1
|
Badhe S, Nivins S, Kulkarni P, Jose A, Manek D, Badhe S, Sane H, Gokulchandran N, Badhe P, Sharma A. Abnormal Development of the Corpus Callosum in Autism Spectrum Disorder: An MRI Study. Top Magn Reson Imaging 2024; 33:e0312. [PMID: 38836588 DOI: 10.1097/rmr.0000000000000312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Altered size in the corpus callosum (CC) has been reported in individuals with autism spectrum disorder (ASD), but few studies have investigated younger children. Moreover, knowledge about the age-related changes in CC size in individuals with ASD is limited. OBJECTIVES Our objective was to investigate the age-related size of the CC and compare them with age-matched healthy controls between the ages of 2 and 18 years. METHODS Structural-weighted images were acquired in 97 male patients diagnosed with ASD; published data were used for the control group. The CC was segmented into 7 distinct subregions (rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus, and splenium) as per Witelson's technique using ITK-SNAP software. We calculated both the total length and volume of the CC as well as the length and height of its 7 subregions. The length of the CC measures was studied as both continuous and categorical forms. For the continuous form, Pearson's correlation was used, while categorical forms were based on age ranges reflecting brain expansion during early postnatal years. Differences in CC measures between adjacent age groups in individuals with ASD were assessed using a Student t-test. Mean and standard deviation scores were compared between ASD and control groups using the Welch t-test. RESULTS Age showed a moderate positive association with the total length of the CC (r = 0.43; Padj = 0.003) among individuals with ASD. Among the subregions, a positive association was observed only in the anterior midbody of the CC (r = 0.41; Padj = 0.01). No association was found between the age and the height of individual subregions or with the total volume of the CC. In comparison with healthy controls, individuals with ASD exhibited shorter lengths and heights of the genu and splenium of the CC across wide age ranges. CONCLUSION Overall, our results highlight a distinct abnormal developmental trajectory of CC in ASD, particularly in the genu and splenium structures, potentially reflecting underlying pathophysiological mechanisms that warrant further investigation.
Collapse
Affiliation(s)
- Suvarna Badhe
- Department of Research and Development, NeuroGen Brain and Spine Institute, Navi Mumbai, Maharashtra, India
- Department of Regenerative Laboratory, NeuroGen Brain and Spine Institute, Navi Mumbai, Maharashtra, India
| | - Samson Nivins
- Department of Research and Development, NeuroGen Brain and Spine Institute, Navi Mumbai, Maharashtra, India
| | - Pooja Kulkarni
- Department of Research and Development, NeuroGen Brain and Spine Institute, Navi Mumbai, Maharashtra, India
| | - Alitta Jose
- Department of Research and Development, NeuroGen Brain and Spine Institute, Navi Mumbai, Maharashtra, India
| | - Divesh Manek
- Department of Radiology, Omega MRI, Navi Mumbai, Maharashtra, India; and
| | - Satyendra Badhe
- Department of Research and Development, NeuroGen Brain and Spine Institute, Navi Mumbai, Maharashtra, India
- Department of Regenerative Laboratory, NeuroGen Brain and Spine Institute, Navi Mumbai, Maharashtra, India
| | - Hemangi Sane
- Department of Research and Development, NeuroGen Brain and Spine Institute, Navi Mumbai, Maharashtra, India
| | - Nandini Gokulchandran
- Department of Medical Services and Clinical Research, NeuroGen Brain and Spine Institute, Navi Mumbai, Maharashtra, India
| | - Prerna Badhe
- Department of Regenerative Laboratory, NeuroGen Brain and Spine Institute, Navi Mumbai, Maharashtra, India
| | - Alok Sharma
- Department of Medical Services and Clinical Research, NeuroGen Brain and Spine Institute, Navi Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Abbott N, Love T. Bridging the Divide: Brain and Behavior in Developmental Language Disorder. Brain Sci 2023; 13:1606. [PMID: 38002565 PMCID: PMC10670267 DOI: 10.3390/brainsci13111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Developmental language disorder (DLD) is a heterogenous neurodevelopmental disorder that affects a child's ability to comprehend and/or produce spoken and/or written language, yet it cannot be attributed to hearing loss or overt neurological damage. It is widely believed that some combination of genetic, biological, and environmental factors influences brain and language development in this population, but it has been difficult to bridge theoretical accounts of DLD with neuroimaging findings, due to heterogeneity in language impairment profiles across individuals and inconsistent neuroimaging findings. Therefore, the purpose of this overview is two-fold: (1) to summarize the neuroimaging literature (while drawing on findings from other language-impaired populations, where appropriate); and (2) to briefly review the theoretical accounts of language impairment patterns in DLD, with the goal of bridging the disparate findings. As will be demonstrated with this overview, the current state of the field suggests that children with DLD have atypical brain volume, laterality, and activation/connectivity patterns in key language regions that likely contribute to language difficulties. However, the precise nature of these differences and the underlying neural mechanisms contributing to them remain an open area of investigation.
Collapse
Affiliation(s)
- Noelle Abbott
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA 92182, USA;
- San Diego State University/University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA
| | - Tracy Love
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA 92182, USA;
- San Diego State University/University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA
| |
Collapse
|
3
|
Martín-González E, Prados-Pardo Á, Sawiak SJ, Dalley JW, Padro D, Ramos-Cabrer P, Mora S, Moreno-Montoya M. Mapping the neuroanatomical abnormalities in a phenotype of male compulsive rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:19. [PMID: 37932782 PMCID: PMC10626819 DOI: 10.1186/s12993-023-00221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
Compulsivity is considered a transdiagnostic dimension in obsessive-compulsive and related disorders, characterized by heterogeneous cognitive and behavioral phenotypes associated with abnormalities in cortico-striatal-thalamic-cortical circuitry. The present study investigated the structural morphology of white and gray matter in rats selected for low- (LD) and high- (HD) compulsive drinking behavior on a schedule-induced polydipsia (SIP) task. Regional brain morphology was assessed using ex-vivo high-resolution magnetic resonance imaging (MRI). Voxel-based morphometry of segmented MRI images revealed larger white matter volumes in anterior commissure and corpus callosum of HD rats compared with LD rats. HD rats also showed significantly larger regional volumes of dorsolateral orbitofrontal cortex, striatum, amygdala, hippocampus, midbrain, sub-thalamic nucleus, and cerebellum. By contrast, the medial prefrontal cortex was significantly smaller in HD rats compared with LD rats with no significant group differences in whole brain, ventricular, or cerebrospinal fluid volumes. These findings show that limbic cortico-basal ganglia structures implicated in impulse control disorders are distinct in rats that are vulnerable to develop compulsive behavior. Such abnormalities may be relevant to the etiology of compulsive disorders in humans.
Collapse
Affiliation(s)
- Elena Martín-González
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Ángeles Prados-Pardo
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Stephen J Sawiak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Daniel Padro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain
| | - Pedro Ramos-Cabrer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Santiago Mora
- Department of Neuroscience, University of Copenhagen Panum Institute, Copenhagen, Denmark
| | - Margarita Moreno-Montoya
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain.
| |
Collapse
|
4
|
Nojiri E, Takase K. Understanding Sensory-Motor Disorders in Autism Spectrum Disorders by Extending Hebbian Theory: Formation of a Rigid-Autonomous Phase Sequence. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023:17456916231202674. [PMID: 37910043 DOI: 10.1177/17456916231202674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Autism spectrum disorder is a neuropsychiatric disorder characterized by persistent deficits in social communication and social interaction and restricted, repetitive patterns of behavior, interests, or activities. The symptoms invariably appear in early childhood and cause significant impairment in social, occupational, and other important functions. Various abnormalities in the genetic, neurological, and endocrine systems of patients with autism spectrum disorder have been reported as the etiology; however, no clear factor leading to the onset of the disease has been identified. Additionally, higher order cognitive dysfunctions, which are represented by a lack of theory of mind, sensorimotor disorders, and memory-related disorders (e.g., flashbacks), have been reported in recent years, but no theoretical framework has been proposed to explain these behavioral abnormalities. In this study, we extended Hebb's biopsychology theory to provide a theoretical framework that comprehensively explains the various behavioral abnormalities observed in autism spectrum disorder. Specifically, we propose that a wide range of symptoms in autism spectrum disorder may be caused by the formation of a rigid-autonomous phase sequence (RAPS) in the brain. Using the RAPS formation theory, we propose a biopsychological mechanism that could be a target for the treatment of autism spectrum disorders.
Collapse
|
5
|
Sokol DK, Lahiri DK. APPlications of amyloid-β precursor protein metabolites in macrocephaly and autism spectrum disorder. Front Mol Neurosci 2023; 16:1201744. [PMID: 37799731 PMCID: PMC10548831 DOI: 10.3389/fnmol.2023.1201744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolites of the Amyloid-β precursor protein (APP) proteolysis may underlie brain overgrowth in Autism Spectrum Disorder (ASD). We have found elevated APP metabolites (total APP, secreted (s) APPα, and α-secretase adamalysins in the plasma and brain tissue of children with ASD). In this review, we highlight several lines of evidence supporting APP metabolites' potential contribution to macrocephaly in ASD. First, APP appears early in corticogenesis, placing APP in a prime position to accelerate growth in neurons and glia. APP metabolites are upregulated in neuroinflammation, another potential contributor to excessive brain growth in ASD. APP metabolites appear to directly affect translational signaling pathways, which have been linked to single gene forms of syndromic ASD (Fragile X Syndrome, PTEN, Tuberous Sclerosis Complex). Finally, APP metabolites, and microRNA, which regulates APP expression, may contribute to ASD brain overgrowth, particularly increased white matter, through ERK receptor activation on the PI3K/Akt/mTOR/Rho GTPase pathway, favoring myelination.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Department of Neurology, Section of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Cremone IM, Nardi B, Amatori G, Palego L, Baroni D, Casagrande D, Massimetti E, Betti L, Giannaccini G, Dell'Osso L, Carpita B. Unlocking the Secrets: Exploring the Biochemical Correlates of Suicidal Thoughts and Behaviors in Adults with Autism Spectrum Conditions. Biomedicines 2023; 11:1600. [PMID: 37371695 DOI: 10.3390/biomedicines11061600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Involving 1 million people a year, suicide represents one of the major topics of psychiatric research. Despite the focus in recent years on neurobiological underpinnings, understanding and predicting suicide remains a challenge. Many sociodemographical risk factors and prognostic markers have been proposed but they have poor predictive accuracy. Biomarkers can provide essential information acting as predictive indicators, providing proof of treatment response and proposing potential targets while offering more assurance than psychological measures. In this framework, the aim of this study is to open the way in this field and evaluate the correlation between blood levels of serotonin, brain derived neurotrophic factor, tryptophan and its metabolites, IL-6 and homocysteine levels and suicidality. Blood samples were taken from 24 adults with autism, their first-degree relatives, and 24 controls. Biochemical parameters were measured with enzyme-linked immunosorbent assays. Suicidality was measured through selected items of the MOODS-SR. Here we confirm the link between suicidality and autism and provide more evidence regarding the association of suicidality with increased homocysteine (0.278) and IL-6 (0.487) levels and decreased tryptophan (-0.132) and kynurenic acid (-0.253) ones. Our results suggest a possible transnosographic association between these biochemical parameters and increased suicide risk.
Collapse
Affiliation(s)
- Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| | - Benedetta Nardi
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| | - Giulia Amatori
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| | - Lionella Palego
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Dario Baroni
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Danila Casagrande
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| | - Enrico Massimetti
- ASST Bergamo Ovest, SSD Psychiatric Diagnosis and Treatment Service, 24047 Treviglio, Italy
| | - Laura Betti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
7
|
Bogéa Ribeiro L, da Silva Filho M. Systematic Review on EEG Analysis to Diagnose and Treat Autism by Evaluating Functional Connectivity and Spectral Power. Neuropsychiatr Dis Treat 2023; 19:415-424. [PMID: 36861010 PMCID: PMC9968781 DOI: 10.2147/ndt.s394363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023] Open
Abstract
An abnormality in neural connectivity is linked to autism spectrum disorder (ASD). There is no way to test the concept of neural connectivity empirically. According to recent network theory and time series analysis findings, electroencephalography (EEG) can assess neural network architecture, a sign of activity in the brain. This systematic review aims to evaluate functional connectivity and spectral power using EEG signals. EEG records the brain activity of an individual by displaying wavy lines that depict brain cells' communication through electrical impulses. EEG can diagnose various brain disorders, including epilepsy and related seizure illness, brain dysfunction, tumors, and damage. We found 21 studies using two of the most common EEG analysis methods: functional connectivity and spectral power. ASD and non-ASD individuals were found to differ significantly in all selected papers. Due to high heterogeneity in the outcomes, generalizations cannot be drawn, and no single method is currently beneficial as a diagnostic tool. For ASD subtype delineation, the lack of research prevented the evaluation of these techniques as diagnostic tools. These findings confirm the presence of abnormalities in the EEG in ASD, but they are insufficient to diagnose. Our study suggests that EEG is useful in diagnosing ASD by evaluating entropy in the brain. Researchers may be able to develop new diagnostic methods for ASD which focuses on particular stimuli and brainwaves if they conduct more extensive studies with higher numbers and more rigorous study designs.
Collapse
|
8
|
Sakihara K, Kita Y, Suzuki K, Inagaki M. Modulation effects of the intact motor skills on the relationship between social skills and motion perceptions in children with autism spectrum disorder: A pilot study. Brain Dev 2023; 45:39-48. [PMID: 36184381 DOI: 10.1016/j.braindev.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND An individual with autism spectrum disorder (ASD) has social skill, motor skill, and motion perception deficits. However, the relationship among them was not clarified. Therefore, this study aimed to evaluate the effects of motor skills on social skills and motion perception. METHODS Five typically developed children and fourteen children with ASD participated in our study. The N200 component, a brain activity indicating motion perception, was induced in mid-temporal (MT/V5) brain area by watching a random dot kinematograph, and was recorded using a scalp electroencephalogram. Furthermore, the social responsiveness scale (SRS) indicating the social skill deficit, the developmental coordination disorder questionnaire (DCDQ) estimating the developmental coordination disorder (DCD), and the movement assessment battery for children second edition (MABC-2) indicating motor skills were recorded in the children with ASD. A hierarchical multiple regression analysis was conducted to examine the modulation effects of motor skills on the relationship between social skills and motion perception. The dependent variable was the N200 latency, and the independent variables were SRS, MABC-2, and combined MABC-2 and SRS. RESULTS The N200 latency was more delayed in children with ASD relative that in typically developed children. Intact balance ability modulated the relationship between social skills and N200 latency in children with ASD. Within the high balance ability, when the social skills worsened, the N200 latency was shortened. CONCLUSIONS This is the first report that intact motor skills could modulate the relationship between social skills and motion perception.
Collapse
Affiliation(s)
- Kotoe Sakihara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Japan; Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Japan.
| | - Yosuke Kita
- Department of Psychology, Faculty of Letters, Keio University, Tokyo, Japan; Cognitive Brain Research Unit (CBRU), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kota Suzuki
- Faculty of Education, Shitennoji University, Japan
| | - Masumi Inagaki
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Japan; Tottori Prefectural Tottori Rehabilitation Center, Japan
| |
Collapse
|
9
|
Khadem-Reza ZK, Zare H. Evaluation of brain structure abnormalities in children with autism spectrum disorder (ASD) using structural magnetic resonance imaging. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Autism spectrum disorder (ASD) is a group of developmental disorders of the nervous system. Since the core cause of many of the symptoms of autism spectrum disorder is due to changes in the structure of the brain, the importance of examining the structural abnormalities of the brain in these disorder becomes apparent. The aim of this study is evaluation of brain structure abnormalities in children with autism spectrum disorder (ASD) using structural magnetic resonance imaging (sMRI). sMRI images of 26 autistic and 26 Healthy control subjects in the range of 5–10 years are selected from the ABIDE database. For a better assessment of structural abnormalities, the surface and volume features are extracted together from this images. Then, the extracted features from both groups were compared with the sample t test and the features with significant differences between the two groups were identified.
Results
The results of volume-based features indicate an increase in total brain volume and white matter and a change in white and gray matter volume in brain regions of Hammers atlas in the autism group. In addition, the results of surface-based features indicate an increase in mean and standard deviation of cerebral cortex thickness and changes in cerebral cortex thickness, sulcus depth, surface complexity and gyrification index in the brain regions of the Desikan–Killany cortical atlas.
Conclusions
Identifying structurally abnormal areas of the brain and examining their relationship to the clinical features of Autism Spectrum Disorder can pave the way for the correct and early detection of this disorder using structural magnetic resonance imaging. It is also possible to design treatment for autistic people based on the abnormal areas of the brain, and to see the effectiveness of the treatment using imaging.
Collapse
|
10
|
Rochat MJ, Gallese V. The Blurred Vital Contours of Intersubjectivity in Autism Spectrum Disorder: Early Signs and Neurophysiological Hypotheses. PSYCHOANALYTIC INQUIRY 2022. [DOI: 10.1080/07351690.2022.2007022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Abstract
Neuroplasticity, i.e., the modifiability of the brain, is different in development and adulthood. The first includes changes in: (i) neurogenesis and control of neuron number; (ii) neuronal migration; (iii) differentiation of the somato-dendritic and axonal phenotypes; (iv) formation of connections; (v) cytoarchitectonic differentiation. These changes are often interrelated and can lead to: (vi) system-wide modifications of brain structure as well as to (vii) acquisition of specific functions such as ocular dominance or language. Myelination appears to be plastic both in development and adulthood, at least, in rodents. Adult neuroplasticity is limited, and is mainly expressed as changes in the strength of excitatory and inhibitory synapses while the attempts to regenerate connections have met with limited success. The outcomes of neuroplasticity are not necessarily adaptive, but can also be the cause of neurological and psychiatric pathologies.
Collapse
|
12
|
Pitzianti M, Fagioli S, Pontis M, Pasini A. Attention Deficits Influence the Development of Motor Abnormalities in High Functioning Autism. Child Psychiatry Hum Dev 2021; 52:1131-1142. [PMID: 33145671 PMCID: PMC8528792 DOI: 10.1007/s10578-020-01088-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2020] [Indexed: 11/27/2022]
Abstract
Early attentional dysfunction is one of the most consistent findings in autism spectrum disorder (ASD), including the high functioning autism (HFA). There are no studies that assess how the atypical attentional processes affect the motor functioning in HFA. In this study, we evaluated attentional and motor functioning in a sample of 15 drug-naive patients with HFA and 15 healthy children (HC), and possible link between attentional dysfunction and motor impairment in HFA. Compared to HC, HFA group was seriously impaired in a considerable number of attentional processes and showed a greater number of motor abnormalities. Significant correlations between attention deficits and motor abnormalities were observed in HFA group. These preliminary findings suggest that deficit of attentional processes can be implied in motor abnormalities in HFA.
Collapse
Affiliation(s)
- Mariabernarda Pitzianti
- Unit of Child Neurology and Psychiatry, Department of Systems Medicine, "Tor Vergata" University, Via Montpellier 1, 00133, Rome, Italy
- Child Neuropsychiatry, USL Umbria-2, Viale VIII Marzo, 05100, Terni, Italy
| | - Sabrina Fagioli
- Department of Education, University of "Roma Tre", Via del Castro Pretorio 20, 00185, Rome, Italy.
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179, Rome, Italy.
| | - Marco Pontis
- Comprehensive Rehabilitation Center Ctr Asl 8, Cagliari, Italy
| | - Augusto Pasini
- Unit of Child Neurology and Psychiatry, Department of Systems Medicine, "Tor Vergata" University, Via Montpellier 1, 00133, Rome, Italy
- Child Neuropsychiatry, USL Umbria-2, Viale VIII Marzo, 05100, Terni, Italy
| |
Collapse
|
13
|
Brennan C, Weintraub H, Tennant S, Meyers C. Speech, Language, and Communication Deficits and Intervention in a Single Case of Pediatric Autoimmune Encephalitis. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2021; 30:2350-2367. [PMID: 34491819 DOI: 10.1044/2021_ajslp-20-00395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Purpose The current literature on pediatric autoimmune encephalitis (AE) focuses on medical identification/diagnosis and medical treatments. Data about the identification and treatment of communication disorders in these children are limited. This clinical focus article provides an example of the speech, language, and communication characteristics, intervention, and recovery of a single child with medical diagnoses of pediatric AE and pediatric acute-onset neuropsychiatric syndrome (PANS) and special education eligibility under the autism spectrum disorder category. Method This is an in-depth illustrative/descriptive case study. Medical, educational, and speech-language documentation of one child diagnosed with AE at age 7 years was reviewed. Methods included interviews with family members, teachers, and the school speech-language pathologist and reviews of documentation including evaluations, reports, and Individualized Education Programs. Results This child received special education and therapy services through his public school and a university speech-language clinic. He concurrently received medical treatment for AE and PANS. Comprehensive augmentative and alternative communication (AAC) intervention included the use of core words, modeling, parallel talk, self-talk, expansive recasts, shared book reading, family counseling, and collaboration with the parents and the school speech-language pathologist. The child made progress on all goals despite irregular attendance to therapy due to medical complications. Discussion Because experimental research including this population is currently limited, this descriptive case study provides valuable information to clinicians, educators, pediatricians, medical diagnosticians, and anyone providing services to a child with a complex neuropsychological disorder like AE. Future research is needed with more children who have AE, especially experimental investigations of the intervention methods utilized here. Additional research of more children with AE can provide information about the scope and severity of speech, language, and communication needs and the trajectory of recovery given AAC intervention.
Collapse
Affiliation(s)
- Christine Brennan
- Department of Speech, Language, and Hearing Sciences, University of Colorado Boulder
| | - Haley Weintraub
- Department of Speech, Language, and Hearing Sciences, University of Colorado Boulder
| | - Sherri Tennant
- Department of Speech, Language, and Hearing Sciences, University of Colorado Boulder
| | - Christina Meyers
- Department of Speech, Language, and Hearing Sciences, University of Colorado Boulder
| |
Collapse
|
14
|
Rafiee F, Rezvani Habibabadi R, Motaghi M, Yousem DM, Yousem IJ. Brain MRI in Autism Spectrum Disorder: Narrative Review and Recent Advances. J Magn Reson Imaging 2021; 55:1613-1624. [PMID: 34626442 DOI: 10.1002/jmri.27949] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023] Open
Abstract
Autism spectrum disorder (ASD) is neuropsychiatric continuum of disorders characterized by persistent deficits in social communication and restricted repetitive patterns of behavior which impede optimal functioning. Early detection and intervention in ASD children can mitigate the deficits in social interaction and result in a better outcome. Various non-invasive imaging methods and molecular techniques have been developed for the early identification of ASD characteristics. There is no general consensus on specific neuroimaging features of autism; however, quantitative magnetic resonance techniques have provided valuable structural and functional information in understanding the neuropathophysiology of ASD and how the autistic brain changes during childhood, adolescence, and adulthood. In this review of decades of ASD neuroimaging research, we identify the structural, functional, and molecular imaging clues that most accurately point to the diagnosis of ASD vs. typically developing children. These studies highlight the 1) exaggerated synaptic pruning, 2) anomalous gyrification, 3) interhemispheric under- and overconnectivity, and 4) excitatory glutamate and inhibitory GABA imbalance theories of ASD. The application of these various theories to the analysis of a patient with ASD is mitigated often by superimposed comorbid neuropsychological disorders, evolving brain maturation processes, and pharmacologic and behavioral interventions that may affect the structure and function of the brain. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Faranak Rafiee
- Department of Radiology, Fara Parto Medical Imaging and Interventional Radiology Center, Shiraz, Iran
| | - Roya Rezvani Habibabadi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, Maryland, USA
| | - Mina Motaghi
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, Georgia, USA
| | - David M Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, Maryland, USA
| | | |
Collapse
|
15
|
Morimoto C, Nakamura Y, Kuwabara H, Abe O, Kasai K, Yamasue H, Koike S. Unique Morphometric Features of the Cerebellum and Cerebellocerebral Structural Correlation Between Autism Spectrum Disorder and Schizophrenia. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:219-228. [PMID: 36325298 PMCID: PMC9616290 DOI: 10.1016/j.bpsgos.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 12/13/2022] Open
Abstract
Background Although cerebellar morphological involvement has been increasingly recognized in autism spectrum disorder (ASD) and schizophrenia (SZ), the extent to which there are morphological differences between them has not been definitively quantified. Furthermore, although previous studies have demonstrated increased anatomical cerebellocerebral correlations in both conditions, differences between their associations have not been well characterized. Methods We compared cerebellar volume between males with ASD (n = 31), males with SZ (n = 28), and typically developing males (n = 49). A total of 31 cerebellar subregions were investigated with the cerebellum segmented into their constituent lobules, in gray matter (GM) and white matter (WM) separately. Additionally, structural correlations with the contralateral cerebrum were analyzed for each cerebellar lobule. Results We found significantly larger WM volume in the bilateral lobules VI and Crus I in the ASD group than in other groups. While WM or GM volumes of these right lobules had positive associations with ASD symptoms, there was a negative association between GM volume of the right Crus I and SZ symptoms. We further observed, in the ASD group specifically, significant correlations between WM of the right lobule VI and WM of the left frontal pole (r = 0.67) and between GM of the right lobule VI and the left caudate (r = 0.60). Conclusions Our findings support evidence that cerebellar morphology is involved in ASD and SZ with different mechanisms. Furthermore, this study showed that these biological differences require consideration when determining diagnostic criteria and treatment for these disorders.
Collapse
Affiliation(s)
- Chie Morimoto
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yuko Nakamura
- UTokyo Center for Integrative Science of Human Behaviour, Graduate School of Art and Sciences, University of Tokyo, Tokyo, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu City, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Center for Evolutionary Cognitive Science, Graduate School of Art and Sciences, University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, University of Tokyo, Tokyo, Japan
- UTokyo Institute for Diversity and Adaptation of Human Mind, University of Tokyo, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu City, Japan
| | - Shinsuke Koike
- UTokyo Center for Integrative Science of Human Behaviour, Graduate School of Art and Sciences, University of Tokyo, Tokyo, Japan
- Center for Evolutionary Cognitive Science, Graduate School of Art and Sciences, University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, University of Tokyo, Tokyo, Japan
- UTokyo Institute for Diversity and Adaptation of Human Mind, University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Kinno R, Muragaki Y, Maruyama T, Tamura M, Tanaka K, Ono K, Sakai KL. Differential Effects of a Left Frontal Glioma on the Cortical Thickness and Complexity of Both Hemispheres. Cereb Cortex Commun 2021; 1:tgaa027. [PMID: 34296101 PMCID: PMC8152868 DOI: 10.1093/texcom/tgaa027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022] Open
Abstract
Glioma is a type of brain tumor that infiltrates and compresses the brain as it grows. Focal gliomas affect functional connectivity both in the local region of the lesion and the global network of the brain. Any anatomical changes associated with a glioma should thus be clarified. We examined the cortical structures of 15 patients with a glioma in the left lateral frontal cortex and compared them with those of 15 healthy controls by surface-based morphometry. Two regional parameters were measured with 3D-MRI: the cortical thickness (CT) and cortical fractal dimension (FD). The FD serves as an index of the topological complexity of a local cortical surface. Our comparative analyses of these parameters revealed that the left frontal gliomas had global effects on the cortical structures of both hemispheres. The structural changes in the right hemisphere were mainly characterized by a decrease in CT and mild concomitant decrease in FD, whereas those in the peripheral regions of the glioma (left hemisphere) were mainly characterized by a decrease in FD with relative preservation of CT. These differences were found irrespective of tumor volume, location, or grade. These results elucidate the structural effects of gliomas, which extend to the distant contralateral regions.
Collapse
Affiliation(s)
- Ryuta Kinno
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Manabu Tamura
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Kyohei Tanaka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Kuniyoshi L Sakai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| |
Collapse
|
17
|
Falcone C, Mevises NY, Hong T, Dufour B, Chen X, Noctor SC, Martínez Cerdeño V. Neuronal and glial cell number is altered in a cortical layer-specific manner in autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 25:2238-2253. [PMID: 34107793 DOI: 10.1177/13623613211014408] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
LAY ABSTRACT The cerebral cortex affected with autism spectrum disorder presents changes in the number of neurons and glia cells, possibly leading to a dysregulation of brain circuits and affecting behavior. However, little is known about cell number alteration in specific layers of the cortex in autism spectrum disorder. We found an increase in the number of neurons and a decrease in the number of astrocytes in specific layers of the prefrontal cortex in postmortem human brains from autism spectrum disorder cases. We hypothesize that this may be due to a failure in neural stem cells to shift differentiation from neurons to glial cells during prenatal brain development. These data provide key anatomical findings that contribute to the bases of autism spectrum disorder pathogenesis.
Collapse
Affiliation(s)
- Carmen Falcone
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Natalie-Ya Mevises
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Tiffany Hong
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Brett Dufour
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Xiaohui Chen
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | | | - Verónica Martínez Cerdeño
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| |
Collapse
|
18
|
Yao S, Zhou M, Zhang Y, Zhou F, Zhang Q, Zhao Z, Jiang X, Xu X, Becker B, Kendrick KM. Decreased homotopic interhemispheric functional connectivity in children with autism spectrum disorder. Autism Res 2021; 14:1609-1620. [PMID: 33908177 DOI: 10.1002/aur.2523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/11/2022]
Abstract
While several functional and structural changes occur in large-scale brain networks in autism spectrum disorder (ASD), reduced interhemispheric resting-state functional connectivity (rsFC) between homotopic regions may be of particular importance as a biomarker. ASD is an early-onset developmental disorder and neural alterations are often age-dependent. Although there is some evidence for homotopic interhemispheric rsFC alterations in language processing regions in ASD children, wider analyses using large data sets have not been performed. The present study, therefore, conducted a voxel-based homotopic interhemispheric rsFC analysis in 146 ASD and 175 typically developing children under-age 10 and examined associations with symptom severity in the autism brain imaging data exchange data sets. Given the role of corpus callosum (CC) in interhemispheric connectivity and reported CC volume changes in ASD we additionally examined whether there were parallel volumetric changes. Results demonstrated decreased homotopic rsFC in ASD children in the posterior cingulate cortex (PCC) and precuneus of the default mode network, the precentral gyrus of the mirror neuron system, and the caudate of the reward system. Homotopic rsFC of the PCC was associated with symptom severity. Furthermore, although no significant CC volume changes were found in ASD children, there was a significant negative correlation between the anterior CC volumes and homotopic rsFC strengths in the caudate. The present study shows that a reduced pattern of homotopic interhemispheric rsFC in ASD adults/adolescents is already present in children of 5-10 years old and further supports their potential use as a general ASD biomarker. LAY SUMMARY: Homotopic interhemispheric functional connectivity plays an important role in synchronizing activity between the two hemispheres and is altered in adults and adolescents with autism spectrum disorder (ASD). In the present study focused on children with ASD, we have observed a similar pattern of decreased homotopic connectivity, suggesting that alterations in homotopic interhemispheric connectivity may occur early in ASD and be a useful general biomarker across ages.
Collapse
Affiliation(s)
- Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Menghan Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuan Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Feng Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qianqian Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhongbo Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaolei Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Fu Y, Zhang J, Li Y, Shi J, Zou Y, Guo H, Li Y, Yao Z, Wang Y, Hu B. A novel pipeline leveraging surface-based features of small subcortical structures to classify individuals with autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:109989. [PMID: 32512131 PMCID: PMC9632410 DOI: 10.1016/j.pnpbp.2020.109989] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/19/2020] [Accepted: 05/30/2020] [Indexed: 10/24/2022]
Abstract
Autism spectrum disorder (ASD) is accompanied with widespread impairment in social-emotional functioning. Classification of ASD using sensitive morphological features derived from structural magnetic resonance imaging (MRI) of the brain may help us to better understand ASD-related mechanisms and improve related automatic diagnosis. Previous studies using T1 MRI scans in large heterogeneous ABIDE dataset with typical development (TD) controls reported poor classification accuracies (around 60%). This may because they only considered surface-based morphometry (SBM) as scalar estimates (such as cortical thickness and surface area) and ignored the neighboring intrinsic geometry information among features. In recent years, the shape-related SBM achieves great success in discovering the disease burden and progression of other brain diseases. However, when focusing on local geometry information, its high dimensionality requires careful treatment in its application to machine learning. To address the above challenges, we propose a novel pipeline for ASD classification, which mainly includes the generation of surface-based features, patch-based surface sparse coding and dictionary learning, Max-pooling and ensemble classifiers based on adaptive optimizers. The proposed pipeline may leverage the sensitivity of brain surface morphometry statistics and the efficiency of sparse coding and Max-pooling. By introducing only the surface features of bilateral hippocampus that derived from 364 male subjects with ASD and 381 age-matched TD males, this pipeline outperformed five recent MRI-based ASD classification studies with >80% accuracy in discriminating individuals with ASD from TD controls. Our results suggest shape-related SBM features may further boost the classification performance of MRI between ASD and TD.
Collapse
Affiliation(s)
- Yu Fu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Yuan Li
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong Province, China
| | - Jie Shi
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Ying Zou
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hanning Guo
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yongchao Li
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhijun Yao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China.
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Martin LA, Hsu FW, Herd B, Gregg M, Sample H, Kaplan J. Executive functions in agenesis of the corpus callosum: Working memory and sustained attention in the BTBR inbred mouse strain. Brain Behav 2021; 11:e01933. [PMID: 33300691 PMCID: PMC7821616 DOI: 10.1002/brb3.1933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Agenesis of the corpus callosum (AgCC) is characterized by the congenital partial or complete absence of the corpus callosum. Several strains of mice have been reported to carry AgCC, with the BTBR T+ Itpr3tf /J (BTBR) inbred mouse strain consistently showing a complete absence of the corpus callosum, as well as a variable reduction in the size of the hippocampal commissure. While much research has focused on the social deficits of the BTBR strain, little research on its cognitive behavior has been conducted. The goal of our study was to compare two facets of executive functioning, spatial working memory, and sustained attention between the BTBR and C57BL/6J (B6) strains. METHODS Spatial working memory was measured utilizing a delayed matching-to-position (DMTP) task and sustained attention was measured utilizing an operant task in which mice were trained to distinguish signal and nonsignal events. RESULTS Both the BTBR and B6 mice demonstrated a predictable decline in performance on the DMTP task as the delay interval increased and predictable increase in performance on the sustained attention task as the duration of the signal event increased. Although no significant differences were found between strains on the performance of these tasks, there was a significant difference in learning the association between lever pressing and food reward. Histological investigation confirmed the complete absence of commissural fibers from the corpus callosum, but also the hippocampal commissure, counter to a previous study. CONCLUSION The results suggest spatial working memory and sustained attention are unaffected by the absence of these commissural fibers alone.
Collapse
Affiliation(s)
- Loren A Martin
- Department of Graduate Psychology, Azusa Pacific University, Azusa, CA, USA
| | - Fang-Wei Hsu
- Department of Graduate Psychology, Azusa Pacific University, Azusa, CA, USA
| | - Brooke Herd
- Department of Graduate Psychology, Azusa Pacific University, Azusa, CA, USA
| | - Michael Gregg
- Department of Psychology, Azusa Pacific University, Azusa, CA, USA
| | - Hannah Sample
- Center for Next-Gen Precision Diagnostics, UCSF, San Francisco, CA, USA
| | - Jason Kaplan
- U.S. Department of Veterans Affairs, Coatesville, PA, USA
| |
Collapse
|
21
|
Cárdenas-de-la-Parra A, Lewis JD, Fonov VS, Botteron KN, McKinstry RC, Gerig G, Pruett JR, Dager SR, Elison JT, Styner MA, Evans AC, Piven J, Collins DL. A voxel-wise assessment of growth differences in infants developing autism spectrum disorder. NEUROIMAGE-CLINICAL 2020; 29:102551. [PMID: 33421871 PMCID: PMC7806791 DOI: 10.1016/j.nicl.2020.102551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
Pediatric neuroimaging study of Autism Spectrum Disorder. Longitudinal Tensor Based Morphometry of the presymptomatic period of ASD. Differences in voxelwise growth trajectories of children with ASD. Regions with differences have been implicated in the core symptoms of ASD.
Autism Spectrum Disorder (ASD) is a phenotypically and etiologically heterogeneous developmental disorder typically diagnosed around 4 years of age. The development of biomarkers to help in earlier, presymptomatic diagnosis could facilitate earlier identification and therefore earlier intervention and may lead to better outcomes, as well as providing information to help better understand the underlying mechanisms of ASD. In this study, magnetic resonance imaging (MRI) scans of infants at high familial risk, from the Infant Brain Imaging Study (IBIS), at 6, 12 and 24 months of age were included in a morphological analysis, fitting a mixed-effects model to Tensor Based Morphometry (TBM) results to obtain voxel-wise growth trajectories. Subjects were grouped by familial risk and clinical diagnosis at 2 years of age. Several regions, including the posterior cingulate gyrus, the cingulum, the fusiform gyrus, and the precentral gyrus, showed a significant effect for the interaction of group and age associated with ASD, either as an increased or a decreased growth rate of the cerebrum. In general, our results showed increased growth rate within white matter with decreased growth rate found mostly in grey matter. Overall, the regions showing increased growth rate were larger and more numerous than those with decreased growth rate. These results detail, at the voxel level, differences in brain growth trajectories in ASD during the first years of life, previously reported in terms of overall brain volume and surface area.
Collapse
Affiliation(s)
| | - J D Lewis
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - V S Fonov
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - K N Botteron
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
| | - R C McKinstry
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
| | - G Gerig
- Tandon School of Engineering, New York University, New York, New York 10003, USA
| | - J R Pruett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - S R Dager
- Department of Radiology, University of Washington, Seattle, WA 98105, USA
| | - J T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - M A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A C Evans
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - J Piven
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - D L Collins
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
22
|
Role of Oligodendrocytes and Myelin in the Pathophysiology of Autism Spectrum Disorder. Brain Sci 2020; 10:brainsci10120951. [PMID: 33302549 PMCID: PMC7764453 DOI: 10.3390/brainsci10120951] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is an early neurodevelopmental disorder that involves deficits in interpersonal communication, social interaction, and repetitive behaviors. Although ASD pathophysiology is still uncertain, alterations in the abnormal development of the frontal lobe, limbic areas, and putamen generate an imbalance between inhibition and excitation of neuronal activity. Interestingly, recent findings suggest that a disruption in neuronal connectivity is associated with neural alterations in white matter production and myelination in diverse brain regions of patients with ASD. This review is aimed to summarize the most recent evidence that supports the notion that abnormalities in the oligodendrocyte generation and axonal myelination in specific brain regions are involved in the pathophysiology of ASD. Fundamental molecular mediators of these pathological processes are also examined. Determining the role of alterations in oligodendrogenesis and myelination is a fundamental step to understand the pathophysiology of ASD and identify possible therapeutic targets.
Collapse
|
23
|
Lee JC, Dick AS, Tomblin JB. Altered brain structures in the dorsal and ventral language pathways in individuals with and without developmental language disorder (DLD). Brain Imaging Behav 2020; 14:2569-2586. [PMID: 31933046 PMCID: PMC7354888 DOI: 10.1007/s11682-019-00209-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developmental Language Disorder (DLD) is a neurodevelopmental disorder characterized by difficulty learning and using language, and this difficulty cannot be attributed to other developmental conditions. The aim of the current study was to examine structural differences in dorsal and ventral language pathways between adolescents and young adults with and without DLD (age range: 14-27 years) using anatomical magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Results showed age-related structural brain differences in both dorsal and ventral pathways in individuals with DLD. These findings provide evidence for neuroanatomical correlates of persistent language deficits in adolescents/young adults with DLD, and further suggest that this brain-language relationship in DLD is better characterized by taking account the dynamic course of the disorder along development.
Collapse
Affiliation(s)
- Joanna C Lee
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, 52242, USA.
| | | | - J Bruce Tomblin
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
24
|
Kan RTY, Chan A, Gagarina N. Investigating Children's Narrative Abilities in a Chinese and Multilingual Context: Cantonese, Mandarin, Kam and Urdu Adaptations of the Multilingual Assessment Instrument for Narratives (MAIN). Front Psychol 2020; 11:573780. [PMID: 33329217 PMCID: PMC7714944 DOI: 10.3389/fpsyg.2020.573780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/22/2020] [Indexed: 11/20/2022] Open
Abstract
This article introduces the LITMUS-MAIN (Language Impairment Testing in Multilingual Settings-MAIN) and motivates the adaptation of this instrument into Chinese languages and language pairs involving a Chinese language, namely Cantonese, Mandarin, Kam, Urdu. We propose that these new adapted protocols not only contribute to the theoretical discussion on story grammar and widen the evidential base of MAIN to include more languages in studying bilinguals, they also offer new methods of assessing language development in young children that have the potential to tease apart the effects of language impairment and bilingualism and improve the identification of Developmental Language Disorder. These new protocols are the first tools to be designed for the dual assessment of language skills in these particular languages, in particular narrative skills in bilingual children speaking these languages. By catering to under-researched languages and over-looked groups of bilingual children, these new tools could improve the clinical management for certain bilingual ethnic minority children such as Urdu-Cantonese and Kam-Mandarin bilinguals, as well as promote the study of these groups and their acquisition issues. Advances in understanding the theoretical and acquisition issues in childhood bilingualism can also be made possible using these new tools.
Collapse
Affiliation(s)
- Rachel T. Y. Kan
- Department of Chinese and Bilingual Studies, Faculty of Humanities, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Angel Chan
- Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Speech Therapy Unit, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- PolyU-Research Centre on Chinese Linguistics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | |
Collapse
|
25
|
Marks K, Coutinho E, Vincent A. Maternal-Autoantibody-Related (MAR) Autism: Identifying Neuronal Antigens and Approaching Prospects for Intervention. J Clin Med 2020; 9:jcm9082564. [PMID: 32784803 PMCID: PMC7465310 DOI: 10.3390/jcm9082564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies indicate the existence of a maternal-autoantibody-related subtype of autism spectrum disorder (ASD). To date, a large number of studies have focused on describing patterns of brain-reactive serum antibodies in maternal-autoantibody-related (MAR) autism and some have described attempts to define the antigenic targets. This article describes evidence on MAR autism and the various autoantibodies that have been implicated. Among other possibilities, antibodies to neuronal surface protein Contactin Associated Protein 2 (CASPR2) have been found more frequently in mothers of children with neurodevelopmental disorders or autism, and two independent experimental studies have shown pathogenicity in mice. The N-methyl-D-aspartate receptor (NMDAR) is another possible target for maternal antibodies as demonstrated in mice. Here, we discuss the growing evidence, discuss issues regarding biomarker definition, and summarise the therapeutic approaches that might be used to reduce or prevent the transfer of pathogenic maternal antibodies.
Collapse
Affiliation(s)
- Katya Marks
- Medical Sciences Division, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK;
| | - Ester Coutinho
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, SE5 9RT London, UK;
- Nuffield Department of Clinical Neurosciences and Weatherall Institute for Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Angela Vincent
- Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, SE1 1UL London, UK
- Correspondence: ; Tel.: +44-781-722-4849 or +44-186-555-9636
| |
Collapse
|
26
|
Dekhil O, Ali M, Haweel R, Elnakib Y, Ghazal M, Hajjdiab H, Fraiwan L, Shalaby A, Soliman A, Mahmoud A, Keynton R, Casanova MF, Barnes G, El-Baz A. A Comprehensive Framework for Differentiating Autism Spectrum Disorder From Neurotypicals by Fusing Structural MRI and Resting State Functional MRI. Semin Pediatr Neurol 2020; 34:100805. [PMID: 32446442 DOI: 10.1016/j.spen.2020.100805] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autism spectrum disorder is a neurodevelopmental disorder characterized by impaired social abilities and communication difficulties. The golden standard for autism diagnosis in research rely on behavioral features, for example, the autism diagnosis observation schedule, the Autism Diagnostic Interview-Revised. In this study we introduce a computer-aided diagnosis system that uses features from structural MRI (sMRI) and resting state functional MRI (fMRI) to help predict an autism diagnosis by clinicians. The proposed system is capable of parcellating brain regions to show which areas are most likely affected by autism related abnormalities and thus help in targeting potential therapeutic interventions. When tested on 18 data sets (n = 1060) from the ABIDE consortium, our system was able to achieve high accuracy (sMRI 0.75-1.00; fMRI 0.79-1.00), sensitivity (sMRI 0.73-1.00; fMRI 0.78-1.00), and specificity (sMRI 0.78-1.00; fMRI 0.79-1.00). The proposed system could be considered an important step toward helping physicians interpret results of neuroimaging studies and personalize treatment options. To the best of our knowledge, this work is the first to combine features from structural and functional MRI, use them for personalized diagnosis and achieve high accuracies on a relatively large population.
Collapse
Affiliation(s)
- Omar Dekhil
- Department of Bioengineering, University of Louisville, Louisville, KY
| | - Mohamed Ali
- Department of Bioengineering, University of Louisville, Louisville, KY
| | - Reem Haweel
- Department of Bioengineering, University of Louisville, Louisville, KY
| | - Yaser Elnakib
- Department of Bioengineering, University of Louisville, Louisville, KY
| | - Mohammed Ghazal
- Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hassan Hajjdiab
- Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Luay Fraiwan
- Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ahmed Shalaby
- Department of Bioengineering, University of Louisville, Louisville, KY
| | - Ahmed Soliman
- Department of Bioengineering, University of Louisville, Louisville, KY
| | - Ali Mahmoud
- Department of Bioengineering, University of Louisville, Louisville, KY
| | - Robert Keynton
- Department of Bioengineering, University of Louisville, Louisville, KY
| | - Manuel F Casanova
- Department of Biomedical Sciences, University of South Carolina, Greenville, SC
| | - Gregory Barnes
- Department of Neurology, University of Louisville, Louisville, KY
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY.
| |
Collapse
|
27
|
Nir A, Barak B. White matter alterations in Williams syndrome related to behavioral and motor impairments. Glia 2020; 69:5-19. [PMID: 32589817 DOI: 10.1002/glia.23868] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
Myelin is the electrical insulator surrounding the neuronal axon that makes up the white matter (WM) of the brain. It helps increase axonal conduction velocity (CV) by inducing saltatory conduction. Damage to the myelin sheath and WM is associated with many neurological and psychiatric disorders. Decreasing myelin deficits, and thus improving axonal conduction, has the potential to serve as a therapeutic mechanism for reducing the severity of some of these disorders. Myelin deficits have been previously linked to abnormalities in social behavior, suggesting an interplay between brain connectivity and sociability. This review focuses on Williams syndrome (WS), a genetic disorder characterized by neurocognitive characteristics and motor abnormalities, mainly known for its hypersociability characteristic. We discuss fundamental aspects of WM in WS and how its alterations can affect motor abilities and social behavior. Overall, findings regarding changes in myelin genes and alterations in WM structure in WS suggest new targets for drug therapy aimed at improving conduction properties and altering brain-activity synchronization in this disorder.
Collapse
Affiliation(s)
- Ariel Nir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Yankowitz LD, Herrington JD, Yerys BE, Pereira JA, Pandey J, Schultz RT. Evidence against the "normalization" prediction of the early brain overgrowth hypothesis of autism. Mol Autism 2020; 11:51. [PMID: 32552879 PMCID: PMC7301552 DOI: 10.1186/s13229-020-00353-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The frequently cited Early Overgrowth Hypothesis of autism spectrum disorder (ASD) postulates that there is overgrowth of the brain in the first 2 years of life, which is followed by a period of arrested growth leading to normalized brain volume in late childhood and beyond. While there is consistent evidence for early brain overgrowth, there is mixed evidence for normalization of brain volume by middle childhood. The outcome of this debate is important to understanding the etiology and neurodevelopmental trajectories of ASD. METHODS Brain volume was examined in two very large single-site samples of children, adolescents, and adults. The primary sample comprised 456 6-25-year-olds (ASD n = 240, typically developing controls (TDC) n = 216), including a large number of females (n = 102) and spanning a wide IQ range (47-158). The replication sample included 175 males. High-resolution T1-weighted anatomical MRI images were examined for group differences in total brain, cerebellar, ventricular, gray, and white matter volumes. RESULTS The ASD group had significantly larger total brain, cerebellar, gray matter, white matter, and lateral ventricular volumes in both samples, indicating that brain volume remains enlarged through young adulthood, rather than normalizing. There were no significant age or sex interactions with diagnosis in these measures. However, a significant diagnosis-by-IQ interaction was detected in the larger sample, such that increased brain volume was related to higher IQ in the TDCs, but not in the ASD group. Regions-of-significance analysis indicated that total brain volume was larger in ASD than TDC for individuals with IQ less than 115, providing a potential explanation for prior inconsistent brain size results. No relationships were found between brain volume and measures of autism symptom severity within the ASD group. LIMITATIONS Our cross-sectional sample may not reflect individual changes over time in brain volume and cannot quantify potential changes in volume prior to age 6. CONCLUSIONS These findings challenge the "normalization" prediction of the brain overgrowth hypothesis by demonstrating that brain enlargement persists across childhood into early adulthood. The findings raise questions about the clinical implications of brain enlargement, since we find that it neither confers cognitive benefits nor predicts increased symptom severity in ASD.
Collapse
Affiliation(s)
- Lisa D Yankowitz
- Center for Autism Research, Children's Hospital of Philadelphia, 2716 South St, Philadelphia, PA, 19104, USA.
- Department of Psychology, University of Pennsylvania, 425 S. University Ave, Philadelphia, PA, 19104, USA.
| | - John D Herrington
- Center for Autism Research, Children's Hospital of Philadelphia, 2716 South St, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19105, USA
| | - Benjamin E Yerys
- Center for Autism Research, Children's Hospital of Philadelphia, 2716 South St, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19105, USA
| | - Joseph A Pereira
- Center for Autism Research, Children's Hospital of Philadelphia, 2716 South St, Philadelphia, PA, 19104, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Juhi Pandey
- Center for Autism Research, Children's Hospital of Philadelphia, 2716 South St, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19105, USA
| | - Robert T Schultz
- Center for Autism Research, Children's Hospital of Philadelphia, 2716 South St, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19105, USA
- Department of Pediatrics Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19105, USA
| |
Collapse
|
29
|
Fu L, Wang Y, Fang H, Xiao X, Xiao T, Li Y, Li C, Wu Q, Chu K, Xiao C, Ke X. Longitudinal Study of Brain Asymmetries in Autism and Developmental Delays Aged 2–5 Years. Neuroscience 2020; 432:137-149. [DOI: 10.1016/j.neuroscience.2020.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
|
30
|
O'Neill J, Bansal R, Goh S, Rodie M, Sawardekar S, Peterson BS. Parsing the Heterogeneity of Brain Metabolic Disturbances in Autism Spectrum Disorder. Biol Psychiatry 2020; 87:174-184. [PMID: 31427037 PMCID: PMC6925333 DOI: 10.1016/j.biopsych.2019.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/18/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite rising prevalence of autism spectrum disorder (ASD), its brain bases remain uncertain. Abnormal levels of N-acetyl compounds, glutamate+glutamine, creatine+phosphocreatine, or choline compounds measured by proton magnetic resonance spectroscopy suggest that neuron or glial density, mitochondrial energetic metabolism, and/or inflammation contribute to ASD neuropathology. The neuroanatomic distribution of these metabolites could help evaluate leading theories of ASD. However, most prior magnetic resonance spectroscopy studies had small samples (all <60, most <20), interrogated only a small fraction of the brain, and avoided assessing effects of age, sex, and IQ. METHODS We acquired near-whole-brain magnetic resonance spectroscopy of N-acetyl compounds, glutamate+glutamine, creatine+phosphocreatine, and choline compounds in 78 children and adults with ASD and 96 typically developing children and adults, rigorously evaluating effects of diagnosis and severity on metabolites, as moderated by age, sex, and IQ. RESULTS Effects of ASD and its severity included reduced levels of multiple metabolites in white matter and the perisylvian cortex and elevated levels in the posterior cingulate, consistent with white matter and social-brain theories of ASD. Regionally, both slower and faster decreases of metabolites with age were observed in ASD versus TD. Male-female metabolite differences were widely smaller in ASD than typically developing children and adults. ASD-specific decreases in metabolites with decreasing IQ occurred in several brain areas. CONCLUSIONS Results support multifocal abnormal neuron or glial density, mitochondrial energetics, or neuroinflammation in ASD, alongside widespread starkly atypical moderating effects of age, sex, and IQ. These findings help parse the neurometabolic signature for ASD by phenotypic heterogeneity.
Collapse
Affiliation(s)
- Joseph O'Neill
- Division of Child and Adolescent Psychiatry, Jane and Terry Semel Institute for Neuroscience, University of California, Los Angeles, California.
| | - Ravi Bansal
- Institute for the Developing Mind, the Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Suzanne Goh
- Division of Child Neurology, Rady Children's Hospital, University of California, San Diego, San Diego, California
| | - Martina Rodie
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Siddhant Sawardekar
- Institute for the Developing Mind, the Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Bradley S Peterson
- Institute for the Developing Mind, the Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
31
|
Ciesielski KTR, Stern ME, Diamond A, Khan S, Busa EA, Goldsmith TE, van der Kouwe A, Fischl B, Rosen BR. Maturational Changes in Human Dorsal and Ventral Visual Networks. Cereb Cortex 2019; 29:5131-5149. [PMID: 30927361 DOI: 10.1093/cercor/bhz053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/26/2018] [Indexed: 11/14/2022] Open
Abstract
Developmental neuroimaging studies report the emergence of increasingly diverse cognitive functions as closely entangled with a rise-fall modulation of cortical thickness (CTh), structural cortical and white-matter connectivity, and a time-course for the experience-dependent selective elimination of the overproduced synapses. We examine which of two visual processing networks, the dorsal (DVN; prefrontal, parietal nodes) or ventral (VVN; frontal-temporal, fusiform nodes) matures first, thus leading the neuro-cognitive developmental trajectory. Three age-dependent measures are reported: (i) the CTh at network nodes; (ii) the matrix of intra-network structural connectivity (edges); and (iii) the proficiency in network-related neuropsychological tests. Typically developing children (age ~6 years), adolescents (~11 years), and adults (~21 years) were tested using multiple-acquisition structural T1-weighted magnetic resonance imaging (MRI) and neuropsychology. MRI images reconstructed into a gray/white/pial matter boundary model were used for CTh evaluation. No significant group differences in CTh and in the matrix of edges were found for DVN (except for the left prefrontal), but a significantly thicker cortex in children for VVN with reduced prefrontal ventral-fusiform connectivity and with an abundance of connections in adolescents. The higher performance in children on tests related to DVN corroborates the age-dependent MRI structural connectivity findings. The current findings are consistent with an earlier maturational course of DVN.
Collapse
Affiliation(s)
- Kristina T R Ciesielski
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA.,Pediatric Neuroscience Laboratory, Department of Psychology, Psychology Clinical Neuroscience Center, University of New Mexico, Logan Hall, Albuquerque NM 87131, USA
| | - Moriah E Stern
- Pediatric Neuroscience Laboratory, Department of Psychology, Psychology Clinical Neuroscience Center, University of New Mexico, Logan Hall, Albuquerque NM 87131, USA
| | - Adele Diamond
- Department of Psychiatry, University of British Columbia, Vancouver BC V6T2A1, Canada
| | - Sheraz Khan
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Evelina A Busa
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA
| | - Timothy E Goldsmith
- Pediatric Neuroscience Laboratory, Department of Psychology, Psychology Clinical Neuroscience Center, University of New Mexico, Logan Hall, Albuquerque NM 87131, USA
| | - Andre van der Kouwe
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA
| | - Bruce Fischl
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Bruce R Rosen
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
32
|
Lackie RE, Razzaq AR, Farhan SMK, Qiu LR, Moshitzky G, Beraldo FH, Lopes MH, Maciejewski A, Gros R, Fan J, Choy WY, Greenberg DS, Martins VR, Duennwald ML, Lerch JP, Soreq H, Prado VF, Prado MAM. Modulation of hippocampal neuronal resilience during aging by the Hsp70/Hsp90 co-chaperone STI1. J Neurochem 2019; 153:727-758. [PMID: 31562773 DOI: 10.1111/jnc.14882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/22/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
Chaperone networks are dysregulated with aging, but whether compromised Hsp70/Hsp90 chaperone function disturbs neuronal resilience is unknown. Stress-inducible phosphoprotein 1 (STI1; STIP1; HOP) is a co-chaperone that simultaneously interacts with Hsp70 and Hsp90, but whose function in vivo remains poorly understood. We combined in-depth analysis of chaperone genes in human datasets, analysis of a neuronal cell line lacking STI1 and of a mouse line with a hypomorphic Stip1 allele to investigate the requirement for STI1 in aging. Our experiments revealed that dysfunctional STI1 activity compromised Hsp70/Hsp90 chaperone network and neuronal resilience. The levels of a set of Hsp90 co-chaperones and client proteins were selectively affected by reduced levels of STI1, suggesting that their stability depends on functional Hsp70/Hsp90 machinery. Analysis of human databases revealed a subset of co-chaperones, including STI1, whose loss of function is incompatible with life in mammals, albeit they are not essential in yeast. Importantly, mice expressing a hypomorphic STI1 allele presented spontaneous age-dependent hippocampal neurodegeneration and reduced hippocampal volume, with consequent spatial memory deficit. We suggest that impaired STI1 function compromises Hsp70/Hsp90 chaperone activity in mammals and can by itself cause age-dependent hippocampal neurodegeneration in mice. Cover Image for this issue: doi: 10.1111/jnc.14749.
Collapse
Affiliation(s)
- Rachel E Lackie
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Abdul R Razzaq
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, and The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Lily R Qiu
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gilli Moshitzky
- Department of Biological Chemistry, The Edmond and Lily Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Flavio H Beraldo
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Marilene H Lopes
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Laboratory of Neurobiology and Stem cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Andrzej Maciejewski
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Robert Gros
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Jue Fan
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - David S Greenberg
- Department of Biological Chemistry, The Edmond and Lily Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vilma R Martins
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Martin L Duennwald
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Hermona Soreq
- Department of Biological Chemistry, The Edmond and Lily Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vania F Prado
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Program in Neuroscience, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Program in Neuroscience, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
33
|
Sphingomyelin in Brain and Cognitive Development: Preliminary Data. eNeuro 2019; 6:ENEURO.0421-18.2019. [PMID: 31324675 PMCID: PMC6709232 DOI: 10.1523/eneuro.0421-18.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/12/2019] [Accepted: 07/05/2019] [Indexed: 01/19/2023] Open
Abstract
Sphingomyelin (SM) supports brain myelination, a process closely associated with cognitive maturation. The presence of SM in breast milk suggests a role in infant nutrition; however, little is known about SM contribution to healthy cognitive development. We investigated the link between early life dietary SM, later cognitive development and myelination using an exploratory observational study of neurotypical children. SM levels were quantified in infant nutrition products fed in the first three months of life and associated with myelin content (brain MRI) as well as cognitive development (Mullen scales of early learning; MSEL). Higher levels of SM were significantly associated with higher rates of change in verbal development in the first two years of life (r = 0.65, p < 0.001), as well as, higher levels of myelin content at 12–24 months, delayed onset and/or more prolonged rates of myelination in different brain areas. Second, we explored mechanisms of action using in vitro models (Sprague Dawley rat pups). In vitro data showed SM treatment resulted in increased proliferation [p = 0.0133 and p = 0.0434 at 4 and 10 d in vitro (DIV)], maturation (p = 0.467 at 4 d DIV) and differentiation (p = 0.0123 and p = 0.0369 at 4 and 10 DIV) of oligodendrocyte precursor cells (OPCs), as well as increased axon myelination (p = 0.0005 at 32 DIV). These findings indicate an impact of dietary SM on cognitive development in healthy children, potentially modulated by oligodendrocytes and increased axon myelination. Future research should include randomized controlled trials to substantiate efficacy of SM for cognitive benefits together with preclinical studies examining SM bioavailability and brain uptake.
Collapse
|
34
|
Boutrus M, Gilani SZ, Alvares GA, Maybery MT, Tan DW, Mian A, Whitehouse AJO. Increased facial asymmetry in autism spectrum conditions is associated with symptom presentation. Autism Res 2019; 12:1774-1783. [PMID: 31225951 DOI: 10.1002/aur.2161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/05/2019] [Indexed: 01/23/2023]
Abstract
A key research priority in the study of autism spectrum conditions (ASC) is the discovery of biological markers that may help to identify and elucidate etiologically distinct subgroups. One physical marker that has received increasing research attention is facial structure. Although there remains little consensus in the field, findings relating to greater facial asymmetry (FA) in ASC exhibit some consistency. As there is growing recognition of the importance of replicatory studies in ASC research, the aim of this study was to investigate the replicability of increased FA in autistic children compared to nonautistic peers. Using three-dimensional photogrammetry, this study examined FA in 84 autistic children, 110 typically developing children with no family history of the condition, and 49 full siblings of autistic children. In support of previous literature, significantly greater depth-wise FA was identified in autistic children relative to the two comparison groups. As a further investigation, increased lateral FA in autistic children was found to be associated with greater severity of ASC symptoms on the Autism Diagnostic Observation Schedule, second edition, specifically related to repetitive and restrictive behaviors. These outcomes provide an important and independent replication of increased FA in ASC, as well as a novel contribution to the field. Having confirmed the direction and areas of increased FA in ASC, these findings could motivate a search for potential underlying brain dysmorphogenesis. Autism Res 2019, 12: 1774-1783. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: This study looked at the amount of facial asymmetry (FA) in autistic children compared to typically developing children and children who have siblings with autism. The study found that autistic children, compared to the other two groups, had greater FA, and that increased FA was related to greater severity of autistic symptoms. The face and brain grow together during the earliest stages of development, and so findings of facial differences in autism might inform future studies of early brain differences associated with the condition.
Collapse
Affiliation(s)
- Maryam Boutrus
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, Australia.,School of Psychological Science, University of Western Australia, Perth, Australia
| | - Syed Zulqarnain Gilani
- Computer Sciences and Software Engineering, University of Western Australia, Perth, Australia.,School of Science, Edith Cowan University, Perth, Australia
| | - Gail A Alvares
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, Australia
| | - Murray T Maybery
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Diana Weiting Tan
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,School of Psychological Science, University of Western Australia, Perth, Australia
| | - Ajmal Mian
- Computer Sciences and Software Engineering, University of Western Australia, Perth, Australia
| | - Andrew J O Whitehouse
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, Australia
| |
Collapse
|
35
|
Edgar JC, Dipiero M, McBride E, Green HL, Berman J, Ku M, Liu S, Blaskey L, Kuschner E, Airey M, Ross JL, Bloy L, Kim M, Koppers S, Gaetz W, Schultz RT, Roberts TPL. Abnormal maturation of the resting-state peak alpha frequency in children with autism spectrum disorder. Hum Brain Mapp 2019; 40:3288-3298. [PMID: 30977235 DOI: 10.1002/hbm.24598] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
Age-related changes in resting-state (RS) neural rhythms in typically developing children (TDC) but not children with autism spectrum disorder (ASD) suggest that RS measures may be of clinical use in ASD only for certain ages. The study examined this issue via assessing RS peak alpha frequency (PAF), a measure previous studies, have indicated as abnormal in ASD. RS magnetoencephalographic (MEG) data were obtained from 141 TDC (6.13-17.70 years) and 204 ASD (6.07-17.93 years). A source model with 15 regional sources projected the raw MEG surface data into brain source space. PAF was identified in each participant from the source showing the largest amplitude alpha activity (7-13 Hz). Given sex differences in PAF in TDC (females > males) and relatively few females in both groups, group comparisons were conducted examining only male TDC (N = 121) and ASD (N = 183). Regressions showed significant group slope differences, with an age-related increase in PAF in TDC (R2 = 0.32) but not ASD (R2 = 0.01). Analyses examining male children below or above 10-years-old (median split) indicated group effects only in the younger TDC (8.90 Hz) and ASD (9.84 Hz; Cohen's d = 1.05). In the older ASD, a higher nonverbal IQ was associated with a higher PAF. In the younger TDC, a faster speed of processing was associated with a higher PAF. PAF as a marker for ASD depends on age, with a RS alpha marker of more interest in younger versus older children with ASD. Associations between PAF and cognitive ability were also found to be age and group specific.
Collapse
Affiliation(s)
- J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marissa Dipiero
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Emma McBride
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Heather L Green
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jeffrey Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew Ku
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lisa Blaskey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Autism Research, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Emily Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Center for Autism Research, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Megan Airey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Judith L Ross
- Thomas Jefferson University, Department of Pediatrics, Philadelphia, Pennsylvania
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Simon Koppers
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - William Gaetz
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert T Schultz
- Center for Autism Research, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Sokol DK, Maloney B, Westmark CJ, Lahiri DK. Novel Contribution of Secreted Amyloid-β Precursor Protein to White Matter Brain Enlargement in Autism Spectrum Disorder. Front Psychiatry 2019; 10:165. [PMID: 31024350 PMCID: PMC6469489 DOI: 10.3389/fpsyt.2019.00165] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022] Open
Abstract
The most replicated neuroanatomical finding in autism is the tendency toward brain overgrowth, especially in younger children. Research shows that both gray and white matter are enlarged. Proposed mechanisms underlying brain enlargement include abnormal inflammatory and neurotrophic signals that lead to excessive, aberrant dendritic connectivity via disrupted pruning and cell adhesion, and enlargement of white matter due to excessive gliogenesis and increased myelination. Amyloid-β protein precursor (βAPP) and its metabolites, more commonly associated with Alzheimer's disease (AD), are also dysregulated in autism plasma and brain tissue samples. This review highlights findings that demonstrate how one βAPP metabolite, secreted APPα, and the ADAM family α-secretases, may lead to increased brain matter, with emphasis on increased white matter as seen in autism. sAPPα and the ADAM family α-secretases contribute to the anabolic, non-amyloidogenic pathway, which is in contrast to the amyloid (catabolic) pathway known to contribute to Alzheimer disease. The non-amyloidogenic pathway could produce brain enlargement via genetic mechanisms affecting mRNA translation and polygenic factors that converge on molecular pathways (mitogen-activated protein kinase/MAPK and mechanistic target of rapamycin/mTOR), promoting neuroinflammation. A novel mechanism linking the non-amyloidogenic pathway to white matter enlargement is proposed: α-secretase and/or sAPPα, activated by ERK receptor signaling activates P13K/AKt/mTOR and then Rho GTPases favoring myelination via oligodendrocyte progenitor cell (OPC) activation of cofilin. Applying known pathways in AD to autism should allow further understanding and provide options for new drug targets.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Pediatrics Section, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryan Maloney
- Indiana Alzheimers Disease Center, Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI, United States
| | - Debomoy K. Lahiri
- Indiana Alzheimers Disease Center, Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
37
|
Hau J, Aljawad S, Baggett N, Fishman I, Carper RA, Müller RA. The cingulum and cingulate U-fibers in children and adolescents with autism spectrum disorders. Hum Brain Mapp 2019; 40:3153-3164. [PMID: 30941791 DOI: 10.1002/hbm.24586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
The cingulum is the major fiber system connecting the cingulate and surrounding medial cortex and medial temporal lobe internally and with other brain areas. It is important for social and emotional functions related to core symptomatology in autism spectrum disorders (ASDs). While the cingulum has been examined in autism, the extensive system of cingulate U-fibers has not been studied. Using probabilistic tractography, we investigated white matter fibers of the cingulate cortex by distinguishing its deep intra-cingulate bundle (cingulum proper) and short rostral anterior, caudal anterior, posterior, and isthmus cingulate U-fibers in 61 ASD and 54 typically developing children and adolescents. Increased mean and radial diffusivity of the left cingulum proper was observed in the ASD group, replicating previous findings on the cingulum. For cingulate U-fibers, an atypical age-related decline in right posterior cingulate U-fiber volume was found in the ASD group, which appeared to be driven by an abnormally large volume in younger children. History of repetitive and restrictive behavior was negatively associated with right caudal anterior cingulate U-fiber volume, linking cingulate motor areas with neighboring gyri. Aberrant development in U-fiber volume of the right posterior cingulate gyrus may underlie functional abnormalities found in this region, such as in the default mode network.
Collapse
Affiliation(s)
- Janice Hau
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Saba Aljawad
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Nicole Baggett
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Inna Fishman
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Ruth A Carper
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| |
Collapse
|
38
|
van Heukelum S, Drost L, Mogavero F, Jager A, Havenith MN, Glennon JC. Aggression in BALB/cJ mice is differentially predicted by the volumes of anterior and midcingulate cortex. Brain Struct Funct 2019; 224:1009-1019. [PMID: 30560374 PMCID: PMC6499875 DOI: 10.1007/s00429-018-1816-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022]
Abstract
Anterior cingulate cortex (ACC) and midcingulate cortex (MCC) have been implicated in the regulation of aggressive behaviour. For instance, patients with conduct disorder (CD) show increased levels of aggression accompanied by changes in ACC and MCC volume. However, accounts of ACC/MCC changes in CD patients have been conflicting, likely due to the heterogeneity of the studied populations. Here, we address these discrepancies by studying volumetric changes of ACC/MCC in the BALB/cJ mouse, a model of aggression, compared to an age- and gender-matched control group of BALB/cByJ mice. We quantified aggression in BALB/cJ and BALB/cByJ mice using the resident-intruder test, and related this to volumetric measures of ACC/MCC based on Nissl-stained coronal brain slices of the same animals. We demonstrate that BALB/cJ behave consistently more aggressively (shorter attack latencies, more frequent attacks, anti-social biting) than the control group, while at the same time showing an increased volume of ACC and a decreased volume of MCC. Differences in ACC and MCC volume jointly predicted a high amount of variance in aggressive behaviour, while regression with only one predictor had a poor fit. This suggests that, beyond their individual contributions, the relationship between ACC and MCC plays an important role in regulating aggressive behaviour. Finally, we show the importance of switching from the classical rodent anatomical definition of ACC as cingulate area 2 and 1 to a definition that includes the MCC and is directly homologous to higher mammalian species: clear behaviour-related differences in ACC/MCC anatomy were only observed using the homologous definition.
Collapse
Affiliation(s)
- Sabrina van Heukelum
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.
| | - L Drost
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - F Mogavero
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - A Jager
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - M N Havenith
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - J C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Peterson BS, Zargarian A, Peterson JB, Goh S, Sawardekar S, Williams SCR, Lythgoe DJ, Zelaya FO, Bansal R. Hyperperfusion of Frontal White and Subcortical Gray Matter in Autism Spectrum Disorder. Biol Psychiatry 2019; 85:584-595. [PMID: 30711191 PMCID: PMC6420395 DOI: 10.1016/j.biopsych.2018.11.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Our aim was to assess resting cerebral blood flow (rCBF) in children and adults with autism spectrum disorder (ASD). METHODS We acquired pulsed arterial spin labeling magnetic resonance imaging data in 44 generally high-functioning participants with ASD simplex and 66 typically developing control subjects with comparable mean full-scale IQs. We compared rCBF values voxelwise across diagnostic groups and assessed correlations with symptom scores. We also assessed the moderating influences of participant age, sex, and IQ on our findings and the correlations of rCBF with N-acetylaspartate metabolite levels. RESULTS We detected significantly higher rCBF values throughout frontal white matter and subcortical gray matter in participants with ASD. rCBF correlated positively with socialization deficits in participants with ASD in regions where hyperperfusion was greatest. rCBF declined with increasing IQ in the typically developing group, a correlation that was absent in participants with ASD, whose rCBF values were elevated across all IQ levels. rCBF in the ASD group correlated inversely with N-acetylaspartate metabolite levels throughout the frontal white matter, with greater rCBF accompanying lower and increasingly abnormal N-acetylaspartate levels relative to those of typically developing control subjects. CONCLUSIONS These findings taken together suggest the presence of altered metabolism, likely of mitochondrial origin, and dysfunctional maintenance processes that support axonal functioning in ASD. These disturbances in turn likely reduce neural efficiency for cognitive and social functioning and trigger compensatory responses from supporting glial cells, which subsequently increase rCBF to affected white matter. These findings, if confirmed, suggest cellular and molecular targets for novel therapeutics that address axonal pathology and bolster glial compensatory responses in ASD.
Collapse
Affiliation(s)
- Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California.
| | - Ariana Zargarian
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jarod B Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, California
| | | | - Siddhant Sawardekar
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, California
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fernando O Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ravi Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
40
|
Dekhil O, Ali M, El-Nakieb Y, Shalaby A, Soliman A, Switala A, Mahmoud A, Ghazal M, Hajjdiab H, Casanova MF, Elmaghraby A, Keynton R, El-Baz A, Barnes G. A Personalized Autism Diagnosis CAD System Using a Fusion of Structural MRI and Resting-State Functional MRI Data. Front Psychiatry 2019; 10:392. [PMID: 31333507 PMCID: PMC6620533 DOI: 10.3389/fpsyt.2019.00392] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
Autism spectrum disorder is a neuro-developmental disorder that affects the social abilities of the patients. Yet, the gold standard of autism diagnosis is the autism diagnostic observation schedule (ADOS). In this study, we are implementing a computer-aided diagnosis system that utilizes structural MRI (sMRI) and resting-state functional MRI (fMRI) to demonstrate that both anatomical abnormalities and functional connectivity abnormalities have high prediction ability of autism. The proposed system studies how the anatomical and functional connectivity metrics provide an overall diagnosis of whether the subject is autistic or not and are correlated with ADOS scores. The system provides a personalized report per subject to show what areas are more affected by autism-related impairment. Our system achieved accuracies of 75% when using fMRI data only, 79% when using sMRI data only, and 81% when fusing both together. Such a system achieves an important next step towards delineating the neurocircuits responsible for the autism diagnosis and hence may provide better options for physicians in devising personalized treatment plans.
Collapse
Affiliation(s)
- Omar Dekhil
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States
| | - Mohamed Ali
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States
| | - Yaser El-Nakieb
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States
| | - Ahmed Shalaby
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States
| | - Ahmed Soliman
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States
| | - Andrew Switala
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States
| | - Ali Mahmoud
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States
| | - Mohammed Ghazal
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States.,Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hassan Hajjdiab
- Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Manuel F Casanova
- Department of Biomedical Sciences, University of South Carolina, Greenville, SC, United States
| | - Adel Elmaghraby
- Computer Engineering and Computer Science Department, University of Louisville, Louisville, KY, United States
| | - Robert Keynton
- Bioengineering Department, University of Louisville, Louisville, KY, United States
| | - Ayman El-Baz
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States
| | - Gregory Barnes
- Department of Neurology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
41
|
Irimia A, Lei X, Torgerson CM, Jacokes ZJ, Abe S, Van Horn JD. Support Vector Machines, Multidimensional Scaling and Magnetic Resonance Imaging Reveal Structural Brain Abnormalities Associated With the Interaction Between Autism Spectrum Disorder and Sex. Front Comput Neurosci 2018; 12:93. [PMID: 30534065 PMCID: PMC6276724 DOI: 10.3389/fncom.2018.00093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 11/02/2018] [Indexed: 11/28/2022] Open
Abstract
Despite substantial efforts, it remains difficult to identify reliable neuroanatomic biomarkers of autism spectrum disorder (ASD) based on magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Studies which use standard statistical methods to approach this task have been hampered by numerous challenges, many of which are innate to the mathematical formulation and assumptions of general linear models (GLM). Although the potential of alternative approaches such as machine learning (ML) to identify robust neuroanatomic correlates of psychiatric disease has long been acknowledged, few studies have attempted to evaluate the abilities of ML to identify structural brain abnormalities associated with ASD. Here we use a sample of 110 ASD patients and 83 typically developing (TD) volunteers (95 females) to assess the suitability of support vector machines (SVMs, a robust type of ML) as an alternative to standard statistical inference for identifying structural brain features which can reliably distinguish ASD patients from TD subjects of either sex, thereby facilitating the study of the interaction between ASD diagnosis and sex. We find that SVMs can perform these tasks with high accuracy and that the neuroanatomic correlates of ASD identified using SVMs overlap substantially with those found using conventional statistical methods. Our results confirm and establish SVMs as powerful ML tools for the study of ASD-related structural brain abnormalities. Additionally, they provide novel insights into the volumetric, morphometric, and connectomic correlates of this epidemiologically significant disorder.
Collapse
Affiliation(s)
- Andrei Irimia
- Laboratory of Neuro Imaging, Keck School of Medicine, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Xiaoyu Lei
- Laboratory of Neuro Imaging, Keck School of Medicine, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Carinna M. Torgerson
- Laboratory of Neuro Imaging, Keck School of Medicine, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Zachary J. Jacokes
- Laboratory of Neuro Imaging, Keck School of Medicine, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Sumiko Abe
- Laboratory of Neuro Imaging, Keck School of Medicine, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - John D. Van Horn
- Laboratory of Neuro Imaging, Keck School of Medicine, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
42
|
Opposite development of short- and long-range anterior cingulate pathways in autism. Acta Neuropathol 2018; 136:759-778. [PMID: 30191402 PMCID: PMC6208731 DOI: 10.1007/s00401-018-1904-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
Abstract
Autism has been linked with the changes in brain connectivity that disrupt neural communication, especially involving frontal networks. Pathological changes in white matter are evident in adults with autism, particularly affecting axons below the anterior cingulate cortices (ACC). It is still unknown whether axon pathology appears early or late in development and whether it changes or not from childhood through adulthood. To address these questions, we examined typical and pathological development of about 1 million axons in post-mortem brains of children, adolescents, and adults with and without autism (ages 3-67 years). We used high-resolution microscopy to systematically sample and study quantitatively the fine structure of myelinated axons in the white matter below ACC. We provide novel evidence of changes in the density, size and trajectories of ACC axons in typical postnatal development from childhood through adulthood. Against the normal profile of axon development, our data revealed lower density of myelinated axons that connect ACC with neighboring cortices in children with autism. In the course of development the proportion of thin axons, which form short-range pathways, increased significantly in individuals with autism, but remained flat in controls. In contrast, the relative proportion of thick axons, which form long-range pathways, increased from childhood to adulthood in the control group, but decreased in autism. Our findings provide a timeline for profound changes in axon density and thickness below ACC that affect axon physiology in a direction suggesting bias in short over distant neural communication in autism. Importantly, measures of axon density, myelination, and orientation provide white matter anisotropy/diffusivity estimates at the level of single axons. The structural template established can be used to compare with measures obtained from imaging in living subjects, and guide analysis of functional and structural imaging data from humans for comparison with pathological states.
Collapse
|
43
|
Dekhil O, Hajjdiab H, Shalaby A, Ali MT, Ayinde B, Switala A, Elshamekh A, Ghazal M, Keynton R, Barnes G, El-Baz A. Using resting state functional MRI to build a personalized autism diagnosis system. PLoS One 2018; 13:e0206351. [PMID: 30379950 PMCID: PMC6209234 DOI: 10.1371/journal.pone.0206351] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/11/2018] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neuro-developmental disorder associated with social impairments, communication difficulties, and restricted and repetitive behaviors. Yet, there is no confirmed cause identified for ASD. Studying the functional connectivity of the brain is an emerging technique used in diagnosing and understanding ASD. In this study, we obtained the resting state functional MRI data of 283 subjects from the National Database of Autism Research (NDAR). An automated autism diagnosis system was built using the data from NDAR. The proposed system is machine learning based. Power spectral densities (PSDs) of time courses corresponding to the spatial activation areas are used as input features, feeds them to a stacked autoencoder then builds a classifier using probabilistic support vector machines. Over the used dataset, around 90% of sensitivity, specificity and accuracy was achieved by our machine learning system. Moreover, the system generalization ability was checked over two different prevalence values, one for the general population and the other for the of high risk population, and the system proved to be very generalizable, especially among the population of high risk. The proposed system generates a full personalized report for each subject, along with identifying the global differences between ASD and typically developed (TD) subjects and its ability to diagnose autism. It shows the impacted areas and the severity of implications. From the clinical aspect, this report is considered very valuable as it helps in both predicting and understanding behavior of autistic subjects. Moreover, it helps in designing a plan for personalized treatment per each individual subject. The proposed work is taking a step towards achieving personalized medicine in autism which is the ultimate goal of our group's research efforts in this area.
Collapse
Affiliation(s)
- Omar Dekhil
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States of America
| | - Hassan Hajjdiab
- Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ahmed Shalaby
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States of America
| | - Mohamed T. Ali
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States of America
| | - Babajide Ayinde
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States of America
| | - Andy Switala
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States of America
| | - Aliaa Elshamekh
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States of America
| | - Mohamed Ghazal
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States of America
- Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Robert Keynton
- Bioengineering Department, University of Louisville, Louisville, KY, United States of America
| | - Gregory Barnes
- Department of Neurology, University of Louisville, Louisville, KY, United States of America
| | - Ayman El-Baz
- Bioimaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, United States of America
| |
Collapse
|
44
|
Crutcher J, Martin A, Wallace GL. Dissociations in the neural substrates of language and social functioning in autism spectrum disorder. Autism Res 2018; 11:1175-1186. [PMID: 30365251 DOI: 10.1002/aur.1969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/12/2018] [Accepted: 05/02/2018] [Indexed: 11/10/2022]
Abstract
Impairments in social communication (coupled with intact nonsocial language skills) are common in autism spectrum disorder (ASD). However, the neural correlates of these social communication deficits in adolescents and young adults with ASD are not fully understood. The communication checklist self-report (CC-SR) was administered to adolescents and young adults with ASD (n = 52) and typically developing (TD) controls (n = 64) to assess structural-language, pragmatic-language, and social-engagement. One high-resolution T1-weighted structural image was obtained from each participant. FreeSurfer was used to quantify cortical thickness. A main effect of diagnosis, with the ASD group performing worse than the TD group on all three CC-SR scales, and a diagnosis by scale interaction, driven by low social-engagement self-ratings in the ASD group, were found. There were also group differences in the relationship between scores on two of the three CC-SR scales and cortical thickness in multiple regions (pragmatic-language: left rostral frontal; social-engagement: left medial prefrontal). These interactions were driven by poorer self-ratings of language/social skills associated with decreased cortical thickness in the ASD group, while in the TD group worse self-ratings were associated with thicker cortex. Self-ratings of language/social-communication were lower in the ASD than the TD group. Moreover, language/social-communication self-ratings showed a different relationship with cortical thickness for the ASD and TD groups in the left inferior frontal region for pragmatic language ratings and the left medial prefrontal cortex for social engagement ratings. These findings suggest thinner cortex is associated with more impaired pragmatic language and social communication abilities in ASD. Autism Res 2018, 11: 1175-1186. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: The present study examines the associations between brain structure and language/social communication ability in adolescents and young adults with autism spectrum disorder (ASD) as compared to neurotypical adolescents and young adults. We utilized thickness of the cerebral cortex as a measure of brain structure, and we found different correlations between language or social communication ability and cortical thickness in distinct regions for the ASD and TD groups. These findings suggest that for regions implicated in language/social communication ability, decreased cortical thickness is associated with more impaired pragmatic language and social communication abilities in ASD.
Collapse
Affiliation(s)
- Jason Crutcher
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland
| | - Alex Martin
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland
| | - Gregory L Wallace
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland.,Department of Speech, Language, and Hearing Sciences, The George Washington University, Washington, District of Columbia
| |
Collapse
|
45
|
Shou G, Mosconi MW, Wang J, Ethridge LE, Sweeney JA, Ding L. Electrophysiological signatures of atypical intrinsic brain connectivity networks in autism. J Neural Eng 2018; 14:046010. [PMID: 28540866 DOI: 10.1088/1741-2552/aa6b6b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Abnormal local and long-range brain connectivity have been widely reported in autism spectrum disorder (ASD), yet the nature of these abnormalities and their functional relevance at distinct cortical rhythms remains unknown. Investigations of intrinsic connectivity networks (ICNs) and their coherence across whole brain networks hold promise for determining whether patterns of functional connectivity abnormalities vary across frequencies and networks in ASD. In the present study, we aimed to probe atypical intrinsic brain connectivity networks in ASD from resting-state electroencephalography (EEG) data via characterizing the whole brain network. APPROACH Connectivity within individual ICNs (measured by spectral power) and between ICNs (measured by coherence) were examined at four canonical frequency bands via a time-frequency independent component analysis on high-density EEG, which were recorded from 20 ASD and 20 typical developing (TD) subjects during an eyes-closed resting state. MAIN RESULTS Among twelve identified electrophysiological ICNs, individuals with ASD showed hyper-connectivity in individual ICNs and hypo-connectivity between ICNs. Functional connectivity alterations in ASD were more severe in the frontal lobe and the default mode network (DMN) and at low frequency bands. These functional connectivity measures also showed abnormal age-related associations in ICNs related to frontal, temporal and motor regions in ASD. SIGNIFICANCE Our findings suggest that ASD is characterized by the opposite directions of abnormalities (i.e. hypo- and hyper-connectivity) in the hierarchical structure of the whole brain network, with more impairments in the frontal lobe and the DMN at low frequency bands, which are critical for top-down control of sensory systems, as well as for both cognition and social skills.
Collapse
Affiliation(s)
- Guofa Shou
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, United States of America
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Rewiring is a plasticity mechanism that alters connectivity between neurons. Evidence for rewiring has been difficult to obtain. New evidence indicates that local circuitry is rewired during learning. Harnessing rewiring offers new ways to treat psychiatric and neurological diseases.
Neuronal connections form the physical basis for communication in the brain. Recently, there has been much interest in mapping the “connectome” to understand how brain structure gives rise to brain function, and ultimately, to behaviour. These attempts to map the connectome have largely assumed that connections are stable once formed. Recent studies, however, indicate that connections in mammalian brains may undergo rewiring during learning and experience-dependent plasticity. This suggests that the connectome is more dynamic than previously thought. To what extent can neural circuitry be rewired in the healthy adult brain? The connectome has been subdivided into multiple levels of scale, from synapses and microcircuits through to long-range tracts. Here, we examine the evidence for rewiring at each level. We then consider the role played by rewiring during learning. We conclude that harnessing rewiring offers new avenues to treat brain diseases.
Collapse
Affiliation(s)
- Sophie H Bennett
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Alastair J Kirby
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Gerald T Finnerty
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
| |
Collapse
|
47
|
B-1a lymphocytes promote oligodendrogenesis during brain development. Nat Neurosci 2018; 21:506-516. [PMID: 29507409 DOI: 10.1038/s41593-018-0106-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/08/2018] [Indexed: 01/22/2023]
Abstract
During brain development, the immune system mediates neurogenesis, gliogenesis and synapse formation. However, it remains unclear whether peripheral lymphocytes contribute to brain development. Here we identified the subtypes of lymphocytes that are present in neonatal mouse brains and investigated their functions. We found that B-1a cells, a subtype of B cells, were abundant in the neonatal mouse brain and infiltrated into the brain in a CXCL13-CXCR5-dependent manner. B-1a cells promoted the proliferation of oligodendrocyte-precursor cells (OPCs) in vitro, and depletion of B-1a cells from developing brains resulted in a reduction of numbers of OPCs and mature oligodendrocytes. Furthermore, neutralizing Fcα/μR, the receptor for the Fc region of IgM secreted by B-1a cells, inhibited OPC proliferation and reduced the proportion of myelinated axons in neonatal mouse brains. Our results demonstrate that B-1a cells infiltrate into the brain and contribute to oligodendrogenesis and myelination by promoting OPC proliferation via IgM-Fcα/μR signaling.
Collapse
|
48
|
Good P. Evidence the U.S. autism epidemic initiated by acetaminophen (Tylenol) is aggravated by oral antibiotic amoxicillin/clavulanate (Augmentin) and now exponentially by herbicide glyphosate (Roundup). Clin Nutr ESPEN 2018; 23:171-183. [PMID: 29460795 DOI: 10.1016/j.clnesp.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/30/2017] [Accepted: 10/17/2017] [Indexed: 01/22/2023]
Abstract
Because certain hereditary diseases show autistic behavior, and autism often runs in families, researchers seek genes underlying the pathophysiology of autism, thus core behaviors. Other researchers argue environmental factors are decisive, citing compelling evidence of an autism epidemic in the United States beginning about 1980. Recognition that environmental factors influence gene expression led to synthesis of these views - an 'epigenetic epidemic' provoked by pervasive environmental agents altering expression of vulnerable genes, inducing characteristic autistic biochemistries in many mothers and infants. Two toxins most implicated in the U.S. autism epidemic are analgesic/antipyretic acetaminophen (Tylenol) and oral antibiotic amoxicillin/clavulanate (Augmentin). Recently herbicide glyphosate (Roundup) was exponentially implicated. What do these toxins have in common? Acetaminophen depletes sulfate and glutathione required to detoxify it. Oral antibiotics kill and glyphosate inhibits intestinal bacteria that synthesize methionine (precursor of sulfate and glutathione, and required to methylate DNA), bacteria that synthesize tryptophan (sole precursor of neuroinhibitor serotonin), and bacteria that restrain ammonia-generating anaerobes. Sulfate plus glutathione normally sulfate fetal adrenal androgen dehydroepiandrosterone to DHEAS - major precursor of placental/postnatal estrogens. Glyphosate (and heavy metals) also inhibit aromatase that turns androgens to estrogens. Placental/postnatal estrogens dehydrate/mature brain myelin sheaths, mature corpus callosum and left hemisphere preferentially, dilate brain blood vessels, and elevate brain serotonin and oxytocin. Stress-induced weak androgens and estrogen depletion coherently explain white matter asymmetry and dysconnection in autism, extreme male brain, low brain blood flow, hyperexcitability, social anxiety, and insufficient maternal oxytocin at birth to limit fetal brain chloride/water and mature GABA.
Collapse
Affiliation(s)
- Peter Good
- Autism Studies, PO Box 1683, La Pine, OR 97739, USA.
| |
Collapse
|
49
|
Margari L, De Giacomo A, Craig F, Palumbi R, Peschechera A, Margari M, Picardi F, Caldarola M, Maghenzani MA, Dicuonzo F. Frontal lobe metabolic alterations in autism spectrum disorder: a 1H-magnetic resonance spectroscopy study. Neuropsychiatr Dis Treat 2018; 14:1871-1876. [PMID: 30050301 PMCID: PMC6055909 DOI: 10.2147/ndt.s165375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Recently, neuroimaging studies were performed using 1H-magnetic resonance spectroscopy (1H-MRS), revealing a quantitative alteration of neurochemicals (such as neurotransmitters and metabolites) in several brain regions of patients with autism spectrum disorder (ASD). The involvement of the frontal lobe in the neurobiology of ASD has long been documented in the literature. Therefore, the aim of this study was to analyze the alterations of N-acetylaspartate/creatine (NAA/Cr) and choline/Cr (Cho/Cr) ratios in the frontal lobe subcortical white matter (WM) in ASD patients, in order to reveal any alteration of metabolites that might be the expression of specific clinical features of the disorder. PATIENTS AND METHODS An 1H-MRS study of the frontal lobe subcortical WM was performed in 75 children with ASD and in 50 age-matched controls to evaluate the functional activity of this brain region. RESULTS NAA/Cr and Cho/Cr ratios were significantly altered in ASD, compared to control subjects. Moreover, in the ASD group, NAA/Cr was significantly lower in patients with a cognitive impairment. CONCLUSION Results from this study confirm the existence of brain metabolites' alterations in frontal lobe WM in children with ASD, supporting the relevance of this brain region in the clinical expressions of this disorder, including its role in the cognitive impairment. Further 1H-MRS investigations will allow to comprehensively explain the relationship between metabolic alteration in a specific brain region and specific clinical features of ASD.
Collapse
Affiliation(s)
- Lucia Margari
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Child Neuropsychiatry Unit, University of Bari Aldo Moro, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy,
| | - Andrea De Giacomo
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Child Neuropsychiatry Unit, University of Bari Aldo Moro, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy,
| | - Francesco Craig
- Scientific Institute, IRCCS E. Medea, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, Brindisi, Italy
| | - Roberto Palumbi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Child Neuropsychiatry Unit, University of Bari Aldo Moro, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy,
| | - Antonia Peschechera
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Child Neuropsychiatry Unit, University of Bari Aldo Moro, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy,
| | - Mariella Margari
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Child Neuropsychiatry Unit, University of Bari Aldo Moro, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy,
| | - Francesca Picardi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Neuroradiology Unit, University of Bari Aldo Moro, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Marina Caldarola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Neuroradiology Unit, University of Bari Aldo Moro, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Marilena Anna Maghenzani
- Emergency Department, Anesthesia and Intensive Care Unit, University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
| | - Franca Dicuonzo
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Neuroradiology Unit, University of Bari Aldo Moro, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy
| |
Collapse
|
50
|
Atypical structural and functional motor networks in autism. PROGRESS IN BRAIN RESEARCH 2018; 238:207-248. [DOI: 10.1016/bs.pbr.2018.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|