1
|
Wang S, Fan P, Liu W, Hu B, Guo J, Wang Z, Zhu S, Zhao Y, Fan J, Li G, Xu L. Research Progress of Flexible Electronic Devices Based on Electrospun Nanofibers. ACS NANO 2024. [PMID: 39499656 DOI: 10.1021/acsnano.4c13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Electrospun nanofibers have become an important component in fabricating flexible electronic devices because of their permeability, flexibility, stretchability, and conformability to three-dimensional curved surfaces. This review delves into the advancements in adaptable and flexible electronic devices using electrospun nanofibers as the substrates and explores their diverse and innovative applications. The primary development of key substrates for flexible devices is summarized. After briefly discussing the principle of electrospinning, process parameters that affect electrospinning, and two major electrospinning techniques (i.e., single-fluid electrospinning and multifluid electrospinning), the review shines a spotlight on the recent breakthroughs in multifunctional and stretchable electronic devices that are based on electrospun substrates. These advancements include flexible sensors, flexible energy harvesting and storage devices, flexible accessories for electronic devices, and flexible environmental monitoring devices. In particular, the review outlines the challenges and potential solutions of developing electrospun nanofibers for flexible electronic devices, including overcoming the incompatibility of multiple interfaces, developing 3D microstructure sensor arrays with gradient geometry for various imperceptible on-skin devices, etc. This review may provide a comprehensive understanding of the rational design of application-oriented flexible electronic devices based on electrospun nanofibers.
Collapse
Affiliation(s)
- Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
| | - Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Wenbo Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Jiaxuan Guo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Zizhao Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Shengke Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Yipu Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Guisheng Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, P. R. China
| |
Collapse
|
2
|
Dong J, Hou J, Peng Y, Zhang Y, Liu H, Long J, Park S, Liu T, Huang Y. Breathable and Stretchable Epidermal Electronics for Health Management: Recent Advances and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409071. [PMID: 39420650 DOI: 10.1002/adma.202409071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/07/2024] [Indexed: 10/19/2024]
Abstract
Advanced epidermal electronic devices, capable of real-time monitoring of physical, physiological, and biochemical signals and administering appropriate therapeutics, are revolutionizing personalized healthcare technology. However, conventional portable electronic devices are predominantly constructed from impermeable and rigid materials, which thus leads to the mechanical and biochemical disparities between the devices and human tissues, resulting in skin irritation, tissue damage, compromised signal-to-noise ratio (SNR), and limited operational lifespans. To address these limitations, a new generation of wearable on-skin electronics built on stretchable and porous substrates has emerged. These substrates offer significant advantages including breathability, conformability, biocompatibility, and mechanical robustness, thus providing solutions for the aforementioned challenges. However, given their diverse nature and varying application scenarios, the careful selection and engineering of suitable substrates is paramount when developing high-performance on-skin electronics tailored to specific applications. This comprehensive review begins with an overview of various stretchable porous substrates, specifically focusing on their fundamental design principles, fabrication processes, and practical applications. Subsequently, a concise comparison of various methods is offered to fabricate epidermal electronics by applying these porous substrates. Following these, the latest advancements and applications of these electronics are highlighted. Finally, the current challenges are summarized and potential future directions in this dynamic field are explored.
Collapse
Affiliation(s)
- Jiancheng Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiayu Hou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yidong Peng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuxi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Haoran Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiayan Long
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yunpeng Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Childs A, Mayol B, Lasalde-Ramírez JA, Song Y, Sempionatto JR, Gao W. Diving into Sweat: Advances, Challenges, and Future Directions in Wearable Sweat Sensing. ACS NANO 2024; 18:24605-24616. [PMID: 39185844 DOI: 10.1021/acsnano.4c10344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Sweat analysis has advanced from diagnosing cystic fibrosis and testing for illicit drugs to noninvasive monitoring of health biomarkers. This article introduces the rapid development of wearable and flexible sweat sensors, highlighting key milestones and various sensing strategies for real-time monitoring of analytes. We discuss challenges such as developing high-performance nanomaterial-based biosensors, ensuring continuous sweat production and sampling, achieving high sweat/blood correlation, and biocompatibility. The potential of machine learning to enhance these sensors for personalized healthcare is presented, enabling real-time tracking and prediction of physiological changes and disease onset. Leveraging advancements in flexible electronics, nanomaterials, biosensing, and data analytics, wearable sweat biosensors promise to revolutionize disease management, prevention, and prediction, promoting healthier lifestyles and transforming medical practices globally.
Collapse
Affiliation(s)
- Andre Childs
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Beatriz Mayol
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - José A Lasalde-Ramírez
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Juliane R Sempionatto
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Peng H, Liu T, Zhao Y, Li L, Du P, Li H, Yan F, Zhai T. Ultrahigh Responsivity and Robust Semiconducting Fiber Enabled by Molecular Soldering-Governed Defect Engineering for Smart Textile Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406353. [PMID: 39049581 DOI: 10.1002/adma.202406353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Semiconducting fibers (SCFs) are of significant interest to design next-generation wearable and comfortable optoelectronics that seamlessly integrate with textiles. However, the practical applications of current SCFs are always limited by poor optoelectronic performance and low mechanical robustness caused by uncontrollable multiscale structural defects. Herein, a versatile in situ molecular soldering-governed defect engineering strategy is proposed to construct ultrahigh responsivity and robust wet-spun MoS2 SCFs, by using a π-conjugated dithiolated molecule to simultaneously patch microscale sulfur vacancies within MoS2 nanosheets, diminish mesoscale interlayer voids/wrinkles, promote macroscale orientation, build long-range photoelectron percolation bridges, and provide n-doping effect. The derived MoS2 SCFs exhibit over two orders of magnitude higher responsivity (144.3 A W-1) than previously reported fiber photodetectors, 37.3-fold faster photoresponse speed (52 ms) than pristine counterpart, and remarkable bending robustness (retain 94.2% of the initial photocurrent after 50 000 bending-flattening cycles). Such superior robustness and photodetection capacity of MoS2 SCFs further enable large-scale weaving of reliable smart textile optoelectronic systems, such as direction-identifiable wireless light alarming system, modularized mechano-optical communication system, and indoor light-controlled IoT system. This work offers a universal strategy for the scalable production of mechanically robust and high-performance SCFs, opening up exciting possibilities for large-scale integration of wearable optoelectronics.
Collapse
Affiliation(s)
- Hongyun Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Teng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Liang Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Peipei Du
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, R. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, R. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Optics Valley Laboratory, Hubei, 430074, P. R. China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, 518057, P. R. China
| |
Collapse
|
5
|
Wu B, Wu T, Huang Z, Ji S. Advancing Flexible Sensors through On-Demand Regulation of Supramolecular Nanostructures. ACS NANO 2024; 18:22664-22674. [PMID: 39152049 DOI: 10.1021/acsnano.4c08310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The evolution of flexible sensors heavily relies on advances in soft-material design and sensing mechanisms. Supramolecular chemistry offers a powerful toolbox for manipulating nanoscale and molecular structures within soft materials, thus fostering recent advancements in flexible sensors and electronics. Supramolecular interactions have been utilized to nanoengineer functional sensing materials or construct chemical sensors with lower cost and broader targets. In this perspective, we will highlight the use of supramolecular interactions to regulate and optimize nanostructures within functional soft materials and illustrate their importance in expanding the nanocavities of bioreceptors for chemical sensing. Overall, a bridge between tissue-mimicking flexible sensors and cell-mimetic supramolecular chemistry has been built, which will further advance human healthcare innovation.
Collapse
Affiliation(s)
- Bohang Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), College of Nano Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P.R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Tong Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Zehuan Huang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Shaobo Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), College of Nano Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
6
|
Park H, Kim D, Kim S, Na M, Kim Y, Sim K. Chemically and physically enhanced adhesion for robust interfaces in all-soft vertical organic photodetectors. Chem Commun (Camb) 2024; 60:9262-9265. [PMID: 39119713 DOI: 10.1039/d4cc03214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
We report all-soft vertical organic photodetectors composed of only soft components. Chemically and physically enhanced interfacial adhesion between layers enables robust operation under mechanical deformation. Their excellent light-sensing capability and deformable features, combined with powerless operation, promise significant advancements in optoelectronic applications.
Collapse
Affiliation(s)
- Haechan Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Daeun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Sehyun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Myeonghyeon Na
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Yeeun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Kyoseung Sim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- X-Dynamic Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
7
|
Xu Y, Ye Z, Zhao G, Fei Q, Chen Z, Li J, Yang M, Ren Y, Berigan B, Ling Y, Qian X, Shi L, Ozden I, Xie J, Gao W, Chen PY, Yan Z. Phase-separated porous nanocomposite with ultralow percolation threshold for wireless bioelectronics. NATURE NANOTECHNOLOGY 2024; 19:1158-1167. [PMID: 38684805 PMCID: PMC11330368 DOI: 10.1038/s41565-024-01658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
Realizing the full potential of stretchable bioelectronics in wearables, biomedical implants and soft robotics necessitates conductive elastic composites that are intrinsically soft, highly conductive and strain resilient. However, existing composites usually compromise electrical durability and performance due to disrupted conductive paths under strain and rely heavily on a high content of conductive filler. Here we present an in situ phase-separation method that facilitates microscale silver nanowire assembly and creates self-organized percolation networks on pore surfaces. The resultant nanocomposites are highly conductive, strain insensitive and fatigue tolerant, while minimizing filler usage. Their resilience is rooted in multiscale porous polymer matrices that dissipate stress and rigid conductive fillers adapting to strain-induced geometry changes. Notably, the presence of porous microstructures reduces the percolation threshold (Vc = 0.00062) by 48-fold and suppresses electrical degradation even under strains exceeding 600%. Theoretical calculations yield results that are quantitatively consistent with experimental findings. By pairing these nanocomposites with near-field communication technologies, we have demonstrated stretchable wireless power and data transmission solutions that are ideal for both skin-interfaced and implanted bioelectronics. The systems enable battery-free wireless powering and sensing of a range of sweat biomarkers-with less than 10% performance variation even at 50% strain. Ultimately, our strategy offers expansive material options for diverse applications.
Collapse
Affiliation(s)
- Yadong Xu
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Zhilu Ye
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Qihui Fei
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Zehua Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Jiahong Li
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Minye Yang
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yichong Ren
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Benton Berigan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Yun Ling
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Xiaoyan Qian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Lin Shi
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Ilker Ozden
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA.
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA.
- Materials Science and Engineering Institute, University of Missouri, Columbia, MO, USA.
- NextGen Precision Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
8
|
Du R, Bao T, Kong D, Zhang Q, Jia X. Cyclodextrins-Based Polyrotaxanes: From Functional Polymers to Applications in Electronics and Energy Storage Materials. Chempluschem 2024; 89:e202300706. [PMID: 38567455 DOI: 10.1002/cplu.202300706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/11/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
The concept of polyrotaxane comes from the rotaxane structure in the supramolecular field. It is a mechanically interlocked supramolecular assembly composed of linear polymer chains and cyclic molecules. Over recent decades, the synthesis and application of polyrotaxanes have seen remarkable growth. Particularly, cyclodextrin-based polyrotaxanes have been extensively reported due to the low-price raw materials, good biocompatibility, and ease of modification. Hence, it is also one of the most promising mechanically interlocking supramolecules for wide industrialization in the future. Polyrotaxanes are widely introduced into materials such as elastomers, hydrogels, and engineering polymers to improve their mechanical properties or impart functionality to the materials. In these materials, polyrotaxane acts as a slidable cross-linker to dissipate energy through sliding or assist in dispersing stress concentration in the cross-linked network, thereby enhancing the toughness of the materials. Further, the unique sliding-ring effect of cyclodextrin-based polyrotaxanes has pioneered advancements in stretchable electronics and energy storage materials. This includes their innovative use in stretchable conductive composite and binders for anodes, addressing critical challenges in these fields. In this mini-review, our focus is to highlight the current progress and potential wider applications in the future, underlining their transformative impact across various domains of material science.
Collapse
Affiliation(s)
- Ruichun Du
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Tianwei Bao
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Deshuo Kong
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Qiuhong Zhang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, P. R. China
| | - Xudong Jia
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
9
|
Zhou Z, Luo N, Cui T, Luo L, Pu M, Wang Y, He F, Jia C, Shao X, Zhang HL, Liu Z. Pre-Endcapping of Hyperbranched Polymers toward Intrinsically Stretchable Semiconductors with Good Ductility and Carrier Mobility. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313312. [PMID: 38318963 DOI: 10.1002/adma.202313312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Indexed: 02/07/2024]
Abstract
The advancement of semiconducting polymers stands as a pivotal milestone in the quest to realize wearable electronics. Nonetheless, endowing semiconductor polymers with stretchability without compromising their carrier mobility remains a formidable challenge. This study proposes a "pre-endcapping" strategy for synthesizing hyperbranched semiconducting polymers (HBSPs), aiming to achieve the balance between carrier mobility and stretchability for organic electronics. The findings unveil that the aggregates formed by the endcapped hyperbranched network structure not only ensure efficient charge transport but also demonstrate superior tensile resistance. In comparison to linear conjugated polymers, HBSPs exhibit substantially larger crack onset strains and notably diminished tensile moduli. It is evident that the HBSPs surpass their linear counterparts in terms of both their semiconducting and mechanical properties. Among HBSPs, HBSP-72h-2.5 stands out as the preeminent candidate within the field of inherently stretchable semiconducting polymers, maintaining 93% of its initial mobility even when subjected to 100% strain (1.41 ± 0.206 cm2 V-1 s-1). Furthermore, thin film devices of HBSP-72h-2.5 remain stable after undergoing repeated stretching and releasing cycles. Notably, the mobilities are independent of the stretching directions, showing isotropic charge transport behavior. The preliminary study makes this "pre-endcapping" strategy a potential candidate for the future design of organic materials for flexible electronic devices.
Collapse
Affiliation(s)
- Zhaoqiong Zhou
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Nan Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tianqiang Cui
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Liang Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Mingrui Pu
- Guangdong Provincial Key Laboratory of Catalysis, Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ying Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Feng He
- Guangdong Provincial Key Laboratory of Catalysis, Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunyang Jia
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
10
|
Vo NTP, Nam TU, Jeong MW, Kim JS, Jung KH, Lee Y, Ma G, Gu X, Tok JBH, Lee TI, Bao Z, Oh JY. Autonomous self-healing supramolecular polymer transistors for skin electronics. Nat Commun 2024; 15:3433. [PMID: 38653966 DOI: 10.1038/s41467-024-47718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Skin-like field-effect transistors are key elements of bio-integrated devices for future user-interactive electronic-skin applications. Despite recent rapid developments in skin-like stretchable transistors, imparting self-healing ability while maintaining necessary electrical performance to these transistors remains a challenge. Herein, we describe a stretchable polymer transistor capable of autonomous self-healing. The active material consists of a blend of an electrically insulating supramolecular polymer with either semiconducting polymers or vapor-deposited metal nanoclusters. A key feature is to employ the same supramolecular self-healing polymer matrix for all active layers, i.e., conductor/semiconductor/dielectric layers, in the skin-like transistor. This provides adhesion and intimate contact between layers, which facilitates effective charge injection and transport under strain after self-healing. Finally, we fabricate skin-like self-healing circuits, including NAND and NOR gates and inverters, both of which are critical components of arithmetic logic units. This work greatly advances practical self-healing skin electronics.
Collapse
Affiliation(s)
- Ngoc Thanh Phuong Vo
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi, 17104, Korea
| | - Tae Uk Nam
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi, 17104, Korea
| | - Min Woo Jeong
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi, 17104, Korea
| | - Jun Su Kim
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi, 17104, Korea
| | - Kyu Ho Jung
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi, 17104, Korea
| | - Yeongjun Lee
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-5025, USA
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, 34141, Korea
| | - Guorong Ma
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-5025, USA
| | - Tae Il Lee
- Department of Materials Science and Engineering, Gachon University, Seong-nam, Gyeonggi, 13120, Korea.
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-5025, USA.
| | - Jin Young Oh
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi, 17104, Korea.
| |
Collapse
|
11
|
Hou S, Chen C, Bai L, Yu J, Cheng Y, Huang W. Stretchable Electronics with Strain-Resistive Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306749. [PMID: 38078789 DOI: 10.1002/smll.202306749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Indexed: 03/16/2024]
Abstract
Stretchable electronics have attracted tremendous attention amongst academic and industrial communities due to their prospective applications in personal healthcare, human-activity monitoring, artificial skins, wearable displays, human-machine interfaces, etc. Other than mechanical robustness, stable performances under complex strains in these devices that are not for strain sensing are equally important for practical applications. Here, a comprehensive summarization of recent advances in stretchable electronics with strain-resistive performance is presented. First, detailed overviews of intrinsically strain-resistive stretchable materials, including conductors, semiconductors, and insulators, are given. Then, systematic representations of advanced structures, including helical, serpentine, meshy, wrinkled, and kirigami-based structures, for strain-resistive performance are summarized. Next, stretchable arrays and circuits with strain-resistive performance, that integrate multiple functionalities and enable complex behaviors, are introduced. This review presents a detailed overview of recent progress in stretchable electronics with strain-resistive performances and provides a guideline for the future development of stretchable electronics.
Collapse
Affiliation(s)
- Sihui Hou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cong Chen
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junsheng Yu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
12
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
13
|
Song S, Hong H, Kim KY, Kim KK, Kim J, Won D, Yun S, Choi J, Ryu YI, Lee K, Park J, Kang J, Bang J, Seo H, Kim YC, Lee D, Lee H, Lee J, Hwang SW, Ko SH, Jeon H, Lee W. Photothermal Lithography for Realizing a Stretchable Multilayer Electronic Circuit Using a Laser. ACS NANO 2023; 17:21443-21454. [PMID: 37857269 DOI: 10.1021/acsnano.3c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Photolithography is a well-established fabrication method for realizing multilayer electronic circuits. However, it is challenging to adopt photolithography to fabricate intrinsically stretchable multilayer electronic circuits fully composed of an elastomeric matrix, due to the opacity of thick stretchable nanocomposite conductors. Here, we present photothermal lithography that can pattern elastomeric conductors and via holes using pulsed lasers. The photothermal-patterned stretchable nanocomposite conductor exhibits 3 times higher conductivity (5940 S cm-1) and 5 orders of magnitude lower resistance change (R/R0 = 40) under a 30% strained 5000th cyclic stretch, compared to those of a screen-printed conductor, based on the percolation network formed by spatial heating of the laser. In addition, a 50 μm sized stretchable via holes can be patterned on the passivation without material ablation and electrical degradation of the bottom conductor. By repeatedly patterning the conductor and via holes, highly conductive and durable multilayer circuits can be stacked with layer-by-layer material integration. Finally, a stretchable wireless pressure sensor and passive matrix LED array are demonstrated, thus showing the potential for a stretchable multilayer electronic circuit with durability, high density, and multifunctionality.
Collapse
Affiliation(s)
- Sangmin Song
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyejun Hong
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyung Yeun Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyun Kyu Kim
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jaewoo Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Daeyeon Won
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soyoung Yun
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Joonhwa Choi
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young-In Ryu
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyungwoo Lee
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jaeho Park
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Joohyuk Kang
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junhyuk Bang
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyunseon Seo
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yu-Chan Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Haechang Lee
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hojeong Jeon
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Wonryung Lee
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science & Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
14
|
Jung D, Kim Y, Lee H, Jung S, Park C, Hyeon T, Kim DH. Metal-Like Stretchable Nanocomposite Using Locally-Bundled Nanowires for Skin-Mountable Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303458. [PMID: 37591512 DOI: 10.1002/adma.202303458] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/06/2023] [Indexed: 08/19/2023]
Abstract
Stretchable conductive nanocomposites have been intensively studied for wearable bioelectronics. However, development of nanocomposites that simultaneously feature metal-like conductivity(> 100 000 S cm-1 ) and high stretchability (> 100%) for high-performance skin-mountable devices is still extremely challenging. Here a material strategy for such a nanocomposite is presented by using local bundling of silver nanowires stabilized with dual ligands (i.e., 1-propanethiols and 1-decanethiols). When the nanocomposite is solidified via solvent evaporation under a highly humid condition, the nanowires in the organic solution are bundled and stabilized. The resulting locally-bundled nanowires lower contact resistance while maintain their percolation network, leading to high conductivity. Dual ligands of 1-propanethiol and 1-decanethiol further boost up the conductivity. As a result, a nanocomposite with both high conductivity of ≈122,120 S cm-1 and high stretchability of ≈200% is obtained. Such superb electrical and mechanical properties are critical for various applications in skin-like electronics, and herein, a wearable thermo-stimulation device is demonstrated.
Collapse
Affiliation(s)
- Dongjun Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeongjun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunjin Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sonwoo Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chansul Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
15
|
Hernandez V, Jordan RS, Hill IM, Xu B, Zhai C, Wu D, Lee H, Misiaszek J, Shirzad K, Martinez MF, Kusoglu A, Yeo J, Wang Y. Deformation Rate-Adaptive Conducting Polymers and Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207100. [PMID: 37098606 DOI: 10.1002/smll.202207100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Indexed: 06/19/2023]
Abstract
Materials are more easily damaged during accidents that involve rapid deformation. Here, a design strategy is described for electronic materials comprised of conducting polymers that defies this orthodox property, making their extensibility and toughness dynamically adaptive to deformation rates. This counterintuitive property is achieved through a morphology of interconnected nanoscopic core-shell micelles, where the chemical interactions are stronger within the shells than the cores. As a result, the interlinked shells retain material integrity under strain, while the rate of dissociation of the cores controls the extent of micelle elongation, which is a process that adapts to deformation rates. A prototype based on polyaniline shows a 7.5-fold increase in ultimate elongation and a 163-fold increase in toughness when deformed at increasing rates from 2.5 to 10 000% min-1 . This concept can be generalized to other conducting polymers and highly conductive composites to create "self-protective" soft electronic materials with enhanced durability under dynamic movement or deformation.
Collapse
Affiliation(s)
- Victor Hernandez
- Department of Materials Science and Engineering, University of California, Merced, Merced, CA, 95343, USA
| | - Robert S Jordan
- Department of Materials Science and Engineering, University of California, Merced, Merced, CA, 95343, USA
| | - Ian M Hill
- Department of Materials Science and Engineering, University of California, Merced, Merced, CA, 95343, USA
| | - Bohao Xu
- Department of Materials Science and Engineering, University of California, Merced, Merced, CA, 95343, USA
| | - Chenxi Zhai
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Di Wu
- Department of Materials Science and Engineering, University of California, Merced, Merced, CA, 95343, USA
| | - Hansong Lee
- Department of Materials Science and Engineering, University of California, Merced, Merced, CA, 95343, USA
| | - John Misiaszek
- Department of Materials Science and Engineering, University of California, Merced, Merced, CA, 95343, USA
| | - Kiana Shirzad
- Department of Materials Science and Engineering, University of California, Merced, Merced, CA, 95343, USA
| | - Miguel F Martinez
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, 95343, USA
| | - Ahmet Kusoglu
- Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Yue Wang
- Department of Materials Science and Engineering, University of California, Merced, Merced, CA, 95343, USA
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, 95343, USA
| |
Collapse
|
16
|
Ershad F, Patel S, Yu C. Wearable bioelectronics fabricated in situ on skins. NPJ FLEXIBLE ELECTRONICS 2023; 7:32. [PMID: 38665149 PMCID: PMC11041641 DOI: 10.1038/s41528-023-00265-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/04/2023] [Indexed: 04/28/2024]
Abstract
In recent years, wearable bioelectronics has rapidly expanded for diagnosing, monitoring, and treating various pathological conditions from the skin surface. Although the devices are typically prefabricated as soft patches for general usage, there is a growing need for devices that are customized in situ to provide accurate data and precise treatment. In this perspective, the state-of-the-art in situ fabricated wearable bioelectronics are summarized, focusing primarily on Drawn-on-Skin (DoS) bioelectronics and other in situ fabrication methods. The advantages and limitations of these technologies are evaluated and potential future directions are suggested for the widespread adoption of these technologies in everyday life.
Collapse
Affiliation(s)
- Faheem Ershad
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16801 USA
| | - Shubham Patel
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16801 USA
| | - Cunjiang Yu
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16801 USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16801 USA
- Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, PA 16801 USA
| |
Collapse
|
17
|
Zhuang Q, Yao K, Wu M, Lei Z, Chen F, Li J, Mei Q, Zhou Y, Huang Q, Zhao X, Li Y, Yu X, Zheng Z. Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility. SCIENCE ADVANCES 2023; 9:eadg8602. [PMID: 37256954 PMCID: PMC10413659 DOI: 10.1126/sciadv.adg8602] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Implantable bioelectronics provide unprecedented opportunities for real-time and continuous monitoring of physiological signals of living bodies. Most bioelectronics adopt thin-film substrates such as polyimide and polydimethylsiloxane that exhibit high levels of flexibility and stretchability. However, the low permeability and relatively high modulus of these thin films hamper the long-term biocompatibility. In contrast, devices fabricated on porous substrates show the advantages of high permeability but suffer from low patterning density. Here, we report a wafer-scale patternable strategy for the high-resolution fabrication of supersoft, stretchable, and permeable liquid metal microelectrodes (μLMEs). We demonstrate 2-μm patterning capability, or an ultrahigh density of ~75,500 electrodes/cm2, of μLME arrays on a wafer-size (diameter, 100 mm) elastic fiber mat by photolithography. We implant the μLME array as a neural interface for high spatiotemporal mapping and intervention of electrocorticography signals of living rats. The implanted μLMEs have chronic biocompatibility over a period of eight months.
Collapse
Affiliation(s)
- Qiuna Zhuang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Mengge Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Zhuogui Lei
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
| | - Fan Chen
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Quanjing Mei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yingying Zhou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Intelligent Wearable Systems (RI-IWEAR), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
18
|
Hu Y, Majidi C. Dielectric Elastomers with Liquid Metal and Polydopamine-Coated Graphene Oxide Inclusions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24769-24776. [PMID: 37184064 DOI: 10.1021/acsami.2c21994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Suspending microscale droplets of liquid metals like eutectic gallium-indium (EGaIn) in polydimethylsiloxane (PDMS) has been shown to dramatically enhance electrical permittivity without sacrificing the elasticity of the host PDMS matrix. However, increasing the dielectric constant of EGaIn-PDMS composites beyond previously reported values requires high EGaIn loading fractions (>50% by volume) that can result in substantial increases in density and loss of material integrity. In this work, we enhance permittivity without further increasing EGaIn loading by incorporating polydopamine (PDA)-coated graphene oxide (GO) and partially reduced GO. In particular, we show that the combination of EGaIn and PDA-GO within a PDMS matrix results in an elastomer composite with a high dielectric constant (∼10-57), a low dissipation factor (∼0.01), and rubber-like compliance and elasticity.
Collapse
Affiliation(s)
- Yafeng Hu
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Carmel Majidi
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
19
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Citation(s) in RCA: 226] [Impact Index Per Article: 226.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
20
|
Zeng W, Deng L, Yang G. Self-Healable Elastomeric Network with Dynamic Disulfide, Imine, and Hydrogen Bonds for Flexible Strain Sensor. Chemistry 2023; 29:e202203478. [PMID: 36694013 DOI: 10.1002/chem.202203478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Self-healable and stretchable elastomeric material is essential for the development of flexible electronics devices to ensure their stable performance. In this study, a strain sensor (PIH2 T1 -tri/CNT-3) composed of self-repairable crosslinked elastomer substrate (PIH2 T1 -tri, containing multiple reversible repairing sites such as disulfide, imine, and hydrogen bonds) and conductive layer (carbon nanotube, CNT) was prepared. The PIH2 T1 -tri elastomer had excellent self-healing ability (healing efficiency=91 %). It exhibited good mechanical integrity in terms of elongation at break (672 %), tensile strength (1.41 MPa). The Young's modulus (0.39 MPa) was close to that of human skin. The PIH2 T1 -tri/CNT-3 sensor also demonstrated an effective self-healing function for electrical conduction and sensing property. Meanwhile, it had high sensitivity (gauge factor (GF)=24.1), short response time (120 ms), and long-term durability (4000 cycles). This study offers a novel self-healable elastomer platform with carbon based conductive components to develop flexible strain sensors towards high performance soft electronics.
Collapse
Affiliation(s)
- Wangyi Zeng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.,National Engineering Research Centre of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Longjiang Deng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.,National Engineering Research Centre of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Guang Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.,National Engineering Research Centre of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
21
|
Xu Y, Su Y, Xu X, Arends B, Zhao G, Ackerman DN, Huang H, Reid S, Santarpia JL, Kim C, Chen Z, Mahmoud S, Ling Y, Brown A, Chen Q, Huang G, Xie J, Yan Z. Porous liquid metal-elastomer composites with high leakage resistance and antimicrobial property for skin-interfaced bioelectronics. SCIENCE ADVANCES 2023; 9:eadf0575. [PMID: 36608138 PMCID: PMC9821854 DOI: 10.1126/sciadv.adf0575] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Liquid metal-elastomer composite is a promising soft conductor for skin-interfaced bioelectronics, soft robots, and others due to its large stretchability, ultrasoftness, high electrical conductivity, and mechanical-electrical decoupling. However, it often suffers from deformation-induced leakage, which can smear skin, deteriorate device performance, and cause circuit shorting. Besides, antimicrobial property is desirable in soft conductors to minimize microbial infections. Here, we report phase separation-based synthesis of porous liquid metal-elastomer composites with high leakage resistance and antimicrobial property, together with large stretchability, tissue-like compliance, high and stable electrical conductivity over deformation, high breathability, and magnetic resonance imaging compatibility. The porous structures can minimize leakage through damping effects and lower percolation thresholds to reduce liquid metal usage. In addition, epsilon polylysine is loaded into elastic matrices during phase separation to provide antimicrobial property. The enabled skin-interfaced bioelectronics can monitor cardiac electrical and mechanical activities and offer electrical stimulations in a mechanically imperceptible and electrically stable manner even during motions.
Collapse
Affiliation(s)
- Yadong Xu
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Yajuan Su
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xianchen Xu
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Brian Arends
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Ganggang Zhao
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | | | - Henry Huang
- School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907, USA
| | - St. Patrick Reid
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68130, USA
| | - Joshua L. Santarpia
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68130, USA
| | - Chansong Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zehua Chen
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Sana Mahmoud
- Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Yun Ling
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Alexander Brown
- Cognitive Neuroscience Systems Core, University of Missouri, Columbia, MO 65211, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guoliang Huang
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zheng Yan
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
22
|
Wu WN, Tu TH, Pai CH, Cheng KH, Tung SH, Chan YT, Liu CL. Metallo-Supramolecular Rod–Coil Block Copolymer Thin Films for Stretchable Organic Field Effect Transistor Application. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Wei-Ni Wu
- Department of Materials Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Tsung-Han Tu
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Chiao-Hsuan Pai
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Kuan-Heng Cheng
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| |
Collapse
|
23
|
Bar AJ, Mead J, Dodiuk H, Kenig S. Stretchable Conductive Tubular Composites Based on Braided Carbon Nanotube Yarns with an Elastomer Matrix. ACS OMEGA 2022; 7:40766-40774. [PMID: 36406545 PMCID: PMC9670722 DOI: 10.1021/acsomega.2c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We report an innovative approach to creating stretchable conductive materials composed of a tubular shell made from braided carbon nanotube yarns (CNTYs) embedded in an elastomeric matrix. For stretchable electronics, both mechanical properties and electrical conductivities are of interest. Consequently, both the mechanical behavior and electrical conductivities under large deformations were investigated. A new hyperelastic composite model was developed to predict the large deformation response to applied stress for a braid in a tubular elastomer composite. The composite demonstrated a hyperelastic response due to the architecture of the braid, and the behavior was affected by the braiding angle, braid modulus, and volume fraction of fibers. The elastomer matrix was considered a neo-Hookean material and represented by the Yeoh model. An interaction parameter was proposed to account for the effect of the elastomer/braid cooperative restriction as observed in experimental and calculated results. This novel approach enabled the determination of the constitutive behavior of the composite in large deformations (>150%), taking into account the elastomer and yarn properties and braid configurations. The model exhibited good agreement with the experimental results. As the CNTYs are conductive, a stretchable conductive composite was obtained having a resistivity of 5.01 × 10-4 and 5.67 × 10-5 Ω·cm for the 1-ply and 4-ply composites, respectively. The resistivity remained constant through cyclic loading under large deformations in tension until mechanical failure. The material has potential for use in stretchable electronics applications.
Collapse
Affiliation(s)
- Avia J. Bar
- Department
of Plastics Engineering, University of Massachusetts
Lowell, Lowell, Massachusetts01854, United States
| | - Joey Mead
- Department
of Plastics Engineering, University of Massachusetts
Lowell, Lowell, Massachusetts01854, United States
| | - Hanna Dodiuk
- Department
of Polymers and Plastics Engineering, Shenkar
College of Engineering and Design, Ramat-Gen52526, Israel
| | - Samuel Kenig
- Department
of Polymers and Plastics Engineering, Shenkar
College of Engineering and Design, Ramat-Gen52526, Israel
| |
Collapse
|
24
|
Bioinspired Strategies for Stretchable Conductors. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Deng HT, Wen DL, Feng T, Wang YL, Zhang XR, Huang P, Zhang XS. Silicone Rubber Based-Conductive Composites for Stretchable "All-in-One" Microsystems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39681-39700. [PMID: 36006298 DOI: 10.1021/acsami.2c08333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wearable electronics with development trends such as miniaturization, multifunction, and smart integration have become an important part of the Internet of Things (IoT) and have penetrated various sectors of modern society. To meet the increasing demands of wearable electronics in terms of deformability and conformability, many efforts have been devoted to overcoming the nonstretchable and poor conformal properties of traditional functional materials and endowing devices with outstanding mechanical properties. One of the promising approaches is composite engineering in which traditional functional materials are incorporated into the various polymer matrices to develop different kinds of functional composites and construct different functions of stretchable electronics. Herein, we focus on the approach of composite engineering and the polymer matrix of silicone rubber (SR), and we summarize the state-of-the-art details of silicone rubber-based conductive composites (SRCCs), including a summary of their conductivity mechanisms and synthesis methods and SRCC applications for stretchable electronics. For conductivity mechanisms, two conductivity mechanisms of SRCC are emphasized: percolation theory and the quantum tunneling mechanism. For synthesis methods of SRCCs, four typical approaches to synthesize different kinds of SRCCs are investigated: mixing/blending, infiltration, ion implantation, and in situ formation. For SRCC applications, different functions of stretchable electronics based on SRCCs for interconnecting, sensing, powering, actuating, and transmitting are summarized, including stretchable interconnects, sensors, nanogenerators, antennas, and transistors. These functions reveal the feasibility of constructing a stretchable all-in-one self-powered microsystem based on SRCC-based stretchable electronics. As a prospect, this microsystem is expected to integrate the functional sensing modulus, the energy harvesting modulus, and the process and response modulus together to sense and respond to environmental stimulations and human physiological signals.
Collapse
Affiliation(s)
- Hai-Tao Deng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dan-Liang Wen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tao Feng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi-Lin Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xin-Ran Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | | |
Collapse
|
26
|
Song JK, Kim J, Yoon J, Koo JH, Jung H, Kang K, Sunwoo SH, Yoo S, Chang H, Jo J, Baek W, Lee S, Lee M, Kim HJ, Shin M, Yoo YJ, Song YM, Hyeon T, Kim DH, Son D. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. NATURE NANOTECHNOLOGY 2022; 17:849-856. [PMID: 35798983 DOI: 10.1038/s41565-022-01160-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
High-performance photodetecting materials with intrinsic stretchability and colour sensitivity are key requirements for the development of shape-tunable phototransistor arrays. Another challenge is the proper compensation of optical aberrations and noises generated by mechanical deformation and fatigue accumulation in a shape-tunable phototransistor array. Here we report rational material design and device fabrication strategies for an intrinsically stretchable, multispectral and multiplexed 5 × 5 × 3 phototransistor array. Specifically, a unique spatial distribution of size-tuned quantum dots, blended in a semiconducting polymer within an elastomeric matrix, was formed owing to surface energy mismatch, leading to highly efficient charge transfer. Such intrinsically stretchable quantum-dot-based semiconducting nanocomposites enable the shape-tunable and colour-sensitive capabilities of the phototransistor array. We use a deep neural network algorithm for compensating optical aberrations and noises, which aids the precise detection of specific colour patterns (for example, red, green and blue patterns) both under its flat state and hemispherically curved state (radius of curvature of 18.4 mm).
Collapse
Affiliation(s)
- Jun-Kyul Song
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
- Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Junhee Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
- Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Jiyong Yoon
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Hyunjin Jung
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Kyumin Kang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
- Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Seungwon Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Hogeun Chang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
- Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Jinwoung Jo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
- Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Woonhyuk Baek
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
- Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Sanghwa Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
- Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Mincheol Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Hye Jin Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Mikyung Shin
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Medicine, SKKU Institute for Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young Jin Yoo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea.
- Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea.
- Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea.
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Donghee Son
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea.
- Department of Superintelligence Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, Republic of Korea.
| |
Collapse
|
27
|
Han F, Wang T, Liu G, Liu H, Xie X, Wei Z, Li J, Jiang C, He Y, Xu F. Materials with Tunable Optical Properties for Wearable Epidermal Sensing in Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109055. [PMID: 35258117 DOI: 10.1002/adma.202109055] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Advances in wearable epidermal sensors have revolutionized the way that physiological signals are captured and measured for health monitoring. One major challenge is to convert physiological signals to easily readable signals in a convenient way. One possibility for wearable epidermal sensors is based on visible readouts. There are a range of materials whose optical properties can be tuned by parameters such as temperature, pH, light, and electric fields. Herein, this review covers and highlights a set of materials with tunable optical properties and their integration into wearable epidermal sensors for health monitoring. Specifically, the recent progress, fabrication, and applications of these materials for wearable epidermal sensors are summarized and discussed. Finally, the challenges and perspectives for the next generation wearable devices are proposed.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tiansong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Li
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Yuan He
- The Second Affiliated Hospital, Xi'an Medical University, Xi'an, 710038, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
28
|
Guo J, Wang Y, Zhang H, Zhao Y. Conductive Materials with Elaborate Micro/Nanostructures for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110024. [PMID: 35081264 DOI: 10.1002/adma.202110024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Bioelectronics, an emerging field with the mutual penetration of biological systems and electronic sciences, allows the quantitative analysis of complicated biosignals together with the dynamic regulation of fateful biological functions. In this area, the development of conductive materials with elaborate micro/nanostructures has been of great significance to the improvement of high-performance bioelectronic devices. Thus, here, a comprehensive and up-to-date summary of relevant research studies on the fabrication and properties of conductive materials with micro/nanostructures and their promising applications and future opportunities in bioelectronic applications is presented. In addition, a critical analysis of the current opportunities and challenges regarding the future developments of conductive materials with elaborate micro/nanostructures for bioelectronic applications is also presented.
Collapse
Affiliation(s)
- Jiahui Guo
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100101, China
| |
Collapse
|
29
|
Lee GH, Lee YR, Kim H, Kwon DA, Kim H, Yang C, Choi SQ, Park S, Jeong JW, Park S. Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics. Nat Commun 2022; 13:2643. [PMID: 35551193 PMCID: PMC9098628 DOI: 10.1038/s41467-022-30427-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Liquid metal is being regarded as a promising material for soft electronics owing to its distinct combination of high electrical conductivity comparable to that of metals and exceptional deformability derived from its liquid state. However, the applicability of liquid metal is still limited due to the difficulty in simultaneously achieving its mechanical stability and initial conductivity. Furthermore, reliable and rapid patterning of stable liquid metal directly on various soft substrates at high-resolution remains a formidable challenge. In this work, meniscus-guided printing of ink containing polyelectrolyte-attached liquid metal microgranular-particle in an aqueous solvent to generate semi-solid-state liquid metal is presented. Liquid metal microgranular-particle printed in the evaporative regime is mechanically stable, initially conductive, and patternable down to 50 μm on various substrates. Demonstrations of the ultrastretchable (~500% strain) electrical circuit, customized e-skin, and zero-waste ECG sensor validate the simplicity, versatility, and reliability of this manufacturing strategy, enabling broad utility in the development of advanced soft electronics. In this article, meniscus-guided printing of polyelectrolyte-attached liquid metal particles to simultaneously achieve mechanical stability and initial electrical conductivity at high resolution is introduced.
Collapse
Affiliation(s)
- Gun-Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ye Rim Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hanul Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Do A Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeonji Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Congqi Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
30
|
Du R, Jin Q, Zhu T, Wang C, Li S, Li Y, Huang X, Jiang Y, Li W, Bao T, Cao P, Pan L, Chen X, Zhang Q, Jia X. Sliding Cyclodextrin Molecules along Polymer Chains to Enhance the Stretchability of Conductive Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200533. [PMID: 35388964 DOI: 10.1002/smll.202200533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The demand for stretchable electronics with a broader working range is increasing for wide application in wearable sensors and e-skin. However, stretchable conductors based on soft elastomers always exhibit low working range due to the inhomogeneous breakage of the conductive network when stretched. Here, a highly stretchable and self-healable conductor is reported by adopting polyrotaxane and disulfide bonds into the binding layer. The binding layer (PR-SS) builds the bridge between polymer substrates (PU-SS) and silver nanowires (AgNWs). The incorporation of sliding molecules endows the stretchable conductor with a long sensing range (190%) due to the energy dissipation derived from the sliding nature of polyrotaxanes, which is two times higher than the working range (93%) of conductors based on AP-SS without polyrotaxanes. Furthermore, the mechanism of sliding effect for the polyrotaxanes in the elastomers is investigated by SEM for morphological change of AgNWs, in situ small-angle x-ray scattering, as well as stress relaxation experiments. Finally, human-body-related sensing tests and a self-correction system in fitness are designed and demonstrated.
Collapse
Affiliation(s)
- Ruichun Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education (MOE), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Qi Jin
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education (MOE), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Tangsong Zhu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education (MOE), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Changxian Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sheng Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yanzhen Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xinxin Huang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education (MOE), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Ying Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wenlong Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Tianwei Bao
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education (MOE), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Pengfei Cao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qiuhong Zhang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education (MOE), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xudong Jia
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education (MOE), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
31
|
Chen S, Wu Z, Chu C, Ni Y, Neisiany RE, You Z. Biodegradable Elastomers and Gels for Elastic Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105146. [PMID: 35212474 PMCID: PMC9069371 DOI: 10.1002/advs.202105146] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Indexed: 05/30/2023]
Abstract
Biodegradable electronics are considered as an important bio-friendly solution for electronic waste (e-waste) management, sustainable development, and emerging implantable devices. Elastic electronics with higher imitative mechanical characteristics of human tissues, have become crucial for human-related applications. The convergence of biodegradability and elasticity has emerged a new paradigm of next-generation electronics especially for wearable and implantable electronics. The corresponding biodegradable elastic materials are recognized as a key to drive this field toward the practical applications. The review first clarifies the relevant concepts including biodegradable and elastic electronics along with their general design principles. Subsequently, the crucial mechanisms of the degradation in polymeric materials are discussed in depth. The diverse types of biodegradable elastomers and gels for electronics are then summarized. Their molecular design, modification, processing, and device fabrication especially the structure-properties relationship as well as recent advanced are reviewed in detail. Finally, the current challenges and the future directions are proposed. The critical insights of biodegradability and elastic characteristics in the elastomers and gel allows them to be tailored and designed more effectively for electronic applications.
Collapse
Affiliation(s)
- Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Zekai Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Chengzhen Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Yufeng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer EngineeringFaculty of EngineeringHakim Sabzevari UniversitySabzevar9617976487Iran
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| |
Collapse
|
32
|
Bury E, Koh AS. Multimodal Deformation of Liquid Metal Multimaterial Composites as Stretchable, Dielectric Materials for Capacitive Pressure Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13678-13691. [PMID: 35258947 DOI: 10.1021/acsami.1c21734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Traditional electronic devices are composed of rigid materials and components that tend to be unsuitable for soft robotic and stretchable electronic applications, such as wearable or continuous pressure sensing. However, deformable materials have the potential to improve upon traditional devices through enhanced sensitivity and responsiveness, better conformability and biocompatibility at the human-machine interface, and greater durability. This work presents deformable composite materials composed of the gallium-indium-tin alloy galinstan (GaInSn) that combines the conductivity of a metal and the intrinsic deformability of a liquid. Dispersing galinstan in an elastomer allows for the formation of deformable dielectric materials that have tunable mechanical and electrical behavior, for example, modulus and relative permittivity. Galinstan composites have been shown previously to have a minimal modulus impact on the elastomer but concurrently achieve impressive dielectric performance. However, galinstan dispersions can be costly and face challenges of mechanical and electrical reliability. Thereby, this work investigates multimaterial composites composed of galinstan and a rigid filler, either iron or barium titanate, with respect to morphology, mechanical behavior, dielectric behavior, and pressure sensing performance for the purpose of achieving a balance between a low modulus and superior electrical performance. By combining galinstan and rigid fillers, it was found that the mechanical and electrical properties, such as modulus, permittivity, loss behavior, sensitivity, and linearity of the multimaterial composites can be improved by tuning filler formulation. This suggests that these dielectric materials can be used for sensing applications that can be precisely calibrated to specific material properties and the needs of the user. These deformable multimaterial composites, found to be stretchable and highly responsive in sensing applications, will expand the current mechanical abilities of deformable dielectric materials to improve soft robotic and stretchable electronic devices.
Collapse
Affiliation(s)
- Elizabeth Bury
- Chemical and Biological Engineering Department, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Amanda S Koh
- Chemical and Biological Engineering Department, University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
33
|
Highly Stretchable and Sensitive Multimodal Tactile Sensor Based on Conductive Rubber Composites to Monitor Pressure and Temperature. Polymers (Basel) 2022; 14:polym14071294. [PMID: 35406168 PMCID: PMC9002470 DOI: 10.3390/polym14071294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Stretchable and flexible tactile sensors have been extensively investigated for a variety of applications due to their outstanding sensitivity, flexibility, and biocompatibility compared with conventional tactile sensors. However, implementing stretchable multimodal sensors with high performance is still a challenge. In this study, a stretchable multimodal tactile sensor based on conductive rubber composites was fabricated. Because of the pressure-sensitive and temperature-sensitive effects of the conductive rubber composites, the developed sensor can simultaneously measure pressure and temperature, and the sensor presented high sensitivity (0.01171 kPa−1 and 2.46–30.56%/°C) over a wide sensing range (0–110 kPa and 30–90 °C). The sensor also exhibited outstanding performance in terms of processability, stretchability, and repeatability. Furthermore, the fabricated stretchable multimodal tactile sensor did not require complex signal processing or a transmission circuit system. The strategy for stacking and layering conductive rubber composites of this work may supply a new idea for building multifunctional sensor-based electronics.
Collapse
|
34
|
Feng P, Zheng Y, Li K, Zhao W. Highly stretchable and sensitive strain sensors with ginkgo-like sandwich architectures. NANOSCALE ADVANCES 2022; 4:1681-1693. [PMID: 36134381 PMCID: PMC9417334 DOI: 10.1039/d1na00817j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/13/2022] [Indexed: 05/07/2023]
Abstract
The development of a strain sensor that can detect tensile strains exceeding 800% has been challenging. The non-conductive stretchable Eco-flex tape has been widely used in strain sensors due to its high elastic limit. In this work, an Eco-flex-based strain sensor that was conductive until occurrence of fracture was developed. The silver nanoparticles and carbon nanotubes constituted stretchable conductive paths in the Eco-flex matrix. The maximum tensile strain of this sensor was 867%, and the resistance change rate was higher than 104, while the strain resolution was 7.9%. Moreover, the sensor is characterized by segmented logarithmic linearity. This excellent performance was attributed to the ginkgo-like pattern, the patterned strain-coordinating architecture (PSCL), and specific nanocomposites with micro-cracks. The deformation of the architecture and the evolution of the microcracks were studied. In addition, the application of this strain sensor on a wing-shaped aircraft was proposed and its feasibility was demonstrated.
Collapse
Affiliation(s)
- Pengdong Feng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen 518055 People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology Shenzhen 518055 People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology Harbin 150001 People's Republic of China
| | - Yi Zheng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen 518055 People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology Shenzhen 518055 People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology Harbin 150001 People's Republic of China
| | - Kang Li
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen 518055 People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology Shenzhen 518055 People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology Harbin 150001 People's Republic of China
| | - Weiwei Zhao
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen 518055 People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology Shenzhen 518055 People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology Harbin 150001 People's Republic of China
| |
Collapse
|
35
|
Abstract
In conventional classification, soft robots feature mechanical compliance as the main distinguishing factor from traditional robots made of rigid materials. Recent advances in functional soft materials have facilitated the emergence of a new class of soft robots capable of tether-free actuation in response to external stimuli such as heat, light, solvent, or electric or magnetic field. Among the various types of stimuli-responsive materials, magnetic soft materials have shown remarkable progress in their design and fabrication, leading to the development of magnetic soft robots with unique advantages and potential for many important applications. However, the field of magnetic soft robots is still in its infancy and requires further advancements in terms of design principles, fabrication methods, control mechanisms, and sensing modalities. Successful future development of magnetic soft robots would require a comprehensive understanding of the fundamental principle of magnetic actuation, as well as the physical properties and behavior of magnetic soft materials. In this review, we discuss recent progress in the design and fabrication, modeling and simulation, and actuation and control of magnetic soft materials and robots. We then give a set of design guidelines for optimal actuation performance of magnetic soft materials. Lastly, we summarize potential biomedical applications of magnetic soft robots and provide our perspectives on next-generation magnetic soft robots.
Collapse
Affiliation(s)
- Yoonho Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
36
|
Choi C, de Izarra A, Han I, Jeon W, Lansac Y, Jang YH. Hard-Cation-Soft-Anion Ionic Liquids for PEDOT:PSS Treatment. J Phys Chem B 2022; 126:1615-1624. [PMID: 35138105 DOI: 10.1021/acs.jpcb.1c09001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A promising conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) experiences significant conductivity enhancement when treated with proper ionic liquids (ILs). Based on the hard-soft-acid-base principle, we propose a combination of a hydrophilic hard cation A+ (instead of the commonly used 1-ethyl-3-methyl imidazolium, EMIM+) and a hydrophobic soft anion X- (such as tetracyanoborate, TCB-) as the best ILs for this purpose. Such ILs would decouple hydrophilic-but-insulating PSS- from conducting-but-hydrophobic PEDOT+ most efficiently by strong interactions with hydrophilic A+ and hydrophobic X-, respectively. Such a favorable ion exchange between PEDOT+:PSS- and A+:X- ILs would allow the growth of conducting PEDOT+ domains decorated by X-, not disturbed by PSS- or A+. Using density functional theory calculations and molecular dynamics simulations, we demonstrate that a protic cation- (aliphatic N-alkyl pyrrolidinium, in particular) combined with the hydrophobic anion TCB- indeed outperforms EMIM+ by promptly leaving hydrophobic TCB- and strongly binding to hydrophilic PSS-.
Collapse
Affiliation(s)
- Changwon Choi
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea
| | - Ambroise de Izarra
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea.,GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
| | - Ikhee Han
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea
| | - Woojin Jeon
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea
| | - Yves Lansac
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea.,GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France.,Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea
| |
Collapse
|
37
|
Li WD, Ke K, Jia J, Pu JH, Zhao X, Bao RY, Liu ZY, Bai L, Zhang K, Yang MB, Yang W. Recent Advances in Multiresponsive Flexible Sensors towards E-skin: A Delicate Design for Versatile Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103734. [PMID: 34825473 DOI: 10.1002/smll.202103734] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/16/2021] [Indexed: 05/07/2023]
Abstract
Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e-skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e-skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real-time and all-round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next-generation e-skin and wearable electronics.
Collapse
Affiliation(s)
- Wu-Di Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jin Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jun-Hong Pu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xing Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Lu Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Kai Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
38
|
Bontapalle S, Na M, Park H, Sim K. Fully soft organic electrochemical transistor enabling direct skin-mountable electrophysiological signal amplification. Chem Commun (Camb) 2022; 58:1298-1301. [PMID: 34979536 DOI: 10.1039/d1cc04884h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we propose fully soft OECTs with all soft components, including a PEDOT:PSS-based soft channel, which show substantial mechanical/electrical properties. In addition, the further demonstrated skin-mountable amplifier implies the strong potential of this work to be an innovative development in wearable electronics.
Collapse
Affiliation(s)
- Sujitkumar Bontapalle
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Myeonghyeon Na
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Haechan Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Kyoseung Sim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
39
|
Liang Y, Shen Y, Sun X, Liang H. Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection. Int J Biol Macromol 2021; 193:629-637. [PMID: 34717973 DOI: 10.1016/j.ijbiomac.2021.10.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
As a kind of promising material for flexible wearable electronics, conductive hydrogels have attracted extensive interests of researchers for their inherent merits such as superior mechanical properties, biocompatibility, and permeability. Herein, we constructed a new type of highly stretchable, anti-freezing, self-healable, and conductive hydrogel based on chitosan/polyacrylic acid. The large amount of ions inside the network had five functions for the proposed hydrogel, including excellent mechanical behaviors, high conductivity, self-recovery, self-healing and anti-freezing capability. Consequently, the proposed hydrogel possessed tunable stretchability (1190-1550%), tensile strength (0.96-2.56 MPa), toughness (5.7-14.7 MJ/m3), superior self-healing property (self-healing efficiency up to 83.7%), high conductivity (4.58-5.76 S/m), and excellent anti-freezing capability. To our knowledge, the self-healable hydrogel with balanced tensile strength, toughness, conductivity, and low-temperature tolerance can hardly be achieved till now. Furthermore, the conductive hydrogels exhibited high sensitivity (gauge factor up to 10.8) in a broad strain window (0-1000%) and could detect the conventional motion signals of human body such as bending of a knuckle, swallowing, and pressure signal at both room temperature and -20 °C. Moreover, the hydrogels could also be fabricated as flexible detectors to identify different temperatures, different kinds of solutions, and different concentrations of the solution.
Collapse
Affiliation(s)
- Yongzhi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuexin Shen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingyue Sun
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, China; IAT-Chungu Joint Laboratory for Additive Manufacturing, Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
40
|
Guo J, Yu Y, Zhang H, Sun L, Zhao Y. Elastic MXene Hydrogel Microfiber-Derived Electronic Skin for Joint Monitoring. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47800-47806. [PMID: 34590841 DOI: 10.1021/acsami.1c10311] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Effective and timely joint monitoring has been a significantly vital research direction in human healthcare. As an emerging technology, flexible electronics provides more possibilities and applicabilities for practical sensing and signal transmission. Here, we provide novel elastic MXene microfibers of controllable morphologies at a microscale through microfluidic technology for actual joint motion monitoring. Double-network hydrogels including covalently cross-linking polyacrylamide and ionically cross-linking alginate were chosen for superelasticity. For the improvement of the electrical conductivity of superelastic hydrogel microfibers, MXene was selected to mix with them. By introducing the cross-linker to the outer channel, microfibers with controllable diameters along with high electrical conductivities and tensile properties could be fabricated successfully. The practical value of the synthesized microfibers in joint movement sensing has been demonstrated by acting as the element of new motion sensors. Based on these features, it is believed that these elastic MXene hydrogel microfibers have high potential for rapid sensing and diagnosis of joint diseases.
Collapse
Affiliation(s)
- Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Han Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
41
|
Tang R, Lu F, Liu L, Yan Y, Du Q, Zhang B, Zhou T, Fu H. Flexible pressure sensors with microstructures. NANO SELECT 2021. [DOI: 10.1002/nano.202100003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ruitao Tang
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| | - Fangyuan Lu
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| | - Lanlan Liu
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| | - Yu Yan
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| | - Qifeng Du
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| | - Bocheng Zhang
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| | - Tao Zhou
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| | - Haoran Fu
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| |
Collapse
|
42
|
Lou Z, Shen G, Ding L. Permeable liquid-metal conductor for stretchable electronics. Sci Bull (Beijing) 2021; 66:1819-1821. [PMID: 36654389 DOI: 10.1016/j.scib.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zheng Lou
- Institute of Semiconductors (Chinese Academy of Sciences), and Center of Materials Science and Optoelectronic Engineering (University of Chinese Academy of Sciences), Beijing 100083, China
| | - Guozhen Shen
- Institute of Semiconductors (Chinese Academy of Sciences), and Center of Materials Science and Optoelectronic Engineering (University of Chinese Academy of Sciences), Beijing 100083, China.
| | - Liming Ding
- Center for Excellence in Nanoscience (Chinese Academy of Sciences), Key Laboratory of Nanosystem and Hierarchical Fabrication (Chinese Academy of Sciences), National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
43
|
Dauzon E, Sallenave X, Plesse C, Goubard F, Amassian A, Anthopoulos TD. Pushing the Limits of Flexibility and Stretchability of Solar Cells: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101469. [PMID: 34297433 DOI: 10.1002/adma.202101469] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Indexed: 06/13/2023]
Abstract
Emerging forms of soft, flexible, and stretchable electronics promise to revolutionize the electronics industries of the future offering radically new products that combine multiple functionalities, including power generation, with arbitrary form factor. For example, skin-like electronics promise to transform the human-machine-interface, but the softness of the skin is incompatible with traditional electronic components. To address this issue, new strategies toward soft and wearable electronic systems are currently being pursued, which also include stretchable photovoltaics as self-powering systems for use in autonomous and stretchable electronics of the future. Here recent developments in the field of stretchable photovoltaics are reviewed and their potential for various emerging applications are examined. Emphasis is placed on the different strategies to induce stretchability including extrinsic and intrinsic approaches. In the former case, engineering and patterning of the materials and devices are key elements while intrinsically stretchable systems rely on mechanically compliant materials such as elastomers and organic conjugated polymers. The result is a review article that provides a comprehensive summary of the progress to date in the field of stretchable solar cells from the nanoscale to macroscopic functional devices. The article is concluded by discussing the emerging trends and future developments.
Collapse
Affiliation(s)
- Emilie Dauzon
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | | | - Cedric Plesse
- LPPI, CY Cergy Paris Université, Cergy, 95000, France
| | | | - Aram Amassian
- Department of Materials Science and Engineering, and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
44
|
Shim HJ, Sunwoo S, Kim Y, Koo JH, Kim D. Functionalized Elastomers for Intrinsically Soft and Biointegrated Electronics. Adv Healthc Mater 2021; 10:e2002105. [PMID: 33506654 DOI: 10.1002/adhm.202002105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Indexed: 12/11/2022]
Abstract
Elastomers are suitable materials for constructing a conformal interface with soft and curvilinear biological tissue due to their intrinsically deformable mechanical properties. Intrinsically soft electronic devices whose mechanical properties are comparable to human tissue can be fabricated using suitably functionalized elastomers. This article reviews recent progress in functionalized elastomers and their application to intrinsically soft and biointegrated electronics. Elastomers can be functionalized by adding appropriate fillers, either nanoscale materials or polymers. Conducting or semiconducting elastomers synthesized and/or processed with these materials can be applied to the fabrication of soft biointegrated electronic devices. For facile integration of soft electronics with the human body, additional functionalization strategies can be employed to improve adhesive or autonomous healing properties. Recently, device components for intrinsically soft and biointegrated electronics, including sensors, stimulators, power supply devices, displays, and transistors, have been developed. Herein, representative examples of these fully elastomeric device components are discussed. Finally, the remaining challenges and future outlooks for the field are presented.
Collapse
Affiliation(s)
- Hyung Joon Shim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Sung‐Hyuk Sunwoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Yeongjun Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
- Department of Materials Science and Engineering Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
45
|
Chen S, Qi J, Fan S, Qiao Z, Yeo JC, Lim CT. Flexible Wearable Sensors for Cardiovascular Health Monitoring. Adv Healthc Mater 2021; 10:e2100116. [PMID: 33960133 DOI: 10.1002/adhm.202100116] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases account for the highest mortality globally, but recent advances in wearable technologies may potentially change how these illnesses are diagnosed and managed. In particular, continuous monitoring of cardiovascular vital signs for early intervention is highly desired. To this end, flexible wearable sensors that can be comfortably worn over long durations are gaining significant attention. In this review, advanced flexible wearable sensors for monitoring cardiovascular vital signals are outlined and discussed. Specifically, the functional materials, configurations, mechanisms, and recent advances of these flexible sensors for heart rate, blood pressure, blood oxygen saturation, and blood glucose monitoring are highlighted. Different mechanisms in bioelectric, mechano-electric, optoelectric, and ultrasonic wearable sensors are presented to monitor cardiovascular vital signs from different body locations. Present challenges, possible strategies, and future directions of these wearable sensors are also discussed. With rapid development, these flexible wearable sensors will potentially be applicable for both medical diagnosis and daily healthcare use in tackling cardiovascular diseases.
Collapse
Affiliation(s)
- Shuwen Chen
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
| | - Jiaming Qi
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Shicheng Fan
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Zheng Qiao
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Joo Chuan Yeo
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
- Mechanobiology Institute National University of Singapore Singapore 117411 Singapore
| |
Collapse
|
46
|
Sheng H, Zhang X, Liang J, Shao M, Xie E, Yu C, Lan W. Recent Advances of Energy Solutions for Implantable Bioelectronics. Adv Healthc Mater 2021; 10:e2100199. [PMID: 33930254 DOI: 10.1002/adhm.202100199] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/30/2021] [Indexed: 12/14/2022]
Abstract
The emerging field of implantable bioelectronics has attracted widespread attention in modern society because it can improve treatment outcomes, reduce healthcare costs, and lead to an improvement in the quality of life. However, their continuous operation is often limited by conventional bulky and rigid batteries with a limited lifespan, which must be surgically removed after completing their missions and/or replaced after being exhausted. Herein, this paper gives a comprehensive review of recent advances in nonconventional energy solutions for implantable bioelectronics, emphasizing the miniaturized, flexible, biocompatible, and biodegradable power devices. According to their source of energy, the promising alternative energy solutions are sorted into three main categories, including energy storage devices (batteries and supercapacitors), internal energy-harvesting devices (including biofuel cells, piezoelectric/triboelectric energy harvesters, thermoelectric and biopotential power generators), and external wireless power transmission technologies (including inductive coupling/radiofrequency, ultrasound-induced, and photovoltaic devices). Their fundamentals, materials strategies, structural design, output performances, animal experiments, and typical biomedical applications are also discussed. It is expected to offer complementary power sources to extend the battery lifetime of bioelectronics while acting as an independent power supply. Thereafter, the existing challenges and perspectives associated with these powering devices are also outlined, with a focus on implantable bioelectronics.
Collapse
Affiliation(s)
- Hongwei Sheng
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Xuetao Zhang
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Jie Liang
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Mingjiao Shao
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Erqing Xie
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Cunjiang Yu
- Department of Mechanical Engineering Texas Center for Superconductivity University of Houston Houston TX 77204 USA
| | - Wei Lan
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
47
|
de Izarra A, Choi C, Jang YH, Lansac Y. Molecular Dynamics of PEDOT:PSS Treated with Ionic Liquids. Origin of Anion Dependence Leading to Cation Design Principles. J Phys Chem B 2021; 125:8601-8611. [PMID: 34292746 DOI: 10.1021/acs.jpcb.1c02445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conductivity enhancement of PEDOT:PSS via the morphological change of PEDOT-rich domains has been achieved by introducing a 1-ethyl-3-methylimidazolium (EMIM)-based ionic liquid (IL) into its aqueous solution, and the degree of such change varies drastically with the anion coupled to the EMIM cation constituting the IL. We carry out a series of molecular dynamics simulations on various simple model systems for the extremely complex mixtures of PEDOT:PSS and EMIM:X IL in water, varying the anion X, the IL concentration, the oligomer model of PEDOT:PSS, and the size of the model systems. The common characteristic found in all simulations is that although planar hydrophobic anions X are the most efficient for ion exchange between PEDOT:PSS and EMIM:X, they tend to bring together planar EMIM cations to PEDOT-rich domains, disrupting PEDOT π-stacks with PEDOT-X-EMIM intercalating layers. Nonplanar hydrophobic anions, which leave most of EMIM cations in water, are efficient for both ion exchange and the formation of extended PEDOT π-stacks, as observed in experiments. Based on such findings, we propose a design principle for new cations replacing EMIM; nonplanar hydrophilic cations combined with hydrophobic anions should improve IL efficiency for PEDOT:PSS treatment.
Collapse
Affiliation(s)
- Ambroise de Izarra
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France.,Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea
| | - Changwon Choi
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea
| | - Yves Lansac
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France.,Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea.,Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
48
|
Jang J, Ji S, Grandhi GK, Cho HB, Im WB, Park J. Multimodal Digital X-ray Scanners with Synchronous Mapping of Tactile Pressure Distributions using Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008539. [PMID: 34145641 PMCID: PMC11468999 DOI: 10.1002/adma.202008539] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Visual and tactile information are the key intuitive perceptions in sensory systems, and the synchronized detection of these two sensory modalities can enhance accuracy of object recognition by providing complementary information between them. Herein, multimodal integration of flexible, high-resolution X-ray detectors with a synchronous mapping of tactile pressure distributions for visualizing internal structures and morphologies of an object simultaneously is reported. As a visual-inspection method, perovskite materials that convert X-rays into charge carriers directly are synthesized. By incorporating pressure-sensitive air-dielectric transistors in the perovskite components, X-ray detectors with dual modalities (i.e., vision and touch) are attained as an active-matrix platform for digital visuotactile examinations. Also, in vivo X-ray imaging and pressure sensing are demonstrated using a live rat. This multiplexed platform has high spatial resolution and good flexibility, thereby providing highly accurate inspection and diagnoses even for the distorted images of nonplanar objects.
Collapse
Affiliation(s)
- Jiuk Jang
- Nano Science Technology InstituteDepartment of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sangyoon Ji
- Nano Science Technology InstituteDepartment of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | | | - Han Bin Cho
- Division of Materials Science and EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Won Bin Im
- Division of Materials Science and EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Jang‐Ung Park
- Nano Science Technology InstituteDepartment of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
49
|
Vallem V, Sargolzaeiaval Y, Ozturk M, Lai YC, Dickey MD. Energy Harvesting and Storage with Soft and Stretchable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004832. [PMID: 33502808 DOI: 10.1002/adma.202004832] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Indexed: 06/12/2023]
Abstract
This review highlights various modes of converting ambient sources of energy into electricity using soft and stretchable materials. These mechanical properties are useful for emerging classes of stretchable electronics, e-skins, bio-integrated wearables, and soft robotics. The ability to harness energy from the environment allows these types of devices to be tetherless, thereby leading to a greater range of motion (in the case of robotics), better compliance (in the case of wearables and e-skins), and increased application space (in the case of electronics). A variety of energy sources are available including mechanical (vibrations, human motion, wind/fluid motion), electromagnetic (radio frequency (RF), solar), and thermodynamic (chemical or thermal energy). This review briefly summarizes harvesting mechanisms and focuses on the materials' strategies to render such devices into soft or stretchable embodiments.
Collapse
Affiliation(s)
- Veenasri Vallem
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yasaman Sargolzaeiaval
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Mehmet Ozturk
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ying-Chih Lai
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
50
|
Hsieh GW, Ling SR, Hung FT, Kao PH, Liu JB. Enhanced piezocapacitive response in zinc oxide tetrapod-poly(dimethylsiloxane) composite dielectric layer for flexible and ultrasensitive pressure sensor. NANOSCALE 2021; 13:6076-6086. [PMID: 33687415 DOI: 10.1039/d0nr06743a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We demonstrate polymeric piezocapacitive pressure sensors based on a novel composite dielectric film of poly(dimethylsiloxane) elastomeric silicone and zinc oxide tetrapod. With an appropriate loading of zinc oxide tetrapods, composite piezocapacitive pressure sensors show a 75-fold enhancement of pressure sensitivity over pristine devices, achieving a marked value as high as 2.55 kPa-1. The limit of detection was estimated to be about 10 mg, corresponding to a subtle stimulus of only 1.0 Pa. Besides, versatile functionalities such as detection of finger bending/straightening, calligraphy writing, and air flow blowing have been investigated. It is expected that the proposed piezocapacitive pressure sensors incorporating stress-sensitive additives of zinc oxide nanostructures may provide a promising means for potential applications in ultrasensitive wearable, healthcare systems and human-machine interfaces.
Collapse
Affiliation(s)
- Gen-Wen Hsieh
- Institute of Lighting and Energy Photonics, College of Photonics, National Chiao Tung University, 301, Gaofa 3rd Road, Guiren District, Tainan 71150, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|