1
|
Abstract
ABSTRACT Peripheral nerve injury is a common injury disease. Understanding of the mechanisms of periphery nerve repair and regeneration after injury is an essential prerequisite for treating related diseases. Although the biological mechanisms of peripheral nerve injury and regeneration have been studied comprehensively, the clinical treatment methods are still limited. The bottlenecks of the treatments are the shortage of donor nerves and the limited surgical precision. Apart from the knowledge regarding the fundamental characteristics and physical processes of peripheral nerve injury, numerous studies have found that Schwann cells, growth factors, and extracellular matrix are main factors affecting the repair and regeneration process of injured nerves. At present, the therapeutical methods of the disease include microsurgery, autologous nerve transplantation, allograft nerve transplantation and tissue engineering technology. Tissue engineering technology, which combines seed cells, neurotrophic factors, and scaffold materials together, is promising for treating the patients with long-gapped and large nerve damage. With the development of neuron science and technology, the treatment of peripheral nerve injury diseases will continue being improved.
Collapse
|
2
|
Golshadi M, Claffey EF, Grenier JK, Miller A, Willand M, Edwards MG, Moore TP, Sledziona M, Gordon T, Borschel GH, Cheetham J. Delay modulates the immune response to nerve repair. NPJ Regen Med 2023; 8:12. [PMID: 36849720 PMCID: PMC9970988 DOI: 10.1038/s41536-023-00285-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
Effective regeneration after peripheral nerve injury requires macrophage recruitment. We investigated the activation of remodeling pathways within the macrophage population when repair is delayed and identified alteration of key upstream regulators of the inflammatory response. We then targeted one of these regulators, using exogenous IL10 to manipulate the response to injury at the repair site. We demonstrate that this approach alters macrophage polarization, promotes macrophage recruitment, axon extension, neuromuscular junction formation, and increases the number of regenerating motor units reaching their target. We also demonstrate that this approach can rescue the effects of delayed nerve graft.
Collapse
Affiliation(s)
- Masoud Golshadi
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Elaine F Claffey
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Jennifer K Grenier
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Andrew Miller
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Michael Willand
- Epineuron Technologies Inc, 5100 Orbitor Dr., Mississauga, ON, L4W 5R8, Canada
| | | | - Tim P Moore
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Michael Sledziona
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Tessa Gordon
- Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1×8, Canada
| | | | - Jonathan Cheetham
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Rocha BGS, Picoli CC, Gonçalves BOP, Silva WN, Costa AC, Moraes MM, Costa PAC, Santos GSP, Almeida MR, Silva LM, Singh Y, Falchetti M, Guardia GDA, Guimarães PPG, Russo RC, Resende RR, Pinto MCX, Amorim JH, Azevedo VAC, Kanashiro A, Nakaya HI, Rocha EL, Galante PAF, Mintz A, Frenette PS, Birbrair A. Tissue-resident glial cells associate with tumoral vasculature and promote cancer progression. Angiogenesis 2023; 26:129-166. [PMID: 36183032 DOI: 10.1007/s10456-022-09858-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Understanding the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment. Using in vivo inducible Cre/loxP mediated systems, we demonstrated that these cells derive from tissue-resident Schwann cells. Genetic ablation of endogenous Schwann cells slowed down tumor growth and angiogenesis. Schwann cell-specific depletion also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of tumor biopsies revealed that increased expression of Schwann cell-related genes within melanoma was associated with improved survival. Collectively, our study suggests that Schwann cells regulate tumor progression, indicating that manipulation of Schwann cells may provide a valuable tool to improve cancer patients' outcomes.
Collapse
Affiliation(s)
- Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bryan O P Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michele M Moraes
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milla R Almeida
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana M Silva
- Department of Cell Biology, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Youvika Singh
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Marcelo Falchetti
- Department of Microbiology and Immunology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Pedro P G Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Remo C Russo
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Kanashiro
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA
| | | | - Edroaldo L Rocha
- Department of Microbiology and Immunology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Berner J, Weiss T, Sorger H, Rifatbegovic F, Kauer M, Windhager R, Dohnal A, Ambros PF, Ambros IM, Boztug K, Steinberger P, Taschner‐Mandl S. Human repair-related Schwann cells adopt functions of antigen-presenting cells in vitro. Glia 2022; 70:2361-2377. [PMID: 36054432 PMCID: PMC9804420 DOI: 10.1002/glia.24257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
The plastic potential of Schwann cells (SCs) is increasingly recognized to play a role after nerve injury and in diseases of the peripheral nervous system. Reports on the interaction between immune cells and SCs indicate their involvement in inflammatory processes. However, the immunocompetence of human SCs has been primarily deduced from neuropathies, but whether after nerve injury SCs directly regulate an adaptive immune response is unknown. Here, we performed comprehensive analysis of immunomodulatory capacities of human repair-related SCs (hrSCs), which recapitulate SC response to nerve injury in vitro. We used our well-established culture model of primary hrSCs from human peripheral nerves and analyzed the transcriptome, secretome, and cell surface proteins for pathways and markers relevant in innate and adaptive immunity, performed phagocytosis assays, and monitored T-cell subset activation in allogeneic co-cultures. Our findings show that hrSCs are phagocytic, which is in line with high MHCII expression. Furthermore, hrSCs express co-regulatory proteins, such as CD40, CD80, B7H3, CD58, CD86, and HVEM, release a plethora of chemoattractants, matrix remodeling proteins and pro- as well as anti-inflammatory cytokines, and upregulate the T-cell inhibiting PD-L1 molecule upon pro-inflammatory stimulation with IFNγ. In contrast to monocytes, hrSC alone are not sufficient to trigger allogenic CD4+ and CD8+ T-cells, but limit number and activation status of exogenously activated T-cells. This study demonstrates that hrSCs possess features and functions typical for professional antigen-presenting cells in vitro, and suggest a new role of these cells as negative regulators of T-cell immunity during nerve regeneration.
Collapse
Affiliation(s)
- Jakob Berner
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria,St. Anna Children's HospitalViennaAustria
| | - Tamara Weiss
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria,Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of Vienna
| | - Helena Sorger
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | | | - Max Kauer
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Reinhard Windhager
- Department of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Alexander Dohnal
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Peter F. Ambros
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Inge M. Ambros
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria,St. Anna Children's HospitalViennaAustria,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI‐RUD)ViennaAustria,Center for Molecular Medicine (CeMM)ViennaAustria
| | | | | |
Collapse
|
5
|
Talsma AD, Niemi JP, Pachter JS, Zigmond RE. The primary macrophage chemokine, CCL2, is not necessary after a peripheral nerve injury for macrophage recruitment and activation or for conditioning lesion enhanced peripheral regeneration. J Neuroinflammation 2022; 19:179. [PMID: 35820932 PMCID: PMC9277969 DOI: 10.1186/s12974-022-02497-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Peripheral nerve injuries stimulate the regenerative capacity of injured neurons through a neuroimmune phenomenon termed the conditioning lesion (CL) response. This response depends on macrophage accumulation in affected dorsal root ganglia (DRGs) and peripheral nerves. The macrophage chemokine CCL2 is upregulated after injury and is allegedly required for stimulating macrophage recruitment and pro-regenerative signaling through its receptor, CCR2. In these tissues, CCL2 is putatively produced by neurons in the DRG and Schwann cells in the distal nerve. METHODS Ccl2fl/fl mice were crossed with Advillin-Cre, P0-Cre, or both to create conditional Ccl2 knockouts (CKOs) in sensory neurons, Schwann cells, or both to hypothetically remove CCL2 and macrophages from DRGs, nerves or both. CCL2 was localized using Ccl2-RFPfl/fl mice. CCL2-CCR2 signaling was further examined using global Ccl2 KOs and Ccr2gfp knock-in/knock-outs. Unilateral sciatic nerve transection was used as the injury model, and at various timepoints, chemokine expression, macrophage accumulation and function, and in vivo regeneration were examined using qPCR, immunohistochemistry, and luxol fast blue staining. RESULTS Surprisingly, in all CKOs, DRG Ccl2 gene expression was decreased, while nerve Ccl2 was not. CCL2-RFP reporter mice revealed CCL2 expression in several cell types beyond the expected neurons and Schwann cells. Furthermore, macrophage accumulation, myelin clearance, and in vivo regeneration were unaffected in all CKOs, suggesting CCL2 may not be necessary for the CL response. Indeed, Ccl2 global knockout mice showed normal macrophage accumulation, myelin clearance, and in vivo regeneration, indicating these responses do not require CCL2. CCR2 ligands, Ccl7 and Ccl12, were upregulated after nerve injury and perhaps could compensate for the absence of Ccl2. Finally, Ccr2gfp knock-in/knock-out animals were used to differentiate resident and recruited macrophages in the injured tissues. Ccr2gfp/gfp KOs showed a 50% decrease in macrophages in the distal nerve compared to controls with a relative increase in resident macrophages. In the DRG there was a small but insignificant decrease in macrophages. CONCLUSIONS CCL2 is not necessary for macrophage accumulation, myelin clearance, and axon regeneration in the peripheral nervous system. Without CCL2, other CCR2 chemokines, resident macrophage proliferation, and CCR2-independent monocyte recruitment can compensate and allow for normal macrophage accumulation.
Collapse
Affiliation(s)
- Aaron D Talsma
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4975, USA
| | - Jon P Niemi
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4975, USA
| | - Joel S Pachter
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, 06030-6125, USA
| | - Richard E Zigmond
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4975, USA.
| |
Collapse
|
6
|
Wang S, Liu X, Wang Y. Evaluation of Platelet-Rich Plasma Therapy for Peripheral Nerve Regeneration: A Critical Review of Literature. Front Bioeng Biotechnol 2022; 10:808248. [PMID: 35299637 PMCID: PMC8923347 DOI: 10.3389/fbioe.2022.808248] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injury (PNI) is a common disease in clinic, and the regeneration process of peripheral nerve tissue is slow, and patients with PNI often suffer from the loss of nerve function. At present, related research on the mechanism of peripheral nerve regeneration has become a hot spot, and scholars are also seeking a method that can accelerate the regeneration of peripheral nerve. Platelet-rich plasma (PRP) is a platelet concentrate extracted from autologous blood by centrifugation, which is a kind of bioactive substance. High concentration of platelets can release a variety of growth factors after activation, and can promote the proliferation and differentiation of tissue cells, which can accelerate the process of tissue regeneration. The application of PRP comes from the body, there is no immune rejection reaction, it can promote tissue regeneration with less cost, it is,therefore, widely used in various clinical fields. At present, there are relatively few studies on the application of PRP to peripheral nerve regeneration. This article summarizes the literature in recent years to illustrate the effect of PRP on peripheral nerve regeneration from mechanism to clinical application, and prospects for the application of PRP to peripheral nerve.
Collapse
Affiliation(s)
| | | | - Yueshu Wang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Boakye PA, Tang SJ, Smith PA. Mediators of Neuropathic Pain; Focus on Spinal Microglia, CSF-1, BDNF, CCL21, TNF-α, Wnt Ligands, and Interleukin 1β. FRONTIERS IN PAIN RESEARCH 2021; 2:698157. [PMID: 35295524 PMCID: PMC8915739 DOI: 10.3389/fpain.2021.698157] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Intractable neuropathic pain is a frequent consequence of nerve injury or disease. When peripheral nerves are injured, damaged axons undergo Wallerian degeneration. Schwann cells, mast cells, fibroblasts, keratinocytes and epithelial cells are activated leading to the generation of an "inflammatory soup" containing cytokines, chemokines and growth factors. These primary mediators sensitize sensory nerve endings, attract macrophages, neutrophils and lymphocytes, alter gene expression, promote post-translational modification of proteins, and alter ion channel function in primary afferent neurons. This leads to increased excitability and spontaneous activity and the generation of secondary mediators including colony stimulating factor 1 (CSF-1), chemokine C-C motif ligand 21 (CCL-21), Wnt3a, and Wnt5a. Release of these mediators from primary afferent neurons alters the properties of spinal microglial cells causing them to release tertiary mediators, in many situations via ATP-dependent mechanisms. Tertiary mediators such as BDNF, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and other Wnt ligands facilitate the generation and transmission of nociceptive information by increasing excitatory glutamatergic transmission and attenuating inhibitory GABA and glycinergic transmission in the spinal dorsal horn. This review focusses on activation of microglia by secondary mediators, release of tertiary mediators from microglia and a description of their actions in the spinal dorsal horn. Attention is drawn to the substantial differences in the precise roles of various mediators in males compared to females. At least 25 different mediators have been identified but the similarity of their actions at sensory nerve endings, in the dorsal root ganglia and in the spinal cord means there is considerable redundancy in the available mechanisms. Despite this, behavioral studies show that interruption of the actions of any single mediator can relieve signs of pain in experimental animals. We draw attention this paradox. It is difficult to explain how inactivation of one mediator can relieve pain when so many parallel pathways are available.
Collapse
Affiliation(s)
- Paul A. Boakye
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Peng DY, Reed-Maldonado AB, Lin GT, Xia SJ, Lue TF. Low-intensity pulsed ultrasound for regenerating peripheral nerves: potential for penile nerve. Asian J Androl 2021; 22:335-341. [PMID: 31535626 PMCID: PMC7406088 DOI: 10.4103/aja.aja_95_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Peripheral nerve damage, such as that found after surgery or trauma, is a substantial clinical challenge. Much research continues in attempts to improve outcomes after peripheral nerve damage and to promote nerve repair after injury. In recent years, low-intensity pulsed ultrasound (LIPUS) has been studied as a potential method of stimulating peripheral nerve regeneration. In this review, the physiology of peripheral nerve regeneration is reviewed, and the experiments employing LIPUS to improve peripheral nerve regeneration are discussed. Application of LIPUS following nerve surgery may promote nerve regeneration and improve functional outcomes through a variety of proposed mechanisms. These include an increase of neurotrophic factors, Schwann cell (SC) activation, cellular signaling activations, and induction of mitosis. We searched PubMed for articles related to these topics in both in vitro and in vivo animal research models. We found numerous studies, suggesting that LIPUS following nerve surgery promotes nerve regeneration and improves functional outcomes. Based on these findings, LIPUS could be a novel and valuable treatment for nerve injury-induced erectile dysfunction.
Collapse
Affiliation(s)
- Dong-Yi Peng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143, USA.,Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Amanda B Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Gui-Ting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Fertala J, Rivlin M, Wang ML, Beredjiklian PK, Steplewski A, Fertala A. Collagen-rich deposit formation in the sciatic nerve after injury and surgical repair: A study of collagen-producing cells in a rabbit model. Brain Behav 2020; 10:e01802. [PMID: 32924288 PMCID: PMC7559634 DOI: 10.1002/brb3.1802] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Posttraumatic scarring of peripheral nerves produces unwanted adhesions that block axonal growth. In the context of surgical nerve repair, the organization of the scar tissue adjacent to conduits used to span the gap between the stumps of transected nerves is poorly understood. The goal of this study was to elucidate the patterns of distribution of collagen-rich scar tissue and analyze the spatial organization of cells that produce fibrotic deposits around and within the conduit's lumen. METHODS Employing a rabbit model of sciatic nerve transection injury, we studied the formation of collagen-rich scar tissue both inside and outside conduits used to bridge the injury sites. Utilizing quantitative immunohistology and Fourier-transform infrared spectroscopy methods, we measured cellular and structural elements present in the extraneural and the intraneural scar of the proximal and distal nerve fragments. RESULTS Analysis of cells producing collagen-rich deposits revealed that alpha-smooth muscle actin-positive myofibroblasts were only present in the margins of the stumps. In contrast, heat shock protein 47-positive fibroblasts actively producing collagenous proteins were abundant within the entire scar tissue. The most prominent site of transected sciatic nerves with the highest number of cells actively producing collagen-rich scar was the proximal stump. CONCLUSION Our findings suggest the proximal region of the injury site plays a prominent role in pro-fibrotic processes associated with the formation of collagen-rich deposits. Moreover, they show that the role of canonical myofibroblasts in peripheral nerve regeneration is limited to wound contracture and that a distinct population of fibroblastic cells produce the collagenous proteins that form scar tissue. As scarring after nerve injury remains a clinical problem with poor outcomes due to incomplete nerve recovery, further elucidation of the cellular and spatial aspects of neural fibrosis will lead to more targeted treatments in the clinical setting.
Collapse
Affiliation(s)
- Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael Rivlin
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Mark L Wang
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Pedro K Beredjiklian
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Andrzej Steplewski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Harrison JM, Rafuse VF. Muscle fiber-type specific terminal Schwann cell pathology leads to sprouting deficits following partial denervation in SOD1 G93A mice. Neurobiol Dis 2020; 145:105052. [PMID: 32827689 DOI: 10.1016/j.nbd.2020.105052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/20/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset disease characterized by the progressive death of motoneurons and denervation of muscle fibers. To restore motor function, surviving motoneurons in partially denervated muscles typically sprout axons to reinnervate denervated endplates. However, studies on the SOD1G93A rodent models of ALS indicate that sprouting is significantly limited in fast, but not slow, twitch muscles after disease onset. This limitation hastens the rate of muscle weakness and loss of motor function. The causes of this limitation are currently unknown. Sprouting could be limited because the SOD1G93A mutation weakens motoneurons making them incapable of expanding their field of innervation. Alternatively, motoneurons may be capable of sprouting, but unable to do so due to the loss of a permissive sprouting environment. To distinguish between the two possibilities, we compared the sprouting capacity of motoneuron subtypes by partially denervating the fast twitch plantaris (composed of type IIa/IIb muscle fibers) and slow twitch soleus muscles (type I/IIa fibers) prior to disease onset and weakening in SOD1G93A and WT mice. We found that only motoneurons innervating the SOD1G93A plantaris had a limited sprouting capacity. This was correlated with the selective loss of terminal Schwann cells (TSCs) at IIb fibers and an increase in macrophage infiltration. Treating SOD1G93A mice with the tyrosine kinase inhibitor, masitinib, significantly reduced infiltration, prevented TSC loss, and increased the sprouting capacity to near normal. These results suggest that TSCs at denervated type IIb muscle fibers are aberrantly targeted by infiltrating macrophages in SOD1G93A mice, and their loss accounts, at least in part, for the compromised sprouting capacity of the largest motoneurons during early stages of ALS.
Collapse
Affiliation(s)
- Julia M Harrison
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada
| | - Victor F Rafuse
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
11
|
Campos ACP, Antunes GF, Matsumoto M, Pagano RL, Martinez RCR. Neuroinflammation, Pain and Depression: An Overview of the Main Findings. Front Psychol 2020; 11:1825. [PMID: 32849076 PMCID: PMC7412934 DOI: 10.3389/fpsyg.2020.01825] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic pain is a serious public health problem with a strong affective-motivational component that makes it difficult to treat. Most patients with chronic pain suffer from severe depression; hence, both conditions coexist and exacerbate one another. Brain inflammatory mediators are critical for maintaining depression-pain syndrome and could be substrates for it. The goal of our paper was to review clinical and preclinical findings to identify the neuroinflammatory profile associated with the cooccurrence of pain and depression. In addition, we aimed to explore the regulatory effect of neuronal reorganization on the inflammatory response in pain and depression. We conducted a quantitative review supplemented by manual screening. Our results revealed inflammatory signatures in different preclinical models and clinical articles regarding depression-pain syndrome. We also identified that improvements in depressive symptoms and amelioration of pain can be modulated through direct targeting of inflammatory mediators, such as cytokines and molecular inhibitors of the inflammatory cascade. Additionally, therapeutic targets that improve and regulate the synaptic environment and its neurotransmitters may act as anti-inflammatory compounds, reducing local damage-associated molecular patterns and inhibiting the activation of immune and glial cells. Taken together, our data will help to better elucidate the neuroinflammatory profile in pain and depression and may help to identify pharmacological targets for effective management of depression-pain syndrome.
Collapse
Affiliation(s)
| | | | - Marcio Matsumoto
- Anesthesiology Medical Center, Hospital Sirio-Libanes, São Paulo, Brazil
| | | | - Raquel Chacon Ruiz Martinez
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil.,LIM 23, Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
12
|
Peng D, Reed-Maldonado AB, Zhou F, Tan Y, Yuan H, Banie L, Wang G, Tang Y, He L, Lin G, Lue TF. Exosome Released From Schwann Cells May Be Involved in Microenergy Acoustic Pulse-Associated Cavernous Nerve Regeneration. J Sex Med 2020; 17:1618-1628. [PMID: 32669249 DOI: 10.1016/j.jsxm.2020.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neurogenic erectile dysfunction (ED) is often refractory to treatment because of insufficient functional nerve recovery after injury or insult. Noninvasive mechano-biological intervention, such as microenergy acoustic pulse (MAP), low-intensity pulsed ultrasound, and low-intensity extracorporeal shockwave treatment, is an optimal approach to stimulate nerve regeneration. AIM To establish a new model in vitro to simulate nerve injury in neurogenic ED and to explore the mechanisms of MAP in vitro. METHODS Sprague-Dawley rats were used to isolate Schwann cells (SCs), major pelvic ganglion (MPG), and cavernous nerve with MPG (CN/MPG). SCs were then treated with MAP (0.033 mJ/mm2, 1 Hz, 100 pulses), and SC exosomes were isolated. The MPG and CN/MPG were treated with MAP (0.033 mJ/mm2, 1 Hz) at different dosages (25, 50, 100, 200, or 300 pulses) or exosomes derived from MAP-treated SCs in vitro. OUTCOMES Neurite growth from the MPG fragments and CN was photographed and measured. Expression of neurotropic factors (brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3) was checked. RESULTS Neurite outgrowth from MPG and CN/MPG was enhanced by MAP in a dosage response manner, peaking at 100 pulses. MAP promoted SC proliferation, neurotropic factor (brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3) expression, and exosome secretion. SC-derived exosomes significantly enhanced neurite outgrowth from MPG in vitro. CLINICAL IMPLICATIONS MAP may have utility in the treatment of neurogenic ED by SC-derived exosomes. STRENGTH & LIMITATIONS We confirmed that MAP enhances penile nerve regeneration through exsomes. Limitations of this study include that our study did not explore the exact mechanisms of how MAP increases SC exosome secretion nor whether MAP modulates the content of exosomes. CONCLUSION This study revealed that neurite outgrowth from MPG was enhanced by MAP and by SC-derived exosomes which were isolated after MAP treatment. Our findings indicate that one mechanism by which MAP induces nerve regeneration is by stimulation of SCs to secrete exosomes. Peng D, Reed-Maldonado AB, Zhou F, et al. Exosome Released From Schwann Cells May Be Involved in Microenergy Acoustic Pulse-Associated Cavernous Nerve Regeneration. J Sex Med 2020;17:1618-1628.
Collapse
Affiliation(s)
- Dongyi Peng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA; Department of Urology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Amanda B Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Feng Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yan Tan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Huixing Yuan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yuxin Tang
- Department of Urology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Leye He
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
13
|
Xu D, Liang J, Cui M, Zhang L, Ren S, Zheng W, Dong X, Zhang B. Saturated fatty acids activate the inflammatory signalling pathway in Schwann cells: Implication in sciatic nerve injury. Scand J Immunol 2020; 92:e12896. [PMID: 32557749 DOI: 10.1111/sji.12896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/21/2020] [Accepted: 05/14/2020] [Indexed: 11/30/2022]
Abstract
Sciatic nerve injury affects quality of life. Many immune cells and inflammatory cytokines have been reported to be involved in sciatic nerve injury, but little is known about the ligands and receptors that trigger inflammatory responses. By using a modified sciatic nerve clamp injury method, we found that the recruitment of Schwann cells and the inflammatory response were enhanced after sciatic nerve injury. Toll-like receptor 4 (TLR4), one of the major members of the TLR family, is highly expressed in Schwann cells. Under certain conditions, myeloid differentiation protein 2 (MD2) binds to TLR4 on the membrane and plays important roles in the inflammatory response. The reductions in the recruitment of Schwann cells and the inflammatory response induced by the blockade of TLR4 or MD2 suggest that TLR4 and MD2 are involved in sciatic nerve injury. What are the endogenous signals that activate the inflammatory response? A large number of free saturated fatty acids (SFAs) are released from Schwann cells, adipocytes and the blood after sciatic nerve injury. Liang et al reported that Schwann cells can be stimulated by palmitic acid (PA). Here, we found that the expression and secretion of TNF-α and IL-6 were enhanced by PA treatment. Moreover, PA activated TLR4 signalling pathway-related proteins and stimulated a strong association between TLR4 and MD2. Blocking TLR4 or MD2 reversed the PA-induced inflammatory response and TLR4 downstream signalling pathway. Thus, we speculated that SFAs act as endogenous ligands that activate TLR4/MD2, thus triggering Schwann cell inflammation during sciatic nerve injury.
Collapse
Affiliation(s)
- Dan Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Mengli Cui
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Shurong Ren
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Wenxiang Zheng
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics, Medical College of Qingdao University, Qingdao, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Alvarez FJ, Rotterman TM, Akhter ET, Lane AR, English AW, Cope TC. Synaptic Plasticity on Motoneurons After Axotomy: A Necessary Change in Paradigm. Front Mol Neurosci 2020; 13:68. [PMID: 32425754 PMCID: PMC7203341 DOI: 10.3389/fnmol.2020.00068] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Motoneurons axotomized by peripheral nerve injuries experience profound changes in their synaptic inputs that are associated with a neuroinflammatory response that includes local microglia and astrocytes. This reaction is conserved across different types of motoneurons, injuries, and species, but also displays many unique features in each particular case. These reactions have been amply studied, but there is still a lack of knowledge on their functional significance and mechanisms. In this review article, we compiled data from many different fields to generate a comprehensive conceptual framework to best interpret past data and spawn new hypotheses and research. We propose that synaptic plasticity around axotomized motoneurons should be divided into two distinct processes. First, a rapid cell-autonomous, microglia-independent shedding of synapses from motoneuron cell bodies and proximal dendrites that is reversible after muscle reinnervation. Second, a slower mechanism that is microglia-dependent and permanently alters spinal cord circuitry by fully eliminating from the ventral horn the axon collaterals of peripherally injured and regenerating sensory Ia afferent proprioceptors. This removes this input from cell bodies and throughout the dendritic tree of axotomized motoneurons as well as from many other spinal neurons, thus reconfiguring ventral horn motor circuitries to function after regeneration without direct sensory feedback from muscle. This process is modulated by injury severity, suggesting a correlation with poor regeneration specificity due to sensory and motor axons targeting errors in the periphery that likely render Ia afferent connectivity in the ventral horn nonadaptive. In contrast, reversible synaptic changes on the cell bodies occur only while motoneurons are regenerating. This cell-autonomous process displays unique features according to motoneuron type and modulation by local microglia and astrocytes and generally results in a transient reduction of fast synaptic activity that is probably replaced by embryonic-like slow GABA depolarizations, proposed to relate to regenerative mechanisms.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Travis M Rotterman
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Erica T Akhter
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Alicia R Lane
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Arthur W English
- Department of Cellular Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy C Cope
- Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
15
|
Jablonka-Shariff A, Lu CY, Campbell K, Monk KR, Snyder-Warwick AK. Gpr126/Adgrg6 contributes to the terminal Schwann cell response at the neuromuscular junction following peripheral nerve injury. Glia 2019; 68:1182-1200. [PMID: 31873966 DOI: 10.1002/glia.23769] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
Gpr126/Adgrg6 is an adhesion G protein-coupled receptor essential for Schwann cell (SC) myelination with important contributions to repair after nerve crush injury. Despite critical functions in myelinating SCs, the role of Gpr126 within nonmyelinating terminal Schwann cells (tSCs) at the neuromuscular junction (NMJ), is not known. tSCs have important functions in synaptic maintenance and reinnervation, and after injury tSCs extend cytoplasmic processes to guide regenerating axons to the denervated NMJ. In this study, we show that Gpr126 is expressed in tSCs, and that absence of Gpr126 in SCs (SC-specific Gpr126 knockout, cGpr126) results in a NMJ maintenance defect in the hindlimbs of aged mice, but not in young adult mice. After nerve transection and repair, cGpr126 mice display delayed NMJ reinnervation, altered tSC morphology with decreased S100β expression, and reduced tSC cytoplasmic process extensions. The immune response promoting reinnervation at the NMJ following nerve injury is also altered with decreased macrophage infiltration, Tnfα, and anomalous cytokine expression compared to NMJs of control mice. In addition, Vegfa expression is decreased in muscle, suggesting that cGpr126 non-cell autonomously modulates angiogenesis after nerve injury. In sum, cGpr126 mice demonstrated delayed NMJ reinnervation and decreased muscle mass following nerve transection and repair compared to control littermates. The integral function of Gpr126 in tSCs at the NMJ provides the framework for new therapeutic targets for neuromuscular disease.
Collapse
Affiliation(s)
- Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Chuieng-Yi Lu
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.,Division of Reconstructive Microsurgery, Department of Plastic Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Katherine Campbell
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri.,Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
16
|
Preconditioning of Rat Bone Marrow-Derived Mesenchymal Stromal Cells with Toll-Like Receptor Agonists. Stem Cells Int 2019; 2019:7692973. [PMID: 31531025 PMCID: PMC6721436 DOI: 10.1155/2019/7692973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are dynamic cells that can sense the environment, adapting their regulatory functions to different conditions. Accordingly, the therapeutic potential of BM-MSCs can be modulated by preconditioning strategies aimed at modifying their paracrine action. Although rat BM-MSCs (rBM-MSCs) have been widely tested in preclinical research, most preconditioning studies have employed human and mouse BM-MSCs. Herein, we investigated whether rBM-MSCs modify their phenotype and paracrine functions in response to Toll-like receptor (TLR) agonists. The data showed that rBM-MSCs expressed TLR3, TLR4, and MDA5 mRNA and were able to internalize polyinosinic-polycytidylic acid (Poly(I:C)), a TLR3/MDA5 agonist. rBM-MSCs were then stimulated with Poly(I:C) or with lipopolysaccharide (LPS, a TLR4 agonist) for 1 h and were grown under normal culture conditions. LPS or Poly(I:C) stimulation did not affect the viability or the morphology of rBM-MSCs and did not modify the expression pattern of key cell surface markers. Poly(I:C) did not induce statistically significant changes in the release of several inflammatory mediators and VEGF by rBM-MSCs, although it tended to increase IL-6 and MCP-1 secretion, whereas LPS increased the release of IL-6, MCP-1, and VEGF, three factors that were constitutively secreted by unstimulated cells. The neurotrophic activity of the conditioned medium from unstimulated and LPS-preconditioned rBM-MSCs was investigated using dorsal root ganglion explants, showing that soluble factors produced by unstimulated and LPS-preconditioned rBM-MSCs can stimulate neurite outgrowth similarly, in a VEGF-dependent manner. LPS-preconditioned cells, however, were slightly more efficient in increasing the number of regrowing axons in a model of sciatic nerve transection in rats. In conclusion, LPS preconditioning boosted the production of constitutively secreted factors by rBM-MSCs, without changing their mesenchymal identity, an effect that requires further investigation in exploratory preclinical studies.
Collapse
|
17
|
Forese MG, Pellegatta M, Canevazzi P, Gullotta GS, Podini P, Rivellini C, Previtali SC, Bacigaluppi M, Quattrini A, Taveggia C. Prostaglandin D2 synthase modulates macrophage activity and accumulation in injured peripheral nerves. Glia 2019; 68:95-110. [DOI: 10.1002/glia.23705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Maria Grazia Forese
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Marta Pellegatta
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Paolo Canevazzi
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Giorgia S. Gullotta
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Paola Podini
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Cristina Rivellini
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Stefano C. Previtali
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Marco Bacigaluppi
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Angelo Quattrini
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Carla Taveggia
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| |
Collapse
|
18
|
Wei Z, Fei Y, Su W, Chen G. Emerging Role of Schwann Cells in Neuropathic Pain: Receptors, Glial Mediators and Myelination. Front Cell Neurosci 2019; 13:116. [PMID: 30971897 PMCID: PMC6445947 DOI: 10.3389/fncel.2019.00116] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathic pain caused by nerve injury or disease remains a major challenge for modern medicine worldwide. Most of the pathogenic mechanisms underlying neuropathic pain are centered on neuronal mechanisms. Accumulating evidence suggests that non-neuronal cells, especially glial cells, also play active roles in the initiation and resolution of pain. The preponderance of evidence has implicated central nervous system (CNS) glial cells, i.e., microglia and astrocytes, in the control of pain. The role of Schwann cells in neuropathic pain remains poorly understood. Schwann cells, which detect nerve injury and provide the first response, play a critical role in the development and maintenance of neuropathic pain. The cells respond to nerve injury by changing their phenotype, proliferating and interacting with nociceptive neurons by releasing glial mediators (growth factors, cytokines, chemokines, and biologically active small molecules). In addition, receptors expressed in active Schwann cells have the potential to regulate different pain conditions. In this review article, we will provide and discuss emerging evidence by integrating recent advances related to Schwann cells and neuropathic pain.
Collapse
Affiliation(s)
- Zhongya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Fei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenfeng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
19
|
Caillaud M, Richard L, Vallat JM, Desmoulière A, Billet F. Peripheral nerve regeneration and intraneural revascularization. Neural Regen Res 2019; 14:24-33. [PMID: 30531065 PMCID: PMC6263011 DOI: 10.4103/1673-5374.243699] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Peripheral nerves are particularly vulnerable to injuries and are involved in numerous pathologies for which specific treatments are lacking. This review summarizes the pathophysiological features of the most common traumatic nerve injury in humans and the different animal models used in nerve regeneration studies. The current knowledge concerning Wallerian degeneration and nerve regrowth is then described. Finally, the involvement of intraneural vascularization in these processes is addressed. As intraneural vascularization has been poorly studied, histological experiments were carried out from rat sciatic nerves damaged by a glycerol injection. The results, taken together with the data from literature, suggest that revascularization plays an important role in peripheral nerve regeneration and must therefore be studied more carefully.
Collapse
Affiliation(s)
- Martial Caillaud
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, Limoges, France
| | - Laurence Richard
- University Hospital of Limoges, Department of Neurology, "Reference Center for Rare Peripheral Neuropathies", Department of Neurology, Limoges, France
| | - Jean-Michel Vallat
- University Hospital of Limoges, Department of Neurology, "Reference Center for Rare Peripheral Neuropathies", Department of Neurology, Limoges, France
| | - Alexis Desmoulière
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, Limoges, France
| | - Fabrice Billet
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, Limoges, France
| |
Collapse
|
20
|
Guimarães MR, Soares AR, Cunha AM, Esteves M, Borges S, Magalhães R, Moreira PS, Rodrigues AJ, Sousa N, Almeida A, Leite‐Almeida H. Evidence for lack of direct causality between pain and affective disturbances in a rat peripheral neuropathy model. GENES BRAIN AND BEHAVIOR 2018; 18:e12542. [DOI: 10.1111/gbb.12542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/22/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Marco R. Guimarães
- Life and Health Sciences Research Institute, School of Health Sciences University of Minho Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga Portugal
| | - Ana R. Soares
- Life and Health Sciences Research Institute, School of Health Sciences University of Minho Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga Portugal
| | - Ana M. Cunha
- Life and Health Sciences Research Institute, School of Health Sciences University of Minho Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga Portugal
| | - Madalena Esteves
- Life and Health Sciences Research Institute, School of Health Sciences University of Minho Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga Portugal
| | - Sónia Borges
- Life and Health Sciences Research Institute, School of Health Sciences University of Minho Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute, School of Health Sciences University of Minho Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Pedro S. Moreira
- Life and Health Sciences Research Institute, School of Health Sciences University of Minho Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Ana J. Rodrigues
- Life and Health Sciences Research Institute, School of Health Sciences University of Minho Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute, School of Health Sciences University of Minho Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute, School of Health Sciences University of Minho Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga Portugal
| | - Hugo Leite‐Almeida
- Life and Health Sciences Research Institute, School of Health Sciences University of Minho Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga Portugal
| |
Collapse
|
21
|
Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol 2018; 173:102-121. [PMID: 30579784 DOI: 10.1016/j.pneurobio.2018.12.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/19/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
Abstract
Neuroinflammation has positive and negative effects. This review focuses on the roles of macrophage in the PNS. Transection of PNS axons leads to degeneration and clearance of the distal nerve and to changes in the region of the axotomized cell bodies. In both locations, resident and infiltrating macrophages are found. Macrophages enter these areas in response to expression of the chemokine CCL2 acting on the macrophage receptor CCR2. In the distal nerve, macrophages and other phagocytes are involved in clearance of axonal debris, which removes molecules that inhibit nerve regeneration. In the cell body region, macrophage trigger the conditioning lesion response, a process in which neurons increase their regeneration after a prior lesion. In mice in which the genes for CCL2 or CCR2 are deleted, neither macrophage infiltration nor the conditioning lesion response occurs in dorsal root ganglia (DRG). Macrophages exist in different phenotypes depending on their environment. These phenotypes have different effects on axonal clearance and neurite outgrowth. The mechanism by which macrophages affect neuronal cell bodies is still under study. Overexpression of CCL2 in DRG in uninjured animals leads to macrophage accumulation in the ganglia and to an increase in the growth potential of DRG neurons. This increased growth requires activation of neuronal STAT3. In contrast, in acute demyelinating neuropathies, macrophages are involved in stripping myelin from peripheral axons. The molecular mechanisms that trigger macrophage action after trauma and in autoimmune disease are receiving increased attention and should lead to avenues to promote regeneration and protect axonal integrity.
Collapse
Affiliation(s)
- Richard E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106-4975, USA.
| | - Franklin D Echevarria
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106-4975, USA
| |
Collapse
|
22
|
Iyer AK, Jones KJ, Sanders VM, Walker CL. Temporospatial Analysis and New Players in the Immunology of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2018; 19:ijms19020631. [PMID: 29473876 PMCID: PMC5855853 DOI: 10.3390/ijms19020631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive loss of lower and upper motor neurons (MN) leading to muscle weakness, paralysis and eventually death. Although a highly varied etiology results in ALS, it broadly manifests itself as sporadic and familial forms that have evident similarities in clinical symptoms and disease progression. There is a tremendous amount of knowledge on molecular mechanisms leading to loss of MNs and neuromuscular junctions (NMJ) as major determinants of disease onset, severity and progression in ALS. Specifically, two main opposing hypotheses, the dying forward and dying back phenomena, exist to account for NMJ denervation. The former hypothesis proposes that the earliest degeneration occurs at the central MNs and proceeds to the NMJ, whereas in the latter, the peripheral NMJ is the site of precipitating degeneration progressing backwards to the MN cell body. A large body of literature strongly indicates a role for the immune system in disease onset and progression via regulatory involvement at the level of both the central and peripheral nervous systems (CNS and PNS). In this review, we discuss the earliest reported immune responses with an emphasis on newly identified immune players in mutant superoxide dismutase 1 (mSOD1) transgenic mice, the gold standard mouse model for ALS.
Collapse
Affiliation(s)
- Abhirami K Iyer
- Anatomy and Cell Biology Department, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA.
| | - Kathryn J Jones
- Anatomy and Cell Biology Department, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA.
| | - Virginia M Sanders
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Chandler L Walker
- Anatomy and Cell Biology Department, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA.
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN 46202, USA.
| |
Collapse
|
23
|
Kwiatkowski K, Mika J. The importance of chemokines in neuropathic pain development and opioid analgesic potency. Pharmacol Rep 2018; 70:821-830. [PMID: 30122168 DOI: 10.1016/j.pharep.2018.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022]
Abstract
The treatment of neuropathic pain resulting from nervous system malfunction remains a challenging problem for doctors and scientists. The lower effectiveness of conventionally used analgesics in neuropathic pain is associated with complex and not fully understood mechanisms of its development. Undoubtedly, interactions between immune and nervous system are crucial for maintenance of painful neuropathy. Nerve injury induces glial cell activation and thus enhances the production of numerous pronociceptive factors by these cells, including interleukins and chemokines. Increased release of those factors reduces the analgesic efficacy of opioids, which is significantly lower in neuropathic pain than in other painful conditions. This review discusses the role of chemokines from all four subfamilies as essential mediators of neuron-glia interactions occurring under neuropathic pain conditions. Based on available data, we analyse the influence of chemokines on opioid properties. Finally, we identify new direct and indirect pharmacological targets whose modulation may result in effective therapy of neuropathic pain, possibly in combination with opioids.
Collapse
Affiliation(s)
- Klaudia Kwiatkowski
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Kraków, Poland.
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Kraków, Poland.
| |
Collapse
|
24
|
Hossain MZ, Unno S, Ando H, Masuda Y, Kitagawa J. Neuron-Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region. Int J Mol Sci 2017; 18:ijms18102051. [PMID: 28954391 PMCID: PMC5666733 DOI: 10.3390/ijms18102051] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/06/2023] Open
Abstract
Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate–glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron–glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Yuji Masuda
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|
25
|
Neutrophils Are Critical for Myelin Removal in a Peripheral Nerve Injury Model of Wallerian Degeneration. J Neurosci 2017; 37:10258-10277. [PMID: 28912156 DOI: 10.1523/jneurosci.2085-17.2017] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/06/2017] [Accepted: 09/09/2017] [Indexed: 12/31/2022] Open
Abstract
Wallerian degeneration (WD) is considered an essential preparatory stage to the process of axonal regeneration. In the peripheral nervous system, infiltrating monocyte-derived macrophages, which use the chemokine receptor CCR2 to gain entry to injured tissues from the bloodstream, are purportedly necessary for efficient WD. However, our laboratory has previously reported that myelin clearance in the injured sciatic nerve proceeds unhindered in the Ccr2-/- mouse model. Here, we extensively characterize WD in male Ccr2-/- mice and identify a compensatory mechanism of WD that is facilitated primarily by neutrophils. In response to the loss of CCR2, injured Ccr2-/- sciatic nerves demonstrate prolonged expression of neutrophil chemokines, a concomitant extended increase in the accumulation of neutrophils in the nerve, and elevated phagocytosis by neutrophils. Neutrophil depletion substantially inhibits myelin clearance after nerve injury in both male WT and Ccr2-/- mice, highlighting a novel role for these cells in peripheral nerve degeneration that spans genotypes.SIGNIFICANCE STATEMENT The accepted view in the basic and clinical neurosciences is that the clearance of axonal and myelin debris after a nerve injury is directed primarily by inflammatory CCR2+ macrophages. However, we demonstrate that this clearance is nearly identical in WT and Ccr2-/- mice, and that neutrophils replace CCR2+ macrophages as the primary phagocytic cell. We find that neutrophils play a major role in myelin clearance not only in Ccr2-/- mice but also in WT mice, highlighting their necessity during nerve degeneration in the peripheral nervous system. These degeneration studies may propel improvements in nerve regeneration and draw critical parallels to mechanisms of nerve degeneration and regeneration in the CNS and in the context of peripheral neuropathies.
Collapse
|
26
|
Analysis of biological functional networks during sciatic nerve repair and regeneration. Mol Cell Biochem 2017; 439:141-150. [PMID: 28780753 DOI: 10.1007/s11010-017-3143-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/02/2017] [Indexed: 12/24/2022]
Abstract
Peripheral nerve injury is a common disease with a low recovery rate. A better understanding of the molecular changes underlying peripheral nerve injury and regeneration may contribute to the development of novel therapies for the treatment of peripheral nerve injury. In the current study, we analyzed differentially expressed genes in rat sciatic nerve stumps at 1, 4, 7, and 14 days post nerve crush and built biological functional networks at each time point. Our outcomes suggested that "Neurological Disease" involved networks were significant at 1 day post nerve crush, "Cellular Assembly and Organization" involved networks were important at 4 and 7 days post nerve crush, while "Tissue Morphology" involved networks were important at 14 days post nerve crush. We also investigated the temporal expression patterns as well as central genes of these critical networks. Taken together, our study revealed genetic networks and gene-gene interactions in the injured nerve stumps and thus might enhance our understanding of peripheral nerve regeneration.
Collapse
|
27
|
Abstract
Injuries to the peripheral nervous system are major sources of disability and often result in painful neuropathies or the impairment of muscle movement and/or normal sensations. For gaps smaller than 10 mm in rodents, nearly normal functional recovery can be achieved; for longer gaps, however, there are challenges that have remained insurmountable. The current clinical gold standard used to bridge long, nonhealing nerve gaps, the autologous nerve graft (autograft), has several drawbacks. Despite best efforts, engineering an alternative "nerve bridge" for peripheral nerve repair remains elusive; hence, there is a compelling need to design new approaches that match or exceed the performance of autografts across critically sized nerve gaps. Here an immunomodulatory approach to stimulating nerve repair in a nerve-guidance scaffold was used to explore the regenerative effect of reparative monocyte recruitment. Early modulation of the immune environment at the injury site via fractalkine delivery resulted in a dramatic increase in regeneration as evident from histological and electrophysiological analyses. This study suggests that biasing the infiltrating inflammatory/immune cellular milieu after injury toward a proregenerative population creates a permissive environment for repair. This approach is a shift from the current modes of clinical and laboratory methods for nerve repair, which potentially opens an alternative paradigm to stimulate endogenous peripheral nerve repair.
Collapse
|
28
|
The Proliferation Enhancing Effects of Salidroside on Schwann Cells In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4673289. [PMID: 28680451 PMCID: PMC5478829 DOI: 10.1155/2017/4673289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 01/26/2023]
Abstract
Derived from Rhodiola rosea L., which is a popular plant in Eastern Europe and Asia, salidroside has pharmacological properties including antiviral, anticancer, hepatoprotective, antidiabetic, and antioxidative effects. Recent studies show that salidroside has neurotrophic and neuroprotective effects. However, the effect of salidroside on Schwann cells (SCs) and the underlying mechanisms of the salidroside-induced neurotrophin secretion have seldom been studied. In this study, the effect of salidroside on the survival, proliferation, and gene expression of Schwann cells lineage (RSC96) was studied through the examinations of the cell viability, proliferation, morphology, and expression of neurotrophic factor related genes including BDNF, GDNF, and CDNF at 2, 4, and 6 days, respectively. These results showed that salidroside significantly enhanced survival and proliferation of SCs. The underlying mechanism might involve that salidroside affected SCs growth through the modulation of several neurotrophic factors including BDNF, GDNF, and CDNF. As for the concentration, 0.4 mM, 0.2 mM, and 0.1 mM of salidroside were recommended, especially 0.2 mM. This investigation indicates that salidroside is capable of enhancing SCs survival and function in vitro, which highlights the possibility that salidroside as a drug agent to promote nerve regeneration in cellular nerve scaffold through salidroside-induced neurotrophin secretion in SCs.
Collapse
|
29
|
Zuo W, Wu H, Zhang K, Lv P, Xu F, Jiang W, Zheng L, Zhao J. Baicalin promotes the viability of Schwann cells in vitro by regulating neurotrophic factors. Exp Ther Med 2017; 14:507-514. [PMID: 28672960 DOI: 10.3892/etm.2017.4524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/14/2017] [Indexed: 01/26/2023] Open
Abstract
The proliferation and migration of Schwann cells (SCs) are key events in the process of peripheral nerve repair. This is required to promote the growth of SCs and is a challenge during the treatment of peripheral nerve injury. Baicalin is a natural herb-derived flavonoid compound, which has been reported to possess neuroprotective effects on rats with permanent brain ischemia and neuronal differentiation of neural stem cells. The association of baicalin with neuroprotection leads to the suggestion that baicalin may exert effects on the growth of SCs. In the present study, the effects of baicalin on SCs of RSC96 were investigated. RSC96 SCs were treated with various concentrations of baicalin (0, 5, 10 or 20 µM) for 2, 4 and 6 days. Cell attachment, viability and gene expression were monitored via the MTT assay and reverse transcription-quantitative polymerase chain reaction. The gene expression levels of several neurotrophic factors, such as glial cell-derived neurotrophic factor, brain-derived neurotrophic factor and ciliary neurotrophic factor, which are considered important factors in the process of never cell regeneration, were detected. The results indicated that baicalin was able to promote the viability of RSC96 SCs in a dose-dependent manner and the concentration of 20 µM of baicalin exhibited the greatest cell viability and gene expression of the studied neurotrophic factors. The present findings suggested that baicalin likely affects SCs metabolism, through modulating the expression of neurotrophic factors. To conclude, the present study indicates that baicalin may be potential therapeutic agent for treating peripheral nerve regeneration.
Collapse
Affiliation(s)
- Wenpu Zuo
- Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Huayu Wu
- Department of Cell Biology and Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Kun Zhang
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Peizhen Lv
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fuben Xu
- Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of Regenerative Medicine of Guangxi High School, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Weizhe Jiang
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Zheng
- Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of Regenerative Medicine of Guangxi High School, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of Regenerative Medicine of Guangxi High School, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
30
|
Mogha A, Harty BL, Carlin D, Joseph J, Sanchez NE, Suter U, Piao X, Cavalli V, Monk KR. Gpr126/Adgrg6 Has Schwann Cell Autonomous and Nonautonomous Functions in Peripheral Nerve Injury and Repair. J Neurosci 2016; 36:12351-12367. [PMID: 27927955 PMCID: PMC5148226 DOI: 10.1523/jneurosci.3854-15.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 09/25/2016] [Accepted: 10/12/2016] [Indexed: 11/21/2022] Open
Abstract
Schwann cells (SCs) are essential for proper peripheral nerve development and repair, although the mechanisms regulating these processes are incompletely understood. We previously showed that the adhesion G protein-coupled receptor Gpr126/Adgrg6 is essential for SC development and myelination. Interestingly, the expression of Gpr126 is maintained in adult SCs, suggestive of a function in the mature nerve. We therefore investigated the role of Gpr126 in nerve repair by studying an inducible SC-specific Gpr126 knock-out mouse model. Here, we show that remyelination is severely delayed after nerve-crush injury. Moreover, we also observe noncell-autonomous defects in macrophage recruitment and axon regeneration in injured nerves following loss of Gpr126 in SCs. This work demonstrates that Gpr126 has critical SC-autonomous and SC-nonautonomous functions in remyelination and peripheral nerve repair. SIGNIFICANCE STATEMENT Lack of robust remyelination represents one of the major barriers to recovery of neurological functions in disease or following injury in many disorders of the nervous system. Here we show that the adhesion class G protein-coupled receptor (GPCR) Gpr126/Adgrg6 is required for remyelination, macrophage recruitment, and axon regeneration following nerve injury. At least 30% of all approved drugs target GPCRs; thus, Gpr126 represents an attractive potential target to stimulate repair in myelin disease or following nerve injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, Zurich, ETH Zurich, CH-8093 Zurich, Switzerland, and
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Valeria Cavalli
- Department of Neuroscience, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kelly R Monk
- Department of Developmental Biology,
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
31
|
Zuo W, Xu F, Zhang K, Zheng L, Zhao J. Proliferation-enhancing effects of gastrodin on RSC96 Schwann cells by regulating ERK1/2 and PI3K signaling pathways. Biomed Pharmacother 2016; 84:747-753. [PMID: 27710899 DOI: 10.1016/j.biopha.2016.09.106] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022] Open
Abstract
The proliferation and migration of Schwann cells (SCs) are essential in the process of peripheral nerve repair. A large amount of studies focused on the promotion of the growth of SCs for cell based therapy. Gastrodin (GAS), the main constituent of a Chinese traditional herbal medicine named Gastrodia elata Blume, has been reported to be associated with neuroprotective properties. Besides, GAS activated MAPK and PI3K signaling pathways which are often involved in growth of nerve cells were also reported. Based on the hypothesis that GAS may have an effect on SCs growth, we studied the effect of GAS on rat RSC96 Schwann cells (SCs) and further explored the underlying mechanism. Various concentration of GAS (0μM, 50μM, 100μM, and 200μM) was used for treatment of RSC96 SCs, with the cell proliferation and gene expression of several neurotrophic factors to be detected. Regulation of MAPK and PI3K signaling pathways were assayed by detecting phosphorylation of ERK1/2 and Akt. The results showed that GAS could effectively promote proliferation of RSC96 SCs in a dose- and time-dependent manner. The best performance was obtained at the concentration of 200μM. Exploration of the underlying mechanism showed that GAS probably affects SCs metabolism through inhibiting ERK1/2 phosphorylation and activating Akt phosphorylation in RSC96 SCs. This study may provide reference for its application in treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Wenpu Zuo
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Fuben Xu
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi, Nanning 530003, Guangxi, China
| | - Kun Zhang
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Li Zheng
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning 530021, Guangxi, China; Key Laboratory of Regenerative Medicine of Guangxi High School, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Jinmin Zhao
- Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China; Key Laboratory of Regenerative Medicine of Guangxi High School, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
32
|
Scheib JL, Höke A. An attenuated immune response by Schwann cells and macrophages inhibits nerve regeneration in aged rats. Neurobiol Aging 2016; 45:1-9. [PMID: 27459920 DOI: 10.1016/j.neurobiolaging.2016.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
Abstract
Although peripheral nerves are capable of regeneration, advanced age decreases the potential for functional recovery after injury. The cellular mechanisms for this are not currently understood. Here, we performed sciatic nerve grafting with young (2 months old) and aged (18 months old) Brown-Norway male rats, in which 1 cm nerve grafts from young or aged rats were sutured into nerves of young or aged rats. Axons were allowed to regenerate until the nerve grafts and distal nerves were harvested at 1, 3, and 7 days and 2 and 6 weeks. At 6 weeks, our data suggested that young nerve grafts supported regeneration better than aged nerve grafts. In addition, myelin debris clearance was inhibited in young nerves when grafted into aged rats, but clearance was faster when aged nerves were grafted into young rats. Further analysis revealed that aged macrophages have delayed migration into injured nerve, and macrophages and Schwann cells from aged rats were less phagocytic for myelin debris in vitro. To understand these impairments, expression levels of pro- and anti-inflammatory cytokines were analyzed at 1 day after injury. Based on these levels, there was not a clear polarization to either an M1 or M2 phenotype; however, expression levels of IL-6, IL-10, CCL2 (MCP1), and Arg-1 were decreased in aged nerves. Taken together, both macrophages and Schwann cells had attenuated responses to nerve injury in aged rats, leading to inefficient clearance of debris and impaired axonal regeneration.
Collapse
Affiliation(s)
- Jami L Scheib
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ahmet Höke
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Role of IL-10 in Resolution of Inflammation and Functional Recovery after Peripheral Nerve Injury. J Neurosci 2016; 35:16431-42. [PMID: 26674868 DOI: 10.1523/jneurosci.2119-15.2015] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED A rapid proinflammatory response after peripheral nerve injury is required for clearance of tissue debris (Wallerian degeneration) and effective regeneration. Unlike the CNS, this response is rapidly terminated in peripheral nerves starting between 2 and 3 weeks after crush injury. We examined the expression and role of the anti-inflammatory cytokine IL-10 in the resolution of inflammation and regeneration after sciatic nerve crush injury in mice. IL-10 mRNA increased over the first 7 d after injury, whereas at the protein level, immunofluorescence labeling showed IL-10(+) cells increased almost 3-fold in the first 3 weeks, with macrophages being the major cell type expressing IL-10. The role of IL-10 in nerve injury was assessed using IL-10-null mice. Increased numbers of macrophages were found in the distal segment of IL-10-null mice at early (3 d) and late (14 and 21 d) time points, suggesting that IL-10 may play a role in controlling the early influx and the later efflux of macrophages out of the nerve. A chemokine/cytokine PCR array of the nerve 24 h after crush showed a 2- to 4-fold increase in the expression of 10 proinflammatory mediators in IL-10(-/-) mice. In addition, myelin phagocytosis in vitro by LPS stimulated bone-marrow-derived macrophages from IL-10-null mice failed to downregulate expression of proinflammatory chemokines/cytokines, suggesting that IL-10 is required for the myelin-phagocytosis-induced shift of macrophages from proinflammatory to anti-inflammatory/pro-repair phenotype. The failure to switch off inflammation in IL-10-null mice was accompanied by impaired axon regeneration and poor recovery of motor and sensory function. SIGNIFICANCE STATEMENT An appropriately regulated inflammatory response after peripheral nerve injury is essential for axon regeneration and recovery. The aim of this study was to investigate the expression and role of the anti-inflammatory cytokine IL-10 in terminating inflammation after sciatic nerve crush injury and promoting regeneration. IL-10 is rapidly expressed by macrophages after crush injury. Its role was assessed using IL-10-null mice, which showed that IL-10 plays a role in controlling the early influx and the later efflux of macrophages out of the injured nerve, reduces the expression of proinflammatory chemokines and cytokines, and is required for myelin-phagocytosis-induced shift of macrophages from proinflammatory to anti-inflammatory. Furthermore, lack of IL-10 leads to impaired axon regeneration and poor recovery of motor and sensory function.
Collapse
|
34
|
Zhang H, Li Y, de Carvalho-Barbosa M, Kavelaars A, Heijnen CJ, Albrecht PJ, Dougherty PM. Dorsal Root Ganglion Infiltration by Macrophages Contributes to Paclitaxel Chemotherapy-Induced Peripheral Neuropathy. THE JOURNAL OF PAIN 2016; 17:775-86. [PMID: 26979998 DOI: 10.1016/j.jpain.2016.02.011] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Chemotherapy-induced peripheral neuropathy (CIPN) is a disruptive and persistent side effect of cancer treatment with paclitaxel. Recent reports showed that paclitaxel treatment results in the activation of Toll-like receptor 4 (TLR4) signaling and increased expression of monocyte chemoattractant protein 1 (MCP-1) in dorsal root ganglion cells. In this study, we sought to determine whether an important consequence of this signaling and also a key step in the CIPN phenotype was the recruitment and infiltration of macrophages into dorsal root ganglia (DRG). Here, we show that macrophage infiltration does occur in a time course that matches the onset of the behavioral CIPN phenotype in Sprague-Dawley rats. Moreover, depletion of macrophages by systemic administration of liposome-encapsulated clodronate (clophosome) partially reversed behavioral signs of paclitaxel-induced CIPN as well as reduced tumor necrosius factor α expression in DRG. Intrathecal injection of MCP-1 neutralizing antibodies reduced paclitaxel-induced macrophage recruitment into the DRG and also blocked the behavioral signs of CIPN. Intrathecal treatment with the TLR4 antagonist lipopolysaccharide-RS (LPS-RS) blocked mechanical hypersensitivity, reduced MCP-1 expression, and blocked the infiltration of macrophages into the DRG in paclitaxel-treated rats. The inhibition of macrophage infiltration into DRG after paclitaxel treatment with clodronate or LPS-RS prevented the loss of intraepidermal nerve fibers (IENFs) observed after paclitaxel treatment alone. These results are the first to indicate a mechanistic link such that activation of TLR4 by paclitaxel leads to increased expression of MCP-1 by DRG neurons resulting in macrophage infiltration to the DRG that express inflammatory cytokines and the combination of these events results in IENF loss and the development of behavioral signs of CIPN. PERSPECTIVE This paper shows that activation of innate immunity by paclitaxel results in a sequence of signaling events that results in the infiltration of the dorsal root ganglia by activated macrophages. Macrophages appear to drive the development of behavioral hypersensitivity and the loss of distal epidermal nerve fibers, and hence play an important role in the mechanism of paclitaxel-related neuropathy.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Anesthesia and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Yan Li
- Department of Anesthesia and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Marianna de Carvalho-Barbosa
- Department of Anesthesia and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Annemieke Kavelaars
- Department of Symptom Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Cobi J Heijnen
- Department of Symptom Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Phillip J Albrecht
- Center for Neuropharmacology & Neuroscience, Albany Medical College, Albany, New York
| | - Patrick M Dougherty
- Department of Anesthesia and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
35
|
Yi S, Zhang H, Gong L, Wu J, Zha G, Zhou S, Gu X, Yu B. Deep Sequencing and Bioinformatic Analysis of Lesioned Sciatic Nerves after Crush Injury. PLoS One 2015; 10:e0143491. [PMID: 26629691 PMCID: PMC4668002 DOI: 10.1371/journal.pone.0143491] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 11/05/2015] [Indexed: 11/18/2022] Open
Abstract
The peripheral nerve system has an intrinsic regenerative capacity in response to traumatic injury. To better understand the molecular events occurring after peripheral nerve injury, in the current study, a rat model of sciatic nerve crush injury was used. Injured nerves harvested at 0, 1, 4, 7, and 14 days post injury were subjected to deep RNA sequencing for examining global gene expression changes. According to the temporally differential expression patterns of a huge number of genes, 3 distinct phases were defined within the post-injury period of 14 days: the acute, sub-acute, and post-acute stages. Each stage showed its own characteristics of gene expression, which were associated with different categories of diseases and biological functions and canonical pathways. Ingenuity pathway analysis revealed that genes involved in inflammation and immune response were significantly up-regulated in the acute phase, and genes involved in cellular movement, development, and morphology were up-regulated in the sub-acute stage, while the up-regulated genes in the post-acute phase were mainly involved in lipid metabolism, cytoskeleton reorganization, and nerve regeneration. All the data obtained in the current study may help to elucidate the molecular mechanisms underlying peripheral nerve regeneration from the perspective of gene regulation, and to identify potential therapeutic targets for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Sheng Yi
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Honghong Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Leilei Gong
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jiancheng Wu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Guangbin Zha
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Bin Yu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- * E-mail:
| |
Collapse
|
36
|
Niemi JP, DeFrancesco-Lisowitz A, Cregg JM, Howarth M, Zigmond RE. Overexpression of the monocyte chemokine CCL2 in dorsal root ganglion neurons causes a conditioning-like increase in neurite outgrowth and does so via a STAT3 dependent mechanism. Exp Neurol 2015; 275 Pt 1:25-37. [PMID: 26431741 DOI: 10.1016/j.expneurol.2015.09.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/08/2015] [Accepted: 09/27/2015] [Indexed: 12/24/2022]
Abstract
Neuroinflammation plays a critical role in the regeneration of peripheral nerves following axotomy. An injury to the sciatic nerve leads to significant macrophage accumulation in the L5 DRG, an effect not seen when the dorsal root is injured. We recently demonstrated that this accumulation around axotomized cell bodies is necessary for a peripheral conditioning lesion response to occur. Here we asked whether overexpression of the monocyte chemokine CCL2 specifically in DRG neurons of uninjured mice is sufficient to cause macrophage accumulation and to enhance regeneration or whether other injury-derived signals are required. AAV5-EF1α-CCL2 was injected intrathecally, and this injection led to a time-dependent increase in CCL2 mRNA expression and macrophage accumulation in L5 DRG, with a maximal response at 3 weeks post-injection. These changes led to a conditioning-like increase in neurite outgrowth in DRG explant and dissociated cell cultures. This increase in regeneration was dependent upon CCL2 acting through its primary receptor CCR2. When CCL2 was overexpressed in CCR2-/- mice, macrophage accumulation and enhanced regeneration were not observed. To address the mechanism by which CCL2 overexpression enhances regeneration, we tested for elevated expression of regeneration-associated genes in these animals. Surprisingly, we found that CCL2 overexpression led to a selective increase in LIF mRNA and neuronal phosphorylated STAT3 (pSTAT3) in L5 DRGs, with no change in expression seen in other RAGs such as GAP-43. Blockade of STAT3 phosphorylation by each of two different inhibitors prevented the increase in neurite outgrowth. Thus, CCL2 overexpression is sufficient to induce macrophage accumulation in uninjured L5 DRGs and increase the regenerative capacity of DRG neurons via a STAT3-dependent mechanism.
Collapse
Affiliation(s)
- Jon P Niemi
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | | | - Jared M Cregg
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Madeline Howarth
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
37
|
Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol 2015; 130:605-18. [PMID: 26419777 DOI: 10.1007/s00401-015-1482-4] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 01/08/2023]
Abstract
The peripheral nervous system (PNS) has remarkable regenerative abilities after injury. Successful PNS regeneration relies on both injured axons and non-neuronal cells, including Schwann cells and immune cells. Macrophages are the most notable immune cells that play key roles in PNS injury and repair. Upon peripheral nerve injury, a large number of macrophages are accumulated at the injury sites, where they not only contribute to Wallerian degeneration, but also are educated by the local microenvironment and polarized to an anti-inflammatory phenotype (M2), thus contributing to axonal regeneration. Significant progress has been made in understanding how macrophages are educated and polarized in the injured microenvironment as well as how they contribute to axonal regeneration. Following the discussion on the main properties of macrophages and their phenotypes, in this review, we will summarize the current knowledge regarding the mechanisms of macrophage infiltration after PNS injury. Moreover, we will discuss the recent findings elucidating how macrophages are polarized to M2 phenotype in the injured PNS microenvironment, as well as the role and underlying mechanisms of macrophages in peripheral nerve injury, Wallerian degeneration and regeneration. Furthermore, we will highlight the potential application by targeting macrophages in treating peripheral nerve injury and peripheral neuropathies.
Collapse
|
38
|
DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 2015; 302:174-203. [PMID: 25242643 PMCID: PMC4366367 DOI: 10.1016/j.neuroscience.2014.09.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/25/2022]
Abstract
Peripheral nerves regenerate following injury due to the effective activation of the intrinsic growth capacity of the neurons and the formation of a permissive pathway for outgrowth due to Wallerian degeneration (WD). WD and subsequent regeneration are significantly influenced by various immune cells and the cytokines they secrete. Although macrophages have long been known to play a vital role in the degenerative process, recent work has pointed to their importance in influencing the regenerative capacity of peripheral neurons. In this review, we focus on the various immune cells, cytokines, and chemokines that make regeneration possible in the peripheral nervous system, with specific attention placed on the role macrophages play in this process.
Collapse
Affiliation(s)
| | - J A Lindborg
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - J P Niemi
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - R E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| |
Collapse
|
39
|
Van Steenwinckel J, Auvynet C, Sapienza A, Reaux-Le Goazigo A, Combadière C, Melik Parsadaniantz S. Stromal cell-derived CCL2 drives neuropathic pain states through myeloid cell infiltration in injured nerve. Brain Behav Immun 2015; 45:198-210. [PMID: 25449579 DOI: 10.1016/j.bbi.2014.10.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/18/2014] [Accepted: 10/18/2014] [Indexed: 12/24/2022] Open
Abstract
Neuropathic pain resulting from peripheral nerve injury involves many persistent neuroinflammatory processes including inflammatory chemokines that control leukocyte trafficking and activate resident cells. Several studies have shown that CCL2 chemokine, a potent attractant of monocytes, and its cognate receptor, CCR2, play a critical role in regulating nociceptive processes during neuropathic pain. However, the role of CCL2 in peripheral leukocyte infiltration-associated neuropathic pain remains poorly understood. In particular, the contribution of individual CCL2-expressing cell populations (i.e. stromal and leukocytes) to immune cell recruitment into the injured nerve has not been established. Here, in preclinical model of peripheral neuropathic pain (i.e. chronic constriction injury of the sciatic nerve), we have demonstrated that, CCL2 content was increased specifically in nerve fibers. This upregulation of CCL2 correlated with local monocyte/macrophage infiltration and pain processing. Furthermore, sciatic intraneural microinjection of CCL2 in naïve animals triggered long-lasting pain behavior associated with local monocyte/macrophage recruitment. Using a specific CCR2 antagonist and mice with a CCL2 genetic deletion, we have also established that the CCL2/CCR2 axis drives monocyte/macrophage infiltration and pain hypersensitivity in the CCI model. Finally, specific deletion of CCL2 in stromal or immune cells respectively using irradiated bone marrow-chimeric CCI mice demonstrated that stromal cell-derived CCL2 (in contrast to CCL2 immune cell-derived) tightly controls monocyte/macrophage recruitment into the lesion and plays a major role in the development of neuropathic pain. These findings demonstrate that in chronic pain states, CCL2 expressed by sciatic nerve cells predominantly drove local neuro-immune interactions and pain-related behavior through CCR2 signaling.
Collapse
Affiliation(s)
- Juliette Van Steenwinckel
- UMR 1141 INSERM, Hôpital Robert Debré, F-75019, Paris, France; Université Paris Diderot, Faculté de Médecine, F-75019, Paris, France; PremUP, 75014 Paris, France
| | - Constance Auvynet
- Sorbonne Universités, UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris). 91 Bd de l'hôpital, F-75013, Paris, France; Inserm, U1135, CIMI-Paris, 91 Bd de l'hôpital, F-75013, Paris, France; CNRS, ERL 8255, CIMI-Paris, 91 Bd de l'hôpital, F-75013, Paris, France
| | - Anaïs Sapienza
- Sorbonne Universités, UPMC Université Paris 06, Institut de la vision, équipe S12, 17 rue Moreau, F-75012, Paris, France; UMR_S 968 INSERM, 17 rue Moreau, F-75012, Paris, France; UMR 7210 CNRS, 17 rue Moreau, F-75012, Paris, France
| | - Annabelle Reaux-Le Goazigo
- Sorbonne Universités, UPMC Université Paris 06, Institut de la vision, équipe S12, 17 rue Moreau, F-75012, Paris, France; UMR_S 968 INSERM, 17 rue Moreau, F-75012, Paris, France; UMR 7210 CNRS, 17 rue Moreau, F-75012, Paris, France
| | - Christophe Combadière
- Sorbonne Universités, UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris). 91 Bd de l'hôpital, F-75013, Paris, France; Inserm, U1135, CIMI-Paris, 91 Bd de l'hôpital, F-75013, Paris, France; CNRS, ERL 8255, CIMI-Paris, 91 Bd de l'hôpital, F-75013, Paris, France
| | - Stéphane Melik Parsadaniantz
- Sorbonne Universités, UPMC Université Paris 06, Institut de la vision, équipe S12, 17 rue Moreau, F-75012, Paris, France; UMR_S 968 INSERM, 17 rue Moreau, F-75012, Paris, France; UMR 7210 CNRS, 17 rue Moreau, F-75012, Paris, France.
| |
Collapse
|
40
|
CXCL10, MCP-1, and Other Immunologic Markers Involved in Neural Leprosy. Appl Immunohistochem Mol Morphol 2015; 23:220-9. [DOI: 10.1097/pai.0000000000000074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
Zahr NM, Alt C, Mayer D, Rohlfing T, Manning-Bog A, Luong R, Sullivan EV, Pfefferbaum A. Associations between in vivo neuroimaging and postmortem brain cytokine markers in a rodent model of Wernicke's encephalopathy. Exp Neurol 2014; 261:109-19. [PMID: 24973622 PMCID: PMC4194214 DOI: 10.1016/j.expneurol.2014.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 02/03/2023]
Abstract
Thiamine (vitamin B1) deficiency, associated with a variety of conditions, including chronic alcoholism and bariatric surgery for morbid obesity, can result in the neurological disorder Wernicke's encephalopathy (WE). Recent work building upon early observations in animal models of thiamine deficiency has demonstrated an inflammatory component to the neuropathology observed in thiamine deficiency. The present, multilevel study including in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS) and postmortem quantification of chemokine and cytokine proteins sought to determine whether a combination of these in vivo neuroimaging tools could be used to characterize an in vivo MR signature for neuroinflammation. Thiamine deficiency for 12days was used to model neuroinflammation; glucose loading in thiamine deficiency was used to accelerate neurodegeneration. Among 38 animals with regional brain tissue assayed postmortem for cytokine/chemokine protein levels, three groups of rats (controls+glucose, n=6; pyrithiamine+saline, n=5; pyrithiamine+glucose, n=13) underwent MRI/MRS at baseline (time 1), after 12days of treatment (time 2), and 3h after challenge (glucose or saline, time 3). In the thalamus of glucose-challenged, thiamine deficient animals, correlations between in vivo measures of pathology (lower levels of N-acetyle aspartate and higher levels of lactate) and postmortem levels of monocyte chemotactic protein-1 (MCP-1, also known as chemokine ligand 2, CCL2) support a role for this chemokine in thiamine deficiency-related neurodegeneration, but do not provide a unique in vivo signature for neuroinflammation.
Collapse
Affiliation(s)
- Natalie M Zahr
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA; Neuroscience Program, SRI International, Menlo Park, CA 94025, USA.
| | - Carsten Alt
- Immunology Program, SRI International, Menlo Park, CA 94025, USA; Palo Alto Institute for Research and Education, Palo Alto, CA 94304, USA
| | - Dirk Mayer
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA; Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Torsten Rohlfing
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| | - Amy Manning-Bog
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| | - Richard Luong
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R321, Stanford, CA 94305, USA
| | - Edith V Sullivan
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA
| | - Adolf Pfefferbaum
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA; Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| |
Collapse
|
42
|
Hayward JH, Lee SJ. A Decade of Research on TLR2 Discovering Its Pivotal Role in Glial Activation and Neuroinflammation in Neurodegenerative Diseases. Exp Neurobiol 2014; 23:138-47. [PMID: 24963278 PMCID: PMC4065827 DOI: 10.5607/en.2014.23.2.138] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) belong to a class of pattern recognition receptors that play an important role in host defense against pathogens. TLRs on innate immune cells recognize a wide variety of pathogen-associated molecular patterns (PAMPs) and trigger innate immune responses. Later, it was revealed that the same receptors are also utilized to detect tissue damage to trigger inflammatory responses in the context of non-infectious inflammation. In the nervous system, different members of the TLR family are expressed on glial cells including astrocytes, microglia, oligodendrocytes, and Schwann cells, implicating their putative role in innate/inflammatory responses in the nervous system. In this regard, we have investigated the function of TLRs in neuroinflammation. We discovered that a specific member of the TLR family, namely TLR2, functions as a master sentry receptor to detect neuronal cell death and tissue damage in many different neurological conditions including nerve transection injury, intracerebral hemorrhage, traumatic brain injury, and hippocampal excitotoxicity. In this review, we have summarized our research for the last decade on the role of TLR2 in neuroinflammation in the above neurological disorders. Our data suggest that TLR2 can be an efficient target to regulate unwanted inflammatory response in these neurological conditions.
Collapse
Affiliation(s)
- Jin Hee Hayward
- Department of Neuroscience and Physiology of School of Dentistry, and Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul 110-749, Korea
| | - Sung Joong Lee
- Department of Neuroscience and Physiology of School of Dentistry, and Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul 110-749, Korea
| |
Collapse
|
43
|
Tzekova N, Heinen A, Küry P. Molecules involved in the crosstalk between immune- and peripheral nerve Schwann cells. J Clin Immunol 2014; 34 Suppl 1:S86-104. [PMID: 24740512 DOI: 10.1007/s10875-014-0015-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022]
Abstract
Schwann cells are the myelinating glial cells of the peripheral nervous system and establish myelin sheaths on large caliber axons in order to accelerate their electrical signal propagation. Apart from this well described function, these cells revealed to exhibit a high degree of differentiation plasticity as they were shown to re- and dedifferentiate upon injury and disease as well as to actively participate in regenerative- and inflammatory processes. This review focuses on the crosstalk between glial- and immune cells observed in many peripheral nerve pathologies and summarizes functional evidences of molecules, regulators and factors involved in this process. We summarize data on Schwann cell's role presenting antigens, on interactions with the complement system, on Schwann cell surface molecules/receptors and on secreted factors involved in immune cell interactions or para-/autocrine signaling events, thus strengthening the view for a broader (patho) physiological role of this cell lineage.
Collapse
Affiliation(s)
- Nevena Tzekova
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, D-40225, Düsseldorf, Germany
| | | | | |
Collapse
|
44
|
Manjavachi MN, Costa R, Quintão NL, Calixto JB. The role of keratinocyte-derived chemokine (KC) on hyperalgesia caused by peripheral nerve injury in mice. Neuropharmacology 2014; 79:17-27. [DOI: 10.1016/j.neuropharm.2013.10.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/03/2013] [Accepted: 10/22/2013] [Indexed: 01/20/2023]
|
45
|
Dawes JM, McMahon SB. Chemokines as peripheral pain mediators. Neurosci Lett 2013; 557 Pt A:1-8. [PMID: 24120432 DOI: 10.1016/j.neulet.2013.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/25/2013] [Accepted: 10/01/2013] [Indexed: 11/30/2022]
Abstract
Multiple lines of evidence support the notion that much if not most chronic pain is dependent on on-going peripheral activity in nociceptors. This is not to say that central changes are unimportant, only that much of the central change is supported by a peripheral drive. This begs the question of what causes this peripheral drive. In some instances, particularly in association with peripheral nerve injury, nociceptors may become spontaneously active because of alterations in ion channel function or expression. But in most cases nociceptor activity arises because of the actions of peripheral mediators released by injured or damaged tissue. Some of these mediators are well known, such as the prostanoids. Others have more recently been identified, such as nerve growth factor (NGF). However, the limited efficacy of existing analgesic therapies strongly suggests that other important pain mediators exist. Here we discuss the evidence that a family of secreted proteins, the chemokines - well known for their actions in regulating immune cell migration - also play an important role in sustaining abnormal nociceptor activity in persistent pain states.
Collapse
Affiliation(s)
- John M Dawes
- Nuffield Department of Clinical Neurosciences, West Wing, Level 6, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | | |
Collapse
|
46
|
Repair of the Peripheral Nerve-Remyelination that Works. Brain Sci 2013; 3:1182-97. [PMID: 24961524 PMCID: PMC4061866 DOI: 10.3390/brainsci3031182] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/07/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022] Open
Abstract
In this review we summarize the events known to occur after an injury in the peripheral nervous system. We have focused on the Schwann cells, as they are the most important cells for the repair process and facilitate axonal outgrowth. The environment created by this cell type is essential for the outcome of the repair process. The review starts with a description of the current state of knowledge about the initial events after injury, followed by Wallerian degeneration, and subsequent regeneration. The importance of surgical repair, carried out as soon as possible to increase the chances of a good outcome, is emphasized throughout the review. The review concludes by describing the target re-innervation, which today is one of the most serious problems for nerve regeneration. It is clear, compiling this data, that even though regeneration of the peripheral nervous system is possible, more research in this area is needed in order to perfect the outcome.
Collapse
|
47
|
Abstract
Peripheral nerve injuries are common conditions, with broad-ranging groups of symptoms depending on the severity and nerves involved. Although much knowledge exists on the mechanisms of injury and regeneration, reliable treatments that ensure full functional recovery are scarce. This review aims to summarize various ways these injuries are classified in light of decades of research on peripheral nerve injury and regeneration.
Collapse
Affiliation(s)
- Ron M G Menorca
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| | | | | |
Collapse
|
48
|
Weise G, Stoll G. Magnetic resonance imaging of blood brain/nerve barrier dysfunction and leukocyte infiltration: closely related or discordant? Front Neurol 2012; 3:178. [PMID: 23267343 PMCID: PMC3527731 DOI: 10.3389/fneur.2012.00178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/03/2012] [Indexed: 11/13/2022] Open
Abstract
Unlike other organs the nervous system is secluded from the rest of the organism by the blood brain barrier (BBB) or blood nerve barrier (BNB) preventing passive influx of fluids from the circulation. Similarly, leukocyte entry to the nervous system is tightly controlled. Breakdown of these barriers and cellular inflammation are hallmarks of inflammatory as well as ischemic neurological diseases and thus represent potential therapeutic targets. The spatiotemporal relationship between BBB/BNB disruption and leukocyte infiltration has been a matter of debate. We here review contrast-enhanced magnetic resonance imaging (MRI) as a non-invasive tool to depict barrier dysfunction and its relation to macrophage infiltration in the central and peripheral nervous system under pathological conditions. Novel experimental contrast agents like Gadofluorine M (Gf) allow more sensitive assessment of BBB dysfunction than conventional Gadolinium (Gd)-DTPA enhanced MRI. In addition, Gf facilitates visualization of functional and transient alterations of the BBB remote from lesions. Cellular contrast agents such as superparamagnetic iron oxide particles (SPIO) and perfluorocarbons enable assessment of leukocyte (mainly macrophage) infiltration by MR technology. Combined use of these MR contrast agents disclosed that leukocytes can enter the nervous system independent from a disturbance of the BBB, and vice versa, a dysfunctional BBB/BNB by itself is not sufficient to attract inflammatory cells from the circulation. We will illustrate these basic imaging findings in animal models of multiple sclerosis, cerebral ischemia, and traumatic nerve injury and review corresponding findings in patients.
Collapse
Affiliation(s)
- Gesa Weise
- Department of Neurology, University of Wuerzburg Wuerzburg, Germany ; Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Translational Center for Regenerative Medicine Leipzig, Germany
| | | |
Collapse
|
49
|
Abstract
Osteoarthritis is one of the leading causes of chronic pain, but almost nothing is known about the mechanisms and molecules that mediate osteoarthritis-associated joint pain. Consequently, treatment options remain inadequate and joint replacement is often inevitable. Here, we use a surgical mouse model that captures the long-term progression of knee osteoarthritis to longitudinally assess pain-related behaviors and concomitant changes in the innervating dorsal root ganglia (DRG). We demonstrate that monocyte chemoattractant protein (MCP)-1 (CCL2) and its high-affinity receptor, chemokine (C-C motif) receptor 2 (CCR2), are central to the development of pain associated with knee osteoarthritis. After destabilization of the medial meniscus, mice developed early-onset secondary mechanical allodynia that was maintained for 16 wk. MCP-1 and CCR2 mRNA, protein, and signaling activity were temporarily up-regulated in the innervating DRG at 8 wk after surgery. This result correlated with the presentation of movement-provoked pain behaviors, which were maintained up to 16 wk. Mice that lack Ccr2 also developed mechanical allodynia, but this started to resolve from 8 wk onwards. Despite severe allodynia and structural knee joint damage equal to wild-type mice, Ccr2-null mice did not develop movement-provoked pain behaviors at 8 wk. In wild-type mice, macrophages infiltrated the DRG by 8 wk and this was maintained through 16 wk after surgery. In contrast, macrophage infiltration was not observed in Ccr2-null mice. These observations suggest a key role for the MCP-1/CCR2 pathway in establishing osteoarthritis pain.
Collapse
|
50
|
Lebovitz EE, Keller JM, Kominsky H, Kaszas K, Maric D, Iadarola MJ. Positive allosteric modulation of TRPV1 as a novel analgesic mechanism. Mol Pain 2012; 8:70. [PMID: 22998799 PMCID: PMC3556054 DOI: 10.1186/1744-8069-8-70] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/11/2012] [Indexed: 12/21/2022] Open
Abstract
Background The prevalence of long-term opiate use in treating chronic non-cancer pain is increasing, and prescription opioid abuse and dependence are a major public health concern. To explore alternatives to opioid-based analgesia, the present study investigates a novel allosteric pharmacological approach operating through the cation channel TRPV1. This channel is highly expressed in subpopulations of primary afferent unmyelinated C- and lightly-myelinated Aδ-fibers that detect low and high rates of noxious heating, respectively, and it is also activated by vanilloid agonists and low pH. Sufficient doses of exogenous vanilloid agonists, such as capsaicin or resiniferatoxin, can inactivate/deactivate primary afferent endings due to calcium overload, and we hypothesized that positive allosteric modulation of agonist-activated TRPV1 could produce a selective, temporary inactivation of nociceptive nerve terminals in vivo. We previously identified MRS1477, a 1,4-dihydropyridine that potentiates vanilloid and pH activation of TRPV1 in vitro, but displays no detectable intrinsic agonist activity of its own. To study the in vivo effects of MRS1477, we injected the hind paws of rats with a non-deactivating dose of capsaicin, MRS1477, or the combination. An infrared diode laser was used to stimulate TRPV1-expressing nerve terminals and the latency and intensity of paw withdrawal responses were recorded. qRT-PCR and immunohistochemistry were performed on dorsal root ganglia to examine changes in gene expression and the cellular specificity of such changes following treatment. Results Withdrawal responses of the capsaicin-only or MRS1477-only treated paws were not significantly different from the untreated, contralateral paws. However, rats treated with the combination of capsaicin and MRS1477 exhibited increased withdrawal latency and decreased response intensity consistent with agonist potentiation and inactivation or lesion of TRPV1-containing nerve terminals. The loss of nerve endings was manifested by an increase in levels of axotomy markers assessed by qRT-PCR and colocalization of ATF3 in TRPV1+ cells visualized via immunohistochemistry. Conclusions The present observations suggest a novel, non-narcotic, selective, long-lasting TRPV1-based approach for analgesia that may be effective in acute, persistent, or chronic pain disorders.
Collapse
Affiliation(s)
- Evan E Lebovitz
- Neurobiology and Pain Therapeutics Section, Laboratory Of Sensory Biology, NIDCR, NIH, Bldg 49 Rm 1C2049 Convent Dr, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|