1
|
Lu Z, Chan SW, Jiang B, Cui D, Sakata I, Sakai T, Huang X, Liu JYH, Chan TWD, Rudd JA. Action of cocaine- and amphetamine-regulated transcript (CART) peptide to attenuate cisplatin-induced emesis in Suncus murinus (house musk shrew). Eur J Pharmacol 2024; 984:177072. [PMID: 39447859 DOI: 10.1016/j.ejphar.2024.177072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptide is a brain-gut neuropeptide that has been implicated in a range of physiological functions including appetite, which is disturbed during chemotherapy. The aims of the present study were to identify the distribution and expression of CART mRNA and CART peptide, and to examine the potential of CART (55-102) to attenuate cisplatin-induced emesis in Suncus murinus. CART mRNA and peptide were detected throughout the entire brain, including the forebrain, hypothalamus, and brainstem, and also in the gut wall and stomach. In conscious, freely moving animals, intracerebroventricular administration of CART (55-102) did not modulate food and water intake or alter locomotor activity when administered alone. Cisplatin induced emesis and upregulated the expression of CART mRNA in the brainstem. However, CART (55-102) reduced the number of cisplatin-induced retches. Both CART (55-102) and cisplatin increased the number of c-Fos positive cells in the nucleus tractus solitarius, lateral hypothalamus, paraventricular hypothalamus, and bed nucleus of the stria terminalis (BNST), compared to saline-treated animals, whereas cisplatin also induced c-Fos expression in the area postrema (AP), arcuate nucleus, and central nucleus of the amygdala. Pre-treatment with CART (55-102) significantly attenuated the increased c-Fos positive cells in the BNST and AP. These data indicate that CART mRNA and peptide were localized to regions involved in reward/enforcement, emotion, feeding and emesis. The anti-emetic effect of CART (55-102) against cisplatin-induced emesis may involve both the forebrain limbic system and the brainstem.
Collapse
Affiliation(s)
- Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sze Wa Chan
- School of Health Sciences, Saint Francis University, Hong Kong SAR, China.
| | - Bin Jiang
- School of Health Sciences, Saint Francis University, Hong Kong SAR, China
| | - Dexuan Cui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ichiro Sakata
- Graduate School of Science and Engineering, Saitama University, Japan
| | - Takafumi Sakai
- Graduate School of Science and Engineering, Saitama University, Japan
| | - Xiaofei Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Health Sciences, Saint Francis University, Hong Kong SAR, China
| | - Julia Yuen Hang Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tak Wah Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Bakhtazad A, Kabbaj M, Garmabi B, Joghataei MT. The role of CART peptide in learning and memory: A potential therapeutic target in memory-related disorders. Peptides 2024; 181:171298. [PMID: 39317295 DOI: 10.1016/j.peptides.2024.171298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Cocaine and amphetamine-regulated transcript (CART) mRNA and peptide are vastly expressed in both cortical and subcortical brain areas and are involved in critical cognitive functions. CART peptide (CARTp), described in reward-related brain structures, regulates drug-induced learning and memory, and its role appears specific to psychostimulants. However, many other drugs of abuse, such as alcohol, opiates, nicotine, and caffeine, have been shown to alter the expression levels of CART mRNA and peptides in brain structures directly or indirectly associated with learning and memory processes. However, the number of studies demonstrating the contribution of CARTp in learning and memory is still minimal. Notably, the exact cellular and molecular mechanisms underlying CARTp effects are still unknown. The discoveries that CARTp effects are mediated through a putative G-protein coupled receptor and activation of cellular signaling cascades via NMDA receptor-coupled ERK have enhanced our knowledge about the action of this neuropeptide and allowed us to comprehend better CARTp exact cellular/molecular mechanisms that could mediate drug-induced changes in learning and memory functions. Unfortunately, these efforts have been impeded by the lack of suitable and specific CARTp receptor antagonists. In this review, following a short introduction about CARTp, we report on current knowledge about CART's roles in learning and memory processes and its recently described role in memory-related neurological disorders. We will also discuss the importance of further investigating how CARTp interacts with its receptor(s) and other neurotransmitter systems to influence learning and memory functions. This topic is sure to intrigue and motivate further exploration in the field of neuroscience.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, United States; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, United States
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Singh O, Basu S, Srivastava A, Pradhan DR, Dandapat P, Bathrachalam C, Singru PS. Cocaine- and Amphetamine-Regulated Transcript Peptide in the Central Nervous System of the Gecko, Hemidactylus leschenaultii: Molecular Characterization, Neuroanatomical Organization, and Regulation by Neuropeptide Y. J Comp Neurol 2024; 532:e25672. [PMID: 39380327 DOI: 10.1002/cne.25672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
Neuropeptide cocaine- and amphetamine-regulated transcript (CART) is widely expressed in the brains of teleosts, amphibians, birds, and mammals and has emerged as a conserved regulator of energy balance across these vertebrate phyla. However, as yet, there is no information on CART in the reptilian brain. We characterized the cDNA encoding CART and mapped CART-containing elements in the brain of gecko, Hemidactylus leschenaultii (hl) using a specific anti-CART antiserum. We report a 683-bp hlcart transcript containing a 336-bp open reading frame, which encodes a putative 111-amino acid hl-preproCART. The 89-amino acid hl-proCART generated from hl-preproCART produced two putative bioactive hl-CART-peptides. These bioactive CART-peptides were > 93% similar with those in rats/humans. Although reverse transcription-polymerase chain reaction (RT-PCR) detected hlcart-transcript in the brain, CART-containing neurons/fibers were widely distributed in the telencephalon, diencephalon, mesencephalon, rhombencephalon, spinal cord, and retina. The mitral cells in olfactory bulb, neurons in the paraventricular, periventricular, arcuate (Arc), Edinger-Westphal, and brainstem nuclei were intensely CART-positive. In view of antagonistic roles of neuropeptide Y (NPY) and CART in energy balance in the framework of mammalian hypothalamus, we probed CART-NPY interaction in the hypothalamus of H. leschenaultii. Double immunofluorescence showed a dense NPY-innervation of Arc CART neurons. Ex vivo hypothalamic slices treated with NPY/NPY-Y1-receptor agonist significantly reduced hlcart-mRNA levels in the Arc-containing tissues and CART-ir in the dorsal-Arc. However, CART-ir in ventral-Arc was unaffected. NPY via Y1-receptors may regulate energy balance by inhibiting dArc CART neurons. This study on CART in a reptilian brain fills the current void in literature and underscores the conserved feature of the neuropeptide across the entire vertebrate phyla.
Collapse
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Abhinav Srivastava
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Dipti R Pradhan
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
| | - Pallabi Dandapat
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
| | - Chandramohan Bathrachalam
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Schwalbe DC, Stornetta DS, Abraham-Fan RJ, Souza GMPR, Jalil M, Crook ME, Campbell JN, Abbott SBG. Molecular Organization of Autonomic, Respiratory, and Spinally-Projecting Neurons in the Mouse Ventrolateral Medulla. J Neurosci 2024; 44:e2211232024. [PMID: 38918066 PMCID: PMC11293450 DOI: 10.1523/jneurosci.2211-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
The ventrolateral medulla (VLM) is a crucial region in the brain for visceral and somatic control, serving as a significant source of synaptic input to the spinal cord. Experimental studies have shown that gene expression in individual VLM neurons is predictive of their function. However, the molecular and cellular organization of the VLM has remained uncertain. This study aimed to create a comprehensive dataset of VLM cells using single-cell RNA sequencing in male and female mice. The dataset was enriched with targeted sequencing of spinally-projecting and adrenergic/noradrenergic VLM neurons. Based on differentially expressed genes, the resulting dataset of 114,805 VLM cells identifies 23 subtypes of neurons, excluding those in the inferior olive, and five subtypes of astrocytes. Spinally-projecting neurons were found to be abundant in seven subtypes of neurons, which were validated through in situ hybridization. These subtypes included adrenergic/noradrenergic neurons, serotonergic neurons, and neurons expressing gene markers associated with premotor neurons in the ventromedial medulla. Further analysis of adrenergic/noradrenergic neurons and serotonergic neurons identified nine and six subtypes, respectively, within each class of monoaminergic neurons. Marker genes that identify the neural network responsible for breathing were concentrated in two subtypes of neurons, delineated from each other by markers for excitatory and inhibitory neurons. These datasets are available for public download and for analysis with a user-friendly interface. Collectively, this study provides a fine-scale molecular identification of cells in the VLM, forming the foundation for a better understanding of the VLM's role in vital functions and motor control.
Collapse
Affiliation(s)
- Dana C Schwalbe
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | | | | | | | - Maira Jalil
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Maisie E Crook
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - John N Campbell
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | | |
Collapse
|
5
|
Gan HW, Cerbone M, Dattani MT. Appetite- and Weight-Regulating Neuroendocrine Circuitry in Hypothalamic Obesity. Endocr Rev 2024; 45:309-342. [PMID: 38019584 PMCID: PMC11074800 DOI: 10.1210/endrev/bnad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Since hypothalamic obesity (HyOb) was first described over 120 years ago by Joseph Babinski and Alfred Fröhlich, advances in molecular genetic laboratory techniques have allowed us to elucidate various components of the intricate neurocircuitry governing appetite and weight regulation connecting the hypothalamus, pituitary gland, brainstem, adipose tissue, pancreas, and gastrointestinal tract. On a background of an increasing prevalence of population-level common obesity, the number of survivors of congenital (eg, septo-optic dysplasia, Prader-Willi syndrome) and acquired (eg, central nervous system tumors) hypothalamic disorders is increasing, thanks to earlier diagnosis and management as well as better oncological therapies. Although to date the discovery of several appetite-regulating peptides has led to the development of a range of targeted molecular therapies for monogenic obesity syndromes, outside of these disorders these discoveries have not translated into the development of efficacious treatments for other forms of HyOb. This review aims to summarize our current understanding of the neuroendocrine physiology of appetite and weight regulation, and explore our current understanding of the pathophysiology of HyOb.
Collapse
Affiliation(s)
- Hoong-Wei Gan
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Manuela Cerbone
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Mehul Tulsidas Dattani
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
6
|
Anversa RG, Maddern XJ, Lawrence AJ, Walker LC. Orphan peptide and G protein-coupled receptor signalling in alcohol use disorder. Br J Pharmacol 2024; 181:595-609. [PMID: 38073127 PMCID: PMC10953447 DOI: 10.1111/bph.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Neuropeptides and G protein-coupled receptors (GPCRs) have long been, and continue to be, one of the most popular target classes for drug discovery in CNS disorders, including alcohol use disorder (AUD). Yet, orphaned neuropeptide systems and receptors (oGPCR), which have no known cognate receptor or ligand, remain understudied in drug discovery and development. Orphan neuropeptides and oGPCRs are abundantly expressed within the brain and represent an unprecedented opportunity to address brain function and may hold potential as novel treatments for disease. Here, we describe the current literature regarding orphaned neuropeptides and oGPCRs implicated in AUD. Specifically, in this review, we focus on the orphaned neuropeptide cocaine- and amphetamine-regulated transcript (CART), and several oGPCRs that have been directly implicated in AUD (GPR6, GPR26, GPR88, GPR139, GPR158) and discuss their potential and pitfalls as novel treatments, and progress in identifying their cognate receptors or ligands.
Collapse
Affiliation(s)
- Roberta Goncalves Anversa
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Xavier J. Maddern
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Leigh C. Walker
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
7
|
Maddern XJ, Letherby B, Ch'ng SS, Pearl A, Gogos A, Lawrence AJ, Walker LC. Cocaine and amphetamine regulated transcript (CART) mediates sex differences in binge drinking through central taste circuits. Neuropsychopharmacology 2024; 49:541-550. [PMID: 37608219 PMCID: PMC10789734 DOI: 10.1038/s41386-023-01712-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
The neuropeptide cocaine- and amphetamine-regulated transcript (CART) has been implicated in alcohol consumption and reward behaviours, yet mechanisms mediating these effects have yet to be identified. Using a transgenic CART knockout (KO) mouse line we uncovered a sexually dimorphic effect of CART in binge drinking, with male CART KO mice increasing intake, whilst female CART KO mice decreased their alcohol intake compared to controls. Female CART KO mice show greater sensitivity to bitter solutions that can be overshadowed through addition of a sweetener, implicating taste as a factor. Further we identify that this is not driven through peripherally circulating sex hormones, but the central nucleus of the amygdala (CeA) is a locus where CART contributes to the regulation of alcohol consumption, with CeA CART neutralisation specifically reducing plain alcohol, but not sweetened alcohol consumption in female mice. These findings may have implications for the development of sex-specific treatment options for alcohol use disorders through targeting the CART system.
Collapse
Affiliation(s)
- Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Bethany Letherby
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sarah S Ch'ng
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Amy Pearl
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
8
|
Richardson J, Dezfuli G, Mangel AW, Gillis RA, Vicini S, Sahibzada N. CNS sites controlling the gastric pyloric sphincter: Neuroanatomical and functional study in the rat. J Comp Neurol 2023; 531:1562-1581. [PMID: 37507853 PMCID: PMC10430764 DOI: 10.1002/cne.25530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/25/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
The pyloric sphincter receives parasympathetic vagal innervation from the dorsal motor nucleus of the vagus (DMV). However, little is known about its higher-order neurons and the nuclei that engage the DMV neurons controlling the pylorus. The purpose of the present study was twofold. First, to identify neuroanatomical connections between higher-order neurons and the DMV. This was carried out by using the transneuronal pseudorabies virus PRV-152 injected into rat pylorus torus and examining the brains of these animals for PRV labeling. Second, to identify the specific sites within the DMV that functionally control the motility and tone of the pyloric sphincter. For these studies, experiments were performed to assess the effect of DMV stimulation on pylorus activity in urethane-anesthetized male rats. A strain gauge force transducer was sutured onto the pyloric tonus to monitor tone and motility. L-glutamate (500 pmol/30 nL) was microinjected unilaterally into the rostral and caudal areas of the DMV. Data from the first study indicated that neurons labeled with PRV occurred in the DMV, hindbrain raphe nuclei, midbrain Edinger-Westphal nucleus, ventral tegmental area, lateral habenula, and arcuate nucleus. Data from the second study indicated that microinjected L-glutamate into the rostral DMV results in contraction of the pylorus blocked by intravenously administered atropine and ipsilateral vagotomy. L-glutamate injected into the caudal DMV relaxed the pylorus. This response was abolished by ipsilateral vagotomy but not by intravenously administered atropine or L-NG-nitroarginine methyl ester (L-NAME). These findings identify the anatomical and functional brain neurocircuitry involved in controlling the pyloric sphincter. Our results also show that site-specific stimulation of the DMV can differentially influence the activity of the pyloric sphincter by separate vagal nerve pathways.
Collapse
Affiliation(s)
- Janell Richardson
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Ghazaul Dezfuli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | | | - Richard A. Gillis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| |
Collapse
|
9
|
Eleftheriadis PE, Pothakos K, Sharples SA, Apostolou PE, Mina M, Tetringa E, Tsape E, Miles GB, Zagoraiou L. Peptidergic modulation of motor neuron output via CART signaling at C bouton synapses. Proc Natl Acad Sci U S A 2023; 120:e2300348120. [PMID: 37733738 PMCID: PMC10523464 DOI: 10.1073/pnas.2300348120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/17/2023] [Indexed: 09/23/2023] Open
Abstract
The intensity of muscle contraction, and therefore movement vigor, needs to be adaptable to enable complex motor behaviors. This can be achieved by adjusting the properties of motor neurons, which form the final common pathway for all motor output from the central nervous system. Here, we identify roles for a neuropeptide, cocaine- and amphetamine-regulated transcript (CART), in the control of movement vigor. We reveal distinct but parallel mechanisms by which CART and acetylcholine, both released at C bouton synapses on motor neurons, selectively amplify the output of subtypes of motor neurons that are recruited during intense movement. We find that mice with broad genetic deletion of CART or selective elimination of acetylcholine from C boutons exhibit deficits in behavioral tasks that require higher levels of motor output. Overall, these data uncover spinal modulatory mechanisms that control movement vigor to support movements that require a high degree of muscle force.
Collapse
Affiliation(s)
| | - Konstantinos Pothakos
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Simon A. Sharples
- School of Psychology and Neuroscience, University of St. Andrews, St. AndrewsKY16 9JP, United Kingdom
| | - Panagiota E. Apostolou
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Maria Mina
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Efstathia Tetringa
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Eirini Tsape
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Gareth B. Miles
- School of Psychology and Neuroscience, University of St. Andrews, St. AndrewsKY16 9JP, United Kingdom
| | - Laskaro Zagoraiou
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| |
Collapse
|
10
|
Szalak R, Matysek M, Mozel S, Arciszewski MB. Cocaine- and Amphetamine-Regulated Transcript (CART) Peptide Is Co-Expressed with Parvalbumin, Neuropeptide Y and Somatostatin in the Claustrum of the Chinchilla. Animals (Basel) 2023; 13:2177. [PMID: 37443975 DOI: 10.3390/ani13132177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Although for many years, researchers have been working on understanding the function of the cocaine- and amphetamine-regulated transcript (CART) peptide at the central- and peripheral-nervous-system level, data describing the presence of CART in the claustrum are still missing. Therefore, the aim of the present study was to immunohistochemically investigate the CART expression in the claustrum neurons in chinchillas as well as the CART co-localization with somatostatin (SOM), parvalbumin (PV), and neuropeptide Y (NPY) using double-immunohistochemical staining. The claustrum is divided into two main parts: the dorsal segment (CL), which is located above the rhinal fissure, and the ventral segment (EN), located below the rhinal fissure. The presence of HU C/D-IR CART-IR-positive neurons was detected in both the insular claustrum (CL) and the endopiriform nucleus (EN). The vast majority of CART-IR neurons were predominantly small and medium in size and were evenly scattered throughout the claustrum. CART co-localization with selected neurotransmitters/neuromodulators (SOM, NPY, and PV) showed the presence of a CART-IR reaction only in the neurons, while the nerve fibers were, in all cases, devoid of the CART-IR response. Our research supplements missing knowledge about the distribution and co-localization pattern of CART with SOM, NPY, and PV in the chinchilla claustrum, and also provides a better understanding of the similarities and differences compared to other species of rodents and other mammals.
Collapse
Affiliation(s)
- Radosław Szalak
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Małgorzata Matysek
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Sylwia Mozel
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Marcin B Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| |
Collapse
|
11
|
Żakowski W, Zawistowski P. Neurochemistry of the mammillary body. Brain Struct Funct 2023; 228:1379-1398. [PMID: 37378855 PMCID: PMC10335970 DOI: 10.1007/s00429-023-02673-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
The mammillary body (MB) is a component of the extended hippocampal system and many studies have shown that its functions are vital for mnemonic processes. Together with other subcortical structures, such as the anterior thalamic nuclei and tegmental nuclei of Gudden, the MB plays a crucial role in the processing of spatial and working memory, as well as navigation in rats. The aim of this paper is to review the distribution of various substances in the MB of the rat, with a description of their possible physiological roles. The following groups of substances are reviewed: (1) classical neurotransmitters (glutamate and other excitatory transmitters, gamma-aminobutyric acid, acetylcholine, serotonin, and dopamine), (2) neuropeptides (enkephalins, substance P, cocaine- and amphetamine-regulated transcript, neurotensin, neuropeptide Y, somatostatin, orexins, and galanin), and (3) other substances (calcium-binding proteins and calcium sensor proteins). This detailed description of the chemical parcellation may facilitate a better understanding of the MB functions and its complex relations with other structures of the extended hippocampal system.
Collapse
Affiliation(s)
- Witold Żakowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Piotr Zawistowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
12
|
Owe-Larsson M, Pawłasek J, Piecha T, Sztokfisz-Ignasiak A, Pater M, Janiuk IR. The Role of Cocaine- and Amphetamine-Regulated Transcript (CART) in Cancer: A Systematic Review. Int J Mol Sci 2023; 24:9986. [PMID: 37373130 PMCID: PMC10297965 DOI: 10.3390/ijms24129986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The functions of cocaine- and amphetamine-regulated transcript (CART) neuropeptide encoded by the CARTPT gene vary from modifying behavior and pain sensitivity to being an antioxidant. Putative CART peptide receptor GPR160 was implicated recently in the pathogenesis of cancer. However, the exact role of CART protein in the development of neoplasms remains unclear. This systematic review includes articles retrieved from the Scopus, PubMed, Web of Science and Medline Complete databases. Nineteen publications that met the inclusion criteria and describe the association of CART and cancer were analyzed. CART is expressed in various types of cancer, e.g., in breast cancer and neuroendocrine tumors (NETs). The role of CART as a potential biomarker in breast cancer, stomach adenocarcinoma, glioma and some types of NETs was suggested. In various cancer cell lines, CARTPT acts an oncogene, enhancing cellular survival by the activation of the ERK pathway, the stimulation of other pro-survival molecules, the inhibition of apoptosis or the increase in cyclin D1 levels. In breast cancer, CART was reported to protect tumor cells from tamoxifen-mediated death. Taken together, these data support the role of CART activity in the pathogenesis of cancer, thus opening new diagnostic and therapeutic approaches in neoplastic disorders.
Collapse
Affiliation(s)
- Maja Owe-Larsson
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (M.O.-L.); (J.P.); (A.S.-I.); (M.P.)
| | - Jan Pawłasek
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (M.O.-L.); (J.P.); (A.S.-I.); (M.P.)
| | - Tomasz Piecha
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Lindleya 4, 02-005 Warsaw, Poland;
| | - Alicja Sztokfisz-Ignasiak
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (M.O.-L.); (J.P.); (A.S.-I.); (M.P.)
| | - Mikołaj Pater
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (M.O.-L.); (J.P.); (A.S.-I.); (M.P.)
| | - Izabela R. Janiuk
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (M.O.-L.); (J.P.); (A.S.-I.); (M.P.)
| |
Collapse
|
13
|
Sanchez-Navarro MJ, Borner T, Reiner BC, Crist RC, Samson WK, Yosten GLC, Stein L, Hayes MR. GPR-160 Receptor Signaling in the Dorsal Vagal Complex of Male Rats Modulates Meal Microstructure and CART-Mediated Hypophagia. Nutrients 2023; 15:nu15102268. [PMID: 37242151 DOI: 10.3390/nu15102268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The g-protein coupled receptor GPR-160, recently identified as a putative receptor for the cocaine and amphetamine-regulated transcript (CART) peptide, shows abundant expression in the energy-balance control nuclei, including the dorsal vagal complex (DVC). However, its physiological role in the control of food intake has yet to be fully explored. Here, we performed a virally mediated, targeted knockdown (KD) of Gpr160 in the DVC of male rats to evaluate its physiological role in control of feeding. Our results indicate that DVC Gpr160 KD affects meal microstructure. Specifically, DVC Gpr160 KD animals consumed more frequent, but shorter meals during the dark phase and showed decreased caloric intake and duration of meals during the light phase. Cumulatively, however, these bidirectional effects on feeding resulted in no difference in body weight gain. We next tested the role of DVC GPR-160 in mediating the anorexigenic effects of exogenous CART. Our results show that DVC Gpr160 KD partially attenuates CART's anorexigenic effects. To further characterize Gpr160+ cells in the DVC, we utilized single-nucleus RNA sequencing data to uncover abundant GPR-160 expression in DVC microglia and only minimal expression in neurons. Altogether, our results suggest that DVC CART signaling may be mediated by Gpr160+ microglia, which in turn may be modulating DVC neuronal activity to control food intake.
Collapse
Affiliation(s)
- Marcos J Sanchez-Navarro
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tito Borner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, USA
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, USA
| | - Lauren Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Kozsurek M, Király K, Gyimesi K, Lukácsi E, Fekete C, Gereben B, Mohácsik P, Helyes Z, Bölcskei K, Tékus V, Pap K, Szűcs E, Benyhe S, Imre T, Szabó P, Gajtkó A, Holló K, Puskár Z. Unique, Specific CART Receptor-Independent Regulatory Mechanism of CART(55-102) Peptide in Spinal Nociceptive Transmission and Its Relation to Dipeptidyl-Peptidase 4 (DDP4). Int J Mol Sci 2023; 24:ijms24020918. [PMID: 36674439 PMCID: PMC9865214 DOI: 10.3390/ijms24020918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides are involved in several physiological and pathological processes, but their mechanism of action is unrevealed due to the lack of identified receptor(s). We provided evidence for the antihyperalgesic effect of CART(55-102) by inhibiting dipeptidyl-peptidase 4 (DPP4) in astrocytes and consequently reducing neuroinflammation in the rat spinal dorsal horn in a carrageenan-evoked inflammation model. Both naturally occurring CART(55-102) and CART(62-102) peptides are present in the spinal cord. CART(55-102) is not involved in acute nociception but regulates spinal pain transmission during peripheral inflammation. While the full-length peptide with a globular motif contributes to hyperalgesia, its N-terminal inhibits this process. Although the anti-hyperalgesic effects of CART(55-102), CART(55-76), and CART(62-76) are blocked by opioid receptor antagonists in our inflammatory models, but not in neuropathic Seltzer model, none of them bind to any opioid or G-protein coupled receptors. DPP4 interacts with Toll-like receptor 4 (TLR4) signalling in spinal astrocytes and enhances the TLR4-induced expression of interleukin-6 and tumour necrosis factor alpha contributing to inflammatory pain. Depending on the state of inflammation, CART(55-102) is processed in the spinal cord, resulting in the generation of biologically active isoleucine-proline-isoleucine (IPI) tripeptide, which inhibits DPP4, leading to significantly decreased glia-derived cytokine production and hyperalgesia.
Collapse
Affiliation(s)
- Márk Kozsurek
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Klára Gyimesi
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
- Department of Anaesthesiology, Uzsoki Hospital, H-1145 Budapest, Hungary
| | - Erika Lukácsi
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Balázs Gereben
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
| | - Petra Mohácsik
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- Chronic Pain Research Group, Eötvös Loránd Research Network, H-7624 Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Károly Pap
- Department of Orthopaedics and Traumatology, Uzsoki Hospital, H-1145 Budapest, Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
| | - Tímea Imre
- MS Metabolomics Laboratory, Instrumentation Centre, Research Centre for Natural Sciences, Eötvös Loránd Research Network, H-1117 Budapest, Hungary
| | - Pál Szabó
- MS Metabolomics Laboratory, Instrumentation Centre, Research Centre for Natural Sciences, Eötvös Loránd Research Network, H-1117 Budapest, Hungary
| | - Andrea Gajtkó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Holló
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zita Puskár
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
15
|
Cho BR, Kim WY, Jang JK, Lee JW, Kim JH. Glycogen Synthase Kinase 3β Is a Key Regulator in the Inhibitory Effects of Accumbal Cocaine- and Amphetamine-Regulated Transcript Peptide 55-102 on Amphetamine-Induced Locomotor Activity. Int J Mol Sci 2022; 23:ijms232415633. [PMID: 36555273 PMCID: PMC9779470 DOI: 10.3390/ijms232415633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Microinjection of cocaine- and amphetamine-regulated transcript (CART) peptide 55-102 into the nucleus accumbens (NAcc) core significantly attenuates psychostimulant-induced locomotor activity. However, the molecular mechanism remains poorly understood. We examined the phosphorylation levels of Akt, glycogen synthase kinase 3β (GSK3β), and glutamate receptor 1 (GluA1) in NAcc core tissues obtained 60 min after microinjection of CART peptide 55-102 into this site, followed by systemic injection of amphetamine (AMPH). Phosphorylation levels of Akt at Thr308 and GSK3β at Ser9 were decreased, while those of GluA1 at Ser845 were increased, by AMPH treatment. These effects returned to basal levels following treatment with CART peptide 55-102. Furthermore, the negative regulatory effects of the CART peptide on AMPH-induced changes in phosphorylation levels and locomotor activity were all abolished by pretreatment with the S9 peptide, an artificially synthesized indirect GSK3β activator. These results suggest that the CART peptide 55-102 in the NAcc core plays a negative regulatory role in AMPH-induced locomotor activity by normalizing the changes in phosphorylation levels of Akt-GSK3β, and subsequently GluA1 modified by AMPH at this site. The present findings are the first to reveal GSK3β as a key regulator of the inhibitory role of the CART peptide in psychomotor stimulant-induced locomotor activity.
Collapse
Affiliation(s)
- Bo Ram Cho
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Wha Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ju Kyong Jang
- Department of Pharmacology, Bio-Pharm Solutions Co., Ltd., Suwon-si 16229, Gyeonggi-do, Republic of Korea
| | - Jung Won Lee
- Division of In Vitro Diagnostic Devices, National Institute of Food and Drug Safety Evaluation, Cheongju-si 28159, Chungcheongbuk-do, Republic of Korea
| | - Jeong-Hoon Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Correspondence:
| |
Collapse
|
16
|
Hadawale KN, Shewale SA, Shetye KC, Sagarkar S, Sakharkar AJ, Bhargava SY. Reproductive phase related variations in the expression of neuropeptide, cocaine- and amphetamine- regulated transcript (CART) in the brain and pituitary gland of adult male Microhyla ornata. Neurosci Lett 2022; 786:136783. [PMID: 35810962 DOI: 10.1016/j.neulet.2022.136783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptide is a multifaceted neuropeptide involved in several physiological functions including appetite and reproduction. While studies in mammals, aves and fishes suggest evolutionary conserved role of CART, the information in amphibian is scanty. We have investigated the reproductive phase related variations of CART in the brain of adult male Microhyla ornata. Seasonal changes in the expression of CART peptide were noticed in the brain and pituitary of M. ornata. Significant differences were observed in the nucleus infundibularis ventralis (NIV), epiphysis (E), anteroventral tegmental region (AV), raphe nucleus (Ra) of the brain and pars intermedia (PI), pars distalis (PD) of the pituitary. Compared to the pre-breeding and post-breeding seasons, increase in CART immunoreactivity was seen in E, NIV, AV, Ra of brain and PI, PD of pituitary gland of animals collected during breeding season. Similarly, highest mRNA levels of CART were also observed in the breeding season in the middle region of brain that includes hypothalamus and pituitary gland. Variation in the levels of CART peptide and mRNA in the brain of M. ornata suggests its conserved role in seasonal control of appetite and reproduction.
Collapse
Affiliation(s)
- Kavita N Hadawale
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Swapnil A Shewale
- Department of Zoology, Bhavan's Hazarimal Somani College, Chowpatty, Mumbai 400 007, India
| | - Ketaki C Shetye
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Sneha Sagarkar
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Shobha Y Bhargava
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India.
| |
Collapse
|
17
|
Abels M, Riva M, Shcherbina L, Fischer AHT, Banke E, Degerman E, Lindqvist A, Wierup N. Overexpressed beta cell CART increases insulin secretion in mouse models of insulin resistance and diabetes. Peptides 2022; 151:170747. [PMID: 35065097 DOI: 10.1016/j.peptides.2022.170747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Impaired beta cell function and beta cell death are key features of type 2 diabetes (T2D). Cocaine- and amphetamine-regulated transcript (CART) is necessary for normal islet function in mice. CART increases glucose-stimulated insulin secretion in vivo in mice and in vitro in human islets and CART protects beta cells against glucotoxicity-induced cell death in vitro in rats. Furthermore, beta cell CART is upregulated in T2D patients and in diabetic rodent models as a consequence of hyperglycaemia. The aim of this study was to assess the impact of upregulated beta cell CART on islet hormone secretion and glucose homeostasis in a transgenic mouse model. To this end, mice with beta cell-specific overexpression of CART (CARTtg mice) were generated. CARTtg mice challenged by aging, high fat diet feeding or streptozotocin treatment were phenotyped with respect to in vivo and in vitro insulin and glucagon secretion, glucose homeostasis, and beta cell mass. In addition, the impact of adenoviral overexpression of CART on insulin secretion was studied in INS-1 832/13 cells. CARTtg mice had a normal metabolic phenotype under basal conditions. On the other hand, with age CARTtg mice displayed increased insulin secretion and improved glucose elimination, compared with age-matched WT mice. Furthermore, compared with WT controls, CARTtg mice had increased insulin secretion after feeding a high fat diet, as well as lower glucose levels and higher insulin secretion after streptozotocin treatment. Viral overexpression of CART in INS-1 832/13 cells resulted in increased glucose-stimulated insulin secretion. Together, these results imply that beta cell CART acts to increase insulin secretion when beta cell function is challenged. We propose that the increase in beta cell CART is part of a compensatory mechanisms trying to counteract the hyperglycaemia in T2D.
Collapse
Affiliation(s)
- Mia Abels
- Lund University Diabetes Centre, Malmö, Sweden
| | - Matteo Riva
- Lund University Diabetes Centre, Malmö, Sweden
| | | | | | - Elin Banke
- Lund University Diabetes Centre, Malmö, Sweden
| | | | | | - Nils Wierup
- Lund University Diabetes Centre, Malmö, Sweden.
| |
Collapse
|
18
|
Khodarahmi M, Niknam M, Farhangi MA. Personalized gene-diet study of rs2239670 gene variants and dietary patterns among obese adults. Clin Nutr ESPEN 2022; 47:358-366. [DOI: 10.1016/j.clnesp.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 12/29/2022]
|
19
|
Barry JM, Birnbaum AK, Jasin LR, Sherwin CM. Maternal Exposure and Neonatal Effects of Drugs of Abuse. J Clin Pharmacol 2021; 61 Suppl 2:S142-S155. [PMID: 34396555 DOI: 10.1002/jcph.1928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/17/2021] [Indexed: 11/08/2022]
Abstract
The public health crisis of pregnant women being exposed to drugs of abuse and of its impact on their unborn children continues to grow at an alarming rate globally. The state of pregnancy is unique, with physiological changes that can lead to changes in the way drugs are handled by the body in both pharmacokinetics and response. These changes place the pregnant woman, fetus, and newborn infant at risk, as many of these drugs can cross the placenta and into breast milk. The substances most commonly linked to harmful effects include alcohol, tobacco, cannabis, stimulants, and opioids. The pharmacological and toxicological changes caused by in utero exposure or breastfeeding exposure are difficult to study, and the full extent of the mechanisms involved are not fully understood. However, these changes can significantly affect the risks of substance abuse and influence optimal treatment of pregnant women with a substance use disorder. In addition, newborns who were exposed to drugs of abuse in utero can experience withdrawal syndromes. Pharmacological management in infants is used to guide and treat withdrawal symptoms, with the goal being to improve the infant's sleep, eating, and comfort. Several barriers may prevent pregnant women from seeking help for substance use, including stigma and interactions with the legal system. Understanding changes in pharmacology, including pharmacokinetic changes that happen during pregnancy, is essential for anticipating the extent of maternal exposure and neonatal adverse effects.
Collapse
Affiliation(s)
- Jessica M Barry
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minnesota, Minneapolis, USA
| | - Angela K Birnbaum
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minnesota, Minneapolis, USA
| | - Lisa R Jasin
- Neonatal Intensive Care Unit, Dayton Children's Hospital, Dayton, Ohio, USA
| | - Catherine M Sherwin
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minnesota, Minneapolis, USA.,Department of Pediatrics, Wright State University, Boonshoft School of Medicine, Dayton Children's Hospital, Dayton, Ohio, USA
| |
Collapse
|
20
|
Mitra S, Basu S, Singh O, Lechan RM, Singru PS. Cocaine- and amphetamine-regulated transcript peptide- and dopamine-containing systems interact in the ventral tegmental area of the zebra finch, Taeniopygia guttata, during dynamic changes in energy status. Brain Struct Funct 2021; 226:2537-2559. [PMID: 34392422 DOI: 10.1007/s00429-021-02348-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
The mesolimbic dopamine (DA)-pathway regulates food-reward, feeding-related behaviour and energy balance. Evidence underscores the importance of feeding-related neuropeptides in modulating activity of these DA neurons. The neuropeptide, CART, a crucial regulator of energy balance, modulates DA-release, and influences the activity of ventral tegmental area (VTA) DAergic neurons in the mammalian brain. Whether CART- and DA-containing systems interact at the level of VTA to regulate energy balance, however, is poorly understood. We explored the interaction between CART- and DA-containing systems in midbrain of the zebra finch, Taeniopygia guttata, an interesting model to study dynamic changes in energy balance due to higher BMR/daytime body temperature, and rapid responsiveness of the feeding-related neuropeptides to changes in energy state. Further, its midbrain DA-neurons share similarities with those in mammals. In the midbrain, tyrosine hydroxylase-immunoreactive (TH-i) neurons were seen in the substantia nigra (SN) and VTA [anterior (VTAa), mid (VTAm) and caudal (VTAc)]; those in VTA were smaller. In the VTA, CART-immunoreactive (CART-i)-fibers densely innervated TH-i neurons, and both CART-immunoreactivity (CART-ir) and TH-immunoreactivity (TH-ir) responded to energy status-dependent changes. Compared to fed and fasted birds, refeeding dramatically enhanced TH-ir and the percentage of TH-i neurons co-expressing FOS in the VTA. Increased prepro-CART-mRNA, CART-ir and a transient appearance of CART-i neurons was observed in VTAa of fasted, but not fed birds. To test the functional interaction between CART- and DA-containing systems, ex-vivo superfused midbrain-slices were treated with CART-peptide and changes in TH-ir analysed. Compared to control tissues, CART-treatment increased TH-ir in VTA but not SN. We propose that CART is a potential regulator of VTA DA-neurons and energy balance in T. guttata.
Collapse
Affiliation(s)
- Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, MA, USA.,Department of Neuroscience, Tufts University School of Medicine, Boston, USA
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India. .,Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
21
|
Shewale SA, Deshbhratar SM, Ravikumar A, Bhargava SY. Cocaine and amphetamine regulated transcript peptide (CART) in the tadpole brain: Response to different energy states. Neuropeptides 2021; 88:102152. [PMID: 33932859 DOI: 10.1016/j.npep.2021.102152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/04/2021] [Accepted: 04/18/2021] [Indexed: 12/18/2022]
Abstract
Cocaine- and amphetamine-regulated transcript peptide (CART) is an anorexigenic neuropeptide known to play a key role in energy homeostasis across the vertebrate phyla. In the current study, we have investigated the response of the CART immunoreactive system to varying energy states in the brain of a tadpole model. The pro-metamorphic tadpoles of Euphlyctis cyanophlyctis were fasted, or intracranially injected with glucose or 2-deoxy-d-glucose (2DG; an antagonist to glucose inducing glucoprivation) and the response of the CART containing system in various neuroanatomical areas was studied using immunohistochemistry. Glucose administration increased the CART immunoreactivity in the entopeduncular neurons (EN), preoptic area (POA), ventral hypothalamus (vHy) and the Edinger Westphal nucleus (EW) while CART positive cells decrease in response to fasting and glucoprivation. A substantial decrease in CART was noted in the EW nucleus of tadpoles injected with 2DG. These regions might contain the glucose-sensing neurons and regulate food intake in anurans. Therefore, we speculate that the function of central CART and its antagonistic action with NPY in food and feeding circuitry of anurans is evolutionary conserved and might be responsible for glucose homeostasis.
Collapse
Affiliation(s)
- Swapnil A Shewale
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India; Department of Zoology, Bhavan's Hazarimal Somani College, Chowpatty, Mumbai 400 007, India
| | - Shantaj M Deshbhratar
- Department of Zoology, Bhavan's Hazarimal Somani College, Chowpatty, Mumbai 400 007, India
| | - Ameeta Ravikumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Shobha Y Bhargava
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
22
|
Samson WK, Salvemini D, Yosten GLC. Overcoming Stress, Hunger, and Pain: Cocaine- and Amphetamine-Regulated Transcript Peptide's Promise. Endocrinology 2021; 162:6287092. [PMID: 34043767 PMCID: PMC8210821 DOI: 10.1210/endocr/bqab108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Indexed: 01/17/2023]
Abstract
Cocaine- and amphetamine-regulated transcript encodes an eponymous peptide, CARTp, which exerts diverse pharmacologic actions in the central and peripheral nervous systems, as well as in several endocrine organs, including pancreas. Here we review those diverse actions, the physiological relevance of which had remained unestablished until recently. With the identification of a CARTp receptor, GPR160, the physiologic importance and therapeutic potential of CARTp or analogs are being revealed. Not only is the CARTp-GPR160 interaction essential for the circadian regulation of appetite and thirst but also for the transmission of nerve injury-induced pain. Molecular approaches now are uncovering additional physiologically relevant actions and the development of acute tissue-specific gene compromise approaches may reveal even more physiologically relevant actions of this pluripotent ligand/receptor pair.
Collapse
Affiliation(s)
- Willis K Samson
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience Saint Louis University School of Medicine, St Louis, MO 63104, USA
- Correspondence: Willis K. Samson, PhD DSc, Professor of Pharmacology and Physiology, Saint Louis University School of Medicine, Caroline Building, Room 2-207A, 1402 South Grand Boulevard, St Louis, MO 63104, USA.
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Gina L C Yosten
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience Saint Louis University School of Medicine, St Louis, MO 63104, USA
| |
Collapse
|
23
|
Awathale SN, Choudhary AG, Subhedar NK, Kokare DM. Neuropeptide CART modulates dopamine turnover in the nucleus accumbens: Insights into the anatomy of rewarding circuits. J Neurochem 2021; 158:1172-1185. [PMID: 34287909 DOI: 10.1111/jnc.15479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 12/25/2022]
Abstract
Neuropeptide cocaine- and amphetamine-regulated transcript (CART) is known to influence the activity of the canonical mesolimbic dopaminergic pathway and modulate reward seeking behaviour. CART neurons of the lateral hypothalamus (LH) send afferents to the ventral tegmental area (VTA) and paraventricular thalamic nucleus (PVT) and these nuclei, in turn, send secondary projections to nucleus accumbens. We try to dissect the precise sites of CART's action in these circuits in promoting reward. Rats were implanted with bipolar electrode targeted at the lateral hypothalamus-medial forebrain bundle (LH-MFB) and trained to press the lever through intracranial self-stimulation (ICSS) protocol. CART (55-102) administered directly into posterior VTA (pVTA) or PVT of the conditioned rats significantly increased the number of lever presses, indicating reward-promoting activity of the peptide. Concomitant increase in dopamine (DA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) efflux was noted in the microdialysate collected from the nucleus accumbens shell (AcbSh). On the other hand, immunoneutralization of endogenous CART with CART antibodies injected directly in the pVTA or PVT reduced the lever press activity as well as DA and DOPAC efflux in the AcbSh. Injection of CART (1-39) in pVTA or PVT was ineffective. We suggest that CART cells in the LH-MFB area send afferents to (a) pVTA and influence dopaminergic neurons projecting to AcbSh and (b) PVT, from where the secondary neurons may feed into the AcbSh. Excitation of the CARTergic pathway to the pVTA as well as the PVT seems to promote DA release in the AcbSh and contribute to the generation of reward.
Collapse
Affiliation(s)
- Sanjay N Awathale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Amit G Choudhary
- Indian Institute of Science Education and Research (IISER), Pune, India
| | | | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| |
Collapse
|
24
|
Iglesias AG, Flagel SB. The Paraventricular Thalamus as a Critical Node of Motivated Behavior via the Hypothalamic-Thalamic-Striatal Circuit. Front Integr Neurosci 2021; 15:706713. [PMID: 34220458 PMCID: PMC8250420 DOI: 10.3389/fnint.2021.706713] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
In this review, we highlight evidence that supports a role for the paraventricular nucleus of the thalamus (PVT) in motivated behavior. We include a neuroanatomical and neurochemical overview, outlining what is known of the cellular makeup of the region and its most prominent afferent and efferent connections. We discuss how these connections and distinctions across the anterior-posterior axis correspond to the perceived function of the PVT. We then focus on the hypothalamic-thalamic-striatal circuit and the neuroanatomical and functional placement of the PVT within this circuit. In this regard, the PVT is ideally positioned to integrate information regarding internal states and the external environment and translate it into motivated actions. Based on data that has emerged in recent years, including that from our laboratory, we posit that orexinergic (OX) innervation from the lateral hypothalamus (LH) to the PVT encodes the incentive motivational value of reward cues and thereby alters the signaling of the glutamatergic neurons projecting from the PVT to the shell of the nucleus accumbens (NAcSh). The PVT-NAcSh pathway then modulates dopamine activity and resultant cue-motivated behaviors. As we and others apply novel tools and approaches to studying the PVT we will continue to refine the anatomical, cellular, and functional definitions currently ascribed to this nucleus and further elucidate its role in motivated behaviors.
Collapse
Affiliation(s)
- Amanda G. Iglesias
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Shelly B. Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
25
|
Singh A, de Araujo AM, Krieger JP, Vergara M, Ip CK, de Lartigue G. Demystifying functional role of cocaine- and amphetamine-related transcript (CART) peptide in control of energy homeostasis: A twenty-five year expedition. Peptides 2021; 140:170534. [PMID: 33757831 PMCID: PMC8369463 DOI: 10.1016/j.peptides.2021.170534] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Cocaine- and amphetamine-related transcript (CART) is a neuropeptide first discovered in the striatum of the rat brain. Later, the genetic sequence and function of CART peptide (CARTp) was found to be conserved among multiple mammalian species. Over the 25 years, since its discovery, CART mRNA (Cartpt) expression has been reported widely throughout the central and peripheral nervous systems underscoring its role in diverse physiological functions. Here, we review the localization and function of CARTp as it relates to energy homeostasis. We summarize the expression changes of central and peripheral Cartpt in response to metabolic states and make use of available large data sets to gain additional insights into the anatomy of the Cartpt expressing vagal neurons and their expression patterns in the gut. Furthermore, we provide an overview of the role of CARTp as an anorexigenic signal and its effect on energy expenditure and body weight control with insights from both pharmacological and transgenic animal studies. Subsequently, we discuss the role of CARTp in the pathophysiology of obesity and review important new developments towards identifying a candidate receptor for CARTp signalling. Altogether, the field of CARTp research has made rapid and substantial progress recently, and we review the case for considering CARTp as a potential therapeutic target for stemming the obesity epidemic.
Collapse
Affiliation(s)
- Arashdeep Singh
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Alan Moreira de Araujo
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Jean-Philippe Krieger
- Department of Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Macarena Vergara
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
26
|
Yosten GLC, Haddock CJ, Harada CM, Almeida-Pereira G, Kolar GR, Stein LM, Hayes MR, Salvemini D, Samson WK. Past, present and future of cocaine- and amphetamine-regulated transcript peptide. Physiol Behav 2021; 235:113380. [PMID: 33705816 DOI: 10.1016/j.physbeh.2021.113380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/02/2023]
Abstract
The existence of the peptide encoded by the cocaine- and amphetamine-regulated transcript (Cartpt) has been recognized since 1981, but it was not until 1995, that the gene encoding CART peptide (CART) was identified. With the availability of the predicted protein sequence of CART investigators were able to identify sites of peptide localization, which then led to numerous approaches attempting to clarify CART's multiple pharmacologic effects and even provide evidence of potential physiologic relevance. Although not without controversy, a picture emerged of the importance of CART in ingestive behaviors, reward behaviors and even pain sensation. Despite the wealth of data hinting at the significance of CART, in the absence of an identified receptor, the full potential for this peptide or its analogs to be developed into therapeutic agents remained unrealized. There was evidence favoring the action of CART via a G protein-coupled receptor (GPCR), but despite multiple attempts the identity of that receptor eluded investigators until recently. Now with the identification of the previously orphaned GPCR, GPR160, as a receptor for CART, focus on this pluripotent neuropeptide will in all likelihood experience a renaissance and the potential for the development of pharmcotherapies targeting GPR160 seems within reach.
Collapse
Affiliation(s)
- Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; Henry and Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Christopher J Haddock
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Caron M Harada
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; Henry and Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Gislaine Almeida-Pereira
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Grant R Kolar
- Henry and Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Lauren M Stein
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; Henry and Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; Henry and Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
27
|
Haddock CJ, Almeida-Pereira G, Stein LM, Hayes MR, Kolar GR, Samson WK, Yosten GLC. Signaling in rat brainstem via Gpr160 is required for the anorexigenic and antidipsogenic actions of cocaine- and amphetamine-regulated transcript peptide. Am J Physiol Regul Integr Comp Physiol 2021; 320:R236-R249. [PMID: 33206556 PMCID: PMC7988768 DOI: 10.1152/ajpregu.00096.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 12/26/2022]
Abstract
Recent work identified Gpr160 as a candidate receptor for cocaine- and amphetamine-regulated transcript peptide (CARTp) and described its role in pain modulation. The aims of the present study were to determine if Gpr160 is required for the CARTp's ability to reduce food intake and water intake and to initially identify the distribution of Gpr160-like immunoreactivity (Gpr160ir) in the rat brain. A passive immunoneutralization approach targeting Gpr160 was used to block the behavioral effects of a pharmacological dose of CARTp in the fourth cerebroventricle (4V) of rats and to determine the importance of endogenously produced CARTp in the control of ingestive behaviors. Passive immunoneutralization of Gpr160 in the 4V blocked the actions of CARTp to inhibit food intake and water intake. Blockade of Gpr160 in the 4V, independent of pharmacological CART treatment, caused an increase in both overnight food intake and water intake. The decrease in food intake, but not water intake, caused by central injection of CARTp was demonstrated to be interrupted by prior administration of a glucagon-like peptide 1 (GLP-1) receptor antagonist. Gpr160ir was observed in several, distinct sites throughout the rat brain, where CARTp staining has been described. Importantly, Gpr160ir was observed to be present in both neuronal and nonneuronal cell types. These data support the hypothesis that Gpr160 is required for the anorexigenic actions of central CARTp injection and extend these findings to water drinking. Gpr160ir was observed in both neuronal and nonneuronal cell types in regions known to be important in the multiple pharmacological effects of CARTp, identifying those areas as targets for future compromise of function studies.
Collapse
Affiliation(s)
- Christopher J Haddock
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Gislaine Almeida-Pereira
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Lauren M Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Grant R Kolar
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
28
|
Curtis GR, Oakes K, Barson JR. Expression and Distribution of Neuropeptide-Expressing Cells Throughout the Rodent Paraventricular Nucleus of the Thalamus. Front Behav Neurosci 2021; 14:634163. [PMID: 33584216 PMCID: PMC7873951 DOI: 10.3389/fnbeh.2020.634163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) has been shown to make significant contributions to affective and motivated behavior, but a comprehensive description of the neurochemicals expressed in the cells of this brain region has never been presented. While the PVT is believed to be composed of projection neurons that primarily use as their neurotransmitter the excitatory amino acid, glutamate, several neuropeptides have also been described in this brain region. In this review article, we combine published literature with our observations from the Allen Brain Atlas to describe in detail the expression and distribution of neuropeptides in cells throughout the mouse and rat PVT, with a special focus on neuropeptides known to be involved in behavior. Several themes emerge from this investigation. First, while the majority of neuropeptides are expressed across the antero-posterior axis of the PVT, they generally exist in a gradient, in which expression is most dense but not exclusive in either the anterior or posterior PVT, although other neuropeptides display somewhat more equal expression in the anterior and posterior PVT but have reduced expression in the middle PVT. Second, we find overall that neuropeptides involved in arousal are more highly expressed in the anterior PVT, those involved in depression-like behavior are more highly expressed in the posterior PVT, and those involved in reward are more highly expressed in the medial PVT, while those involved in the intake of food and drugs of abuse are distributed throughout the PVT. Third, the pattern and content of neuropeptide expression in mice and rats appear not to be identical, and many neuropeptides found in the mouse PVT have not yet been demonstrated in the rat. Thus, while significantly more work is required to uncover the expression patterns and specific roles of individual neuropeptides in the PVT, the evidence thus far supports the existence of a diverse yet highly organized system of neuropeptides in this nucleus. Determined in part by their location within the PVT and their network of projections, the function of the neuropeptides in this system likely involves intricate coordination to influence both affective and motivated behavior.
Collapse
Affiliation(s)
- Genevieve R Curtis
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kathleen Oakes
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
29
|
Drott CJ, Norman D, Espes D. CART decreases islet blood flow, but has no effect on total pancreatic blood flow and glucose tolerance in anesthetized rats. Peptides 2021; 135:170431. [PMID: 33098940 DOI: 10.1016/j.peptides.2020.170431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is a neurotransmitter and hormone, involved in the regulation of e.g. food intake, body weight, reward and addiction, and stress response. CART has also been found to affect insulin secretion and beta cell morphology, both in vivo and in vitro. Furthermore, CART affects regulation of the cardiovascular system and helps to modulate vascular tone. The present study evaluated the local effect of CART on the pancreatic and islet circulation and function. CART (25 μg/h) or saline, combinations of CART and endothelin-A receptor antagonist (BQ123; 100 μg/kg), and glucose (2 g/kg) were intravenously infused in Sprague Dawley rats followed by blood flow measurements using a microsphere technique. Separately, CART-infused animals underwent an intravenous glucose tolerance test (ivGTT). The direct effect of CART on insulin release was investigated using isolated islets from Sprague Dawley rats. CART reduced islet blood flow, without reduction in total pancreatic blood flow. The normal glucose-induced islet blood flow increase was diminished by CART, albeit still present. Simultaneously, CART had no effect on systemic-, intestinal- or renal blood flow. The endothelin-A receptor antagonist BQ123 together with CART had no pancreatic vascular effects. We found that CART has pronounced vascular constrictive actions restricted to the pancreatic islet circulation but had no effect on insulin release neither in vivo nor in vitro. The mechanisms behind the vascular effects are still unknown, but may reflect a direct action on pancreatic blood vessels.
Collapse
Affiliation(s)
- Carl Johan Drott
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | - Daniel Norman
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Walker LC, Hand LJ, Letherby B, Huckstep KL, Campbell EJ, Lawrence AJ. Cocaine and amphetamine regulated transcript (CART) signalling in the central nucleus of the amygdala modulates stress-induced alcohol seeking. Neuropsychopharmacology 2021; 46:325-333. [PMID: 32826981 PMCID: PMC7852518 DOI: 10.1038/s41386-020-00807-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/19/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The central nucleus of the amygdala (CeA) is a key hub of the neural circuitry regulating alcohol and stress interactions. However, the exact neuronal populations that govern this interaction are not well defined. Here we examined the role of the neuropeptide cocaine and amphetamine regulated transcript (CART) within the CeA in stress-induced alcohol seeking. We found that CART-containing neurons are predominantly expressed in the capsular/lateral division of the CeA and are a subpopulation of protein kinase Cδ (PKCδ) cells, distinct from corticotrophin releasing factor (CRF)-expressing cells. Both stress (yohimbine) and stress-induced alcohol seeking activated CART cells within the CeA, while neutralisation of endogenous CeA CART signalling (via antibody administration) attenuated stress-induced alcohol, but not sucrose seeking. Further, blocking CART signalling within the CeA did not alter the motivation to obtain and consume alcohol but did attenuate stressor-induced anxiety-like behaviour during abstinence from alcohol. Together, these data identify CeA CART cells as a subpopulation of PKCδ cells that influence stress × alcohol interactions and mediate stress-induced alcohol seeking behaviours.
Collapse
Affiliation(s)
- Leigh C. Walker
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| | - Lexi J. Hand
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| | - Bethany Letherby
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| | - Kate L. Huckstep
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| | - Erin J. Campbell
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| | - Andrew J. Lawrence
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| |
Collapse
|
31
|
Girard F, von Siebenthal M, Davis FP, Celio MR. Gene expression analysis in the mouse brainstem identifies Cart and Nesfatin as neuropeptides coexpressed in the Calbindin-positive neurons of the Nucleus papilio. Sleep 2020; 43:5826369. [PMID: 32343818 PMCID: PMC7658639 DOI: 10.1093/sleep/zsaa085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/08/2020] [Indexed: 11/17/2022] Open
Abstract
Study Objectives: The brainstem contains several neuronal populations, heterogeneous in terms of neurotransmitter/neuropeptide content, which are important for controlling various aspects of the rapid eye movement (REM) phase of sleep. Among these populations are the Calbindin (Calb)-immunoreactive NPCalb neurons, located in the Nucleus papilio, within the dorsal paragigantocellular nucleus (DPGi), and recently shown to control eye movement during the REM phase of sleep. Methods: We performed in-depth data mining of the in situ hybridization data collected at the Allen Brain Atlas, in order to identify potentially interesting genes expressed in this brainstem nucleus. Our attention focused on genes encoding neuropeptides, including Cart (Cocaine and Amphetamine Regulated Transcripts) and Nesfatin 1. Results: While nesfatin 1 appeared ubiquitously expressed in this Calb-positive neuronal population, Cart was coexpressed in only a subset of these glutamatergic NPCalb neurons. Furthermore, an REM sleep deprivation and rebound assay performed with mice revealed that the Cart-positive neuronal population within the DPGi was activated during REM sleep (as measured by c-fos immunoreactivity), suggesting a role of this neuropeptide in regulating some aspects of REM sleep. Conclusions: The assembled information could afford functional clues to investigators, conducive to further experimental pursuits.
Collapse
Affiliation(s)
- Franck Girard
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| | | | - Fred P Davis
- Janelia-Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Marco R Celio
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
32
|
Ong ZY, McNally GP. CART in energy balance and drug addiction: Current insights and mechanisms. Brain Res 2020; 1740:146852. [DOI: 10.1016/j.brainres.2020.146852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
|
33
|
Yosten GL, Harada CM, Haddock C, Giancotti LA, Kolar GR, Patel R, Guo C, Chen Z, Zhang J, Doyle TM, Dickenson AH, Samson WK, Salvemini D. GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents. J Clin Invest 2020; 130:2587-2592. [PMID: 31999650 PMCID: PMC7190928 DOI: 10.1172/jci133270] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/23/2020] [Indexed: 01/15/2023] Open
Abstract
Treating neuropathic pain is challenging and novel non-opioid-based medicines are needed. Using unbiased receptomics, transcriptomic analyses, immunofluorescence, and in situ hybridization, we found that the expression of the orphan GPCR Gpr160 and GPR160 increased in the rodent dorsal horn of the spinal cord following traumatic nerve injury. Genetic and immunopharmacological approaches demonstrated that GPR160 inhibition in the spinal cord prevented and reversed neuropathic pain in male and female rodents without altering normal pain response. GPR160 inhibition in the spinal cord attenuated sensory processing in the thalamus, a key relay in the sensory discriminative pathways of pain. We also identified cocaine- and amphetamine-regulated transcript peptide (CARTp) as a GPR160 ligand. Inhibiting endogenous CARTp signaling in spinal cord attenuated neuropathic pain, whereas exogenous intrathecal CARTp evoked painful hypersensitivity through GPR160-dependent ERK and cAMP response element-binding protein (CREB). Our findings de-orphanize GPR160, identify it as a determinant of neuropathic pain and potential therapeutic target, and provide insights into its signaling pathways. CARTp is involved in many diseases including depression and reward and addiction; de-orphanization of GPR160 is a major step forward understanding the role of CARTp signaling in health and disease.
Collapse
Affiliation(s)
- Gina L.C. Yosten
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| | - Caron M. Harada
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| | - Chris Haddock
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| | | | - Grant R. Kolar
- Henry and Amelia Nasrallah Center for Neuroscience, and
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ryan Patel
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Chun Guo
- Department of Pharmacology and Physiology
| | - Zhoumou Chen
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| | - Jinsong Zhang
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| | - Timothy M. Doyle
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| | - Anthony H. Dickenson
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Willis K. Samson
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| | - Daniela Salvemini
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| |
Collapse
|
34
|
The relationship of body condition and chewing time with body weight, the level of plasma cocaine and amphetamine regulated transcript, leptin and energy metabolites in cows until reaching the lactation peak. ACTA VET BRNO 2020. [DOI: 10.2754/avb202089010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study examined the relationship of body condition and chewing time (CT) with body weight (BW), the level of cocaine-and amphetamine-regulated transcript (CART), leptin and energy metabolites in cows until reaching the lactation peak. The results showed the greatest loss of BW between days 11 and 45 of lactation and a decrease in the body condition score (BCS) until day 75. Chewing time showed an increase from day 45 with the highest values after lactation peak. The CART and leptin concentrations demonstrate a reduction of both indices (P < 0.05) between days 11 and 75. The function of leptin as a factor positively correlating with BW and BCS was found. In the heaviest individuals and those with higher BCS, the blood leptin levels were higher. The results of beta-hydroxybutyrate (BHBA) indicate that cows with the lowest BCS had the most intensive energy transformation. This led to a higher BHBA concentration compared to the cows with high BCS (P < 0.05). The obtained results show that CART was most strongly negatively associated with CT (P < 0.05). For leptin, the tendency was the opposite and the correlation with CT was not significant. The results suggest that CT may be stronger regulated by CART, which has anorectic properties, than by appetite inhibiting leptin. Significant decrease of body condition during lactation is a great problem for dairy farmers. The explanation of the issue of the participation of CART and leptin in the regulation of body’s energy homeostasis may therefore be of importance for milk production.
Collapse
|
35
|
Zuniga A, Ryabinin AE. Involvement of Centrally Projecting Edinger-Westphal Nucleus Neuropeptides in Actions of Addictive Drugs. Brain Sci 2020; 10:brainsci10020067. [PMID: 31991932 PMCID: PMC7071833 DOI: 10.3390/brainsci10020067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
The centrally-projecting Edinger-Westphal nucleus (EWcp) is a brain region distinct from the preganglionic Edinger-Westphal nucleus (EWpg). In contrast to the EWpg, the EWcp does not send projections to the ciliary ganglion and appears not to regulate oculomotor function. Instead, evidence is accumulating that the EWcp is extremely sensitive to alcohol and several other drugs of abuse. Studies using surgical, genetic knockout, and shRNA approaches further implicate the EWcp in the regulation of alcohol sensitivity and self-administration. The EWcp is also known as the site of preferential expression of urocortin 1, a peptide of the corticotropin-releasing factor family. However, neuroanatomical data indicate that the EWcp is not a monotypic brain region and consists of several distinct subpopulations of neurons. It is most likely that these subpopulations of the EWcp are differentially involved in the regulation of actions of addictive drugs. This review summarizes and analyzes the current literature of the EWcp's involvement in actions of drugs of abuse in male and female subjects in light of the accumulating evidence of complexities of this brain region.
Collapse
|
36
|
Somalwar AR, Choudhary AG, Balasubramanian N, Sakharkar AJ, Subhedar NK, Kokare DM. Cocaine- and amphetamine-regulated transcript peptide promotes reward seeking behavior in socially isolated rats. Brain Res 2019; 1728:146595. [PMID: 31830460 DOI: 10.1016/j.brainres.2019.146595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Reward deficit, expressed as anhedonia, is one of the major symptoms associated with neuropsychiatric disorders, but the underlying maladaptations have not been understood. Herein, we test the hypothesis that the neuropeptide cocaine- and amphetamine-regulated transcript (CART) may participate in the process. The study is justified since the peptide is a major player in inducing satiety and also processing of reward. The rats were socially isolated to induce reward deficit and conditioned to self-stimulate via an electrode in lateral hypothalamus (LH)-medial forebrain bundle (MFB) region. Compared to group-housed control rats, the socially isolated animals showed decreased lever press activity and elevated ICSS threshold indicating anhedonia-like condition. However, the effects of social isolation were alleviated by CART administered via intracerebroventricular route. The changes in the expression of CART protein and mRNA were screened using immunofluorescence and qRT-PCR methods, respectively. Socially isolated rats showed reduction in the expression of CART in the LH, nucleus accumbens shell (AcbSh) and posterior ventral tegmental area (pVTA) and CART mRNA in the Acb and LH. Double immunostaining with antibodies against CART and synaptophysin revealed significant loss of colabeled elements in LH, AcbSh and pVTA. We suggest that down-regulation of endogenous CARTergic system in the LH-pVTA-AcbSh reward circuitry may be causal to motivational anhedonia like phenotype seen in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Amita R Somalwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | | | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411 007, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India.
| |
Collapse
|
37
|
Sagarkar S, Balasubramanian N, Mishra S, Choudhary AG, Kokare DM, Sakharkar AJ. Repeated mild traumatic brain injury causes persistent changes in histone deacetylase function in hippocampus: Implications in learning and memory deficits in rats. Brain Res 2019; 1711:183-192. [DOI: 10.1016/j.brainres.2019.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/25/2022]
|
38
|
Maternal ethanol exposure reshapes CART system in the rat brain: Correlation with development of anxiety, depression and memory deficits. Neuroscience 2019; 406:126-139. [DOI: 10.1016/j.neuroscience.2019.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
|
39
|
|
40
|
Smedh U, Scott KA, Moran TH. Pretreatment with a CRF antagonist amplifies feeding inhibition induced by fourth ventricular cocaine- and amphetamine-regulated transcript peptide. BMC Neurosci 2019; 20:11. [PMID: 30885137 PMCID: PMC6421688 DOI: 10.1186/s12868-019-0494-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/12/2019] [Indexed: 11/27/2022] Open
Abstract
Background Pre-treatment with the corticotropin-releasing factor antagonist α-helical CRF9-41 prevents inhibition of gastric emptying by cocaine-and amphetamine-regulated transcript peptide at a dorsal hindbrain level, but its inhibition of sucrose intake is not affected. This is suggestive of separable underlying mechanisms of action in the caudal brainstem for cocaine-and amphetamine-regulated transcript peptide with regard to food intake and gastrointestinal functions. Here we further examine cocaine-and amphetamine-regulated transcript peptide—corticotropin-releasing factor receptor interactions in caudal brainstem controls of solid food intake. Injections of combinations of vehicle, cocaine-and amphetamine-regulated transcript peptide (0.5 μg or 1 μg) or α-helical CRF9-41 were given into the fourth cerebral ventricle of rats. Nocturnal solid food intake was recorded over 22 h. Results Pre-treatment with α-helical CRF9-41 into the fourth ventricle significantly increased the responsivity to cocaine-and amphetamine-regulated transcript peptide on hypophagia. In a separate control experiment, α-helical CRF9-41 pre-treatment blocked CRF-induced food intake inhibition indicative of its antagonistic effectiveness. Conclusions We conclude that an endogenous Corticotropin-releasing factor agonist may modulate suppression of food intake caused by cocaine-and amphetamine-regulated transcript peptide at a dorsal hindbrain level in the absence of stress. A potential caudal brainstem mechanism whereby cocaine-and amphetamine-regulated transcript peptide effects on food intake is attenuated via corticotropin-releasing factor receptor activity causing tonic inhibition, is suggested.
Collapse
Affiliation(s)
- Ulrika Smedh
- The Surgical Metabolic Research Laboratory, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy University of Gothenburg, and Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
| | - Karen A Scott
- Department of Psychiatry and Behavioral Science, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Science, The Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
41
|
Lai CC, Yuan ZF, Chu LY, Chuang KT, Lin HH. Roles of cocaine- and amphetamine-regulated transcript peptide in the rostral ventrolateral medulla in cardiovascular regulation in rats. Brain Res 2019; 1710:117-124. [PMID: 30610873 DOI: 10.1016/j.brainres.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/22/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023]
Abstract
Cocaine- and amphetamine-regulated transcript peptide (CARTp) is present in neurons and varicose fibers in the rostral ventrolateral medulla (RVLM) that is crucial in the control of cardiovascular function. Prior research indicated that intracisternal administration of CARTp evokes hypertension and accumulation of Fos in the RVLM. Despite the interaction among CARTp, cardiovascular effect, and the RVLM, no studies have directly examined whether CARTp participates in cardiovascular regulation in the RVLM. The current study directly examined the modulation of blood pressure and baroreflex sensitivity by CARTp in the RVLM in the different strain of rats. Immunohistochemical study showed that CARTp immunoreactive (CART-IR) cell bodies and varicose CART-IR fibers were observed throughout the RVLM in the SD, WKY, and SHRs. Varicose CART-IR nerve fibers were particularly abundant in the WKY and SHRs. Bilateral microinjection of CARTp (30 pmol) into the RVLM caused a significant increase in mean arterial pressure (MAP) in WKY and SHRs. Bilateral microinjection of CARTp antibody (1:5000) into the RVLM displayed a fall in the basal level of the MAP in SHRs but had no effects in WKY rats. In SD rats, bilateral microinjection of CARTp (6, 30 or 60 pmol) into the RVLM did not change the MAP but attenuated phenylephrine-induced bradycardia in a dose-dependent manner. We propose that CARTp acting in the RVLM may involvement in the cardiovascular regulation either by increases in the blood pressure or by decreases in the baroreflex sensitivity in rats. Moreover, endogenous CARTp in the RVLM is associated with the maintenance of basal blood pressure of SHRs.
Collapse
Affiliation(s)
- Chih-Chia Lai
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Zung Fan Yuan
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Ling-Ying Chu
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Kai-Tung Chuang
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hsun-Hsun Lin
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
42
|
Borkar CD, Sagarkar S, Sakharkar AJ, Subhedar NK, Kokare DM. Neuropeptide CART prevents memory loss attributed to withdrawal of nicotine following chronic treatment in mice. Addict Biol 2019; 24:51-64. [PMID: 29193459 DOI: 10.1111/adb.12579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 08/24/2017] [Accepted: 10/16/2017] [Indexed: 01/23/2023]
Abstract
Although chronic nicotine administration does not affect memory, its withdrawal causes massive cognitive deficits. The underlying mechanisms, however, have not been understood. We test the role of cocaine- and amphetamine-regulated transcript peptide (CART), a neuropeptide known for its procognitive properties, in this process. The mice on chronic nicotine treatment/withdrawal were subjected to novel object recognition task. The capability of the animal to discriminate between the novel and familiar objects was tested and represented as discrimination index (DI); reduction in the index suggested amnesia. Nicotine for 49 days had no effect on DI, but 8-hour withdrawal caused a significant reduction, followed by full recovery at 24-hour withdrawal timepoint. Bilateral CART infusion in dorsal hippocampus rescued deficits in DI at 8-hours, whereas CART-antibody infusion into the dorsal hippocampus attenuated the recovery at 24-hours. Commensurate changes were observed in the CART as well as CART mRNA profiles in the hippocampus. CART mRNA expression and the peptide immunoreactivity did not change significantly following chronic nicotine treatment. However, there was a significant reduction at 8-hour withdrawal, followed by a drastic increase in CART immunoreactivity as well as CART mRNA at 24-hour withdrawal, compared with 8-hour withdrawal. Distinct α7-nicotinic receptor immunoreactivity was detected on the hippocampal CART neurons, suggesting cholinergic inputs. An increase in the synaptophysin immunoreactive elements around CART cells in the dentate gyrus, cornu ammonis 3 and subiculum at 24-hour post-withdrawal timepoint suggested neuronal plasticity. CART circuit dynamics in the hippocampus seems to modulate short-term memory associated with nicotine withdrawal.
Collapse
Affiliation(s)
| | - Sneha Sagarkar
- Department of Biotechnology; Savitribai Phule Pune University; India
| | - Amul J. Sakharkar
- Department of Biotechnology; Savitribai Phule Pune University; India
| | | | - Dadasaheb M. Kokare
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; India
| |
Collapse
|
43
|
Milbank E, López M. Orexins/Hypocretins: Key Regulators of Energy Homeostasis. Front Endocrinol (Lausanne) 2019; 10:830. [PMID: 31920958 PMCID: PMC6918865 DOI: 10.3389/fendo.2019.00830] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Originally described to be involved in feeding regulation, orexins/hypocretins are now also considered as major regulatory actors of numerous biological processes, such as pain, sleep, cardiovascular function, neuroendocrine regulation, and energy expenditure. Therefore, they constitute one of the most pleiotropic families of hypothalamic neuropeptides. Although their orexigenic effect is well documented, orexins/hypocretins also exert central effects on energy expenditure, notably on the brown adipose tissue (BAT) thermogenesis. A better comprehension of the underlying mechanisms and potential interactions with other hypothalamic molecular pathways involved in the modulation of food intake and thermogenesis, such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress, is essential to determine the exact implication and pathophysiological relevance of orexins/hypocretins on the control of energy balance. Here, we will review the actions of orexins on energy balance, with special focus on feeding and brown fat function.
Collapse
Affiliation(s)
- Edward Milbank
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- *Correspondence: Edward Milbank
| | - Miguel López
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Miguel López
| |
Collapse
|
44
|
Ahmadian-Moghadam H, Sadat-Shirazi MS, Zarrindast MR. Cocaine- and amphetamine-regulated transcript (CART): A multifaceted neuropeptide. Peptides 2018; 110:56-77. [PMID: 30391426 DOI: 10.1016/j.peptides.2018.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Over the last 35 years, the continuous discovery of novel neuropeptides has been the key to the better understanding of how the central nervous system has integrated with neuronal signals and behavioral responses. Cocaine and amphetamine-regulated transcript (CART) was discovered in 1995 in the rat striatum but later was found to be highly expressed in the hypothalamus. The widespread distribution of CART peptide in the brain complicated the understanding of the role played by this neurotransmitter. The main objective of the current compact review is to piece together the fragments of available information about origin, expression, distribution, projection, and function of CART peptides. Accumulative evidence suggests CART as a neurotransmitter and neuroprotective agent that is mainly involved in regulation of feeding, addiction, stress, anxiety, innate fear, neurological disease, neuropathic pain, depression, osteoporosis, insulin secretion, learning, memory, reproduction, vision, sleep, thirst and body temperature. In spite of the vast number of studies about the CART, the overall pictures about the CART functions are sketchy. First, there is a lack of information about cloned receptor, specific agonist and antagonist. Second, CART peptides are detected in discrete sets of neurons that can modulate countless activities and third; CART peptides exist in several fragments due to post-translational processing. For these reasons the overall picture about the CART peptides are sketchy and confounding.
Collapse
Affiliation(s)
- Hamid Ahmadian-Moghadam
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
45
|
SAĞKAN ÖZTÜRK A, ARPACI A. Obezite ve Ghrelin/Leptin İlişkisi. MUSTAFA KEMAL ÜNIVERSITESI TIP DERGISI 2018. [DOI: 10.17944/mkutfd.328412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
46
|
Somalwar AR, Choudhary AG, Sharma PR, B. N, Sagarkar S, Sakharkar AJ, Subhedar NK, Kokare DM. Cocaine- and amphetamine-regulated transcript peptide (CART) induced reward behavior is mediated via Gi/o dependent phosphorylation of PKA/ERK/CREB pathway. Behav Brain Res 2018; 348:9-21. [DOI: 10.1016/j.bbr.2018.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 12/28/2022]
|
47
|
Xiong L, Meng Q, Sun X, Lu X, Fu Q, Peng Q, Yang J, Oh KW, Hu Z. Cocaine- and amphetamine-regulated transcript peptide in the nucleus accumbens shell inhibits cocaine-induced locomotor sensitization to transient over-expression of α-Ca 2+ /calmodulin-dependent protein kinase II. J Neurochem 2018; 146:289-303. [PMID: 29313985 DOI: 10.1111/jnc.14289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 11/29/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter that attenuates cocaine-induced locomotor activity when injected into the nucleus accumbens (NAc). Our previous work first confirmed that the inhibitory mechanism of the CART peptide on cocaine-induced locomotor activity is related to a reduction in cocaine-enhanced phosphorylated Ca2+ /calmodulin-dependent protein kinaseIIα (pCaMKIIα) and the enhancement of cocaine-induced D3R function. This study investigated whether CART peptide inhibited cocaine-induced locomotor activity via inhibition of interactions between pCaMKIIα and the D3 dopamine receptor (D3R). We demonstrated that lentivirus-mediated gene transfer transiently increased pCaMKIIα expression, which peaked at 10 days after microinjection into the rat NAc shell, and induced a significant increase in Ca2+ influx along with greater behavioral sensitivity in the open field test after intraperitoneal injections of cocaine (15 mg/kg). However, western blot analysis and coimmunoprecipitation demonstrated that CART peptide treatment in lentivirus-transfected CaMKIIα-over-expressing NAc rat tissues or cells prior to cocaine administration inhibited the cocaine-induced Ca2+ influx and attenuated the cocaine-increased pCaMKIIα expression in lentivirus-transfected CaMKIIα-over-expressing cells. CART peptide decreased the cocaine-enhanced phosphorylated cAMP response element binding protein (pCREB) expression via inhibition of the pCaMKIIα-D3R interaction, which may account for the prolonged locomotor sensitization induced by repeated cocaine treatment in lentivirus-transfected CaMKIIα-over-expressing cells. These results provide strong evidence for the inhibitory modulation of CART peptide in cocaine-induced locomotor sensitization. Cover Image for this issue: doi: 10.1111/jnc.14187.
Collapse
Affiliation(s)
- Lixia Xiong
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Qing Meng
- Queen Mary Institute, School of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Xi Sun
- Anhui Sinobioway Cell Therapy CO., LTD, Hefei, Anhui, China
| | - Xiangtong Lu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Fu
- Department of Respiration, The Fourth Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.,Department of Respiration, Department Two, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Qinghua Peng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Yang
- Department of Physiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Zhenzhen Hu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key laboratory of Tumor Pathogens and Molecular Pathology and the Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China
| |
Collapse
|
48
|
Yoon HS, Hattori K, Sasayama D, Kunugi H. Low cocaine- and amphetamine-regulated transcript (CART) peptide levels in human cerebrospinal fluid of major depressive disorder (MDD) patients. J Affect Disord 2018; 232:134-138. [PMID: 29486339 DOI: 10.1016/j.jad.2018.02.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/18/2017] [Accepted: 02/16/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cocaine- and amphetamine-regulated transcript (CART) peptide is a candidate neuropeptide as a biomarker for major depressive disorder (MDD) because of its effects on emotion and distribution covering brain areas involved in the pathophysiology of MDD symptoms. However, it is unknown whether CART peptide levels are altered in the cerebrospinal fluid (CSF) of patients with MDD patients and are correlated with MDD symptoms. METHODS Subjects were 24 patients with MDD and 25 healthy controls matched for age, gender and ethnicity (Japanese). We measured CSF CART levels by a commercially available immunoassay kit and analyzed the relationships of the levels with antidepressant dose and symptoms assessed with the 21 item Hamilton Depression Rating Scale (HAMD-21). RESULTS CSF CART levels were significantly decreased in the patients than in the controls (p < 0.05). In MDD patient group, the CART levels had a negative correlation with antidepressant dose (imipramine-equivalent dose) (ρ = -0.55, p < 0.01) and significantly decreased in antidepressant-treated group (AD-treated group) compared to controls (p < 0.05). CSF CART levels showed significant negative correlations with psychomotor retardation, somatic anxiety, and general somatic symptoms (all p < 0.05) and a positive correlation with obsessive and compulsive symptoms (p < 0.05). LIMITATIONS In our analysis, all classes of antidepressants were combined together and the effects of medication use in a longitudinal manner did not confirm. CONCLUSIONS We report for the first time that CSF CART peptide levels are reduced in patients with MDD compared with healthy controls. The CART levels showed negative correlations with antidepressant dose and some symptoms, supporting the possibility that CART peptide is involved in the development of depressive symptoms.
Collapse
Affiliation(s)
- Hyung Shin Yoon
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, OgawaHigashi, Kodaira, Tokyo 187-8502, Japan; Department of Physiology, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, OgawaHigashi, Kodaira, Tokyo 187-8502, Japan; Translational Medical Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Daimei Sasayama
- Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, OgawaHigashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
49
|
Cocaine inhibits leptin-induced increase of the cocaine- and amphetamine-regulated transcript peptide in the nucleus accumbens in rats. Neuroreport 2018; 28:701-704. [PMID: 28614180 DOI: 10.1097/wnr.0000000000000822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two well-known appetite-regulatory peptides, leptin and cocaine- and amphetamine-regulated transcript (CART), are known to be involved in the brain rewarding pathway. However, it is not yet known how they interact in the nucleus accumbens, an important region mediating the rewarding effects of drugs of abuse. Using the immunoassay method, we found that a microinjection of leptin into the nucleus accumbens core induces an immediate and transient increase of the CART peptide in this site, whereas these effects were inhibited by cocaine. These results expand the role of accumbal leptin to the regulation of the CART peptide and further suggest that possible interaction of these appetite-regulating peptides may be involved in cocaine-mediated rewarding effects.
Collapse
|
50
|
Yang N, Anapindi KDB, Rubakhin SS, Wei P, Yu Q, Li L, Kenny PJ, Sweedler JV. Neuropeptidomics of the Rat Habenular Nuclei. J Proteome Res 2018. [PMID: 29518334 DOI: 10.1021/acs.jproteome.7b00811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Conserved across vertebrates, the habenular nuclei are a pair of small symmetrical structures in the epithalamus. The nuclei functionally link the forebrain and midbrain by receiving input from and projecting to several brain regions. Each habenular nucleus comprises two major asymmetrical subnuclei, the medial and lateral habenula. These subnuclei are associated with different physiological processes and disorders, such as depression, nicotine addiction, and encoding aversive stimuli or omitting expected rewarding stimuli. Elucidating the functions of the habenular nuclei at the molecular level requires knowledge of their neuropeptide complement. In this work, three mass spectrometry (MS) techniques-liquid chromatography (LC) coupled to Orbitrap tandem MS (MS/MS), LC coupled to Fourier transform (FT)-ion cyclotron resonance (ICR) MS/MS, and matrix-assisted laser desorption/ionization (MALDI) FT-ICR MS-were used to uncover the neuropeptide profiles of the rodent medial and lateral habenula. With the assistance of tissue stabilization and bioinformatics, a total of 262 and 177 neuropeptides produced from 27 and 20 prohormones were detected and identified from the medial and lateral habenula regions, respectively. Among these neuropeptides, 136 were exclusively found in the medial habenula, and 51 were exclusively expressed in the lateral habenula. Additionally, novel sites of sulfation, a rare post-translational modification, on the secretogranin I prohormone are identified. The results demonstrate that these two small brain nuclei have a rich and differentiated peptide repertoire, with this information enabling a range of follow-up studies.
Collapse
Affiliation(s)
- Ning Yang
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Krishna D B Anapindi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Pingli Wei
- Chemistry Department , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Qing Yu
- School of Pharmacy , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Lingjun Li
- Chemistry Department , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,School of Pharmacy , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Paul J Kenny
- Department of Pharmacology & Systems Therapeutics , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|