1
|
Mitragotri S. Choline geranate (CAGE): A multifaceted ionic liquid for drug delivery. J Control Release 2024; 376:593-600. [PMID: 39427776 DOI: 10.1016/j.jconrel.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Ionic liquids, organic salts in a liquid state below 100 °C, have traditionally been associated with industrial applications. Recent research has introduced a new generation of ionic liquids, designed from biocompatible ions, to enable applications in drug delivery. Here, I provide a historical perspective, development status and applications of a leading example of biocompatible ionic liquids, a salt of Choline And Geranic acid (CAGE). Since its first report in 2014, CAGE has opened multiple drug delivery applications including transdermal, oral, buccal, sustained release, tissue ablation, periodontitis and hand hygiene, among others. CAGE-based products have been tested in more than 200 patients through multiple Phase 1 and Phase 2 clinical studies, including successful use in a Phase 2 clinical study in Atopic Dermatitis patients. CAGE became the first 'drug delivery ionic liquid' to enter into clinical trials. This article summarizes the key fundamental and translational aspects of CAGE as pertained to its use in drug delivery.
Collapse
Affiliation(s)
- Samir Mitragotri
- School of Engineering & Applied Sciences, Harvard University, 150 Western Ave, Allston 02134, USA; Wyss Institute of Biologically Inspired Engineering, 201 Brookline Ave, Boston 02215, USA.
| |
Collapse
|
2
|
Maráková K. Greening Separation and Purification of Proteins and Peptides. J Sep Sci 2024; 47:e202400554. [PMID: 39375913 DOI: 10.1002/jssc.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
The increasing awareness of environmental issues and the transition to green analytical chemistry (GAC) have gained popularity among academia and industry in recent years. One of the principles of GAC is the reduction and replacement of toxic solvents with more sustainable and environmentally friendly ones. This review gives an overview of the advances in applying green solvents as an alternative to the traditional organic solvents for peptide and protein purification and analysis by liquid chromatography (LC) and capillary electrophoresis (CE) methods. The feasibility of using greener LC and CE methods is demonstrated through several application examples; however, there is still plenty of room for new developments to fully realize their potential and to address existing challenges. Thanks to the tunable properties of designer solvents, such as ionic liquids and deep eutectic solvents, and almost infinite possible mixtures of components for their production, it is possible that some new designer solvents could potentially surpass the traditional harmful solvents in the future. Therefore, future research should focus mainly on developing new solvent combinations and enhancing analytical instruments to be able to effectively work with green solvents.
Collapse
Affiliation(s)
- Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
3
|
Gao S, Cheng X, Zhang M, Dai Q, Liu C, Lu Y. Design Principles and Applications of Ionic Liquids for Transdermal Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405983. [PMID: 39342651 DOI: 10.1002/advs.202405983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Indexed: 10/01/2024]
Abstract
Ionic liquids (ILs) are salts with melting points typically <100 °C, composed of specific anions and cations. Recently, IL application has expanded into material engineering and biomedicine. Due to their unique properties, ILs have garnered significant interest in pharmacological research as solubilizers, transdermal absorption enhancers, antibacterial agents, and stabilizers of insoluble pharmaceutical active ingredients. The improvement of skin permeability by ILs is closely associated with their specific physicochemical characteristics, which are identified by their ionic composition. However, the existing literature on transdermal medication administration is insufficient in terms of a comprehensive knowledge base. This review provides a comprehensive assessment of the design principles involved in IL synthesis. Additionally, it discusses the methods utilized to assess skin permeability and provides a focused outline of IL application in transdermal drug administration.
Collapse
Affiliation(s)
- Sai Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xueqing Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, 102206, P. R. China
| | - Qiong Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yunfeng Lu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
4
|
Yan C, Nakajima M, Ikeda-Imafuku M, Yanagawa M, Hayatsu M, Fukuta T, Shibata S, Mitragotri S, Tabeta K. Choline and geranate ionic liquid for subgingival biofilm control. Int J Pharm 2024; 662:124544. [PMID: 39094920 DOI: 10.1016/j.ijpharm.2024.124544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Periodontitis is a chronic inflammatory disease that causes destruction of the periodontium and eventual tooth loss. The priority in the periodontal treatment is to remove the subgingival biofilm. Chemical removal of biofilms using antimicrobial agents has been applied in clinical practice. However, their clinical effect is still limited because the agents must overcome biofilm's significant drug tolerance, which is primarily caused by the extracellular matrix, a physical barrier that attenuates drug diffusion. This study aimed to study the use of ionic liquids (ILs), a new class of biocompatible materials, for controlling subgingival biofilms because of their excellent permeability. Choline and geranate (CAGE) IL was tested for its highly potent antiseptic behavior and permeability. Antibacterial tests revealed that the significant efficacy of CAGE against periodontopathic microorganisms was derived from their ability to destroy cell membrane, as demonstrated by membrane permeability assay and transmission electron microscopy imaging. Antibiofilm tests using two pathogenic biofilm models revealed that CAGE exerted efficacy against the biofilm-embedded bacteria, conspicuously neutralized the biofilms, and eventually destroyed the biofilm structure. Furthermore, the penetration of CAGE into the biofilm was visually confirmed using confocal laser scanning microscopy. This study highlighted the potential of CAGE as a powerful antibiofilm therapeutic.
Collapse
Affiliation(s)
- Chunyang Yan
- Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Mayuka Nakajima
- Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan.
| | - Mayumi Ikeda-Imafuku
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Mayuko Yanagawa
- Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02134, USA
| | - Koichi Tabeta
- Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan.
| |
Collapse
|
5
|
Kuddushi M, Xu BB, Malek N, Zhang X. Review of ionic liquid and ionogel-based biomaterials for advanced drug delivery. Adv Colloid Interface Sci 2024; 331:103244. [PMID: 38959813 DOI: 10.1016/j.cis.2024.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Ionic liquids (ILs) play a crucial role in the design of novel materials. The ionic nature of ILs provides numerous advantages in drug delivery, acting as a green solvent or active ingredient to enhance the solubility, permeability, and binding efficiency of drugs. They could also function as a structuring agent in the development of nano/micro particles for drug delivery, including micelles, vesicles, gels, emulsion, and more. This review summarize the ILs and IL-based gel structures with their advanced drug delivery applications. The first part of review focuses on the role of ILs in drug formulation and the applications of ILs in drug delivery. The second part of review offers a comprehensive overview of recent drug delivery applications of IL-based gel. It aims to offer new perspectives and attract more attention to open up new avenues in the biomedical applications of ILs and IL-based gels.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Naved Malek
- Ionic Liquid Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 07, India
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| |
Collapse
|
6
|
El Mohamad M, Han Q, Dyett B, Yu H, Edgecomb S, Pride MC, Chism CM, Roberts A, Jones D, Tanner EEL, Drummond CJ, Greaves TL, Zhai J. Cytotoxicity and cell membrane interactions of choline-based ionic liquids: Comparing amino acids, acetate, and geranate anions. CHEMOSPHERE 2024; 364:143252. [PMID: 39236918 DOI: 10.1016/j.chemosphere.2024.143252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Ionic liquids (ILs) have found diverse applications in research and industry. Biocompatible ILs, a subset considered less toxic than traditional ILs, have expanded their applications into biomedical fields. However, there is limited understanding of the toxicity profiles, safe concentrations, and underlying factors driving their toxicity. In this study, we investigated the cytotoxicity of 13 choline-based ILs using four different cell lines: Human dermal fibroblasts (HDF), epidermoid carcinoma cells (A431), cervical cancer cells (HeLa), and gastric cancer cells (AGS). Additionally, we explored the haemolytic activity of these ILs. Our findings showed that the cytotoxic and haemolytic activities of ILs can be attributed to the hydrophobicity of the anions and the pH of the IL solutions. Furthermore, utilising quartz crystal microbalance with dissipation (QCM-D), we delved into the interaction of selected ILs, including choline acetate [Cho][Ac] and choline geranate [Cho][Ge], with model cell membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The QCM-D data showed that ILs with higher toxicities exhibited more pronounced interactions with membranes. Increased variations in frequency and dissipation reflected substantial changes in membrane fluidity and mass following the addition of the more toxic ILs. Furthermore, total internal reflection fluorescence microscopy study revealed that [Cho][Ac] could cause lipid rearrangements and pore formation in the membrane, while [Cho][Ge] disrupted the bilayer packing. This study advances our understanding of the cellular toxicities associated with choline-based ILs and provides valuable insights into their mechanisms of action concerning IL-membrane interactions. These findings have significant implications for the safe and informed utilisation of biocompatible ILs in the realm of drug delivery and biotechnology.
Collapse
Affiliation(s)
- Mohamad El Mohamad
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3000, Australia
| | - Qi Han
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3000, Australia
| | - Brendan Dyett
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3000, Australia
| | - Haitao Yu
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3000, Australia
| | - Sara Edgecomb
- Department of Chemistry and Biochemistry, The University of Mississippi, University, MS, 38677, USA
| | - Mercedes C Pride
- Department of Chemistry and Biochemistry, The University of Mississippi, University, MS, 38677, USA
| | - Claylee M Chism
- Department of Chemistry and Biochemistry, The University of Mississippi, University, MS, 38677, USA
| | - Angela Roberts
- Department of Chemistry and Biochemistry, The University of Mississippi, University, MS, 38677, USA
| | - Deauntaye Jones
- Department of Chemistry and Biochemistry, The University of Mississippi, University, MS, 38677, USA
| | - Eden E L Tanner
- Department of Chemistry and Biochemistry, The University of Mississippi, University, MS, 38677, USA
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3000, Australia.
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3000, Australia.
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
7
|
Lu B, Zhao S, Zhang J, Zhan J, Zhang J, Liu Z, Zhang J. Anti-inflammatory and antioxidant effects on skin based on supramolecular hyaluronic acid-ectoin. J Mater Chem B 2024; 12:8408-8419. [PMID: 39086221 DOI: 10.1039/d4tb00459k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We addressed the damage caused by internal and external factors on the skin, as well as the aging phenomenon caused by delayed repair after damage. We prepared supramolecular hyaluronic acid-ectoin (HA-ECT) by combining theoretical calculations and experimental research, using intermolecular forces between hyaluronic acid and ectoin. This supramolecule has good stability, safety, and skin permeability and can penetrate the stratum corneum of the skin, reaching the epidermis and dermis of the skin. Compared with ectoin, the permeability of the supramolecule HA-ECT was 3.39-fold higher. Supramolecular HA-ECT can promote the proliferation of keratinocytes and fibroblasts, significantly increase the content of type collagen-I, reduce the expression of inflammatory factors in keratinocytes, and enhance skin hydration and repair effects. HA-ECT can reduce intracellular reactive oxygen species and inhibit the expression of matrix metalloproteinase-1 (reduced by 1.27-fold) to improve skin photoaging. Therefore, supramolecular HA-ECT has potential application in the field of cosmetics for skin antioxidants, anti-aging, and repair.
Collapse
Affiliation(s)
- Beibei Lu
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong, China.
- The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen 518020, Guangdong, China
- Department of Shenzhen People's Hospital Geriatrics Center, Shenzhen 518020, Guangdong, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China.
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Siran Zhao
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, 100029, China
| | - Jichuan Zhang
- Shenzhen Shinehigh Innovation Technology Co., Ltd., Shenzhen 518055, P. R. China
| | - Jingbo Zhan
- Shenzhen Shinehigh Innovation Technology Co., Ltd., Shenzhen 518055, P. R. China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong, China.
- The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen 518020, Guangdong, China
- Department of Shenzhen People's Hospital Geriatrics Center, Shenzhen 518020, Guangdong, China
| | - Zhe Liu
- Bloomage Biotech Co., Ltd., Jinan, Shandong 250104, China.
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China.
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| |
Collapse
|
8
|
Damjanović A, Logarušić M, Tumir LM, Andreou T, Cvjetko Bubalo M, Radojčić Redovniković I. Enhancing protein stability under stress: osmolyte-based deep eutectic solvents as a biocompatible and robust stabilizing medium for lysozyme under heat and cold shock. Phys Chem Chem Phys 2024; 26:21040-21051. [PMID: 39054918 DOI: 10.1039/d4cp02275k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In biomedical and biotechnological domains, liquid protein formulations are vital tools, offering versatility across various fields. However, maintaining protein stability in a liquid form presents challenges due to environmental factors, driving research to refine formulations for broader applications. In our recent study, we investigated the relationship between deep eutectic solvents (DESs) and the natural presence of osmolytes in specific combinations, showcasing the effectiveness of a bioinspired osmolyte-based DES in stabilizing a model protein. Recognizing the need for a more nuanced understanding of osmolyte-based DES stabilization capabilities under different storage conditions, here we broadened the scope of our osmolyte-based DES experimental screening, and delved deeper into structural changes in the enzyme under these conditions. We subjected lysozyme solutions in DESs based on various kosmotropic osmolytes (TMAO, betaine, sarcosine, DMSP, ectoine, GPC, proline, sorbitol and taurine) paired either with another kosmotropic (glycerol) or with chaotropic osmolyte urea to rigorous conditions: heat shock (at 80 °C) and repetitive freeze-thaw cycles (at -20 and -80 °C). Changes in enzyme activity, colloidal stability, and conformational alterations were then monitored using bioassays, aggregation tests, and spectroscopic techniques (FT-IR and CD). Our results demonstrate the remarkable effectiveness of osmolyte-based DES in stabilizing lysozyme under stress conditions, with sarcosine- and betaine-based DESs containing glycerol as a hydrogen bond donor showing the highest efficacy, even at high enzyme loadings up to 200 mg ml-1. Investigation of the individual and combined effects of the DES components on enzyme stability confirmed the synergistic behavior of the kosmotrope-urea mixtures and the cumulative effects in kosmotrope-glycerol mixtures. Additionally, we have shown that the interplay between the enzyme's active and stable (but inactive) states is highly influenced by the water content in DESs. Finally, toxicity assessments of osmolyte-based DESs using cell lines (Caco-2, HaCaT, and HeLa) revealed no risks to human health.
Collapse
Affiliation(s)
- Anja Damjanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Croatia.
| | - Marijan Logarušić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
9
|
Jain A, Shakya AK, Prajapati SK, Eldesoqui M, Mody N, Jain SK, Naik RR, Patil UK. An insight into pharmaceutical challenges with ionic liquids: where do we stand in transdermal delivery? Front Bioeng Biotechnol 2024; 12:1454247. [PMID: 39165403 PMCID: PMC11333206 DOI: 10.3389/fbioe.2024.1454247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Ionic liquids (ILs) represent an exciting and promising solution for advancing drug delivery platforms. Their unique properties, including broad chemical diversity, adaptable structures, and exceptional thermal stability, make them ideal candidates for overcoming challenges in transdermal drug delivery. Despite encountering obstacles such as side reactions, impurity effects, biocompatibility concerns, and stability issues, ILs offer substantial potential in enhancing drug solubility, navigating physiological barriers, and improving particle stability. To propel the use of IL-based drug delivery in pharmaceutical innovation, it is imperative to devise new strategies and solvents that can amplify drug effectiveness, facilitate drug delivery to cells at the molecular level, and ensure compatibility with the human body. This review introduces innovative methods to effectively address the challenges associated with transdermal drug delivery, presenting progressive approaches to significantly improve the efficacy of this drug delivery system.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, India
| | - Ashok K. Shakya
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Nishi Mody
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Sanjay K. Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Rajashri R. Naik
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Umesh K. Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| |
Collapse
|
10
|
Curreri AM, Dunne M, Bibbey MG, Kapate N, Kim J, Mitragotri S. Localization of Intramuscular mRNA Delivery Using Deep Eutectic-Lipid Nanocomposites. Adv Healthc Mater 2024; 13:e2400327. [PMID: 38693774 DOI: 10.1002/adhm.202400327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Messenger ribonucleic acid (mRNA) has long been touted as a next-generation therapeutic modality for infectious disease, cancer, and genetic disorders. Lipid nanoparticles (LNPs) provide an elegant delivery strategy for mRNA cargo to help realize this potential for vaccination. However, systemic exposure seen with traditional LNP formulations can have significant implications on efficacy and safety. Efforts to mitigate this have largely been focused on laborious lipid or LNP redesign. Here, the use of a deep eutectic-lipid nanocomposite delivery system for the tuning of mRNA expression for intramuscular injections in vivo is reported. One deep eutectic, cholinium malonate, allows for the linear control of percent expression at the muscular injection site based solely on its concentration in the formulation. The same deep eutectic solvent (DES) can increase local muscle expression by 68% and significantly decrease off-target liver expression by 72%. Physico-chemical studies suggest that the DES incorporates into or onto the pre-formed LNPs thus impacting endosomal escape and in situ interactions. These nanocomposites provide new possibilities for previously approved LNP formulations and without the need for lipid redesign to induce localized expression.
Collapse
Affiliation(s)
- Alexander Michael Curreri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St, Boston, MA, 02115, USA
| | - Michael Dunne
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St, Boston, MA, 02115, USA
| | - Michael Griffith Bibbey
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St, Boston, MA, 02115, USA
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jayoung Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center at Forth Worth, 3500 Camp Bowie Blvd., Forth Worth, TX, 76107, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St, Boston, MA, 02115, USA
| |
Collapse
|
11
|
Sharma VK, Gupta J, Mitra JB, Srinivasan H, Sakai VG, Ghosh SK, Mitra S. The Physics of Antimicrobial Activity of Ionic Liquids. J Phys Chem Lett 2024; 15:7075-7083. [PMID: 38950375 DOI: 10.1021/acs.jpclett.4c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The bactericidal potency of ionic liquids (ILs) is well-established, yet their precise mechanism of action remains elusive. Here, we show evidence that the bactericidal action of ILs primarily involves the permeabilization of the bacterial cell membrane. Our findings reveal that ILs exert their effects by directly interacting with the lipid bilayer and enhancing the membrane dynamics. Lateral lipid diffusion is accelerated, which in turn augments membrane permeability, ultimately leading to bacterial death. Furthermore, our results establish a significant connection: an increase in the alkyl chain length of ILs correlates with a notable enhancement in both lipid lateral diffusion and antimicrobial potency. This underscores a compelling correlation between membrane dynamics and antimicrobial effectiveness, providing valuable insights for the rational design and optimization of IL-based antimicrobial agents in healthcare applications.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - J Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - J Bhatt Mitra
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - V García Sakai
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - S K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar Uttar Pradesh 201314, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
12
|
Czerwoniec P, Kukawka R, Spychalski M, Koczura R, Mokracka J, Smiglak M. New biologically active ionic liquids with benzethonium cation-efficient SAR inducers and antimicrobial agents. PEST MANAGEMENT SCIENCE 2024; 80:3047-3055. [PMID: 38319125 DOI: 10.1002/ps.8014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND An urgent need to find new methods for crop protection remains open due to the withdrawal from the market of the most toxic pesticides and increasing consumer awareness. One of the alternatives that can be used in modern agriculture is the use of bifunctional compounds whose actions towards plant protection are wider than those of conventional pesticides. RESULTS In this study, we present the investigation of the biological efficacy of nine dual-functional salts containing a systemic acquired resistance (SAR)-inducing anion and the benzethonium cation. A significant result of the presented study is the discovery of the SAR induction activity of benzethonium chloride, which was previously reported only as an antimicrobial agent. Moreover, the concept of dual functionality was proven, as the application of presented compounds in a given concentrations resulted both in the control of human and plant bacteria species and induction of SAR. CONCLUSION The strategy presented in this article shows the capabilities of derivatization of common biologically active compounds into their ionic derivatives to obtain bifunctional salts. This approach may be an example of the design of potential new compounds for modern agriculture. It provides plants with two complementary actions allowing to provide efficient protection to plants, if one mode of action is ineffective. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Patrycja Czerwoniec
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poznań, Poland
| | - Rafal Kukawka
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Poznań, Poland
| | - Maciej Spychalski
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Poznań, Poland
| | - Ryszard Koczura
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznań, Poland
| | - Joanna Mokracka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznań, Poland
| | - Marcin Smiglak
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Poznań, Poland
- Innosil Sp. z o.o., Poznań, Poland
| |
Collapse
|
13
|
Hamadani CM, Mahdi F, Merrell A, Flanders J, Cao R, Vashisth P, Dasanayake GS, Darlington DS, Singh G, Pride MC, Monroe WG, Taylor GR, Hunter AN, Roman G, Paris JJ, Tanner EEL. Ionic Liquid Coating-Driven Nanoparticle Delivery to the Brain: Applications for NeuroHIV. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305484. [PMID: 38572510 PMCID: PMC11186118 DOI: 10.1002/advs.202305484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/28/2023] [Indexed: 04/05/2024]
Abstract
Delivering cargo to the central nervous system (CNS) remains a pharmacological challenge. For infectious diseases such as HIV, the CNS acts as a latent reservoir that is inadequately managed by systemic antiretrovirals (ARTs). ARTs thus cannot eradicate HIV, and given CNS infection, patients experience neurological deficits collectively referred to as "neuroHIV". Herein, the development of bioinspired ionic liquid-coated nanoparticles (IL-NPs) for in situ hitchhiking on red blood cells (RBCs) is reported, which enables 48% brain delivery of intracarotid arterial- infused cargo. Moreover, IL choline trans-2-hexenoate (CA2HA 1:2) demonstrates preferential accumulation in parenchymal microglia over endothelial cells post-delivery. This study further demonstrates successful loading of abacavir (ABC), an ART that is challenging to encapsulate, into IL-NPs, and verifies retention of antiviral efficacy in vitro. IL-NPs are not cytotoxic to primary human peripheral blood mononuclear cells (PBMCs) and the CA2HA 1:2 coating itself confers notable anti-viremic capacity. In addition, in vitro cell culture assays show markedly increased uptake of IL-NPs into neural cells compared to bare PLGA nanoparticles. This work debuts bioinspired ionic liquids as promising nanoparticle coatings to assist CNS biodistribution and has the potential to revolutionize the delivery of cargos (i.e., drugs, viral vectors) through compartmental barriers such as the blood-brain-barrier (BBB).
Collapse
Affiliation(s)
- Christine M. Hamadani
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Fakhri Mahdi
- Department of BioMolecular SciencesThe University of MississippiUniversityMS38677USA
| | - Anya Merrell
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Jack Flanders
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Ruofan Cao
- Department of BioMolecular SciencesThe University of MississippiUniversityMS38677USA
| | - Priyavrat Vashisth
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Gaya S. Dasanayake
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Donovan S. Darlington
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Gagandeep Singh
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Mercedes C. Pride
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Wake G. Monroe
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - George R. Taylor
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Alysha N. Hunter
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| | - Gregg Roman
- Department of BioMolecular SciencesThe University of MississippiUniversityMS38677USA
| | - Jason J. Paris
- Department of BioMolecular SciencesThe University of MississippiUniversityMS38677USA
| | - Eden E. L. Tanner
- Department of Chemistry & BiochemistryThe University of MississippiUniversityMS38677USA
| |
Collapse
|
14
|
Javed S, Mangla B, Sultan MH, Almoshari Y, Sivadasan D, Alqahtani SS, Madkhali OA, Ahsan W. Pharmaceutical applications of therapeutic deep eutectic systems (THEDES) in maximising drug delivery. Heliyon 2024; 10:e29783. [PMID: 38694051 PMCID: PMC11058303 DOI: 10.1016/j.heliyon.2024.e29783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/09/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
The issue of poor solubility of active pharmaceutical ingredients (APIs) has been a salient area of investigation and novel drug delivery systems are being developed to improve the solubility of drugs, enhance their permeability and thereby their efficacy. Several techniques for solubilization enhancement of poorly soluble drugs are often employed at various stages of pharmaceutical drug product development. One such delivery system is the therapeutic deep eutectic system (THEDES), which showed great potential in the enhancement of solubility and permeability of drugs and ultimately augmenting their bioavailability. THEDES are made by mixing drugs with deep eutectic solvents (DESs) in a definite molar ratio by the hit and trial method. The DESs are a new class of green solvents which are non-toxic, cheap, easy to prepare, biodegradable and have multiple applications in the pharmaceutical industry. The terminologies such as ionic liquids (ILs), DES, THEDES, and therapeutic liquid eutectic systems (THELES) have been very much in use recently, and it is important to highlight the pharmaceutical applications of these unexplored reservoirs in drug solubilization enhancement, drug delivery routes, and in the management of various diseases. This review is aimed at discussing the components, formulation strategies, and routes of administration of THEDES that are used in developing the formulation. Also, the major pharmaceutical applications of THEDES in the treatment of various metabolic and non-metabolic diseases are reviewed.
Collapse
Affiliation(s)
- Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Bharti Mangla
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Durgaramani Sivadasan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Osama A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
15
|
Hao S, Chen Z, Li H, Yuan J, Chen X, Sidorenko A, Huang J, Gu Y. Skin-Inspired, Highly Sensitive, Broad-Range-Response and Ultra-Strong Gradient Ionogels Prepared by Electron Beam Irradiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309931. [PMID: 38102094 DOI: 10.1002/smll.202309931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Skin, characterized by its distinctive gradient structure and interwoven fibers, possesses remarkable mechanical properties and highly sensitive attributes, enabling it to detect an extensive range of stimuli. Inspired by these inherent qualities, a pioneering approach involving the crosslinking of macromolecules through in situ electron beam irradiation (EBI) is proposed to fabricate gradient ionogels. Such a design offers remarkable mechanical properties, including excellent tensile properties (>1000%), exceptional toughness (100 MJ m-3), fatigue resistance, a broad temperature range (-65-200°C), and a distinctive gradient modulus change. Moreover, the ionogel sensor exhibits an ultra-fast response time (60 ms) comparable to skin, an incredibly low detection limit (1 kPa), and an exceptionally wide detection range (1 kPa-1 MPa). The exceptional gradient ionogel material holds tremendous promise for applications in the field of smart sensors, presenting a distinct strategy for fabricating flexible gradient materials.
Collapse
Affiliation(s)
- Shuai Hao
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhiyan Chen
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haozhe Li
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jushigang Yuan
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xihao Chen
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Alexander Sidorenko
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 220084, Belarus
| | - Jiang Huang
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanlong Gu
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
16
|
Egorova KS, Kibardin AV, Posvyatenko AV, Ananikov VP. Mechanisms of Biological Effects of Ionic Liquids: From Single Cells to Multicellular Organisms. Chem Rev 2024; 124:4679-4733. [PMID: 38621413 DOI: 10.1021/acs.chemrev.3c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The review presents a detailed discussion of the evolving field studying interactions between ionic liquids (ILs) and biological systems. Originating from molten salt electrolytes to present multiapplication substances, ILs have found usage across various fields due to their exceptional physicochemical properties, including excellent tunability. However, their interactions with biological systems and potential influence on living organisms remain largely unexplored. This review examines the cytotoxic effects of ILs on cell cultures, biomolecules, and vertebrate and invertebrate organisms. Our understanding of IL toxicity, while growing in recent years, is yet nascent. The established findings include correlations between harmful effects of ILs and their ability to disturb cellular membranes, their potential to trigger oxidative stress in cells, and their ability to cause cell death via apoptosis. Future research directions proposed in the review include studying the distribution of various ILs within cellular compartments and organelles, investigating metabolic transformations of ILs in cells and organisms, detailed analysis of IL effects on proteins involved in oxidative stress and apoptosis, correlation studies between IL doses, exposure times and resulting adverse effects, and examination of effects of subtoxic concentrations of ILs on various biological objects. This review aims to serve as a critical analysis of the current body of knowledge on IL-related toxicity mechanisms. Furthermore, it can guide researchers toward the design of less toxic ILs and the informed use of ILs in drug development and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey V Kibardin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Alexandra V Posvyatenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
17
|
Lei T, Pan J, Wang N, Xia Z, Zhang Q, Fan J, Tao L, Shou W, Gao Y. Cold-resistant, highly stretchable ionic conductive hydrogels for intelligent motion recognition in winter sports. MATERIALS HORIZONS 2024; 11:1234-1250. [PMID: 38131412 DOI: 10.1039/d3mh02013d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Conductive hydrogels have attracted much attention for their wide application in the field of flexible wearable sensors due to their outstanding flexibility, conductivity and sensing properties. However, the weak mechanical properties, lack of frost resistance and susceptibility to microbial contamination of traditional conductive hydrogels greatly limit their practical application. In this work, multifunctional polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC)/poly(acrylamide-co-1-vinyl-3-butylimidazolium bromide) (P(AAm-co-VBIMBr)) (PCPAV) ionic conductive hydrogels with high strength and good conductive, transparent, anti-freezing and antibacterial properties were constructed by introducing a network of chemically crosslinked AAm and VBIMBr copolymers into the base material of PVA and CMC by in situ free radical polymerization. Owing to the multiple interactions between the polymers, including covalent crosslinking, multiple hydrogen bonding interactions, and electrostatic interactions, the obtained ionic conductive hydrogels exhibit a high tensile strength (360.6 kPa), a large elongation at break (810.6%), good toughness, and fatigue resistance properties. The introduction of VBIMBr endows the PCPAV hydrogels with excellent transparency (∼92%), a high ionic conductivity (15.2 mS cm-1), antimicrobial activity and good flexibility and conductivity at sub-zero temperatures. Notably, the PCPAV hydrogels exhibit a wide strain range (0-800%), high strain sensitivity (GF = 3.75), fast response, long-term stability, and fantastic durability, which enable them to detect both large joint movements and minute muscle movements. Based on these advantages, it is believed that the PCPAV-based hydrogel sensors would have potential applications in health monitoring, human motion detection, soft robotics, ionic skins, human-machine interfaces, and other flexible electronic devices.
Collapse
Affiliation(s)
- Tongda Lei
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Jiajun Pan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Ning Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Zhaopeng Xia
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Qingsong Zhang
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Jie Fan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Wan Shou
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yu Gao
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
18
|
Ilyas F, Fazal H, Ahmed M, Iqbal A, Ishaq M, Jabeen M, Butt M, Farid S. Advances in ionic liquids as fluorescent sensors. CHEMOSPHERE 2024; 352:141434. [PMID: 38401867 DOI: 10.1016/j.chemosphere.2024.141434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Ionic liquids (ILs) are a class of liquid salts with characteristics such as a low melting point, an ionic nature, non-volatility, and tunable properties. Because of their adaptability, they have a significant influence in the field of fluorescence. This paper reviews the primary literature on the use of ILs in fluorescence sensing technologies. The kind of target material is utilized to classify the fluorescence sensors made with the use of ILs. They include using ILs as probes for metals, nitro explosives, small organic compounds, anions, and gases. The efficacy of an IL-based fluorescence sensor depends on the precise design to guarantee specificity, sensitivity, and a consistent reaction to the desired analyte. The precise method can differ depending on the chemical properties of the IL, the choice of fluorophore, and the interactions with the analyte. Overall, the viability of the aforementioned materials for chemical analysis is evaluated, and prospective possibilities for further development are identified.
Collapse
Affiliation(s)
- Farva Ilyas
- Department of Materials Science and Engineering, College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China; Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hira Fazal
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhktiar Ahmed
- Chemistry of Interfaces, Luleå University of Technology, SE-97 187, Luleå, Sweden
| | - Asma Iqbal
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Maher Jabeen
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Madiha Butt
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sumbal Farid
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
19
|
El Mohamad M, Han Q, Clulow AJ, Cao C, Safdar A, Stenzel M, Drummond CJ, Greaves TL, Zhai J. Regulating the structural polymorphism and protein corona composition of phytantriol-based lipid nanoparticles using choline ionic liquids. J Colloid Interface Sci 2024; 657:841-852. [PMID: 38091907 DOI: 10.1016/j.jcis.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
Lipid-based lyotropic liquid crystalline nanoparticles (LCNPs) face stability challenges in biological fluids during clinical translation. Ionic Liquids (ILs) have emerged as effective solvent additives for tuning the structure of LCNP's and enhancing their stability. We investigated the effect of a library of 21 choline-based biocompatible ILs with 9 amino acid anions as well as 10 other organic/inorganic anions during the preparation of phytantriol (PHY)-based LCNPs, followed by incubation in human serum and serum proteins. Small angle X-ray scattering (SAXS) results show that the phase behaviour of the LCNPs depends on the IL concentration and anion structure. Incubation with human serum led to a phase transition from the inverse bicontinuous cubic (Q2) to the inverse hexagonal (H2) mesophase, influenced by the specific IL present. Liquid chromatography-mass spectrometry (LC-MS) and proteomics analysis of selected samples, including PHY control and those with choline glutamate, choline hexanoate, and choline geranate, identified abundant proteins in the protein corona, including albumin, apolipoproteins, and serotransferrin. The composition of the protein corona varied among samples, shedding light on the intricate interplay between ILs, internal structure and surface chemistry of LCNPs, and biological fluids.
Collapse
Affiliation(s)
- Mohamad El Mohamad
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Qi Han
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Andrew J Clulow
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Cheng Cao
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Aneeqa Safdar
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
20
|
Zhang E, Zhu H, Song B, Shi Y, Cao Z. Recent advances in oral insulin delivery technologies. J Control Release 2024; 366:221-230. [PMID: 38161033 DOI: 10.1016/j.jconrel.2023.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
With the rise in diabetes mellitus cases worldwide, oral delivery of insulin is preferred over subcutaneous insulin administration due to its good patient compliance and non-invasiveness, simplicity, and versatility. However, oral insulin delivery is hampered by various gastrointestinal barriers that result in low drug bioavailability and insufficient therapeutic efficiency. Numerous strategies have been developed to overcome these barriers and increase the bioavailability of oral insulin. Yet, no commercial oral insulin product is available to address all clinical hurdles because of various substantial obstacles related to the structural organization and physiological function of the gastrointestinal tract. Herein, we discussed the significant physiological barriers (including chemical, enzymatic, and physical barriers) that hinder the transportation and absorption of orally delivered insulin. Then, we showcased recent significant and innovative advances in oral insulin delivery technologies. Finally, we concluded the review with remarks on future perspectives on oral insulin delivery technologies and potential challenges for forthcoming clinical translation of oral insulin delivery technologies.
Collapse
Affiliation(s)
- Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Boyi Song
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
21
|
Zhuo Y, Cheng HL, Zhao YG, Cui HR. Ionic Liquids in Pharmaceutical and Biomedical Applications: A Review. Pharmaceutics 2024; 16:151. [PMID: 38276519 PMCID: PMC10818567 DOI: 10.3390/pharmaceutics16010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The unique properties of ionic liquids (ILs), such as structural tunability, good solubility, chemical/thermal stability, favorable biocompatibility, and simplicity of preparation, have led to a wide range of applications in the pharmaceutical and biomedical fields. ILs can not only speed up the chemical reaction process, improve the yield, and reduce environmental pollution but also improve many problems in the field of medicine, such as the poor drug solubility, product crystal instability, poor biological activity, and low drug delivery efficiency. This paper presents a systematic and concise analysis of the recent advancements and further applications of ILs in the pharmaceutical field from the aspects of drug synthesis, drug analysis, drug solubilization, and drug crystal engineering. Additionally, it explores the biomedical field, covering aspects such as drug carriers, stabilization of proteins, antimicrobials, and bioactive ionic liquids.
Collapse
Affiliation(s)
- Yue Zhuo
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 511442, China;
| | - He-Li Cheng
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, China;
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| | - Hai-Rong Cui
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| |
Collapse
|
22
|
Sutar Y, Singh SK, Dhoble S, Mali J, Adams J, Yadavalli T, Date AA, Shukla D. Oral Self-Nanoemulsifying System Containing Ionic Liquid of BX795 Is Effective against Genital HSV-2 Infection in Mice. ACS Infect Dis 2024; 10:93-106. [PMID: 37807721 DOI: 10.1021/acsinfecdis.3c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BX795 is an emerging drug candidate that has shown a lot of promise as a next-generation non-nucleoside antiviral agent for the topical treatment of herpes simplex virus type-1 (HSV-1) and herpes simplex virus type-2 (HSV-2) infections. Our studies indicated that BX795 has limited oral bioavailability, which could be attributed to its low and pH-dependent solubility. Lipid-based formulations such as self-nanoemulsifying systems (SNESs) can improve the solubility and oral bioavailability of BX795, but the poor lipid solubility of BX795 further limits the development of SNES. To improve the loading of BX795 into SNES, we evaluated the ability of various bulky and biocompatible anions to transform BX795 into an ionic liquid (IL) with higher lipid solubility. Our studies showed that sodium lauryl sulfate and docusate sodium were able to transform BX795 into IL. Compared to pure BX795, the developed BX795 ILs showed differential in vitro cytocompatibility to HeLa cells but exhibited similar in vitro antiviral activity against HSV-2. Interestingly, BX795 docusate (BX795-Doc), an IL of BX795 with ∼135-fold higher lipid solubility than pure BX795, could be successfully incorporated into an SNES, and the developed BX795-Doc-SNES could readily form nanoemulsions of size ≤200 nm irrespective of the pH of the buffer used for dilution. Our in vitro studies showed that BX795-Doc-SNES retained the inherent antiviral activity against HSV-2 and showed similar in vitro cytocompatibility, indicating the availability of BX795 from the SNES in vitro. Finally, orally delivered SNES containing BX795-Doc showed a significant reduction in HSV-2 infection in mice compared to the untreated control. Thus, the transformation of BX795 into IL and the subsequent incorporation of the BX795 IL into the SNES are an effective strategy to improve oral therapy of genital herpes infection.
Collapse
Affiliation(s)
- Yogesh Sutar
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Sudhanshu Kumar Singh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Sagar Dhoble
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jaishree Mali
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Joseph Adams
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Abhijit A Date
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Department of Ophthalmology and Vision Science, University of Arizona College of Medicine, Tucson, Arizona 85711, United States
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
23
|
Gupta J, Sharma VK, Srinivasan H, Bhatt H, Sakai VG, Mukhopadhyay R, Mitra S. Modulation of Phase Behavior and Microscopic Dynamics in Cationic Vesicles by 1-Decyl-3-methylimidazolium Bromide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:504-518. [PMID: 38126298 DOI: 10.1021/acs.langmuir.3c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Synthetic cationic lipids have garnered significant attention as promising candidates for gene/DNA transfection in therapeutic applications. The phase behavior of the vesicles formed by these lipids is intriguing, revealing intricate connections to the structure and dynamics of the membrane. These phenomena emerge from the complex interplay between hydrophobic and electrostatic interactions of the lipids. In this study, we explore the impact of an ionic liquid-based surfactant, 1-decyl-3-methylimidazolium bromide (DMIM[Br]), on the structural, dynamical, and phase behavior of cationic dihexadecyldimethylammonium bromide (DHDAB) vesicles. Our investigations indicate that the addition of DMIM[Br] increases the vesicle size while thinning the membrane. Further, DMIM[Br] also induces substantial changes in the membrane phase behavior. At 10 and 25 mol %, DMIM[Br] eliminates the pre-transition from coagel to intermediate crystalline (IC) phase and decreases the onset temperature of the main phase transition to the fluid phase. In the cooling cycle, the addition of DMIM[Br] further induces the formation of an intermediate gel phase. This behavior is reminiscent of the non-synchronous ordering observed in the DODAB membrane, a longer-chain counterpart of DHDAB. Interestingly, at 40 mol % of DMIM[Br], the formation of the intermediate gel phase is largely suppressed. Neutron scattering data provide evidence that the addition of DMIM[Br] enhances lipid mobility in coagel and fluid phases, suggesting that DMIM[Br] acts as a plasticizer, enhancing membrane fluidity across all of the phases. Our findings infer that DMIM[Br] modulates the membrane's phase behavior and fluidity, two essential ingredients for the efficient transport of cargo, by controlling the balance of electrostatic and hydrophobic interactions.
Collapse
Affiliation(s)
- Jyoti Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Veerendra Kumar Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Harish Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Himal Bhatt
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Victoria García Sakai
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | | | - Subhankur Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
24
|
Lomba L, García CB, Benito L, Sangüesa E, Santander S, Zuriaga E. Advances in Cryopreservatives: Exploring Safer Alternatives. ACS Biomater Sci Eng 2024; 10:178-190. [PMID: 38141007 DOI: 10.1021/acsbiomaterials.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Cryopreservation of cells, tissues, and organs is widely used in the biomedical and research world. There are different cryopreservatives that are used for this process; however, many of them, such as DMSO, are used despite the problems they present, mainly due to the toxicity it presents to certain types of samples. The aim of this Review is to highlight the different types of substances used in the cryopreservation process. It has been shown that some of these substances are well-known, as in the case of the families of alcohols, sugars, sulfoxides, etc. However, in recent years, other compounds have appeared, such as ionic liquids, deep eutectic solvents, or certain polymers, which open the door to new cryopreservation methods and are also less toxic to frozen samples.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Cristina B García
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Lucía Benito
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Estela Sangüesa
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Sonia Santander
- Faculty of Health and Sports Sciences, University of Zaragoza, Campus of Huesca, 22002 Huesca, Spain
| | - Estefanía Zuriaga
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| |
Collapse
|
25
|
Uniyal P, Das S, Panwar S, Kukreti N, Nainwal P, Bhatia R. A Comprehensive Review on Imperative Role of Ionic Liquids in Pharmaceutical Sciences. Curr Drug Deliv 2024; 21:1197-1210. [PMID: 37815183 DOI: 10.2174/0115672018255191230921035859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 10/11/2023]
Abstract
Ionic liquids (ILs) are poorly-coordinated ionic salts that can exist as a liquid at room temperatures (or <100 °C). ILs are also referred to as "designer solvents" because so many of them have been created to solve particular synthetic issues. ILs are regarded as "green solvents" because they have several distinctive qualities, including better ionic conduction, recyclability, improved solvation ability, low volatility, and thermal stability. These have been at the forefront of the most innovative fields of science and technology during the past few years. ILs may be employed in new drug formulation development and drug design in the field of pharmacy for various functions such as improvement of solubility, targeted drug delivery, stabilizer, permeability enhancer, or improvement of bioavailability in the development of pharmaceutical or vaccine dosage formulations. Ionic liquids have become a key component in various areas such as synthetic and catalytic chemistry, extraction, analytics, biotechnology, etc., due to their superior abilities along with highly modifiable potential. This study concentrates on the usage of ILs in various pharmaceutical applications enlisting their numerous purposes from the delivery of drugs to pharmaceutical synthesis. To better comprehend cuttingedge technologies in IL-based drug delivery systems, highly focused mechanistic studies regarding the synthesis/preparation of ILs and their biocompatibility along with the ecotoxicological and biological effects need to be studied. The use of IL techniques can address key issues regarding pharmaceutical preparations such as lower solubility and bioavailability which plays a key role in the lack of effectiveness of significant commercially available drugs.
Collapse
Affiliation(s)
- Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Shibam Das
- Department of pharmaceutical technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Surbhi Panwar
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA-142001, Punjab, India
| |
Collapse
|
26
|
Han Q, Darmanin C, Rosado CJ, Veríssimo NV, Pereira JFB, Bryant G, Drummond CJ, Greaves TL. Structure, aggregation dynamics and crystallization of superfolder green fluorescent protein: Effect of long alkyl chain imidazolium ionic liquids. Int J Biol Macromol 2023; 253:127456. [PMID: 37844813 DOI: 10.1016/j.ijbiomac.2023.127456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Green fluorescent protein (GFP) and its variants are widely used in medical and biological research, especially acting as indicators of protein structural integrity, protein-protein interactions and as biosensors. This study employs superfolder GFP (sfGFP) to investigate the impact of varying alkyl chain length of 1-Cn-3-methylimidazolium chloride ionic liquid (IL) series ([Cnmim]Cl, n = 2, 4, 6, 8, 10, 12) on the protein fluorescence, structure, hydration, aggregation dynamics and crystallization behaviour. The results revealed a concentration-dependent decrease in the sfGFP chromophore fluorescence, particularly in long alkyl chain ILs ([C10mim]Cl and [C12mim]Cl). Tryptophan (Trp) fluorescence showed the quenching rate increased with longer alkyl chains indicating a nonpolar interaction between Trp57 and the alkyl chain. Secondary structural changes were observed at the high IL concentration of 1.5 M in [C10mim]Cl and [C12mim]Cl. Small-angle X-ray scattering (SAXS) indicated relatively stable protein sizes, but with IL aggregates present in [C10mim]Cl and [C12mim]Cl solutions. Dynamic light scattering (DLS) data showed increased protein size and aggregation with longer alkyl chain ILs. Notably, ILs and salts, excluding [C2mim]Cl, promoted sfGFP crystallization. This study emphasizes the influence of the cation alkyl chain length and concentration on protein stability and aggregation, providing insights into utilizing IL solvents for protein stabilization and crystallization purposes.
Collapse
Affiliation(s)
- Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Connie Darmanin
- La Trobe Institute for Molecular Science, Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Carlos J Rosado
- Department of Diabetes, Central Clinical School, Monash University, VIC 3004, Australia; Department of Biochemistry, Monash University, VIC 3800, Australia
| | - Nathalia Vieira Veríssimo
- School of Pharmaceutical Sciences, São Paulo University (USP), Av. Prof. Lineu Prestes, no. 580, B16, 05508-000, Cidade de Universitária, São Paulo, SP, Brazil
| | - Jorge F B Pereira
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
27
|
Wang X, Dai W, Gao C, Zhang L, Wan Z, Zhang T, Wang Y, Tang Y, Yu Y, Yang X, Cai Q. Spatiotemporal Modulated Scaffold for Endogenous Bone Regeneration via Harnessing Sequentially Released Guiding Signals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58873-58887. [PMID: 38058149 DOI: 10.1021/acsami.3c13963] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The design of a scaffold that can regulate the sequential differentiation of bone marrow mesenchymal stromal cells (BMSCs) according to the endochondral ossification (ECO) mechanism is highly desirable for effective bone regeneration. In this study, we successfully fabricated a dual-networked composite hydrogel composed of gelatin and hyaluronic acid (termed GCDH-M), which can sequentially release chondroitin sulfate (CS) and magnesium/silicon (Mg/Si) ions to provide spatiotemporal guidance for chondrogenesis, angiogenesis, and osteogenesis. The fast release of CS is from the GCDH hydrogel, and the sustained releases of Mg/Si ions are from poly(lactide-co-glycolide) microspheres embedded in the hydrogel. There is a difference in the release rates between CS and ions, resulting in the ability for the fast release of CS and sustained release of ions. The dual networks between the modified gelatin and hyaluronic acid via covalent bonding and host-guest interactions render the hydrogel with some dynamic feature to meet the differentiation development of BMSCs laden inside the hydrogel, i.e., transforming into a chondrogenic phenotype, further to a hypertrophic phenotype and eventually to an osteogenic phenotype. As evidenced by the results of in vitro and in vivo evaluations, this GCDH-M composite hydrogel was proved to be able to create an optimal microenvironment for embedded BMSCs responding to the sequential guiding signals, which aligns with the rhythm of the ECO process and ultimately boosts bone regeneration. The promising outcome achieved with this innovative hydrogel system sheds light on novel scaffold design targeting bone tissue engineering.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenli Dai
- Peking University Third Hospital, Beijing 100191, China
| | - Chenyuan Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liwen Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Tianyun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yujing Tang
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
28
|
Benedetto A. Ionic liquids meet lipid bilayers: a state-of-the-art review. Biophys Rev 2023; 15:1909-1939. [PMID: 38192351 PMCID: PMC10771448 DOI: 10.1007/s12551-023-01173-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
In the past 25 years, a vast family of complex organic salts known as room-temperature ionic liquids (ILs) has received increasing attention due to their potential applications. ILs are composed by an organic cation and either an organic or inorganic anion, and possess several intriguing properties such as low vapor pressure and being liquid around room temperature. Several biological studies flagged their moderate-to-high (cyto)-toxicity. Toxicity is, however, also a synonym of affinity, and this boosted a series of biophysical and chemical-physical investigations aimed at exploiting ILs in bio-nanomedicine, drug-delivery, pharmacology, and bio-nanotechnology. Several of these investigations focused on the interaction between ILs and lipid membranes, aimed at determining the microscopic mechanisms behind their interaction. This is the focus of this review work. These studies have been carried out on a variety of different lipid bilayer systems ranging from 1-lipid to 5-lipids systems, and also on cell-extracted membranes. They have been carried out at different chemical-physical conditions and by the use of a number of different approaches, including atomic force microscopy, neutron and X-ray scattering, dynamic light scattering, differential scanning calorimetry, surface quartz microbalance, nuclear magnetic resonance, confocal fluorescence microscopy, and molecular dynamics simulations. The aim of this "2023 Michèle Auger Award" review work is to provide the reader with an up-to-date overview of this fascinating research field where "ILs meet lipid bilayers (aka biomembranes)," with the aim to boost it further and expand its cross-disciplinary edges towards novel high-impact ideas/applications in pharmacology, drug delivery, biomedicine, and bio-nanotechnology.
Collapse
Affiliation(s)
- Antonio Benedetto
- School of Physics, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Department of Science, University of Roma Tre, Rome, Italy
- Laboratory for Neutron Scattering, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
29
|
Sharma G, Seth A, Giri RP, Hayen N, Murphy BM, Ghosh SK. Ionic Liquid-Induced Assembly of DNA at Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16079-16089. [PMID: 37922422 DOI: 10.1021/acs.langmuir.3c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
DNA nanotechnology is the future of many products in the pharmaceutical and cosmetic industries. Self-assembly of this negatively charged biopolymer at surfaces and interfaces is an essential step to elaborate its field of applications. In this study, the ionic liquid (IL) monolayer-assisted self-assembly of DNA macromolecules at the air-water interface has been closely monitored by employing various quantitative techniques, namely, surface pressure-area (π-A) isotherms, surface potential, interfacial rheology, and X-ray reflectivity (XRR). The π-A isotherms reveal that the IL 1,3-didecyl 3-methyl imidazolium chloride induces DNA self-assembly at the interface, leading to a thick viscoelastic film. The interfacial rheology exhibits a notable rise in the viscoelastic modulus as the surface pressure increases. The values of storage and loss moduli measured as a function of strain frequency suggest a relaxation frequency that depends on the length of the macromolecule. The XRR measurements indicate a considerable increase in DNA layer thickness at the elevated surface pressures depending on the number of base pairs of the DNA. The results are considered in terms of the electrostatic and hydrophobic interactions, allowing a quantitative conclusion about the arrangement of DNA strands underneath the monolayer of the ILs at the air-water interface.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - Ajit Seth
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - Rajendra P Giri
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Nicolas Hayen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Bridget M Murphy
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| |
Collapse
|
30
|
Hu Y, Xing Y, Yue H, Chen T, Diao Y, Wei W, Zhang S. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chem Soc Rev 2023; 52:7262-7293. [PMID: 37751298 DOI: 10.1039/d3cs00510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ionic liquids (ILs), due to their inherent structural tunability, outstanding miscibility behavior, and excellent electrochemical properties, have attracted significant research attention in the biomedical field. As the application of ILs in biomedicine is a rapidly emerging field, there is still a need for systematic analyses and summaries to further advance their development. This review presents a comprehensive survey on the utilization of ILs in the biomedical field. It specifically emphasizes the diverse structures and properties of ILs with their relevance in various biomedical applications. Subsequently, we summarize the mechanisms of ILs as potential drug candidates, exploring their effects on various organisms ranging from cell membranes to organelles, proteins, and nucleic acids. Furthermore, the application of ILs as extractants and catalysts in pharmaceutical engineering is introduced. In addition, we thoroughly review and analyze the applications of ILs in disease diagnosis and delivery systems. By offering an extensive analysis of recent research, our objective is to inspire new ideas and pathways for the design of innovative biomedical technologies based on ILs.
Collapse
Affiliation(s)
- Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Zhang S, Zhang Q, Xu R, Ma J, Fang L. Realizing zero-order controlled transdermal drug permeation through competing doubly ionic H-bond in patch. Int J Pharm 2023; 645:123410. [PMID: 37703958 DOI: 10.1016/j.ijpharm.2023.123410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Transdermal drug delivery system (TDDS) was an effective way to realize controlled drug delivery. However, realizing zero-order controlled drug skin delivery was still challenging in the drug-in-adhesive patch. This study provided a strategy to accomplish this delivery form by stabilizing the drug concentration in adhesive through concentration-dependent competitive interaction. Clonidine (CLO) and Granisetron (GRA) were chosen as the model drugs which were of high skin permeability, and polydimethylaminoethyl acrylate (EA) as an excipient to interact with hydroxyphenyl adhesive (HP). Drug release, permeation and pharmacokinetic study were conducted to evaluate the controlled effect of HP-EA. The molecular interaction was characterized by FT-IR, 1H NMR and XPS. Dynamic simulation and molecular docking further clarified the competitive interaction involved in the release process. Both the drug skin permeation study of CLO and GRA patch based on the HP-EA adhesive showed good zero-order fitting with r of 0.994 and 0.998, compared with non-functional adhesive (0-PSA). Furthermore, the pharmacokinetic study of the CLO patch showed a plateau phase for around 52 h without influencing the area under concentration-time curve (AUC), indicating that the HP-EA could realize zero-order drug skin delivery. The mechanism study revealed that EA serving as a 'buffer component' promoted the conversion of the ionic CLO to the neutrals the as the neutrals released, which stabilized '1% neutrals CLO concentration'. In conclusion, the drug delivery system based on the concentration-dependent competitive interaction broadened our understanding of the molecular mechanisms involved in zero-order controlled release in transdermal patches which would promote the development of zero-order drug delivery in TDDS.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Quanzhi Zhang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Runmei Xu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Junyao Ma
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
32
|
Siddiqui R, Khodja A, Ibrahim T, Khamis M, Anwar A, Khan NA. The increasing importance of novel deep eutectic solvents as potential effective antimicrobials and other medicinal properties. World J Microbiol Biotechnol 2023; 39:330. [PMID: 37792153 DOI: 10.1007/s11274-023-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
With the rise of antibiotic resistance globally, coupled with evolving and emerging infectious diseases, there is an urgent need for the development of novel antimicrobials. Deep eutectic solvents (DES) are a new generation of eutectic mixtures that depict promising attributes with several biological implications. DES exhibit unique properties such as low toxicity, biodegradability, and high thermal stability. Herein, the antimicrobial properties of DES and their mechanisms of action against a range of microorganisms, including bacteria, amoebae, fungi, viruses, and anti-cancer properties are reviewed. Overall, DES represent a promising class of novel antimicrobial agents as well as possessing other important biological attributes, however, future studies on DES are needed to investigate their underlying antimicrobial mechanism, as well as their in vivo effects, for use in the clinic and public at large.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelhamid Khodja
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb Ibrahim
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Mustafa Khamis
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| |
Collapse
|
33
|
Kowalska D, Dołżonek J, Żamojć K, Samsonov SA, Maszota-Zieleniak M, Makowska J, Stepnowski P, Białk-Bielińska A, Wyrzykowski D. Insights into the interaction of human serum albumin with ionic liquids - Thermodynamic, spectroscopic and molecular modelling studies. Int J Biol Macromol 2023; 249:125883. [PMID: 37499721 DOI: 10.1016/j.ijbiomac.2023.125883] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Human serum albumin (HSA) effectively binds different types of low-molecular-weight compounds and thus enables their distribution in living organisms. Recently, it has been reported that the protein-ligand interactions play a crucial role in bioaccumulation processes and provide an important sorption phase, especially for ionogenic compounds. Therefore, the binding interactions of such compounds with proteins are the subject of an ongoing interest in environmental and life sciences. In this paper, the influence of some counter-ions, namely [B(CN)4]- and [C(CN)3]- on the affinity of the [IM1-12]+ towards HSA has been investigated and discussed based on experimental methods (isothermal titration calorimetry and steady-state fluorescence spectroscopy) and molecular dynamics-based computational approaches. Furthermore, the thermal stability of the resulting HSA/ligand complexes was assessed using DSC and CD spectroscopy. As an outcome of the work, it has been ascertained that the protein is able to bind simultaneously the ligands under study but in different regions of HSA. Thus, the presence in the system of [IM1-12]+ does not disturb the binding of [C(CN)3]- and [B(CN)4]-. The presented results provide important information on the presence of globular proteins and some ionogenic compounds in the distribution and bioaccumulation of ILs in the environment and living organisms.
Collapse
Affiliation(s)
- Dorota Kowalska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Krzysztof Żamojć
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sergey A Samsonov
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Martyna Maszota-Zieleniak
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Makowska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
34
|
Ren X, Liang Z, Zhao X. Preparation of hydroxyapatite nanofibers by using ionic liquids as template and application in enhancing hydrogel performance. Front Bioeng Biotechnol 2023; 11:1247448. [PMID: 37600302 PMCID: PMC10433687 DOI: 10.3389/fbioe.2023.1247448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction: Hydroxyapatite (HAP or HA) nanofibers are very attractive in the field of biomedical engineering. However, templates used for preparing HAP nanofibers are usually hydrophobic molecules, like fatty acids and/or surfactants, which are difficult to remove and potentially toxic. Therefore, it is important to develop a green approach to prepare HAP nanofibers. Methods: Imidazolium-based ionic liquids (ILs) were used as templates to control the crystallization of HAP. The obtained HAP nanofibers were composited into polyvinyl alcohol-sodium alginate (PVA-Alg) hydrogel (HAP@H). The rheological performance, stretching, and compression properties were tested. Scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), and differential scanning calorimetry (DSC) were adopted to characterize the morphology, size, crystallographic orientations, and phase of HAP@H. Results: HAP nanofibers with a length of ∼50 μm were harvested. The DSC results proved that water loss temperature increased from 98°C (for pure hydrogel) to 107°C (for HAP@H). Also, HAP@H hydrogel presented much better porous structure, tensile performance, and compressive performance than that of pure hydrogel. Discussion: The morphology, size, and growth direction of HAP could be modulated easily by altering the alkyl chain length of ILs' cations. This is possibly due to face-specific adsorption of imidazolium moieties on HAP nanocrystals. The enhancing performance of HAP@H is probably due to the composited highly oriented HAP nanofibers.
Collapse
Affiliation(s)
- Xiuli Ren
- College of Pharmacy, Jinzhou Medical University, Jinzhou, China
| | | | | |
Collapse
|
35
|
Md Moshikur R, Goto M. Pharmaceutical Applications of Ionic Liquids: A Personal Account. CHEM REC 2023; 23:e202300026. [PMID: 37042429 DOI: 10.1002/tcr.202300026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Indexed: 04/13/2023]
Abstract
Ionic liquids (ILs) have been extensively used in drug formulation and delivery as designer solvents and other components because of their inherent tunability and useful physicochemical and biopharmaceutical properties. ILs can be used to manage some of the operational and functional challenges of drug delivery, including drug solubility, permeability, formulation instability, and in vivo systemic toxicity, that are associated with conventional organic solvents/agents. Furthermore, ILs have been recognized as potential solvents to address the polymorphism, limited solubility, poor permeability, instability, and low bioavailability of crystalline drugs. In this account, we discuss the technological progress and strategies toward designing biocompatible ILs and explore potential biomedical applications, namely the solubilization of small and macromolecular drugs, the creation of active pharmaceutical ingredients, and the delivery of pharmaceuticals.
Collapse
Affiliation(s)
- Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Advanced Transdermal Drug Delivery System Center, Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
36
|
Dhattarwal HS, Kashyap HK. Microstructures of Choline Amino Acid based Biocompatible Ionic Liquids. CHEM REC 2023; 23:e202200295. [PMID: 36960931 DOI: 10.1002/tcr.202200295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/26/2023] [Indexed: 03/25/2023]
Abstract
Bio-compatible ionic liquids (Bio-ILs) represent a class of solvents with peculiar properties and exhibit huge potential for their applications in different fields of chemistry. Ever since they were discovered, researchers have used bio-ILs in diverse fields such as biomass dissolution, CO2 sequestration, and biodegradation of pesticides. This review highlights the ongoing research studies focused on elucidating the microscopic structure of bio-ILs based on cholinium cation ([Ch]+ ) and amino acid ([AA]- ) anions using the state-of-the-arta b i n i t i o ${ab\hskip0.25eminitio}$ and classical molecular dynamics (MD) simulations. The microscopic structure associated with these green ILs guides their suitability for specific applications. ILs of this class differ in the side chain of the amino acid anions, and varying the side chain significantly affects the structure of these ILs and thus helps in tuning the efficiency of biomass dissolution. This review demonstrates the central role of the side chain on the morphology of choline amino acid ([Ch][AA]) bio-ILs. The seemingly matured field of bio-ILs and their employment in various applications still holds significant potential, and the insights on their microscopic structure would steer the field of target specific application of these green ILs.
Collapse
Affiliation(s)
- Harender S Dhattarwal
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
37
|
Hamadani CM, Dasanayake GS, Chism CM, Gorniak ME, Monroe WG, Merrell A, Pride MC, Heintz R, Wong K, Hossain M, Taylor G, Edgecomb SX, Jones D, Dhar J, Banka A, Singh G, Vashisth P, Randall J, Darlington DS, Everett J, Jarrett E, Werfel TA, Eniola-Adefeso O, Tanner EEL. Selective Blood Cell Hitchhiking in Whole Blood with Ionic Liquid-Coated PLGA Nanoparticles to Redirect Biodistribution After Intravenous Injection. RESEARCH SQUARE 2023:rs.3.rs-3146716. [PMID: 37502854 PMCID: PMC10371090 DOI: 10.21203/rs.3.rs-3146716/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Less than 5% of intravenously-injected nanoparticles (NPs) reach destined sites in the body due to opsonization and immune-based clearance in vascular circulation. By hitchhiking in situ onto specific blood components post-injection, NPs can selectively target tissue sites for unprecedentedly high drug delivery rates. Choline carboxylate ionic liquids (ILs) are biocompatible liquid salts <100X composed of bulky asymmetric cations and anions. This class of ILs has been previously shown to significantly extend circulation time and redirect biodistribution in BALB/c mice post-IV injection via hitchhiking on red blood cell (RBC) membranes. Herein, we synthesized & screened 60 choline carboxylic acid-based ILs to coat PLGA NPs and present the impact of structurally engineering the coordinated anion identity to selectively interface and hitchhike lymphocytes, monocytes, granulocytes, platelets, and RBCs in whole mouse blood for in situ targeted drug delivery. Furthermore, we find this nanoparticle platform to be biocompatible (non-cytotoxic), translate to human whole blood by resisting serum uptake and maintaining modest hitchhiking, and also significantly extend circulation retention over 24 hours in BALB/c healthy adult mice after IV injection. Because of their altered circulation profiles, we additionally observe dramatically different organ accumulation profiles compared to bare PLGA NPs. This study establishes an initial breakthrough platform for a modular and transformative targeting technology to hitchhike onto blood components with high efficacy and safety in the bloodstream post-IV administration.
Collapse
|
38
|
Halima HB, Zwingelstein T, Humblot V, Lakard B, Viau L. Electropolymerization of Pyrrole-Tailed Imidazolium Ionic Liquid for the Elaboration of Antibacterial Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37421359 DOI: 10.1021/acsami.3c05232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
A strategy was developed to prepare antibacterial surfaces by electropolymerization of a pyrrole-functionalized imidazolium ionic liquid bearing an halometallate anion. The objective was to combine the antibacterial efficiency of polypyrrole (PPy) with those of the ionic liquid's components (cation and anion). For this, N-(1-methyl-3-octylimidazolium)pyrrole bromide monomer [PyC8MIm]Br was synthesized and coordinated to ZnCl2 affording [PyC8MIm]Br-ZnCl2. The antibacterial properties of [PyC8MIm]Br-ZnCl2 monomer were evaluated against Escherichia coli and Staphylococcus aureus by measurement of the minimum inhibitory concentration (MIC) values. This monomer presents higher activity against S. aureus (MIC = 0.098 μmol·mL-1) than against E. coli (MIC = 2.10 μmol·mL-1). Mixtures of pyrrole and the pyrrole-functionalized ionic liquid [PyC8MIm]Br-ZnCl2 were then used for the electrodeposition of PPy films on Fluorine-doped tin oxide (FTO) substrates. The concentration of pyrrole was fixed to 50 mM, while the concentration of [PyC8MIm]Br-ZnCl2 was varied from 5 to 100 mM. The efficient incorporation of the imidazolium cation and zinc halometallate anion into the films was confirmed by X-ray photoelectron spectroscopy (XPS) measurements. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements confirmed the homogeneity of the different films with structures that depend on the [PyC8MIm]Br-ZnCl2 concentration. The films' thickness determined by profilometry varies only slightly with the [PyC8MIm]Br-ZnCl2 concentration from 7.4 μm at 5 mM to 8.9 μM at 100 mM. The films become more hydrophilic with an increase of [PyC8MIm]Br-ZnCl2 concentration with water contact angles varying from 47° at the lowest concentration to 32° at the highest concentration. The antibacterial activities of the different PPy films were determined both by the halo inhibition method and by the colony forming units (CFUs) counting method over time against Gram-positive S. aureus and Gram-negative E. coli bacteria. Films obtained by incorporation of [PyC8MIm]Br-ZnCl2 showed excellent antibacterial properties, at least two times higher than those of neat PPy, validating our strategy. Furthermore, a comparison of the antibacterial properties of the films obtained using the same [PyC8MIm]Br-ZnCl2 concentration (50 mM) evidenced much better activity against Gram-positive (no bacterial survival within 5 min) than against Gram-negative bacteria (no bacterial survival within 3 h). Finally, the antibacterial performances over time could be tuned by the concentration of the employed pyrrole-functionalized ionic liquid monomer. Against E. coli, using 100 mM of [PyC8MIm]Br-ZnCl2, the bacteria were totally killed within a few minutes, using 50 mM, they were killed after 2 h while using 10 mM, about 20% of bacteria survived even after 6 h.
Collapse
Affiliation(s)
- Hamdi Ben Halima
- UMR CNRS 6213, Institut UTINAM, Université de Franche-Comté, 16 Route de Gray, Besançon F-25000, France
| | - Thibaut Zwingelstein
- UMR CNRS 6174, Institut FEMTO-ST, Université de Franche-Comté, 15B Avenue des Montboucons, Besançon 25030, France
| | - Vincent Humblot
- UMR CNRS 6174, Institut FEMTO-ST, Université de Franche-Comté, 15B Avenue des Montboucons, Besançon 25030, France
| | - Boris Lakard
- UMR CNRS 6213, Institut UTINAM, Université de Franche-Comté, 16 Route de Gray, Besançon F-25000, France
| | - Lydie Viau
- UMR CNRS 6213, Institut UTINAM, Université de Franche-Comté, 16 Route de Gray, Besançon F-25000, France
| |
Collapse
|
39
|
Fukuta T, Ikeda-Imafuku M, Iwao Y. Development of Edaravone Ionic Liquids and Their Application for the Treatment of Cerebral Ischemia/Reperfusion Injury. Mol Pharm 2023. [PMID: 37155370 DOI: 10.1021/acs.molpharmaceut.3c00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Preparation of the ionic liquid (IL) form of active pharmaceutical ingredients (APIs), termed API-IL, has attracted attention because it can improve upon certain disadvantages of APIs, such as poor water solubility and low stability. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a clinically approved cerebroprotective agent against ischemic stroke and amyotrophic lateral sclerosis, while new formulations that enable improvement of its physicochemical properties and biodistribution are desired. Herein, we report a newly developed API-IL of edaravone (edaravone-IL), in which edaravone is used as an anionic molecule. We investigated the physicochemical properties of edaravone-IL and its therapeutic effect against cerebral ischemia/reperfusion (I/R) injury, a secondary injury after an ischemic stroke. Among the cationic molecules used for edaravone-IL preparation, the IL prepared with tetrabutylphosphonium cation existed as a liquid at room temperature, and significantly increased the water solubility of edaravone without decreasing its antioxidative activity. Importantly, edaravone-IL formed negatively charged nanoparticles upon suspension in water. Intravenous administration of edaravone-IL showed significantly higher blood circulation time and lower distribution in the kidney compared with edaravone solution. Moreover, edaravone-IL significantly suppressed brain cell damage and motor functional deficits in model rats of cerebral I/R injury and showed comparable cerebroprotective effect to edaravone. Taken together, these results suggest that edaravone-IL could be a new form of edaravone with superior physicochemical properties and could be useful for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Mayumi Ikeda-Imafuku
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Yasunori Iwao
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| |
Collapse
|
40
|
Khare P, Edgecomb SX, Hamadani CM, E L Tanner E, Manickam DS. Lipid nanoparticle-mediated drug delivery to the brain. Adv Drug Deliv Rev 2023; 197:114861. [PMID: 37150326 DOI: 10.1016/j.addr.2023.114861] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Lipid nanoparticles (LNPs) have revolutionized the field of drug delivery through their applications in siRNA delivery to the liver (Onpattro) and their use in the Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines. While LNPs have been extensively studied for the delivery of RNA drugs to muscle and liver targets, their potential to deliver drugs to challenging tissue targets such as the brain remains underexplored. Multiple brain disorders currently lack safe and effective therapies and therefore repurposing LNPs could potentially be a game changer for improving drug delivery to cellular targets both at and across the blood-brain barrier (BBB). In this review, we will discuss (1) the rationale and factors involved in optimizing LNPs for brain delivery, (2) ionic liquid-coated LNPs as a potential approach for increasing LNP accumulation in the brain tissue and (3) considerations, open questions and potential opportunities in the development of LNPs for delivery to the brain.
Collapse
Affiliation(s)
- Purva Khare
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Sara X Edgecomb
- Department of Chemistry and Biochemistry, The University of Mississippi, MS
| | | | - Eden E L Tanner
- Department of Chemistry and Biochemistry, The University of Mississippi, MS.
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA.
| |
Collapse
|
41
|
Lu B, Wu C, Zhang J, Zhang J, Zhang J. Oral Ionic Liquid for Transdermal Delivery and Obesity Treatment. ACS Biomater Sci Eng 2023. [PMID: 37115006 DOI: 10.1021/acsbiomaterials.3c00118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Obesity is currently a prerequisite for more than 70% of adults, including chronic obesity and long-term obesity. With the increase of diabetes patients in the world, it is urgent to develop effective oral drugs to replace insulin. However, the gastrointestinal tract is a main obstacle to oral drug preparations. Here, a highly effective oral drug was developed, mainly formulated as an ionic liquid (IL) prepared by l-(-)-carnitine and geranic acid. Density functional theory (DFT) calculations showed that l-(-)-carnitine and geranic acid can exist stably through hydrogen bonding. IL can significantly enhance the transdermal transport of drugs. In vitro study of intestinal permeability showed that particles formed by IL can prevent the absorption of intestinal fat. Compared with the control group, oral administration of IL (10 mL kg-1) significantly reduced blood glucose, white adipose tissue in the liver and epididymis, and the expression of SREBP-1c and ACC in IL. Therefore, these results and high-throughput sequencing analysis showed that IL can effectively reduce the intestinal absorption of adipose tissue to reduce blood glucose. IL has good biocompatibility and stability. Therefore, IL has a certain application value in the field of oral drug-delivery carriers, which provides an effective means for the treatment of diabetes and is a potential tool to solve the epidemic of obesity.
Collapse
Affiliation(s)
- Beibei Lu
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen 518020, Guangdong, China
- Department of Shenzhen People's Hospital Geriatrics Center, Shenzhen 518020, Guangdong, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Chengyu Wu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Jichuan Zhang
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen 518020, Guangdong, China
- Department of Shenzhen People's Hospital Geriatrics Center, Shenzhen 518020, Guangdong, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| |
Collapse
|
42
|
Liu C, Chen S, Shan Y, Du C, Zhu J, Bao Q, Shao Y, Yin W, Yang F, Ran Y, Wang Y. Screening of Ionic Liquids against Bamboo Mildew and Its Inhibition Mechanism. Molecules 2023; 28:molecules28083432. [PMID: 37110666 PMCID: PMC10145214 DOI: 10.3390/molecules28083432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Ionic liquids are a class of organic molten salts that consist entirely of cations and anions. They are characterized by their low vapor pressure, low viscosity, low toxicity, high thermal stability, and strong antifungal potential. In this study, the inhibitory performance of ionic liquid cations against Penicillium citrinum, Trichoderma viride, and Aspergillus niger was investigated, along with the mechanism of cell membrane disruption. The Oxford cup method, SEM, and TEM were employed to examine the extent of damage and the specific site of action of ionic liquids on the mycelium and cell structure of these fungi. The results showed that 1-decyl-3-methylimidazole had a strong inhibitory effect on TV; benzyldimethyldodecylammonium chloride had a weak inhibitory effect on PC, TV, AN, and a mixed culture; while dodecylpyridinium chloride exhibited significant inhibitory effects on PC, TV, AN, and Mix, with more prominent effects observed on AN and Mix, exhibiting MIC values of 5.37 mg/mL, 5.05 mg/mL, 5.10 mg/mL, and 5.23 mg/mL, respectively. The mycelium of the mildews showed drying, partial loss, distortion, and uneven thickness. The cell structure showed separation of the plasma wall. The absorbance of the extracellular fluid of PC and TV reached the maximum after 30 min, while that of AN reached the maximum after 60 min. The pH of the extracellular fluid decreased initially and then increased within 60 min, followed by a continuous decrease. These findings provide important insights for the application of ionic liquid antifungal agents in bamboo, medicine, and food.
Collapse
Affiliation(s)
- Chunlin Liu
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Shiqin Chen
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Yingying Shan
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Chungui Du
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Jiawei Zhu
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Qichao Bao
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Yuran Shao
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Wenxiu Yin
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Fei Yang
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Ying Ran
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Yuting Wang
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
43
|
Safdar R, Nawaz M, Mushtaq A, Khanh Tran T, Aziz Omar A. A Bibliometric Analysis for Estimating the Global Research Trends Related to Applications of Ionic Liquids in Drug Delivery. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
44
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
45
|
Liang Y, Qiao L, Qiao B, Guo B. Conductive hydrogels for tissue repair. Chem Sci 2023; 14:3091-3116. [PMID: 36970088 PMCID: PMC10034154 DOI: 10.1039/d3sc00145h] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
Conductive hydrogels (CHs) combine the biomimetic properties of hydrogels with the physiological and electrochemical properties of conductive materials, and have attracted extensive attention in the past few years. In addition, CHs have high conductivity and electrochemical redox properties and can be used to detect electrical signals generated in biological systems and conduct electrical stimulation to regulate the activities and functions of cells including cell migration, cell proliferation, and cell differentiation. These properties give CHs unique advantages in tissue repair. However, the current review of CHs is mostly focused on their applications as biosensors. Therefore, this article reviewed the new progress of CHs in tissue repair including nerve tissue regeneration, muscle tissue regeneration, skin tissue regeneration and bone tissue regeneration in the past five years. We first introduced the design and synthesis of different types of CHs such as carbon-based CHs, conductive polymer-based CHs, metal-based CHs, ionic CHs, and composite CHs, and the types and mechanisms of tissue repair promoted by CHs including anti-bacterial, antioxidant and anti-inflammatory properties, stimulus response and intelligent delivery, real-time monitoring, and promoted cell proliferation and tissue repair related pathway activation, which provides a useful reference for further preparation of bio-safer and more efficient CHs used in tissue regeneration.
Collapse
Affiliation(s)
- Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an 710049 China +86-29-83395131 +86-29-83395340
| | - Lipeng Qiao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an 710049 China +86-29-83395131 +86-29-83395340
| | - Bowen Qiao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an 710049 China +86-29-83395131 +86-29-83395340
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an 710049 China +86-29-83395131 +86-29-83395340
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University Xi'an 710049 China
| |
Collapse
|
46
|
Curreri AM, Kim J, Dunne M, Angsantikul P, Goetz M, Gao Y, Mitragotri S. Deep Eutectic Solvents for Subcutaneous Delivery of Protein Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205389. [PMID: 36642846 PMCID: PMC9982585 DOI: 10.1002/advs.202205389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/17/2022] [Indexed: 05/14/2023]
Abstract
Proteins are among the most common therapeutics for the treatment of diabetes, autoimmune diseases, cancer, and metabolic diseases, among others. Despite their common use, current protein therapies, most of which are injectables, have several limitations. Large proteins such as monoclonal antibodies (mAbs) suffer from poor absorption after subcutaneous injections, thus forcing their administration by intravenous injections. Even small proteins such as insulin suffer from slow pharmacokinetics which poses limitations in effective management of diabetes. Here, a deep eutectic-based delivery strategy is used to offer a generalized approach for improving protein absorption after subcutaneous injections. The lead formulation enhances absorption of mAbs after subcutaneous injections by ≈200%. The same composition also improves systemic absorption of subcutaneously injected insulin faster than Humalog, the current gold-standard of rapid acting insulin. Mechanistic studies reveal that the beneficial effect of deep eutectics on subcutaneous absorption is mediated by their ability to reduce the interactions of proteins with the subcutaneous matrix, especially collagen. Studies also confirm that these deep eutectics are safe for subcutaneous injections. Deep eutectic-based formulations described here open new possibilities for subcutaneous injections of therapeutic proteins.
Collapse
Affiliation(s)
- Alexander M. Curreri
- John A. Paulson School of Engineering and Applied SciencesHarvard University150 Western AveAllstonMA02134USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University3 Blackfan StBostonMA02115USA
| | - Jayoung Kim
- John A. Paulson School of Engineering and Applied SciencesHarvard University150 Western AveAllstonMA02134USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University3 Blackfan StBostonMA02115USA
| | - Michael Dunne
- John A. Paulson School of Engineering and Applied SciencesHarvard University150 Western AveAllstonMA02134USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University3 Blackfan StBostonMA02115USA
| | - Pavimol Angsantikul
- John A. Paulson School of Engineering and Applied SciencesHarvard University150 Western AveAllstonMA02134USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University3 Blackfan StBostonMA02115USA
- Present address:
The Population CouncilOne Dag Hammarskjold PlazaNew YorkNY10017USA
| | - Morgan Goetz
- John A. Paulson School of Engineering and Applied SciencesHarvard University150 Western AveAllstonMA02134USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University3 Blackfan StBostonMA02115USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied SciencesHarvard University150 Western AveAllstonMA02134USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University3 Blackfan StBostonMA02115USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard University150 Western AveAllstonMA02134USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University3 Blackfan StBostonMA02115USA
| |
Collapse
|
47
|
Saura-Sanmartin A, Andreu-Ardil L. Recent Advances in the Preparation of Delivery Systems for the Controlled Release of Scents. Int J Mol Sci 2023; 24:ijms24054685. [PMID: 36902122 PMCID: PMC10002519 DOI: 10.3390/ijms24054685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Scents are volatile compounds highly employed in a wide range of manufactured items, such as fine perfumery, household products, and functional foods. One of the main directions of the research in this area aims to enhance the longevity of scents by designing efficient delivery systems to control the release rate of these volatile molecules and also increase their stability. Several approaches to release scents in a controlled manner have been developed in recent years. Thus, different controlled release systems have been prepared, including polymers, metal-organic frameworks and mechanically interlocked systems, among others. This review is focused on the preparation of different scaffolds to accomplish a slow release of scents, by pointing out examples reported in the last five years. In addition to discuss selected examples, a critical perspective on the state of the art of this research field is provided, comparing the different types of scent delivery systems.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
- Correspondence:
| | | |
Collapse
|
48
|
Salehi S, Naghib SM, Garshasbi HR, Ghorbanzadeh S, Zhang W. Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: A review. Front Bioeng Biotechnol 2023; 11:1104126. [PMID: 36911200 PMCID: PMC9992555 DOI: 10.3389/fbioe.2023.1104126] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Hydrogels are widely used biomaterials in the delivery of therapeutic agents, including drugs, genes, proteins, etc., as well as tissue engineering, due to obvious properties such as biocompatibility and their similarity to natural body tissues. Some of these substances have the feature of injectability, which means that the substance is injected into the desired place in the solution state and then turns into the gel, which makes it possible to administer them from a way with a minimal amount of invasion and eliminate the need for surgery to implant pre-formed materials. Gelation can be caused by a stimulus and/or spontaneously. Suppose this induces due to the effect of one or many stimuli. In that case, the material in question is called stimuli-responsive because it responds to the surrounding conditions. In this context, we introduce the different stimuli that cause gelation and investigate the different mechanisms of the transformation of the solution into the gel in them. Also, we study special structures, such as nano gels or nanocomposite gels.
Collapse
Affiliation(s)
- Saba Salehi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology and Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, Iran University of Science and Technology (IUST), ACECR, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology and Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, Iran University of Science and Technology (IUST), ACECR, Tehran, Iran
| | - Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology and Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, Iran University of Science and Technology (IUST), ACECR, Tehran, Iran
| | - Sadegh Ghorbanzadeh
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Wei Zhang
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| |
Collapse
|
49
|
Role and Recent Advancements of Ionic Liquids in Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15020702. [PMID: 36840024 PMCID: PMC9963759 DOI: 10.3390/pharmaceutics15020702] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
Advancements in the fields of ionic liquids (ILs) broaden its applications not only in traditional use but also in different pharmaceutical and biomedical fields. Ionic liquids "Solutions for Your Success" have received a lot of interest from scientists due to a myriad of applications in the pharmaceutical industry for drug delivery systems as well as targeting different diseases. Solubility is a critical physicochemical property that determines the drug's fate at the target site. Many promising drug candidates fail in various phases of drug research due to poor solubility. In this context, ionic liquids are regarded as effective drug delivery systems for poorly soluble medicines. ILs are also able to combine different anions/cations with other cations/anions to produce salts that satisfy the concept behind the ILs. The important characteristics of ionic liquids are the modularity of their physicochemical properties depending on the application. The review highlights the recent advancement and further applications of ionic liquids to deliver drugs in the pharmaceutical and biomedical fields.
Collapse
|
50
|
Kondratenko YA, Shilova JS, Gavrilov VA, Zolotarev AA, Nadporojskii MA, Kochina TA, Antuganov DO. N-Benzylethanolammonium Ionic Liquids and Molten Salts in the Synthesis of 68Ga- and Al 18F-Labeled Radiopharmaceuticals. Pharmaceutics 2023; 15:pharmaceutics15020694. [PMID: 36840016 PMCID: PMC9962170 DOI: 10.3390/pharmaceutics15020694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Ionic liquids (ILs), due to their structural features, have unique physical and chemical properties and are environmentally friendly. Every year, the number of studies devoted to the use of ILs in medicine and pharmaceutics is growing. In nuclear medicine, the use of ILs with self-buffering capacity in the synthesis of radiopharmaceuticals is extremely important. This research is devoted to obtaining new ionic buffer agents containing N-benzylethanolammonium (BEA) cations and anions of carboxylic acids. A series of new BEA salts was synthesized and identified by NMR (1H, 13C), IR spectroscopy and elemental and thermal analysis. The crystal structures of BEA hydrogen succinate, hydrogen oxalate and oxalate were determined by x-ray diffraction. Newly synthesized compounds were tested as buffer solutions in 68Ga- and Al18F-radiolabeling reactions with a series of bifunctional chelating agents and clinically relevant peptides used for visualization of malignancies by positron emission tomography. The results obtained confirm the promise of using new buffers in the synthesis of 68Ga- and Al18F-labeled radiopharmaceuticals.
Collapse
Affiliation(s)
- Yulia A. Kondratenko
- Grebenshchikov Institute of Silicate Chemistry RAS, Nab. Makarova, 2, 199034 Saint-Petersburg, Russia
- Correspondence:
| | - Julia S. Shilova
- St. Petersburg State Technological Institute, Technical University, 26 Moskovsky Pr., 190013 Saint-Petersburg, Russia
| | - Vladislav A. Gavrilov
- St. Petersburg State Technological Institute, Technical University, 26 Moskovsky Pr., 190013 Saint-Petersburg, Russia
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Str. 70, Pesochny, 197758 Saint-Petersburg, Russia
| | - Andrey A. Zolotarev
- Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, 199034 Saint-Petersburg, Russia
| | - Michail A. Nadporojskii
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Str. 70, Pesochny, 197758 Saint-Petersburg, Russia
| | - Tatyana A. Kochina
- Grebenshchikov Institute of Silicate Chemistry RAS, Nab. Makarova, 2, 199034 Saint-Petersburg, Russia
| | - Dmitrii O. Antuganov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Str. 70, Pesochny, 197758 Saint-Petersburg, Russia
| |
Collapse
|