1
|
Labed M, Moon JY, Kim SI, Park JH, Kim JS, Venkata Prasad C, Bae SH, Rim YS. 2D Embedded Ultrawide Bandgap Devices for Extreme Environment Applications. ACS NANO 2024; 18:30153-30183. [PMID: 39436685 DOI: 10.1021/acsnano.4c09173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Ultrawide bandgap semiconductors such as AlGaN, AlN, diamond, and β-Ga2O3 have significantly enhanced the functionality of electronic and optoelectronic devices, particularly in harsh environment conditions. However, some of these materials face challenges such as low thermal conductivity, limited P-type conductivity, and scalability issues, which can hinder device performance under extreme conditions like high temperature and irradiation. In this review paper, we explore the integration of various two-dimensional materials (2DMs) to address these challenges. These materials offer excellent properties such as high thermal conductivity, mechanical strength, and electrical properties. Notably, graphene, hexagonal boron nitride, transition metal dichalcogenides, 2D and quasi-2D Ga2O3, TeO2, and others are investigated for their potential in improving ultrawide bandgap semiconductor-based devices. We highlight the significant improvement observed in the device performance after the incorporation of 2D materials. By leveraging the properties of these materials, ultrawide bandgap semiconductor devices demonstrate enhanced functionality and resilience in harsh environmental conditions. This review provides valuable insights into the role of 2D materials in advancing the field of ultrawide bandgap semiconductors and highlights opportunities for further research and development in this area.
Collapse
Affiliation(s)
- Madani Labed
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University Seoul, Seoul 05006, Republic of Korea
| | - Ji-Yun Moon
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Seung-Il Kim
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Jang Hyeok Park
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University Seoul, Seoul 05006, Republic of Korea
| | - Justin S Kim
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Chowdam Venkata Prasad
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University Seoul, Seoul 05006, Republic of Korea
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - You Seung Rim
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University Seoul, Seoul 05006, Republic of Korea
| |
Collapse
|
2
|
Beshara GM, Surin I, Agrachev M, Eliasson H, Otroshchenko T, Krumeich F, Erni R, Kondratenko EV, Pérez-Ramírez J. Mechanochemically-derived iron atoms on defective boron nitride for stable propylene production. EES CATALYSIS 2024; 2:1263-1276. [PMID: 39148890 PMCID: PMC11320177 DOI: 10.1039/d4ey00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Single-atom catalysts (SACs), possessing a uniform metal site structure, are a promising class of materials for selective oxidations of hydrocarbons. However, their design for targeted applications requires careful choice of metal-host combinations and suitable synthetic techniques. Here, we report iron atoms stabilised on defective hexagonal boron nitride (h-BN) via mechanochemical activation in a ball mill as an effective catalyst for propylene production via N2O-mediated oxidative propane dehydrogenation (N2O-ODHP), reaching 95% selectivity at 6% propane conversion and maintaining stable performance for 40 h on stream. This solvent-free synthesis allows simultaneous carrier exfoliation and surface defect generation, creating anchoring sites for catalytically-active iron atoms. The incorporation of a small metal quantity (0.5 wt%) predominantly generates a mix of atomically-dispersed Fe2+ and Fe3+ species, as confirmed by combining advanced microscopy and electron paramagnetic resonance, UV-vis and X-ray photoelectron spectroscopy analyses. Single-atom iron favours selective propylene formation, while metal oxide nanoparticles yield large quantities of CO x and cracking by-products. The lack of acidic functionalities on h-BN, hindering coke formation, and firm stabilisation of Fe sites, preventing metal sintering, ensure stable operation. These findings showcase N2O-ODHP as a promising propylene production technology and foster wider adoption of mechanochemical activation as a viable method for SACs synthesis.
Collapse
Affiliation(s)
- Gian Marco Beshara
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Ivan Surin
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Mikhail Agrachev
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Henrik Eliasson
- Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology (EMPA) Uberlandstrasse 129 8600 Dubendorf Switzerland
| | - Tatiana Otroshchenko
- Advanced Methods for Applied Catalysis, Leibniz-Institut fur Katalyse Albert Einstein-Strasse 29a 18059 Rostock Germany
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology (EMPA) Uberlandstrasse 129 8600 Dubendorf Switzerland
| | - Evgenii V Kondratenko
- Advanced Methods for Applied Catalysis, Leibniz-Institut fur Katalyse Albert Einstein-Strasse 29a 18059 Rostock Germany
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
3
|
Huang J, Meng J, Yang H, Jiang J, Xia Z, Zhang S, Zeng L, Yin Z, Zhang X. Van der Waals Epitaxy of High-Quality Transition Metal Dichalcogenides on Single-Crystal Hexagonal Boron Nitride. SMALL METHODS 2024:e2401296. [PMID: 39420859 DOI: 10.1002/smtd.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Van der Waals (vdW) heterostructures comprising of transition metal dichalcogenides (TMDs) and hexagonal boron nitride (h-BN) are promising building blocks for novel 2D devices. The vdW epitaxy provides a straightforward integration method for fabricating high-quality TMDs/h-BN vertical heterostructures. In this work, the vdW epitaxy of high-quality single-crystal HfSe2 on epitaxial h-BN/sapphire substrates by chemical vapor deposition is demonstrated. The epitaxial HfSe2 layers exhibit a uniform and atomically sharp interface with the underlying h-BN template, and the epitaxial relationship between HfSe2 and h-BN/sapphire is determined to HfSe2 (0001)[12 ¯ ${\mathrm{\bar{2}}}$ 10]//h-BN (0001)[11 ¯ ${\mathrm{\bar{1}}}$ 00]//sapphire (0001)[11 ¯ ${\mathrm{\bar{1}}}$ 00]. Impressively, the full width at half maximum of the rocking curve for the epitaxial HfSe2 layer on single-crystal h-BN is as narrow as 9.6 arcmin, indicating an extremely high degree of out-plane orientation and high crystallinity. Benefitting from the high crystalline quality of HfSe2 epilayers and the weak interfacial scattering of HfSe2/h-BN, the photodetector fabricated from the vdW epitaxial HfSe2 on single-crystal h-BN shows the best performance with an on/off ratio of 1 × 104 and a responsivity up to 43 mA W-1. Furthermore, the vdW epitaxy of other TMDs such as HfS2, ZrS2, and ZrSe2 is also experimentally demonstrated on single-crystal h-BN, suggesting the broad applicability of the h-BN template for the vdW epitaxy.
Collapse
Affiliation(s)
- Jidong Huang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junhua Meng
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Huabo Yang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ji Jiang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhengchang Xia
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siyu Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Libin Zeng
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhigang Yin
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingwang Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Mayner E, Ronceray N, Lihter M, Chen TH, Watanabe K, Taniguchi T, Radenovic A. Monitoring Electrochemical Dynamics through Single-Molecule Imaging of hBN Surface Emitters in Organic Solvents. ACS NANO 2024; 18:27401-27410. [PMID: 39321411 PMCID: PMC11468151 DOI: 10.1021/acsnano.4c07189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Electrochemical techniques conventionally lack spatial resolution and average local information over an entire electrode. While advancements in spatial resolution have been made through scanning probe methods, monitoring dynamics over large areas is still challenging, and it would be beneficial to be able to decouple the probe from the electrode itself. In this work, we leverage single molecule microscopy to spatiotemporally monitor analyte surface concentrations over a wide area using unmodified hexagonal boron nitride (hBN) in organic solvents. Through a sensing scheme based on redox-active species interactions with fluorescent emitters at the surface of hBN, we observe a region of a linear decrease in the number of emitters against increasingly positive potentials applied to a nearby electrode. We find consistent trends in electrode reaction kinetics vs overpotentials between potentiostat-reported currents and optically read emitter dynamics, showing Tafel slopes greater than 290 mV·decade-1. Finally, we draw on the capabilities of spectral single-molecule localization microscopy (SMLM) to monitor the fluorescent species' identity, enabling multiplexed readout. Overall, we show dynamic measurements of analyte concentration gradients on a micrometer-length scale with nanometer-scale depth and precision. Considering the many scalable options for engineering fluorescent emitters with two-dimensional (2D) materials, our method holds promise for optically detecting a range of interacting species with exceptional localization precision.
Collapse
Affiliation(s)
- Eveline Mayner
- Laboratory
of Nanoscale Biology, Institute of Bioengineering
Ecole Polytechnique Federale de Lausanne, EPFL STI IBI-STI LBEN BM, Lausanne CH-1015, Switzerland
| | - Nathan Ronceray
- Laboratory
of Nanoscale Biology, Institute of Bioengineering
Ecole Polytechnique Federale de Lausanne, EPFL STI IBI-STI LBEN BM, Lausanne CH-1015, Switzerland
| | - Martina Lihter
- Laboratory
of Nanoscale Biology, Institute of Bioengineering
Ecole Polytechnique Federale de Lausanne, EPFL STI IBI-STI LBEN BM, Lausanne CH-1015, Switzerland
- Institute
of Physics, Bijenicka
46, Zagreb HR-10000, Croatia
| | - Tzu-Heng Chen
- Laboratory
of Nanoscale Biology, Institute of Bioengineering
Ecole Polytechnique Federale de Lausanne, EPFL STI IBI-STI LBEN BM, Lausanne CH-1015, Switzerland
| | - Kenji Watanabe
- Research
Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Aleksandra Radenovic
- Laboratory
of Nanoscale Biology, Institute of Bioengineering
Ecole Polytechnique Federale de Lausanne, EPFL STI IBI-STI LBEN BM, Lausanne CH-1015, Switzerland
| |
Collapse
|
5
|
Sukhanova EV, Manakhov AM, Kovalskii A, Al-Qasim AS, Popov ZI. Exploring h-BN as a hydrogen conductor and depository. Phys Chem Chem Phys 2024; 26:24894-24900. [PMID: 39291706 DOI: 10.1039/d4cp02466d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The use of hexagonal boron nitride (h-BN) as a material for hydrogen storage is attributed to its ability to accommodate atomic and molecular hydrogen. However, the low diffusion barrier of molecular hydrogen within the h-BN structure does not fully explain the long-term stability of hydrogen bubbles observed in experimental work [L. He, H. Wang, L. Chen, X. Wang, H. Xie, C. Jiang, C. Li, K. Elibol, J. Meyer, K. Watanabe, T. Taniguchi, Z. Wu, W. Wang, Z. Ni, X. Miao, C. Zhang, D. Zhang, H. Wang and X. Xie, Nat. Commun., 2019, 10, 2815, https://doi.org/10.1038/s41467-019-10660-9]. Another unresolved inquiry is the method by which hydrogen infiltrates the h-BN layer in a perpendicular direction. In this study, we conducted a comprehensive examination of several aspects that can impact the permeation of hydrogen in the h-BN structure. We employed DFT within the rPBE (DFT-D3(0)) functional to suggest a process for the penetration of atomic hydrogen through the h-BN sheet along the normal direction by sequential hydrogen passivation.
Collapse
Affiliation(s)
- Ekaterina V Sukhanova
- Emanuel Institute of Biochemical Physics RAS, 119334, 4 Kosigin St., Moscow, Russia.
| | | | | | | | - Zakhar I Popov
- Emanuel Institute of Biochemical Physics RAS, 119334, 4 Kosigin St., Moscow, Russia.
- Plekhanov Russian University of Economics, 117997, 36 Stremyanny per., Moscow, Russia
| |
Collapse
|
6
|
Yao Y, Yang Q, Li X, Cao J, Xu W. Intercalated Architecture of the Ca 2A 2Z 5 Monolayer with High Electron Mobilities and High Power Conversion Efficiencies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51346-51353. [PMID: 39265542 DOI: 10.1021/acsami.4c11240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The exploration of novel two-dimensional (2D) materials with a direct band gap and high mobility has attracted huge attention due to their potential application in electronic and optoelectronic devices. Here, we propose a feasible way to construct multiatomic monolayer Ca2A2Z5 (A = Al and Ga and Z = S, Se, and Te) by first-principles calculations. Our results indicated that the energies of α1-phase Ca2A2Z5 are slightly lower than those of experimentally synthesized α3-phase-like Ca2A2Z5 monolayers with excellent structural stability. Moreover, the α1- and α3-phase Ca2A2Z5 monolayers possess not only direct band gaps but also high electron mobilities (up to ∼103 cm2 V-1 s-1), demonstrating an intriguing range of visible light absorption. Importantly, α1- and α3-phase Ca2Ga2Se5 monolayers are good donor materials, and the corresponding Ca2Ga2Se5/ZrSe2 type-II heterostructures exhibit desirable power conversion efficiencies of 22.4% and 22.9%, respectively. Our findings provide a feasible way to explore new 2D materials and offer several Ca2A2Z5 candidate monolayers for the application of high-performance solar cells.
Collapse
Affiliation(s)
- Ying Yao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Qiyao Yang
- Center for Computational Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Xu Li
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Juexian Cao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Wangping Xu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| |
Collapse
|
7
|
Huang H, Ding L, Wang X, Jiang Q, Li Q, Hu J. Edge-oriented growth of cadmium sulfide nanoparticles on nickel metal-organic framework nanosheets for photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 670:86-95. [PMID: 38759271 DOI: 10.1016/j.jcis.2024.05.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
In this study, a directional loading of cadmium sulfide (CdS) nanoparticles (NPs) was achieved on the opposite edges of nickel metal-organic framework (Ni-MOF) nanosheets (NSs) by adjusting the weight ratio of CdS NPs in the reaction process to produce effective visible light photocatalysts. The close contact between the zero-dimensional (0D) and two-dimensional (2D) regions and the matching positions of the bands promoted charge separation and heterojunction formation. The optimal CdS NPs loading of composite material was 40 wt%. At this ratio, CdS NPs grew primarily at the opposite edges of the Ni-MOF NSs rather than on their surfaces. When lactic acid was used as the sacrificial agent, the hydrogen production rate of the 40 %-CdS/Ni-MOF heterojunction under visible light irradiation was 19.6 mmol h-1 g-1, making a 20-fold enhancement compared to the original CdS NPs sample (1.0 mmol h-1 g-1). The charge carriers generated in CdS NPs were transferred to Ni-MOF NSs through heterojunctions, where Ni-MOF NSs also served as cocatalysts to improve hydrogen production. The combination of the two materials improved the light absorption ability. In particular, the 40 %-CdS/Ni-MOF heterojunction exhibited good photostability, effectively preventing the photocorrosion of CdS NPs. This study introduces an approach for constructing efficient and stable photocatalysts for visible light-driven photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Han Huang
- Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Liyong Ding
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, PR China.
| | - Xuedong Wang
- Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Qingqing Jiang
- Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Qin Li
- Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Juncheng Hu
- Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
8
|
Shuai X, Sidhik S, Xu M, Zhang X, De Siena M, Pedesseau L, Zhang H, Gao G, Puthirath AB, Li W, Agrawal A, Xu J, Hou J, Persaud JH, Daum J, Mishra A, Wang Y, Vajtai R, Katan C, Kanatzidis MG, Even J, Ajayan PM, Mohite AD. Vapor Growth of All-Inorganic 2D Ruddlesden-Popper Lead- and Tin-Based Perovskites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46560-46569. [PMID: 39175462 DOI: 10.1021/acsami.4c05329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The 2D Ruddlesden-Popper (RP) perovskites Cs2PbI2Cl2 (Pb-based, n = 1) and Cs2SnI2Cl2 (Sn-based, n = 1) stand out as unique and rare instances of entirely inorganic constituents within the more expansive category of organic/inorganic 2D perovskites. These materials have recently garnered significant attention for their strong UV-light responsiveness, exceptional thermal stability, and theoretically predicted ultrahigh carrier mobility. In this study, we synthesized Pb and Sn-based n = 1 2D RP perovskite films covering millimeter-scale areas for the first time, utilizing a one-step chemical vapor deposition (CVD) method under atmospheric conditions. These films feature perovskite layers oriented horizontally relative to the substrate. Multilayered Cs3Pb2I3Cl4 (Pb-based, n = 2) and Cs3Sn2I3Cl4 (Sn-based, n = 2) films were also obtained for the first time, and their crystallographic structures were refined by combining X-ray diffraction (XRD) and density functional theory (DFT) calculations. DFT calculations and experimental optical spectroscopy support band-gap energy shifts related to the perovskite layer thickness. We demonstrate bias-free photodetectors using the Sn-based, n = 1 perovskite with reproducible photocurrent and a fast 84 ms response time. The present work not only demonstrates the growth of high-quality all-inorganic multilayered 2D perovskites via the CVD method but also suggests their potential as promising candidates for future optoelectronic applications.
Collapse
Affiliation(s)
- Xinting Shuai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Siraj Sidhik
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Mingrui Xu
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Michael De Siena
- Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Laurent Pedesseau
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR6082, Rennes F-35000, France
| | - Hao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institution, Houston, Texas 77005, United States
| | - Guanhui Gao
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Wenbin Li
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institution, Houston, Texas 77005, United States
| | - Ayush Agrawal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jianan Xu
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Jin Hou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Jessica H Persaud
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jeremy Daum
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Anamika Mishra
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Yafei Wang
- School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Claudine Katan
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR -UMR6226, Rennes F-35000, France
| | - Mercouri G Kanatzidis
- Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR6082, Rennes F-35000, France
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Aditya D Mohite
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
9
|
Lü B, Chen Y, Ma X, Shi Z, Zhang S, Jia Y, Li Y, Cheng Y, Jiang K, Li W, Zhang W, Yue Y, Li S, Sun X, Li D. Wafer-Scale Growth and Transfer of High-Quality MoS 2 Array by Interface Design for High-Stability Flexible Photosensitive Device. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405050. [PMID: 38973148 PMCID: PMC11425836 DOI: 10.1002/advs.202405050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 07/09/2024]
Abstract
Transition metal disulfide compounds (TMDCs) emerges as the promising candidate for new-generation flexible (opto-)electronic device fabrication. However, the harsh growth condition of TMDCs results in the necessity of using hard dielectric substrates, and thus the additional transfer process is essential but still challenging. Here, an efficient strategy for preparation and easy separation-transfer of high-uniform and quality-enhanced MoS2 via the precursor pre-annealing on the designed graphene inserting layer is demonstrated. Based on the novel strategy, it achieves the intact separation and transfer of a 2-inch MoS2 array onto the flexible resin. It reveals that the graphene inserting layer not only enhances MoS2 quality but also decreases interfacial adhesion for easy separation-transfer, which achieves a high yield of ≈99.83%. The theoretical calculations show that the chemical bonding formation at the growth interface has been eliminated by graphene. The separable graphene serves as a photocarrier transportation channel, making a largely enhanced responsivity up to 6.86 mA W-1, and the photodetector array also qualifies for imaging featured with high contrast. The flexible device exhibits high bending stability, which preserves almost 100% of initial performance after 5000 cycles. The proposed novel TMDCs growth and separation-transfer strategy lightens their significance for advances in curved and wearable (opto-)electronic applications.
Collapse
Affiliation(s)
- Bingchen Lü
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Chen
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaobao Ma
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiming Shi
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shanli Zhang
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuping Jia
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yahui Li
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuang Cheng
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke Jiang
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenwen Li
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Yuanyuan Yue
- School of Management Science and Information Engineering, Jilin University of Finance and Economics, Changchun, 130117, P. R. China
| | - Shaojuan Li
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaojuan Sun
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dabing Li
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Dai W, Wang Y, Li M, Chen L, Yan Q, Yu J, Jiang N, Lin CT. 2D Materials-Based Thermal Interface Materials: Structure, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311335. [PMID: 38847403 DOI: 10.1002/adma.202311335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/23/2024] [Indexed: 06/27/2024]
Abstract
The challenges associated with heat dissipation in high-power electronic devices used in communication, new energy, and aerospace equipment have spurred an urgent need for high-performance thermal interface materials (TIMs) to establish efficient heat transfer pathways from the heater (chip) to heat sinks. Recently, emerging 2D materials, such as graphene and boron nitride, renowned for their ultrahigh basal-plane thermal conductivity and the capacity to facilitate cross-scale, multi-morphic structural design, have found widespread use as thermal fillers in the production of high-performance TIMs. To deepen the understanding of 2D material-based TIMs, this review focuses primarily on graphene and boron nitride-based TIMs, exploring their structures, properties, and applications. Building on this foundation, the developmental history of these TIMs is emphasized and a detailed analysis of critical challenges and potential solutions is provided. Additionally, the preparation and application of some other novel 2D materials-based TIMs are briefly introduced, aiming to offer constructive guidance for the future development of high-performance TIMs.
Collapse
Affiliation(s)
- Wen Dai
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yandong Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maohua Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lu Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qingwei Yan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nan Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Salpekar D, Serles P, Colas G, Ma L, Yadav S, Hamidinejad M, Khabashesku VN, Gao G, Swaminathan V, Vajtai R, Singh CV, Park C, Filleter T, Meiyazhagan A, Ajayan PM. Multifunctional Applications Enabled by Fluorination of Hexagonal Boron Nitride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311836. [PMID: 38770997 DOI: 10.1002/smll.202311836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/03/2024] [Indexed: 05/22/2024]
Abstract
2D materials exhibit exceptional properties as compared to their macroscopic counterparts, with promising applications in nearly every area of science and technology. To unlock further functionality, the chemical functionalization of 2D structures is a powerful technique that enables tunability and new properties within these materials. Here, the successful effort to chemically functionalize hexagonal boron nitride (hBN), a chemically inert 2D ceramic with weak interlayer forces, using a gas-phase fluorination process is exploited. The fluorine functionalization guides interlayer expansion and increased polar surface charges on the hBN sheets resulting in a number of vastly improved applications. Specifically, the F-hBN exhibits enhanced dispersibility and thermal conductivity at higher temperatures by more than 75% offering exceptional performance as a thermofluid additive. Dispersion of low volumes of F-hBN in lubricating oils also offers marked improvements in lubrication and wear resistance for steel tribological contacts decreasing friction by 31% and wear by 71%. Additionally, incorporating numerous negatively charged fluorine atoms on hBN induces a permanent dipole moment, demonstrating its applicability in microelectronic device applications. The findings suggest that anchoring chemical functionalities to hBN moieties improves a variety of properties for h-BN, making it suitable for numerous other applications such as fillers or reinforcement agents and developing high-performance composite structures.
Collapse
Affiliation(s)
- Devashish Salpekar
- Department of Materials Science & NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Peter Serles
- Department of Mechanical & Industrial Engineering, The University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Guillaume Colas
- Université de Franche-Comté, CNRS, institut FEMTO-ST, Besançon, F-25000, France
| | - Li Ma
- Department of Mechanical & Industrial Engineering, The University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Shwetank Yadav
- Department of Materials Science and Engineering, University of Toronto, 184 College St, Toronto, ON, M5S 3E4, Canada
| | - Mahdi Hamidinejad
- Department of Engineering, University of Cambridge, Cambridge, CB30FS, UK
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G1H9, Canada
| | - Valery N Khabashesku
- Department of Materials Science & NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Guanhui Gao
- Department of Materials Science & NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Venkataraman Swaminathan
- Department of Materials Science & NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Robert Vajtai
- Department of Materials Science & NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, 184 College St, Toronto, ON, M5S 3E4, Canada
| | - Chul Park
- Department of Mechanical & Industrial Engineering, The University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Tobin Filleter
- Department of Mechanical & Industrial Engineering, The University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - AshokKumar Meiyazhagan
- Department of Materials Science & NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science & NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
12
|
Cao C, Yang J, Yang S, Yan S, Liu C, Wang D, Xue Y, Qu X, Tang C. Pressureless Welding of Temperature-Invariant Multifunctionality Body Based on Hydroxyl-Functionalized Boron Nitride Nanosheets and Bifunctional Monoethanolamine Cross-linker. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401387. [PMID: 38773909 DOI: 10.1002/smll.202401387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/27/2024] [Indexed: 05/24/2024]
Abstract
Bulk hexagonal boron nitride (h-BN) ceramics with structural integrity, high-temperature resistance and low expansion rate are expected for multifunctional applications in extreme conditions. However, due to its sluggish self-diffusion and intrinsic inertness, it remains a great challenge to overcome high-energy barrier for h-BN powder sintering. Herein, a cross-linking and pressureless-welding strategy is reported to produce bulk boron nitride nanosheets (BNNSs) ceramics with well-crystalized and dense B-N covalent-welding frameworks. The essence of this synthesis strategy lies in the construction of >B─O─H2C─H2C─H2N:→B< bond bridge connection structure among hydroxyl functionalized BNNSs (BNNSs-OH) using bifunctional monoethanolamine (MEA) as cross-linker through esterification and intermolecular-coordination reactions. The prepared BNNSs-interlaced ceramics have densities not less than 1.2 g cm-3, and exhibit exceptional mechanical robustness and resiliency, excellent thermomechanical stability, ultra-low linear thermal expansion coefficient of 0.06 ppm °C-1, and high thermal diffusion coefficient of 4.76 mm2 s-1 at 25 °C and 3.72 mm2 s-1 at 450 °C. This research not only reduces the free energy barrier from h-BN particles to bulk ceramics through facile multi-step physicochemical reaction, but also stimulates further exploration of multifunctional applications for bulk h-BN ceramics over a wide temperature range.
Collapse
Affiliation(s)
- Chaochao Cao
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jingwen Yang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Shaobo Yang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Song Yan
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Chaoze Liu
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Dong Wang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yanming Xue
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Chengchun Tang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
13
|
Wu Y, Wu Y, Sun Y, Zhao W, Wang L. 2D Nanomaterials Reinforced Organic Coatings for Marine Corrosion Protection: State of the Art, Challenges, and Future Prospectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312460. [PMID: 38500264 DOI: 10.1002/adma.202312460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Indexed: 03/20/2024]
Abstract
2D nanomaterials, with extraordinary physical and chemical characteristics, have long been regarded as promising nanofillers in organic coatings for marine corrosion protection. The past decade has witnessed the high-speed progress of 2D nanomaterial-reinforced organic composite coatings, and plenty of breakthroughs have been achieved as yet. This review covers an in-depth and all-around outline of the up-to-date advances in 2D nanomaterial-modified organic coatings employed for the marine corrosion protection realm. Starting from a brief introduction to 2D nanomaterials, the preparation strategies and properties are illustrated. Subsequently, diverse protection models based on composite coatings for marine corrosion protection are also introduced, including physical barrier, self-healing, as well as cathodic protection, respectively. Furthermore, computational simulations and critical factors on the corrosion protection properties of composite coatings are clarified in detail. Finally, the remaining challenges and prospects for marine corrosion protection based on 2D nanomaterials reinforced organic coatings are highlighted.
Collapse
Affiliation(s)
- Yangmin Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yinghao Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yingxiang Sun
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenjie Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Liping Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
14
|
Yu X, Xu C, Sun J, Xu H, Huang H, Gan Z, George A, Ouyang S, Liu F. Recent developments in two-dimensional molybdenum disulfide-based multimodal cancer theranostics. J Nanobiotechnology 2024; 22:515. [PMID: 39198894 PMCID: PMC11351052 DOI: 10.1186/s12951-024-02785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advancements in cancer research have led to the generation of innovative nanomaterials for improved diagnostic and therapeutic strategies. Despite the proven potential of two-dimensional (2D) molybdenum disulfide (MoS2) as a versatile platform in biomedical applications, few review articles have focused on MoS2-based platforms for cancer theranostics. This review aims to fill this gap by providing a comprehensive overview of the latest developments in 2D MoS2 cancer theranostics and emerging strategies in this field. This review highlights the potential applications of 2D MoS2 in single-model imaging and therapy, including fluorescence imaging, photoacoustic imaging, photothermal therapy, and catalytic therapy. This review further classifies the potential of 2D MoS2 in multimodal imaging for diagnostic and synergistic theranostic platforms. In particular, this review underscores the progress of 2D MoS2 as an integrated drug delivery system, covering a broad spectrum of therapeutic strategies from chemotherapy and gene therapy to immunotherapy and photodynamic therapy. Finally, this review discusses the current challenges and future perspectives in meeting the diverse demands of advanced cancer diagnostic and theranostic applications.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Chen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
| | - Hainan Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziyang Gan
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Antony George
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Sihui Ouyang
- College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China.
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
15
|
Sutorius A, Weißing R, Rindtorff Pèrez C, Fischer T, Hartl F, Basu N, Shin HS, Mathur S. Understanding vapor phase growth of hexagonal boron nitride. NANOSCALE 2024; 16:15782-15792. [PMID: 39118450 DOI: 10.1039/d4nr02624a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hexagonal boron nitride (hBN), with its atomically flat structure, excellent chemical stability, and large band gap energy (∼6 eV), serves as an exemplary 2D insulator in electronics. Additionally, it offers exceptional attributes for the growth and encapsulation of semiconductor transition metal dichalcogenides (TMDCs). Current methodologies for producing hBN thin films primarily involve exfoliating multi-layer or bulk crystals and thin film growth via chemical vapor deposition (CVD), which entails the thermal decomposition and surface reaction of molecular precursors like ammonia boranes (NH3BH3) and borazine (B3N3H6). These molecular precursors contain pre-existing B-N bonds, thus promoting the nucleation of BN. However, the quality and phase purity of resulting BN films are greatly influenced by the film preparation and deposition process conditions that remain a substantial concern. This study aims to comprehensively investigate the impact of varied CVD systems, parameters, and precursor chemistry on the synthesis of high-quality, large scale hBN on both catalytic and non-catalytic substrates. The comparative analysis provided new insights into most effective approaches concerning both quality and scalability of vapor phase grown hBN films.
Collapse
Affiliation(s)
- Anja Sutorius
- Institute of Inorganic and Materials Chemistry, Department of Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany.
| | - René Weißing
- Institute of Inorganic and Materials Chemistry, Department of Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany.
| | - Carina Rindtorff Pèrez
- Institute of Inorganic and Materials Chemistry, Department of Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany.
| | - Thomas Fischer
- Institute of Inorganic and Materials Chemistry, Department of Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany.
| | - Fabian Hartl
- Institute of Inorganic and Materials Chemistry, Department of Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany.
| | - Nilanjan Basu
- Center for 2D Quantum Heterostructures, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hyeon Suk Shin
- Center for 2D Quantum Heterostructures, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sanjay Mathur
- Institute of Inorganic and Materials Chemistry, Department of Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany.
| |
Collapse
|
16
|
Asif K, Rahman MM, Sfriso AA, Parisi S, Canzonieri V, Caligiuri I, Rizzolio F, Adeel M. Biodegradation of hydroxylated boron nitride nanoplatelets, their toxic effect and drug delivery application. RSC Adv 2024; 14:26568-26579. [PMID: 39175687 PMCID: PMC11339772 DOI: 10.1039/d4ra04433a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024] Open
Abstract
Boron nitride is extensively used in various biomedical applications and often interacting with the blood circulatory system. However, the effect of its biotransformation in blood plasma, drug delivery applications, and antitumor effects remains unclear. Herein, we synthesized hydroxylated BN nanoplatelets (-OH/BNNPs) that are used to load doxorubicin (DOX) for cancer therapy. The stability of the -OH/BNNPs was tested in a lab-made, artificially developed, in vivo system for up to sixty days at two different pH values (pH 5.5 & 7.4). The results were compared thoroughly with pristine BN, and it is observed that -OH/BNNPs was very stable for up to two months compared to pristine BN that degraded during the next day. The -OH functionalization on the BNNP surface improves the DOX loading compared to the bulk BN since the -OH functional group facilitates drug absorption through hydrogen bonding. This causes the sustained release of the drug, which is an ideal requirement in drug delivery systems. The DOX-loaded -OH/BNNPs showed excellent therapeutic abilities on different cancer cell lines and organoids derived from colorectal cancer patients.
Collapse
Affiliation(s)
- Kanwal Asif
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS 33081 Aviano Italy
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice 30172 Venice Italy +39-041 2348594 +39-041 2348910
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London London EC1M 6BQ UK
| | - Md Mahbubur Rahman
- Department of Energy Material Science & Engineering, Konkuk University Chungju 27478 Republic of Korea
| | | | - Salvatore Parisi
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS 33081 Aviano Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS 33081 Aviano Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste 34149 Trieste Italy
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS 33081 Aviano Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS 33081 Aviano Italy
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice 30172 Venice Italy +39-041 2348594 +39-041 2348910
| | - Muhammad Adeel
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice 30172 Venice Italy +39-041 2348594 +39-041 2348910
- Department of Bioengineering, Royal School of Mines, Imperial College London London SW7 2AZ UK +39-041 2348594 +39-041 2348910
| |
Collapse
|
17
|
Darwish MA, Abd-Elaziem W, Elsheikh A, Zayed AA. Advancements in nanomaterials for nanosensors: a comprehensive review. NANOSCALE ADVANCES 2024; 6:4015-4046. [PMID: 39114135 PMCID: PMC11304082 DOI: 10.1039/d4na00214h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024]
Abstract
Nanomaterials (NMs) exhibit unique properties that render them highly suitable for developing sensitive and selective nanosensors across various domains. This review aims to provide a comprehensive overview of nanomaterial-based nanosensors, highlighting their applications and the classification of frequently employed NMs to enhance sensitivity and selectivity. The review introduces various classifications of NMs commonly used in nanosensors, such as carbon-based NMs, metal-based NMs, and others, elucidating their exceptional properties, including high thermal and electrical conductivity, large surface area-to-volume ratio and good biocompatibility. A thorough examination of literature sources was conducted to gather information on NMs-based nanosensors' characteristics, properties, and fabrication methods and their application in diverse sectors such as healthcare, environmental monitoring, industrial processes, and security. Additionally, advanced applications incorporating machine learning techniques were analyzed to enhance the sensor's performance. This review advances the understanding and development of nanosensor technologies by providing insights into fabrication techniques, characterization methods, applications, and future outlook. Key challenges such as robustness, biocompatibility, and scalable manufacturing are also discussed, offering avenues for future research and development in this field.
Collapse
Affiliation(s)
- Moustafa A Darwish
- Physics Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Walaa Abd-Elaziem
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University P.O. Box 44519 Egypt
- Department of Materials Science and Engineering, Northwestern University Evanston IL 60208 USA
| | - Ammar Elsheikh
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Tanta University Tanta 31521 Egypt
- Department of Industrial and Mechanical Engineering, Lebanese American University P.O. Box 36 / S-12 Byblos Lebanon
| | - Abdelhameed A Zayed
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Tanta University Tanta 31521 Egypt
| |
Collapse
|
18
|
Kundu J, Kwon T, Lee K, Choi S. Exploration of metal-free 2D electrocatalysts toward the oxygen electroreduction. EXPLORATION (BEIJING, CHINA) 2024; 4:20220174. [PMID: 39175883 PMCID: PMC11335471 DOI: 10.1002/exp.20220174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 08/24/2024]
Abstract
The advancement of economical and readily available electrocatalysts for the oxygen reduction reaction (ORR) holds paramount importance in the advancement of fuel cells and metal-air batteries. Recently, 2D non-metallic materials have obtained substantial attention as viable alternatives for ORR catalysts due to their manifold advantages, encompassing low cost, ample availability, substantial surface-to-volume ratio, high conductivity, exceptional durability, and competitive activity. The augmented ORR performances observed in metal-free 2D materials typically arise from heteroatom doping, defects, or the formation of heterostructures. Here, the authors delve into the realm of electrocatalysts for the ORR, pivoting around metal-free 2D materials. Initially, the merits of metal-free 2D materials are explored and the reaction mechanism of the ORR is dissected. Subsequently, a comprehensive survey of diverse metal-free 2D materials is presented, tracing their evolutionary journey from fundamental concepts to pragmatic applications in the context of ORR. Substantial importance is given on the exploration of various strategies for enhancing metal-free 2D materials and assessing their impact on inherent material performance, including electronic properties. Finally, the challenges and future prospects that lie ahead for metal-free 2D materials are underscored, as they aspire to serve as efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Joyjit Kundu
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National UniversityDaeguRepublic of Korea
| | - Taehyun Kwon
- Department of Chemistry and Research Institute of Basic SciencesIncheon National UniversityIncheonRepublic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoulRepublic of Korea
| | - Sang‐Il Choi
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
19
|
Chen Y, Liu Y, Liu X, Li P, Li Z, Jiang P, Huang X. On-Demand Preparation of Boron Nitride Nanosheets for Functional Nanocomposites. SMALL METHODS 2024; 8:e2301386. [PMID: 38236164 DOI: 10.1002/smtd.202301386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Indexed: 01/19/2024]
Abstract
Boron nitride nanosheets (BNNSs) have garnered significant attention across diverse fields; however, accomplishing on-demand, large-scale, and highly efficient preparation of BNNSs remains a challenge. Here, an on-demand preparation (OdP) method combining high-pressure homogenization and short-time ultrasonication is presented; it enables a highly efficient and controllable preparation of BNNSs from bulk hexagonal boron nitride (h-BN). The homogenization pressure and number of cycles are adjusted, and the production efficiency and yield of BNNSs reach 0.95 g g-1h-1 and 82.8%, respectively, which significantly exceed those attained by using existing methods. The universality of the OdP method is demonstrated on h-BN raw materials of various bulk sizes from various producers. Furthermore, this method allows the preparation of BNNSs having specific sizes based on the final requirements. Both simulation and experimental results indicate that large BNNSs are particularly suitable for enhancing the thermal conductivity and electrical insulation properties of dielectric polymer nanocomposites. Interestingly, the small BNNS-filled photonic nanocomposite films fabricated via the OdP method exhibit superior daytime radiative cooling properties. Additionally, the OdP method offers the benefits of low energy consumption and reduced greenhouse gas emissions and fossil energy use. These findings underscore the unique advantages of the OdP method over other techniques for a high-efficiency and controllable preparation of large BNNSs.
Collapse
Affiliation(s)
- Yu Chen
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yijie Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangyu Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengli Li
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Li
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pingkai Jiang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingyi Huang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
20
|
Xie Z, Zhao T, Yu X, Wang J. Nonlinear Optical Properties of 2D Materials and their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311621. [PMID: 38618662 DOI: 10.1002/smll.202311621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/12/2024] [Indexed: 04/16/2024]
Abstract
2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light-matter interactions. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. Here, the fundamental of nonlinear optics (NLO) for 2D materials is introduced, and the methods for characterizing and measuring second-order and third-order nonlinear susceptibility of 2D materials are reviewed. Furthermore, the theoretical and experimental values of second-order susceptibility χ(2) and third-order susceptibility χ(3) are tabulated. Several applications and possible future research directions of second-harmonic generation (SHG) and third-harmonic generation (THG) for 2D materials are presented.
Collapse
Affiliation(s)
- Zhixiang Xie
- National Research Center for Optical Sensors/communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Tianxiang Zhao
- National Research Center for Optical Sensors/communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Xuechao Yu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Junjia Wang
- National Research Center for Optical Sensors/communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| |
Collapse
|
21
|
Liu W, Liu Y, Zhong S, Chen J, Li Z, Zhang C, Jiang P, Huang X. Soft and Damping Thermal Interface Materials with Honeycomb-Board-Mimetic Filler Network for Electronic Heat Dissipation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400115. [PMID: 38678491 DOI: 10.1002/smll.202400115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/21/2024] [Indexed: 05/01/2024]
Abstract
High-power-density electronic devices under vibrations call for soft and damping thermal interface materials (TIMs) for efficient heat dissipation. However, integrating low hardness, high damping, and superior heat transfer capability into one TIM is highly challenging. Herein, soft, damping, and thermally conductive TIMs are designed and prepared by constructing a honeycomb-board-mimetic boron nitride nanosheet (BNNS) network in a dynamic polyimine via one-step horizontal centrifugal casting. The unique filler network makes the TIMs perform a high through-plane thermal conductivity (> 7.69 W m-1 K-1) and a uniform heat transfer process. Meanwhile, the hierarchical dynamic bonding of the polyimine endows the TIMs with low compressive strength (2.16 MPa at 20% strain) and excellent damping performance (tan δ > ≈0.3 at 10-2-102 Hz). The resulting TIMs also exhibit electrical insulation and remarkable recycling ability. Compared with the commercial ones, the TIMs provide better heat dissipation (4.1 °C) for a high-power 5G base station and less temperature fluctuation (1.8 °C) for an automotive insulated gate bipolar transistor (IGBT) under vibrations. This rational design offers a viable approach to prepare soft and damping TIMs for effective heat dissipation of high-power-density electronic devices under vibrations.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yijie Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shujing Zhong
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Chen
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Li
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongyin Zhang
- Shanghai Engineering Research center of Specialized Polymer materials for Aerospace, Shanghai Aerospace Equipments Manufacturer Co. Ltd., Huaning Road #100, Shanghai, 200245, China
| | - Pingkai Jiang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingyi Huang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
22
|
Gao W, Zhi G, Zhou M, Niu T. Growth of Single Crystalline 2D Materials beyond Graphene on Non-metallic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311317. [PMID: 38712469 DOI: 10.1002/smll.202311317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Indexed: 05/08/2024]
Abstract
The advent of 2D materials has ushered in the exploration of their synthesis, characterization and application. While plenty of 2D materials have been synthesized on various metallic substrates, interfacial interaction significantly affects their intrinsic electronic properties. Additionally, the complex transfer process presents further challenges. In this context, experimental efforts are devoted to the direct growth on technologically important semiconductor/insulator substrates. This review aims to uncover the effects of substrate on the growth of 2D materials. The focus is on non-metallic substrate used for epitaxial growth and how this highlights the necessity for phase engineering and advanced characterization at atomic scale. Special attention is paid to monoelemental 2D structures with topological properties. The conclusion is drawn through a discussion of the requirements for integrating 2D materials with current semiconductor-based technology and the unique properties of heterostructures based on 2D materials. Overall, this review describes how 2D materials can be fabricated directly on non-metallic substrates and the exploration of growth mechanism at atomic scale.
Collapse
Affiliation(s)
- Wenjin Gao
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | | | - Miao Zhou
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Tianchao Niu
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
| |
Collapse
|
23
|
Li Q, Zhang K, Che X, Gao T, Wang S, Ni G. Preparation of BN Nanoparticle with High Sintering Activity and Its Formation Mechanism. Molecules 2024; 29:3458. [PMID: 39124863 PMCID: PMC11313934 DOI: 10.3390/molecules29153458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Hexagonal boron nitride (h-BN) nanoparticles have attracted increasing attention due to their unique structure and properties. However, it is difficult to synthesize h-BN nanoparticles with uniform spherical morphology due to their crystal characteristic. The morphology control by tuning their precursor synthesis is a promising and effective strategy to solve this problem. Especially, the treatment temperature of precursors plays an important role in the morphology and surface area of h-BN nanoparticles. Herein, h-BN nanoparticles with different morphologies were synthesized via regulating the treatment temperature of precursors. The result shows that treatment temperature will affect the microstructure and state of precursor and further influence the morphology of h-BN products. Benefiting from the unique structure, the h-BN obtained using 250 °C precursors shows higher specific surface area (61.1 m2 g-1) than that of 85 °C (36.5 m2 g-1) and 145 °C (27.9 m2 g-1). h-BN products obtained using 250 °C precursors show higher specific surface area than that of 85 °C and 145 °C. The optimal condition for obtaining high-quality spherical h-BN is the pretreatment temperature of 250 °C and sintering temperature of 1300 °C. Importantly, compared with commercial h-BN nanoparticles, the synthesized h-BN nanoparticles show more uniform structure and larger specific surface area, indicating that sintering activity will be greatly improved. Furthermore, the reaction pathway and formation mechanism of h-BN was revealed by DFT calculations. The result shows that the five stationary states and five transition states exist in the reaction pathway, and the energy barrier can be overcome at high temperatures to form a ring h-BN. In view of its simplicity and efficiency, this work is promising for designing and guiding the synthesis of h-BN nanoparticles with uniform morphology.
Collapse
Affiliation(s)
- Qun Li
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China; (Q.L.); (K.Z.); (X.C.); (T.G.); (S.W.)
- Tangshan Key Laboratory of Special Metallurgy and Material Manufacture, Tangshan 063210, China
| | - Kuo Zhang
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China; (Q.L.); (K.Z.); (X.C.); (T.G.); (S.W.)
- Tangshan Key Laboratory of Special Metallurgy and Material Manufacture, Tangshan 063210, China
| | - Xiangming Che
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China; (Q.L.); (K.Z.); (X.C.); (T.G.); (S.W.)
- Tangshan Key Laboratory of Special Metallurgy and Material Manufacture, Tangshan 063210, China
| | - Tengchao Gao
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China; (Q.L.); (K.Z.); (X.C.); (T.G.); (S.W.)
- Tangshan Key Laboratory of Special Metallurgy and Material Manufacture, Tangshan 063210, China
| | - Shuhuan Wang
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China; (Q.L.); (K.Z.); (X.C.); (T.G.); (S.W.)
- Tangshan Key Laboratory of Special Metallurgy and Material Manufacture, Tangshan 063210, China
| | - Guolong Ni
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China; (Q.L.); (K.Z.); (X.C.); (T.G.); (S.W.)
- Tangshan Key Laboratory of Special Metallurgy and Material Manufacture, Tangshan 063210, China
| |
Collapse
|
24
|
Carlin M, Kaur J, Ciobanu DZ, Song Z, Olsson M, Totu T, Gupta G, Peng G, González VJ, Janica I, Pozo VF, Chortarea S, Buljan M, Buerki-Thurnherr T, Rio Castillo AED, Thorat SB, Bonaccorso F, Tubaro A, Vazquez E, Prato M, Armirotti A, Wick P, Bianco A, Fadeel B, Pelin M. Hazard assessment of hexagonal boron nitride and hexagonal boron nitride reinforced thermoplastic polyurethane composites using human skin and lung cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134686. [PMID: 38788582 DOI: 10.1016/j.jhazmat.2024.134686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Hexagonal boron nitride (hBN) is an emerging two-dimensional material attracting considerable attention in the industrial sector given its innovative physicochemical properties. Potential risks are associated mainly with occupational exposure where inhalation and skin contact are the most relevant exposure routes for workers. Here we aimed at characterizing the effects induced by composites of thermoplastic polyurethane (TPU) and hBN, using immortalized HaCaT skin keratinocytes and BEAS-2B bronchial epithelial cells. The composite was abraded using a Taber® rotary abraser and abraded TPU and TPU-hBN were also subjected to photo-Fenton-mediated degradation mimicking potential weathering across the product life cycle. Cells were exposed to the materials for 24 h (acute exposure) or twice per week for 4 weeks (chronic exposure) and evaluated with respect to material internalization, cytotoxicity, and proinflammatory cytokine secretion. Additionally, comprehensive mass spectrometry-based proteomics and metabolomics (secretomics) analyses were performed. Overall, despite evidence of cellular uptake of the material, no significant cellular and/or protein expression profiles alterations were observed after acute or chronic exposure of HaCaT or BEAS-2B cells, identifying only few pro-inflammatory proteins. Similar results were obtained for the degraded materials. These results support the determination of hazard profiles associated with cutaneous and pulmonary hBN-reinforced polymer composites exposure.
Collapse
Affiliation(s)
- Michela Carlin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Jasreen Kaur
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Magnus Olsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tiberiu Totu
- Laboratory for Particles-Biology Interactions, Federal Laboratory for Materials Science and Technology, (EMPA), St. Gallen, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland
| | - Govind Gupta
- Laboratory for Particles-Biology Interactions, Federal Laboratory for Materials Science and Technology, (EMPA), St. Gallen, Switzerland
| | - Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Viviana Jehová González
- Regional Institute of Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
| | - Iwona Janica
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Victor Fuster Pozo
- Laboratory for Particles-Biology Interactions, Federal Laboratory for Materials Science and Technology, (EMPA), St. Gallen, Switzerland
| | - Savvina Chortarea
- Laboratory for Particles-Biology Interactions, Federal Laboratory for Materials Science and Technology, (EMPA), St. Gallen, Switzerland
| | - Marija Buljan
- Laboratory for Particles-Biology Interactions, Federal Laboratory for Materials Science and Technology, (EMPA), St. Gallen, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Federal Laboratory for Materials Science and Technology, (EMPA), St. Gallen, Switzerland
| | | | | | | | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Ester Vazquez
- Regional Institute of Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain; Department of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, Spain; Basque Foundation for Science (IKERBASQUE), Bilbao, Spain
| | - Andrea Armirotti
- Analytical Chemistry Facility, Italian Institute of Technology, Genoa, Italy
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Federal Laboratory for Materials Science and Technology, (EMPA), St. Gallen, Switzerland
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
25
|
Jamila RM, Narasimman S, Prasanth A, Muthukumar M, Alex ZC, Anand GT. Fiber Optic Sensor Coated with Multiple Layers of Hexagonal Boron Nitride Nanosheets (BNNS) for the Detection of Volatile Organic Compounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35525-35540. [PMID: 38934269 DOI: 10.1021/acsami.4c05230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Nowadays, volatile organic compound (VOC) detection is imperative to ensure environmental safety in industry and indoor environments, as well as to monitor human health in medical diagnosis. Gas sensors with the best sensor response, selectivity, and stability are in high demand. Simultaneously, the advancement of nanotechnology facilitates novel nanomaterial-based gas sensors with superior sensor characteristics and low power consumption. Recently, boron nitride, a 2D material, has emerged as an excellent candidate for gas sensing and demonstrated exceptional sensing characteristics for new-generation gas sensing devices. Herein, ultrathin porous boron nitride nanosheets (BNNSs) with large lateral sizes were synthesized using a facile synthesis approach, and their material characteristics were investigated utilizing a variety of analytical techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. A BNNS-coated cladding-modified fiber optic sensor (FOS) probe was prepared and employed for VOC (ammonia, ethanol, and acetone) sensing across concentrations varying from 0 to 300 ppm. The BNNSs-coated FOS demonstrated better selectivity toward 300 ppm ammonia, and specifically annealed BNNSs displayed a maximum sensor response of 55% along with a response/recovery times of 15 s/34 s compared to its counterparts. The superior ammonia sensing performances could be attributed to the formation of ultrathin nanosheets and a porous surface with slit-like features in hexagonal boron nitride.
Collapse
Affiliation(s)
- R Mary Jamila
- Department of Physics, Auxilium College, Vellore 632007, India
- Department of Physics, Sacred Heart College, Tirupattur 635601, India
| | - S Narasimman
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - A Prasanth
- Division of Optics, FZU Institute of Physics, Prague 18200, Czech Republic
| | - M Muthukumar
- Department of Physics, School of Advanced Sciences, VIT, Vellore 632014, India
| | - Z C Alex
- School of Electronics Engineering, VIT, Vellore 632014, India
| | - G Theophil Anand
- Department of Physics, Sacred Heart College, Tirupattur 635601, India
| |
Collapse
|
26
|
Yu J, Han W, Suleiman AA, Han S, Miao N, Ling FCC. Recent Advances on Pulsed Laser Deposition of Large-Scale Thin Films. SMALL METHODS 2024; 8:e2301282. [PMID: 38084465 DOI: 10.1002/smtd.202301282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Indexed: 07/21/2024]
Abstract
2D thin films, possessing atomically thin thickness, are emerging as promising candidates for next-generation electronic devices, due to their novel properties and high performance. In the early years, a wide variety of 2D materials are prepared using several methods (mechanical/liquid exfoliation, chemical vapor deposition, etc.). However, the limited size of 2D flakes hinders their fundamental research and device applications, and hence the effective large-scale preparation of 2D films is still challenging. Recently, pulsed laser deposition (PLD) has appeared to be an impactful method for wafer-scale growth of 2D films, owing to target-maintained stoichiometry, high growth rate, and efficiency. In this review, the recent advances on the PLD preparation of 2D films are summarized, including the growth mechanisms, strategies, and materials classification. First, efficacious strategies of PLD growth are highlighted. Then, the growth, characterization, and device applications of various 2D films are presented, such as graphene, h-BN, MoS2, BP, oxide, perovskite, semi-metal, etc. Finally, the potential challenges and further research directions of PLD technique is envisioned.
Collapse
Affiliation(s)
- Jing Yu
- Department of Physics, The University of Hong Kong, Hong Kong, 999077, P. R. China
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
| | - Wei Han
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, P. R. China
- School of Microelectronics, Hubei University, Wuhan, 430062, P. R. China
| | - Abdulsalam Aji Suleiman
- Institute of Materials Science and Nanotechnology, Bilkent University UNAM, Ankara, 06800, Turkey
| | - Siyu Han
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Naihua Miao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | | |
Collapse
|
27
|
Fan X, He S, Feng P, Xiao Y, Yin C, Du YA, Li M, Zhao L, Gao L. Realizing Ultrafast Response Speed for Self-Powered Photodetectors with a Molecular-Doped Lateral InSe Homojunction. J Phys Chem Lett 2024; 15:5923-5934. [PMID: 38809779 DOI: 10.1021/acs.jpclett.4c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The implementation of energy-saving policies has stimulated intensive interest in exploring self-powered optoelectronic devices. The 2D p-n homojunction exhibits effective generation and separation of carriers excited by light, realizing lower power consumption and higher performance photodetectors. Here, a self-powered photodetector with high performance is fabricated based on an F4-TCNQ localized molecular-doped lateral InSe homojunction. Compared with the intrinsic InSe photodetector, the switching light ratio (Ilight/Idark) of the p-n homojunction device can be enhanced by 2.2 × 104, and the temporal response is also dramatically improved to 24/30 μs. Benefiting from the built-in electric field, due to the formation of an InSe p-n homojunction after partial doping of F4-TCNQ on InSe, the device possesses a high responsivity (R) of 93.21 mA/W, with a specific detectivity (D*) of 1.14 × 1011 Jones. These results suggest a promising approach to get a lateral InSe p-n homojunction and reveal the potential application of the device for next generation low-consumption photodetectors.
Collapse
Affiliation(s)
- Xiaofeng Fan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sixian He
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Feng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou 311215, China
| | - Yuke Xiao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengdong Yin
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-An Du
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liancheng Zhao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liming Gao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
28
|
Chen Y, Gao Z, Hoo SA, Tipnis V, Wang R, Mitevski I, Hitchcock D, Simmons KL, Sun YP, Sarntinoranont M, Huang Y. Sequential Dual Alignments Introduce Synergistic Effect on Hexagonal Boron Nitride Platelets for Superior Thermal Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314097. [PMID: 38466829 DOI: 10.1002/adma.202314097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/21/2024] [Indexed: 03/13/2024]
Abstract
Planarly aligning 2D platelets is challenging due to their additional orientational freedom compared to 1D materials. This study reports a sequential dual-alignment approach, employing an extrusion-printing-induced shear force and rotating-magnetic-field-induced force couple for platelet planarly alignment in a yield-stress support bath. It is hypothesized that the partial alignment induced by a directional shear force facilitates subsequent axial rotation of the platelets for planar alignment under an external force couple, resulting in a synergistic alignment effect. This sequential dual-alignment approach achieves better planar alignment of 2D modified hexagonal boron nitride (mhBN). Specifically, the thermal conductivity of the 40 wt% mhBN/epoxy composite is significantly higher (692%) than that of unaligned composites, surpassing the cumulative effect of individual methods (only 133%) with a 5 times more synergistic effect. For 30, 40, and 50 wt% mhBN composites, the thermal conductivity values (5.9, 9.5, and 13.8 W m-1 K-1) show considerable improvement compared to the previously reported highest values (5.3, 6.6, and 8.6 W m-1 K-1). Additionally, a 3D mhBN/epoxy heat sink is printed and evaluated to demonstrate the feasibility of device fabrication. The approach enables the planar alignment of electrically or thermally conducting 2D fillers during 3D fabrication.
Collapse
Affiliation(s)
- Yunxia Chen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Zhiming Gao
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Simon A Hoo
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Varun Tipnis
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Renjing Wang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Ivan Mitevski
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Dale Hitchcock
- Savannah River National Laboratory, Savannah River Site, Aiken, SC, 29808, USA
| | - Kevin L Simmons
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ya-Ping Sun
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
29
|
Adinehloo D, Hendrickson JR, Perebeinos V. Wetting and strain engineering of 2D materials on nanopatterned substrates. NANOSCALE ADVANCES 2024; 6:2823-2829. [PMID: 38817431 PMCID: PMC11134232 DOI: 10.1039/d3na01079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/31/2024] [Indexed: 06/01/2024]
Abstract
The fascinating realm of strain engineering and wetting transitions in two-dimensional (2D) materials takes place when placed on a two-dimensional array of nanopillars or one-dimensional rectangular grated substrates. Our investigation encompasses a diverse set of atomically thin 2D materials, including transition metal dichalcogenides, hexagonal boron nitride, and graphene, with a keen focus on the impact of van der Waals adhesion energies to the substrate on the wetting/dewetting behavior on nanopatterned substrates. We find a critical aspect ratio of the nanopillar or grating heights to the period of the pattern when the wetting/dewetting transition occurs. Furthermore, energy hysteresis analysis reveals dynamic detachment and re-engagement events during height adjustments, shedding light on energy barriers of 2D monolayer transferred on patterned substrates. Our findings offer avenues for strain engineering in 2D materials, leading to promising prospects for future technological applications.
Collapse
Affiliation(s)
- Davoud Adinehloo
- Department of Electrical Engineering, University at Buffalo Buffalo NY 14228 USA
| | - Joshua R Hendrickson
- Sensors Directorate, Air Force Research Laboratory Wright-Patterson AFB Ohio 45433 USA
| | - Vasili Perebeinos
- Department of Electrical Engineering, University at Buffalo Buffalo NY 14228 USA
| |
Collapse
|
30
|
Wang J, Xu T, Wang W, Zhang Z. Miracle in "White":Hexagonal Boron Nitride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2400489. [PMID: 38794993 DOI: 10.1002/smll.202400489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Indexed: 05/27/2024]
Abstract
The exploration of 2D materials has captured significant attention due to their unique performances, notably focusing on graphene and hexagonal boron nitride (h-BN). Characterized by closely resembling atomic structures arranged in a honeycomb lattice, both graphene and h-BN share comparable traits, including exceptional thermal conductivity, impressive carrier mobility, and robust pi-pi interactions with organic molecules. Notably, h-BN has been extensively examined for its exceptional electrical insulating properties, inert passivation capabilities, and provision of an ideal ultraflat surface devoid of dangling bonds. These distinct attributes, contrasting with those of h-BN, such as its conductive versus insulating behavior, active versus inert nature, and absence of dangling surface bonds versus absorbent tendencies, render it a compelling material with broad application potential. Moreover, the unity of such contradictions endows h-BN with intriguing possibilities for unique applications in specific contexts. This review aims to underscore these key attributes and elucidate the intriguing contradictions inherent in current investigations of h-BN, fostering significant insights into the understanding of material properties.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 10084, P. R. China
| | - Tongzhou Xu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 10084, P. R. China
| | - Weipeng Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 10084, P. R. China
| | - Zhengjun Zhang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 10084, P. R. China
| |
Collapse
|
31
|
Zhang Y, Qin C, Zhu L, Wang Y, Cao J. Constructing Single-Atom Active Sites Embedded in Hexagonal Boron Nitride for Adsorption and Sensing of Lithium Battery Thermal Runaway Gases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10334-10345. [PMID: 38691021 DOI: 10.1021/acs.langmuir.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The utilization and selectivity of single atoms have garnered significant attention among researchers. However, they are easy to agglomerate because of their high surface energy. To overcome this challenge, it is crucial to seek suitable carriers to anchor single metal atoms to achieve optimal performance. In this work, the structures of transition metal single atoms embedded in hexagonal boron nitride (MB2N2, M = Fe, Co, Ni, Cu, Zn) are constructed and used for the adsorption and sensing of lithium battery thermal runaway gases (H2, CO, CO2, CH4) through the DFT method. The adsorption behavior of MB2N2 was evaluated through the adsorption energy, sensitivity, and recovery time. The calculation results indicate that CoB2N2 exhibits strong adsorption capacity for both H2 and CO. The sensitivity of FeB2N2 toward CO is as high as 3.232 × 1016. Subsequently, the adsorption mechanism was studied through TDOS and PDOS, and the results showed that hybridization between orbitals enhanced the gas adsorption performance. This study presents novel approaches for designing single-atom carriers and developing MB2N2 sensors for detecting lithium battery thermal runaway gases.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Cong Qin
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Linghao Zhu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yan Wang
- State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Henan Polytechnic University, Jiaozuo 454000, China
| | - Jianliang Cao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
32
|
Qu Y, Xu H, Hu J, Wang F, Liu Y. Tuning the electronic properties and band offset of h-BN/diamond mixed-dimensional heterostructure by biaxial strain. Sci Rep 2024; 14:9414. [PMID: 38658733 PMCID: PMC11043405 DOI: 10.1038/s41598-024-60190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The h-BN/diamond mix-dimensional heterostructure has broad application prospects in the fields of optoelectronic devices and power electronic devices. In this paper, the electronic properties and band offsets of hexagonal boron nitride (h-BN)/(H, O, F, OH)-diamond (111) heterostructures were studied by first-principles calculations under biaxial strain. The results show that different terminals could significantly affect the interface binding energy and charge transfer of h-BN/diamond heterostructure. All heterostructures exhibited semiconductor properties. The h-BN/(H, F)-diamond systems were indirect bandgap, while h-BN/(O, OH)-diamond systems were direct bandgap. In addition, the four systems all formed type-II heterostructures, among which h-BN/H-diamond had the largest band offset, indicating that the system was more conducive to the separation of electrons and holes. Under biaxial strain the bandgap values of the h-BN/H-diamond system decreased, and the band type occurred direct-indirect transition. The bandgap of h-BN/(O, F, OH)-diamond system increased linearly in whole range, and the band type only transformed under large strain. On the other hand, biaxial strain could significantly change the band offset of h-BN/diamond heterostructure and promote the application of this heterostructure in different fields. Our work provides theoretical guidance for the regulation of the electrical properties of h-BN/diamond heterostructures by biaxial strain.
Collapse
Affiliation(s)
- Yipu Qu
- National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, College of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Hang Xu
- National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, College of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jiping Hu
- National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, College of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Fang Wang
- National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, College of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Institute of Intelligence Sensing, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Research Institute of Industrial Technology Co. Ltd, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Zhengzhou Way Do Electronics Co. Ltd, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Yuhuai Liu
- National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, College of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Institute of Intelligence Sensing, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Research Institute of Industrial Technology Co. Ltd, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Zhengzhou Way Do Electronics Co. Ltd, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
33
|
Hinojosa-Romero D, Valladares A, Valladares RM, Rodríguez I, Valladares AA. Ab initio study of the vibrational spectra of amorphous boron nitride. Sci Rep 2024; 14:7949. [PMID: 38575657 PMCID: PMC10995162 DOI: 10.1038/s41598-024-56010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Boron Nitride (BN) is an interesting polymorphic insulator that is commonly found in four different crystalline structures, each one with different electrical and mechanical properties which makes it an attractive material for technological and industrial applications. Seeking to improve its features, several experimental and simulational works have studied the amorphous phase (a-BN) focusing on electronic and structural properties, pressure-induced phase transformations, and a hydrogenated form of a-BN. By means of ab initio Molecular Dynamics and our well-proven amorphization process known as the undermelt-quench approach, herein three amorphous supercells were computationally generated, two with 216 atoms (densities of 2.04 and 2.80 g cm-3) and a third one with 254 atoms (density of 3.48 g cm-3). The topology, the vibrational density of states and some thermodynamic properties of the three samples are reported and compared with existing experiments and with other computational results.
Collapse
Affiliation(s)
- David Hinojosa-Romero
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, CDMX, 04510, México
| | - Alexander Valladares
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, Ciudad Universitaria, CDMX, 04510, México
| | - Renela M Valladares
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, Ciudad Universitaria, CDMX, 04510, México
| | - Isaías Rodríguez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, CDMX, 04510, México
| | - Ariel A Valladares
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, CDMX, 04510, México.
| |
Collapse
|
34
|
Zhan K, Chen Y, Xiong Z, Zhang Y, Ding S, Zhen F, Liu Z, Wei Q, Liu M, Sun B, Cheng HM, Qiu L. Low thermal contact resistance boron nitride nanosheets composites enabled by interfacial arc-like phonon bridge. Nat Commun 2024; 15:2905. [PMID: 38575613 PMCID: PMC10994942 DOI: 10.1038/s41467-024-47147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
Two-dimensional materials with ultrahigh in-plane thermal conductivity are ideal for heat spreader applications but cause significant thermal contact resistance in complex interfaces, limiting their use as thermal interface materials. In this study, we present an interfacial phonon bridge strategy to reduce the thermal contact resistance of boron nitride nanosheets-based composites. By using a low-molecular-weight polymer, we are able to manipulate the alignment of boron nitride nanosheets through sequential stacking and cutting, ultimately achieving flexible thin films with a layer of arc-like structure superimposed on perpendicularly aligned ones. Our results suggest that arc-like structure can act as a phonon bridge to lower the contact resistance by 70% through reducing phonon back-reflection and enhancing phonon coupling efficiency at the boundary. The resulting composites exhibit ultralow thermal contact resistance of 0.059 in2 KW-1, demonstrating effective cooling of fast-charging batteries at a thickness 2-5 times thinner than commercial products.
Collapse
Affiliation(s)
- Ke Zhan
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, 518055, Shenzhen, China
| | - Yucong Chen
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, 518055, Shenzhen, China
| | - Zhiyuan Xiong
- School of Light Industry and Engineering, South China University of Technology, 510614, Guangzhou, China.
| | - Yulun Zhang
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, 518055, Shenzhen, China
| | - Siyuan Ding
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, 518055, Shenzhen, China
| | - Fangzheng Zhen
- Monash Suzhou Research Institute (MSRI), Monash University, 215000, Suzhou, China
| | - Zhenshi Liu
- Sunwoda Electronic Co., Ltd., 518108, Shenzhen, China
| | - Qiang Wei
- Vivo Mobile Communication Co., Ltd., 523860, Dongguan, China
| | - Minsu Liu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, 518055, Shenzhen, China
- Monash Suzhou Research Institute (MSRI), Monash University, 215000, Suzhou, China
- Foshan (Southern China) Institute for New Materials, 528200, Foshan, China
| | - Bo Sun
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, 518055, Shenzhen, China
- Institute of Materials Research, Tsinghua International Graduate School, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen, 518055, Guangdong, China
| | - Hui-Ming Cheng
- Shenzhen Key Lab of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Road, 518055, Shenzhen, China.
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, 291 Louming Road, 518107, Shenzhen, China.
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, China.
| | - Ling Qiu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, 518055, Shenzhen, China.
- Institute of Materials Research, Tsinghua International Graduate School, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
35
|
Cheng T, Bets KV, Yakobson BI. Synthesis Landscapes for Ammonia Borane Chemical Vapor Deposition of h-BN and BNNT: Unraveling Reactions and Intermediates from First-Principles. J Am Chem Soc 2024; 146:9318-9325. [PMID: 38517068 DOI: 10.1021/jacs.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Planar hexagonal boron nitride (h-BN) and tubular BN nanotube (BNNT), known for their superior mechanical and thermal properties, as well as wide electronic band gap, hold great potential for nanoelectronic and optoelectronic devices. Chemical vapor deposition has demonstrated the best way to scalable synthesis of high-quality BN nanomaterials. Yet, the atomistic understanding of reactions from precursors to product-material remains elusive, posing challenges for experimental design. Here, performing first-principles calculations and ab initio molecular simulations, we explore pyrolytic decomposition pathways of the most used precursor ammonia borane (H3BNH3, AB) to BN, in gas-phase and on Ni(111) or amorphous boron (for BNNT growth) surfaces, for comparison. It reveals that in the gas phase, a pair of AB molecules cooperate to form intermediate NH3 and ammonia diborane, which further dissociates into H2BNH2, accompanied by critical BH4- and NH4+ ions. These ions act as H scavengers facilitating H2BNH2 dehydrogenation into HBNH. The consequent HBNH directly feeds BN flake growth by reacting with the crystal edge, while the addition of H2BNH2 to the edge is prohibited at 1500 K. In contrast, on Ni and boron surfaces, AB monomer dehydrogenates stepwise, deeper, yielding BNH and BN dimer as the primary building unit. Our study maps out three typical experimental conditions regarding the dissociation of AB-precursor, providing insights into the underlying reaction mechanisms of gas-phase precursors, to help as guidelines for the experimental growth of BN nanomaterials.
Collapse
Affiliation(s)
- Ting Cheng
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX 77005, United States
| | - Ksenia V Bets
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX 77005, United States
| | - Boris I Yakobson
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX 77005, United States
- Department of Chemistry, Rice University, Houston, TX 77005, United States
| |
Collapse
|
36
|
Liu TR, Fung MYT, Yeh LH, Chiang CH, Yang JS, Kuo PC, Shiue J, Chen CC, Chen CW. Single-Layer Hexagonal Boron Nitride Nanopores as High-Performance Ionic Gradient Power Generators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306018. [PMID: 38041449 DOI: 10.1002/smll.202306018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/14/2023] [Indexed: 12/03/2023]
Abstract
Atomically thin two-dimensional (2D) materials have emerged as promising candidates for efficient energy harvesting from ionic gradients. However, the exploration of robust 2D atomically thin nanopore membranes, which hold sufficient ionic selectivity and high ion permeability, remains challenging. Here, the single-layer hexagonal boron nitride (hBN) nanopores are demonstrated as various high-performance ion-gradient nanopower harvesters. Benefiting from the ultrathin atomic thickness and large surface charge (also a large Dukhin number), the hBN nanopore can realize fast proton transport while maintaining excellent cation selectivity even in highly acidic environments. Therefore, a single hBN nanopore achieves the pure osmosis-driven proton-gradient power up to ≈3 nW under 1000-fold ionic gradient. In addition, the robustness of hBN membranes in extreme pH conditions allows the ionic gradient power generation from acid-base neutralization. Utilizing 1 m HCl/KOH, the generated power can be promoted to an extraordinarily high level of ≈4.5 nW, over one magnitude higher than all existing ionic gradient power generators. The synergistic effects of ultrathin thickness, large surface charge, and excellent chemical inertness of 2D single-layer hBN render it a promising membrane candidate for harvesting ionic gradient powers, even under extreme pH conditions.
Collapse
Affiliation(s)
- Ting-Ran Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Man Yui Thomas Fung
- Department of Chemical Engineering, National Taiwan University, of Science and Technology, Taipei, 10607, Taiwan
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University, of Science and Technology, Taipei, 10607, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chun-Hao Chiang
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jhih-Sian Yang
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Pai-Chia Kuo
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| | - Jessie Shiue
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| | - Chia-Chun Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| | - Chun-Wei Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Center of Condensed Matter Science, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
37
|
Kostoglou N, Stock S, Solomi A, Holzapfel DM, Hinder S, Baker M, Constantinides G, Ryzhkov V, Maletaskic J, Matovic B, Schneider JM, Rebholz C, Mitterer C. The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:601. [PMID: 38607135 PMCID: PMC11013371 DOI: 10.3390/nano14070601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
This study considers the influence of purity and surface area on the thermal and oxidation properties of hexagonal boron nitride (h-BN) nanoplatelets, which represent crucial factors in high-temperature oxidizing environments. Three h-BN nanoplatelet-based materials, synthesized with different purity levels and surface areas (~3, ~56, and ~140 m2/g), were compared, including a commercial BN reference. All materials were systematically analyzed by various characterization techniques, including gas pycnometry, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared radiation, X-ray photoelectron spectroscopy, gas sorption analysis, and thermal gravimetric analysis coupled with differential scanning calorimetry. Results indicated that the thermal stability and oxidation resistance of the synthesized materials were improved by up to ~13.5% (or by 120 °C) with an increase in purity. Furthermore, the reference material with its high purity and low surface area (~4 m2/g) showed superior performance, which was attributed to the minimized reactive sites for oxygen diffusion due to lower surface area availability and fewer possible defects, highlighting the critical roles of both sample purity and accessible surface area in h-BN thermo-oxidative stability. These findings highlight the importance of focusing on purity and surface area control in developing BN-based nanomaterials, offering a path to enhance their performance in extreme thermal and oxidative conditions.
Collapse
Affiliation(s)
- Nikolaos Kostoglou
- Department of Materials Science, Montanuniversität Leoben, 8700 Leoben, Austria; (A.S.); (C.R.); (C.M.)
| | - Sebastian Stock
- Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria;
| | - Angelos Solomi
- Department of Materials Science, Montanuniversität Leoben, 8700 Leoben, Austria; (A.S.); (C.R.); (C.M.)
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - Damian M. Holzapfel
- Materials Chemistry, RWTH Aachen University, 52074 Aachen, Germany; (D.M.H.); (J.M.S.)
| | - Steven Hinder
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH, UK; (S.H.); (M.B.)
| | - Mark Baker
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH, UK; (S.H.); (M.B.)
| | - Georgios Constantinides
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos 3036, Cyprus;
| | - Vladislav Ryzhkov
- Research School of High-Energy Physics, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Jelena Maletaskic
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.M.); (B.M.)
| | - Branko Matovic
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.M.); (B.M.)
| | - Jochen M. Schneider
- Materials Chemistry, RWTH Aachen University, 52074 Aachen, Germany; (D.M.H.); (J.M.S.)
| | - Claus Rebholz
- Department of Materials Science, Montanuniversität Leoben, 8700 Leoben, Austria; (A.S.); (C.R.); (C.M.)
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - Christian Mitterer
- Department of Materials Science, Montanuniversität Leoben, 8700 Leoben, Austria; (A.S.); (C.R.); (C.M.)
| |
Collapse
|
38
|
Gautam C, Thakurta B, Pal M, Ghosh AK, Giri A. Wafer scale growth of single crystal two-dimensional van der Waals materials. NANOSCALE 2024; 16:5941-5959. [PMID: 38445855 DOI: 10.1039/d3nr06678a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Two-dimensional (2D) van der Waals (vdW) materials, including graphene, hexagonal boron nitride (hBN), and metal dichalcogenides (MCs), form the basis of modern electronics and optoelectronics due to their unique electronic structure, chemical activity, and mechanical strength. Despite many proof-of-concept demonstrations so far, to fully realize their large-scale practical applications, especially in devices, wafer-scale single crystal atomically thin highly uniform films are indispensable. In this minireview, we present an overview on the strategies and highlight recent significant advances toward the synthesis of wafer-scale single crystal graphene, hBN, and MC 2D thin films. Currently, there are five distinct routes to synthesize wafer-scale single crystal 2D vdW thin films: (i) nucleation-controlled growth by suppressing the nucleation density, (ii) unidirectional alignment of multiple epitaxial nuclei and their seamless coalescence, (iii) self-collimation of randomly oriented grains on a molten metal, (iv) surface diffusion and epitaxial self-planarization and (v) seed-mediated 2D vertical epitaxy. Finally, the challenges that need to be addressed in future studies have also been described.
Collapse
Affiliation(s)
- Chetna Gautam
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, UP - 221005, India.
| | - Baishali Thakurta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP - 221005, India
| | - Monalisa Pal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP - 221005, India
| | - Anup Kumar Ghosh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, UP - 221005, India.
| | - Anupam Giri
- Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, UP-211002, India
| |
Collapse
|
39
|
Wang Y, Xiao S, Lv S, Wang X, Wei R, Ma Y. Mechanical and Antimicrobial Properties of Boron Nitride/Methacrylic Acid Quaternary Ammonium Composites Reinforced Dental Flowable Resins. ACS Biomater Sci Eng 2024; 10:1796-1807. [PMID: 38346133 DOI: 10.1021/acsbiomaterials.3c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Dental resin composites (DRCs) are commonly used to restore teeth affected by dental caries or defects. These materials must possess excellent properties to withstand the complex oral environment. The objective of this study was to prepare and characterize Boron nitride nanosheets (BNN)/ dimethyl amino hexadecyl methacrylate (DMAHDM) composites (BNN/DMA), and to evaluate them as functional fillers to enhance the mechanical and antimicrobial properties of dental resins. The BNN/DMA composites were successfully prepared under the theoretical guidance of molecular dynamics (MD), and then the physicochemical and morphological characterization of the BNN/DMA composites were carried out by using various test methods, such as FT-IR, XRD, UV-vis spectroscopy, SEM, TEM, and AFM. It was doped into the dental flowable resin in a certain proportion, and the results showed that the flexural strength (FS), elastic modulus (EM), compressive strength (CS), and microhardness (MH) of the modified resin composites were increased by 53.29, 47.8, 97.59, and 37.1%, respectively, with the addition of 0.8 wt % of BNN/DMA composite fillers. It has a good inhibition effect on Streptococcus mutans, with an inhibition rate as high as 90.43%. Furthermore, this effect persists even after one month of aging. In conclusion, the modification of flowable resins with low-concentration BNN/DMA composites favorably integrates the mechanical properties and long-term antimicrobial activity of dental resins. At the same time, they have good biocompatibility and do not affect the aesthetics. The BNN/DMA composite modified flowable resin has the potential to become a new type of antimicrobial dental restorative material.
Collapse
Affiliation(s)
- Yuting Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Shengjie Xiao
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Siyi Lv
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Xiuzhi Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Rong Wei
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Yu Ma
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou 730000, PR China
- Biointerfaces Institute, University of Michigan, Ann Arbor,Michigan 48109, United States
| |
Collapse
|
40
|
Yang DJ, Wei P, Jiang JW. Symmetry constraints on the orientation dependence of high-order elastic constants for the hexagonal boron nitride monolayer. Phys Chem Chem Phys 2024; 26:8228-8236. [PMID: 38385276 DOI: 10.1039/d4cp00231h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Group theory is a powerful tool to explore fundamental symmetry constraints for the physical properties of crystal structures, e.g. it is well-known that only a few components of the elastic constants are independent due to the symmetry constraint. This work further applies group theory to derive constraint relationships for high-order elastic constants with respect to the orientation angle, where the constraint relationships are more explicit than the traditional tensor transformation law. These analytic symmetry constraints are adopted to explain the molecular dynamics simulation results, which disclose that the high-order elastic constants are highly anisotropic with an anisotropy percentage of up to 25% for the hexagonal boron nitride monolayer. The elastic constant is a basic quantity in the mechanics field, so its high anisotropy shall cause strong anisotropy for other mechanical properties. Based on the anisotropic high-order elastic constants, we demonstrate that Poisson's ratio is highly anisotropic for the hexagonal boron nitride at large strains. These findings provide fundamental insights into the symmetry dependence of high-order elastic constants and other mechanical properties.
Collapse
Affiliation(s)
- Dong-Jian Yang
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, People's Republic of China.
| | - Peng Wei
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, People's Republic of China.
| | - Jin-Wu Jiang
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, People's Republic of China.
- Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
41
|
Khan MI, Akber MI, Gul M, Ul Ain N, Iqbal T, Alarfaji SS, Mahmood A. Exploring the sensing potential of Fe-decorated h-BN toward harmful gases: a DFT study. RSC Adv 2024; 14:7040-7051. [PMID: 38414992 PMCID: PMC10897782 DOI: 10.1039/d3ra08013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Gas sensing technology has a broad impact on society, ranging from environmental and industrial safety to healthcare and everyday applications, contributing to a safer, healthier, and more sustainable world. We studied pure and Fe-decorated hexagonal boron nitride (h-BN) gas sensor for monitoring of carbon-based gases using density functional theory (DFT). The calculations utilized the Generalized Gradient Approximation with the Perdew-Burke-Ernzerhof (GGA-PBE) exchange-correlation functional. The novelty of our study lies in the investigation of the adsorption of harmful gases such as carbonyl sulfide, carbinol, carbimide, and carbonyl fluoride on both pure and Fe-decorated h-BN. The deviation in structural, electronic, and adsorption properties of h-BN due to Fe decoration has been studied along with the sensing ability to design said material towards carbon monoxide (CO), carbon dioxide (CO2), carbonyl sulfide (COS), carbinol, (CH4O), carbimide (CH2N2), and carbonyl fluoride (CF2O) gases. Gases such as CO, COS, CH2N2, and CF2O exhibited chemisorption, while CO2, and CH4O exhibited physisorption behavior. The introduction of Fe altered the semiconductor properties of h-BN and rendered it metallic. Enhanced electronic properties were observed due to a robust hybridization occurring between the d-orbitals of Fe-decorated BN and the gas molecules. The extended recovery periods observed for gases, aside from CO2, indicate their adhesive interactions with Fe-decorated h-BN. The reduction in desorption duration as temperature rises allows Fe-decorated h-BN to function as a reversible gas sensor. This research opens up a novel pathway for the synthesis and advancement of cost-effective, environmentally friendly double-atom catalysts with high sensitivity for capturing and detecting molecules such as CO, COS, CH2N2, CO2, CH4O, and CF2O.
Collapse
Affiliation(s)
- Muhammad Isa Khan
- Department of Physics, Rahim Yar Khan Campus, The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Muhammad Imtiaz Akber
- Department of Physics, Rahim Yar Khan Campus, The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Muhammad Gul
- Department of Physics, Rahim Yar Khan Campus, The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Noor Ul Ain
- Institute of Physics, Bagdad-ul-Jadeed Campus, The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Tahir Iqbal
- Department of Physics, University of Gujrat Gujrat 50700 Pakistan
| | - Saleh S Alarfaji
- Department of Chemistry, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudia Arabia
| | - Abid Mahmood
- Department of Environmental Sciences, Government College University Faisalabad Pakistan
| |
Collapse
|
42
|
Meng Y, Yang D, Jiang X, Bando Y, Wang X. Thermal Conductivity Enhancement of Polymeric Composites Using Hexagonal Boron Nitride: Design Strategies and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:331. [PMID: 38392704 PMCID: PMC10893155 DOI: 10.3390/nano14040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
With the integration and miniaturization of chips, there is an increasing demand for improved heat dissipation. However, the low thermal conductivity (TC) of polymers, which are commonly used in chip packaging, has seriously limited the development of chips. To address this limitation, researchers have recently shown considerable interest in incorporating high-TC fillers into polymers to fabricate thermally conductive composites. Hexagonal boron nitride (h-BN) has emerged as a promising filler candidate due to its high-TC and excellent electrical insulation. This review comprehensively outlines the design strategies for using h-BN as a high-TC filler and covers intrinsic TC and morphology effects, functionalization methods, and the construction of three-dimensional (3D) thermal conduction networks. Additionally, it introduces some experimental TC measurement techniques of composites and theoretical computational simulations for composite design. Finally, the review summarizes some effective strategies and possible challenges for the design of h-BN fillers. This review provides researchers in the field of thermally conductive polymeric composites with a comprehensive understanding of thermal conduction and constructive guidance on h-BN design.
Collapse
Affiliation(s)
- Yuhang Meng
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Dehong Yang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xiangfen Jiang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yoshio Bando
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
43
|
Wang L, Yang S, Zhou F, Gao Y, Duo Y, Chen R, Yang J, Yan J, Wang J, Li J, Zhang Y, Wei T. Wafer-Scale Transferrable GaN Enabled by Hexagonal Boron Nitride for Flexible Light-Emitting Diode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306132. [PMID: 37800612 DOI: 10.1002/smll.202306132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Epitaxy growth and mechanical transfer of high-quality III-nitrides using 2D materials, weakly bonded by van der Waals force, becomes an important technology for semiconductor industry. In this work, wafer-scale transferrable GaN epilayer with low dislocation density is successfully achieved through AlN/h-BN composite buffer layer and its application in flexible InGaN-based light-emitting diodes (LEDs) is demonstrated. Guided by first-principles calculations, the nucleation and bonding mechanism of GaN and AlN on h-BN is presented, and it is confirmed that the adsorption energy of Al atoms on O2 -plasma-treated h-BN is over 1 eV larger than that of Ga atoms. It is found that the introduced high-temperature AlN buffer layer induces sufficient tensile strain during rapid coalescence to compensate the compressive strain generated by the heteromismatch, and a strain-relaxation model for III-nitrides on h-BN is proposed. Eventually, the mechanical exfoliation of single-crystalline GaN film and LED through weak interaction between multilayer h-BN is realized. The flexible free-standing thin-film LED exhibits ≈66% luminescence enhancement with good reliability compared to that before transfer. This work proposes a new approach for the development of flexible semiconductor devices.
Collapse
Affiliation(s)
- Lulu Wang
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shenyuan Yang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Fan Zhou
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yaqi Gao
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiwei Duo
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renfeng Chen
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiankun Yang
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianchang Yan
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junxi Wang
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinmin Li
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfeng Zhang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tongbo Wei
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
44
|
Wu D, Han X, Wu C, Song Y, Li J, Wan Y, Wu X, Tian X. Two-Dimensional Transition Metal Boron Cluster Compounds (MB nenes) with Strain-Independent Room-Temperature Magnetism. J Phys Chem Lett 2024; 15:1070-1078. [PMID: 38261575 DOI: 10.1021/acs.jpclett.3c02786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Two-dimensional (2D) metal borides (MBenes) with unique electronic structures and physicochemical properties hold great promise for various applications. Given the abundance of boron clusters, we proposed employing them as structural motifs to design 2D transition metal boron cluster compounds (MBnenes), an extension of MBenes. Herein, we have designed three stable MBnenes (M4(B12)2, M = Mn, Fe, Co) based on B12 clusters and investigated their electronic and magnetic properties using first-principles calculations. Mn4(B12)2 and Co4(B12)2 are semiconductors, while Fe4(B12)2 exhibits metallic behavior. The unique structure in MBnenes allows the coexistence of direct exchange interactions between adjacent metal atoms and indirect exchange interactions mediated by the clusters, endowing them with a Néel temperature (TN) up to 772 K. Moreover, both Mn4(B12)2 and Fe4(B12)2 showcase strain-independent room-temperature magnetism, making them potential candidates for spintronics applications. The MBnenes family provides a fresh avenue for the design of 2D materials featuring unique structures and excellent physicochemical properties.
Collapse
Affiliation(s)
- Daoxiong Wu
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Xingqi Han
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Chunxia Wu
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yiming Song
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Jing Li
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yangyang Wan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Chinese Academy of Sciences Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences Center for Excellence in Nanoscience, and School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
45
|
de Almeida EF, Kakanakova-Georgieva A, Gueorguiev GK. On Decorating a Honeycomb AlN Monolayer with Hydrogen and Fluorine Atoms: Ab Initio and Experimental Aspects. MATERIALS (BASEL, SWITZERLAND) 2024; 17:616. [PMID: 38591447 PMCID: PMC10856422 DOI: 10.3390/ma17030616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 04/10/2024]
Abstract
Mono- and few-layer hexagonal AlN (h-AlN) has emerged as an alternative "beyond graphene" and "beyond h-BN" 2D material, especially in the context of its verification in ultra-high vacuum Scanning Tunneling Microscopy and Molecular-beam Epitaxy (MBE) experiments. However, graphitic-like AlN has only been recently obtained using a scalable and semiconductor-technology-related synthesis techniques, such as metal-organic chemical vapor deposition (MOCVD), which involves a hydrogen-rich environment. Motivated by these recent experimental findings, in the present work, we carried out ab initio calculations to investigate the hydrogenation of h-AlN monolayers in a variety of functionalization configurations. We also investigated the fluorination of h-AlN monolayers in different decoration configurations. We find that a remarkable span of bandgap variation in h-AlN, from metallic properties to nar-row-bandgap semiconductor, and to wide-bandgap semiconductor can be achieved by its hy-drogenation and fluorination. Exciting application prospects may also arise from the findings that H and F decoration of h-AlN can render some such configurations magnetic. We complemented this modelling picture by disclosing a viable experimental strategy for the fluorination of h-AlN.
Collapse
Affiliation(s)
- Edward Ferraz de Almeida
- Center for Exact Sciences and Technologies, Federal University of West of Bahia, Rua Bertioga, 892, Morada Nobre I, Barreiras 47810-059, Brazil;
| | | | | |
Collapse
|
46
|
Dai B, Su Y, Guo Y, Wu C, Xie Y. Recent Strategies for the Synthesis of Phase-Pure Ultrathin 1T/1T' Transition Metal Dichalcogenide Nanosheets. Chem Rev 2024; 124:420-454. [PMID: 38146851 DOI: 10.1021/acs.chemrev.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The past few decades have witnessed a notable increase in transition metal dichalcogenide (TMD) related research not only because of the large family of TMD candidates but also because of the various polytypes that arise from the monolayer configuration and layer stacking order. The peculiar physicochemical properties of TMD nanosheets enable an enormous range of applications from fundamental science to industrial technologies based on the preparation of high-quality TMDs. For polymorphic TMDs, the 1T/1T' phase is particularly intriguing because of the enriched density of states, and thus facilitates fruitful chemistry. Herein, we comprehensively discuss the most recent strategies for direct synthesis of phase-pure 1T/1T' TMD nanosheets such as mechanical exfoliation, chemical vapor deposition, wet chemical synthesis, atomic layer deposition, and more. We also review frequently adopted methods for phase engineering in TMD nanosheets ranging from chemical doping and alloying, to charge injection, and irradiation with optical or charged particle beams. Prior to the synthesis methods, we discuss the configuration of TMDs as well as the characterization tools mostly used in experiments. Finally, we discuss the current challenges and opportunities as well as emphasize the promising fields for the future development.
Collapse
Affiliation(s)
- Baohu Dai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yueqi Su
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yuqiao Guo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Changzheng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
47
|
Liu Z, Tee SY, Guan G, Han MY. Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications. NANO-MICRO LETTERS 2024; 16:95. [PMID: 38261169 PMCID: PMC10805767 DOI: 10.1007/s40820-023-01315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Transition metal dichalcogenides (TMDs) are a promising class of layered materials in the post-graphene era, with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior. Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties, providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs. The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable (opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts (0-100%). Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase, band alignment/structure, carrier density, and surface reactive activity, enabling novel and promising applications. This review comprehensively elaborates on atomically substitutional engineering in TMD layers, including theoretical foundations, synthetic strategies, tailored properties, and superior applications. The emerging type of ternary TMDs, Janus TMDs, is presented specifically to highlight their typical compounds, fabrication methods, and potential applications. Finally, opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.
Collapse
Affiliation(s)
- Zhaosu Liu
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Si Yin Tee
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| | - Guijian Guan
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Ming-Yong Han
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
48
|
Freiberger EM, Steffen J, Waleska-Wellnhofer NJ, Hemauer F, Schwaab V, Görling A, Steinrück HP, Papp C. Bromination of 2D materials. NANOTECHNOLOGY 2024; 35:145703. [PMID: 38048605 DOI: 10.1088/1361-6528/ad1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
The adsorption, reaction and thermal stability of bromine on Rh(111)-supported hexagonal boron nitride (h-BN) and graphene were investigated. Synchrotron radiation-based high-resolution x-ray photoelectron spectroscopy (XPS) and temperature-programmed XPS allowed us to follow the adsorption process and the thermal evolutionin situon the molecular scale. Onh-BN/Rh(111), bromine adsorbs exclusively in the pores of the nanomesh while we observe no such selectivity for graphene/Rh(111). Upon heating, bromine undergoes an on-surface reaction onh-BN to form polybromides (170-240 K), which subsequently decompose to bromide (240-640 K). The high thermal stability of Br/h-BN/Rh(111) suggests strong/covalent bonding. Bromine on graphene/Rh(111), on the other hand, reveals no distinct reactivity except for intercalation of small amounts of bromine underneath the 2D layer at high temperatures. In both cases, adsorption is reversible upon heating. Our experiments are supported by a comprehensive theoretical study. DFT calculations were used to describe the nature of theh-BN nanomesh and the graphene moiré in detail and to study the adsorption energetics and substrate interaction of bromine. In addition, the adsorption of bromine onh-BN/Rh(111) was simulated by molecular dynamics using a machine-learning force field.
Collapse
Affiliation(s)
- Eva Marie Freiberger
- Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Julien Steffen
- Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Natalie J Waleska-Wellnhofer
- Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Felix Hemauer
- Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Valentin Schwaab
- Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Andreas Görling
- Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
- Erlangen National High Performance Computing Center (NHR@FAU), Martensstr. 1, D-91058 Erlangen, Germany
| | - Hans-Peter Steinrück
- Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Christian Papp
- Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
- Physikalische und Theoretische Chemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany
| |
Collapse
|
49
|
Kumar A, Senapati P, Parida P. Theoretical insights into the structural, electronic and thermoelectric properties of the inorganic biphenylene monolayer. Phys Chem Chem Phys 2024; 26:2044-2057. [PMID: 38126442 DOI: 10.1039/d3cp03088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Being motivated by a recently synthesized biphenylene carbon monolayer (BPN), using first principles methods, we have studied its inorganic analogue (B-N analogue) named I-BPN. A comparative study of structural, electronic and mechanical properties between BPN and I-BPN was carried out. Like BPN, the stability of I-BPN was verified in terms of formation energy, phonon dispersion calculations, and mechanical parameters (Young's modulus and Poisson's ratio). The chemical inertness of I-BPN was also investigated by adsorbing an oxygen molecule in an oxygen-rich environment. It has been found that the B-B bond favours the oxygen molecule to be adsorbed through chemisorption. The lattice transport properties reveal that the phonon thermal conductivity of I-BPN is ten times lower than that of BPN. The electronic band structure reveals that I-BPN is a semiconductor with an indirect bandgap of 1.88 eV, while BPN shows metallic behaviour. In addition, we investigated various thermoelectric properties of I-BPN for possible thermoelectric applications. The thermoelectric parameters, such as the Seebeck coefficient, show the highest peak value of 0.00289 V K-1 at 300 K. Electronic transport properties reveal that I-BPN is highly anisotropic along the x and y-axes. Furthermore, the thermoelectric power factor as a function of chemical potential shows a peak value of 0.057 W m-1 K-2 along the x-axis in the p-type doping region. The electronic figure of merit shows a peak value of approximately unity. However, considering lattice thermal conductivity, the peak value of the total figure of merit (ZT) reduces to 0.68(0.46) for p-type and 0.56(0.48) for n-type doping regions along the x(y) direction at 900 K. It is worth noting that our calculated ZT value of I-BPN is higher than that of many other reported B-N composite materials.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihta, Bihar, India.
| | - Parbati Senapati
- Department of Physics, Indian Institute of Technology Patna, Bihta, Bihar, India.
| | - Prakash Parida
- Department of Physics, Indian Institute of Technology Patna, Bihta, Bihar, India.
| |
Collapse
|
50
|
Novotný M, Dubecký M, Karlický F. Toward accurate modeling of structure and energetics of bulk hexagonal boron nitride. J Comput Chem 2024; 45:115-121. [PMID: 37737623 DOI: 10.1002/jcc.27222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023]
Abstract
Materials that exhibit both strong covalent and weak van der Waals interactions pose a considerable challenge to many computational methods, such as DFT. This makes assessing the accuracy of calculated properties, such as exfoliation energies in layered materials like hexagonal boron nitride (h-BN) problematic, when experimental data are not available. In this paper, we investigate the accuracy of equilibrium lattice constants and exfoliation energy calculation for various DFT-based computational approaches in bulk h-BN. We contrast these results with available experiments and reference fixed-node diffusion quantum Monte Carlo (QMC) results. From our reference QMC calculation, we obtained an exfoliation energy of - 33 ± 2 meV/atom (-0.38 ± 0.02 J/m2 ).
Collapse
Affiliation(s)
- Michal Novotný
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Matúš Dubecký
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- ATRI, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Trnava, Slovakia
| | - František Karlický
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|