1
|
Duff EP, Zetterberg H, Heslegrave A, Dehghan A, Elliott P, Allen N, Runz H, Laban R, Veleva E, Whelan CD, Sun BB, Matthews PM. Plasma proteomic evidence for increased β-amyloid pathology after SARS-CoV-2 infection. Nat Med 2025:10.1038/s41591-024-03426-4. [PMID: 39885359 DOI: 10.1038/s41591-024-03426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 11/22/2024] [Indexed: 02/01/2025]
Abstract
Previous studies have suggested that systemic viral infections may increase risks of dementia. Whether this holds true for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infections is unknown. Determining this is important for anticipating the potential future incidence of dementia. To begin to do this, we measured plasma biomarkers linked to Alzheimer's disease pathology in the UK Biobank before and after serology-confirmed SARS-CoV-2 infections. SARS-CoV-2 infection was associated with biomarkers associated with β-amyloid pathology: reduced plasma Aβ42:Aβ40 ratio and, in more vulnerable participants, lower plasma Aβ42 and higher plasma pTau-181. The plasma biomarker changes were greater in participants who had been hospitalized with COVID-19 or had reported hypertension previously. We showed that the changes in biomarkers were linked to brain structural imaging patterns associated with Alzheimer's disease, lower cognitive test scores and poorer overall health evaluations. Our data from this post hoc case-control matched study thus provide observational biomarker evidence that SARS-CoV-2 infection can be associated with greater brain β-amyloid pathology in older adults. While these results do not establish causality, they suggest that SARS-CoV-2 (and possibly other systemic inflammatory diseases) may increase the risk of future Alzheimer's disease.
Collapse
Affiliation(s)
- Eugene P Duff
- UK Dementia Research Institute Centre at Imperial College London, London, UK.
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute Centre at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Abbas Dehghan
- UK Dementia Research Institute Centre at Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Imperial College London, London, UK
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Paul Elliott
- UK Dementia Research Institute Centre at Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Imperial College London, London, UK
- MRC Centre for Environment and Health, Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
- National Institute for Health Research Biomedical Research Centre, Imperial College London, London, UK
- Health Data Research UK at Imperial College London, London, UK
| | - Naomi Allen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- UK Biobank, Stockport, UK
| | - Heiko Runz
- Translational Sciences, Biogen, Cambridge, MA, USA
| | - Rhiannon Laban
- UK Dementia Research Institute Centre at UCL, London, UK
| | - Elena Veleva
- UK Dementia Research Institute Centre at UCL, London, UK
| | | | | | - Paul M Matthews
- UK Dementia Research Institute Centre at Imperial College London, London, UK.
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
- The Rosalind Franklin Institute, Didcot, UK.
| |
Collapse
|
2
|
Shouman S, Hesham N, Salem TZ. Viruses and neurodegeneration: a growing concern. J Transl Med 2025; 23:46. [PMID: 39800721 PMCID: PMC11727702 DOI: 10.1186/s12967-024-06025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Neurodegenerative diseases (NDDs) cause a progressive loss of neurons. Since NDDs are multifactorial, the precise etiology varies on the basis of the type of disease and patient history. Cohort studies and case studies have demonstrated a potential link between viral infections and the onset or progression of NDDs. Recent findings concerning the mechanisms by which neuropathic infections occur have provided more insights into the importance of such connections. In this review, we aim to elaborate on the occurrence of the neuropathic effects of viruses from epidemiological, clinical, and biological perspectives while highlighting potential treatments and challenges. One of the key players in viral neuropathogenesis is neuroinflammation caused by the immune response to the virus; this can occur due to both neurotropic and nonneurotropic viruses. The COVID-19 pandemic has raised concerns about whether vaccines are essential for preventing viruses or whether vaccines may play a part in exacerbating or accelerating NDDs. By classifying viruses and the common NDDs associated with them and further delving into their cellular pathways, this review provides insights to advance the development of potential treatments and diagnostic methods.
Collapse
Affiliation(s)
- S Shouman
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - N Hesham
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Molecular Biology and Virology Laboratory (MBVL), Center for X-Ray Determination of the Structure of Matter (CXDS), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - T Z Salem
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.
- Molecular Biology and Virology Laboratory (MBVL), Center for X-Ray Determination of the Structure of Matter (CXDS), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.
| |
Collapse
|
3
|
Gonzalez Aleman G, Vavougios GD, Tartaglia C, Uvais NA, Guekht A, Hosseini AA, Lo Re V, Ferreccio C, D'Avossa G, Zamponi HP, Figueredo Aguiar M, Yecora A, Ul Haq Katshu MZ, Stavrou VT, Boutlas S, Gourgoulianis KI, Botero C, González Insúa F, Perez-Lloret S, Zinchuk M, Gersamija A, Popova S, Bryzgalova Y, Sviatskaya E, Russelli G, Avorio F, Wang S, Edison P, Niimi Y, Sohrabi HR, Mukaetova Ladinska EB, Neidre D, de Erausquin GA. Age-dependent phenotypes of cognitive impairment as sequelae of SARS-CoV-2 infection. Front Aging Neurosci 2025; 16:1432357. [PMID: 39839305 PMCID: PMC11747492 DOI: 10.3389/fnagi.2024.1432357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/28/2024] [Indexed: 01/23/2025] Open
Abstract
Cognitive changes associated with PASC may not be uniform across populations. We conducted individual-level pooled analyses and meta-analyses of cognitive assessments from eight prospective cohorts, comprising 2,105 patients and 1,432 controls from Argentina, Canada, Chile, Greece, India, Italy, Russia, and the UK. The meta-analysis found no differences by country of origin. The profile and severity of cognitive impairment varied by age, with mild attentional impairment observed in young and middle-aged adults, but memory, language, and executive function impairment in older adults. The risk of moderate to severe impairment doubled in older adults. Moderately severe or severe impairment was significantly associated with infection diagnoses (chi-square = 26.57, p ≤ 0.0001) and the severity of anosmia (chi-square = 31.81, p ≤ 0.0001). We found distinct age-related phenotypes of cognitive impairment in patients recovering from COVID-19. We identified the severity of acute illness and the presence of olfactory dysfunction as the primary predictors of dementia-like impairment in older adults.
Collapse
Affiliation(s)
- Gabriela Gonzalez Aleman
- Department of Psychology, School of Psychology and Psychopedagogy, Universidad Catolica Argentina, Buenos Aires, Argentina
| | - George D. Vavougios
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
- Department of Respiratory Medicine, University of Thessaly, Larissa, Greece
| | - Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Memory Clinic, Department of Neurology, Toronto Western Hospital, Toronto, ON, Canada
| | - Nalakath A. Uvais
- Department of Psychiatry, Iqraa International Hospital and Research Centre, Calicut, India
| | - Alla Guekht
- Department of Neurology, Moscow Research and Clinical Centre for Neuropsychiatry, Moscow, Russia
- Department of Neurology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Akram A. Hosseini
- Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
- Nottingham Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - Vincenzina Lo Re
- Neurology Service, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT, Palermo, Italy
- Department of Experimental Medicine and Clinical Neuroscience, University of Pittsburgh Medical Center (UPMC), Palermo, Italy
| | - Catterina Ferreccio
- Department of Public Health School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases, ACCDiS, Santiago, Chile
| | - Giovanni D'Avossa
- School of Psychology and Sports Sciences, Bangor University, Bangor, United Kingdom
| | - Hernan P. Zamponi
- Secretariat for Mental Health and Addictions, Ministry of Health, Government of Jujuy, San Salvador de Jujuy, Argentina
| | - Mariana Figueredo Aguiar
- Instituto San Lazaro de Neurociencias, Fundacion de Lucha contra los Trastornos Neurologicos y Psiquiatricos en Minorias, FULTRA, San Salvador de Jujuy, Argentina
| | - Agustin Yecora
- Secretariat for Mental Health and Addictions, Ministry of Health, Government of Jujuy, San Salvador de Jujuy, Argentina
- Instituto San Lazaro de Neurociencias, Fundacion de Lucha contra los Trastornos Neurologicos y Psiquiatricos en Minorias, FULTRA, San Salvador de Jujuy, Argentina
| | - Mohammad Zia Ul Haq Katshu
- Institute of Mental Health, University of Nottingham, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom
| | - Vasileios T. Stavrou
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
- Department of Respiratory Medicine, University of Thessaly, Larissa, Greece
| | - Stylianos Boutlas
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | | | - Camila Botero
- Department of Psychology, School of Psychology and Psychopedagogy, Universidad Catolica Argentina, Buenos Aires, Argentina
| | - Francisco González Insúa
- Department of Psychology, School of Psychology and Psychopedagogy, Universidad Catolica Argentina, Buenos Aires, Argentina
| | - Santiago Perez-Lloret
- Health Observatory, Vice Rectorate for Research, Universidad Catolica Argentina, Buenos Aires, Argentina
| | - Mikhail Zinchuk
- Department of Neurology, Moscow Research and Clinical Centre for Neuropsychiatry, Moscow, Russia
| | - Anna Gersamija
- Department of Neurology, Moscow Research and Clinical Centre for Neuropsychiatry, Moscow, Russia
| | - Sofya Popova
- Department of Neurology, Moscow Research and Clinical Centre for Neuropsychiatry, Moscow, Russia
| | - Yulia Bryzgalova
- Department of Neurology, Moscow Research and Clinical Centre for Neuropsychiatry, Moscow, Russia
| | - Ekaterina Sviatskaya
- Department of Neurology, Moscow Research and Clinical Centre for Neuropsychiatry, Moscow, Russia
| | - Giovanna Russelli
- Neurology Service, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT, Palermo, Italy
- Department of Experimental Medicine and Clinical Neuroscience, University of Pittsburgh Medical Center (UPMC), Palermo, Italy
| | - Federica Avorio
- Neurology Service, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT, Palermo, Italy
- Department of Experimental Medicine and Clinical Neuroscience, University of Pittsburgh Medical Center (UPMC), Palermo, Italy
| | - Sophia Wang
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, United States
| | - Paul Edison
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Cardiff University, Cardiff, United Kingdom
| | - Yoshiki Niimi
- Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hamid R. Sohrabi
- Murdoch University Centre for Healthy Ageing, School of Psychology, Murdoch University, Murdoch, WA, Australia
| | - Elizabeta B. Mukaetova Ladinska
- Department of Psychology and Visual Sciences, University of Leicester, Leicester, United Kingdom
- The Evington Centre, Leicester General Hospital, Leicester, United Kingdom
| | - Daria Neidre
- Laboratory for Brain Development, Modulation and Repair, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Gabriel A. de Erausquin
- Laboratory for Brain Development, Modulation and Repair, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, United States
- Laboratory of Electrophysiology Imaging, Radiology Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States
- Department of Neurology, Joe & Teresa Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
4
|
Nath A, Kolson DL. Reemerging Infectious Diseases and Neuroimmunologic Complications. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200356. [PMID: 39693583 PMCID: PMC11658811 DOI: 10.1212/nxi.0000000000200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024]
Abstract
During the past decade (and beyond), neurologists have become aware of the emergence, persistence, and consequences of some familiar and new infections affecting the nervous system. Even among the familiar CNS infections, such as herpes virus, polyoma virus/JC, influenza, arbovirus, and hepatitis, challenges remain in developing effective antiviral treatments and treatments of postinfection sequelae. With the changing environment and increased global travel, arthropod vectors that mediate zoonotic disease transmission have spread unfamiliar viruses such as West Nile virus, dengue, chikungunya, equine encephalitis, and Zika, among others. Although the global health impact of these diseases has not risen to that of COVID-19 and HIV, it is likely to dramatically increase with continued spread of transmission vectors and the emergence of new zoonotic animal-to-human diseases mediated by those transmission vectors. Furthermore, specific virus-targeting treatments or effective vaccines for arboviral infections are not yet available, and this represents a major challenge in limiting the morbidity of these infections. By contrast, HIV-1, a disease that originated by direct transmission from nonhuman primates to humans (as early as the 1930s), after many years of intense study, is now targeted by highly specific and effective antiviral drugs that can limit the spread of infection and extend human life and health in all populations. Even with these dramatic therapeutic effects of suppressing HIV replication, neurologic dysfunction (primarily cognitive impairment) affects significant numbers of persons living with HIV. This emphasizes not only the importance of treating the underlying infection but also developing treatments for legacy effects of the initial infection even after antiviral therapy. Notably, the rapid emergence of SARS-CoV-2 infection was met with rapid implementation of highly effective and specific antiviral therapies. This resulted in early and dramatic lowering of the morbidity and mortality of SARS-CoV-2 infection. Nonetheless, the postinfectious complications of SARS-CoV-2 infection (long COVID) are now among the more costly consequences of emerging zoonotic infections worldwide. Developing new antiviral therapies that can penetrate the CNS, vaccines, and therapies that target host immune responses and metabolic dysfunction will be necessary for management of infectious and postinfectious complications of established and emerging infections.
Collapse
Affiliation(s)
- Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; and
| | - Dennis L Kolson
- Department of Neurology, University of Pennsylvania, Philadelphia
| |
Collapse
|
5
|
Pang Z, Tang A, He Y, Fan J, Yang Q, Tong Y, Fan H. Neurological complications caused by SARS-CoV-2. Clin Microbiol Rev 2024; 37:e0013124. [PMID: 39291997 PMCID: PMC11629622 DOI: 10.1128/cmr.00131-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
SUMMARYSARS-CoV-2 can not only cause respiratory symptoms but also lead to neurological complications. Research has shown that more than 30% of SARS-CoV-2 patients present neurologic symptoms during COVID-19 (A. Pezzini and A. Padovani, Nat Rev Neurol 16:636-644, 2020, https://doi.org/10.1038/s41582-020-0398-3). Increasing evidence suggests that SARS-CoV-2 can invade both the central nervous system (CNS) (M.S. Xydakis, M.W. Albers, E.H. Holbrook, et al. Lancet Neurol 20: 753-761, 2021 https://doi.org/10.1016/S1474-4422(21)00182-4 ) and the peripheral nervous system (PNS) (M.N. Soares, M. Eggelbusch, E. Naddaf, et al. J Cachexia Sarcopenia Muscle 13:11-22, 2022, https://doi.org/10.1002/jcsm.12896), resulting in a variety of neurological disorders. This review summarized the CNS complications caused by SARS-CoV-2 infection, including encephalopathy, neurodegenerative diseases, and delirium. Additionally, some PNS disorders such as skeletal muscle damage and inflammation, anosmia, smell or taste impairment, myasthenia gravis, Guillain-Barré syndrome, ICU-acquired weakness, and post-acute sequelae of COVID-19 were described. Furthermore, the mechanisms underlying SARS-CoV-2-induced neurological disorders were also discussed, including entering the brain through retrograde neuronal or hematogenous routes, disrupting the normal function of the CNS through cytokine storms, inducing cerebral ischemia or hypoxia, thus leading to neurological complications. Moreover, an overview of long-COVID-19 symptoms is provided, along with some recommendations for care and therapeutic approaches of COVID-19 patients experiencing neurological complications.
Collapse
Affiliation(s)
- Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ao Tang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yujie He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Junfen Fan
- Department of Neurology, Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qingmao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Liou JJ, Santini T, Li J, Gireud-Goss M, Patel V, Adeyemi OF, de Erausquin GA, Garbarino VR, Habes M, Himali JJ, Karmonik C, Snitz BE, Mettenburg JM, Wu M, Aizenstein HJ, Marsland AL, Gianaros PJ, Bowtell R, Mougin O, Vahidy FS, Girard TD, Jacobs HIL, Hosseini AA, Seshadri S, Ibrahim TS. Examining Brain Structures and Cognitive Functions in Patients with Recovered COVID-19 Infection: A Multicenter Study Using 7T MRI. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.13.24317121. [PMID: 39606361 PMCID: PMC11601693 DOI: 10.1101/2024.11.13.24317121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Importance Emerging evidence suggests that severe acute respiratory syndrome, COVID-19, negatively impacts brain health, with clinical magnetic resonance imaging (MRI) showing a wide range of neurologic manifestations but no consistent pattern. Compared with 3 Tesla (3T) MRI, 7 Tesla (7T) MRI can detect more subtle injuries, including hippocampal subfield volume differences and additional standard biomarkers such as white matter lesions. 7T MRI could help with the interpretation of the various persistent post-acute and distal onset sequelae of COVID-19 infection. Objective To investigate the differences in white matter hyperintensity (WMH), hippocampal subfields volumes, and cognition between patients hospitalized with COVID-19 and non-hospitalized participants in a multi-site/multi-national cohort. Design Original investigation of patients hospitalized with COVID-19 between 5/2020 and 10/2022 in 3 USA and 1 UK medical centers with follow-up at hospital discharge. Participants A total of 179 participants without a history of dementia completed cognitive, mood and other assessments and MRI scans. Exposure COVID-19 severity, as measured by hospitalization vs no hospitalization. Main Outcomes and Measures 7T MRI scans were acquired. All WMH and hippocampal subfield volumes were corrected for intracranial volumes to account for subject variability. Cognition was assessed using a comprehensive battery of tests. Pearson correlations and unpaired t-tests were performed to assess correlations and differences between hospitalized and non-hospitalized groups. Results We found similar WMH volume (4112 vs 3144mm³, p=0.2131), smaller hippocampal volume (11856 vs 12227mm³, p=0.0497) and lower cognitive and memory performance, especially the MoCA score (24.9 vs 26.4 pts, p=0.0084), duration completing trail making test B (97.6 vs 79.4 seconds, p=0.0285), Craft immediate recall (12.6 vs 16.4 pts, p<0.0001), Craft delay recall (12.0 vs 15.6 pts, p=0.0001), and Benson figure copy (15.2 vs 16.1 pts, p=0.0078) in 52 patients hospitalized for COVID-19 (19[37%] female; mean[SD] age, 61.1[7.4] years) compared with 111 age-matched non-hospitalized participants (66[59%] female; mean[SD] age, 61.5[8.4] years). Conclusions and Relevance Our results indicate that hospitalized COVID-19 cases show lower hippocampal volume when compared to non-hospitalized participants. We also show that WMH and hippocampal volumes correlate with worse cognitive scores in hospitalized patients compared with non-hospitalized participants, potentially indicating recent lesions and atrophy. Key Points Question: Do white matter hyperintensity burden, hippocampal whole and subfield volumes, and cognition differ between patients hospitalized with COVID-19 versus participants without hospitalization?Findings: We found no significant difference in white matter hyperintensity volume, but hippocampal volume was reduced, and cognitive and memory performance were worse in those hospitalized for COVID-19 compared with age-matched non-hospitalized group (either mild COVID-19 or no COVID-19 reported). In the hospitalized group, increased white matter hyperintensity and reduced hippocampal volumes are significantly higher correlated with worse cognitive and memory scores.Meaning: Adults hospitalized for COVID-19 had lower hippocampal volumes and worse cognitive performance than adults with COVID-19 that did not lead to hospitalization or without reported COVID-19 infection.
Collapse
|
7
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
8
|
Peluso MJ, Deeks SG. Mechanisms of long COVID and the path toward therapeutics. Cell 2024; 187:5500-5529. [PMID: 39326415 PMCID: PMC11455603 DOI: 10.1016/j.cell.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024]
Abstract
Long COVID, a type of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC) defined by medically unexplained symptoms following infection with SARS-CoV-2, is a newly recognized infection-associated chronic condition that causes disability in some people. Substantial progress has been made in defining its epidemiology, biology, and pathophysiology. However, there is no cure for the tens of millions of people believed to be experiencing long COVID, and industry engagement in developing therapeutics has been limited. Here, we review the current state of knowledge regarding the biology and pathophysiology of long COVID, focusing on how the proposed mechanisms explain the physiology of the syndrome and how they provide a rationale for the implementation of a broad experimental medicine and clinical trials agenda. Progress toward preventing and curing long COVID and other infection-associated chronic conditions will require deep and sustained investment by funders and industry.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Trender W, Hellyer PJ, Killingley B, Kalinova M, Mann AJ, Catchpole AP, Menon D, Needham E, Thwaites R, Chiu C, Scott G, Hampshire A. Changes in memory and cognition during the SARS-CoV-2 human challenge study. EClinicalMedicine 2024; 76:102842. [PMID: 39364271 PMCID: PMC11447363 DOI: 10.1016/j.eclinm.2024.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Background Patient-reported outcomes and cross-sectional evidence show an association between COVID-19 and persistent cognitive problems. The causal basis, longevity and domain specificity of this association is unclear due to population variability in baseline cognitive abilities, vulnerabilities, virus variants, vaccination status and treatment. Methods Thirty-four young, healthy, seronegative volunteers were inoculated with Wildtype SARS-CoV-2 under prospectively controlled conditions. Volunteers completed daily physiological measurements and computerised cognitive tasks during quarantine and follow-up at 30, 90, 180, 270, and 360 days. Linear modelling examined differences between 'infected' and 'inoculated but uninfected' individuals. The main cognitive endpoint was the baseline corrected global cognitive composite score across the battery of tasks administered to the volunteers. Exploratory cognitive endpoints included baseline corrected scores from individual tasks. The study was registered on ClinicalTrials.gov with the identifier NCT04865237 and took place between March 2021 and July 2022. Findings Eighteen volunteers developed infection by qPCR criteria of sustained viral load, one without symptoms and the remainder with mild illness. Infected volunteers showed statistically lower baseline-corrected global composite cognitive scores than uninfected volunteers, both acutely and during follow up (mean difference over all time points = -0.8631, 95% CI = -1.3613, -0.3766) with significant main effect of group in repeated measures ANOVA (F (1,34) = 7.58, p = 0.009). Sensitivity analysis replicated this cross-group difference after controlling for community upper respiratory tract infection, task-learning, remdesivir treatment, baseline reference and model structure. Memory and executive function tasks showed the largest between-group differences. No volunteers reported persistent subjective cognitive symptoms. Interpretation These results support larger cross sectional findings indicating that mild Wildtype SARS-CoV-2 infection can be followed by small changes in cognition and memory that persist for at least a year. The mechanistic basis and clinical implications of these small changes remain unclear. Funding This study was funded through the UK Vaccine Taskforce of the Department for Business, Energy and Industrial Strategy (BEIS) of Her Majesty's Government. WT was funded by the EPSRC through the CDT for Neurotechnology Imperial College London.
Collapse
Affiliation(s)
| | - Peter J Hellyer
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ben Killingley
- Department of Infectious Diseases, University College London Hospital, London, UK
| | | | | | | | - David Menon
- Cambridge University Hospitals National Health Service Foundation Trust, UK
| | - Edward Needham
- Cambridge University Hospitals National Health Service Foundation Trust, UK
| | - Ryan Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Gregory Scott
- Department of Brain Sciences, Imperial College London, UK
| | - Adam Hampshire
- Department of Brain Sciences, Imperial College London, UK
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
10
|
Furman S, Green K, Lane TE. COVID-19 and the impact on Alzheimer's disease pathology. J Neurochem 2024; 168:3415-3429. [PMID: 37850241 PMCID: PMC11024062 DOI: 10.1111/jnc.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly escalated into a global pandemic that primarily affects older and immunocompromised individuals due to underlying clinical conditions and suppressed immune responses. Furthermore, COVID-19 patients exhibit a spectrum of neurological symptoms, indicating that COVID-19 can affect the brain in a variety of manners. Many studies, past and recent, suggest a connection between viral infections and an increased risk of neurodegeneration, raising concerns about the neurological effects of COVID-19 and the possibility that it may contribute to Alzheimer's disease (AD) onset or worsen already existing AD pathology through inflammatory processes given that both COVID-19 and AD share pathological features and risk factors. This leads us to question whether COVID-19 is a risk factor for AD and how these two conditions might influence each other. Considering the extensive reach of the COVID-19 pandemic and the devastating impact of the ongoing AD pandemic, their combined effects could have significant public health consequences worldwide.
Collapse
Affiliation(s)
- Susana Furman
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Kim Green
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Thomas E. Lane
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA
- Center for Virus Research, University of California, Irvine 92697, USA
| |
Collapse
|
11
|
Zhang X, Jiang Z, Ma J, Qi Y, Li Y, Zhang Y, Liu Y, Wei C, Chen Y, Liu P, Peng Y, Tan J, Han Y, Zeng S, Cai C, Shen H. Leveraging large-scale genetic data to assess the causal impact of COVID-19 on multisystemic diseases. JOURNAL OF BIG DATA 2024; 11:129. [DOI: 10.1186/s40537-024-00997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/02/2024] [Indexed: 01/02/2025]
|
12
|
Ng HW, Scott DAR, Danesh-Meyer HV, Smith JR, McGhee CN, Niederer RL. Ocular manifestations of COVID-19. Prog Retin Eye Res 2024; 102:101285. [PMID: 38925508 DOI: 10.1016/j.preteyeres.2024.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
There is an increasing body of knowledge regarding how COVID-19 may be associated with ocular disease of varying severity and duration. This article discusses the literature on the ocular manifestations associated with COVID-19, including appraisal of the current evidence, suggested mechanisms of action, associated comorbidities and risk factors, timing from initial infection to diagnosis and clinical red flags. The current literature primarily comprises case reports and case series which inevitably lack control groups and evidence to support causality. However, these early data have prompted the development of larger population-based and laboratory studies that are emerging. As new data become available, a better appraisal of the true effects of COVID-19 on the eye will be possible. While the COVID-19 pandemic was officially declared no longer a "global health emergency" by the World Health Organization (WHO) in May 2023, case numbers continue to rise. Reinfection with different variants is predicted to lead to a growing cumulative burden of disease, particularly as more chronic, multi-organ sequelae become apparent with potentially significant ocular implications. COVID-19 ocular manifestations are postulated to be due to three main mechanisms: firstly, there is a dysregulated immune response to the initial infection linked to inflammatory eye disease; secondly, patients with COVID-19 have a greater tendency towards a hypercoagulable state, leading to prothrombotic events; thirdly, patients with severe COVID-19 requiring hospitalisation and are immunosuppressed due to administered corticosteroids or comorbidities such as diabetes mellitus are at an increased risk of secondary infections, including endophthalmitis and rhino-orbital-mucormycosis. Reported ophthalmic associations with COVID-19, therefore, include a range of conditions such as conjunctivitis, scleritis, uveitis, endogenous endophthalmitis, corneal graft rejection, retinal artery and vein occlusion, non-arteritic ischaemic optic neuropathy, glaucoma, neurological and orbital sequelae. With the need to consider telemedicine consultation in view of COVID-19's infectivity, understanding the range of ocular conditions that may present during or following infection is essential to ensure patients are appropriately triaged, with prompt in-person ocular examination for management of potentially sight-threatening and life-threatening diseases.
Collapse
Affiliation(s)
- Hannah W Ng
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, NZ, New Zealand
| | - Daniel A R Scott
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, NZ, New Zealand
| | - Helen V Danesh-Meyer
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, NZ, New Zealand
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Charles Nj McGhee
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, NZ, New Zealand
| | - Rachael L Niederer
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, NZ, New Zealand.
| |
Collapse
|
13
|
Qian J, Yang B, Wang S, Yuan S, Zhu W, Zhou Z, Zhang Y, Hu G. Drug Repurposing for COVID-19 by Constructing a Comorbidity Network with Central Nervous System Disorders. Int J Mol Sci 2024; 25:8917. [PMID: 39201608 PMCID: PMC11354300 DOI: 10.3390/ijms25168917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
In the post-COVID-19 era, treatment options for potential SARS-CoV-2 outbreaks remain limited. An increased incidence of central nervous system (CNS) disorders has been observed in long-term COVID-19 patients. Understanding the shared molecular mechanisms between these conditions may provide new insights for developing effective therapies. This study developed an integrative drug-repurposing framework for COVID-19, leveraging comorbidity data with CNS disorders, network-based modular analysis, and dynamic perturbation analysis to identify potential drug targets and candidates against SARS-CoV-2. We constructed a comorbidity network based on the literature and data collection, including COVID-19-related proteins and genes associated with Alzheimer's disease, Parkinson's disease, multiple sclerosis, and autism spectrum disorder. Functional module detection and annotation identified a module primarily involved in protein synthesis as a key target module, utilizing connectivity map drug perturbation data. Through the construction of a weighted drug-target network and dynamic network-based drug-repurposing analysis, ubiquitin-carboxy-terminal hydrolase L1 emerged as a potential drug target. Molecular dynamics simulations suggested pregnenolone and BRD-K87426499 as two drug candidates for COVID-19. This study introduces a dynamic-perturbation-network-based drug-repurposing approach to identify COVID-19 drug targets and candidates by incorporating the comorbidity conditions of CNS disorders.
Collapse
Affiliation(s)
- Jing Qian
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Bin Yang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Shuo Wang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Su Yuan
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Wenjing Zhu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Ziyun Zhou
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Yujuan Zhang
- Experimental Center of Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Atkinson LZ, Thom JL, Nobre AC, Zokaei N. Dissociable effects of mild COVID-19 on short- and long-term memories. Brain Commun 2024; 6:fcae270. [PMID: 39210912 PMCID: PMC11358641 DOI: 10.1093/braincomms/fcae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/15/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Recent studies have highlighted the presence of cognitive deficits following COVID-19 that persist beyond acute infection, regardless of the initial disease severity. Impairments in short- and long-term memory are among the core deficits reported by patients and observed in objective tests of memory performance. We aimed to extend previous studies by examining performance in a task that allows us to directly compare and contrast memories at different timescales. More specifically, we assessed both short- and long-term memories for contextual-spatial associations encoded during a common session and probed at different durations using an equivalent task in non-hospitalized individuals recovering from mild COVID-19 compared to healthy controls. The approach equated all aspects of memory materials and response demands, isolating performance changes resulting only from memory timescales and thus allowing us to quantify the impact of COVID-19 on cognition. In addition to providing measures of accuracy and response times, the task also provided a sensitive continuous readout of the precision of memory representations, specifically by examining the resolution with which spatial locations were retained in memory. The results demonstrated selective impairment of long-term memory performance in individuals recovering from mild COVID-19 infection. Short-term memory performance remained comparable to healthy controls. Specifically, poor precision of long-term memory representations was demonstrated, which improved with days since diagnosis. No such relationship was observed for short-term memory performance. Our findings reveal a specific impairment to the precision of spatial-contextual long-term memory representations in individuals recovering from mild COVID-19 and demonstrate evidence of recovery in long-term memory over time. Further, the experimental design provides a carefully controlled and sensitive framework to assess memory across different durations with the potential to provide more detailed phenotyping of memory deficits associated with COVID-19 in general.
Collapse
Affiliation(s)
- Lauren Z Atkinson
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, UK
| | - Jude L Thom
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Anna Christina Nobre
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, UK
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Nahid Zokaei
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, UK
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
15
|
Kempuraj D, Aenlle KK, Cohen J, Mathew A, Isler D, Pangeni RP, Nathanson L, Theoharides TC, Klimas NG. COVID-19 and Long COVID: Disruption of the Neurovascular Unit, Blood-Brain Barrier, and Tight Junctions. Neuroscientist 2024; 30:421-439. [PMID: 37694571 DOI: 10.1177/10738584231194927] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), could affect brain structure and function. SARS-CoV-2 can enter the brain through different routes, including the olfactory, trigeminal, and vagus nerves, and through blood and immunocytes. SARS-CoV-2 may also enter the brain from the peripheral blood through a disrupted blood-brain barrier (BBB). The neurovascular unit in the brain, composed of neurons, astrocytes, endothelial cells, and pericytes, protects brain parenchyma by regulating the entry of substances from the blood. The endothelial cells, pericytes, and astrocytes highly express angiotensin converting enzyme 2 (ACE2), indicating that the BBB can be disturbed by SARS-CoV-2 and lead to derangements of tight junction and adherens junction proteins. This leads to increased BBB permeability, leakage of blood components, and movement of immune cells into the brain parenchyma. SARS-CoV-2 may also cross microvascular endothelial cells through an ACE2 receptor-associated pathway. The exact mechanism of BBB dysregulation in COVID-19/neuro-COVID is not clearly known, nor is the development of long COVID. Various blood biomarkers could indicate disease severity and neurologic complications in COVID-19 and help objectively diagnose those developing long COVID. This review highlights the importance of neurovascular and BBB disruption, as well as some potentially useful biomarkers in COVID-19, and long COVID/neuro-COVID.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Miami Veterans Affairs Healthcare System, Miami, FL, USA
| | - Jessica Cohen
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Annette Mathew
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Dylan Isler
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Rajendra P Pangeni
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, School of Medicine, Tufts University, Boston, MA, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Miami Veterans Affairs Healthcare System, Miami, FL, USA
| |
Collapse
|
16
|
Salvio AL, Fernandes RA, Ferreira HFA, Duarte LA, Gutman EG, Raposo-Vedovi JV, Filho CHFR, da Costa Nunes Pimentel Coelho WL, Passos GF, Andraus MEC, da Costa Gonçalves JP, Cavalcanti MG, Amaro MP, Kader R, de Andrade Medronho R, Figueiredo CP, Amado-Leon LA, Alves-Leon SV. High Levels of NfL, GFAP, TAU, and UCH-L1 as Potential Predictor Biomarkers of Severity and Lethality in Acute COVID-19. Mol Neurobiol 2024; 61:3545-3558. [PMID: 37996731 PMCID: PMC11087339 DOI: 10.1007/s12035-023-03803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Few studies showed that neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), total tubulin-associated unit (TAU), and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) may be related to neurological manifestations and severity during and after SARS-CoV-2 infection. The objective of this work was to investigate the relationship among nervous system biomarkers (NfL, TAU, GFAP, and UCH-L1), biochemical parameters, and viral loads with heterogeneous outcomes in a cohort of severe COVID-19 patients admitted in Intensive Care Unit (ICU) of a university hospital. For that, 108 subjects were recruited within the first 5 days at ICU. In parallel, 16 mild COVID-19 patients were enrolled. Severe COVID-19 group was divided between "deceased" and "survivor." All subjects were positive for SARS-CoV-2 detection. NfL, total TAU, GFAP, and UCH-L1 quantification in plasma was performed using SIMOA SR-X platform. Of 108 severe patients, 36 (33.33%) presented neurological manifestation and 41 (37.96%) died. All four biomarkers - GFAP, NfL, TAU, and UCH-L1 - were significantly higher among deceased patients in comparison to survivors (p < 0.05). Analyzing biochemical biomarkers, higher Peak Serum Ferritin, D-Dimer Peak, Gamma-glutamyltransferase, and C-Reactive Protein levels were related to death (p < 0.0001). In multivariate analysis, GFAP, NfL, TAU, UCH-L1, and Peak Serum Ferritin levels were correlated to death. Regarding SARS-CoV-2 viral load, no statistical difference was observed for any group. Thus, Ferritin, NFL, GFAP, TAU, and UCH-L1 are early biomarkers of severity and lethality of SARS-COV-2 infection and may be important tools for therapeutic decision-making in the acute phase of disease.
Collapse
Affiliation(s)
- Andreza Lemos Salvio
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Renan Amphilophio Fernandes
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Helena França Alcaraz Ferreira
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Larissa Araujo Duarte
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Elisa Gouvea Gutman
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Jessica Vasques Raposo-Vedovi
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | | | | | | | - Maria Emília Cosenza Andraus
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - João Paulo da Costa Gonçalves
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Marta Guimarães Cavalcanti
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
- Epidemiology and Evaluation Service, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Marisa Pimentel Amaro
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
- School of Medicine, Post-Graduate Program in Infectious and Parasitic Diseases, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Rafael Kader
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
- School of Medicine, Post-Graduate Program in Infectious and Parasitic Diseases, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Roberto de Andrade Medronho
- Epidemiology and Evaluation Service, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | | | - Luciane Almeida Amado-Leon
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil.
| | - Soniza Vieira Alves-Leon
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil.
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil.
| |
Collapse
|
17
|
Lengacher NA, Tomlinson JJ, Jochum AK, Franz J, Hasan Ali O, Flatz L, Jochum W, Penninger J, Stadelmann C, Woulfe JM, Schlossmacher MG. Neuropathological assessment of the olfactory bulb and tract in individuals with COVID-19. Acta Neuropathol Commun 2024; 12:70. [PMID: 38698465 PMCID: PMC11067107 DOI: 10.1186/s40478-024-01761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/17/2024] [Indexed: 05/05/2024] Open
Abstract
The majority of patients with Parkinson disease (PD) experience a loss in their sense of smell and accumulate insoluble α-synuclein aggregates in their olfactory bulbs (OB). Subjects affected by a SARS-CoV-2-linked illness (COVID-19) also frequently experience hyposmia. We previously postulated that microglial activation as well as α-synuclein and tau misprocessing can occur during host responses following microbial encounters. Using semiquantitative measurements of immunohistochemical signals, we examined OB and olfactory tract specimens collected serially at autopsies between 2020 and 2023. Deceased subjects comprised 50 adults, which included COVID19 + patients (n = 22), individuals with Lewy body disease (e.g., PD; dementia with Lewy bodies (n = 6)), Alzheimer disease (AD; n = 3), and other neurodegenerative disorders (e.g., progressive supranuclear palsy (n = 2); multisystem atrophy (n = 1)). Further, we included neurologically healthy controls (n = 9), and added subjects with an inflammation-rich brain disorder as neurological controls (NCO; n = 7). When probing for microglial and histiocytic reactivity in the anterior olfactory nuclei (AON) by anti-CD68 immunostaining, scores were consistently elevated in NCO and AD cases. In contrast, microglial signals on average were not significantly altered in COVID19 + patients relative to healthy controls, although anti-CD68 reactivity in their OB and tracts declined with progression in age. Mild-to-moderate increases in phospho-α-synuclein and phospho-tau signals were detected in the AON of tauopathy- and synucleinopathy-afflicted brains, respectively, consistent with mixed pathology, as described by others. Lastly, when both sides were available for comparison in our case series, we saw no asymmetry in the degree of pathology of the left versus right OB and tracts. We concluded from our autopsy series that after a fatal course of COVID-19, microscopic changes in the rostral, intracranial portion of the olfactory circuitry -when present- reflected neurodegenerative processes seen elsewhere in the brain. In general, microglial reactivity correlated best with the degree of Alzheimer's-linked tauopathy and declined with progression of age in COVID19 + patients.
Collapse
Affiliation(s)
- Nathalie A Lengacher
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Julianna J Tomlinson
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Ann-Kristin Jochum
- Institute of Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Jonas Franz
- Neuropathology Institute, University of Goettingen Medical Centre, Goettingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Omar Hasan Ali
- Department of Life Sciences, University of British Columbia, Vancouver, BC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Wolfram Jochum
- Institute of Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Josef Penninger
- Department of Life Sciences, University of British Columbia, Vancouver, BC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Christine Stadelmann
- Neuropathology Institute, University of Goettingen Medical Centre, Goettingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - John M Woulfe
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| | - Michael G Schlossmacher
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
18
|
Singh H, Das A, Khan MM, Pourmotabbed T. New insights into the therapeutic approaches for the treatment of tauopathies. Neural Regen Res 2024; 19:1020-1026. [PMID: 37862204 PMCID: PMC10749630 DOI: 10.4103/1673-5374.385288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 10/22/2023] Open
Abstract
Tauopathies are a group of neurological disorders, including Alzheimer's disease and frontotemporal dementia, which involve progressive neurodegeneration, cognitive deficits, and aberrant tau protein accumulation. The development of tauopathies cannot currently be stopped or slowed down by treatment measures. Given the significant contribution of tau burden in primary tauopathies and the strong association between pathogenic tau accumulation and cognitive deficits, there has been a lot of interest in creating therapies that can alleviate tau pathology and render neuroprotective effects. Recently, small molecules, immunotherapies, and gene therapy have been used to reduce the pathological tau burden and prevent neurodegeneration in animal models of tauopathies. However, the major pitfall of the current therapeutic approach is the difficulty of drugs and gene-targeting modalities to cross the blood-brain barrier and their unintended side effects. In this review, the current therapeutic strategies used for tauopathies including the use of oligonucleotide-based gene therapy approaches that have shown a promising result for the treatment of tauopathies and Alzheimer's disease in preclinical animal models, have been discussed.
Collapse
Affiliation(s)
- Himanshi Singh
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, India
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, India
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tayebeh Pourmotabbed
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
19
|
Frontera JA, Betensky RA, Pirofski LA, Wisniewski T, Yoon H, Ortigoza MB. Trajectories of Inflammatory Markers and Post-COVID-19 Cognitive Symptoms: A Secondary Analysis of the CONTAIN COVID-19 Randomized Trial. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200227. [PMID: 38626359 PMCID: PMC11087048 DOI: 10.1212/nxi.0000000000200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND AND OBJECTIVES Chronic systemic inflammation has been hypothesized to be a mechanistic factor leading to post-acute cognitive dysfunction after COVID-19. However, little data exist evaluating longitudinal inflammatory markers. METHODS We conducted a secondary analysis of data collected from the CONTAIN randomized trial of convalescent plasma in patients hospitalized for COVID-19, including patients who completed an 18-month assessment of cognitive symptoms and PROMIS Global Health questionnaires. Patients with pre-COVID-19 dementia/cognitive abnormalities were excluded. Trajectories of serum cytokine panels, D-dimer, fibrinogen, C-reactive peptide (CRP), ferritin, lactate dehydrogenase (LDH), and absolute neutrophil counts (ANCs) were evaluated over 18 months using repeated measures and Friedman nonparametric tests. The relationships between the area under the curve (AUC) for each inflammatory marker and 18-month cognitive and global health outcomes were assessed. RESULTS A total of 279 patients (N = 140 received plasma, N = 139 received placebo) were included. At 18 months, 76/279 (27%) reported cognitive abnormalities and 78/279 (28%) reported fair or poor overall health. PROMIS Global Mental and Physical Health T-scores were 0.5 standard deviations below normal in 24% and 51% of patients, respectively. Inflammatory marker levels declined significantly from hospitalization to 18 months for all markers (IL-2, IL-2R, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-13, INFγ, TNFα, D-dimer, fibrinogen, ferritin, LDH, CRP, neutrophils; all p < 0.05), with the exception of IL-1β, which remained stable over time. There were no significant associations between the AUC for any inflammatory marker and 18-month cognitive symptoms, any neurologic symptom, or PROMIS Global Physical or Mental health T-scores. Receipt of convalescent plasma was not associated with any outcome measure. DISCUSSION At 18 months posthospitalization for COVID-19, cognitive abnormalities were reported in 27% of patients, and below average PROMIS Global Mental and Physical Health scores occurred in 24% and 51%, respectively. However, there were no associations with measured inflammatory markers, which decreased over time.
Collapse
Affiliation(s)
- Jennifer A Frontera
- From the Department of Neurology (J.A.F., T.W.), New York University Grossman School of Medicine; Department of Biostatistics (R.A.B.), NYU; Division of Infectious Disease (L.P.), Department of Medicine, Montefiore Medical Center; Department of Microbiology and Immunology; Division of Infectious Disease (H.Y.), Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx; and Division of Infectious Disease (M.B.O.), Department of Medicine, NYU Grossman School of Medicine, New York
| | - Rebecca A Betensky
- From the Department of Neurology (J.A.F., T.W.), New York University Grossman School of Medicine; Department of Biostatistics (R.A.B.), NYU; Division of Infectious Disease (L.P.), Department of Medicine, Montefiore Medical Center; Department of Microbiology and Immunology; Division of Infectious Disease (H.Y.), Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx; and Division of Infectious Disease (M.B.O.), Department of Medicine, NYU Grossman School of Medicine, New York
| | - Liise-Anne Pirofski
- From the Department of Neurology (J.A.F., T.W.), New York University Grossman School of Medicine; Department of Biostatistics (R.A.B.), NYU; Division of Infectious Disease (L.P.), Department of Medicine, Montefiore Medical Center; Department of Microbiology and Immunology; Division of Infectious Disease (H.Y.), Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx; and Division of Infectious Disease (M.B.O.), Department of Medicine, NYU Grossman School of Medicine, New York
| | - Thomas Wisniewski
- From the Department of Neurology (J.A.F., T.W.), New York University Grossman School of Medicine; Department of Biostatistics (R.A.B.), NYU; Division of Infectious Disease (L.P.), Department of Medicine, Montefiore Medical Center; Department of Microbiology and Immunology; Division of Infectious Disease (H.Y.), Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx; and Division of Infectious Disease (M.B.O.), Department of Medicine, NYU Grossman School of Medicine, New York
| | - Hyunah Yoon
- From the Department of Neurology (J.A.F., T.W.), New York University Grossman School of Medicine; Department of Biostatistics (R.A.B.), NYU; Division of Infectious Disease (L.P.), Department of Medicine, Montefiore Medical Center; Department of Microbiology and Immunology; Division of Infectious Disease (H.Y.), Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx; and Division of Infectious Disease (M.B.O.), Department of Medicine, NYU Grossman School of Medicine, New York
| | - Mila B Ortigoza
- From the Department of Neurology (J.A.F., T.W.), New York University Grossman School of Medicine; Department of Biostatistics (R.A.B.), NYU; Division of Infectious Disease (L.P.), Department of Medicine, Montefiore Medical Center; Department of Microbiology and Immunology; Division of Infectious Disease (H.Y.), Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx; and Division of Infectious Disease (M.B.O.), Department of Medicine, NYU Grossman School of Medicine, New York
| |
Collapse
|
20
|
Grote K, Schaefer AC, Soufi M, Ruppert V, Linne U, Mukund Bhagwat A, Szymanski W, Graumann J, Gercke Y, Aldudak S, Hilfiker-Kleiner D, Schieffer E, Schieffer B. Targeting the High-Density Lipoprotein Proteome for the Treatment of Post-Acute Sequelae of SARS-CoV-2. Int J Mol Sci 2024; 25:4522. [PMID: 38674105 PMCID: PMC11049911 DOI: 10.3390/ijms25084522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Here, we target the high-density lipoprotein (HDL) proteome in a case series of 16 patients with post-COVID-19 symptoms treated with HMG-Co-A reductase inhibitors (statin) plus angiotensin II type 1 receptor blockers (ARBs) for 6 weeks. Patients suffering from persistent symptoms (post-acute sequelae) after serologically confirmed SARS-CoV-2 infection (post-COVID-19 syndrome, PCS, n = 8) or following SARS-CoV-2 vaccination (PVS, n = 8) were included. Asymptomatic subjects with corresponding serological findings served as healthy controls (n = 8/8). HDL was isolated using dextran sulfate precipitation and the HDL proteome of all study participants was analyzed quantitatively by mass spectrometry. Clinical symptoms were assessed using questionnaires before and after therapy. The inflammatory potential of the patients' HDL proteome was addressed in human endothelial cells. The HDL proteome of patients with PCS and PVS showed no significant differences; however, compared to controls, the HDL from PVS/PCS patients displayed significant alterations involving hemoglobin, cytoskeletal proteins (MYL6, TLN1, PARVB, TPM4, FLNA), and amyloid precursor protein. Gene Ontology Biological Process (GOBP) enrichment analysis identified hemostasis, peptidase, and lipoprotein regulation pathways to be involved. Treatment of PVS/PCS patients with statins plus ARBs improved the patients' clinical symptoms. After therapy, three proteins were significantly increased (FAM3C, AT6AP2, ADAM10; FDR < 0.05) in the HDL proteome from patients with PVS/PCS. Exposure of human endothelial cells with the HDL proteome from treated PVS/PCS patients revealed reduced inflammatory cytokine and adhesion molecule expression. Thus, HDL proteome analysis from PVS/PCS patients enables a deeper insight into the underlying disease mechanisms, pointing to significant involvement in metabolic and signaling disturbances. Treatment with statins plus ARBs improved clinical symptoms and reduced the inflammatory potential of the HDL proteome. These observations may guide future therapeutic strategies for PVS/PCS patients.
Collapse
Affiliation(s)
- Karsten Grote
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Ann-Christin Schaefer
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Muhidien Soufi
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Volker Ruppert
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Uwe Linne
- Mass Spectrometry Facility, Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany;
| | - Aditya Mukund Bhagwat
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps University Marburg, 35043 Marburg, Germany (W.S.)
| | - Witold Szymanski
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps University Marburg, 35043 Marburg, Germany (W.S.)
| | - Johannes Graumann
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps University Marburg, 35043 Marburg, Germany (W.S.)
| | - Yana Gercke
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Sümeya Aldudak
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Denise Hilfiker-Kleiner
- Institute Cardiovascular Complications in Pregnancy and Oncologic Therapies, Philipps University Marburg, 35043 Marburg, Germany;
| | - Elisabeth Schieffer
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Bernhard Schieffer
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| |
Collapse
|
21
|
Yehia A, Abulseoud OA. Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol Neurodegener 2024; 19:36. [PMID: 38641847 PMCID: PMC11031980 DOI: 10.1186/s13024-024-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA.
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
22
|
Wang W, Cui R, Leng L, Wang G, Peng G. Cognitive Impairment in the Post-Acute Phases of COVID-19 and Mechanisms: An Introduction and Narrative Review. J Alzheimers Dis Rep 2024; 8:647-658. [PMID: 38746637 PMCID: PMC11091721 DOI: 10.3233/adr-230172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/10/2024] [Indexed: 01/06/2025] Open
Abstract
Cognitive impairment is a primary manifestation of neurological symptoms associated with COVID-19 and may occur after disease resolution. Although cognitive impairment has been extensively reported in the literature, its duration and rate of remission remain controversial. This study discusses the various factors that influence cognitive impairment, including demographic characteristics, genetics, as well as disease course and severity. Furthermore, imaging and laboratory data have suggested various associations with cognitive impairment, most notably changes in EEG patterns, PET imaging, and serum markers. Some findings suggest similarities and potential links between COVID-related cognitive impairment and Alzheimer's disease. Moreover, this study reviews the various mechanisms proposed to explain the development of cognitive impairment in COVID-19, including cytokine storm, damage to the blood-brain barrier, compromise of small vessel integrity, hypoxic conditions, and immune dysregulation.
Collapse
Affiliation(s)
- Weiye Wang
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruxin Cui
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luming Leng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Wang
- Department of Neurology, RuiJin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Rajwa B, Naved MMA, Adibuzzaman M, Grama AY, Khan BA, Dundar MM, Rochet JC. Identification of predictive patient characteristics for assessing the probability of COVID-19 in-hospital mortality. PLOS DIGITAL HEALTH 2024; 3:e0000327. [PMID: 38652722 PMCID: PMC11037536 DOI: 10.1371/journal.pdig.0000327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
As the world emerges from the COVID-19 pandemic, there is an urgent need to understand patient factors that may be used to predict the occurrence of severe cases and patient mortality. Approximately 20% of SARS-CoV-2 infections lead to acute respiratory distress syndrome caused by the harmful actions of inflammatory mediators. Patients with severe COVID-19 are often afflicted with neurologic symptoms, and individuals with pre-existing neurodegenerative disease have an increased risk of severe COVID-19. Although collectively, these observations point to a bidirectional relationship between severe COVID-19 and neurologic disorders, little is known about the underlying mechanisms. Here, we analyzed the electronic health records of 471 patients with severe COVID-19 to identify clinical characteristics most predictive of mortality. Feature discovery was conducted by training a regularized logistic regression classifier that serves as a machine-learning model with an embedded feature selection capability. SHAP analysis using the trained classifier revealed that a small ensemble of readily observable clinical features, including characteristics associated with cognitive impairment, could predict in-hospital mortality with an accuracy greater than 0.85 (expressed as the area under the ROC curve of the classifier). These findings have important implications for the prioritization of clinical measures used to identify patients with COVID-19 (and, potentially, other forms of acute respiratory distress syndrome) having an elevated risk of death.
Collapse
Affiliation(s)
- Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
| | | | - Mohammad Adibuzzaman
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ananth Y. Grama
- Dept. of Computer Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Babar A. Khan
- Regenstrief Institute, Indianapolis, Indiana, United States of America
| | - M. Murat Dundar
- Dept. of Computer and Information Science, IUPUI, Indianapolis, Indiana, United States of America
| | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
- Borch Dept. of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
24
|
Zayeri ZD, Torabizadeh M, Kargar M, Kazemi H. The molecular fingerprint of neuroinflammation in COVID-19: A comprehensive discussion on molecular mechanisms of neuroinflammation due to SARS-COV2 antigens. Behav Brain Res 2024; 462:114868. [PMID: 38246395 DOI: 10.1016/j.bbr.2024.114868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND AND OBJECTIVE Severe acute respiratory syndrome coronavirus 2 attacks the neural system directly and indirectly via various systems, such as the nasal cavity, olfactory system, and facial nerves. Considering the high energy requirement, lack of antioxidant defenses, and high amounts of metal ions in the brain, oxidative damage is very harmful to the brain. Various neuropathic pain conditions, neurological disorders, and neuropsychiatric complications were reported in Coronavirus disease 2019, prolonged Coronavirus disease 2019, and after Coronavirus disease 2019 immunization. This manuscript offers a distinctive outlook on the interconnectedness between neurology and neuropsychiatry through its meticulous analysis of complications. DISCUSSION After recovering from Coronavirus disease 2019, approximately half of the patients reported developing Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Long Coronavirus disease 2019 imaging reports illustrated the hypometabolism in various parts of the brain, such as olfactory bulbs, limbic/paralimbic domains, the brainstem, and the cerebellum. Ninety imaging and neuropathological studies of Coronavirus disease 2019 have shown evidence of white matter, brainstem, frontotemporal, and oculofrontal lesions. Emotional functions, such as pleasant, long/short-term memory, movement, cognition and cognition in decision-making are controlled by these regions. The neuroinflammation and the mechanisms of defense are well presented in the discussion. The role of microglia activation, Inducible NO synthase, Cyclooxygenases ½, Reactive oxygen species, neurotoxic toxins and pro-inflammatory cytokines, such as Interleukin-1 beta, Interleukin-6 and Tumor Necrosis Factor-alpha are highlighted in neuronal dysfunction and death. Nuclear factor kappa-light-chain-enhancer of activated B cells, Mitogen-activated protein kinase, Activator Protein 1, and Interferon regulatory factors are the main pathways involved in microglia activation in Coronavirus disease 2019 neuroinflammation. CONCLUSION The neurological aspect of Coronavirus disease 2019 should be highlighted. Neurological, psychological, and behavioral aspects of Coronavirus disease 2019, prolonged Coronavirus disease 2019, and Coronavirus disease 2019 vaccines can be the upcoming issues. We need a global awareness where this aspect of the disease should be more considered in health research.
Collapse
Affiliation(s)
- Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mehdi Torabizadeh
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Kargar
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hashem Kazemi
- Department of Biology, Dezful Branch, Islamic Azad University, Dezful, Iran
| |
Collapse
|
25
|
Plantone D, Stufano A, Righi D, Locci S, Iavicoli I, Lovreglio P, De Stefano N. Neurofilament light chain and glial fibrillary acid protein levels are elevated in post-mild COVID-19 or asymptomatic SARS-CoV-2 cases. Sci Rep 2024; 14:6429. [PMID: 38499607 PMCID: PMC10948776 DOI: 10.1038/s41598-024-57093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
Given the huge impact of the COVID-19 pandemic, it appears of paramount importance to assess the cognitive effects on the population returning to work after COVID-19 resolution. Serum levels of neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) represent promising biomarkers of neuro-axonal damage and astrocytic activation. In this cohort study, we explored the association between sNfL and sGFAP concentrations and cognitive performance in a group of 147 adult workers with a previous asymptomatic SARS-CoV-2 infection or mild COVID-19, one week and, in 49 of them, ten months after SARS-Cov2 negativization and compared them to a group of 82 age and BMI-matched healthy controls (HCs). sNfL and sGFAP concentrations were assessed using SimoaTM assay Neurology 2-Plex B Kit. COVID-19 patients were interviewed one-on-one by trained physicians and had to complete a list of questionnaires, including the Cognitive Failure Questionnaire (CFQ). At the first assessment (T0), sNfL and sGFAP levels were significantly higher in COVID-19 patients than in HCs (p < 0.001 for both). The eleven COVID-19 patients with cognitive impairment had significantly higher levels of sNfL and sGFAP than the others (p = 0.005 for both). At the subsequent follow-up (T1), sNfL and sGFAP levels showed a significant decrease (median sNfL 18.3 pg/mL; median sGFAP 77.2 pg/mL), although they were still higher than HCs (median sNfL 7.2 pg/mL, median sGFAP 63.5 pg/mL). Our results suggest an ongoing damage involving neurons and astrocytes after SARS-Cov2 negativization, which reduce after ten months even if still evident compared to HCs.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery, Neuroscience University of Siena, Siena, Italy.
| | - Angela Stufano
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Delia Righi
- Department of Medicine, Surgery, Neuroscience University of Siena, Siena, Italy
| | - Sara Locci
- Department of Medicine, Surgery, Neuroscience University of Siena, Siena, Italy
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Piero Lovreglio
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery, Neuroscience University of Siena, Siena, Italy
| |
Collapse
|
26
|
Vavougios GD, Tseriotis VS, Liampas A, Mavridis T, de Erausquin GA, Hadjigeorgiou G. Type I interferon signaling, cognition and neurodegeneration following COVID-19: update on a mechanistic pathogenetic model with implications for Alzheimer's disease. Front Hum Neurosci 2024; 18:1352118. [PMID: 38562226 PMCID: PMC10982434 DOI: 10.3389/fnhum.2024.1352118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
COVID-19's effects on the human brain reveal a multifactorial impact on cognition and the potential to inflict lasting neuronal damage. Type I interferon signaling, a pathway that represents our defense against pathogens, is primarily affected by COVID-19. Type I interferon signaling, however, is known to mediate cognitive dysfunction upon its dysregulation following synaptopathy, microgliosis and neuronal damage. In previous studies, we proposed a model of outside-in dysregulation of tonic IFN-I signaling in the brain following a COVID-19. This disruption would be mediated by the crosstalk between central and peripheral immunity, and could potentially establish feed-forward IFN-I dysregulation leading to neuroinflammation and potentially, neurodegeneration. We proposed that for the CNS, the second-order mediators would be intrinsic disease-associated molecular patterns (DAMPs) such as proteopathic seeds, without the requirement of neuroinvasion to sustain inflammation. Selective vulnerability of neurogenesis sites to IFN-I dysregulation would then lead to clinical manifestations such as anosmia and cognitive impairment. Since the inception of our model at the beginning of the pandemic, a growing body of studies has provided further evidence for the effects of SARS-CoV-2 infection on the human CNS and cognition. Several preclinical and clinical studies have displayed IFN-I dysregulation and tauopathy in gene expression and neuropathological data in new cases, correspondingly. Furthermore, neurodegeneration identified with a predilection for the extended olfactory network furthermore supports the neuroanatomical concept of our model, and its independence from fulminant neuroinvasion and encephalitis as a cause of CNS damage. In this perspective, we summarize the data on IFN-I as a plausible mechanism of cognitive impairment in this setting, and its potential contribution to Alzheimer's disease and its interplay with COVID-19.
Collapse
Affiliation(s)
- George D. Vavougios
- Department of Neurology, Medical School, University of Cyprus, Lefkosia, Cyprus
| | | | - Andreas Liampas
- Department of Neurology, Medical School, University of Cyprus, Lefkosia, Cyprus
| | - Theodore Mavridis
- Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital Dublin, Incorporating the National Children's Hospital (AMNCH), Dublin, Ireland
| | - Gabriel A. de Erausquin
- Laboratory of Brain Development, Modulation and Repair, The Glenn Biggs Institute of Alzheimer's and Neurodegenerative Disorders, Joe R. and Teresa Lozano Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | | |
Collapse
|
27
|
Boesl F, Goereci Y, Schweitzer F, Finke C, Schild AK, Bittner S, Steffen F, Schröder M, Quitschau A, Heine J, Warnke C, Franke C. Cognitive decline in post-COVID-19 syndrome does not correspond with persisting neuronal or astrocytic damage. Sci Rep 2024; 14:5326. [PMID: 38438479 PMCID: PMC10912552 DOI: 10.1038/s41598-024-55881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
Cognitive impairment is the most frequent symptom reported in post-COVID-19 syndrome (PCS). Aetiology of cognitive impairment in PCS is still to be determined. Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are increased in acute COVID-19. Their role as biomarkers in other neurological disorders is under debate. We analysed serum levels of NfL and GFAP as markers for neuronal and astrocytic damage in 53 patients presenting to a PCS Neurology outpatient clinic. Only individuals with self-reported cognitive complaints were included. In these individuals, cognitive complaints were further assessed by comprehensive neuropsychological assessment (NPA). Patients were categorized into subgroups of subjective cognitive decline, single domain impairment, or multi-domain impairment. Serum NfL was in normal range, however an increase of serum GFAP was detected in 4% of patients. Serum NfL and GFAP levels correlated with each other, even when adjusting for patient age (r = 0.347, p = 0.012). NPA showed deficits in 70%; 40% showing impairment in several tested domains. No significant differences were found between serum NfL- and GFAP-levels comparing patients with subjective cognitive decline, single domain impairment, or multi-domain impairment. Persistent neuronal or astrocytic damage did not correlate with cognitive impairment in PCS.
Collapse
Affiliation(s)
- Fabian Boesl
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Yasemin Goereci
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Finja Schweitzer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carsten Finke
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Ann-Katrin Schild
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Rhine-Main Neuroscience Network (rmn2), Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Rhine-Main Neuroscience Network (rmn2), Mainz, Germany
| | - Maria Schröder
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Anneke Quitschau
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Josephine Heine
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Clemens Warnke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christiana Franke
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
28
|
Duindam HB, Mengel D, Kox M, Göpfert JC, Kessels RPC, Synofzik M, Pickkers P, Abdo WF. Systemic inflammation relates to neuroaxonal damage associated with long-term cognitive dysfunction in COVID-19 patients. Brain Behav Immun 2024; 117:510-520. [PMID: 38336025 DOI: 10.1016/j.bbi.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Cognitive deficits are increasingly recognized as a long-term sequela of severe COVID-19. The underlying processes and molecular signatures associated with these long-term neurological sequalae of COVID-19 remain largely unclear, but may be related to systemic inflammation-induced effects on the brain. We studied the systemic inflammation-brain interplay and its relation to development of long-term cognitive impairment in patients who survived severe COVID-19. Trajectories of systemic inflammation and neuroaxonal damage blood biomarkers during ICU admission were analyzed and related to long-term cognitive outcomes. METHODS Prospective longitudinal cohort study of patients with severe COVID-19 surviving ICU admission. During admission, blood was sampled consecutively to assess levels of inflammatory cytokines and neurofilament light chain (NfL) using an ultrasensitive multiplex Luminex assay and single molecule array technique (Simoa). Cognitive functioning was evaluated using a comprehensive neuropsychological assessment six months after ICU-discharge. RESULTS Ninety-six patients (median [IQR] age 61 [55-69] years) were enrolled from March 2020 to June 2021 and divided into two cohorts: those who received no COVID-19-related immunotherapy (n = 28) and those treated with either dexamethasone or dexamethasone and tocilizumab (n = 68). Plasma NfL concentrations increased in 95 % of patients during their ICU stay, from median [IQR] 23 [18-38] pg/mL at admission to 250 [160-271] pg/mL after 28 days, p < 0.001. Besides age, glomerular filtration rate, immunomodulatory treatment, and C-reactive protein, more specific markers of systemic inflammation at day 14 (i.e., interleukin (IL)-8, tumour necrosis factor, and IL-1 receptor antagonist) were significant predictors of blood NfL levels at day 14 of ICU admission (R2 = 44 %, p < 0.001), illustrating the association between sustained systemic inflammation and neuroaxonal damage. Twenty-six patients (27 %) exhibited cognitive impairment six months after discharge from the ICU. NfL concentrations showed a more pronounced increase in patients that developed cognitive impairment (p = 0.03). Higher NfL predicted poorer outcome in information processing speed (Trail Making Test A, r = -0.26, p = 0.01; Letter Digit Substitution Test, r = -0.24, p = 0.02). DISCUSSION Prolonged systemic inflammation in critically ill COVID-19 patients is related to neuroaxonal damage and subsequent long-term cognitive impairment. Moreover, our findings suggest that plasma NfL concentrations during ICU stay may possess prognostic value in predicting future long-term cognitive impairment in patients that survived severe COVID-19.
Collapse
Affiliation(s)
- H B Duindam
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands
| | - D Mengel
- Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - M Kox
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands
| | - J C Göpfert
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - R P C Kessels
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Radboud University Medical Center, Department of Medical Psychology and Radboudumc Alzheimer Center, Nijmegen, the Netherlands; Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands
| | - M Synofzik
- Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - P Pickkers
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands
| | - W F Abdo
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands.
| |
Collapse
|
29
|
Whitson HE, Banks WA, Diaz MM, Frost B, Kellis M, Lathe R, Schmader KE, Spudich SS, Tanzi R, Garden G. New approaches for understanding the potential role of microbes in Alzheimer's disease. Brain Behav Immun Health 2024; 36:100743. [PMID: 38435720 PMCID: PMC10906156 DOI: 10.1016/j.bbih.2024.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Alzheimer's disease (AD) involves a complex pathological process that evolves over years, and its etiology is understood as a classic example of gene-environment interaction. The notion that exposure to microbial organisms may play some role in AD pathology has been proposed and debated for decades. New evidence from model organisms and -omic studies, as well as epidemiological data from the recent COVID-19 pandemic and widespread use of vaccines, offers new insights into the "germ hypothesis" of AD. To review new evidence and identify key research questions, the Duke/University of North Carolina (Duke/UNC) Alzheimer's Disease Research Center hosted a virtual symposium and workshop: "New Approaches for Understanding the Potential Role of Microbes in Alzheimer's disease." Discussion centered around the antimicrobial protection hypothesis of amyloid accumulation, and other mechanisms by which microbes could influence AD pathology including immune cell activation, changes in blood-brain barrier, or direct neurotoxicity. This summary of proceedings reviews the content presented in the symposium and provides a summary of major topics and key questions discussed in the workshop.
Collapse
Affiliation(s)
- Heather E. Whitson
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Busse Bldg Rm 3502, Durham, NC, 27710, USA
- Durham VA Medical Center, Geriatric Research Education and Clinical Center, 508 Fulton Street, Durham, NC, 27705, USA
| | - William A. Banks
- Veterans Affairs Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
| | - Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill, 170 Manning Dr, CB 7025, Chapel Hill, NC, 27599, USA
| | - Bess Frost
- Barshop Institute for Longevity & Aging Studies, 4939 Charles Katz Rm 1041, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St., Cambridge, MA, 02139, USA
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh BioQuarter, Little France, Edinburgh, EH16 4SB, UK
| | - Kenneth E. Schmader
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Busse Bldg Rm 3502, Durham, NC, 27710, USA
- Durham VA Medical Center, Geriatric Research Education and Clinical Center, 508 Fulton Street, Durham, NC, 27705, USA
| | - Serena S. Spudich
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300, New Haven, CT, 06510, USA
| | - Rudolph Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital, 114 16th Street, Charlestown, MA, 02129, USA
| | - Gwenn Garden
- University of North Carolina - Dept of Neurology, 170 Manning Drive, Campus Box 7025, Chapel Hill, NC, 27599-7025, USA
| |
Collapse
|
30
|
Shajahan SR, Kumar S, Ramli MDC. Unravelling the connection between COVID-19 and Alzheimer's disease: a comprehensive review. Front Aging Neurosci 2024; 15:1274452. [PMID: 38259635 PMCID: PMC10800459 DOI: 10.3389/fnagi.2023.1274452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Currently, there exists a limited comprehension regarding the correlation between COVID-19 and Alzheimer's disease (AD). To elucidate the interrelationship and its impact on outcomes, a comprehensive investigation was carried out utilising time-unrestricted searches of reputable databases such as Scopus, PubMed, Web of Science, and Google Scholar. Our objective was to evaluate the impact of various medical conditions on severe COVID-19-related events. We focused on identifying and analysing articles that discussed the clinical characteristics of COVID-19 patients, particularly those pertaining to severe events such as ICU admission, mechanical ventilation, pneumonia, mortality and acute respiratory distress syndrome (ARDS) a serious lung condition that causes low blood oxygen. Through careful data analysis and information gathering, we tried to figure out how likely it was that people with conditions, like AD, would have serious events. Our research investigated potential mechanisms that link AD and COVID-19. The ability of the virus to directly invade the central nervous system and the role of ACE-2 receptors were investigated. Furthermore, the OAS1 gene served as the genetic link between AD and COVID-19. In the context of COVID-19, our findings suggest that individuals with AD may be more susceptible to experiencing severe outcomes. Consequently, it is crucial to provide personalised care and management for this demographic. Further investigation is required to attain a comprehensive comprehension of the intricate correlation between Alzheimer's disease and COVID-19, as well as its ramifications for patient outcomes.
Collapse
Affiliation(s)
- Shah Rezlan Shajahan
- School of Graduate Studies, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Suresh Kumar
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Muhammad Danial Che Ramli
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Selangor, Malaysia
| |
Collapse
|
31
|
Tavares-Júnior JWL, Ciurleo GCV, Feitosa EDAAF, Oriá RB, Braga-Neto P. The Clinical Aspects of COVID and Alzheimer's Disease: A Round-Up of Where Things Stand and Are Headed. J Alzheimers Dis 2024; 99:1159-1171. [PMID: 38848177 DOI: 10.3233/jad-231368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The link between long COVID-19 and brain/cognitive impairments is concerning and may foster a worrisome worldwide emergence of novel cases of neurodegenerative diseases with aging. This review aims to update the knowledge, crosstalk, and possible intersections between the Post-COVID Syndrome (PCS) and Alzheimer's disease (AD). References included in this review were obtained from PubMed searches conducted between October 2023 and November 2023. PCS is a very heterogenous and poorly understood disease with recent evidence of a possible association with chronic diseases such as AD. However, more scientific data is required to establish the link between PCS and AD.
Collapse
Affiliation(s)
| | - Gabriella Cunha Vieira Ciurleo
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Department of Morphology and Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Reinaldo B Oriá
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Department of Morphology and Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Pedro Braga-Neto
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Center of Health Sciences, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
32
|
Choi CY, Gadhave K, Villano J, Pekosz A, Mao X, Jia H. Generation and characterization of a humanized ACE2 mouse model to study long-term impacts of SARS-CoV-2 infection. J Med Virol 2024; 96:e29349. [PMID: 38185937 PMCID: PMC10783855 DOI: 10.1002/jmv.29349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
Although the COVID-19 pandemic has officially ended, the persistent challenge of long-COVID or post-acute COVID sequelae (PASC) continues to impact societies globally, highlighting the urgent need for ongoing research into its mechanisms and therapeutic approaches. Our team has recently developed a novel humanized ACE2 mouse model (hACE2ki) designed explicitly for long-COVID/PASC research. This model exhibits human ACE2 expression in tissue and cell-specific patterns akin to mouse Ace2. When we exposed young adult hACE2ki mice (6 weeks old) to various SARS-CoV-2 lineages, including WA, Delta, and Omicron, at a dose of 5 × 105 PFU/mouse via nasal instillation, the mice demonstrated distinctive phenotypes characterized by differences in viral load in the lung, trachea, and nasal turbinate, weight loss, and changes in pro-inflammatory cytokines and immune cell profiles in bronchoalveolar lavage fluid. Notably, no mortality was observed in this age group. Further, to assess the model's relevance for long-COVID studies, we investigated tau protein pathologies, which are linked to Alzheimer's disease, in the brains of these mice post SARS-CoV-2 infection. Our findings revealed the accumulation and longitudinal propagation of tau, confirming the potential of our hACE2ki mouse model for preclinical studies of long-COVID.
Collapse
Affiliation(s)
- Chang-Yong Choi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School, of Medicine, Baltimore, MD 21205, USA
| | - Kundlik Gadhave
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jason Villano
- Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Xiaobo Mao
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for NanoBioTechnology, Department of Material Science and Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School, of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
33
|
Halloway S, Evans DA, Desai P, Dhana K, Beck T, Rajan KB. Serum total tau, neurofilament light, and glial fibrillary acidic protein are associated with mortality in a population study. J Am Geriatr Soc 2024; 72:149-159. [PMID: 37818793 PMCID: PMC10842309 DOI: 10.1111/jgs.18632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Total tau (t-tau), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP) are neuronal cytoskeletal biomarkers that may indicate greater risk of poor outcomes in age-related conditions, including mortality. Health disparities experienced by some racial minority subgroups may influence biomarker expression and effects on longevity. We aimed to examine (a) associations of serum t-tau, NfL, and GFAP with overall and cardiovascular mortality and (b) differences in associations by racial background. METHODS Data came from 1327 older participants from the Chicago Health and Aging Project (CHAP), a longitudinal population-based study. Cox proportional hazards regression models were used to examine associations between concentrations of serum t-tau, NfL, and GFAP biomarker(s) and mortality (overall/cardiovascular mortality based on age at death). Interaction terms were used to examine differences between African-American and European-American participants. Models were adjusted for age, sex, education, the APOE-ε4 allele, body mass index, chronic health conditions, and cognitive and physical functioning. RESULTS Models showed that fivefold higher concentrations of t-tau (HR = 1.46, 95% CI: 1.27, 1.68), NfL (HR = 2.13, 95% CI: 1.76, 2.58), and GFAP (HR = 1.43, 95% CI: 1.08, 1.90) were separately associated with increased risk of overall mortality, with higher risk in African Americans in t-tau or NfL. In models with all biomarkers, NfL (HR = 2.17, 95% CI: 1.65, 2.85) was associated with risk of overall mortality, with racial differences in t-tau. Higher concentrations of t-tau (HR = 1.32, 95% CI: 1.02, 1.70), NfL (HR = 1.95, 95% CI: 1.40, 2.72), and GFAP (HR = 1.87, 95% CI: 1.18, 2.98) were separately associated with risk of cardiovascular mortality, with racial differences in t-tau, NfL, or GFAP. In combined models, NfL (HR = 1.73, 95% CI: 1.08, 2.78) was associated with cardiovascular mortality. CONCLUSIONS Serum t-tau, NfL, and GFAP may be early indicators for mortality outcomes among older adults, with racial differences among associations.
Collapse
Affiliation(s)
- Shannon Halloway
- University of Illinois Chicago College of Nursing, University of Illinois Chicago, Chicago, IL
| | - Denis A. Evans
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Pankaja Desai
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Klodian Dhana
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Todd Beck
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Kumar B. Rajan
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL
- Department of Neurology, University of California at Davis, Davis, CA
| |
Collapse
|
34
|
Taquet M, Skorniewska Z, Zetterberg H, Geddes JR, Mummery CJ, Chalmers JD, Ho LP, Horsley A, Marks M, Poinasamy K, Raman B, Leavy OC, Richardson M, Elneima O, McAuley HJC, Shikotra A, Singapuri A, Sereno M, Saunders RM, Harris VC, Houchen-Wolloff L, Mansoori P, Greening NJ, Harrison EM, Docherty AB, Lone NI, Quint J, Greenhalf W, Wain LV, Brightling CE, Evans RE, Harrison PJ, Koychev I. Post-acute COVID-19 neuropsychiatric symptoms are not associated with ongoing nervous system injury. Brain Commun 2023; 6:fcad357. [PMID: 38229877 PMCID: PMC10789589 DOI: 10.1093/braincomms/fcad357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/23/2023] [Accepted: 12/23/2023] [Indexed: 01/18/2024] Open
Abstract
A proportion of patients infected with severe acute respiratory syndrome coronavirus 2 experience a range of neuropsychiatric symptoms months after infection, including cognitive deficits, depression and anxiety. The mechanisms underpinning such symptoms remain elusive. Recent research has demonstrated that nervous system injury can occur during COVID-19. Whether ongoing neural injury in the months after COVID-19 accounts for the ongoing or emergent neuropsychiatric symptoms is unclear. Within a large prospective cohort study of adult survivors who were hospitalized for severe acute respiratory syndrome coronavirus 2 infection, we analysed plasma markers of nervous system injury and astrocytic activation, measured 6 months post-infection: neurofilament light, glial fibrillary acidic protein and total tau protein. We assessed whether these markers were associated with the severity of the acute COVID-19 illness and with post-acute neuropsychiatric symptoms (as measured by the Patient Health Questionnaire for depression, the General Anxiety Disorder assessment for anxiety, the Montreal Cognitive Assessment for objective cognitive deficit and the cognitive items of the Patient Symptom Questionnaire for subjective cognitive deficit) at 6 months and 1 year post-hospital discharge from COVID-19. No robust associations were found between markers of nervous system injury and severity of acute COVID-19 (except for an association of small effect size between duration of admission and neurofilament light) nor with post-acute neuropsychiatric symptoms. These results suggest that ongoing neuropsychiatric symptoms are not due to ongoing neural injury.
Collapse
Affiliation(s)
- Maxime Taquet
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford OX3 7JX, UK
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal 413 90, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 413 90, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1N 3BG, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - John R Geddes
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Catherine J Mummery
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
| | - James D Chalmers
- University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, University of Oxford, Oxford OX3 9DS, UK
| | - Alex Horsley
- Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Michael Marks
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Hospital for Tropical Diseases, University College London Hospital, London WC1E 6JD, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | | | - Betty Raman
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Olivia C Leavy
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Matthew Richardson
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Omer Elneima
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Hamish J C McAuley
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Aarti Shikotra
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE5 4PW, UK
| | - Amisha Singapuri
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Marco Sereno
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Ruth M Saunders
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Victoria Claire Harris
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
- University Hospitals of Leicester NHS Trust, Leicester LE5 4PW, UK
| | - Linzy Houchen-Wolloff
- Centre for Exercise and Rehabilitation Science, NIHR Leicester Biomedical Research Centre-Respiratory, University of Leicester, Leicester LE5 4PW, UK
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK
- Therapy Department, University Hospitals of Leicester, NHS Trust, Leicester LE5 4PW, UK
| | | | - Neil J Greening
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Ewen M Harrison
- Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh EH16 4SS, UK
| | - Annemarie B Docherty
- Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh EH16 4SS, UK
| | - Nazir I Lone
- Usher Institute, University of Edinburgh, Edinburgh EH16 4SS, UK
- Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh EH16 4SA, UK
| | - Jennifer Quint
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - William Greenhalf
- University of Liverpool, Liverpool L69 3BX, UK
- The CRUK Liverpool Experimental Cancer Medicine Centre, Liverpool L69 3GL, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8YE, UK
| | - Louise V Wain
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Christopher E Brightling
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
| | - Rachael E Evans
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK
- University Hospitals of Leicester NHS Trust, Leicester LE5 4PW, UK
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| |
Collapse
|
35
|
Zhang S, Zhang L, Ma L, Wu H, Liu L, He X, Gao M, Li R. Neuropsychological, plasma marker, and functional connectivity changes in Alzheimer's disease patients infected with COVID-19. Front Aging Neurosci 2023; 15:1302281. [PMID: 38187359 PMCID: PMC10766841 DOI: 10.3389/fnagi.2023.1302281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Patients with COVID-19 may experience various neurological conditions, including cognitive impairment, encephalitis, and stroke. This is particularly significant in individuals who already have Alzheimer's disease (AD), as the cognitive impairments can be more pronounced in these cases. However, the extent and underlying mechanisms of cognitive impairments in COVID-19-infected AD patients have yet to be fully investigated through clinical and neurophysiological approaches. Methods This study included a total of 77 AD patients. Cognitive functions were assessed using neuropsychiatric scales for all participants, and plasma biomarkers of amyloid protein and tau protein were measured in a subset of 25 participants. To investigate the changes in functional brain connectivity induced by COVID-19 infection, a cross-sectional neuroimaging design was conducted involving a subset of 37 AD patients, including a control group of 18 AD participants without COVID-19 infection and a COVID-19 group consisting of 19 AD participants. Results For the 77 AD patients between the stages of pre and post COVID-19 infection, there were significant differences in cognitive function and psychobehavioral symptoms on the Montreal Scale (MoCA), the neuropsychiatric inventory (NPI), the clinician's global impression of change (CIBIC-Plus), and the activity of daily living scale (ADL). The COVID-19 infection significantly decreased the plasma biomarker level of Aβ42 and increased the plasma p-tau181 level in AD patients. The COVID-19-infected AD patients show decreased local coherence (LCOR) in the anterior middle temporal gyrus and decreased global correlation (GCOR) in the precuneus and the medial prefrontal cortex. Conclusion The findings suggest clinical, cognitive, and neural alterations following COVID-19 infection in AD patients and emphasize the need for close monitoring of symptoms in AD patients who have had COVID-19 and further exploration of the underlying mechanisms.
Collapse
Affiliation(s)
- Shouzi Zhang
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Li Zhang
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Li Ma
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Haiyan Wu
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Lixin Liu
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Xuelin He
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Maolong Gao
- Department of Science and Technology, Beijing Geriatric Hospital, Beijing, China
| | - Rui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Chen J, Chen J, Lei Z, Zhang F, Zeng LH, Wu X, Li S, Tan J. Amyloid precursor protein facilitates SARS-CoV-2 virus entry into cells and enhances amyloid-β-associated pathology in APP/PS1 mouse model of Alzheimer's disease. Transl Psychiatry 2023; 13:396. [PMID: 38104129 PMCID: PMC10725492 DOI: 10.1038/s41398-023-02692-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023] Open
Abstract
Although there are indications of a trend towards less severe acute respiratory symptoms and a decline in overall lethality from the novel Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), more and more attention has been paid to the long COVID, including the increased risk of Alzheimer's disease (AD) in COVID-19 patients. In this study, we aim to investigate the involvement of N-terminal amyloid precursor protein (APP) in SARS-CoV-2-induced amyloid-β (Aβ) pathology. Utilizing both in vitro and in vivo methodologies, we first investigated the interaction between the spike protein of SARS-CoV-2 and N-terminal APP via LSPR and CoIP assays. The in vitro impacts of APP overexpression on virus infection were further evaluated in HEK293T/ACE2 cells, SH-SY5Y cells, and Vero cells. We also analyzed the pseudovirus infection in vivo in a mouse model overexpressing human wild-type APP. Finally, we evaluated the impact of APP on pseudovirus infection within human brain organoids and assessed the chronic effects of pseudovirus infection on Aβ levels. We reported here for the first time that APP, the precursor of the Aβ of AD, interacts with the Spike protein of SARS-CoV-2. Moreover, both in vivo and in vitro data further indicated that APP promotes the cellular entry of the virus, and exacerbates Aβ-associated pathology in the APP/PS1 mouse model of AD, which can be ameliorated by N-terminal APP blockage. Our findings provide experimental evidence to interpret APP-related mechanisms underlying AD-like neuropathology in COVID-19 patients and may pave the way to help inform risk management and therapeutic strategies against diseases accordingly.
Collapse
Grants
- This study was supported by the High-level Talent Foundation of Guizhou Medical University (YJ19017, HY2020, J.T.), Anyu Biopharmaceutics, Inc., Hangzhou (06202010204, J.T.), and Zhejiang Provincial Natural Science foundation (LY19HH090013, ZW),
- Scientific Research Project of higher education Institutions in Guizhou Province [192(2022), J.C.], Science and Technology Program of Guizhou Province [ZK(2023), General 301, J.C.].
Collapse
Affiliation(s)
- Jiang Chen
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 310015, Hangzhou, Zhejiang, China
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, 550025, Guiyang, Guizhou, China
| | - Junsheng Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, 550025, Guiyang, Guizhou, China
| | - Zhifeng Lei
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, 550025, Guiyang, Guizhou, China
| | - Fengning Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, 550025, Guiyang, Guizhou, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 310015, Hangzhou, Zhejiang, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Song Li
- First Affiliated Hospital of Dalian Medical University, 116021, Dalian, Liaoning, China.
| | - Jun Tan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 310015, Hangzhou, Zhejiang, China.
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, 550025, Guiyang, Guizhou, China.
| |
Collapse
|
37
|
Zhao S, Toniolo S, Hampshire A, Husain M. Effects of COVID-19 on cognition and brain health. Trends Cogn Sci 2023; 27:1053-1067. [PMID: 37657964 PMCID: PMC10789620 DOI: 10.1016/j.tics.2023.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 09/03/2023]
Abstract
COVID-19 is associated with a range of neurological, cognitive, and mental health symptoms both acutely and chronically that can persist for many months after infection in people with long-COVID syndrome. Investigations of cognitive function and neuroimaging have begun to elucidate the nature of some of these symptoms. They reveal that, although cognitive deficits may be related to brain imaging abnormalities in some people, symptoms can also occur in the absence of objective cognitive deficits or neuroimaging changes. Furthermore, cognitive impairment may be detected even in asymptomatic individuals. We consider the evidence regarding symptoms, cognitive deficits, and neuroimaging, as well as their possible underlying mechanisms.
Collapse
Affiliation(s)
- Sijia Zhao
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK.
| | - Sofia Toniolo
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; Wellcome Trust Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6AE, UK
| | - Adam Hampshire
- Department of Brain Sciences, Imperial College London, 926 Sir Michael Uren Hub, 86 Wood Lane, London W12 0BZ, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; Wellcome Trust Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6AE, UK.
| |
Collapse
|
38
|
Huang Z, Haile K, Gedefaw L, Lau BWM, Jin L, Yip SP, Huang CL. Blood Biomarkers as Prognostic Indicators for Neurological Injury in COVID-19 Patients: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:15738. [PMID: 37958721 PMCID: PMC10649265 DOI: 10.3390/ijms242115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been linked to various neurological complications. This meta-analysis assessed the relationship between glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) levels in the blood and neurological injury in COVID-19 patients. A comprehensive search of various databases was conducted until 18 August 2023, to find studies reporting GFAP and NfL blood levels in COVID-19 patients with neurological complications. GFAP and NfL levels were estimated between COVID-19 patients and healthy controls, and meta-analyses were performed using RevMan 5.4 software for analysis. In the 21 collected studies, it was found that COVID-19 patients had significantly higher levels of pooled GFAP (SMD = 0.52; 95% CI: 0.31, 0.73; p ≤ 0.001) and NfL (SMD = 0.60; 95% CI: 0.37, 0.82; p ≤ 0.001) when compared to the healthy controls. The pooled GFAP (SMD = 0.86; 95% CI: 0.26, 1.45; p ≤ 0.01) and NfL (SMD = 0.87; 95% CI: 0.48, 1.26; p ≤ 0.001) were significantly higher in non-survivors. These findings indicate a significant association between COVID-19 severity and elevated levels of GFAP and NfL, suggesting that GFAP and NfL could serve as potential diagnostic and prognostic markers for the early detection and monitoring of COVID-19-related neurological injuries.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| | - Kassahun Haile
- Department of Medical Laboratory Science, Wolkite University, Wolkite P.O. Box 07, Ethiopia;
| | - Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Ling Jin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| |
Collapse
|
39
|
Matveeva N, Kiselev I, Baulina N, Semina E, Kakotkin V, Agapov M, Kulakova O, Favorova O. Shared genetic architecture of COVID-19 and Alzheimer's disease. Front Aging Neurosci 2023; 15:1287322. [PMID: 37927339 PMCID: PMC10625425 DOI: 10.3389/fnagi.2023.1287322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
The severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and the сoronavirus disease 2019 (COVID-19) have become a global health threat. At the height of the pandemic, major efforts were focused on reducing COVID-19-associated morbidity and mortality. Now is the time to study the long-term effects of the pandemic, particularly cognitive impairment associated with long COVID. In recent years much attention has been paid to the possible relationship between COVID-19 and Alzheimer's disease, which is considered a main cause of age-related cognitive impairment. Genetic predisposition was shown for both COVID-19 and Alzheimer's disease. However, the analysis of the similarity of the genetic architecture of these diseases is usually limited to indicating a positive genetic correlation between them. In this review, we have described intrinsic linkages between COVID-19 and Alzheimer's disease, pointed out shared susceptibility genes that were previously identified in genome-wide association studies of both COVID-19 and Alzheimer's disease, and highlighted a panel of SNPs that includes candidate genetic risk markers of the long COVID-associated cognitive impairment.
Collapse
Affiliation(s)
- Natalia Matveeva
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan Kiselev
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia Baulina
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina Semina
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Viktor Kakotkin
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Mikhail Agapov
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Kulakova
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga Favorova
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
40
|
Mohammadi S, Zarei S, Jabbari H. Prediction of Alzheimer's in People with Coronavirus Using Machine Learning. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:2179-2185. [PMID: 37899921 PMCID: PMC10612562 DOI: 10.18502/ijph.v52i10.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/19/2023] [Indexed: 10/31/2023]
Abstract
Background One of the negative effects of the COVID-19 illness, which has affected people all across the world, is Alzheimer's disease. Oblivion after COVID-19 has created a variety of issues for many people. Predicting this issue in COVID-19 patients can considerably lessen the severity of the problem. Methods Alzheimer's disease was predicted in Iranian persons with COVID-19 in using three algorithms: Nave Bayes, Random Forest, and KNN. Data collected by private questioner from hospitals of Tehran Province, Iran, during Oct 2020 to Sep 2021. For ML models, performance is quantified using measures such as Precision, Recall, Accuracy, and F1-score. Results The Nave Bayes, Random Forest algorithm has a prediction accuracy of higher than 80%. The predicted accuracy of the random forest algorithm was higher than the other two algorithms. Conclusion The Random Forest algorithm outperformed the other two algorithms in predicting Alzheimer's disease in persons using COVID-19. The findings of this study could help persons with COVID-19 avoid Alzheimer's problems.
Collapse
Affiliation(s)
- Shahriar Mohammadi
- Information Technology Group, Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Soraya Zarei
- Information Technology Group, Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Hossain Jabbari
- Neurology Department, Penzing Teaching Hospital, Vienna, Austria
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
El-Maradny YA, Rubio-Casillas A, Mohamed KI, Uversky VN, Redwan EM. Intrinsic factors behind long-COVID: II. SARS-CoV-2, extracellular vesicles, and neurological disorders. J Cell Biochem 2023; 124:1466-1485. [PMID: 37801299 DOI: 10.1002/jcb.30486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
With the decline in the number of new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections, the World Health Organization announced the end of the SARS-CoV-2 pandemic. However, the repercussions of this viral pandemic may remain with us for a longer period of time, as it has remodeled the lives of humankind in many ways, including social and economic. Of course, its most important repercussions remain on the human health level. Long-coronavirus disease (COVID) or post-COVID is a state for which we do not have a concrete definition, a specific international classification of diseases Code, clear diagnostic tools, or well-known effective cures as of yet. In this second article from the Intrinsic Factors behind long-COVID Series, we try to link long-COVID symptoms with their causes, starting from the nervous system. Extracellular vesicles (ECVs) play very complex and ramified roles in the bodies of both healthy and not-healthy individuals. ECVs may facilitate the entry of many bioactive molecules and pathogens into the tissues and cells of the nervous system across the blood-brain barrier. Based on the size, quantity, and quality of their cargo, ECVs are directly proportional to the pathological condition and its severity through intertwined mechanisms that evoke inflammatory immune responses typically accompanied by pathological symptoms over variable time periods according to the type of these symptoms.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Egypt
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El-Alamein, Egypt
| | - Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán, Jalisco, Mexico
| | - Kareem I Mohamed
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El-Alamein, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
42
|
Thomas R, Connolly KJ, Brekk OR, Hinrich AJ, Hastings ML, Isacson O, Hallett PJ. Viral-like TLR3 induction of cytokine networks and α-synuclein are reduced by complement C3 blockade in mouse brain. Sci Rep 2023; 13:15164. [PMID: 37704739 PMCID: PMC10499893 DOI: 10.1038/s41598-023-41240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Inflammatory processes and mechanisms are of central importance in neurodegenerative diseases. In the brain, α-synucleinopathies such as Parkinson's disease (PD) and Lewy body dementia (LBD) show immune cytokine network activation and increased toll like receptor 3 (TLR3) levels for viral double-stranded RNA (dsRNA). Brain inflammatory reactions caused by TLR3 activation are also relevant to understand pathogenic cascades by viral SARS-CoV-2 infection causing post- COVID-19 brain-related syndromes. In the current study, following regional brain TLR3 activation induced by dsRNA in mice, an acute complement C3 response was seen at 2 days. A C3 splice-switching antisense oligonucleotide (ASO) that promotes the splicing of a non-productive C3 mRNA, prevented downstream cytokines, such as IL-6, and α-synuclein changes. This report is the first demonstration that α-synuclein increases occur downstream of complement C3 activation. Relevant to brain dysfunction, post-COVID-19 syndromes and pathological changes leading to PD and LBD, viral dsRNA TLR3 activation in the presence of C3 complement blockade further revealed significant interactions between complement systems, inflammatory cytokine networks and α-synuclein changes.
Collapse
Affiliation(s)
- Ria Thomas
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Kyle J Connolly
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Oeystein R Brekk
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Anthony J Hinrich
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA.
| | - Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
43
|
Wesselingh R. Prevalence, pathogenesis and spectrum of neurological symptoms in COVID-19 and post-COVID-19 syndrome: a narrative review. Med J Aust 2023; 219:230-236. [PMID: 37660309 DOI: 10.5694/mja2.52063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 09/05/2023]
Abstract
Neurological symptoms are not uncommon during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and reflect a broad spectrum of neurological disorders of which clinicians should be aware. The underlying pathogenesis of neurological disease in coronavirus disease 2019 (COVID-19) may be due to four mechanisms of nervous system dysfunction and injury: i) direct viral neurological invasion; ii) immune dysregulation; iii) endothelial dysfunction and coagulopathy; and iv) severe systemic COVID-19 disease. Neurological manifestations of acute COVID-19 include headache, peripheral neuropathies, seizures, encephalitis, Guillain-Barré syndrome, and cerebrovascular disease. Commonly reported long term neurological sequelae of COVID-19 are cognitive dysfunction and dysautonomia, which despite being associated with severe acute disease are also seen in people with mild disease. Assessment of cognitive dysfunction after COVID-19 is confounded by a high prevalence of comorbid fatigue, anxiety, and mood disorders. However, other markers of neuroaxonal breakdown suggest no significant neuronal injury apart from during severe acute COVID-19. The long term impact of COVID-19 on neurological diseases remains uncertain and requires ongoing vigilance.
Collapse
Affiliation(s)
- Robb Wesselingh
- Monash University, Melbourne, VIC
- Alfred Hospital, Melbourne, VIC
| |
Collapse
|
44
|
Di Primio C, Quaranta P, Mignanelli M, Siano G, Bimbati M, Scarlatti A, Piazza CR, Spezia PG, Perrera P, Basolo F, Poma AM, Costa M, Pistello M, Cattaneo A. Severe acute respiratory syndrome coronavirus 2 infection leads to Tau pathological signature in neurons. PNAS NEXUS 2023; 2:pgad282. [PMID: 37731949 PMCID: PMC10508204 DOI: 10.1093/pnasnexus/pgad282] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
COVID-19 has represented an issue for global health since its outbreak in March 2020. It is now evident that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in a wide range of long-term neurological symptoms and is worryingly associated with the aggravation of Alzheimer's disease. Little is known about the molecular basis of these manifestations. Here, several strain variants were used to infect SH-SY5Y neuroblastoma cells and K18-hACE C57BL/6J mice. The Tau phosphorylation profile and aggregation propensity upon infection were investigated on cellular extracts, subcellular fractions, and brain tissue. The viral proteins spike, nucleocapsid, and membrane were overexpressed in SH-SY5Y cells, and the direct interaction and effect on Tau phosphorylation were checked using immunoblot experiments. Upon infection, Tau is phosphorylated at several pathological epitopes associated with Alzheimer's disease and other tauopathies. Moreover, this event increases Tau's propensity to form insoluble aggregates and alters its subcellular localization. Our data support the hypothesis that SARS-CoV-2 infection in the central nervous system triggers downstream effects altering Tau function, eventually leading to the impairment of neuronal function.
Collapse
Affiliation(s)
- Cristina Di Primio
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa 56124, Italy
| | - Paola Quaranta
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa 56124, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56100, Italy
| | - Marianna Mignanelli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa 56126, Italy
| | - Giacomo Siano
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa 56126, Italy
| | - Matteo Bimbati
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa 56126, Italy
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Arianna Scarlatti
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa 56126, Italy
| | - Carmen Rita Piazza
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56100, Italy
- Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Piero Giorgio Spezia
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56100, Italy
| | - Paola Perrera
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56100, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa 56124, Italy
| | - Anello Marcello Poma
- Department of Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa 56124, Italy
| | - Mario Costa
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa 56124, Italy
| | - Mauro Pistello
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56100, Italy
- Virology Unit, Pisa University Hospital, Pisa 56100, Italy
| | - Antonino Cattaneo
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa 56126, Italy
| |
Collapse
|
45
|
Quan M, Wang X, Gong M, Wang Q, Li Y, Jia J. Post-COVID cognitive dysfunction: current status and research recommendations for high risk population. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 38:100836. [PMID: 37457901 PMCID: PMC10344681 DOI: 10.1016/j.lanwpc.2023.100836] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/13/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Post-COVID cognitive dysfunction (PCCD) is a condition in which patients with a history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, usually three months from the onset, exhibit subsequent cognitive impairment in various cognitive domains, and cannot be explained by an alternative diagnosis. While our knowledge of the risk factors and management strategy of PCCD is still incomplete, it is necessary to integrate current epidemiology, diagnosis and treatment evidence, and form consensus criteria to better understand this disease to improve disease management. Identifying the risk factors and vulnerable population of PCCD and providing reliable strategies for effective prevention and management is urgently needed. In this paper, we reviewed epidemiology, diagnostic markers, risk factors and available treatments on the disease, formed research recommendation framework for vulnerable population, under the background of post-COVID period.
Collapse
Affiliation(s)
- Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, China
| | - Xuechu Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, China
| | - Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, China
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| |
Collapse
|
46
|
Brown RL, Benjamin L, Lunn MP, Bharucha T, Zandi MS, Hoskote C, McNamara P, Manji H. Pathophysiology, diagnosis, and management of neuroinflammation in covid-19. BMJ 2023; 382:e073923. [PMID: 37595965 DOI: 10.1136/bmj-2022-073923] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Although neurological complications of SARS-CoV-2 infection are relatively rare, their potential long term morbidity and mortality have a significant impact, given the large numbers of infected patients. Covid-19 is now in the differential diagnosis of a number of common neurological syndromes including encephalopathy, encephalitis, acute demyelinating encephalomyelitis, stroke, and Guillain-Barré syndrome. Physicians should be aware of the pathophysiology underlying these presentations to diagnose and treat patients rapidly and appropriately. Although good evidence has been found for neurovirulence, the neuroinvasive and neurotropic potential of SARS-CoV-2 is limited. The pathophysiology of most complications is immune mediated and vascular, or both. A significant proportion of patients have developed long covid, which can include neuropsychiatric presentations. The mechanisms of long covid remain unclear. The longer term consequences of infection with covid-19 on the brain, particularly in terms of neurodegeneration, will only become apparent with time and long term follow-up.
Collapse
Affiliation(s)
- Rachel L Brown
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Institute of Immunity and Transplantation, London, UK
| | - Laura Benjamin
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Laboratory of Molecular and Cell Biology, London, UK
| | - Michael P Lunn
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Tehmina Bharucha
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Department of Biochemistry, University of Oxford, UK
| | - Michael S Zandi
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Chandrashekar Hoskote
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Patricia McNamara
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Hadi Manji
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
47
|
Fonseca BHDS, de Andrade PHS, Henrique MESA, Baggio JADO, Bazan R, de Souza LAPS, Luvizutto GJ. Perception of verticality in the post-COVID-19 condition correlates to infection severity. J Cent Nerv Syst Dis 2023; 15:11795735231195693. [PMID: 38025401 PMCID: PMC10655649 DOI: 10.1177/11795735231195693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background SARS-CoV-2 infection affects multiple systems, including musculoskeletal, neurological, and respiratory systems. Changes associated with physical inactivity due to prolonged hospitalization can affect the functional capacity of individuals with long coronavirus disease 2019 (COVID-19) or post-COVID-19 condition and may cause changes in some postural control functions, such as verticality. Objectives This study aimed to evaluate the perception of verticality in individuals with long COVID. Design Cross-sectional study. Methods This study included 60 participants with post-COVID-19 condition divided into 2 groups: hospitalized group (n = 24), those hospitalized owing to SARS-CoV-2 infection; and non-hospitalized group (n = 36), those infected with SARS-CoV-2 but not hospitalized. All participants were examined using a post-COVID-19 functional status (PCFS), sit-to-stand test, grip strength assessment, painful and tactile sensory assessments, visual acuity assessment, and vestibular assessment. Verticality perception was evaluated using the subjective visual vertical (SVV) and subjective haptic vertical (SHV) tests. In both tests, the absolute values (positive values only) and true values (positive and negative values) were considered. To verify potential confounders that could influence the verticality of the results, logistic regression models were used for categorical variables and multiple linear regressions were used for continuous variables. For analysis between groups, the independent samples test (Mann-Whitney U test) was used. Results There were no confounders between clinical variables and verticality in either group. There was a significant increase in absolute SVV (mean deviation [MD]: 2.83; P < .0001) and true SVV (MD: -4.18; P = .005) in the hospitalized group compared to the non-hospitalized group. Furthermore, there was a significant increase in the true SHV (MD: -3.6; P = .026) in the hospitalized group compared to that in the non-hospitalized group. Conclusion Less accurate visual and haptic verticality perception task performance was observed in hospitalized patients with post-COVID-19 condition.
Collapse
Affiliation(s)
| | | | | | | | - Rodrigo Bazan
- Department of Neurology, Psychology, and Psychiatry, Botucatu Medical School, Botucatu, Brazil
| | | | - Gustavo José Luvizutto
- Department of Applied Physical Therapy, Federal University of Triângulo Mineiro, Uberaba, Brazil
| |
Collapse
|
48
|
Comeau D, Martin M, Robichaud GA, Chamard-Witkowski L. Neurological manifestations of post-acute sequelae of COVID-19: which liquid biomarker should we use? Front Neurol 2023; 14:1233192. [PMID: 37545721 PMCID: PMC10400889 DOI: 10.3389/fneur.2023.1233192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Long COVID syndrome, also known as post-acute sequelae of COVID-19 (PASC), is characterized by persistent symptoms lasting 3-12 weeks post SARS-CoV-2 infection. Patients suffering from PASC can display a myriad of symptoms that greatly diminish quality of life, the most frequent being neuropsychiatric. Thus, there is an eminent need to diagnose and treat PASC related neuropsychiatric manifestation (neuro-PASC). Evidence suggests that liquid biomarkers could potentially be used in the diagnosis and monitoring of patients. Undoubtedly, such biomarkers would greatly benefit clinicians in the management of patients; however, it remains unclear if these can be reliably used in this context. In this mini review, we highlight promising liquid (blood and cerebrospinal fluid) biomarkers, namely, neuronal injury biomarkers NfL, GFAP, and tau proteins as well as neuroinflammatory biomarkers IL-6, IL-10, TNF-α, and CPR associated with neuro-PASC and discuss their limitations in clinical applicability.
Collapse
Affiliation(s)
- Dominique Comeau
- Dr. Georges-L. Dumont University Hospital Centre, Clinical Research Sector, Vitalité Health Network, Moncton, NB, Canada
| | - Mykella Martin
- Centre de Formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada
| | - Gilles A. Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- The New Brunswick Center for Precision Medicine, Moncton, NB, Canada
- The Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Ludivine Chamard-Witkowski
- Centre de Formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada
- Department of Neurology, Dr. Georges-L. Dumont University Hospital Centre, Moncton, NB, Canada
| |
Collapse
|
49
|
Telser J, Grossmann K, Weideli OC, Hillmann D, Aeschbacher S, Wohlwend N, Velez L, Kuhle J, Maleska A, Benkert P, Risch C, Conen D, Risch M, Risch L. Concentrations of Serum Brain Injury Biomarkers Following SARS-CoV-2 Infection in Individuals with and without Long-COVID-Results from the Prospective Population-Based COVI-GAPP Study. Diagnostics (Basel) 2023; 13:2167. [PMID: 37443561 DOI: 10.3390/diagnostics13132167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
It is unknown whether neurological symptoms are associated with brain injury after SARS-CoV-2 infections and whether brain injury and related symptoms also emerge in Long-COVID patients. Biomarkers such as serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) can be used to elucidate neuro-axonal and astroglial injuries. We investigated whether these biomarkers are associated with COVID-19 infection status, associated symptoms and Long-COVID. From 146 individuals of the general population with a post-acute, mild-to-moderate SARS-CoV-2 infection, sNfL and sGFAP were measured before, during and after (five and ten months) the infection. Individual symptoms and Long-COVID status were assessed using questionnaires. Neurological associated symptoms were described for individuals after a mild and moderate COVID-19 infection; however, sNfL (p = 0.74) and sGFAP (p = 0.24) did not change and were not associated with headache (p = 0.51), fatigue (p = 0.93), anosmia (p = 0.77) or ageusia (p = 0.47). In Long-COVID patients, sGFAP (p = 0.038), but not sNfL (p = 0.58), significantly increased but was not associated with neurological associated symptoms. Long-COVID status, but not post-acute SARS-CoV-2 infections, may be associated with astroglial injury/activation, even if neurological associated symptoms were not correlated.
Collapse
Affiliation(s)
- Julia Telser
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Dr. Risch Medical Laboratory, 9470 Buchs, Switzerland
- Faculty of Medical Sciences, Private University in the Principality of Liechtenstein (UFL), 9495 Triesen, Liechtenstein
| | - Kirsten Grossmann
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Faculty of Medical Sciences, Private University in the Principality of Liechtenstein (UFL), 9495 Triesen, Liechtenstein
| | - Ornella C Weideli
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Soneva Fushi, Boduthakurufaanu Magu, Male 20077, Maldives
| | | | - Stefanie Aeschbacher
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Department of Cardiology, University Hospital of Basel, 4031 Basel, Switzerland
| | - Niklas Wohlwend
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Faculty of Medicine, University of Bern, 3012 Bern, Switzerland
| | - Laura Velez
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- University of St. Gallen, 9000 St. Gallen, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center of Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Aleksandra Maleska
- Neurologic Clinic and Policlinic, MS Center and Research Center of Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Pascal Benkert
- Neurologic Clinic and Policlinic, MS Center and Research Center of Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Corina Risch
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Dr. Risch Medical Laboratory, 9470 Buchs, Switzerland
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada
| | - Martin Risch
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Dr. Risch Medical Laboratory, 9470 Buchs, Switzerland
- Division of Laboratory Medicine, Kantonsspital Graubünden, 7000 Chur, Switzerland
| | - Lorenz Risch
- Dr. Risch Medical Laboratory, 9490 Vaduz, Liechtenstein
- Dr. Risch Medical Laboratory, 9470 Buchs, Switzerland
- Faculty of Medical Sciences, Private University in the Principality of Liechtenstein (UFL), 9495 Triesen, Liechtenstein
| |
Collapse
|
50
|
Kim KY, Shin KY, Chang KA. GFAP as a Potential Biomarker for Alzheimer's Disease: A Systematic Review and Meta-Analysis. Cells 2023; 12:cells12091309. [PMID: 37174709 PMCID: PMC10177296 DOI: 10.3390/cells12091309] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Blood biomarkers have been considered tools for the diagnosis, prognosis, and monitoring of Alzheimer's disease (AD). Although amyloid-β peptide (Aβ) and tau are primarily blood biomarkers, recent studies have identified other reliable candidates that can serve as measurable indicators of pathological conditions. One such candidate is the glial fibrillary acidic protein (GFAP), an astrocytic cytoskeletal protein that can be detected in blood samples. Increasing evidence suggests that blood GFAP levels can be used to detect early-stage AD. In this systematic review and meta-analysis, we aimed to evaluate GFAP in peripheral blood as a biomarker for AD and provide an overview of the evidence regarding its utility. Our analysis revealed that the GFAP level in the blood was higher in the Aβ-positive group than in the negative groups, and in individuals with AD or mild cognitive impairment (MCI) compared to the healthy controls. Therefore, we believe that the clinical use of blood GFAP measurements has the potential to accelerate the diagnosis and improve the prognosis of AD.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Bio-Medical Sciences, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|