota modulation may aid in preventing circadian misalignment and in the resynchronization of disrupted circadian rhythms. We describe diurnal microbiome rhythmicity and its related factors, highlighting the role of meal timing. Lastly, we emphasize the necessity and rationale for further research to develop effective and safe microbiome and dietary strategies based on chrononutrition to combat mental illness.
Collapse
Affiliation(s)
- Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
- Department of Pediatrics, University Hospital Doctor Peset, Foundation for the Promotion of Health and Bio-Medical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain
| | - Marie Gombert
- Biosciences Division, Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | - José Martínez-Raga
- Department of Psychiatry and Clinical Psychology, Hospital Universitario Doctor Peset, University of Valencia, 46017 Valencia, Spain
| | - María Carmen Cenit
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
36
|
Kawada T. Chronobiology in Parkinson's disease with special reference to sleep. Parkinsonism Relat Disord 2023:105393. [PMID: 37045675 DOI: 10.1016/j.parkreldis.2023.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Affiliation(s)
- Tomoyuki Kawada
- Department of Hygiene and Public Health, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
37
|
Debain A, Loosveldt FA, Knoop V, Costenoble A, Lieten S, Petrovic M, Bautmans I. Frail OLDER ADULTS are more likely TO have autonomic dysfunction: A systematic review and META-ANALYSIs. Ageing Res Rev 2023; 87:101925. [PMID: 37028604 DOI: 10.1016/j.arr.2023.101925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023]
Abstract
Autonomic dysfunction and frailty are two common and complex geriatric syndromes. Their prevalence increases with age and they have similar negative health outcomes. In PubMed and Web of Science we screened studies identifying a relationship between autonomic function (AF) and frailty in adults aged ≥65 years. Twenty-two studies of which two prospective and 20 cross-sectional were included (n=8375). We performed a meta-analysis for the articles addressing orthostatic hypotension (OH). Frailty was associated with 1.6 higher odds of suffering from consensus OH (COH) {OR=1.607 95%CI [1.15-2.24]; 7 studies; n=3488}. When measured for each type of OH the largest trend was seen between initial OH (IOH) and frailty {OR=3.08; 95%CI [1.50-6.36]; 2 studies; n=497}. Fourteen studies reported other autonomic function alterations in frail older adults with 4-22% reduction in orthostatic heart rate increase, 6% reduction in systolic blood pressure recovery, 9-75% reduction in most common used heart rate variability (HRV) parameters. Frail older adults were more likely to have impaired AF. Diagnosis of frailty should promptly lead to orthostatic testing as OH implicates specific treatment modalities, which differ from frailty management. As IOH is most strongly correlated with frailty, continuous beat to beat blood pressure measurements should be performed when present at least until cut-off values for heart rate variability testing are defined.
Collapse
Affiliation(s)
- Aziz Debain
- Gerontology department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; Frailty in Ageing (FRIA) Research department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Fien Ann Loosveldt
- Gerontology department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; Frailty in Ageing (FRIA) Research department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Veerle Knoop
- Gerontology department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; Frailty in Ageing (FRIA) Research department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Axelle Costenoble
- Gerontology department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; Frailty in Ageing (FRIA) Research department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Siddhartha Lieten
- Frailty in Ageing (FRIA) Research department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; Department of Geriatrics, Universitair Ziekenhuis Gent (UZGent), Corneel Heymanslaan 10, 9000 Gent
| | - Mirko Petrovic
- Frailty in Ageing (FRIA) Research department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; Department of Geriatrics, Universitair Ziekenhuis Gent (UZGent), Corneel Heymanslaan 10, 9000 Gent
| | - Ivan Bautmans
- Gerontology department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; Frailty in Ageing (FRIA) Research department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium.
| |
Collapse
|
38
|
Brécier A, Li VW, Smith CS, Halievski K, Ghasemlou N. Circadian rhythms and glial cells of the central nervous system. Biol Rev Camb Philos Soc 2023; 98:520-539. [PMID: 36352529 DOI: 10.1111/brv.12917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022]
Abstract
Glial cells are the most abundant cells in the central nervous system and play crucial roles in neural development, homeostasis, immunity, and conductivity. Over the past few decades, glial cell activity in mammals has been linked to circadian rhythms, the 24-h chronobiological clocks that regulate many physiological processes. Indeed, glial cells rhythmically express clock genes that cell-autonomously regulate glial function. In addition, recent findings in rodents have revealed that disruption of the glial molecular clock could impact the entire organism. In this review, we discuss the impact of circadian rhythms on the function of the three major glial cell types - astrocytes, microglia, and oligodendrocytes - across different locations within the central nervous system. We also review recent evidence uncovering the impact of glial cells on the body's circadian rhythm. Together, this sheds new light on the involvement of glial clock machinery in various diseases.
Collapse
Affiliation(s)
- Aurélie Brécier
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Vina W Li
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Chloé S Smith
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Katherine Halievski
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
| | - Nader Ghasemlou
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
- Department of Anesthesiology & Perioperative Medicine, 76 Stuart Street, Kingston, ON, K7L 2V7, Canada
- Centre for Neuroscience Studies, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
39
|
Cai R, Gao L, Gao C, Yu L, Zheng X, Bennett D, Buchman A, Hu K, Li P. Circadian disturbances and frailty risk in older adults: a prospective cohort study. RESEARCH SQUARE 2023:rs.3.rs-2648399. [PMID: 37034594 PMCID: PMC10081385 DOI: 10.21203/rs.3.rs-2648399/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Frailty is characterized by diminished resilience to stressor events. It associates with adverse future health outcomes and impedes healthy aging. The circadian system orchestrates a ~24-h rhythm in bodily functions in synchrony with the day-night cycle, and disturbed circadian regulation plays an important role in many age-related health consequences. We investigated prospective associations of circadian disturbances with incident frailty in over 1,000 older adults who had been followed annually for up to 16 years. We found that decreased rhythm strength, reduced stability, or increased variation, were associated with a higher risk of incident frailty, and faster worsening of the overall frailty symptoms over time. Perturbed circadian rest-activity rhythms may be an early sign or risk factor for frailty in older adults.
Collapse
Affiliation(s)
| | - Lei Gao
- Brigham and Women's Hospital
| | | | - Lei Yu
- Rush University Medical Center
| | | | | | | | - Kun Hu
- Brigham and Women's Hospital
| | - Peng Li
- Brigham and Women's Hospital/ Harvard Medical School
| |
Collapse
|
40
|
Yang L, Feng H, Ai S, Liu Y, Lei B, Chen J, Tan X, Benedict C, Wang N, Wing YK, Qi L, Zhang J. Association of accelerometer-derived circadian abnormalities and genetic risk with incidence of atrial fibrillation. NPJ Digit Med 2023; 6:31. [PMID: 36869222 PMCID: PMC9984286 DOI: 10.1038/s41746-023-00781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Evidence suggests potential links between circadian rhythm and atrial fibrillation (AF). However, whether circadian disruption can predict the onset of AF in the general population remains largely unknown. We aim to investigate the association of accelerometer-measured circadian rest-activity rhythm (CRAR, the most prominent circadian rhythm in humans) with the risk of AF, and examine joint associations and potential interactions of CRAR and genetic susceptibility with AF incidence. We include 62,927 white British participants of UK Biobank without AF at baseline. CRAR characteristics, including amplitude (strength), acrophase (timing of peak activity), pseudo-F (robustness), and mesor (height), are derived by applying an extended cosine model. Genetic risk is assessed with polygenic risk scores. The outcome is the incidence of AF. During a median follow-up of 6.16 years, 1920 participants developed AF. Low amplitude [hazard ratio (HR): 1.41, 95% confidence interval (CI): 1.25-1.58], delayed acrophase (HR: 1.24, 95% CI: 1.10-1.39), and low mesor (HR: 1.36, 95% CI: 1.21-1.52), but not low pseudo-F, are significantly associated with a higher risk of AF. No significant interactions between CRAR characteristics and genetic risk are observed. Joint association analyses reveal that participants with unfavourable CRAR characteristics and high genetic risk yield the highest risk of incident AF. These associations are robust after controlling for multiple testing and in a series of sensitivity analyses. Accelerometer-measured CRAR abnormalities, characterized by decreased strength and height, and later timing of peak activity of circadian rhythm, are associated with a higher risk of AF in the general population.
Collapse
Affiliation(s)
- Lulu Yang
- grid.410643.4Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Hongliang Feng
- grid.410643.4Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China ,grid.10784.3a0000 0004 1937 0482Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sizhi Ai
- grid.410737.60000 0000 8653 1072Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong China ,grid.493088.e0000 0004 1757 7279Department of Cardiology, Heart Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan China ,grid.10784.3a0000 0004 1937 0482Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yue Liu
- grid.410643.4Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Binbin Lei
- grid.410643.4Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Jie Chen
- grid.10784.3a0000 0004 1937 0482Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Tan
- grid.13402.340000 0004 1759 700XDepartment of Big Data in Health Science, Zhejiang University School of Public Health and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Christian Benedict
- grid.8993.b0000 0004 1936 9457Molecular Neuropharmacology (Sleep Science Laboratory), Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ningjian Wang
- grid.16821.3c0000 0004 0368 8293Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yun Kwok Wing
- grid.10784.3a0000 0004 1937 0482Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA. .,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Jihui Zhang
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. .,Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China. .,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
41
|
Chauhan S, Norbury R, Faßbender KC, Ettinger U, Kumari V. Beyond sleep: A multidimensional model of chronotype. Neurosci Biobehav Rev 2023; 148:105114. [PMID: 36868368 DOI: 10.1016/j.neubiorev.2023.105114] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Chronotype can be defined as an expression or proxy for circadian rhythms of varied mechanisms, for example in body temperature, cortisol secretion, cognitive functions, eating and sleeping patterns. It is influenced by a range of internal (e.g., genetics) and external factors (e.g., light exposure), and has implications for health and well-being. Here, we present a critical review and synthesis of existing models of chronotype. Our observations reveal that most existing models and, as a consequence, associated measures of chronotype have focused solely or primarily on the sleep dimension, and typically have not incorporated social and environmental influences on chronotype. We propose a multidimensional model of chronotype, integrating individual (biological and psychological), environmental and social factors that appear to interact to determine an individual's true chronotype with potential feedback loops between these factors. This model could be beneficial not only from a basic science perspective but also in the context of understanding health and clinical implications of certain chronotypes as well as designing preventive and therapeutic approaches for related illnesses.
Collapse
Affiliation(s)
- Satyam Chauhan
- Department of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom.
| | - Ray Norbury
- Department of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | | | | | - Veena Kumari
- Department of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom.
| |
Collapse
|
42
|
Marano M, Rosati J, Magliozzi A, Casamassa A, Rappa A, Sergi G, Iannizzotto M, Yekutieli Z, Vescovi AL, Di Lazzaro V. Circadian profile, daytime activity, and the Parkinson's phenotype: A motion sensor pilot study with neurobiological underpinnings. Neurobiol Sleep Circadian Rhythms 2023; 14:100094. [PMID: 37025301 PMCID: PMC10070882 DOI: 10.1016/j.nbscr.2023.100094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023] Open
Abstract
Circadian rhythm impairment may play a role in Parkinson's disease (PD) pathophysiology. Recent literature associated circadian rhythm features to the risk of developing Parkinson and to its progression through stages. The association between the chronotype and the phenotype should be verified on a clinical and biological point of view. Herein we investigate the chronotype of a sample of 50 PD patients with the Morningness Eveningness Questionnaire and monitor their daily activity with a motion sensor embedded in a smartphone. Fibroblasts were collected from PD patients (n = 5) and from sex/age matched controls (n = 3) and tested for the circadian expression of clock genes (CLOCK, BMAL1, PER1, CRY1), and for cell morphology, proliferation, and death. Our results show an association between the chronotype and the PD phenotype. The most representative clinical chronotypes were "moderate morning" (56%), the "intermediate" (24%) and, in a minor part, the "definite morning" (16%). They differed for axial motor impairment, presence of motor fluctuations and quality of life (p < 0.05). Patients with visuospatial dysfunction and patients with a higher PIGD score had a blunted motor daily activity (p = 0.006 and p = 0.001, respectively), independently by the influence of age and other motor scores. Fibroblasts obtained by PD patients (n = 5) had an impaired BMAL1 cycle compared to controls (n = 3, p = 0.01). Moreover, a PD flat BMAL1 profile was associated with the lowest cell proliferation and the largest cell morphology. This study contributes to the growing literature on CR abnormalities in the pathophysiology of Parkinson's disease providing a link between the clinical and biological patient chronotype and the disease phenomenology.
Collapse
Affiliation(s)
- Massimo Marano
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
- Corresponding author. Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Fondazione Policlinico Universitario Campus Bio-Medico, Viale Alvaro del Portillo 200, 00128, Roma, Italy.
| | - Jessica Rosati
- Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandro Magliozzi
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Alessia Casamassa
- Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessia Rappa
- Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Gabriele Sergi
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
| | - Miriam Iannizzotto
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
| | | | | | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
| |
Collapse
|
43
|
Circadian disruption and sleep disorders in neurodegeneration. Transl Neurodegener 2023; 12:8. [PMID: 36782262 PMCID: PMC9926748 DOI: 10.1186/s40035-023-00340-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Disruptions of circadian rhythms and sleep cycles are common among neurodegenerative diseases and can occur at multiple levels. Accumulating evidence reveals a bidirectional relationship between disruptions of circadian rhythms and sleep cycles and neurodegenerative diseases. Circadian disruption and sleep disorders aggravate neurodegeneration and neurodegenerative diseases can in turn disrupt circadian rhythms and sleep. Importantly, circadian disruption and various sleep disorders can increase the risk of neurodegenerative diseases. Thus, harnessing the circadian biology findings from preclinical and translational research in neurodegenerative diseases is of importance for reducing risk of neurodegeneration and improving symptoms and quality of life of individuals with neurodegenerative disorders via approaches that normalize circadian in the context of precision medicine. In this review, we discuss the implications of circadian disruption and sleep disorders in neurodegenerative diseases by summarizing evidence from both human and animal studies, focusing on the bidirectional links of sleep and circadian rhythms with prevalent forms of neurodegeneration. These findings provide valuable insights into the pathogenesis of neurodegenerative diseases and suggest a promising role of circadian-based interventions.
Collapse
|
44
|
Liu LP, Li MH, Zheng YW. Hair Follicles as a Critical Model for Monitoring the Circadian Clock. Int J Mol Sci 2023; 24:2407. [PMID: 36768730 PMCID: PMC9916850 DOI: 10.3390/ijms24032407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/30/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Clock (circadian) genes are heterogeneously expressed in hair follicles (HFs). The genes can be modulated by both the central circadian system and some extrinsic factors, such as light and thyroid hormones. These circadian genes participate in the regulation of several physiological processes of HFs, including hair growth and pigmentation. On the other hand, because peripheral circadian genes are synchronized with the central clock, HFs could provide a noninvasive and practical method for monitoring and evaluating multiple circadian-rhythm-related conditions and disorders among humans, including day and night shifts, sleep-wake disorders, physical activities, energy metabolism, and aging. However, due to the complexity of circadian biology, understanding how intrinsic oscillation operates using peripheral tissues only may be insufficient. Combining HF sampling with multidimensional assays such as detection of body temperature, blood samples, or certain validated questionnaires may be helpful in improving HF applications. Thus, HFs can serve as a critical model for monitoring the circadian clock and can help provide an understanding of the potential mechanisms of circadian-rhythm-related conditions; furthermore, chronotherapy could support personalized treatment scheduling based on the gene expression profile expressed in HFs.
Collapse
Affiliation(s)
- Li-Ping Liu
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang 212001, China
| | - Meng-Huan Li
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang 212001, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama 234-0006, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
45
|
Asadpoordezaki Z, Coogan AN, Henley BM. Chronobiology of Parkinson's disease: Past, present and future. Eur J Neurosci 2023; 57:178-200. [PMID: 36342744 PMCID: PMC10099399 DOI: 10.1111/ejn.15859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder predominately affecting midbrain dopaminergic neurons that results in a broad range of motor and non-motor symptoms. Sleep complaints are among the most common non-motor symptoms, even in the prodromal period. Sleep alterations in Parkinson's disease patients may be associated with dysregulation of circadian rhythms, intrinsic 24-h cycles that control essential physiological functions, or with side effects from levodopa medication and physical and mental health challenges. The impact of circadian dysregulation on sleep disturbances in Parkinson's disease is not fully understood; as such, we review the systems, cellular and molecular mechanisms that may underlie circadian perturbations in Parkinson's disease. We also discuss the potential benefits of chronobiology-based personalized medicine in the management of Parkinson's disease both in terms of behavioural and pharmacological interventions. We propose that a fuller understanding of circadian clock function may shed important new light on the aetiology and symptomatology of the disease and may allow for improvements in the quality of life for the millions of people with Parkinson's disease.
Collapse
Affiliation(s)
- Ziba Asadpoordezaki
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Andrew N Coogan
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Beverley M Henley
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| |
Collapse
|
46
|
Association of circadian rhythms with brain disorder incidents: a prospective cohort study of 72242 participants. Transl Psychiatry 2022; 12:514. [PMID: 36517471 PMCID: PMC9751105 DOI: 10.1038/s41398-022-02278-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythm disruption (CRD) is a shared characteristic of various brain disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and major depression disorder (MDD). Disruption of circadian rhythm might be a risk factor for brain disorder incidents. From 7-day accelerometry data of 72,242 participants in UK Biobank, we derived a circadian relative amplitude variable, which to some extent reflected the degree of circadian rhythm disruption. Records of brain disorder incidents were obtained from a wide range of health outcomes across self-report, primary care, hospital inpatient data, and death data. Using multivariate Cox proportional hazard ratio regression, we created two models adjusting for different covariates. Then, linear correlations between relative amplitude and several brain morphometric measures were examined in participants with brain MRI data. After a median follow-up of around 6.1 years, 72,242 participants were included in the current study (female 54.9%; mean age 62.1 years). Individuals with reduced relative amplitude had increasing risk of all-cause dementia (Hazard ratio 1.23 [95% CI 1.15 to 1.31]), PD (1.33 [1.25 to 1.41]), stroke (1.13 [1.06 to 1.22]), MDD (1.18 [1.13 to 1.23]), and anxiety disorder (1.14 [1.09 to 1.20]) in fully adjusted models. Additionally, significant correlations were found between several cortical regions and white matter tracts and relative amplitude that have been linked to dementia and psychiatric disorders. We confirm CRD to be a risk factor for various brain disorders. Interventions for regulating circadian rhythm may have clinical relevance to reducing the risk of various brain disorders.
Collapse
|
47
|
Zandi M, Hashemnia SMR, Shafaati M. The microbiota-gut-brain axis and circadian rhythms in Parkinson's disease - Correspondence. Int J Surg 2022; 108:106978. [PMID: 36347440 DOI: 10.1016/j.ijsu.2022.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran Department of Microbiology, Faculty of Science, Jahrom Branch, Islamic Azad University, Jahrom, Iran Occupational Sleep Research, Baharloo Hospital, Tehran University of Medical Science, Tehran, Iran
| | | | | |
Collapse
|
48
|
Otaiku AI. Association of sleep abnormalities in older adults with risk of developing Parkinson's disease. Sleep 2022; 45:zsac206. [PMID: 36037514 PMCID: PMC9644115 DOI: 10.1093/sleep/zsac206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2022] [Indexed: 11/30/2022] Open
Abstract
STUDY OBJECTIVES Parkinson's disease (PD) is associated with abnormalities of sleep macro- and microstructure as measured using polysomnography (PSG). Whether these abnormalities precede the development of PD is unknown. This study investigated the association between PSG measured sleep abnormalities in older adults and the risk of incident PD. METHODS A total of 2,770 men from the ancillary sleep study of the Osteoporotic Fractures in Men Study (MrOS), a population-based cohort from the United States, who were free from PD baseline and underwent overnight PSG, were included in this longitudinal analysis. Incident PD was based on a clinical diagnosis from a medical professional. Multivariable logistic regression was used to estimate odds ratios (OR) for incident PD by quartiles of PSG measures, with adjustment for sociodemographic characteristics, medical comorbidities, and lifestyle factors. RESULTS During a median follow-up of 9.8 years, 70 (2.5%) cases of incident PD were identified. Longer total sleep time, lower rapid eye movement sleep (REM) percentage, a lower α/θ ratio during non-REM sleep and higher minimum oxygen saturations during REM sleep, were each associated with an increased risk of developing PD. Conversely, a higher awakening index was associated with a decreased risk of developing PD. The OR for the highest risk quartiles compared to the lowest risk quartiles, ranged from 2.1 to 3.7 (p's < .05). The associations remained significant when cases occurring within the first two years of follow-up were excluded from the analyses. CONCLUSIONS Macro- and micro-structural sleep abnormalities precede the development of PD by several years and can identify individuals at high risk of developing PD in the future.
Collapse
Affiliation(s)
- Abidemi I Otaiku
- Department of Neurology, Birmingham City Hospital, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
49
|
Meyer N, Harvey AG, Lockley SW, Dijk DJ. Circadian rhythms and disorders of the timing of sleep. Lancet 2022; 400:1061-1078. [PMID: 36115370 DOI: 10.1016/s0140-6736(22)00877-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/20/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
The daily alternation between sleep and wakefulness is one of the most dominant features of our lives and is a manifestation of the intrinsic 24 h rhythmicity underlying almost every aspect of our physiology. Circadian rhythms are generated by networks of molecular oscillators in the brain and peripheral tissues that interact with environmental and behavioural cycles to promote the occurrence of sleep during the environmental night. This alignment is often disturbed, however, by contemporary changes to our living environments, work or social schedules, patterns of light exposure, and biological factors, with consequences not only for sleep timing but also for our physical and mental health. Characterised by undesirable or irregular timing of sleep and wakefulness, in this Series paper we critically examine the existing categories of circadian rhythm sleep-wake disorders and the role of the circadian system in their development. We emphasise how not all disruption to daily rhythms is driven solely by an underlying circadian disturbance, and take a broader, dimensional approach to explore how circadian rhythms and sleep homoeostasis interact with behavioural and environmental factors. Very few high-quality epidemiological and intervention studies exist, and wider recognition and treatment of sleep timing disorders are currently hindered by a scarcity of accessible and objective tools for quantifying sleep and circadian physiology and environmental variables. We therefore assess emerging wearable technology, transcriptomics, and mathematical modelling approaches that promise to accelerate the integration of our knowledge in sleep and circadian science into improved human health.
Collapse
Affiliation(s)
- Nicholas Meyer
- Insomnia and Behavioural Sleep Medicine Clinic, University College London Hospitals NHS Foundation Trust, London, UK; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, UK
| | - Allison G Harvey
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK; UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK.
| |
Collapse
|
50
|
Neves AR, Albuquerque T, Quintela T, Costa D. Circadian rhythm and disease: Relationship, new insights, and future perspectives. J Cell Physiol 2022; 237:3239-3256. [PMID: 35696609 DOI: 10.1002/jcp.30815] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023]
Abstract
The circadian system is responsible for internal functions and regulation of the organism according to environmental cues (zeitgebers). Circadian rhythm dysregulation or chronodisruption has been associated with several diseases, from mental to autoimmune diseases, and with life quality change. Following this, some therapies have been developed to correct circadian misalignments, such as light therapy and chronobiotics. In this manuscript, we describe the circadian-related diseases so far investigated, and studies reporting relevant data on this topic, evidencing this relationship, are included. Despite the actual limitations in published work, there is clear evidence of the correlation between circadian rhythm dysregulation and disease origin/development, and, in this way, clock-related therapies emerge as great progress in the clinical field. Future improvements in such interventions can lead to the development of successful chronotherapy strategies, deeply contributing to enhanced therapeutic outcomes.
Collapse
Affiliation(s)
- Ana R Neves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Tânia Albuquerque
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,Unidade de Investigação para o Desenvolvimento do Interior (UDI-IPG), Instituto Politécnico da Guarda, Guarda, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|