1
|
Göksu AY. A review article on the development of dopaminergic neurons and establishment of dopaminergic neuron-based in vitro models by using immortal cell lines or stem cells to study and treat Parkinson's disease. Int J Dev Neurosci 2024. [PMID: 39379284 DOI: 10.1002/jdn.10383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
The primary pathological hallmark of Parkinson's disease (PD) is the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta, a critical midbrain region. In vitro models based on DA neurons provide a powerful platform for investigating the cellular and molecular mechanisms of PD and testing novel therapeutic strategies. A deep understanding of DA neuron development, including the signalling pathways and transcription factors involved, is essential for advancing PD research. This article first explores the differentiation and maturation processes of DA neurons in the midbrain, detailing the relevant signalling pathways. It then compares various in vitro models, including primary cells, immortalized cell lines, and stem cell-based models, focusing on the advantages and limitations of each. Special attention is given to the role of immortalized and stem cell models in PD research. This review aims to guide researchers in selecting the most appropriate model for their specific research goals. Ethical considerations and clinical implications of using stem cells in PD research are also discussed.
Collapse
Affiliation(s)
- Azize Yasemin Göksu
- Department of Histology and Embryology, Department of Gene and Cell Therapy, Akdeniz University, School of Medicine, Antalya, Turkey
| |
Collapse
|
2
|
Munawar N, Wynne K, Oliviero G. PRC1 Protein Subcomplexes Architecture: Focus on the Interplay between Distinct PCGF Subunits in Protein Interaction Networks. Int J Mol Sci 2024; 25:9809. [PMID: 39337298 PMCID: PMC11432245 DOI: 10.3390/ijms25189809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The six PCGF proteins (PCGF1-6) define the biochemical identity of Polycomb repressor complex 1 (PRC1) subcomplexes. While structural and functional studies of PRC1 subcomplexes have revealed their specialized roles in distinct aspects of epigenetic regulation, our understanding of the variation in the protein interaction networks of distinct PCGF subunits in different PRC1 complexes is incomplete. We carried out an affinity purification mass spectrometry (AP-MS) screening of three PCGF subunits, PCGF1 (NSPC1), PCGF2 (MEL18), and PCGF4 (BMI1), to define their interactome and potential cellular function in pluripotent human embryonal carcinoma cell "NT2". The bioinformatic analysis revealed that these interacting proteins cover a range of functional pathways, often involved in cell biology and chromatin regulation. We also found evidence of mutual regulation (at mRNA and protein level) between three distinct PCGF subunits. Furthermore, we confirmed that the disruption of these subunits results in reduced cell proliferation ability. We reveal an interplay between the compositional diversity of the distinct PCGF containing PRC1 complex and the potential role of PCGF proteins within the wider cellular network.
Collapse
Affiliation(s)
- Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Kieran Wynne
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 C1P1 Dublin, Ireland;
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland
| |
Collapse
|
3
|
Schmitz A, Dempewolf S, Tan S, Bicker G, Stern M. Developmental Neurotoxicity of Fipronil and Rotenone on a Human Neuronal In Vitro Test System. Neurotox Res 2021; 39:1189-1202. [PMID: 33871813 PMCID: PMC8275550 DOI: 10.1007/s12640-021-00364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
Pesticide exposure during in utero and early postnatal development can cause a wide range of neurological defects. However, relatively few insecticides have been recognized as developmental neurotoxicants, so far. Recently, discovery of the insecticide, fipronil, in chicken eggs has raised public concern. The status of fipronil as a potential developmental neurotoxicant is still under debate. Whereas several in vivo and in vitro studies suggest specific toxicity, other in vitro studies could not confirm this concern. Here, we tested fipronil and its main metabolic product, fipronil sulfone both at concentrations between 1.98 and 62.5 µM, alongside with the established developmental neurotoxicant, rotenone (0.004-10 µM) in vitro on the human neuronal precursor cell line NT2. We found that rotenone impaired all three tested DNT endpoints, neurite outgrowth, neuronal differentiation, and precursor cell migration in a dose-dependent manner and clearly separable from general cytotoxicity in the nanomolar range. Fipronil and fipronil sulfone specifically inhibited cell migration and neuronal differentiation, but not neurite outgrowth in the micromolar range. The rho-kinase inhibitor Y-27632 counteracted inhibition of migration for all three compounds (EC50 between 12 and 50 µM). The antioxidant, n-acetyl cysteine, could ameliorate the inhibitory effects of fipronil on all three tested endpoints (EC 50 between 84 and 164 µM), indicating the involvement of oxidative stress. Fipronil sulfone had a stronger effect than fipronil, confirming the importance to test metabolic products alongside original pesticides. We conclude that in vitro fipronil and fipronil sulfone display specific developmental neurotoxicity on developing human model neurons.
Collapse
Affiliation(s)
- Anne Schmitz
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173, Hannover, Germany
| | - Silke Dempewolf
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173, Hannover, Germany
| | - Saime Tan
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173, Hannover, Germany
| | - Gerd Bicker
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173, Hannover, Germany
| | - Michael Stern
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173, Hannover, Germany.
| |
Collapse
|
4
|
Lazic A, Popović J, Paunesku T, Woloschak GE, Stevanović M. Insights into platinum-induced peripheral neuropathy-current perspective. Neural Regen Res 2020; 15:1623-1630. [PMID: 32209761 PMCID: PMC7437596 DOI: 10.4103/1673-5374.276321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer is a global health problem that is often successfully addressed by therapy, with cancer survivors increasing in numbers and living longer world around. Although new cancer treatment options are continuously explored, platinum based chemotherapy agents remain in use due to their efficiency and availability. Unfortunately, all cancer therapies affect normal tissues as well as cancer, and more than 40 specific side effects of platinum based drugs documented so far decrease the quality of life of cancer survivors. Chemotherapy-induced peripheral neuropathy is a frequent side effects of platinum-based chemotherapy agents. This cluster of complications is often so debilitating that patients occasionally have to discontinue the therapy. Sensory neurons of dorsal root ganglia are at the core of chemotherapy-induced peripheral neuropathy symptoms. In these postmitotic cells, DNA damage caused by platinum chemotherapy interferes with normal functioning. Accumulation of DNA-platinum adducts correlates with neurotoxic severity and development of sensation of pain. While biochemistry of DNA-platinum adducts is the same in all cell types, molecular mechanisms affected by DNA-platinum adducts are different in cancer cells and non-dividing cells. This review aims to raise awareness about platinum associated chemotherapy-induced peripheral neuropathy as a medical problem that has remained unexplained for decades. We emphasize the complexity of this condition both from clinical and mechanistical point of view and focus on recent findings about chemotherapy-induced peripheral neuropathy in in vitro and in vivo model systems. Finally, we summarize current perspectives about clinical approaches for chemotherapy-induced peripheral neuropathy treatment.
Collapse
Affiliation(s)
- Andrijana Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Popović
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Tatjana Paunesku
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Gayle E Woloschak
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering; Faculty of Biology; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
5
|
Ahmed AF, de Bock CE, Sontag E, Hondermarck H, Lincz LF, Thorne RF. FAT1 cadherin controls neuritogenesis during NTera2 cell differentiation. Biochem Biophys Res Commun 2019; 514:625-631. [PMID: 31076104 DOI: 10.1016/j.bbrc.2019.04.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 02/09/2023]
Abstract
Fat1 cadherin is broadly expressed throughout the nervous system and has been implicated in neuronal differentiation. Here we examined the functional contribution of FAT1 during neuronal differentiation of the Ntera2 cell line model. FAT1 expression was increased during the retinoic acid (RA)-induced differentiation of NTera2 cells. Depletion of FAT1 with siRNA decreased the number of neurites produced after RA treatment. Moreover, FAT1 silencing also led to decreased Ser127-phosphorylation of YAP along with transcriptional increases in the Hippo target genes CTGF and ANKRD1, suggesting FAT1 alters Hippo signalling during differentiation. In the context of the Ntera2 model, FAT1 is required for efficient neuritogenesis, acting as a regulator of neurite formation during the early stages of differentiation.
Collapse
Affiliation(s)
- Abdulrzag F Ahmed
- Department of Pharmacology, Faculty of Pharmacy, Elmergib University, Alkhoms, Libya; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Randwick, NSW 2031, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, New Lambton, New South Wales, 2305, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, New Lambton, New South Wales, 2305, Australia
| | - Lisa F Lincz
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, New Lambton, New South Wales, 2305, Australia; Hunter Haematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW, 2298, Australia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, 450053, Zhengzhou, China; School of Environmental and Life Sciences, University of Newcastle, NSW, 2258, Australia.
| |
Collapse
|
6
|
Popović J, Klajn A, Paunesku T, Ma Q, Chen S, Lai B, Stevanović M, Woloschak GE. Neuroprotective Role of Selected Antioxidant Agents in Preventing Cisplatin-Induced Damage of Human Neurons In Vitro. Cell Mol Neurobiol 2019; 39:619-636. [PMID: 30874981 PMCID: PMC6535150 DOI: 10.1007/s10571-019-00667-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a side effect of platinum-based chemotherapy and decreases the quality of life of cancer patients. We compared neuroprotective properties of several agents using an in vitro model of terminally differentiated human cells NT2-N derived from cell line NT2/D1. Sodium azide and an active metabolite of amifostine (WR1065) increase cell viability in simultaneous treatment with cisplatin. In addition, WR1065 protects the non-dividing neurons by decreasing cisplatin caused oxidative stress and apoptosis. Accumulation of Pt in cisplatin-treated cells was heterogeneous, but the frequency and concentration of Pt in cells were lowered in the presence of WR1065 as shown by X-ray fluorescence microscopy (XFM). Transition metals accumulation accompanied Pt increase in cells; this effect was equally diminished in the presence of WR1065. To analyze possible chemical modulation of Pt-DNA bonds, we examined the platinum LIII near edge spectrum by X-ray absorption spectroscopy. The spectrum found in cisplatin-DNA samples is altered differently by the addition of either WR1065 or sodium azide. Importantly, a similar change in Pt edge spectra was noted in cells treated with cisplatin and WR1065. Therefore, amifostine should be reconsidered as a candidate for treatments that reduce or prevent CIPN.
Collapse
Affiliation(s)
- Jelena Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA
| | - Andrijana Klajn
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia
| | - Tatjana Paunesku
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA
| | - Qing Ma
- DND CAT, Northwestern Synchrotron Research Center at the Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Si Chen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Barry Lai
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia.
- Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia.
- Serbian Academy of Sciences and Arts, Belgrade, 11000, Serbia.
| | - Gayle E Woloschak
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
7
|
Curcumin Induces Neural Differentiation of Human Pluripotent Embryonal Carcinoma Cells through the Activation of Autophagy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4378710. [PMID: 30800669 PMCID: PMC6360631 DOI: 10.1155/2019/4378710] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/10/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022]
Abstract
Curcumin is a natural polyphenolic compound, isolated from Curcuma longa, and is an important ingredient of Asian foods. Curcumin has revealed its strong activities of anti-inflammatory, antioxidant, and anticancer. The efficient amount of curcumin could induce differentiation of stem cells and promoted the differentiation of glioma-initiating cells; however, the mechanisms underlying neural induction of curcumin have not yet been revealed. In this study, neural-inducing ability of curcumin was explored by using human pluripotent embryonal carcinoma cells, NTERA2 cells. The cells were induced toward neural lineage with curcumin and were compared with a standard neutralizing agent (retinoic acid). It was found that, after 14 days of the induction by curcumin, NTERA2 cells showed neuronal morphology and expressed neural-specific genes, including NeuroD, TUJ1, and PAX6. Importantly, curcumin activated neurogenesis of NTERA2 cells via the activation of autophagy, since autophagy-related genes, such as LC3, LAMP1, and ATG5, were upregulated along with the expression of neural genes. The inhibition of autophagy by chloroquine suppressed both autophagy and neural differentiation, highlighting the positive role of autophagy during neural differentiation. This autophagy-mediated neural differentiation of curcumin was found to be an ROS-dependent manner; curcumin induced ROS generation and suppressed antioxidant gene expression. Altogether, this study proposed the neural-inducing activity of curcumin via the regulation of autophagy within NTERA2 cells and underscored the health beneficial effects of curcumin for neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.
Collapse
|
8
|
Fricker-Gates RA, Muir JA, Dunnett SB. Transplanted hNT Cells (“LBS Neurons”) in a Rat Model of Huntington's Disease: Good Survival, Incomplete Differentiation, and Limited Functional Recovery. Cell Transplant 2017; 13:123-36. [PMID: 15129758 DOI: 10.3727/000000004773301807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A variety of immortalized cell lines have been proposed to exhibit sufficient phenotypic plasticity to allow them to replace primary embryonic neurons for restorative cell transplantation. In the present experiments we evaluate the functional viability of one particular cell line, the hNT cells developed by Layton Bioscience, to replace lost neurons and alleviate asymmetrical motor deficits in a unilateral excitotoxic lesion model of Huntington's disease. Because the grafts involved implantation of human-derived cells into a rat host environment, all animals were immunosuppressed. Cyclosporin A and FK-506 were similar in providing effective immunoprotection of the hNT xenografts, and whereas the lesions induced a marked inflammatory response in the host brain, this was not exacerbated by the presence of xenograft cells. The presence of grafted cells was determined with the human-specific antigen HuNu, and good graft survival was demonstrated in almost all animals up to the longest survival examined, 16 weeks posttransplantation. Although the cells exhibited progressively greater maturation and differentiation at 10-day, 4- and 16-week time points, staining for the mature neuronal marker NeuN was at best very weak, and we were unable to detect unequivocal staining with any markers of mature striatal phenotype, including DARPP-32, calbindin, parvalbumin, choline acetyl transferase, or NADPH diaphorase (with in all cases positive control provided by good staining on the intact contralateral side of the brain). Nor were we able to detect any differences between rats with lesions alone and rats with grafts in the contralateral motor deficits exhibited in a test of skilled paw reaching or cylinder placing. These results suggest that further and more extensive studies should be undertaken to assess whether hNT neurons can show more extensive and appropriate maturation and be associated with recovery in appropriate behavioral models, before they may be considered a suitable replacement for primary embryonic cells for clinical application in Huntington's disease.
Collapse
|
9
|
Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, Bal-Price A, Hogberg HT, Quinones-Hinojosa A, Guerrero-Cazares H, Levchenko A. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. LAB ON A CHIP 2016; 16:4152-4162. [PMID: 27722368 DOI: 10.1039/c6lc00946h] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Migration of neural progenitors in the complex tissue environment of the central nervous system is not well understood. Progress in this area has the potential to drive breakthroughs in neuroregenerative therapies, brain cancer treatments, and neurodevelopmental studies. To a large extent, advances have been limited due to a lack of controlled environments recapitulating characteristics of the central nervous system milieu. Reductionist cell culture models are frequently too simplistic, and physiologically more relevant approaches such as ex vivo brain slices or in situ experiments provide little control and make information extraction difficult. Here, we present a brain-on-chip model that bridges the gap between cell culture and ex vivo/in vivo conditions through recapitulation of self-organized neural differentiation. We use a new multi-layer silicone elastomer device, over the course of four weeks to differentiate pluripotent human (NTERA2) cells into neuronal clusters interconnected with thick axonal bundles and interspersed with astrocytes, resembling the brain parenchyma. Neurons within the device express the neurofilament heavy (NF200) mature axonal marker and the microtubule-associated protein (MAP2ab) mature dendritic marker, demonstrating that the devices are sufficiently biocompatible to allow neuronal maturation. This neuronal-glial environment is interfaced with a layer of human brain microvascular endothelial cells showing characteristics of the blood-brain barrier including the expression of zonula occludens (ZO1) tight junctions and increased trans-endothelial electrical resistance. We used this device to model migration of human neural progenitors in response to chemotactic cues within a brain-tissue setting. We show that in the presence of an environment mimicking brain conditions, neural progenitor cells show a significantly enhanced chemotactic response towards shallow gradients of CXCL12, a key chemokine expressed during embryonic brain development and in pathological tissue regions of the central nervous system. Our brain-on-chip model thus provides a convenient and scalable model of neural differentiation and maturation extensible to analysis of complex cell and tissue behaviors.
Collapse
Affiliation(s)
- Onur Kilic
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Emily Lavell
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Paula Schiapparelli
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yun Feng
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. and Department of Pharmacology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA and CAAT-Europe, University of Konstanz, Germany
| | - Anna Bal-Price
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Alfredo Quinones-Hinojosa
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hugo Guerrero-Cazares
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andre Levchenko
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
10
|
Kuenzel K, Friedrich O, Gilbert DF. A Recombinant Human Pluripotent Stem Cell Line Stably Expressing Halide-Sensitive YFP-I152L for GABAAR and GlyR-Targeted High-Throughput Drug Screening and Toxicity Testing. Front Mol Neurosci 2016; 9:51. [PMID: 27445687 PMCID: PMC4923258 DOI: 10.3389/fnmol.2016.00051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/13/2016] [Indexed: 01/29/2023] Open
Abstract
GABAARs and GlyRs are considered attractive drug targets for therapeutic intervention and are also increasingly recognized in the context of in vitro neurotoxicity (NT) and developmental neurotoxicity (DNT) testing. However, systematic human-specific GABAAR and GlyR-targeted drug screening and toxicity testing is hampered due to lack of appropriate in vitro models that express native GABAARs and GlyRs. We have established a human pluripotent stem cell line (NT2) stably expressing YFP-I152L, a halide-sensitive variant of yellow fluorescent protein (YFP), allowing for fluorescence-based functional analysis of chloride channels. Upon stimulation with retinoic acid, NT2 cells undergo neuronal differentiation and allow pharmacological and toxicological evaluation of native GABAARs and GlyRs at different stages of brain maturation. We applied the cell line in concentration-response experiments with the neurotransmitters GABA and glycine as well as with the drugs strychnine, picrotoxin, fipronil, lindane, bicuculline, and zinc and demonstrate that the established in vitro model is applicable to GABAAR and GlyR-targeted pharmacological and toxicological profiling. We quantified the proportion of GABAAR and GlyR-sensitive cells, respectively, and identified percentages of approximately 20% each within the overall populations, rendering the cells a suitable model for systematic in vitro GABAAR and GlyR-targeted screening in the context of drug development and NT/DNT testing.
Collapse
Affiliation(s)
- Katharina Kuenzel
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany; Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | - Oliver Friedrich
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany; Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | - Daniel F Gilbert
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany; Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| |
Collapse
|
11
|
González-Burguera I, Ricobaraza A, Aretxabala X, Barrondo S, García del Caño G, López de Jesús M, Sallés J. Highly efficient generation of glutamatergic/cholinergic NT2-derived postmitotic human neurons by short-term treatment with the nucleoside analogue cytosine β-D-arabinofuranoside. Stem Cell Res 2016; 16:541-51. [PMID: 26985738 DOI: 10.1016/j.scr.2016.02.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 01/25/2016] [Accepted: 02/26/2016] [Indexed: 12/21/2022] Open
Abstract
The human NTERA2/D1 (NT2) cells generate postmitotic neurons (NT2N cells) upon retinoic acid (RA) treatment and are functionally integrated in the host tissue following grafting into the rodent and human brain, thus representing a promising source for neuronal replacement therapy. Yet the major limitations of this model are the lengthy differentiation procedure and its low efficiency, although recent studies suggest that the differentiation process can be shortened to less than 1 week using nucleoside analogues. To explore whether short-term exposure of NT2 cells to the nucleoside analogue cytosine β-d-arabinofuranoside (AraC) could be a suitable method to efficiently generate mature neurons, we conducted a neurochemical and morphometric characterization of AraC-differentiated NT2N (AraC/NT2N) neurons and improved the differentiation efficiency by modifying the cell culture schedule. Moreover, we analyzed the neurotransmitter phenotypes of AraC/NT2N neurons. Cultures obtained by treatment with AraC were highly enriched in postmitotic neurons and essentially composed of dual glutamatergic/cholinergic neurons, which contrasts with the preferential GABAergic phenotype that we found after RA differentiation. Taken together, our results further reinforce the notion NT2 cells are a versatile source of neuronal phenotypes and provide a new encouraging platform for studying mechanisms of neuronal differentiation and for exploring neuronal replacement strategies.
Collapse
Affiliation(s)
- Imanol González-Burguera
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain.
| | - Ana Ricobaraza
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain.
| | - Xabier Aretxabala
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain.
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain; CIBERSAM, Spain.
| | - Gontzal García del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain.
| | - Maider López de Jesús
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain; CIBERSAM, Spain.
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain; CIBERSAM, Spain.
| |
Collapse
|
12
|
A Signaling Lipid Associated with Alzheimer's Disease Promotes Mitochondrial Dysfunction. Sci Rep 2016; 6:19332. [PMID: 26757638 PMCID: PMC4725818 DOI: 10.1038/srep19332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/09/2015] [Indexed: 01/08/2023] Open
Abstract
Fundamental changes in the composition and distribution of lipids within the brain are believed to contribute to the cognitive decline associated with Alzheimer’s disease (AD). The mechanisms by which these changes in lipid composition affect cellular function and ultimately cognition are not well understood. Although “candidate gene” approaches can provide insight into the effects of dysregulated lipid metabolism they require a preexisting understanding of the molecular targets of individual lipid species. In this report we combine unbiased gene expression profiling with a genome-wide chemogenomic screen to identify the mitochondria as an important downstream target of PC(O-16:0/2:0), a neurotoxic lipid species elevated in AD. Further examination revealed that PC(O-16:0/2:0) similarly promotes a global increase in ceramide accumulation in human neurons which was associated with mitochondrial-derived reactive oxygen species (ROS) and toxicity. These findings suggest that PC(O-16:0/2:0)-dependent mitochondrial dysfunction may be an underlying contributing factor to the ROS production associated with AD.
Collapse
|
13
|
Klajn A, Drakulic D, Tosic M, Pavkovic Z, Schwirtlich M, Stevanovic M. SOX2 overexpression affects neural differentiation of human pluripotent NT2/D1 cells. BIOCHEMISTRY (MOSCOW) 2015; 79:1172-82. [PMID: 25540002 DOI: 10.1134/s0006297914110042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SOX2 is one of the key transcription factors involved in maintenance of neural progenitor identity. However, its function during the process of neural differentiation, including phases of lineage-specification and terminal differentiation, is still poorly understood. Considering growing evidence indicating that SOX2 expression level must be tightly controlled for proper neural development, the aim of this research was to analyze the effects of constitutive SOX2 overexpression on outcome of retinoic acid-induced neural differentiation of pluripotent NT2/D1 cells. We demonstrated that in spite of constitutive SOX2 overexpression, NT2/D1 cells were able to reach final phases of neural differentiation yielding both neuronal and glial cells. However, SOX2 overexpression reduced the number of mature MAP2-positive neurons while no difference in the number of GFAP-positive astrocytes was detected. In-depth analysis at single-cell level showed that SOX2 downregulation was in correlation with both neuronal and glial phenotype acquisitions. Interestingly, while in mature neurons SOX2 was completely downregulated, astrocytes with low level of SOX2 expression were detected. Nevertheless, cells with high level of SOX2 expression were incapable of entering in either of two differentiation pathways, neurogenesis or gliogenesis. Accordingly, our results indicate that fine balance between undifferentiated state and neural differentiation depends on SOX2 expression level. Unlike neurons, astrocytes could maintain low level of SOX2 expression after they acquired glial fate. Further studies are needed to determine whether differences in the level of SOX2 expression in GFAP-positive astrocytes are in correlation with their self-renewal capacity, differentiation status, and/or their phenotypic characteristics.
Collapse
Affiliation(s)
- A Klajn
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia.
| | | | | | | | | | | |
Collapse
|
14
|
Woehrling EK, Parri HR, Tse EHY, Hill EJ, Maidment ID, Fox GC, Coleman MD. A predictive in vitro model of the impact of drugs with anticholinergic properties on human neuronal and astrocytic systems. PLoS One 2015; 10:e0118786. [PMID: 25738989 PMCID: PMC4349811 DOI: 10.1371/journal.pone.0118786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly.
Collapse
Affiliation(s)
- Elizabeth K. Woehrling
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - H. Rheinallt Parri
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - Erin H. Y. Tse
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - Eric J. Hill
- Aston Research Centre into Healthy Ageing (ARCHA), Aston University, Birmingham, B4 7ET, United Kingdom
| | - Ian D. Maidment
- Aston Research Centre into Healthy Ageing (ARCHA), Aston University, Birmingham, B4 7ET, United Kingdom
| | - G. Christopher Fox
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Michael D. Coleman
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Ceci C, Barbaccia ML, Pistritto G. A not cytotoxic nickel concentration alters the expression of neuronal differentiation markers in NT2 cells. Neurotoxicology 2015; 47:47-53. [DOI: 10.1016/j.neuro.2015.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/16/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022]
|
16
|
Silencing of PNPLA6, the neuropathy target esterase (NTE) codifying gene, alters neurodifferentiation of human embryonal carcinoma stem cells (NT2). Neuroscience 2014; 281:54-67. [DOI: 10.1016/j.neuroscience.2014.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 12/30/2022]
|
17
|
Haile Y, Fu W, Shi B, Westaway D, Baker G, Jhamandas J, Giuliani F. Characterization of the NT2-derived neuronal and astrocytic cell lines as alternative in vitro models for primary human neurons and astrocytes. J Neurosci Res 2014; 92:1187-98. [PMID: 24801011 DOI: 10.1002/jnr.23399] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/01/2014] [Accepted: 03/30/2014] [Indexed: 12/22/2022]
Abstract
Primary human fetal neurons and astrocytes (HFNs and HFAs, respectively) provide relevant cell types with which to study in vitro the mechanisms involved in various human neurological diseases, such as multiple sclerosis, Parkinson's disease, and Alzheimer's disease. However, the limited availability of human fetal cells poses a significant problem for the study of these diseases when a human cell model system is required. Thus, generating a readily available alternative cell source with the essential features of human neurons and astrocytes is necessary. The human teratoma-derived NTera2/D1 (NT2) cell line is a promising tool from which both neuronal and glial cells can be generated. Nevertheless, a direct comparison of NT2 neurons and primary HFNs in terms of their morphology physiological and chemical properties is still missing. This study directly compares NT2-derived neurons and primary HFNs using immunocytochemistry, confocal calcium imaging, high-performance liquid chromatography, and high-content analysis techniques. We investigated the morphological similarities and differences, levels of relevant amino acids, and internal calcium fluctuations in response to certain neurotransmitters/stimuli. We also compared NT2-derived astrocytes and HFAs. In most of the parameters tested, both neuronal and astrocytic cell types exhibited similarities to primary human fetal neurons and astrocytes. NT2-derived neurons and astrocytes are reliable in vitro tools and a renewable cell source that can serve as a valid alternative to HFNs/HFAs for mechanistic studies of neurological diseases.
Collapse
Affiliation(s)
- Yohannes Haile
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Popovic J, Stanisavljevic D, Schwirtlich M, Klajn A, Marjanovic J, Stevanovic M. Expression analysis of SOX14 during retinoic acid induced neural differentiation of embryonal carcinoma cells and assessment of the effect of its ectopic expression on SOXB members in HeLa cells. PLoS One 2014; 9:e91852. [PMID: 24637840 PMCID: PMC3956720 DOI: 10.1371/journal.pone.0091852] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/17/2014] [Indexed: 12/01/2022] Open
Abstract
SOX14 is a member of the SOXB2 subgroup of transcription factors implicated in neural development. Although the first SOX14 gene in vertebrates was cloned and characterized more than a decade ago and its expression profile during development was revealed in various animal model systems, the role of this gene during neural development is largely unknown. In the present study we analyzed the expression of SOX14 in human NT2/D1 and mouse P19 pluripotent embryonal carcinoma cells. We demonstrated that it is expressed in both cell lines and upregulated during retinoic acid induced neural differentiation. We showed that SOX14 was expressed in both neuronal and non-neuronal differentiated derivatives, as revealed by immunocytochemistry. Since it was previously proposed that increased SOXB2 proteins level interfere with the activity of SOXB1 counteracting partners, we compared expression patterns of SOXB members during retinoic acid induction of embryonal carcinoma cells. We revealed that upregulation of SOX14 expression is accompanied by alterations in the expression patterns of SOXB1 members. In order to analyze the potential cross-talk between them, we generated SOX14 expression construct. The ectopic expression of SOX14 was demonstrated at the mRNA level in NT2/D1, P19 and HeLa cells, while an increased level of SOX14 protein was detected in HeLa cells only. By transient transfection experiments in HeLa cells we showed for the first time that ectopic expression of SOX14 repressed SOX1 expression, whereas no significant effect on SOX2, SOX3 and SOX21 was observed. Data presented here provide an insight into SOX14 expression during in vitro neural differentiation of embryonal carcinoma cells and demonstrate the effect of its ectopic expression on protein levels of SOXB members in HeLa cells. Obtained results contribute to better understanding the role of one of the most conserved SOX proteins.
Collapse
Affiliation(s)
- Jelena Popovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- * E-mail:
| | - Danijela Stanisavljevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Klajn
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Marjanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Pellegrini L, Bennis Y, Guillet B, Velly L, Bruder N, Pisano P. [Cell therapy for stroke: from myth to reality]. Rev Neurol (Paris) 2012; 169:291-306. [PMID: 23246427 DOI: 10.1016/j.neurol.2012.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/13/2012] [Accepted: 08/09/2012] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Stroke is one of the leading causes of death and disability worldwide. Intravenous recombinant tissue plasminogen activator is the only available therapy for acute ischemic stroke, but its use is limited by a narrow therapeutic window and cannot stimulate endogenous repair and regeneration of damaged brain tissue. Stem cell-based approaches hold much promise as potential novel treatments to restore neurological function after stroke. STATE OF THE ART In this review, we summarize data from preclinical and clinical studies to investigate the potential application of stem cell therapies for treatment of stroke. Stem cells have been proposed as a potential source of new cells to replace those lost due to central nervous system injury, as well as a source of trophic molecules to minimize damage and promote recovery. Various stem cells from multiple sources can generate neural cells that survive and form synaptic connections after transplantation in the stroke-injured brain. Stem cells also exhibit neurorevitalizing properties that may ameliorate neurological deficits through stimulation of neurogenesis, angiogenesis and inhibition of inflammation. PERSPECTIVES/CONCLUSION Performed in stroke, cell therapy would decrease brain damage and reduce functional deficits. After the damage has been done, it would still improve neurological functions by activating endogenous repair. Nevertheless, many questions raised by experimental studies particularly related to long-term safety and technical details of cell preparation and administration must be resolved before wider clinical use.
Collapse
Affiliation(s)
- L Pellegrini
- Service d'anesthésie-réanimation 1, CHU de la Timone, Assistance publique-Hôpitaux de Marseille, 264, rue Saint-Pierre, 13385 Marseille cedex 5, France.
| | | | | | | | | | | |
Collapse
|
20
|
Thwaites JW, Reebye V, Mintz P, Levicar N, Habib N. Cellular replacement and regenerative medicine therapies in ischemic stroke. Regen Med 2012; 7:387-95. [PMID: 22594330 DOI: 10.2217/rme.12.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Worldwide, tissue engineering and cellular replacement therapies are at the forefront of the regenerative medicine agenda, and researchers are addressing key diseases, including diabetes, stroke and neurological disorders. It is becoming evident that neurological cell therapy is a necessarily complex endeavor. The brain as a cellular environment is complex, with diverse cell populations, including specialized neurons (e.g., dopaminergic, motor and glutamatergic neurons), each with specific functions. The population also contains glial cells (astrocytes and oligodendrocytes) that offer the supportive network for neuronal function. Neurological disorders have wide and varied pathologies; they can affect predominantly one cell type or a multitude of cell types, which is the case for ischemic stroke. Both neuronal and glial cells are affected by stroke and, depending on the region of the brain affected, different specialized cells are influenced. This review will address currently available therapies and focus on the application and potential of cell replacement, including stem cells and immortalized cell line-derived neurons as regenerative therapies for ischemic stroke, addressing current advances and challenges ahead.
Collapse
Affiliation(s)
- John W Thwaites
- Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | | | | | | |
Collapse
|
21
|
Tegenge MA, Böhnel H, Gessler F, Bicker G. Neurotransmitter vesicle release from human model neurons (NT2) is sensitive to botulinum toxin A. Cell Mol Neurobiol 2012; 32:1021-9. [PMID: 22373696 DOI: 10.1007/s10571-012-9818-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/14/2012] [Indexed: 01/06/2023]
Abstract
Botulinum neurotoxins (BoNTs) internalize into nerve terminals and block the release of neurotransmitters into the synapse. BoNTs are widely used as a therapeutic agent for treatment of movement disorders and recently gained more attention as a biological weapon. Consequently, there is strong interest to develop a cell-based assay platform to screen the toxicity and bioactivity of the BoNTs. In this study, we present an in vitro screening assay for BoNT/A based on differentiated human embryonal carcinoma stem (NT2) cells. The human NT2 cells fully differentiated into mature neurons that display immunoreactivity to cytoskeletal markers (βIII-tubulin and MAP2) and presynaptic proteins (synapsin and synaptotagmin I). We showed that the human NT2 cells undergo a process of exo-endocytotic synaptic vesicle recycling upon depolarization with high K(+) buffer. By employing an antibody directed against light chain of BoNT/A, we detected internalized toxin as a punctate staining along the neurites of the NT2 neurons. Using well-established methods of synaptic vesicle exocytosis assay (luminal synaptotagmin I and FM1-43 imaging) we show that pre-incubation with BoNT/A resulted in a blockade of vesicle release from human NT2 neurons in a dose-dependent manner. Moreover, this blocking effect of BoNT/A was abolished by pre-adsorbing the toxin with neutralizing antibody. In a proof of principle, we demonstrate that our cell culture assay for vesicle release is sensitive to BoNT/A and the activity of BoNT/A can be blocked by specific neutralizing antibodies. Overall our data suggest that human NT2 neurons are suitable for large scale screening of botulinum bioactivity.
Collapse
Affiliation(s)
- Million Adane Tegenge
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
22
|
Eaton MJ, Berrocal Y, Wolfe SQ, Widerström-Noga E. Review of the history and current status of cell-transplant approaches for the management of neuropathic pain. PAIN RESEARCH AND TREATMENT 2012; 2012:263972. [PMID: 22745903 PMCID: PMC3382629 DOI: 10.1155/2012/263972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/09/2012] [Indexed: 11/18/2022]
Abstract
Treatment of sensory neuropathies, whether inherited or caused by trauma, the progress of diabetes, or other disease states, are among the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord would be the logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the transplant of cells or a cell line to treat human disease. The history of the research and development of useful cell-transplant-based approaches offers an understanding of the advantages and problems associated with these technologies, but as an adjuvant or replacement for current pharmacological treatments, cell therapy is a likely near future clinical tool for improved health care.
Collapse
Affiliation(s)
- Mary J. Eaton
- Miami VA Health System Center, D806C, 1201 NW 16th Street, Miami, FL 33125, USA
| | - Yerko Berrocal
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Stacey Q. Wolfe
- Department of Neurosurgery, Tripler Army Medical Center, 1 Jarrett White Road, Honolulu, HI 96859, USA
| | - Eva Widerström-Noga
- Miami VA Health System Center, D806C, 1201 NW 16th Street, Miami, FL 33125, USA
- The Miami Project to Cure Paralysis, Miller School of Medicine at the University of Miami, Miami, FL 33136, USA
| |
Collapse
|
23
|
Eaton MJ, Berrocal Y, Wolfe SQ. Potential for Cell-Transplant Therapy with Human Neuronal Precursors to Treat Neuropathic Pain in Models of PNS and CNS Injury: Comparison of hNT2.17 and hNT2.19 Cell Lines. PAIN RESEARCH AND TREATMENT 2012; 2012:356412. [PMID: 22619713 PMCID: PMC3348681 DOI: 10.1155/2012/356412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/15/2012] [Indexed: 01/07/2023]
Abstract
Effective treatment of sensory neuropathies in peripheral neuropathies and spinal cord injury (SCI) is one of the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord is a logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the potential of transplant of cells to treat chronic pain. Cell lines derived from the human neuronal NT2 cell line parentage, the hNT2.17 and hNT2.19 lines, which synthesize and release the neurotransmitters gamma-aminobutyric acid (GABA) and serotonin (5HT), respectively, have been used to evaluate the potential of cell-based release of antinociceptive agents near the lumbar dorsal (horn) spinal sensory cell centers to relieve neuropathic pain after PNS (partial nerve and diabetes-related injury) and CNS (spinal cord injury) damage in rat models. Both cell lines transplants potently and permanently reverse behavioral hypersensitivity without inducing tumors or other complications after grafting. Functioning as cellular minipumps for antinociception, human neuronal precursors, like these NT2-derived cell lines, would likely provide a useful adjuvant or replacement for current pharmacological treatments for neuropathic pain.
Collapse
Affiliation(s)
- Mary J. Eaton
- Miami VA Health System Center, D806C, 1201 NW 16th Street, Miami, FL 33199, USA
| | - Yerko Berrocal
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Stacey Q. Wolfe
- Department of Neurosurgery, Tripler Army Medical Center, 1 Jarrett White Road, Honolulu, HI 96859-5000, USA
| |
Collapse
|
24
|
Milagre I, Nunes MJ, Castro-Caldas M, Moutinho M, Gama MJ, Rodrigues E. Neuronal differentiation alters the ratio of Sp transcription factors recruited to the CYP46A1 promoter. J Neurochem 2011; 120:220-9. [PMID: 22060190 DOI: 10.1111/j.1471-4159.2011.07577.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CYP46A1 is a neuron-specific cytochrome P450 that plays a pivotal role in maintaining cholesterol homeostasis in the CNS. However, the molecular mechanisms underlying human CYP46A1 expression are still poorly understood, partly because of the lack of a cellular model that expresses high levels of CYP46A1. Our previous studies demonstrated that specificity protein (Sp) transcription factors control CYP46A1 expression, and are probably responsible for cell-type specificity. Herein, we have differentiated Ntera2/cloneD1 cells into post-mitotic neurons and identified for the first time a human cell model that expresses high levels of CYP46A1 mRNA. Our results show a decrease in Sp1 protein levels, concomitant with the increase in CYP46A1 mRNA levels. This decrease was correlated with changes in the ratio of Sp proteins associated to the CYP46A1 proximal promoter. To examine if the increase in (Sp3+Sp4)/Sp1 ratio was observed in other Sp-regulated promoters, we have selected four genes--reelin, glutamate receptor subunit zeta-1, glutamate receptor subunit epsilon-1 and μ-opioid receptor--known to be expressed in the human brain and analyzed the Sp proteins binding pattern to the promoter of these genes, in undifferentiated and differentiated Ntera2/cloneD1. Our data indicate that the dissociation of Sp1 from promoter regions is a common feature amongst Sp-regulated genes that are up-regulated after neuronal differentiation.
Collapse
Affiliation(s)
- Inês Milagre
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
25
|
Gowing G, Svendsen CN. Stem cell transplantation for motor neuron disease: current approaches and future perspectives. Neurotherapeutics 2011; 8:591-606. [PMID: 21904789 PMCID: PMC3210365 DOI: 10.1007/s13311-011-0068-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Motor neuron degeneration leading to muscle atrophy and death is a pathological hallmark of disorders, such as amyotrophic lateral sclerosis or spinal muscular atrophy. No effective treatment is available for these devastating diseases. At present, cell-based therapies targeting motor neuron replacement, support, or as a vehicle for the delivery of neuroprotective molecules are being investigated. Although many challenges and questions remain, the beneficial effects observed following transplantation therapy in animal models of motor neuron disease has sparked hope and a number of clinical trials. Here, we provide a comprehensive review of cell-based therapeutics for motor neuron disorders, with a particular emphasis on amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Genevieve Gowing
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Clive N. Svendsen
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| |
Collapse
|
26
|
Goodfellow CE, Graham SE, Dragunow M, Glass M. Characterization of NTera2/D1 cells as a model system for the investigation of cannabinoid function in human neurons and astrocytes. J Neurosci Res 2011; 89:1685-97. [PMID: 21674570 DOI: 10.1002/jnr.22692] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 04/03/2011] [Accepted: 04/17/2011] [Indexed: 12/12/2022]
Abstract
The limited availability and potential to culture primary human brain cells means that there is still a need for cell lines that reliably model human neurons and glial cells. The human-derived NTera2/D1 (NT2) cell line is a promising tool from which both neuronal (NT2N) and astrocytic (NT2A) cells can be derived in vitro. Here we have investigated the potential to use this cell model to investigate the endocannabinoid system in the CNS. Through immunocytochemical characterization with a range of neuronal and glial markers, we found that these cell lines differentiate into cells with immature neuronal and astrocytic phenotypes, respectively. By real-time PCR, immunocytochemistry, and functional inhibition of cAMP accumulation, the cannabinoid 1 receptors were identified only on NT2N cells, consistent with high levels of expression of this receptor in neuronal cells of the CNS. No evidence of cannabinoid 2 receptor expression was found on any of the NT2 cell types. Both the precursors and the differentiated NT2N and NT2A cells demonstrated mRNA expression for the key enzymes involved in endocannabinoid synthesis and degradation. This work establishes a cannabinergic phenotype in NT2N and NT2A cells, providing an alternative human derived renewable cell model for investigation of cannabinoid receptor function and endocannabinoid synthesis and metabolism in the CNS.
Collapse
Affiliation(s)
- Catherine E Goodfellow
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
27
|
Eaton MJ, Widerström-Noga E, Wolfe SQ. Subarachnoid Transplant of the Human Neuronal hNT2.19 Serotonergic Cell Line Attenuates Behavioral Hypersensitivity without Affecting Motor Dysfunction after Severe Contusive Spinal Cord Injury. Neurol Res Int 2011; 2011:891605. [PMID: 21799949 PMCID: PMC3135871 DOI: 10.1155/2011/891605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 03/21/2011] [Indexed: 11/21/2022] Open
Abstract
Transplant of cells which make biologic agents that can modulate the sensory and motor responses after spinal cord injury (SCI) would be useful to treat pain and paralysis. To address this need for clinically useful human cells, a unique neuronal cell line that synthesizes and secretes/releases the neurotransmitter serotonin (5HT) was isolated. Hind paw tactile allodynia and thermal hyperalgesia induced by severe contusive SCI were potently reversed after lumbar subarachnoid transplant of differentiated cells, but had no effect on open field motor scores, stride length, foot rotation, base of support, or gridwalk footfall errors associated with the SCI. The sensory effects appeared 1 week after transplant and did not diminish during the 8-week course of the experiment when grafts were placed 2 weeks after SCI. Many grafted cells were still present and synthesizing 5HT at the end of the study. These data suggest that the human neuronal serotonergic hNT2.19 cells can be used as a biologic minipump for receiving SCI-related neuropathic pain, but likely requires intraspinal grafts for motor recovery.
Collapse
Affiliation(s)
- Mary J. Eaton
- Miami VA Health System Center, D806C, 1201 NW 16th Street, Miami, FL 33125, USA
| | - Eva Widerström-Noga
- Miami VA Health System Center, D806C, 1201 NW 16th Street, Miami, FL 33125, USA
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Stacey Quintero Wolfe
- Department of Neurosurgery, Tripler Army Medical Center, 1 Jarrett White Road, Honolulu, HI 96859-5000, USA
| |
Collapse
|
28
|
Zhou L, Li J, Wang X, Ye L, Hou W, Ho J, Li H, Ho W. IL-29/IL-28A suppress HSV-1 infection of human NT2-N neurons. J Neurovirol 2011; 17:212-9. [PMID: 21499846 PMCID: PMC4444784 DOI: 10.1007/s13365-011-0031-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/08/2011] [Accepted: 03/14/2011] [Indexed: 12/22/2022]
Abstract
The newly identified cytokines, IL-28/IL-29 (also termed type III IFNs), are able to inhibit a number of viruses. Here, we examined the antiviral effects of IL-29/IL-28A against herpes simplex virus type 1 (HSV-1) in human NT2-N neurons and CHP212 neuronal cells. Both IL-29 and IL-28A could efficiently inhibit HSV-1 replication in neuronal cells, as evidenced by the reduced expression of HSV-1 DNA and proteins. This inhibitory effect of IL-29 and IL-28A against HSV-1 could be partially blocked by antibody to IL-10Rβ, one of the key receptors for IL-29 and IL-28A. To explore the underlying antiviral mechanisms employed by IL-29/IL-28A, we showed that IL-29/IL-28A could selectively induce the expression of several Toll-like receptors (TLRs) as well as activate TLR-mediated antiviral pathway, including IFN regulatory factor 7, IFN-α, and the key IFN-α stimulated antiviral genes.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Medical Education Research Building, 1052, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tegenge MA, Roloff F, Bicker G. Rapid differentiation of human embryonal carcinoma stem cells (NT2) into neurons for neurite outgrowth analysis. Cell Mol Neurobiol 2011; 31:635-43. [PMID: 21331625 DOI: 10.1007/s10571-011-9659-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 01/31/2011] [Indexed: 01/25/2023]
Abstract
Human neurons derived from stem cells can be employed as in vitro models to predict the potential of neurochemicals affecting neurodevelopmental cellular processes including proliferation, migration, and differentiation. Here, we developed a model of differentiating human neurons from well characterized human embryonal carcinoma stem cells (NT2). NT2 cells were induced to differentiate into neuronal phenotypes after 2 weeks of treatment with retinoic acid in aggregate culture. Nestin positive progenitor cells migrate out of NT2 aggregates and differentiate into βIII-tubulin expressing neuronal cells. Culturing the NT2 cells for an additional 7-14 days resulted in increased percentage of βIII-tubulin expressing cells, elaborating a long neurite that positively stained for axonal marker (Tau) and presynaptic protein (synapsin). We then asked whether neurite outgrowth from NT2 cells is modulated by bioactive chemicals. Since the cAMP/PKA pathway has been widely investigated as a regulator of neurite outgrowth/regeneration in several experimental systems, we used chemical activators and inhibitors of cAMP/PKA pathway in the culture. The adenylyl cyclase activator, forskolin, and cell-permeable analog of cAMP, 8-Br-cAMP increased the percentage of neurite bearing cells and neurite extension. Application of the protein kinase A inhibitors, H-89 and Rp-cAMP, blocked neurite formation. Taken together, NT2 aggregates undergo migration, differentiation, and neurite elaboration and can be used as a model of differentiating human neurons to screen neurochemicals and to understand cellular mechanisms of human nerve cell development.
Collapse
Affiliation(s)
- Million Adane Tegenge
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | | | | |
Collapse
|
30
|
GABAergic pathway in a rat model of chronic neuropathic pain: Modulation after intrathecal transplantation of a human neuronal cell line. Neurosci Res 2011; 69:111-20. [DOI: 10.1016/j.neures.2010.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/09/2010] [Accepted: 10/14/2010] [Indexed: 12/30/2022]
|
31
|
Coyle DE, Li J, Baccei M. Regional differentiation of retinoic acid-induced human pluripotent embryonic carcinoma stem cell neurons. PLoS One 2011; 6:e16174. [PMID: 21283767 PMCID: PMC3024414 DOI: 10.1371/journal.pone.0016174] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 12/08/2010] [Indexed: 11/18/2022] Open
Abstract
The NTERA2 cl D1 (NT2) cell line, derived from human teratocarcinoma, exhibits similar properties as embryonic stem (ES) cells or very early neuroepithelial progenitors. NT2 cells can be induced to become postmitotic central nervous system neurons (NT2N) with retinoic acid. Although neurons derived from pluripotent cells, such as NT2N, have been characterized for their neurotransmitter phenotypes, their potential suitability as a donor source for neural transplantation also depends on their ability to respond to localized environmental cues from a specific region of the CNS. Therefore, our study aimed to characterize the regional transcription factors that define the rostocaudal and dorsoventral identity of NT2N derived from a monolayer differentiation paradigm using quantitative PCR (qPCR). Purified NT2N mainly expressed both GABAergic and glutamatergic phenotypes and were electrically active but did not form functional synapses. The presence of immature astrocytes and possible radial glial cells was noted. The NT2N expressed a regional transcription factor code consistent with forebrain, hindbrain and spinal cord neural progenitors but showed minimal expression of midbrain phenotypes. In the dorsoventral plane NT2N expressed both dorsal and ventral neural progenitors. Of major interest was that even under the influence of retinoic acid, a known caudalization factor, the NT2N population maintained a rostral phenotype subpopulation which expressed cortical regional transcription factors. It is proposed that understanding the regional differentiation bias of neurons derived from pluripotent stem cells will facilitate their successful integration into existing neuronal networks within the CNS.
Collapse
Affiliation(s)
- Dennis E Coyle
- Department of Anesthesiology, University of Cincinnati, Cincinnati, Ohio, United States of America.
| | | | | |
Collapse
|
32
|
Enhancing Stroke Recovery with Cellular Therapies. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Podrygajlo G, Wiegreffe C, Scaal M, Bicker G. Integration of human model neurons (NT2) into embryonic chick nervous system. Dev Dyn 2010; 239:496-504. [PMID: 20034101 DOI: 10.1002/dvdy.22193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Postmitotic neurons were generated from the human NT2 teratocarcinoma cell line in a novel cell aggregate differentiation procedure. Approximately a third of the differentiated neurons expressed cell markers related to cholinergic neurotransmission. To examine whether this human cell model system can be directed toward a motoneuronal fate, postmitotic neurons were co-cultured with mouse myotubes. Outgrowing neuronal processes established close contact with the myotubes and formed neuromuscular junction-like structures that bound alpha-bungarotoxin. To determine how grafted precursor cells and neurons respond to embryonic nerve tissue, NT2 cells at different stages of neural development were injected into chick embryo neural tube and brain. Grafted NT2 neurons populated both parts of the nervous system, sometimes migrating away from the site of injection. The neural tube appeared to be more permissive for neurite extensions than the brain. Moreover, extending neurites of spinal grafts were approaching the ventral roots, thus resembling motoneuronal projections.
Collapse
Affiliation(s)
- Grzegorz Podrygajlo
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
34
|
Podrygajlo G, Song Y, Schlesinger F, Krampfl K, Bicker G. Synaptic currents and transmitter responses in human NT2 neurons differentiated in aggregate culture. Neurosci Lett 2009; 468:207-10. [PMID: 19895870 DOI: 10.1016/j.neulet.2009.10.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 10/28/2009] [Indexed: 12/15/2022]
Abstract
Postmitotic neurons were generated from the human NT2 teratocarcinoma cell line in a novel cell aggregate differentiation procedure. The NT2 model neurons express punctate immunoreactivity for synapsin and for cell markers related to GABAergic and glutamatergic neurotransmission. Using the outside-out patch-clamp configuration, we characterized the kinetics of currents elicited by a rapid application of the amino acid neurotransmitters. Moreover, we detected spontaneous postsynaptic currents in glia free cell cultures that may result from the firing activity of glutamatergic and GABAergic NT2 neurons. These cultured spontaneously active networks may be a useful tool to analyze factors that modulate the formation and efficacy of synapses between human neurons.
Collapse
Affiliation(s)
- Grzegorz Podrygajlo
- Div. of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
35
|
Tegenge MA, Stern M, Bicker G. Nitric oxide and cyclic nucleotide signal transduction modulates synaptic vesicle turnover in human model neurons. J Neurochem 2009; 111:1434-46. [PMID: 19807845 DOI: 10.1111/j.1471-4159.2009.06421.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human Ntera2 (NT2) teratocarcinoma cell line can be induced to differentiate into post-mitotic neurons. Here, we report that the human NT2 neurons generated by a spherical aggregate cell culture method express increasing levels of typical pre-synaptic proteins (synapsin and synaptotagmin I) along the neurite depending on the length of in vitro culture. By employing an antibody directed against the luminal domain of synaptotagmin I and the fluorescent dye N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide, we show that depolarized NT2 neurons display calcium-dependent exo-endocytotic synaptic vesicle recycling. NT2 neurons express the neuronal isoform of neuronal nitric oxide synthase and soluble guanylyl cyclase (sGC), the major receptor for nitric oxide (NO). We tested whether NO signal transduction modulates synaptic vesicle turnover in human NT2 neurons. NO donors and cylic guanosine-monophosphate analogs enhanced synaptic vesicle recycling while a sGC inhibitor blocked the effect of NO donors. Two NO donors, sodium nitroprusside, and and N-Ethyl-2-(1-ethyl-2-hydroxy-2-nitrosohydrazino) ethanamine evoked vesicle exocytosis which was partially blocked by the sGC inhibitor. The activator of adenylyl cyclase, forskolin, and a cAMP analog induced synaptic vesicle recycling and exocytosis via a parallel acting protein kinase A pathway. Our data from NT2 neurons suggest that NO/cyclic nucleotide signaling pathways may facilitate neurotransmitter release in human brain cells.
Collapse
Affiliation(s)
- Million Adane Tegenge
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | |
Collapse
|
36
|
Woehrling EK, Hill EJ, Coleman MD. Evaluation of the importance of astrocytes when screening for acute toxicity in neuronal cell systems. Neurotox Res 2009; 17:103-13. [PMID: 19593679 DOI: 10.1007/s12640-009-9084-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/24/2009] [Accepted: 07/01/2009] [Indexed: 12/17/2022]
Abstract
Reliable, high throughput, in vitro preliminary screening batteries have the potential to greatly accelerate the rate at which regulatory neurotoxicity data is generated. This study evaluated the importance of astrocytes when predicting acute toxic potential using a neuronal screening battery of pure neuronal (NT2.N) and astrocytic (NT2.A) and integrated neuronal/astrocytic (NT2.N/A) cell systems derived from the human NT2.D1 cell line, using biochemical endpoints (mitochondrial membrane potential (MMP) depolarisation and ATP and GSH depletion). Following exposure for 72 h, the known acute human neurotoxicants trimethyltin-chloride, chloroquine and 6-hydroxydopamine were frequently capable of disrupting biochemical processes in all of the cell systems at non-cytotoxic concentrations. Astrocytes provide key metabolic and protective support to neurons during toxic challenge in vivo and generally the astrocyte containing cell systems showed increased tolerance to toxicant insult compared with the NT2.N mono-culture in vitro. Whilst there was no consistent relationship between MMP, ATP and GSH log IC(50) values for the NT2.N/A and NT2.A cell systems, these data did provide preliminary evidence of modulation of the acute neuronal toxic response by astrocytes. In conclusion, the suitability of NT2 neurons and astrocytes as cell systems for acute toxicity screening deserves further investigation.
Collapse
Affiliation(s)
- E K Woehrling
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| | | | | |
Collapse
|
37
|
Garbuzova-Davis S, Willing AE, Saporta S, Justen EB, Misiuta IE, Dellis J, Sanberg PR. Multiple transplants of hNT cells into the spinal cord of SOD1 mouse model of familial amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2009; 7:221-6. [PMID: 17127560 DOI: 10.1080/17482960600864470] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
hNT cells, derived from a human teratocarcinoma cell line, are versatile neuron-like cells that have been studied as possible treatment vehicles for neurodegenerative diseases. Previously, we showed the postponement of motor deficit symptoms in a G93A mouse model of amyotrophic lateral sclerosis (ALS) by transplanting hNT cells into the lumbar spinal cord. In this study, we examined the engraftment of hNT cells at multiple sites within the lumbar spinal cord by morphological analysis of neuritic process development. Results demonstrated that cells implanted at multiple sites established neuritic processes of different lengths independent of the number of cell implants. The hNT fiber outgrowth was a maximum of 0.15-0.3 mm from the transplants and mostly spread within the gray matter; interconnections between implants were not found. Therefore, we suggest that the observed postponement of motor deficit symptoms in G93A mice was not a result of neuritic outgrowth from the implanted hNT cells.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Health Sciences Center, Tampa, FL 33612, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Pistritto G, Papacleovoulou G, Ragone G, Di Cesare S, Papaleo V, Mason JI, Barbaccia ML. Differentiation-dependent progesterone synthesis and metabolism in NT2-N human neurons. Exp Neurol 2009; 217:302-11. [DOI: 10.1016/j.expneurol.2009.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/03/2009] [Accepted: 03/06/2009] [Indexed: 12/11/2022]
|
39
|
Podrygajlo G, Tegenge MA, Gierse A, Paquet-Durand F, Tan S, Bicker G, Stern M. Cellular phenotypes of human model neurons (NT2) after differentiation in aggregate culture. Cell Tissue Res 2009; 336:439-52. [PMID: 19377856 DOI: 10.1007/s00441-009-0783-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/12/2009] [Indexed: 11/25/2022]
Abstract
The well-characterized human teratocarcinoma line Ntera2 (NT2) can be differentiated into mature neurons. We have significantly shortened the time-consuming process for generating postmitotic neurons to approximately 4 weeks by introducing a differentiation protocol for free-floating cell aggregates and a subsequent purification step. Here, we characterize the neurochemical phenotypes of the neurons derived from this cell aggregate method. During differentiation, the NT2 cells lose immunoreactivity for vimentin and nestin filaments, which are characteristic for the immature state of neuronal precursors. Instead, they acquire typical neuronal markers such as beta-tubulin type III, microtubule-associated protein 2, and phosphorylated tau, but no astrocyte markers such as glial fibrillary acidic protein. They grow neural processes that express punctate immunoreactivity for synapsin and synaptotagmin suggesting the formation of presynaptic structures. Despite their common clonal origin, neurons cultured for 2-4 weeks in vitro comprise a heterogeneous population expressing several neurotransmitter phenotypes. Approximately 40% of the neurons display glutamatergic markers. A minority of neurons is immunoreactive for serotonin, gamma-amino-butyric acid, and its synthesizing enzyme glutamic acid decarboxylase. We have found no evidence for a dopaminergic phenotype. Subgroups of NT2 neurons respond to the application of nitric oxide donors with the synthesis of cGMP. A major subset shows immunoreactivity to the cholinergic markers choline acetyl-transferase, vesicular acetylcholine transporter, and the non-phosphorylated form of neurofilament H, all indicative of motor neurons. The NT2 system may thus be well suited for research related to motor neuron diseases.
Collapse
Affiliation(s)
- Grzegorz Podrygajlo
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhou L, Wang X, Wang Y, Zhou Y, Hu S, Ye L, Hou W, Li H, Ho W. Activation of toll-like receptor-3 induces interferon-lambda expression in human neuronal cells. Neuroscience 2009; 159:629-37. [PMID: 19166911 PMCID: PMC2650740 DOI: 10.1016/j.neuroscience.2008.12.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 12/19/2008] [Accepted: 12/20/2008] [Indexed: 12/20/2022]
Abstract
We examined the gene expression and regulation of type III human interferon (IFN), IFN-lambda, in human neuronal cells. Human neuronal cells expressed endogenous IFN-lambda1 but not IFN-lambda2/3. Upon the activation of Toll-like receptor (TLR)-3 expressed in the neuronal cells by polyriboinosinic polyribocytidylic acid (PolyI:C), both IFN-lambda1 and IFN-lambda2/3 expression was significantly induced. The activation of TLR-3 also exhibited antiviral activity against pseudotyped human immunodeficiency virus (HIV)-1 infection of the neuronal cells. Human neuronal cells also expressed functional IFN-lambda receptor complex, interleukin-28 receptor alpha subunit (IL-28Ralpha) and IL-10Rbeta, as evidenced by the observations that exogenous IFN-lambda treatment inhibited pseudotyped HIV-1 infection of the neuronal cells and induced the expression of apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC)3G/3F, the newly identified anti-HIV-1 cellular factors. These data provide direct and compelling evidence that there is intracellular expression and regulation of IFN-lambda in human neuronal cells, which may have an important role in the innate neuronal protection against viral infections in the CNS.
Collapse
Affiliation(s)
- L. Zhou
- Division of Allergy & Immunology, Joseph Stokes, Jr. Research Institute at The Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, U.S.A
- Division of Histology & Embryology, Department of Anatomy, Tongji Medical college of Huazhong University of Science & Technology, Wuhan, Hubei 430030, P.R. China
| | - X. Wang
- Division of Allergy & Immunology, Joseph Stokes, Jr. Research Institute at The Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, U.S.A
| | - Y.J. Wang
- Division of Allergy & Immunology, Joseph Stokes, Jr. Research Institute at The Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, U.S.A
| | - Y. Zhou
- Division of Allergy & Immunology, Joseph Stokes, Jr. Research Institute at The Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, U.S.A
| | - S.X. Hu
- Neuroimmunolgy laboratory, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, Minnesota, U.S.A
| | - L. Ye
- Division of Allergy & Immunology, Joseph Stokes, Jr. Research Institute at The Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, U.S.A
| | - W. Hou
- Division of Allergy & Immunology, Joseph Stokes, Jr. Research Institute at The Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, U.S.A
| | - H. Li
- Division of Histology & Embryology, Department of Anatomy, Tongji Medical college of Huazhong University of Science & Technology, Wuhan, Hubei 430030, P.R. China
| | - W.Z. Ho
- Division of Allergy & Immunology, Joseph Stokes, Jr. Research Institute at The Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, U.S.A
| |
Collapse
|
41
|
Wang YJ, Wang X, Zhang H, Zhou L, Liu S, Kolson DL, Song L, Ye L, Ho WZ. Expression and regulation of antiviral protein APOBEC3G in human neuronal cells. J Neuroimmunol 2008; 206:14-21. [PMID: 19027180 DOI: 10.1016/j.jneuroim.2008.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/30/2008] [Accepted: 10/10/2008] [Indexed: 12/11/2022]
Abstract
Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) has recently been identified as a potent antiviral protein. Here, we examined the expression and regulation of APOBEC3G in human brain tissues and the cells of central nervous system (CNS). Similar to the immune cells, human brain tissue and the CNS cells expressed APOBEC3G at both mRNA and protein levels. The expression of APOBEC3G could be up-regulated in human neuronal cells (NT2-N) and astrocytes (U87-MG) by interferons (IFN-alpha, beta and gamma), interleukin-1 (IL-1), and tumor necrosis factor. Other cytokines (IL-4, IL-6 and transforming growth factor beta1) and CC-chemokines (CCL3, 4 and 5), however, had little impact on the expression of APOBEC3G. In addition, pseudotyped HIV-1 infection and cytokine/chemokine-enriched supernatants from lipopolysaccharide-stimulated macrophage cultures induced APOBEC3G expression in NT2-N cells. APOBEC3G expressed in the neuronal cells and astrocytes was biologically functional, as the suppression of APOBEC3G expression by the specific siRNA led to increase of pseudotyped HIV-1 replication in these cells. These findings provide direct and compelling evidence that there is intracellular expression and regulation of functional APOBEC3G in the neuronal cells, which may be one of innate defense mechanisms involved in the neuronal protection in the CNS.
Collapse
Affiliation(s)
- Yan-Jian Wang
- Division of Allergy & Immunology, Joseph Stokes, Jr. Research Institute at The Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wan Q, Wang X, Wang YJ, Song L, Wang SH, Ho WZ. Morphine suppresses intracellular interferon-alpha expression in neuronal cells. J Neuroimmunol 2008; 199:1-9. [PMID: 18562017 DOI: 10.1016/j.jneuroim.2008.04.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 04/09/2008] [Accepted: 04/14/2008] [Indexed: 11/30/2022]
Abstract
Interferon alpha (IFN-alpha) not only plays a key role in innate host immunity against infections but also is involved in the cellular functions of the central nervous system (CNS). In this study, we examined the impact of morphine on IFN-alpha expression in human neuronal cells (NT2-N). Similar to human immune cells, NT2-N cells also expressed IFN-alpha at both mRNA and protein levels. IFN-alpha expression in NT2-N cells, however, was inhibited by morphine. Naltrexone antagonized the inhibitory effect of morphine on IFN-alpha expression in NT2-N cells. The specific mu opioid receptor antagonist, Cys2, Tyr3, Arg5, Pen7-amide (CTAP), also blocked the morphine action on intracellular IFN-alpha expression. Investigation of the mechanisms involved in the morphine action showed that although morphine had little effect on the expression of key IFN regulatory factors (IRFs), morphine inhibited IFN-alpha promoter activation and suppressed the expression and phosphorylation of signal transducer and activator of transcription 1 (STAT1) in the neuronal cells. These findings provide direct in vitro evidence that opioids may impair neuronal cell-mediated innate protection in the CNS.
Collapse
Affiliation(s)
- Qi Wan
- Division of Allergy and Immunology, Joseph Stokes, Jr. Research Institute at The Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | |
Collapse
|
43
|
Stem cells: implications in experimental ischaemic stroke therapy. ACTA ACUST UNITED AC 2008; 4:227-33. [PMID: 18516704 DOI: 10.1007/s12015-008-9025-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2008] [Indexed: 12/19/2022]
Abstract
Ischaemic stroke is a syndrome characterized by rapid onset of neurological injury due to interruption of blood flow to the brain. Widespread neuronal damage throughout the CNS has been shown to cause marked and multifarious functional impairments in the ischaemic brain. Recent advances as enumerated above have propelled acute ischaemic stroke management into a therapeutic era. However, once the damage from a stroke event has maximized, little can be done to recover premorbid function. Experimental animal data suggests that stem cell therapy may be an effective alternate to the conventional disease management strategies of ischaemic stroke. Therefore, the present review focuses on detailing the scope of stem cell therapy in the treatment of ischaemic stroke.
Collapse
|
44
|
Li Y, Hou LXE, Aktiv A, Dahlström A. Studies of the central nervous system-derived CAD cell line, a suitable model for intraneuronal transport studies? J Neurosci Res 2008; 85:2601-9. [PMID: 17335077 DOI: 10.1002/jnr.21216] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The CAD cell line is a variant of a CNS-derived Cath.a cell line established by targeted oncogenesis in transgenic mice. Cell differentiation of the cell line can be induced by "starvation," i.e., removal of serum from the culture medium (protein-free medium). The differentiated CAD cells extend long processes, which ultrastructurally contain abundant microtubules, intermediate filaments, and various synaptic vesicles/organelles in the varicose enlargements, thus resembling neurites. Histochemical studies demonstrated that the differentiated cells express a number of synaptic vesicle proteins, cytoskeletons, different neurotransmitter enzymes, neuropeptides, and glia proteins. The data suggest that the differentiated CAD cells may be a suitable model for studies of intraneuronal transport, recycling of receptors, and pharmacological investigations.
Collapse
Affiliation(s)
- Yongling Li
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Göteborg University, Göteborg, Sweden.
| | | | | | | |
Collapse
|
45
|
Pedersen ED, Aass HCD, Rootwelt T, Fung M, Lambris JD, Mollnes TE. CD59 efficiently protects human NT2-N neurons against complement-mediated damage. Scand J Immunol 2007; 66:345-51. [PMID: 17635812 DOI: 10.1111/j.1365-3083.2007.01959.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The complement regulatory protein CD59 controls cell survival by the inhibition of C5b-9 formation on the cell membrane. Loss of CD59 increases the susceptibility of cells to complement-mediated damage and lysis. Deposition of IgM can induce complement activation with subsequent cell death. We have previously demonstrated the presence of CD59 on human NT2-N neurons. In this study, we investigated the functional role of CD59 for NT2-N cell survival after IgM-mediated complement activation. Complement activation was induced on NT2-N neurons with human serum following incubation with the IgM monoclonal antibody A2B5 reacting with a neuronal cell membrane epitope. Deposition of C1q and C5b-9 was detected on the cell membrane and sC5b-9 in the culture supernatant. Specific inhibition of complement was obtained by the C3 inhibitor compstatin, and by anti-C5/C5a MoAb. CD59 was blocked by the MoAb BRIC 229. Membrane damage of propidium iodide-stained NT2-N cells was confirmed by immunofluorescence microscopy and degeneration of neuronal processes was shown with crystal violet staining. A2B5, but not the irrelevant control IgM antibody, induced complement activation on NT2-N neurons after incubation with a human serum, as detected by the deposition of C1q. A marked membrane deposition of C5b-9 on NT2-N neurons with accompanying cell death and axonal degeneration was found after the blocking of CD59 with MoAb BRIC 229 but not with an isotype-matched control antibody. Compstatin and anti-C5 monoclonal antibodies which blocked C5 activation efficiently inhibited complement activation. In conclusion, CD59 is essential for protecting human NT2-N neurons against complement-mediated damage, which is known to occur in a number of clinical conditions including stroke.
Collapse
Affiliation(s)
- E D Pedersen
- Institute of Immunology, Rikshospitalet HF, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
46
|
Chen Y, Kundakovic M, Agis-Balboa RC, Pinna G, Grayson DR. Induction of the reelin promoter by retinoic acid is mediated by Sp1. J Neurochem 2007; 103:650-65. [PMID: 17666047 DOI: 10.1111/j.1471-4159.2007.04797.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have previously described the cloning of the human reelin promoter and provided evidence that it is regulated, in part, through changes in methylation. Results from our current studies provide a more detailed analysis of this promoter and the interactions of the transcription factors Sp1 and paired box gene 6 (Pax6) with their recognition sites. The promoter was studied in NT2 cells which are a neuroprogenitor line that undergoes differentiation in vitro. We examined reelin mRNA and promoter induction following a 6-day treatment of these cells with retinoic acid (RA). Deletion and site-directed mutations showed functionally relevant sequences necessary for regulation. Gel-shift assays demonstrated that the main site of action of the promoter lies within a closely packed ( approximately 25 bp) region in which these transcription factors likely bind, possibly forming a DNA/protein complex. Based on our results, it appears likely that RA-induces reelin expression through a critical Sp1 site that resides adjacent to the Pax6 site within this multisite enhancer region. We show that induction of the reelin promoter with RA is accompanied by higher amounts of Sp1 and Pax6 binding to this region. Finally, we show that while mutations in the Sp1 site prevent the RA-mediated promoter induction, similar mutations in the Pax6 site do not. The data suggest that while the Pax6 site plays a role in modulating reelin expression, it is not absolutely required for induction by RA.
Collapse
Affiliation(s)
- Ying Chen
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Psychiatric Institute, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
47
|
Serra M, Leite SB, Brito C, Costa J, Carrondo MJT, Alves PM. Novel culture strategy for human stem cell proliferation and neuronal differentiation. J Neurosci Res 2007; 85:3557-66. [PMID: 17868148 DOI: 10.1002/jnr.21451] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Embryonal carcinoma (EC) stem cells derived from germ cell tumors closely resemble embryonic stem (ES) cells and are valuable tools for the study of embryogenesis. Human pluripotent NT2 cell line, derived from a teratocarcinoma, can be induced to differentiate into neurons (NT2-N) after retinoic acid treatment. To realize the full potential of stem cells, developing in vitro methods for stem cell proliferation and differentiation is a key challenge. Herein, a novel culture strategy for NT2 neuronal differentiation was developed to expand NT2-N neurons, reduce the time required for the differentiation process, and increase the final yields of NT2-N neurons. NT2 cells were cultured as 3D cell aggregates ("neurospheres") in the presence of retinoic acid, using small-scale stirred bioreactors; it was possible to obtain a homogeneous neurosphere population, which can be transferred for further neuronal selection onto coated surfaces. This culturing strategy yields higher amounts of NT2-N neurons with increased purity compared with the amounts routinely obtained with static cultures. Moreover, mechanical and enzymatic methods for neurosphere dissociation were evaluated for their ability to recover neurons, trypsin digestion yielding the best results. Nevertheless, the highest recoveries were obtained when neurospheres were collected directly to treated surfaces without dissociation steps. This novel culture strategy allows drastic improvement in the neuronal differentiation efficiency of NT2 cells, insofar as a fourfold increase was obtained, reducing simultaneously the time needed for the differentiation process. The culture method described herein ensures efficient, reproducible, and scaleable ES cell proliferation and differentiation, contributing to the usefulness of stem cell bioengineering.
Collapse
Affiliation(s)
- Margarida Serra
- Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica (IBET/ITQB), Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
48
|
Eaton MJ, Wolfe SQ, Martinez M, Hernandez M, Furst C, Huang J, Frydel BR, Gómez-Marín O. Subarachnoid Transplant of a Human Neuronal Cell Line Attenuates Chronic Allodynia and Hyperalgesia After Excitotoxic Spinal Cord Injury in the Rat. THE JOURNAL OF PAIN 2007; 8:33-50. [PMID: 17207742 DOI: 10.1016/j.jpain.2006.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 05/11/2006] [Accepted: 05/20/2006] [Indexed: 10/23/2022]
Abstract
UNLABELLED The relief of neuropathic pain after spinal cord injury (SCI) remains daunting, because pharmacologic intervention works incompletely and is accompanied by multiple side effects. Transplantation of human cells that make specific biologic agents that can potentially modulate the sensory responses that are painful would be very useful to treat problems such as pain. To address this need for clinically useful human cells, the human neuronal NT2 cell line was used as a source to isolate a unique human neuronal cell line that synthesizes and secretes/releases the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine. This new cell line, hNT2.17, expresses an exclusively neuronal phenotype, does not incorporate bromodeoxyuridine during differentiation, and does not express the tumor-related proteins fibroblast growth factor 4 and transforming growth factor-alpha during differentiation after 2 weeks of treatment with retinoic acid and mitotic inhibitors. The transplant of predifferentiated hNT2.17 cells was used in the excitotoxic SCI pain model, after intraspinal injection of the mixed AMPA/metabotropic receptor agonist quisqualic acid (QUIS). When hNT2.17 cells were transplanted into the lumbar subarachnoid space, tactile allodynia and thermal hyperalgesia induced by the injury were quickly and potently reversed. Control cell transplants of nonviable hNT2.17 cells had no effect on the hypersensitivity induced by QUIS. The effects of hNT2.17 cell grafts appeared 1 week after transplants and did not diminish during the 8-week course of the experiment when grafts were placed 2 weeks after SCI. Immunohistochemistry and quantification of the human grafts were used to ensure that many grafted cells were still present and synthesizing GABA at the end of the study. These data suggest that the human neuronal hNT2.17 cells can be used as a "biologic minipump" for antinociception in models of SCI and neuropathic pain. PERSPECTIVE This study describes the initial characterization and use of a human-derived cell line to treat neuropathic pain that would be suitable for clinical application, once further tested for safety and approved by the Food and Drug Administration. A dose of these human cells could be delivered with a spinal tap and affect the intrathecal spinal environment for sensory system modulation.
Collapse
Affiliation(s)
- Mary J Eaton
- VA RR&D Center of Excellence in Functional Recovery in Chronic Spinal Cord Injury, VAMC, Miami, FL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chapman H, Piggot C, Andrews PW, Wann KT. Characterisation of large-conductance calcium-activated potassium channels (BK(Ca)) in human NT2-N cells. Brain Res 2006; 1129:15-25. [PMID: 17156763 DOI: 10.1016/j.brainres.2006.10.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 09/26/2006] [Accepted: 10/26/2006] [Indexed: 11/16/2022]
Abstract
Large-conductance calcium-activated potassium (BK(Ca)) channels were studied in inside-out patches of human NTERA2 neuronal cells (NT2-N). In symmetrical (140 mM) K(+) the channel mean conductance was 265 pS, the current reversing at approximately 0 mV. It was selective (P(K)/P(Na)=20:1) and blocked by internal paxilline and TEA. The open probability-voltage relationship for BK(Ca) was fitted with a Boltzmann function, the V((1/2)) being 76.3 mV, 33.6 mV and -14.1 mV at 0.1 muM, 3.3 muM and 10 muM [Ca(2+)](i), respectively. The relationship between open probability and [Ca(2+)](i) was fitted by the Hill equation (Hill coefficient 2.7, half maximal activation at 2.0 muM [Ca(2+)](i)). Open and closed dwell time histograms were fitted by the sum of two and three voltage-dependent exponentials, respectively. Increasing [Ca(2+)](i) produced both an increase in the longer open time constant and a decrease in the longest closed time constant, so increasing mean open time. "Intracellular" ATP evoked a concentration-dependent increase in NT2-N BK(Ca) activity. At +40 mV half-maximum activation occurred at an [ATP](i) of 3 mM (30 nM [Ca(2+)](i)). ADP and GTP were less potent, and AMP-PNP was inactive. This is the first characterisation of a potassium channel in NT2-N cells showing that it is similar to the BK(Ca) channel of other preparations.
Collapse
Affiliation(s)
- H Chapman
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3XF, UK
| | | | | | | |
Collapse
|
50
|
Pedersen ED, Frøyland E, Kvissel AK, Pharo AM, Skålhegg BS, Rootwelt T, Mollnes TE. Expression of complement regulators and receptors on human NT2-N neurons--effect of hypoxia and reoxygenation. Mol Immunol 2006; 44:2459-68. [PMID: 17116331 DOI: 10.1016/j.molimm.2006.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 10/10/2006] [Indexed: 11/23/2022]
Abstract
Complement activation can cause tissue damage in cerebral stroke by the release of biologically potent activation products and impaired function of regulatory proteins. We investigated the constitutive and hypoxia-reoxygenation-dependent expression of complement receptor 1 (CD35), membrane cofactor protein (CD46), decay-accelerating factor (CD55), protectin (CD59), and complement C3a and C5a receptors (C3aR and C5aR) on human NT2-N neurons. The effect of hypoxia-reoxygenation on C3d-deposition on neurons and endothelial cells was also investigated. NT2-N neurons were examined by cellular enzyme-linked immunosorbent assay and immunofluorescence microscopy. Endothelial cells were examined by flow cytometry. Three hours 1% or 0.1% hypoxia and 21h reoxygenation with 50% AB-serum were used to investigate the effect of hypoxia-reoxygenation on regulators and C3d-deposition. NT2-N neurons expressed significant amounts of CD59 (Clone H19/Clone BRIC229: p=0.000006/p=0.000003), CD46 (p=0.00006), CD55 (p=0.003) and C3aR (p=0.00003). CD35 and C5aR were not significantly expressed. There were no effects of hypoxia-reoxygenation on any of the regulators or receptors after 1% hypoxia and reoxygenation. However, CD55 (p=0.02) was down-regulated after 0.1% hypoxia and subsequent reoxygenation with AB-serum. There were no difference observed in the C3d-deposition during hypoxia-reoxygenation in either neurons or endothelial cells. In conclusion, human NT2-N neurons constitutively express C3aR, CD46, CD55 and, in particular, CD59. The cells may respond to locally produced C3a and, at the same time, be well protected against complement attack. Although severe hypoxia-reoxygenation may down-regulate CD55 expression, it does not seem to influence C3d-deposition.
Collapse
Affiliation(s)
- Elena D Pedersen
- Institute of Immunology, Rikshospitalet-Radiumhospitalet Medical Center, University of Oslo, N-0027 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|