1
|
Wu J, Luo D, Tou L, Xu H, Jiang C, Wu D, Que H, Zheng J. NEK2 affects the ferroptosis sensitivity of gastric cancer cells by regulating the expression of HMOX1 through Keap1/Nrf2. Mol Cell Biochem 2025; 480:425-437. [PMID: 38503948 PMCID: PMC11695390 DOI: 10.1007/s11010-024-04960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
NEK2 is a serine/threonine protein kinase that is involved in regulating the progression of various tumors. Our previous studies have found that NEK2 is highly expressed in gastric cancer and suggests that patients have a worse prognosis. However, its role and mechanism in gastric cancer are only poorly studied. In this study, we established a model of ferroptosis induced by RSL3 or Erastin in AGS cells in vitro, and konckdown NEK2, HOMX1, Nrf2 by siRNA. The assay kit was used to analyzed cell viability, MDA levels, GSH and GSSG content, and FeRhoNox™-1 fluorescent probe, BODIPY™ 581/591 C11 lipid oxidation probe, CM-H2DCFDA fluorescent probe were used to detected intracellular Fe2+, lipid peroxidation, and ROS levels, respectively. Calcein-AM/PI staining was used to detect the ratio of live and dead cells, qRT-PCR and Western blot were used to identify the mRNA and protein levels of genes in cells, immunofluorescence staining was used to analyze the localization of Nrf2 in cells, RNA-seq was used to analyze changes in mRNA expression profile, and combined with the FerrDb database, ferroptosis-related molecules were screened to elucidate the impact of NEK2 on the sensitivity of gastric cancer cells to ferroptosis. We found that inhibition of NEK2 could enhance the sensitivity of gastric cancer cells to RSL3 and Erastin-induced ferroptosis, which was reflected in the combination of inhibition of NEK2 and ferroptosis induction compared with ferroptosis induction alone: cell viability and GSH level were further decreased, while the proportion of dead cells, Fe2+ level, ROS level, lipid oxidation level, MDA level, GSSG level and GSSG/GSH ratio were further increased. Mechanism studies have found that inhibiting NEK2 could promote the expression of HMOX1, a gene related to ferroptosis, and enhance the sensitivity of gastric cancer cells to ferroptosis by increasing HMOX1. Further mechanism studies have found that inhibiting NEK2 could promote the ubiquitination and proteasome degradation of Keap1, increase the level of Nrf2 in the nucleus, and thus promote the expression of HMOX1. This study confirmed that NEK2 can regulate HMOX1 expression through Keap1/Nrf2 signal, and then affect the sensitivity of gastric cancer cells to ferroptosis, enriching the role and mechanism of NEK2 in gastric cancer.
Collapse
Affiliation(s)
- Jianyong Wu
- Gastroenterology Department, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Desheng Luo
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Laizhen Tou
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Hongtao Xu
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Chuan Jiang
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Dan Wu
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Haifeng Que
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Jingjing Zheng
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China.
| |
Collapse
|
2
|
Ji W, Zhang Y, Qian X, Hu C, Huo Y. Palmatine alleviates inflammation and modulates ferroptosis against dextran sulfate sodium (DSS)-induced ulcerative colitis. Int Immunopharmacol 2024; 143:113396. [PMID: 39423661 DOI: 10.1016/j.intimp.2024.113396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
UC, also known as ulcerative colitis, is an inflammatory bowel disease that is chronic and nonspecific. Palmatine (PAL), a natural alkaloid active ingredient, has demonstrated predominant protective effects on UC. In spite of this, PAL on UC is unclear in terms of its underlying mechanisms. Thus, this study aimed to investigate its effects and mechanism. By inducing rats with 5 % dextran sulfate sodium (DSS), an in vivo model of UC was developed. and then oral PAL administration. In vitro viability of NCM460 cells was measured using Cell Counting Kit-8. An enzyme-linked immunosorbent assay was used to determine the levels of inflammatory factores. The levels of oxidative stress parameters were also assessed, and the expression level of cyclooxygenase-2 (COX-2), acyl-CoA synthetase long-chain family member 4 (ACSL4), glutathione peroxidase 4 (GPX4), NF-E2-related factor 2(Nrf2), phospho-Nrf2, and heme oxygenase-1 (HO-1) was detected by Western blot. An iron kit was employed to measure iron content in cells and colonic tissues. Results indicated that PAL treatment significantly improved UC in rats, as shown by reduced disease activity index scores and increased colon length, which decreased IL-18, IL-1β, IL-6, TNF-α, MDA, NO, and LDH levels, but increased GSH level in DSS-induced rats and NCM460 cells. Further, PAL treatment markedly decreased COX-2, ACSL4, Nrf2, and HO-1 expression levels while increasing that of GPX4 and phospho-Nrf2. Furthermore, PAL inhibited the iron overload in the cells and colonic tissues. PAL may protect against UC by inhibiting the inflammatory response, oxidative stress, iron load, and suppressing ferroptosis pathway.
Collapse
Affiliation(s)
- Wanli Ji
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Yifan Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Xiaojing Qian
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Hu
- Science and Technology Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Huo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
3
|
Zhang L, Chen X, Zhou B, Meng W, Zeng H, Chen Y, Huang G, Zhang Y, Wang H, Chen M, Chen J. Cocktail strategy-based nanomedicine: A synergistic cascade of starvation, NIR-II photothermal, and gas therapy for enhanced tumor immunotherapy. Acta Biomater 2024:S1742-7061(24)00665-2. [PMID: 39701339 DOI: 10.1016/j.actbio.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024]
Abstract
Immunotherapy has emerged as a highly promising strategy in the realm of cancer treatment, wherein immunogenic cell death (ICD) is considered a potential trigger for anti-tumor immunity by inducing adaptive immunity to dying cell antigens. This process is often accompanied by the exposure, active secretion, or passive release of a large number of damage-associated molecular patterns (DAMPs), which activate dendritic cells (DCs) and enhance their antigen-presenting capacity. Subsequently, it promotes the recruitment and activation of cytotoxic T lymphocytes, ultimately leading to tumor growth inhibition. In addition, polarizing the M2 phenotype of tumor-associated macrophages (TAMs) to the M1 phenotype is another way to activate anti-tumor immunity, which can further enhance the effect of anti-tumor immunotherapy. In this study, we engineered a composite nanoparticle of UiO-66-NH2@Gold nanoshells@GOx-P-Arg (denoted as UGsGP). The gold nano shells in UGsGP exhibit a broad Near-Infrared-II (NIR-II) absorption to give a high photothermal conversion efficiency and achieve photothermal therapy (PTT). The GOx in UGsGP involves the breakdown of glucose, which results in a decrease in ATP levels and an inhibition of HSP90 and HSP70 production, ultimately enhancing the heat sensitivity of the tumor for PTT. In addition, GOx-mediated starvation therapy by glucose exhaustion produces a substantial amount of hydrogen peroxide (H2O2), which can then react with P-Arg to produce intratumoral NO Thus, the synergistic effect of PTT resensitization, the photothermally-enhanced GOx-mediated starvation, and NO-based gas therapy promote the induction of ICD and the polarization of TAMs. The combination therapy exhibits significant antitumor effects both in vitro and in vivo. STATEMENT OF SIGNIFICANCE: (1) Gold nanoshells on the surface of UiO-66-NH2 display a broad absorption spectrum ranging from 900 to 1700 nm, combined with a high photothermal conversion efficiency of 74.0 %, demonstrating their remarkable ability to harness and convert light energy into heat for effective tumor ablation. (2) Under laser irradiation, GOx within the UGsGPs effectively consumes glucose, increasing intratumoral H2O2 levels, which then reacts with P-Arg to produce NO within the tumor. Concurrently, the reduction in ATP levels suppresses HSP90 and HSP70 production, thereby enhancing the tumor's sensitivity to photothermal therapy. (3) The synergistic combination of NO gas therapy, starvation therapy, and PTT promotes ICD induction and TAM polarization, thereby improving the therapeutic outcomes for primary and distant tumors.
Collapse
Affiliation(s)
- Lianying Zhang
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaotong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Maoming 525200, China
| | - Wei Meng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haifeng Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongjian Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guoqin Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yingshan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huimin Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ming Chen
- The People's Hospital of Gaozhou, Maoming 525200, China.
| | - Jinxiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
4
|
Li Y, Han S, Zhao Y, Yan J, Luo K, Li F, He B, Sun Y, Li F, Liang Y. A Redox-Triggered Polymeric Nanoparticle for Disrupting Redox Homeostasis and Enhanced Ferroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404299. [PMID: 39663694 DOI: 10.1002/smll.202404299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/17/2024] [Indexed: 12/13/2024]
Abstract
Cancer cells possess an efficient redox system, enabling them to withstand oxidative damage induced by treatments, especially in hypoxia areas and ferroptosis can disrupt redox homeostasis in cancer cell. Herein, GSH-sensitive nanoparticles are constructed that induce ferroptosis by long-lasting GSH depletion and enhanced PDT. Carbonic anhydrase IX inhibitor, protoporphyrin IX (Por) complexed with Fe and epirubicin (EPI) are grafted to hyaluronic acid (HA) via disulfide bonds to obtain HSPFE and loaded xCT inhibitor SAS for fabricating SAS@HSPFE which is actively targeted to deep hypoxic tumor cells, and explosively releasing EPI, Por-Fe complex and SAS due to at high GSH concentration. Specifically, SAS inhibited the GSH biosynthesis, and the generation of ROS by Por and the involvement of Fe2+ in the Fenton reaction jointly facilitates oxidative stress. Besides, Fe2+ reacted with excess H2O2 to produce O2, which continuously fuels PDT. GPX4 and SLC7A11 related to antioxidant defense are down-regulated, while ACSL4 and TFRC promoting lipid peroxidation and ROS accumulation are up-regulated, which enhanced ferroptosis by amplifying oxidative stress and suppressing antioxidant defense. SAS@HSPFE NPs revealed highly efficient antitumor effect in vivo study. This study provides a novel approach to cancer treatment by targeting redox imbalance.
Collapse
Affiliation(s)
- Yifei Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Yi Zhao
- Department of Recuperation Medicine, Qingdao Special Service Sanatorium of PLA Navy, Qingdao, 266071, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fashun Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Fan Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| |
Collapse
|
5
|
Zhao L, Deng H, Zhang J, Zamboni N, Yang H, Gao Y, Yang Z, Xu D, Zhong H, van Geest G, Bruggmann R, Zhou Q, Schmid RA, Marti TM, Dorn P, Peng RW. Lactate dehydrogenase B noncanonically promotes ferroptosis defense in KRAS-driven lung cancer. Cell Death Differ 2024:10.1038/s41418-024-01427-x. [PMID: 39643712 DOI: 10.1038/s41418-024-01427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Ferroptosis is an oxidative, non-apoptotic cell death frequently inactivated in cancer, but the underlying mechanisms in oncogene-specific tumors remain poorly understood. Here, we discover that lactate dehydrogenase (LDH) B, but not the closely related LDHA, subunits of active LDH with a known function in glycolysis, noncanonically promotes ferroptosis defense in KRAS-driven lung cancer. Using murine models and human-derived tumor cell lines, we show that LDHB silencing impairs glutathione (GSH) levels and sensitizes cancer cells to blockade of either GSH biosynthesis or utilization by unleashing KRAS-specific, ferroptosis-catalyzed metabolic synthetic lethality, culminating in increased glutamine metabolism, oxidative phosphorylation (OXPHOS) and mitochondrial reactive oxygen species (mitoROS). We further show that LDHB suppression upregulates STAT1, a negative regulator of SLC7A11, thereby reducing SLC7A11-dependent GSH metabolism. Our study uncovers a previously undefined mechanism of ferroptosis resistance involving LDH isoenzymes and provides a novel rationale for exploiting oncogene-specific ferroptosis susceptibility to treat KRAS-driven lung cancer.
Collapse
Affiliation(s)
- Liang Zhao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Haibin Deng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Jingyi Zhang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology/ETH Zürich, Zurich, Switzerland
- PHRT Swiss Multi-Omics Center, smoc.ethz.ch, Zurich, Switzerland
| | - Haitang Yang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Yang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou City, Fujian, China
| | - Duo Xu
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiqing Zhong
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Qinghua Zhou
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ralph A Schmid
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Thomas M Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Luo L, Liu K, Deng L, Wang W, Lai T, Li X. Chicoric acid acts as an ALOX15 inhibitor to prevent ferroptosis in asthma. Int Immunopharmacol 2024; 142:113187. [PMID: 39298822 DOI: 10.1016/j.intimp.2024.113187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Chicoric acid (CA) is a crucial immunologically active compound found in chicory and echinacea, possessing a range of biological activities. Ferroptosis, a type of iron-dependent cell death induced by lipid peroxidation, plays a key role in the development and advancement of asthma. Targeting ferroptosis could be a potential therapeutic strategy for treating asthma. PURPOSE The purpose of this study was to explore the screening of ALOX15, a pivotal target of ferroptosis in asthma, and potential therapeutic agents, as well as to investigate the promising potential of CA as an ALOX15 inhibitor for modulating ferroptosis in asthma. METHODS Through high-throughput data processing of bronchial epithelial RNA from asthma patients using bioinformatics and machine learning, the key target of ferroptosis in asthma, ALOX15, was identified. An inhibitor of ALOX15 was then obtained through high-throughput molecular docking and molecular dynamics simulation tests. In vitro experiments were conducted using a 16HBE cell model induced by house dust mite (HDM) and lipopolysaccharide (LPS), which were treated with the ALOX15 inhibitor (PD146176), CA treatment, or ALOX15 knockdown. In vivo experiments were also carried out using a mouse model induced by HDM and LPS. RESULTS The composite model of ALOX15 and CA in molecular dynamics simulations shows good stability and flexibility. Network pharmacological analysis reveals that CA regulates ferroptosis through ALOX15 in treating asthma. In vitro studies show that ALOX15 is highly expressed in HDM and LPS treatments, while CA inhibits HDM and LPS-induced ferroptosis in 16HBE cells by reducing ALOX15 expression. Knockdown of ALOX15 has the opposite effect. Metabolomics analysis identifies key compounds associated with ferroptosis, including L-Targinine, eicosapentaenoic acid, 16-hydroxy hexadecanoic acid, and succinic acid. In vivo experiments demonstrate that CA suppresses ALOX15 expression, inhibits ferroptosis, and improves asthma symptoms in mice. CONCLUSION Our research initially identified CA as a promising asthma treatment that effectively blocks ferroptosis by specifically targeting ALOX15. This study not only highlights CA as a potential therapeutic agent for asthma but also introduces novel targets and treatment options for this condition, along with innovative approaches for utilizing natural compounds to target diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Kangdi Liu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Liyan Deng
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wenjian Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Tianli Lai
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Xiaoling Li
- Experimental Animal Center, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
7
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024; 53:11590-11656. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
8
|
Lu J, Zhao G, Wang Y, Wang R, Xing Y, Yu F, Dou K. A Tandem-Locked Fluorescent Probe Activated by Hypoxia and a Viscous Environment for Precise Intraoperative Imaging of Tumor and Instant Assessment of Ferroptosis-Mediated Therapy. Anal Chem 2024. [PMID: 39560437 DOI: 10.1021/acs.analchem.4c04820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Noninvasive fluorescence detection of tumor-associated biomarker dynamics provides immediate insights into tumor biology, which are essential for assessing the efficacy of therapeutic interventions, adapting treatment strategies, and achieving personalized diagnosis and therapy evaluation. However, due to the absence of a single biomarker that effectively reflects tumor development and progression, the currently available optical diagnostic agents that rely on "always-on" or single pathological activation frequently show nonspecific fluorescence responses and limited tumor accumulation, which inevitably compromises the accuracy and reliability of tumor imaging. Herein, based on intramolecular charge transfer (ICT) and twisted intramolecular charge-transfer (TICT) hybrid mechanisms, we report a tandem-locked probe, NTVI-Biotin, for simultaneously specific imaging-guided tumor resection and ferroptosis-mediated tumor ablation evaluation under the coactivation of nitro reductase (NTR)/viscosity. The dual-stimulus-responsive design strategy ensures that NTVI-Biotin exclusively activates near-infrared (NIR) fluorescence signals upon interaction with both NTR and elevated viscosity levels through triggering ICT on while inhibiting the TICT process. Meanwhile, functionalization with a tumor-targeting hydrophilic biotin-poly(ethylene glycol) moiety enhances tumor accumulation. The probe's dual-response and tumor-targeting design minimizes nonspecific tissue activation, allowing for precise tumor identification and lesion removal with a superior tumor-to-normal tissue (T/N > 6) ratio. More importantly, NTVI-Biotin was capable of evaluating ferroptosis-mediated chemotherapeutics by real-time monitoring of the alternations of NTR/viscosity levels. The results reveal that the increased tumor signals of NTVI-Biotin following the combination of ferroptosis and chemotherapy correlate well with the tumor growth inhibition, demonstrating the potential of NTVI-Biotin to assess therapeutic efficacy.
Collapse
Affiliation(s)
- Jiao Lu
- Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Guiling Zhao
- Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yonghai Wang
- Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yanlong Xing
- Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Kun Dou
- Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
9
|
Jang SK, Ahn SH, Kim G, Kim S, Hong J, Park KS, Park IC, Jin HO. Inhibition of VDAC1 oligomerization blocks cysteine deprivation-induced ferroptosis via mitochondrial ROS suppression. Cell Death Dis 2024; 15:811. [PMID: 39521767 PMCID: PMC11550314 DOI: 10.1038/s41419-024-07216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Ferroptosis, a regulated form of cell death dependent on reactive oxygen species (ROS), is characterized by iron accumulation and lethal lipid peroxidation. Mitochondria serve as the primary source of ROS and thus play a crucial role in ferroptosis initiation and execution. This study highlights the role of mitochondrial ROS and the significance of voltage-dependent anion channel 1 (VDAC1) oligomerization in ferroptosis induced by cysteine deprivation or ferroptosis-inducer RSL3. Our results demonstrate that the mitochondria-targeted antioxidants MitoQ and MitoT effectively block ferroptosis induction and that dysfunction of complex III of the mitochondrial electron transport chain contributes to ferroptosis induction. Pharmacological inhibitors that target VDAC1 oligomerization have emerged as potent suppressors of ferroptosis that reduce mitochondrial ROS production. These findings underscore the critical involvement of mitochondrial ROS production via complex III of the electron transport chain and the essential role of VDAC1 oligomerization in ferroptosis induced by cysteine deprivation or RSL3. This study deepens our understanding of the intricate molecular networks governing ferroptosis and provides insights into the development of novel therapeutic strategies targeting dysregulated cell death pathways.
Collapse
Affiliation(s)
- Se-Kyeong Jang
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
- Department of Food Science and Technology, College of Science and Convergence Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Se Hee Ahn
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Selim Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Jungil Hong
- Department of Food Science and Technology, College of Science and Convergence Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea.
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Liu X, Liu X, Dong W, Wang P, Liu L, Liu L, E T, Wang D, Lin Y, Lin H, Ruan X, Xue Y. KHDRBS1 regulates the pentose phosphate pathway and malignancy of GBM through SNORD51-mediated polyadenylation of ZBED6 pre-mRNA. Cell Death Dis 2024; 15:802. [PMID: 39516455 PMCID: PMC11549417 DOI: 10.1038/s41419-024-07163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma is one of the most common and aggressive primary brain tumors. The aberration of metabolism is the important character of GBM cells and is tightly related to the malignancy of GBM. We mainly verified the regulatory effects of KHDRBS1, SNORD51 and ZBED6 on pentose phosphate pathway and malignant biological behavior in glioblastoma cells, such as proliferation, migration and invasion. KHDRBS1 and SNORD51 were upregulated in GBM tissues and cells. But ZBED6 had opposite tendency in GBM tissues and cells. KHDRBS1 may improve the stability of SNORD51 by binding to SNORD51, thus elevating the expression of SNORD51. More importantly, SNORD51 can competitively bind to WDR33 with 3'UTR of ZBED6 pre-mRNA which can inhibit the 3' end processing of ZBED6 pre-mRNA, thereby inhibiting the expression of ZBED6 mRNA. ZBED6 inhibited the transcription of G6PD by binding to the promoter region of G6PD. Therefore, the KHDRBS1/SNORD51/ZBED6 pathway performs an important part in regulating the pentose phosphate pathway to influence malignant biological behavior of GBM cells, providing new insights and potential targets for the treatment of GBM.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xiaobai Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Weiwei Dong
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Lu Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Tiange E
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Di Wang
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yang Lin
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Hongda Lin
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China.
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
11
|
Liu Y, Tao D, Li M, Luo Z. Biomaterial-Mediated Metabolic Regulation of Ferroptosis for Cancer Immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2010. [PMID: 39492611 DOI: 10.1002/wnan.2010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Ferroptosis is a lipid peroxidation-driven cell death route and has attracted enormous interest for cancer therapy. Distinct from other forms of regulated cell death, its process is involved with multiple metabolic pathways including lipids, bioenergetics, iron, and so on, which influence cancer cell ferroptosis sensitivity and communication with the immune cells in the tumor microenvironment. Development of novel technologies for harnessing the ferroptosis-associated metabolic regulatory network would profoundly improve our understanding of the immune responses and enhance the efficacy of ferroptosis-dependent immunotherapy. Interestingly, the recent advances in bio-derived material-based therapeutic platforms offer novel opportunities to therapeutically modulate tumor metabolism through the in situ delivery of molecular or material cues, which not only allows the tumor-specific elicitation of ferroptosis but also holds promise to maximize their immunostimulatory impact. In this review, we will first dissect the crosstalk between tumor metabolism and ferroptosis and its impact on the immune regulation in the tumor microenvironment, followed by the comprehensive analysis on the recent progress in biomaterial-based metabolic regulatory strategies for evoking ferroptosis-mediated antitumor immunity. A perspective section is also provided to discuss the challenges in metabolism-regulating biomaterials for ferroptosis-immunotherapy. We envision that this review may provide new insights for improving tumor immunotherapeutic efficacy in the clinic.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Dan Tao
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
12
|
Su M, Luo J, Chen W, Li X, Ye D, Zeng X, Fu G, Xie W, Liang Y. SPC25 Activates the Warburg Effect to Inhibit Ferroptosis in Prostate Cancer Cells. Am J Mens Health 2024; 18:15579883241297880. [PMID: 39558547 PMCID: PMC11574883 DOI: 10.1177/15579883241297880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
SPC25 is associated with unfavorable outcomes in various cancers, but its role in prostate cancer (PRAD) is unclear. More research is needed on glycolysis and ferroptosis targets in PRAD. Bioinformatics tools were used to analyze SPC25 expression disparities. Gene set enrichment analysis (GSEA) identified pathways enriched by SPC25 and its correlation with glycolytic proteins. SPC25 mRNA transcriptional activity was analyzed by quantitative polymerase chain reaction (qPCR), while protein levels of SPC25, glycolytic markers, and ferroptosis markers were assessed using Western blot. CCK-8 was used to evaluate the effects of SPC25 on cell survival. Ferroptosis levels were measured by flow cytometry and assays for Fe2+ and malondialdehyde (MDA) content. Glycolytic capacity was assessed using glucose uptake assays, lactate tests, and a Seahorse XF analyzer. In PRAD tissues and cells, SPC25 was notably upregulated and correlated with adverse outcomes. It enhanced cancer cell vitality. GSEA showed SPC25's strong association with ferroptosis and glycolytic pathways, while Pearson correlation analysis indicated a positive relationship between SPC25 and glycolytic proteins. Overexpression of SPC25 in cell lines noticeably curbed the accumulation of lipid reactive oxygen species, MDA formation, and Fe2+ content, while it augmented the protein expression of ferroptosis markers. SPC25 stimulated an increase in cellular extracellular acidification rate, glucose uptake, and lactate secretion, while it dampened oxygen consumption rate, and this effect could be counteracted by 2-deoxy-d-glucose (2-DG). Conversely, 2-DG mitigated the ferroptosis indicators that were diminished by SPC25 downregulation, including the reduction of ferroptosis marker protein expression. By upregulating glycolysis in PRAD cells, SPC25 suppresses the occurrence of ferroptosis.
Collapse
Affiliation(s)
- Mingqiang Su
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| | - Jingxian Luo
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| | - Wei Chen
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| | - Xianyong Li
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| | - Dayong Ye
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| | - Xiaofu Zeng
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| | - Guangqing Fu
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| | - Weiwei Xie
- Department of Urology, Heyuan People's Hospital, Heyuan, China
| | - Yong Liang
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| |
Collapse
|
13
|
Shu L, Luo P, Chen Q, Liu J, Huang Y, Wu C, Pan X, Huang Z. Fibroin nanodisruptor with Ferroptosis-Autophagy synergism is potent for lung cancer treatment. Int J Pharm 2024; 664:124582. [PMID: 39142466 DOI: 10.1016/j.ijpharm.2024.124582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/27/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Chemotherapy agents for lung cancer often cause apoptotic resistance in cells, leading to suboptimal therapeutic outcomes. FIN56 can be a potential treatment for lung cancer as it induces non-apoptotic cell death, namely ferroptosis. However, a bottleneck exists in FIN56-induced ferroptosis treatment; specifically, FIN56 fails to induce sufficient oxidative stress and may even trigger the defense system against ferroptosis, resulting in poor therapeutic efficacy. To overcome this, this study proposed a strategy of co-delivering FIN56 and piperlongumine to enhance the ferroptosis treatment effect by increasing oxidative stress and connecting with the autophagy pathway. FIN56 and piperlongumine were encapsulated into silk fibroin-based nano-disruptors, named FP@SFN. Characterization results showed that the particle size of FP@SFN was in the nanometer range and the distribution was uniform. Both in vivo and in vitro studies demonstrated that FP@SFN could effectively eliminate A549 cells and inhibit subcutaneous lung cancer tumors. Notably, ferroptosis and autophagy were identified as the main cell death pathways through which the nano-disruptors increased oxidative stress and facilitated cell membrane rupture. In conclusion, nano-disruptors can effectively enhance the therapeutic effect of ferroptosis treatment for lung cancer through the ferroptosis-autophagy synergy mechanism, providing a reference for the development of related therapeutics.
Collapse
Affiliation(s)
- Lei Shu
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China; Panyu Central Hospital Affiliated to Guangzhou Medical University, Guangzhou 511400, PR China
| | - Peili Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China
| | - Qingxin Chen
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China
| | - Jingyang Liu
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
14
|
ZHANG Z, LIU H, CHEN J. [Role of Mitochondria in Ferroptosis and Its Relationship to Tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:785-791. [PMID: 39631835 PMCID: PMC11629089 DOI: 10.3779/j.issn.1009-3419.2024.102.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 12/07/2024]
Abstract
Ferroptosis is a recently discovered form of cell death that is distinct from apoptosis, characterized primarily by the accumulation of intracellular iron and increased levels of lipid peroxidation. Resistance of tumor cells to ferroptosis can promote tumorigenesis and tumor progression. Various compounds can influence tumor development by triggering ferroptosis. Ferroptosis involves complex regulatory mechanisms, with mitochondria serving as both an iron storage and metabolic center, playing a crucial regulatory role in ferroptosis. This review discusses ferroptosis and its three stages and the role of ferroptosis in tumorigenesis, progression, and treatment, as well as the regulatory mechanisms of mitochondria in ferroptosis.
.
Collapse
|
15
|
He S, Bai J, Zhang L, Yuan H, Ma C, Wang X, Guan X, Mei J, Zhu X, Xin W, Zhu D. Superenhancer-driven circRNA Myst4 involves in pulmonary artery smooth muscle cell ferroptosis in pulmonary hypertension. iScience 2024; 27:110900. [PMID: 39351203 PMCID: PMC11440257 DOI: 10.1016/j.isci.2024.110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
The abnormal expression of circular RNAs (circRNAs) is emerging as a critical cause in regulation of pathological changes of hypoxic pulmonary hypertension (PH), in which ferroptosis is a new pathological change reported recently. However, how circRNAs regulate ferroptosis remains unclear. Here, we proved a significant decrease in circMyst4 expression in hypoxia. In vitro assays revealed that circMyst4 alleviated hypoxic pulmonary artery smooth muscle cell (PASMC) ferroptosis through directly combing with DDX5 in the nucleus to promote GPX4 mRNA processing and inhibiting the formation of the Eef1a1/ACSL4 complex in the cytoplasm. Additionally, superenhancer (SE) was verified to drive the generation of circMyst4. In vivo assays revealed that circMyst4 inhibited the progression of hypoxic PH. Overall, SE-driven circMyst4 may be a new potential therapeutic target for mediating PASMC ferroptosis through promoting DDX5-regulated GPX4 mRNA processing and inhibiting the binding between Eef1a1 and ACSL4.
Collapse
Affiliation(s)
- Siyu He
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
| | - June Bai
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Hao Yuan
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
| | - Cui Ma
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Xiaoying Wang
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Xiaoyu Guan
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
| | - Jian Mei
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Xiangrui Zhu
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Wei Xin
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200031, P.R. China
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin 150081, P.R. China
| |
Collapse
|
16
|
Li T, Song Y, Wei L, Song X, Duan R. Disulfidptosis: a novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun Signal 2024; 22:491. [PMID: 39394612 PMCID: PMC11470700 DOI: 10.1186/s12964-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Lijuan Wei
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Xiangyi Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Ruifeng Duan
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
17
|
Bai J, Zhang X, Zhao Z, Sun S, Cheng W, Yu H, Chang X, Wang B. CuO Nanozymes Catalyze Cysteine and Glutathione Depletion Induced Ferroptosis and Cuproptosis for Synergistic Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400326. [PMID: 38813723 DOI: 10.1002/smll.202400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/06/2024] [Indexed: 05/31/2024]
Abstract
The latest research identifies that cysteine (Cys) is one of the key factors in tumor proliferation, metastasis, and recurrence. The direct depletion of intracellular Cys shows a profound antitumor effect. However, using nanozymes to efficiently deplete Cys for tumor therapy has not yet attracted widespread attention. Here, a (3-carboxypropyl) triphenylphosphonium bromide-derived hyaluronic acid-modified copper oxide nanorods (denoted as MitCuOHA) are designed with cysteine oxidase-like, glutathione oxidase-like and peroxidase-like activities to realize Cys depletion and further induce cellular ferroptosis and cuproptosis for synergistic tumor therapy. MitCuOHA nanozymes can efficiently catalyze the depletion of Cys and glutathione (GSH), accompanied by the generation of H2O2 and the subsequent conversion into highly active hydroxyl radicals, thereby successfully inducing ferroptosis in cancer cells. Meanwhile, copper ions released by MitCuOHA under tumor microenvironment stimulation directly bind to lipoylated proteins of the tricarboxylic acid cycle, leading to the abnormal aggregation of lipoylated proteins and subsequent loss of iron-sulfur cluster proteins, which ultimately triggers proteotoxic stress and cell cuproptosis. Both in vitro and in vivo results show the drastically enhanced anticancer efficacy of Cys oxidation catalyzed by the MitCuOHA nanozymes, demonstrating the high feasibility of such catalytic Cys depletion-induced synergistic ferroptosis and cuproptosis therapeutic concept.
Collapse
Affiliation(s)
- Jinwei Bai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xuan Zhang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhiwen Zhao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wenyuan Cheng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hongxiang Yu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xinyue Chang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
18
|
Li W, Zeng Q, Wang B, Lv C, He H, Yang X, Cheng B, Tao X. Oxidative stress promotes oral carcinogenesis via Thbs1-mediated M1-like tumor-associated macrophages polarization. Redox Biol 2024; 76:103335. [PMID: 39255693 PMCID: PMC11414564 DOI: 10.1016/j.redox.2024.103335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/06/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Although oxidative stress is closely associated with tumor invasion and metastasis, its' exact role and mechanism in the initial stage of oral cancer remain ambiguous. Glutamine uptake mediated by alanine-serine-cysteine transporter 2 (ASCT2) participates in glutathione synthesis to resolve oxidative stress. Currently, we firstly found that ASCT2 deletion caused oxidative stress in oral mucosa and promoted oral carcinogenesis induced by 4-Nitroquinoline-1-oxide (4-NQO) using transgenic mice of ASCT2 knockout in oral epithelium. Subsequently, we identified an upregulated gene Thbs1 linked to macrophage infiltration by mRNA sequencing and immunohistochemistry. Importantly, multiplex immunohistochemistry showed M1-like tumor-associated macrophages (TAMs) were enriched in cancerous area. Mechanically, targeted ASCT2 effectively curbed glutamine uptake and caused intracellular reactive oxygen species (ROS) accumulation, which upregulated Thbs1 in oral keratinocytes and then activated p38, Akt and SAPK/JNK signaling to polarize M1-like TAMs via exosome-transferred pathway. Moreover, we demonstrated M1-like TAMs promoted malignant progression of oral squamous cell carcinoma (OSCC) both in vitro and in vivo by a DOK transformed cell line induced by 4-NQO. All these results establish that oxidative stress triggered by ASCT2 deletion promotes oral carcinogenesis through Thbs1-mediated M1 polarization, and indicate that restore redox homeostasis is a new approach to prevent malignant progression of oral potentially malignant disorders.
Collapse
Affiliation(s)
- Wei Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qingwen Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bing Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Chao Lv
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Haoan He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xi Yang
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Xiaoan Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
19
|
Muluh TA, Fu Q, Ai X, Wang C, Chen W, Zheng X, Wang W, Wang M, Shu XS, Ying Y. Targeting Ferroptosis as an Advance Strategy in Cancer Therapy. Antioxid Redox Signal 2024; 41:616-636. [PMID: 38959114 DOI: 10.1089/ars.2024.0608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Significance: This study innovates by systematically integrating the molecular mechanisms of iron death and its application in cancer therapy. By deeply analyzing the interaction between iron death and the tumor microenvironment, the study provides a new theoretical basis for cancer treatment and directions for developing more effective treatment strategies. In addition, the study points to critical issues and barriers that need to be addressed in future research, providing valuable insights into the use of iron death in clinical translation. Recent Advances: These findings are expected to drive further advances in cancer treatment, bringing patients more treatment options and hope. Through this paper, we see the great potential of iron death in cancer treatment and look forward to more research results being translated into clinical applications in the future to contribute to the fight against cancer. Critical Issues: In today's society, cancer is still one of the major diseases threatening human health. Despite advances in existing treatments, cancer recurrence and drug resistance remain a severe problem. These problems increase the difficulty of treatment and bring a substantial physical and mental burden to patients. Therefore, finding new treatment strategies to overcome these challenges has become significant. Future Directions: The study delved into the molecular basis of iron death in tumor biology. It proposed a conceptual framework to account for the interaction of iron death with the tumor immune microenvironment, guide treatment selection, predict efficacy, explore combination therapies, and identify new therapeutic targets to overcome cancer resistance to standard treatments, peeving a path for future research and clinical translation of ferroptosis as a potential strategy in cancer therapy. Antioxid. Redox Signal. 41, 616-636. [Figure: see text].
Collapse
Affiliation(s)
- Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Qianqian Fu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiaojiao Ai
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Changfeng Wang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wei Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiangyi Zheng
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wei Wang
- Shanghai Waker Bioscience Co., Ltd., Shanghai, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xing-Sheng Shu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Ying Ying
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Xiao F, Li HL, Yang B, Che H, Xu F, Li G, Zhou CH, Wang S. Disulfidptosis: A new type of cell death. Apoptosis 2024; 29:1309-1329. [PMID: 38886311 PMCID: PMC11416406 DOI: 10.1007/s10495-024-01989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Disulfidptosis is a novel form of cell death that is distinguishable from established programmed cell death pathways such as apoptosis, pyroptosis, autophagy, ferroptosis, and oxeiptosis. This process is characterized by the rapid depletion of nicotinamide adenine dinucleotide phosphate (NADPH) in cells and high expression of solute carrier family 7 member 11 (SLC7A11) during glucose starvation, resulting in abnormal cystine accumulation, which subsequently induces andabnormal disulfide bond formation in actin cytoskeleton proteins, culminating in actin network collapse and disulfidptosis. This review aimed to summarize the underlying mechanisms, influencing factors, comparisons with traditional cell death pathways, associations with related diseases, application prospects, and future research directions related to disulfidptosis.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui-Li Li
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Emergency, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bei Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hao Che
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fei Xu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Gang Li
- Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Cheng-Hui Zhou
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Sheng Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
21
|
Li X, Li Y, Tuerxun H, Zhao Y, Liu X, Zhao Y. Firing up "cold" tumors: Ferroptosis causes immune activation by improving T cell infiltration. Biomed Pharmacother 2024; 179:117298. [PMID: 39151313 DOI: 10.1016/j.biopha.2024.117298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
Immune checkpoint blocking (ICB), a tumor treatment based on the mechanism of T-cell activation, has shown high efficacy in clinical trials, but not all patients benefit from it. Immune checkpoint inhibitors (ICIs) do not respond to cold tumors that lack effective T-cell infiltration but respond well to hot tumors with sufficient T-cell infiltration. How to convert an unresponsive cold tumor into a responsive hot tumor is an important topic in cancer immunotherapy. Ferroptosis, a newly discovered immunogenic cell death (ICD) form, has great potential in cancer therapy. In the process of deeply understanding the mechanism of cold tumor formation, it was found that ferroptosis showed a powerful immune-activating effect by improving T-cell infiltration, and the combination of ICB therapy significantly enhanced the anti-tumor efficacy. This paper reviews the complex relationship between T cells and ferroptosis, as well as summarizes the various mechanisms by which ferroptosis enhances T cell infiltration: reactivation of T cells and reversal of immunosuppressive tumor microenvironment (TME), as well as recent advances of ICI in combination with targeted ferroptosis therapies, which provides guidance for better improving the ICB efficacy of cold tumors.
Collapse
Affiliation(s)
- Xinru Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
22
|
Wang Z, Wang J, Xu W, Qiao L, Xie Y, Gao M, Wang D, Li C. Fasting-Mimicking Diet Facilitates Anti-tumor Therapeutic Effects by Nutrient-Sensitive Nanocomposites. Adv Healthc Mater 2024; 13:e2400943. [PMID: 38856967 DOI: 10.1002/adhm.202400943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Cancer cells support their uncontrolled proliferation primarily by regulating energy metabolism. Inhibiting tumor growth by blocking the supply of nutrients is an effective treatment strategy. Fasting-mimicking diet (FMD), as a low-calorie, low-protein, low-sugar, high-fat diet, can effectively reduce the nutrient supply to tumor cells. However, the significant biological barrier presented by the tumor microenvironment imposes greater demands and challenges for drug design. This study constructs the multifunctional nanocomposite ZnFe2O4@TiO2@CHC@Orl-FA (ZTCOF), which has great potential to overcome the aforementioned drawbacks. ZnFe2O4@TiO2 could produce 1O2 with ultrasound, and stimulate the Fenton-like conversion of endogenous H2O2 to ·OH, achieving a combined therapeutic effect of sonodynamic therapy (SDT) and chemodynamic therapy (CDT). Orl (Orlistat) and CHC (α-cyano-4-hydroxycinnamic acid) not only block tumor cell energy metabolism but also increase sensitivity to reactive oxygen species, enhancing the cytotoxic effect on tumor cells. Furthermore, combining the treatment strategies with FMD condition control can further inhibit cancer cell energy metabolism, achieving significant synergistic anti-tumor therapy. Both in vitro and in vivo experiments confirm that ZTCOF with SDT/CDT/starvation can achieve effective tumor suppression and destruction. This work provides theoretical and technical support for anti-tumor multimodal synergistic therapy.
Collapse
Affiliation(s)
- Zhifang Wang
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Junrong Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Wencheng Xu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Luying Qiao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yulin Xie
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Minghong Gao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Chunxia Li
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
23
|
Chan ET, Kural C. Targeting endocytosis to sensitize cancer cells to programmed cell death. Biochem Soc Trans 2024; 52:1703-1713. [PMID: 39092762 PMCID: PMC11519968 DOI: 10.1042/bst20231332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Evading programmed cell death (PCD) is a hallmark of cancer that allows tumor cells to survive and proliferate unchecked. Endocytosis, the process by which cells internalize extracellular materials, has emerged as a key regulator of cell death pathways in cancer. Many tumor types exhibit dysregulated endocytic dynamics that fuel their metabolic demands, promote resistance to cytotoxic therapies, and facilitate immune evasion. This review examines the roles of endocytosis in apoptotic resistance and immune escape mechanisms utilized by cancer cells. We highlight how inhibiting endocytosis can sensitize malignant cells to therapeutic agents and restore susceptibility to PCD. Strategies to modulate endocytosis for enhanced cancer treatment are discussed, including targeting endocytic regulatory proteins, altering membrane biophysical properties, and inhibiting Rho-associated kinases. While promising, challenges remain regarding the specificity and selectivity of endocytosis-targeting agents. Nonetheless, harnessing endocytic pathways represents an attractive approach to overcome apoptotic resistance and could yield more effective therapies by rendering cancer cells vulnerable to PCD. Understanding the interplay between endocytosis and PCD regulation is crucial for developing novel anticancer strategies that selectively induce tumor cell death.
Collapse
Affiliation(s)
- Emily T. Chan
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Cömert Kural
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Physics, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|
24
|
Guo JT, Cheng C, Shi JX, Zhang WT, Sun H, Liu CM. Avicularin Attenuated Lead-Induced Ferroptosis, Neuroinflammation, and Memory Impairment in Mice. Antioxidants (Basel) 2024; 13:1024. [PMID: 39199268 PMCID: PMC11352125 DOI: 10.3390/antiox13081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Lead (Pb) is a common environmental neurotoxicant that results in abnormal neurobehavior and impaired memory. Avicularin (AVL), the main dietary flavonoid found in several plants and fruits, exhibits neuroprotective and hepatoprotective properties. In the present study, the effects of AVL on Pb-induced neurotoxicity were evaluated using ICR mice to investigate the molecular mechanisms behind its protective effects. Our study has demonstrated that AVL treatment significantly ameliorated memory impairment induced by lead (Pb). Furthermore, AVL mitigated Pb-triggered neuroinflammation, ferroptosis, and oxidative stress. The inhibition of Pb-induced oxidative stress in the brain by AVL was evidenced by the reduction in malondialdehyde (MDA) levels and the enhancement of glutathione (GSH) and glutathione peroxidase (GPx) activities. Additionally, in the context of lead-induced neurotoxicity, AVL mitigated ferroptosis by increasing the expression of GPX4 and reducing ferrous iron levels (Fe2+). AVL increased the activities of glycogenolysis rate-limiting enzymes HK, PK, and PYG. Additionally, AVL downregulated TNF-α and IL-1β expression while concurrently enhancing the activations of AMPK, Nrf2, HO-1, NQO1, PSD-95, SNAP-25, CaMKII, and CREB in the brains of mice. The findings from this study suggest that AVL mitigates the memory impairment induced by Pb, which is associated with the AMPK/Nrf2 pathway and ferroptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, Xuzhou 221116, China; (J.-T.G.); (C.C.); (J.-X.S.); (W.-T.Z.); (H.S.)
| |
Collapse
|
25
|
Zhu W, Cheng X, Xu P, Gu Y, Xu H, Xu J, Wang Y, Zhang LW, Wang Y. Radiotherapy-Driven Nanoprobes Targeting for Visualizing Tumor Infiltration Dynamics and Inducing Ferroptosis in Myeloid-Derived Suppressor Cells. J Am Chem Soc 2024; 146:22455-22468. [PMID: 39094119 DOI: 10.1021/jacs.4c05650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) significantly hinder the immune response to tumor radiotherapy (RT) because of their massive accumulation in tumors after RT, resulting in immunosuppression and poor clinical prognosis. Herein, we developed an anti-PD-L1 antibody-conjugated iron oxide nanoprobe (Fe3O4-αPD-L1) to target and induce ferroptosis in MDSCs, thereby alleviating RT resistance. Overexpression of PD-L1 in MDSCs following RT enables noninvasive in vivo magnetic resonance and positron emission tomography imaging using 89Zr-labeled nanoprobes to track the movement of MDSCs and their infiltration into the tumor. After uptake by MDSCs that infiltrated the tumor, Fe3O4-αPD-L1 nanoprobes were mainly found within the lysosome and triggered the Fenton reaction, resulting in the generation of abundant reactive oxygen species. This process leads to ferroptosis of MDSCs, characterized by lipid peroxidation and mitochondrial dysfunction, and effectively reprograms the immunosuppressive environment within the tumor following RT. This study highlights a strategy for monitoring and regulating the fate of MDSCs to alleviate RT resistance and ultimately achieve improved treatment outcomes.
Collapse
Affiliation(s)
- Wen Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Pei Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Yuan Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Hanye Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Jingwei Xu
- Department of Cardiothoracic Surgery, Suzhou Municipal Hospital Institution, Suzhou 215000, PR China
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
26
|
Wang ZB, Liu JY, Jiang SL, Zhuo W, Xie P, Dai WT, Mao XY, Liu ZQ. Unveiling the shield: Troglitazone's impact on epilepsy-induced nerve injury through ferroptosis inhibition. CNS Neurosci Ther 2024; 30:e14911. [PMID: 39145422 PMCID: PMC11325165 DOI: 10.1111/cns.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Epilepsy is a widespread central nervous system disorder with an estimated 50 million people affected globally. It is characterized by a bimodal incidence peak among infants and the elderly and is influenced by a variety of risk factors, including a significant genetic component. Despite the use of anti-epileptic drugs (AEDs), drug-refractory epilepsy develops in about one-third of patients, highlighting the need for alternative therapeutic approaches. AIMS The primary aim of this study was to evaluate the neuroprotective effects of troglitazone (TGZ) in epilepsy and to explore the potential mechanisms underlying its action. METHODS We employed both in vitro and in vivo models to assess TGZ's effects. The in vitro model involved glutamate-induced toxicity in HT22 mouse hippocampal neurons, while the in vivo model used kainic acid (KA) to induce epilepsy in mice. A range of methods, including Hoechst/PI staining, CCK-8 assay, flow cytometry, RT-PCR analysis, Nissl staining, scanning electron microscopy, and RNA sequencing, were utilized to assess various parameters such as cellular damage, viability, lipid-ROS levels, mitochondrial membrane potential, mRNA expression, seizure grade, and mitochondrial morphology. RESULTS Our results indicate that TGZ, at doses of 5 or 20 mg/kg/day, significantly reduces KA-induced seizures and neuronal damage in mice by inhibiting the process of ferroptosis. Furthermore, TGZ was found to prevent changes in mitochondrial morphology. In the glutamate-induced HT22 cell damage model, 2.5 μM TGZ effectively suppressed neuronal ferroptosis, as shown by a reduction in lipid-ROS accumulation, a decrease in mitochondrial membrane potential, and an increase in PTGS2 expression. The anti-ferroptotic effect of TGZ was confirmed in an erastin-induced HT22 cell damage model as well. Additionally, TGZ reversed the upregulation of Plaur expression in HT22 cells treated with glutamate or erastin. The downregulation of Plaur expression was found to alleviate seizures and reduce neuronal damage in the mouse hippocampus. CONCLUSION This study demonstrates that troglitazone has significant therapeutic potential in the treatment of epilepsy by reducing epileptic seizures and the associated brain damage through the inhibition of neuronal ferroptosis. The downregulation of Plaur expression plays a crucial role in TGZ's anti-ferroptotic effect, offering a promising avenue for the development of new epilepsy treatments.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Jun-Yan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Shi-Long Jiang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wei Zhuo
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Pan Xie
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wen-Ting Dai
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, P.R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, P.R. China
| |
Collapse
|
27
|
Sun W, Cai B, Zhao Z, Li S, He Y, Xie S. Redirecting Tumor Evolution with Nanocompiler Precision for Enhanced Therapeutic Outcomes. Adv Healthc Mater 2024:e2400366. [PMID: 39039965 DOI: 10.1002/adhm.202400366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/16/2024] [Indexed: 07/24/2024]
Abstract
Precisely programming the highly plastic tumor expression profile to render it devoid of drug resistance and metastatic potential presents immense challenges. Here, a transformative nanocompiler designed to reprogram and stabilize the mutable state of tumor cells is introduced. This nanocompiler features a trio of components: 2-deoxy-d-glucose-modified lipid nanoparticles to inhibit glucose uptake, iron oxide nanoparticles to induce oxidative stress, and a deubiquitinase inhibitor to block adaptive protein profile changes in tumor cells. By specifically targeting the hypermetabolic nature of tumors, this approach disrupted their energy production, ultimately fostering a state of vulnerability and impeding their ability to adapt and resist. The results of this study indicate a substantial reduction in tumor growth and metastasis, thus demonstrating the potential of this strategy to manipulate tumor protein expression and fate. This proactive nanocompiler approach promises to steer cancer therapy toward more effective and lasting outcomes.
Collapse
Affiliation(s)
- Wenshe Sun
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, 250117, China
| | - Biao Cai
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zejun Zhao
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shilun Li
- Department of Vascular Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yutian He
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shaowei Xie
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
28
|
He S, Luo C, Shi F, Zhou J, Shang L. The Emerging Role of Ferroptosis in EBV-Associated Cancer: Implications for Cancer Therapy. BIOLOGY 2024; 13:543. [PMID: 39056735 PMCID: PMC11274159 DOI: 10.3390/biology13070543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Ferroptosis is a novel and iron-dependent form of programmed cell death, which has been implicated in the pathogenesis of various human cancers. EBV is a well-recognized oncogenic virus that controls multiple signaling pathways within the host cell, including ferroptosis signaling. Recent studies show that inducing ferroptosis could be an efficient therapeutic strategy for EBV-associated tumors. This review will firstly describe the mechanism of ferroptosis, then summarize EBV infection and EBV-associated tumors, as well as the crosstalk between EBV infection and the ferroptosis signaling pathway, and finally discuss the role and potential application of ferroptosis-related reagents in EBV-associated tumors.
Collapse
Affiliation(s)
- Shan He
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Cheng Luo
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jianhua Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
| |
Collapse
|
29
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15:1428920. [PMID: 39015566 PMCID: PMC11249567 DOI: 10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
Affiliation(s)
- Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Chang Lu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Narasimha M. Beeraka
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, India
| | - Sergey Efetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mikhail Enikeev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, India
| | - Mingze He
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zhi Li
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
30
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15. [DOI: https:/doi.org/10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
|
31
|
Liu N, Wu WL, Wan XR, Wang J, Huang JN, Jiang YY, Sheng YC, Wu JC, Liang ZQ, Qin ZH, Wang Y. Regulation of FSP1 myristoylation by NADPH: A novel mechanism for ferroptosis inhibition. Redox Biol 2024; 73:103176. [PMID: 38705094 PMCID: PMC11074979 DOI: 10.1016/j.redox.2024.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
Excitotoxicity is a prevalent pathological event in neurodegenerative diseases. The involvement of ferroptosis in the pathogenesis of excitotoxicity remains elusive. Transcriptome analysis has revealed that cytoplasmic reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels are associated with susceptibility to ferroptosis-inducing compounds. Here we show that exogenous NADPH, besides being reductant, interacts with N-myristoyltransferase 2 (NMT2) and upregulates the N-myristoylated ferroptosis suppressor protein 1 (FSP1). NADPH increases membrane-localized FSP1 and strengthens resistance to ferroptosis. Arg-291 of NMT2 is critical for the NADPH-NMT2-FSP1 axis-mediated suppression of ferroptosis. This study suggests that NMT2 plays a pivotal role by bridging NADPH levels and neuronal susceptibility to ferroptosis. We propose a mechanism by which the NADPH regulates N-myristoylation, which has important implications for ferroptosis and disease treatment.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Wei-Long Wu
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Rui Wan
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Jing Wang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Jia-Ni Huang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yi-Yue Jiang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yi-Chao Sheng
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Jun-Chao Wu
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Zhong-Qin Liang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Zheng-Hong Qin
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yan Wang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
32
|
Liu D, Hu Z, Lu J, Yi C. Redox-Regulated Iron Metabolism and Ferroptosis in Ovarian Cancer: Molecular Insights and Therapeutic Opportunities. Antioxidants (Basel) 2024; 13:791. [PMID: 39061859 PMCID: PMC11274267 DOI: 10.3390/antiox13070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Ovarian cancer (OC), known for its lethality and resistance to chemotherapy, is closely associated with iron metabolism and ferroptosis-an iron-dependent cell death process, distinct from both autophagy and apoptosis. Emerging evidence suggests that dysregulation of iron metabolism could play a crucial role in OC by inducing an imbalance in the redox system, which leads to ferroptosis, offering a novel therapeutic approach. This review examines how disruptions in iron metabolism, which affect redox balance, impact OC progression, focusing on its essential cellular functions and potential as a therapeutic target. It highlights the molecular interplay, including the role of non-coding RNAs (ncRNAs), between iron metabolism and ferroptosis, and explores their interactions with key immune cells such as macrophages and T cells, as well as inflammation within the tumor microenvironment. The review also discusses how glycolysis-related iron metabolism influences ferroptosis via reactive oxygen species. Targeting these pathways, especially through agents that modulate iron metabolism and ferroptosis, presents promising therapeutic prospects. The review emphasizes the need for deeper insights into iron metabolism and ferroptosis within the redox-regulated system to enhance OC therapy and advocates for continued research into these mechanisms as potential strategies to combat OC.
Collapse
Affiliation(s)
- Dan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Zewen Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Jinzhi Lu
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
- Department of Laboratory Medicine, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China
| | - Cunjian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| |
Collapse
|
33
|
Li X, Chen G, Zhou X, Peng X, Li M, Chen D, Yu H, Shi W, Zhang C, Li Y, Feng Z, Mei Y, Li L, Liang S, He W, Gou X, Li J. Roles of Akirin1 in early prediction and treatment of graft kidney ischemia‒reperfusion injury. SMART MEDICINE 2024; 3:e20230043. [PMID: 39188701 PMCID: PMC11235893 DOI: 10.1002/smmd.20230043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/26/2024] [Indexed: 08/28/2024]
Abstract
Ferroptosis is a predominant contributor to graft kidney ischemia‒reperfusion injury (IRI), resulting in delayed graft function (DGF). However, much less is known about the early predicting biomarkers and therapeutic targets of DGF, especially aiming at ferroptosis. Here, we propose a precise predicting model for DGF, relying on the Akirin1 level in extracellular vesicles (EVs) derived from recipient urine 48 h after kidney transplant. In addition, we decipher a new molecular mechanism whereby Akirin1 induces ferroptosis by strengthening TP53-mediated suppression of SLC7A11 during the graft kidney IRI process, that is, Akirin1 activates the EGR1/TP53 axis and inhibits MDM2-mediated TP53 ubiquitination, accordingly upregulating TP53 in two ways. Meanwhile, we present the first evidence that miR-136-5p enriched in EVs secreted by human umbilical cord mesenchymal stem cells (UM-EVs) confers robust protection against ferroptosis and graft kidney IRI by targeted inhibition of Akirin1 but knockout of miR-136-5p in UM sharply mitigates the protection of UM-EVs. The functional and mechanistic regulation of Akirin1 is further corroborated in an allograft kidney transplant model in wild-type and Akirin1-knockout mice. In summary, these findings suggest that Akirin1, which prominently induces ferroptosis, is a pivotal biomarker and target for early diagnosis and treatment of graft kidney IRI and DGF after kidney transplant.
Collapse
Affiliation(s)
- Xinyuan Li
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- CAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsChongqingChina
| | - Guo Chen
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsChongqingChina
| | - Xiang Zhou
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsChongqingChina
| | - Xiang Peng
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsChongqingChina
| | - Mao Li
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Daihui Chen
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Haitao Yu
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsChongqingChina
| | - Wei Shi
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsChongqingChina
| | - Chunlin Zhang
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsChongqingChina
| | - Yang Li
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsChongqingChina
| | - Zhenwei Feng
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsChongqingChina
| | - Yuhua Mei
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsChongqingChina
| | - Li Li
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsChongqingChina
| | - Simin Liang
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Weiyang He
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xin Gou
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jie Li
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
34
|
Pang P, Si W, Wu H, Ju J, Liu K, Wang C, Jia Y, Diao H, Zeng L, Jiang W, Yang Y, Xiong Y, Kong X, Zhang Z, Zhang F, Song J, Wang N, Yang B, Bian Y. YTHDF2 Promotes Cardiac Ferroptosis via Degradation of SLC7A11 in Cardiac Ischemia-Reperfusion Injury. Antioxid Redox Signal 2024; 40:889-905. [PMID: 37548549 DOI: 10.1089/ars.2023.0291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Affiliation(s)
- Ping Pang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wei Si
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Han Wu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Kuiwu Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chunlei Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yingqiong Jia
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongtao Diao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Linghua Zeng
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Weitao Jiang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuting Xiong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xue Kong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhengwei Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Feng Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinglun Song
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ning Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu Bian
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
35
|
Dai TM, Qiu JF, Luo C, Cui WZ, Liu K, Li JL, Peng R, Sima YH, Xu SQ. The circadian clock affects starvation resistance through the pentose phosphate pathway in silkworm, Bombyx mori. INSECT SCIENCE 2024. [PMID: 38769889 DOI: 10.1111/1744-7917.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
Disruption of the circadian clock can affect starvation resistance, but the molecular mechanism is still unclear. Here, we found that starvation resistance was significantly reduced in the core gene BmPer deficient mutant silkworms (Per-/-), but the mutant's starvation resistance increased with larval age. Under natural physiological conditions, the weight of mutant 5th instar larvae was significantly increased compared to wild type, and the accumulation ability of triglycerides and glycogen in the fat bodies was upregulated. However, under starvation conditions, the weight consumption of mutant larvae was increased and cholesterol utilization was intensified. Transcriptome analysis showed that beta-oxidation was significantly upregulated under starvation conditions, fatty acid synthesis was inhibited, and the expression levels of genes related to mitochondrial function were significantly changed. Further investigations revealed that the redox balance, which is closely related to mitochondrial metabolism, was altered in the fat bodies, the antioxidant level was increased, and the pentose phosphate pathway, the source of reducing power in cells, was activated. Our findings suggest that one of the reasons for the increased energy burden observed in mutants is the need to maintain a more robust redox balance in metabolic tissues. This necessitates the diversion of more glucose into the pentose phosphate pathway to ensure an adequate supply of reducing power.
Collapse
Affiliation(s)
- Tai-Ming Dai
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Jian-Feng Qiu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Cheng Luo
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Wen-Zhao Cui
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Kai Liu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Jiang-Lan Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Ruji Peng
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Yang-Hu Sima
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Shi-Qing Xu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
36
|
Yang H, Li Q, Chen X, Weng M, Huang Y, Chen Q, Liu X, Huang H, Feng Y, Zhou H, Zhang M, Pei W, Li X, Fu Q, Zhu L, Wang Y, Kong X, Lv K, Zhang Y, Sun Y, Ma M. Targeting SOX13 inhibits assembly of respiratory chain supercomplexes to overcome ferroptosis resistance in gastric cancer. Nat Commun 2024; 15:4296. [PMID: 38769295 PMCID: PMC11106335 DOI: 10.1038/s41467-024-48307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Therapeutic resistance represents a bottleneck to treatment in advanced gastric cancer (GC). Ferroptosis is an iron-dependent form of non-apoptotic cell death and is associated with anti-cancer therapeutic efficacy. Further investigations are required to clarify the underlying mechanisms. Ferroptosis-resistant GC cell lines are constructed. Dysregulated mRNAs between ferroptosis-resistant and parental cell lines are identified. The expression of SOX13/SCAF1 is manipulated in GC cell lines where relevant biological and molecular analyses are performed. Molecular docking and computational screening are performed to screen potential inhibitors of SOX13. We show that SOX13 boosts protein remodeling of electron transport chain (ETC) complexes by directly transactivating SCAF1. This leads to increased supercomplexes (SCs) assembly, mitochondrial respiration, mitochondrial energetics and chemo- and immune-resistance. Zanamivir, reverts the ferroptosis-resistant phenotype via directly targeting SOX13 and promoting TRIM25-mediated ubiquitination and degradation of SOX13. Here we show, SOX13/SCAF1 are important in ferroptosis-resistance, and targeting SOX13 with zanamivir has therapeutic potential.
Collapse
Affiliation(s)
- Hui Yang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qingqing Li
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Research Center of Health Big Data Mining and Applications, School of Medical Information, Wannan Medical College, Wuhu, Anhui, China
| | - Xingxing Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mingzhe Weng
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yakai Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qiwen Chen
- Minimally Invasive Therapy Center, Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaocen Liu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
| | - Haoyu Huang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wuhu, Anhui, China
| | - Yanhuizhi Feng
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Hanyu Zhou
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wuhu, Anhui, China
| | - Mengying Zhang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wuhu, Anhui, China
| | - Weiya Pei
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wuhu, Anhui, China
| | - Xueqin Li
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wuhu, Anhui, China
| | - Qingsheng Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Liangyu Zhu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
| | - Yingying Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xiang Kong
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wuhu, Anhui, China
| | - Kun Lv
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wuhu, Anhui, China.
| | - Yan Zhang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China.
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Mingzhe Ma
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
37
|
Qu J, Lu S, Wang B, Wang S, Yang Z, Tang H, He J, Zhao Y, Wang X, Liu X, Rao B. Network pharmacology and molecular docking technology for exploring the effect and mechanism of high-dose vitamin c on ferroptosis of tumor cells: A review. Medicine (Baltimore) 2024; 103:e38189. [PMID: 38758839 PMCID: PMC11098213 DOI: 10.1097/md.0000000000038189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/18/2024] [Indexed: 05/19/2024] Open
Abstract
To investigate the mechanism by which high-dose vitamin C (HVC) promotes ferroptosis in tumor cells via network pharmacology, vitamin C-related and ferroptosis-related targets were obtained from the PharmMapper and GeneCards databases, respectively, and their common targets were compared using the Venn diagram. Common targets were imported into the STRING database for protein-protein interaction analysis, and core targets were defined. Core targets were enriched for Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways using the R language packages. A map of the core target-based interaction network and a map of the mechanism by which HVC regulates ferroptosis were constructed. A total of 238 vitamin C-related and 721 ferroptosis-related targets were identified, of which 21 targets were common to both. Furthermore, ALDOA, AHCY, LDHB, HSPA8, LGALS3, and GSTP1 were identified as core targets. GO enrichment analysis suggested that the main biological processes included the extrinsic apoptotic signaling pathway and pyruvate metabolic process. KEGG enrichment analysis suggested that HVC regulates ferroptosis mainly through the amino acid and carbohydrate metabolic pathways. The targets were validated by molecular docking. In conclusion, HVC may promote ferroptosis in tumor cells by regulating metabolic pathways, and there is a synergistic effect between HVC and type I ferroptosis inducers. Glycolysis-dependent tumors may be beneficial for HVC therapy. Our study provides a reference for further clinical studies on HVC antitumor therapy.
Collapse
Affiliation(s)
- Jinxiu Qu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Shuai Lu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Bing Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Shiwan Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Zhenpeng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Huazhen Tang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Jia He
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Yuan Zhao
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Xin Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Xiaozhu Liu
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Benqiang Rao
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| |
Collapse
|
38
|
Xue P, Zhuang H, Bai T, Zeng X, Deng J, Shao S, Yan S. Iron (II)-based metal-organic framework nanozyme for boosting tumor ferroptosis through inhibiting DNA damage repair and system Xc . J Nanobiotechnology 2024; 22:228. [PMID: 38715049 PMCID: PMC11077818 DOI: 10.1186/s12951-024-02508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Development of ferroptosis-inducible nanoplatforms with high efficiency and specificity is highly needed and challenging in tumor ferrotherapy. Here, we demonstrate highly effective tumor ferrotherapy using iron (II)-based metal-organic framework (FessMOF) nanoparticles, assembled from disulfide bonds and ferrous ions. The as-prepared FessMOF nanoparticles exhibit peroxidase-like activity and pH/glutathione-dependent degradability, which enables tumor-responsive catalytic therapy and glutathione depletion by the thiol/disulfide exchange to suppress glutathione peroxidase 4, respectively. Upon PEGylation and Actinomycin D (ActD) loading, the resulting FessMOF/ActD-PEG nanoplatform induces marked DNA damage and lipid peroxidation. Concurrently, we found that ActD can inhibit Xc- system and elicit ferritinophagy, which further boosts the ferrotherapeutic efficacy of the FessMOF/ActD-PEG. In vivo experiments demonstrate that our fabricated nanoplatform presents excellent biocompatibility and a high tumor inhibition rate of 91.89%.
Collapse
Affiliation(s)
- Panpan Xue
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies), The Straits Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Huilan Zhuang
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies), The Straits Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Tingjie Bai
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies), The Straits Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Xuemei Zeng
- Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou, 350117, PR China.
| | - Jinpeng Deng
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies), The Straits Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Sijie Shao
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies), The Straits Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Shuangqian Yan
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies), The Straits Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, Fujian, 350117, China.
| |
Collapse
|
39
|
Bi H, Guo S, Wang Y, Liu Z, Wu G, Huo X, Guo L, Guo H, Xiong Y. Pinobanksin ameliorated DSS-induced acute colitis mainly through modulation of SLC7A11/glutathione-mediated intestinal epithelial ferroptosis. Food Funct 2024; 15:4970-4982. [PMID: 38606509 DOI: 10.1039/d3fo04500e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Inhibition of ferroptosis in intestinal epithelial cells serves as an attractive target for the development of therapeutic strategies for colitis. Pinobanksin, one of the main flavonoids derived from propolis, possesses significant anti-inflammatory effects and inhibits the cell death of several cell lines. Here, we evaluated whether pinobanksin influenced colitis by modulation of epithelial ferroptosis. Mice treated with 2.5% DSS dissolved in sterile distilled water were established for an acute colitis model. The mitochondrial morphology, colonic iron level, lipid peroxidation products MDA/4-HNE, and lipid reactive oxygen species levels were measured to assess ferroptosis in epithelial cells. RNA-seq and functional analyses were performed to reveal key genes mediating pinobanksin-exerted modulation of ferroptosis. We found that pinobanksin, at different doses, induced significant anti-colitis effects and inhibited the elevated ferroptosis in colonic epithelial cells isolated from DSS-treated mice largely by activating GPX4 (negative regulator of ferroptosis). Furthermore, RNA-seq assays indicated that pinobanksin significantly increased the cystine transporter SLC7A11 in colonic tissues from mice with colitis. Depletion of SLC7A11 largely blocked pinobanksin-induced promotion of cystine uptake/glutathione biosynthesis and suppression of ferroptosis in epithelial cells from mice with colitis or IEC-6 cells pretreated with RSL3. Altogether, pinobanksin alleviated DSS-induced colitis largely by inhibition of ferroptosis in epithelial cells. Activation of SLC7A11 by pinobanksin resulted in the promotion of cystine uptake and enhancement of glutathione biosynthesis. This work will provide novel guidance for the clinical use of pinobanksin to treat colitis through inhibition of epithelial ferroptosis.
Collapse
Affiliation(s)
- Hailian Bi
- First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Shibin Guo
- First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Yan Wang
- College of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Zhijie Liu
- First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guokai Wu
- First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Xiaokui Huo
- Second Affiliated Hospital of Dalian Medical University, Dalian, 116021, China.
| | - Li Guo
- First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Huishu Guo
- First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Yongjian Xiong
- First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
- College of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| |
Collapse
|
40
|
Meng X, Peng F, Yu S, Chi X, Wang W, Shao S. Knockdown of NADK promotes LUAD ferroptosis via NADPH/FSP1 axis. J Cancer Res Clin Oncol 2024; 150:228. [PMID: 38700533 PMCID: PMC11068837 DOI: 10.1007/s00432-024-05752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Lung cancer is a serious threat to human health and is the first leading cause of cancer death. Ferroptosis, a newly discovered form of programmed cell death associated with redox homeostasis, is of particular interest in the lung cancer, given the high oxygen environment of lung cancer. NADPH has reducing properties and therefore holds the potential to resist ferroptosis. Resistance to ferroptosis exists in lung cancer, but the role of NADK in regulating ferroptosis in lung cancer has not been reported yet. METHODS Immunohistochemistry (IHC) was used to analyse the expression of NADK in 86 cases of lung adenocarcinoma(LUAD) and adjacent tissues, and a IHC score was assigned to each sample. Chi-square and kaplan-meier curve was performed to analyse the differences in metastasis and five-year survival between the two groups with NADK high or low scores. Proliferation of NADK-knockdown LUAD cell lines was detected in vivo and vitro. Furthermore, leves of ROS, MDA and Fe2+ were measured to validate the effect and mechanism of NADK on ferroptosis in LUAD. RESULTS The expression of NADK was significantly evaluated in LUAD tissues as compared to adjacent non-cancerous tissues. The proliferation of NADK-knockdown cells was inhibited both in vivo and vitro, and increasing levels of intracellular ROS, Fe2+ and lipid peroxide products (MDA) were observed. Furthermore, NADK-knockdown promoted the ferroptosis of LUAD cells induced by Erastin/RSL3 by regulating the level of NADPH and the expression of FSP1. Knockdown of NADK enhanced the sensitivities of LUAD cells to Erastin/RSL3-induced ferroptosis by regulating NADPH level and FSP1 expression. CONCLUSIONS NADK is over-expressed in LUAD patients. Knockdown of NADK inhibited the proliferation of LUAD cells both in vitro and in vivo and promotes the Erastin/RSL3-induced ferroptosis of LUAD cells by down-regulating the NADPH/FSP1 axis.
Collapse
Affiliation(s)
- Xiangpeng Meng
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, Dalian, 116044, China
| | - Fang Peng
- Department of Pathologic, The Second Hospital of Dalian Medical University, Dalian, 116011, China
| | - Shijie Yu
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, Dalian, 116044, China
| | - Xinming Chi
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, Dalian, 116044, China
| | - Wenchi Wang
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, Dalian, 116044, China
| | - Shujuan Shao
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
41
|
Zhang Q, Xia Y, Wang F, Yang D, Liang Z. Induction of ferroptosis by natural products in non-small cell lung cancer: a comprehensive systematic review. Front Pharmacol 2024; 15:1385565. [PMID: 38751790 PMCID: PMC11094314 DOI: 10.3389/fphar.2024.1385565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide that presents a substantial peril to human health. Non-Small Cell Lung Cancer (NSCLC) is a main subtype of lung cancer with heightened metastasis and invasion ability. The predominant treatment approaches currently comprise surgical interventions, chemotherapy regimens, and radiotherapeutic procedures. However, it poses significant clinical challenges due to its tumor heterogeneity and drug resistance, resulting in diminished patient survival rates. Therefore, the development of novel treatment strategies for NSCLC is necessary. Ferroptosis was characterized by iron-dependent lipid peroxidation and the accumulation of lipid reactive oxygen species (ROS), leading to oxidative damage of cells and eventually cell death. An increasing number of studies have found that exploiting the induction of ferroptosis may be a potential therapeutic approach in NSCLC. Recent investigations have underscored the remarkable potential of natural products in the cancer treatment, owing to their potent activity and high safety profiles. Notably, accumulating evidences have shown that targeting ferroptosis through natural compounds as a novel strategy for combating NSCLC holds considerable promise. Nevertheless, the existing literature on comprehensive reviews elucidating the role of natural products inducing the ferroptosis for NSCLC therapy remains relatively sparse. In order to furnish a valuable reference and support for the identification of natural products inducing ferroptosis in anti-NSCLC therapeutics, this article provided a comprehensive review explaining the mechanisms by which natural products selectively target ferroptosis and modulate the pathogenesis of NSCLC.
Collapse
Affiliation(s)
| | | | | | | | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
42
|
Pecchillo Cimmino T, Punziano C, Panico I, Petrone Z, Cassese M, Faraonio R, Barresi V, Esposito G, Ammendola R, Cattaneo F. Formyl-Peptide Receptor 2 Signaling Modulates SLC7A11/xCT Expression and Activity in Tumor Cells. Antioxidants (Basel) 2024; 13:552. [PMID: 38790657 PMCID: PMC11118824 DOI: 10.3390/antiox13050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer cells exhibit high levels of oxidative stress and consequently require a high amount of cysteine for glutathione synthesis. Solute Carrier Family 7 Member 11 (SLC7A11), or xCT, mediates the cellular uptake of cystine in exchange for intracellular glutamate; imported extracellular cystine is reduced to cysteine in the cytosol through a NADPH-consuming reduction reaction. SLC7A11/xCT expression is under the control of stress-inducing conditions and of several transcription factors, such as NRF2 and ATF4. Formyl-peptide receptor 2 (FPR2) belongs to the FPR family, which transduces chemotactic signals mediating either inflammatory or anti-inflammatory responses according to the nature of its ligands and/or FPR2 binding with other FPR isoforms. The repertoire of FPR2 agonists with anti-inflammatory activities comprises WKYMVm peptide and Annexin A1 (ANXA1), and the downstream effects of the intracellular signaling cascades triggered by FPR2 include NADPH oxidase (NOX)-dependent generation of reactive oxygen species. Herein, we demonstrate that stimulation of CaLu-6 cells with either WKYMVm or ANXA1: (i) induces the redox-regulated activation of SLC7A11/xCT; (ii) promotes the synthesis of glutathione; (iii) prevents lipid peroxidation; and (iv) favors NRF2 nuclear translocation and activation. In conclusion, our overall results demonstrate that FPR2 agonists and NOX modulate SLC7A11/xCT expression and activity, thereby identifying a novel regulative pathway of the cystine/glutamate antiport that represents a new potential therapeutical target for the treatment of human cancers.
Collapse
Affiliation(s)
- Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Carolina Punziano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Iolanda Panico
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Zeudi Petrone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Myrhiam Cassese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| |
Collapse
|
43
|
Chen K, Zhou A, Zhou X, He J, Xu Y, Ning X. Cellular Trojan Horse initiates bimetallic Fe-Cu MOF-mediated synergistic cuproptosis and ferroptosis against malignancies. SCIENCE ADVANCES 2024; 10:eadk3201. [PMID: 38598629 PMCID: PMC11006215 DOI: 10.1126/sciadv.adk3201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Disruptions in metal balance can trigger a synergistic interplay of cuproptosis and ferroptosis, offering promising solutions to enduring challenges in oncology. Here, we have engineered a Cellular Trojan Horse, named MetaCell, which uses live neutrophils to stably internalize thermosensitive liposomal bimetallic Fe-Cu MOFs (Lip@Fe-Cu-MOFs). MetaCell can instigate cuproptosis and ferroptosis, thereby enhancing treatment efficacy. Mirroring the characteristics of neutrophils, MetaCell can evade the immune system and not only infiltrate tumors but also respond to inflammation by releasing therapeutic components, thereby surmounting traditional treatment barriers. Notably, Lip@Fe-Cu-MOFs demonstrate notable photothermal effects, inciting a targeted release of Fe-Cu-MOFs within cancer cells and amplifying the synergistic action of cuproptosis and ferroptosis. MetaCell has demonstrated promising treatment outcomes in tumor-bearing mice, effectively eliminating solid tumors and forestalling recurrence, leading to extended survival. This research provides great insights into the complex interplay between copper and iron homeostasis in malignancies, potentially paving the way for innovative approaches in cancer treatment.
Collapse
Affiliation(s)
- Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, School of Physics, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Jielei He
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
44
|
Liao Z, Wen E, Feng Y. GSH-responsive degradable nanodrug for glucose metabolism intervention and induction of ferroptosis to enhance magnetothermal anti-tumor therapy. J Nanobiotechnology 2024; 22:147. [PMID: 38570829 PMCID: PMC11321096 DOI: 10.1186/s12951-024-02425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
The challenges associated with activating ferroptosis for cancer therapy primarily arise from obstacles related to redox and iron homeostasis, which hinder the susceptibility of tumor cells to ferroptosis. However, the specific mechanisms of ferroptosis resistance, especially those intertwined with abnormal metabolic processes within tumor cells, have been consistently underestimated. In response, we present an innovative glutathione-responsive magnetocaloric therapy nanodrug termed LFMP. LFMP consists of lonidamine (LND) loaded into PEG-modified magnetic nanoparticles with a Fe3O4 core and coated with disulfide bonds-bridged mesoporous silica shells. This nanodrug is designed to induce an accelerated ferroptosis-activating state in tumor cells by disrupting homeostasis. Under the dual effects of alternating magnetic fields and high concentrations of glutathione in the tumor microenvironment, LFMP undergoes disintegration, releasing drugs. LND intervenes in cell metabolism by inhibiting glycolysis, ultimately enhancing iron death and leading to synthetic glutathione consumption. The disulfide bonds play a pivotal role in disrupting intracellular redox homeostasis by depleting glutathione and inactivating glutathione peroxidase 4 (GPX4), synergizing with LND to enhance the sensitivity of tumor cells to ferroptosis. This process intensifies oxidative stress, further impairing redox homeostasis. Furthermore, LFMP exacerbates mitochondrial dysfunction, triggering ROS formation and lactate buildup in cancer cells, resulting in increased acidity and subsequent tumor cell death. Importantly, LFMP significantly suppresses tumor cell proliferation with minimal side effects both in vitro and in vivo, exhibiting satisfactory T2-weighted MR imaging properties. In conclusion, this magnetic hyperthermia-based nanomedicine strategy presents a promising and innovative approach for antitumor therapy.
Collapse
Affiliation(s)
- Zhen Liao
- Department of Biomedical Engineering, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 61173, Sichuan, People's Republic of China
| | - E Wen
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yi Feng
- Institute of Burn Research Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
45
|
Guo Y, Luo H, Jiang H, Liu X, Long X, Hou Y, Chen Z, Sun Y, Ge D, Shi W. Liposome encapsulated polydopamine nanoparticles: Enhancing ferroptosis and activating hypoxia prodrug activity. Mater Today Bio 2024; 25:101009. [PMID: 38445012 PMCID: PMC10912735 DOI: 10.1016/j.mtbio.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
The short lifespan of active oxygen species and depressed O2 level during ferroptosis treatment in tumor cells weaken ferroptosis therapy. How to improve the utilization efficiency of active oxygen species generated in real time is pivotal for anticancer treatment. Herein, the tirapazamine (TPZ) loaded polydopamine-Fe nanoparticles (PDA-Fe-TPZ) was modified with unsaturated liposome (Lip), which was constructed to overcome the drawbacks of traditional ferroptosis therapy. The Lip@PDA-Fe-TPZ nanoliposomes can react with H2O2 to produce •OH by Fenton reaction, which then attacks Lip and transforms into radical intermediate (L•) and phospholipid peroxide radical (LOO•) to avoid the annihilation of •OH. The introduced Lip enhances lipid peroxidation and promotes oxygen consumption, resulting in increased hypoxia at tumor site. The introduced TPZ can be triggered by reductase in tumor cells under hypoxia, which can reduce to transient oxidative free radicals by reductase enzymes and destroy the structure of the surrounding biomacromolecules, thus achieving the synergistic treatment of ferroptosis and chemotherapy. In this work, we organically combined enhanced ferrroptosis with hypoxic activated chemotherapy to achieve efficient and specific tumor killing effect, which can sever as a promising treatment of cancer in the future.
Collapse
Affiliation(s)
- Yijun Guo
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Huiling Luo
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Hairong Jiang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Xinxin Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Xinrui Long
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Yinuo Hou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Zhou Chen
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Yanan Sun
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Dongtao Ge
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Wei Shi
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
46
|
Hou C, Zhong B, Gu S, Wang Y, Ji L. Identification and validation of the biomarkers related to ferroptosis in calcium oxalate nephrolithiasis. Aging (Albany NY) 2024; 16:5987-6007. [PMID: 38536018 PMCID: PMC11042938 DOI: 10.18632/aging.205684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/20/2024] [Indexed: 04/23/2024]
Abstract
Ferroptosis is a specific type of programmed cell death characterized by iron-dependent lipid peroxidation. Understanding the involvement of ferroptosis in calcium oxalate (CaOx) stone formation may reveal potential targets for this condition. The publicly available dataset GSE73680 was used to identify 61 differentially expressed ferroptosis-related genes (DEFERGs) between normal kidney tissues and Randall's plaques (RPs) from patients with nephrolithiasis through employing weighted gene co-expression network analysis (WGCNA). The findings were validated through in vitro and in vivo experiments using CaOx nephrolithiasis rat models induced by 1% ethylene glycol administration and HK-2 cell models treated with 1 mM oxalate. Through WGCNA and the machine learning algorithm, we identified LAMP2 and MDM4 as the hub DEFERGs. Subsequently, nephrolithiasis samples were classified into cluster 1 and cluster 2 based on the expression of the hub DEFERGs. Validation experiments demonstrated decreased expression of LAMP2 and MDM4 in CaOx nephrolithiasis animal models and cells. Treatment with ferrostatin-1 (Fer-1), a ferroptosis inhibitor, partially reversed oxidative stress and lipid peroxidation in CaOx nephrolithiasis models. Moreover, Fer-1 also reversed the expression changes of LAMP2 and MDM4 in CaOx nephrolithiasis models. Our findings suggest that ferroptosis may be involved in the formation of CaOx kidney stones through the regulation of LAMP2 and MDM4.
Collapse
Affiliation(s)
- Chao Hou
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Bing Zhong
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Shuo Gu
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Yunyan Wang
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Lu Ji
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| |
Collapse
|
47
|
Ye L, Wen X, Qin J, Zhang X, Wang Y, Wang Z, Zhou T, Di Y, He W. Metabolism-regulated ferroptosis in cancer progression and therapy. Cell Death Dis 2024; 15:196. [PMID: 38459004 PMCID: PMC10923903 DOI: 10.1038/s41419-024-06584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Cancer metabolism mainly includes carbohydrate, amino acid and lipid metabolism, each of which can be reprogrammed. These processes interact with each other to adapt to the complicated microenvironment. Ferroptosis is a regulated cell death induced by iron-dependent lipid peroxidation, which is morphologically different from apoptosis, necrosis, necroptosis, pyroptosis, autophagy-dependent cell death and cuprotosis. Cancer metabolism plays opposite roles in ferroptosis. On the one hand, carbohydrate metabolism can produce NADPH to maintain GPX4 and FSP1 function, and amino acid metabolism can provide substrates for synthesizing GPX4; on the other hand, lipid metabolism might synthesize PUFAs to trigger ferroptosis. The mechanisms through which cancer metabolism affects ferroptosis have been investigated extensively for a long time; however, some mechanisms have not yet been elucidated. In this review, we summarize the interaction between cancer metabolism and ferroptosis. Importantly, we were most concerned with how these targets can be utilized in cancer therapy.
Collapse
Affiliation(s)
- Lvlan Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Xiangqiong Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jiale Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Youpeng Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ziyang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ti Zhou
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China.
| | - Yuqin Di
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Weiling He
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
48
|
Li Y, Li M, Feng S, Xu Q, Zhang X, Xiong X, Gu L. Ferroptosis and endoplasmic reticulum stress in ischemic stroke. Neural Regen Res 2024; 19:611-618. [PMID: 37721292 PMCID: PMC10581588 DOI: 10.4103/1673-5374.380870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
Ferroptosis is a form of non-apoptotic programmed cell death, and its mechanisms mainly involve the accumulation of lipid peroxides, imbalance in the amino acid antioxidant system, and disordered iron metabolism. The primary organelle responsible for coordinating external challenges and internal cell demands is the endoplasmic reticulum, and the progression of inflammatory diseases can trigger endoplasmic reticulum stress. Evidence has suggested that ferroptosis may share pathways or interact with endoplasmic reticulum stress in many diseases and plays a role in cell survival. Ferroptosis and endoplasmic reticulum stress may occur after ischemic stroke. However, there are few reports on the interactions of ferroptosis and endoplasmic reticulum stress with ischemic stroke. This review summarized the recent research on the relationships between ferroptosis and endoplasmic reticulum stress and ischemic stroke, aiming to provide a reference for developing treatments for ischemic stroke.
Collapse
Affiliation(s)
- Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingyang Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Shi Feng
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xu Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
49
|
Xiong W, Li D, Ao F, Tu Z, Xiong J. The role and molecular mechanism of NOP16 in the pathogenesis of nasopharyngeal carcinoma. Cell Biochem Funct 2024; 42:e3939. [PMID: 38454810 DOI: 10.1002/cbf.3939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 03/09/2024]
Abstract
We aimed to explore the effects of NOP16 on the pathogenesis of nasopharyngeal carcinoma (NPC) and the related mechanism. In this study, the expression level of NOP16 in NPC tissues and adjacent tissues was measured by qRT-polymerase chain reaction (PCR) and immunohistochemistry (IHC) tests. In the in vitro study, the expression levels of NOP16 and RhoA/phosphatidylinositol 3-kinase (PI3K)/Akt/c-Myc and IKK/IKB/NF-κB signalling pathway-related proteins in NPC cells were measured by qRT-PCR and Western blot (WB). CCK8 assays and colony formation assays were used to detect cell proliferation. Transwell assays were used to detect the migration and invasion ability of NPC cells. Flow cytometry and WB were used to measure the level of apoptosis. For the in vivo study, NPC xenograft models were established in nude mice, and tumour weight and volume were recorded. The expression levels of NOP16 and RhoA/PI3K/Akt/c-Myc signalling pathway-related proteins and mRNAs were measured by immunofluorescence, qRT-PCR and WB experiments. In clinical samples, the results of qRT-PCR and IHC experiments showed that the expression level of NOP16 was significantly increased in NPC tissues. In the in vitro study, the results of qRT-PCR and WB experiments showed that NOP16 was significantly increased in NPC cells. The CCK8 assay, colony formation assay, transwell assay and flow cytometry results showed that knocking out NOP16 inhibited the proliferation, migration and invasion of NPC cells and increased apoptosis. WB results showed that knocking out NOP16 inhibited the RhoA/PI3K/Akt/c-Myc and IKK/IKB/NF-κB signalling pathways. These effects were reversed by 740Y-P (PI3K activator). In the in vivo study, knockdown of NOP16 reduced tumour volume and weight and inhibited the RhoA/PI3K/Akt/c-Myc signalling pathway. In conclusion, knockdown of NOP16 inhibited the proliferation, migration and invasion of NPC cells and induced apoptosis by inhibiting the RhoA/PI3K/Akt/c-Myc and IKK/IKB/NF-κB pathways, leading to the malignant phenotype of NPC.
Collapse
Affiliation(s)
- Wenmin Xiong
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Head and Neck Tumour Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Daojing Li
- Department of Head and Neck Tumour Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Fenghua Ao
- Department of Head and Neck Tumour Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Ziwei Tu
- Department of Head and Neck Tumour Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Jianping Xiong
- Department of Oncology, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
50
|
Li Z, Li X, Lu Y, Zhu X, Zheng W, Chen K, Liu S, Wu J, Guan W. Improved Photodynamic Therapy Based on Glutaminase Blockage via Tumor Membrane Coated CB-839/IR-780 Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305174. [PMID: 37875654 DOI: 10.1002/smll.202305174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Photodynamic therapy (PDT) has promising applications. However, the lethal function of reactive oxygen species (ROS) produced during PDT is typically limited. This restriction is induced by oxygen shortage in the tumor microenvironment due to tumor cell hypermetabolism and reductive chemicals overexpression in tumor tissues. Glutamine (Gln) metabolism is crucial for malignancy development and is closely associated with redox. Herein, a novel nanoparticle (NP) named IRCB@M is constructed to boost PDT through dual effects. This NP simultaneously blocks aerobic respiration and inhibits cellular reduced substances by blocking the Gln metabolic pathway. Within the nanocomplex, a photosensitizer (IR-780) and a glutaminase inhibitor (CB-839) are self-assembled and then encapsulated by cancer cell membranes for homologous targeting. The Gln metabolism intervention relieves hypoxia and decreases the levels of nicotinamide adenine dinucleotide phosphate (NADPH) as well as reduced glutathione (GSH) in vitro and in vivo, which are the dual amplification effects on the IR-780-mediated lethal PDT. The antitumor effects against gastric cancer are ultimately evoked in vivo, thus offering a novel concept for enhancing PDT and other ROS-dependent therapeutic approaches.
Collapse
Affiliation(s)
- Zhiyan Li
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Xianghui Li
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Department of Dermatology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yanjun Lu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xudong Zhu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenxuan Zheng
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Kai Chen
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Song Liu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Wenxian Guan
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| |
Collapse
|