1
|
Gamper J, Gallmetzer JM, Listyarini RV, Weiss AKH, Hofer TS. Equipartitioning of Molecular Degrees of Freedom in MD Simulations of Gaseous Systems via an Advanced Thermostatization Strategy. J Chem Theory Comput 2024. [PMID: 39699345 DOI: 10.1021/acs.jctc.4c01580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
This work introduces a dedicated thermostatization strategy for molecular dynamics simulations of gaseous systems. The proposed thermostat is based on the stochastic canonical velocity rescaling approach by Bussi and co-workers and is capable of ensuring an equal distribution of the kinetic energy among the translational, rotational, and vibrational degrees of freedom. The outlined framework ensures the correct treatment of the kinetic energy in gaseous systems, which is typically not the case in standard approaches due to the limited number of collisions between particles associated with a large free mean path. Additionally, an efficient strategy to effectively correct for intramolecular contributions to the virial in quantum mechanical simulations is presented. The equipartitioning thermostat was successfully tested by the determination of pV diagrams for carbon dioxide and methane at the density functional tight binding level of theory. The results unequivocally demonstrate that the equipartitioning thermostat can effectively achieve an equal distribution of the kinetic energy among the different degrees of freedom, thereby ensuring correct pressure in gaseous systems. Furthermore, RDF calculations show the capability of the proposed method to accurately depict the structure of gaseous systems, as well as enable an adequate treatment of gas molecules under confinement, as exemplified by an MD simulation of (CO2)50@MOF-5.
Collapse
Affiliation(s)
- Jakob Gamper
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Josef M Gallmetzer
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Risnita Vicky Listyarini
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Alexander K H Weiss
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Thomas S Hofer
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
Zhang F, Cheng K, Zhang XS, Zhou S, Zou JH, Tian MY, Hou XL, Hu YG, Yuan J, Fan JX, Zhao YD, Liu TC. Cascade-catalysed nanocarrier degradation for regulating metabolism homeostasis and enhancing drug penetration on breast cancer. J Nanobiotechnology 2024; 22:680. [PMID: 39506777 PMCID: PMC11542379 DOI: 10.1186/s12951-024-02948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
The abnormal structure of tumor vascular seriously hinders the delivery and deep penetration of drug in tumor therapy. Herein, an integrated and tumor microenvironment (TME)-responsive nanocarrier is designed, which can dilate vessle and improve the drug penetration by in situ releasing nitric oxide (NO). Briefly, S-nitroso-glutathione (GSNO) and curcumin (Cur) were encapsulatd into the Cu-doped zeolite imidazole framework-8 (Cu-ZIF-8) and modified with hyaluronic acid. The nanocarrier degradation in the weakly acidic of TME releases Cu2+, then deplete overexpressed intratumourally glutathione and transformed into Cu+, thus disrupting the balance between nicotinamide adenine dinucleotide phosphate and flavin adenine dinucleotide (NADPH/FAD) during the metabolism homeostasis of tumor. The Cu+ can generate highly toxic hydroxyl radical through the Fenton-like reaction, enhancing the chemodynamic therapeutic effect. In addition, Cu+ also decomposes GSNO to release NO by ionic reduction, leading to vasodilation and increased vascular permeability, significantly promoting the deep penetration of Cur in tumor. Afterwards, the orderly operation of cell cycle is disrupted and arrested in the S-phase to induce tumor cell apoptosis. Deep-hypothermia potentiated 2D/3D fluorescence imaging demonstrated nanocarrier regulated endogenous metabolism homeostasis of tumor. The cascade-catalysed multifunctional nanocarrier provides an approach to treat orthotopic tumor.
Collapse
Affiliation(s)
- Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Xiao-Shuai Zhang
- Basic Medical Laboratory, General Hospital of Central Theater Command, Wuhan, Hubei, 430081, P.R. China
| | - Sui Zhou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Jia-Hua Zou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang, Hubei, 438000, P.R. China
| | - Ming-Yu Tian
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Xiao-Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Yong-Guo Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China.
- NMPA Research Base of Regulatory Science for Medical Devices & Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China.
| | - Tian-Cai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, P.R. China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, P.R. China.
| |
Collapse
|
3
|
Brand M, Trowell HG, Pegg JT, Greenfield JL, Odaybat M, Little MA, Haycock PR, Avci G, Rankin N, Fuchter MJ, Jelfs KE, Cooper AI, Greenaway RL. Photoresponsive Organic Cages─Computationally Inspired Discovery of Azobenzene-Derived Organic Cages. J Am Chem Soc 2024; 146:30332-30339. [PMID: 39436835 PMCID: PMC11544616 DOI: 10.1021/jacs.4c10217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
The incorporation of photoresponsive groups into porous materials is attractive as it offers potential advantages in controlling the pore size and selectivity to guest molecules. A combination of computational modeling and experiment resulted in the synthesis of two azobenzene-derived organic cages based on building blocks identified in a computational screen. Both cages incorporate three azobenzene moieties, and are therefore capable of 3-fold isomerization, using either ditopic or tetratopic aldehydes containing diazene functionality. The ditopic aldehyde forms a Tri2Di3 cage via a 6-fold imine condensation and the tritopic aldehyde forms a Tet3Di6 cage via a 12-fold imine condensation. The relative energies and corresponding intrinsic cavities of each isomeric state were computed, and the photoswitching behavior of both cages was studied by UV-Vis and 1H NMR spectroscopy, including a detailed kinetic analysis of the thermal isomerization for each of the EEZ, EZZ and ZZZ metastable isomers of the Tet3Di6 cage. Both cages underwent photoisomerization, where a photostationary state of up to 77% of the cis-isomer and overall thermal half-life of 110 h was identified for the Tet3Di6 species. Overall, this work demonstrates the potential of computational modeling to inform the design of photoresponsive materials and highlights the contrasting effects on the photoswitching properties of the azobenzene moieties on incorporation into the different cage species.
Collapse
Affiliation(s)
- Michael
C. Brand
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Hamish G. Trowell
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - James T. Pegg
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Jake L. Greenfield
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
- Universität
Würzburg, Institut für Organische
Chemie, Würzburg 97074, Germany
| | - Magdalena Odaybat
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Marc A. Little
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Peter R. Haycock
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Gokay Avci
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Nicola Rankin
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Matthew J. Fuchter
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
- Department
of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Kim E. Jelfs
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Andrew I. Cooper
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Rebecca L. Greenaway
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| |
Collapse
|
4
|
Bläker C, Jähnichen T, Hojak J, Gehrke L, Pasel C, Paschke T, Dreisbach F, Enke D, Bathen D. Adsorbent Properties of Porous Boron Nitride and Activated Carbon: A Comparative Study. ACS OMEGA 2024; 9:42721-42733. [PMID: 39464481 PMCID: PMC11500363 DOI: 10.1021/acsomega.4c02625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 10/29/2024]
Abstract
Porous boron nitrides possess beneficial properties such as high thermal and chemical stability which are critical for applications in adsorption processes. In order to assess possible fields of applications, trace-level adsorption isotherms of different hydrocarbons on two synthesized porous boron nitrides and two commercial activated carbons are compared. By normalizing the adsorptive loadings on the micropore surface area, superior adsorption performances of the BN materials on polar and aromatic adsorptives with up to 50% higher loadings compared to the activated carbons can be shown. Nonpolar adsorptives, on the other hand, feature higher specific loadings on the activated carbon. Consequently, the size of the micropore surface appears to be decisive for nonpolar adsorptives, while the higher polarity of the boron nitrides is the dominant influencing factor for the adsorption of polar and aromatic components. For an energetic study of the adsorbents, calorimetric experiments were performed to identify and discuss adsorbent-adsorptive interactions. While the initial heat of adsorption of the nonpolar n-hexane is lower on the boron nitride than on the activated carbon due to a less favorable spatial arrangement, toluene shows comparable values on both adsorbent classes and the polar acetone shows higher values on the polar boron nitride. Considering technical applications in adsorption technology, the thermal stability of the boron nitrides is investigated using spontaneous ignition temperatures and points of initial oxidation. Here, the porous boron nitrides with oxidation temperatures above 900 °C show about 400 °C higher values and thus a significantly higher thermal stability.
Collapse
Affiliation(s)
- Christian Bläker
- Chair
of Thermal Process Engineering, University
of Duisburg-Essen, Duisburg 47057, Germany
| | - Tim Jähnichen
- Institute
of Chemical Technology, Leipzig University, Leipzig 04103, Germany
| | - Jan Hojak
- Chair
of Thermal Process Engineering, University
of Duisburg-Essen, Duisburg 47057, Germany
| | - Laura Gehrke
- Chair
of Thermal Process Engineering, University
of Duisburg-Essen, Duisburg 47057, Germany
| | - Christoph Pasel
- Chair
of Thermal Process Engineering, University
of Duisburg-Essen, Duisburg 47057, Germany
| | | | | | - Dirk Enke
- Institute
of Chemical Technology, Leipzig University, Leipzig 04103, Germany
| | - Dieter Bathen
- Chair
of Thermal Process Engineering, University
of Duisburg-Essen, Duisburg 47057, Germany
| |
Collapse
|
5
|
Chowdhury C. Bayesian Optimization for Efficient Prediction of Gas Uptake in Nanoporous Materials. Chemphyschem 2024; 25:e202300850. [PMID: 38763901 DOI: 10.1002/cphc.202300850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
The discovery and optimization of novel nanoporous materials (NPMs) such as Metal-Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) are crucial for addressing global challenges like climate change, energy security, and environmental degradation. Traditional experimental approaches for optimizing these materials are time-consuming and resource-intensive. This research paper presents a strategy using Bayesian optimization (BO) to efficiently navigate the complex design spaces of NPMs for gas storage applications. For a MOF dataset drawn from 19 different sources, we present a quantitative evaluation of BO using a curated set of surrogate model and acquisition function couples. In our study, we employed machine learning (ML) techniques to conduct regression analysis on many models. Following this, we identified the three ML models that exhibited the highest accuracy, which were subsequently chosen as surrogates in our investigation, including the conventional Gaussian Process (GP) model. We found that GP with expected improvement (EI) as the acquisition function but without a gamma prior which is standard in Bayesian Optimisation python library (BO Torch) outperforms other surrogate models. Additionally, it should be noted that while the machine learning model that exhibits superior performance in predicting the target variable may be considered the best choice, it may not necessarily serve as the most suitable surrogate model for BO. This observation has significant importance and warrants further investigation. This comprehensive framework accelerates the pace of materials discovery and addresses urgent needs in energy storage and environmental sustainability. It is to be noted that rather than identifying new MOFs, BO primarily enhances computational efficiency by reducing the reliance on more demanding calculations, such as those involved in Grand Canonical Monte Carlo (GCMC) or Density Functional Theory (DFT).
Collapse
Affiliation(s)
- Chandra Chowdhury
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai, 600020, India
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Dutta A, Karamikamkar S, Nofar M, Behzadfar E. Nanoporous air filtering systems made from renewable sources: benefits and challenges. NANOSCALE 2024; 16:15059-15077. [PMID: 39072362 DOI: 10.1039/d4nr01688b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
There is a crucial need for air purification systems due to increasing air contamination, while conventional air-filtering materials face challenges in eliminating gaseous and particulate pollutants. This review examines the development and characteristics of nanoporous polymeric materials developed from renewable resources, which have rapidly advanced in recent years. These materials offer more sustainable alternatives for nanoporous structures made out of conventional polymers and significantly impact the properties of porous polymers. The review explores nanoporous materials' production from renewable sources, filtering mechanisms, physicochemical makeup, and sensing capabilities. The recent advancements in this field aim to enhance production techniques, lower pressure drop, and improve adsorption efficiency. Currently, supporting approaches include using adsorbent layers and binders to immobilize nanoporous materials. Furthermore, the prospects and challenges of nanoporous materials obtained from renewable sources used for air purification are discussed.
Collapse
Affiliation(s)
- Arnab Dutta
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA.
| | - Mohammadreza Nofar
- Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ehsan Behzadfar
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
7
|
Adul-Rasool AA, Athair DM, Zaidan HK, Rheima AM, Al-Sharify ZT, Mohammed SH, Kianfar E. 0,1,2,3D nanostructures, types of bulk nanostructured materials, and drug nanocrystals: An overview. Cancer Treat Res Commun 2024; 40:100834. [PMID: 39013325 DOI: 10.1016/j.ctarc.2024.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Functional materials are required to meet the needs of society, such as environmental protection, energy storage and conversion, integrated product production, biological and medical processing. bulk nanostructured materials are a research concept that combines nanotechnology with other research fields such as supramolecular chemistry, materials science, and life science to develop logically functional materials from nanodevices. In this review article, nanostructures are synthetized by different methods based on the types and nature of the nanomaterials. In a broad sense "top-down" and "bottom-up" are the two foremost methods to synthesize nanomaterials. In top-down method bulk materials have been reduced to nanomaterials, and in case of bottom-up method, the nanomaterials are synthesized from elementary level. The different methods which are being used to synthesize nanomaterials are chemical vapor deposition method, thermal decomposition, hydrothermal synthesis, solvothermal method, pulsed laser ablation, templating method, combustion method, microwave synthesis, gas phase method, and conventional Sol-Gel method. We also briefly discuss the various physical and chemical methods for producing nanomaterials. We then discuss the applications of functional materials in many areas such as energy storage, supercapacitors, sensors, wastewater treatment, and other biological applications such as drug delivery and drug nanocrystals. Finally, future challenges in materials nanoarchitecture and concepts for further development of functional nanomaterials are briefly discussed.
Collapse
Affiliation(s)
| | - Duaa Mohammed Athair
- Mustansiriyah University, Office of the Scientific Assistant, Technology Incubator Division, Baghdad, Iraq
| | | | - Ahmed Mahdi Rheima
- Mustansiriyah University, College of Science, Chemistry Department, Baghdad, Iraq
| | - Zainab T Al-Sharify
- Al Hikma University College, Baghdad, Iraq; School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, Birmingham, United Kingdom
| | | | - Ehsan Kianfar
- Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| |
Collapse
|
8
|
Sun Y, Siepmann JI. Understanding and Predicting the Spatially Resolved Adsorption Properties of Nanoporous Materials. J Chem Theory Comput 2024; 20:5259-5275. [PMID: 38639538 DOI: 10.1021/acs.jctc.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Using knowledge from statistical thermodynamics and crystallography, we develop an image-image translation model, called SorbIIT, that uses three-dimensional grids of adsorbate-adsorbent interaction energies as input to predict the spatially resolved loading surface of nanoporous materials over a broad range of temperatures and pressures. SorbIIT consists of a closed-form differential model for loading-surface prediction and a U-Net to generate spatial differential distributions from the energy grids. SorbIIT is trained using the energy grids and adsorbate distributions (obtained from high-throughput simulations) of 50 synthesized and 70 hypothetical zeolites and applied for predicting the adsorption of carbon dioxide, hydrogen sulfide, n-butane, 2-methylpropane, krypton, and xenon in other zeolites from 256 to 400 K. Employing a quadratic isotherm model for the local differentiation, SorbIIT yields mean R2 values of 0.998 for total adsorption and 0.6904 for local adsorption with a resolution of 0.2 Å, and a value of 0.721 for the structural similarity of the local loading distribution.
Collapse
Affiliation(s)
- Yangzesheng Sun
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - J Ilja Siepmann
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| |
Collapse
|
9
|
Shano LB, Karthikeyan S, Kennedy LJ, Chinnathambi S, Pandian GN. MOFs for next-generation cancer therapeutics through a biophysical approach-a review. Front Bioeng Biotechnol 2024; 12:1397804. [PMID: 38938982 PMCID: PMC11208718 DOI: 10.3389/fbioe.2024.1397804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Metal-organic frameworks (MOFs) have emerged as promising nanocarriers for cancer treatment due to their unique properties. Featuring high porosity, extensive surface area, chemical stability, and good biocompatibility, MOFs are ideal for efficient drug delivery, targeted therapy, and controlled release. They can be designed to target specific cellular organelles to disrupt metabolic processes in cancer cells. Additionally, functionalization with enzymes mimics their catalytic activity, enhancing photodynamic therapy and overcoming apoptosis resistance in cancer cells. The controllable and regular structure of MOFs, along with their tumor microenvironment responsiveness, make them promising nanocarriers for anticancer drugs. These carriers can effectively deliver a wide range of drugs with improved bioavailability, controlled release rate, and targeted delivery efficiency compared to alternatives. In this article, we review both experimental and computational studies focusing on the interaction between MOFs and drug, explicating the release mechanisms and stability in physiological conditions. Notably, we explore the relationship between MOF structure and its ability to damage cancer cells, elucidating why MOFs are excellent candidates for bio-applicability. By understanding the problem and exploring potential solutions, this review provides insights into the future directions for harnessing the full potential of MOFs, ultimately leading to improved therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Leon Bernet Shano
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Lourdusamy John Kennedy
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Wang J, Ma J, Zhuang Z, Liang Z, Jia K, Ji G, Zhou G, Cheng HM. Toward Direct Regeneration of Spent Lithium-Ion Batteries: A Next-Generation Recycling Method. Chem Rev 2024; 124:2839-2887. [PMID: 38427022 DOI: 10.1021/acs.chemrev.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The popularity of portable electronic devices and electric vehicles has led to the drastically increasing consumption of lithium-ion batteries recently, raising concerns about the disposal and recycling of spent lithium-ion batteries. However, the recycling rate of lithium-ion batteries worldwide at present is extremely low. Many factors limit the promotion of the battery recycling rate: outdated recycling technology is the most critical one. Existing metallurgy-based recycling methods rely on continuous decomposition and extraction steps with high-temperature roasting/acid leaching processes and many chemical reagents. These methods are tedious with worse economic feasibility, and the recycling products are mostly alloys or salts, which can only be used as precursors. To simplify the process and improve the economic benefits, novel recycling methods are in urgent demand, and direct recycling/regeneration is therefore proposed as a next-generation method. Herein, a comprehensive review of the origin, current status, and prospect of direct recycling methods is provided. We have systematically analyzed current recycling methods and summarized their limitations, pointing out the necessity of developing direct recycling methods. A detailed analysis for discussions of the advantages, limitations, and obstacles is conducted. Guidance for future direct recycling methods toward large-scale industrialization as well as green and efficient recycling systems is also provided.
Collapse
Affiliation(s)
- Junxiong Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhaofeng Zhuang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zheng Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Jia
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanjun Ji
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangmin Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hui-Ming Cheng
- Institute of Technology for Carbon Neutrality/Faculty of Materials Science and Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China
| |
Collapse
|
11
|
Kikuchi K, Sei H, Okubo K, Tohnai N, Oka K, Dekura S, Kikuchi T, Imoto H, Naka K. Breathing Metal-Organic Frameworks Supported by an Arsenic-Bridged 4,4'-Bipyridine Ligand. Inorg Chem 2024; 63:4337-4343. [PMID: 38365195 DOI: 10.1021/acs.inorgchem.3c04570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Bent ligands bridged by heteroatoms have drawn significant interest as supramolecular coordination architectures. Traditionally, divalent group 16 elements are preferred over trivalent group 15 elements because of the anticipated steric hindrance. In this study, we explore metal-organic frameworks (MOFs) based on dipyridinoarsoles (DPAs), 4,4'-bipyridines bridged with an arsenic atom. An MOF with methyl-substituted DPA collapsed upon solvent removal, whereas that with phenyl-substituted DPA demonstrated breathing behavior due to guest molecule adsorption/desorption. In contrast, MOFs using the phosphorus analogue dipyridinophosphole exhibit inferior adsorption and lack breathing behavior. This is the first study to investigate the interplay among substituents, bridging elements, and dynamic behavior in MOFs using bent group 15 ligands.
Collapse
Affiliation(s)
- Kazuma Kikuchi
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroi Sei
- Center for Future Innovation (Cfi) and Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohei Okubo
- Center for Future Innovation (Cfi) and Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norimitsu Tohnai
- Center for Future Innovation (Cfi) and Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kouki Oka
- Center for Future Innovation (Cfi) and Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shun Dekura
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kash iwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- FOREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
12
|
Kim Y, Lee S, Chen YP, Lee B, Lee S, Park J. Partial-Interpenetration-Controlled UiO-Type Metal-Organic Framework and its Catalytic Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305999. [PMID: 37840400 DOI: 10.1002/smll.202305999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 10/17/2023]
Abstract
An unprecedented correlation between the catalytic activity of a Zr-based UiO-type metal-organic framework (MOF) and its degree of interpenetration (DOI) is reported. The DOI of an MOF is hard to control owing to the high-energy penalty required to construct a partially interpenetrated structure. Surprisingly, strong interactions between building blocks (inter-ligand hydrogen bonding) facilitate the formation of partially interpenetrated structures under carefully regulated synthesis conditions. Moreover, catalytic conversion rates for cyanosilylation and Knoevenagel condensation reactions are found to be proportional to the DOI of the MOF. Among MOFs with DOIs in the 0-100% range, that with a DOI of 87% is the most catalytically active. Framework interpenetration is known to lower catalytic performance by impeding reactant diffusion. A higher effective reactant concentration due to tight inclusion in the interpenetrated region is possibly responsible for this inverted result.
Collapse
Affiliation(s)
- Yeonghun Kim
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sanghyeop Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Ying-Pin Chen
- Electrode Engineering, Panasonic Energy of North America, Reno, NV, 89502, USA
| | - Byeongchan Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sunggi Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jinhee Park
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| |
Collapse
|
13
|
Tignol P, Pimenta V, Dupont AL, Carvalho S, Mohtar AA, Inês Severino M, Nouar F, Pinto ML, Serre C, Lavédrine B. A Versatile Shaping Method of Very-High Loading Porous Solids Paper Adsorbent Composites. SMALL METHODS 2024; 8:e2301343. [PMID: 38032133 DOI: 10.1002/smtd.202301343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Indexed: 12/01/2023]
Abstract
Owing to their high porosity and tunability, porous solids such as metal-organic frameworks (MOFs), zeolites, or activated carbons (ACs) are of great interest in the fields of air purification, gas separation, and catalysis, among others. Nonetheless, these materials are usually synthetized as powders and need to be shaped in a more practical way that does not modify their intrinsic property (i.e., porosity). Elaborating porous, freestanding and flexible sheets is a relevant shaping strategy. However, when high loadings (>70 wt.%) are achieved the mechanical properties are challenged. A new straightforward and green method involving the combination softwood bleached kraft pulp fibers (S) and nano-fibrillated cellulose (NFC) is reported, where S provides flexibility while NFC acts as a micro-structuring and mechanical reinforcement agent to form high loadings porous solids paper sheets (>70 wt.%). The composite has unobstructed porosity and good mechanical strength. The sheets prepared with various fillers (MOFs, ACs, and zeolites) can be rolled, handled, and adapted to different uses, such as air purification. As an example of potential application, a MOF paper composite has been considered for the capture of polar volatile organic compounds exhibiting better performance than beads and granules.
Collapse
Affiliation(s)
- Pierre Tignol
- Centre de Recherche sur la Conservation, Muséum National d'Histoire Naturelle, CNRS, Ministère de la Culture, Paris, 75005, France
- Institut des Matériaux Poreux de Paris, ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University, Paris, 75005, France
| | - Vanessa Pimenta
- Institut des Matériaux Poreux de Paris, ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University, Paris, 75005, France
| | - Anne-Laurence Dupont
- Centre de Recherche sur la Conservation, Muséum National d'Histoire Naturelle, CNRS, Ministère de la Culture, Paris, 75005, France
| | - Silvia Carvalho
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Campus Alameda, Lisboa, 1049-001, Portugal
| | - Abeer Al Mohtar
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Campus Alameda, Lisboa, 1049-001, Portugal
| | - Maria Inês Severino
- Institut des Matériaux Poreux de Paris, ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University, Paris, 75005, France
| | - Farid Nouar
- Institut des Matériaux Poreux de Paris, ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University, Paris, 75005, France
| | - Moisés L Pinto
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Campus Alameda, Lisboa, 1049-001, Portugal
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University, Paris, 75005, France
| | - Bertrand Lavédrine
- Centre de Recherche sur la Conservation, Muséum National d'Histoire Naturelle, CNRS, Ministère de la Culture, Paris, 75005, France
| |
Collapse
|
14
|
Zhang XW, Wang C, Mo ZW, Chen XX, Zhang WX, Zhang JP. Quasi-open Cu(I) sites for efficient CO separation with high O 2/H 2O tolerance. NATURE MATERIALS 2024; 23:116-123. [PMID: 37957269 DOI: 10.1038/s41563-023-01729-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/16/2023] [Indexed: 11/15/2023]
Abstract
Carbon monoxide (CO) separation relies on chemical adsorption but suffers from the difficulty of desorption and instability of open metal sites against O2, H2O and so on. Here we demonstrate quasi-open metal sites with hidden or shielded coordination sites as a promising solution. Possessing the trigonal coordination geometry (sp2), Cu(I) ions in porous frameworks show weak physical adsorption for non-target guests. Rational regulation of framework flexibility enables geometry transformation to tetrahedral geometry (sp3), generating a fourth coordination site for the chemical adsorption of CO. Quantitative breakthrough experiments at ambient conditions show CO uptakes up to 4.1 mmol g-1 and CO selectivity up to 347 against CO2, CH4, O2, N2 and H2. The adsorbents can be completely regenerated at 333-373 K to recover CO with a purity of >99.99%, and the separation performances are stable in high-concentration O2 and H2O. Although CO leakage concentration generally follows the structural transition pressure, large amounts (>3 mmol g-1) of ultrahigh-purity (99.9999999%, 9N; CO concentration < 1 part per billion) gases can be produced in a single adsorption process, demonstrating the usefulness of this approach for separation applications.
Collapse
Affiliation(s)
- Xue-Wen Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Chao Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Zong-Wen Mo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Xian Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Jie-Peng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
15
|
Xu Z, Wu D, Fang C, Li Y. Mini-review on the novel synthesis and potential applications of carbazole and its derivatives. Des Monomers Polym 2023; 26:90-105. [PMID: 37008385 PMCID: PMC10062212 DOI: 10.1080/15685551.2023.2194174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Microporous organic polymers (MOPs) are a new type of porous materials, which have advantages of synthetic diversity, chemical and physical stability, microporous size controllability, etc. MOPs indicate broad applications in various fields such as heterogeneous catalysis, gas adsorption, separation, and storage. In recent years, MOPs have attracted an enormous attention in greenhouse gas capture due to their great potential in physisorptive gas storage. Carbazole and its derivatives have been studied extensively as Metal-Organic Polyhedra (MOPs) building blocks due to their unique structural features and versatile functionalization possibilities. This paper systematically reviews the synthesis, characterization and application of carbazole-based polymers, and relationship of structures and properties of these polymers. The application of the polymers in carbon dioxide (CO2) capture field is analysed taking advantage of their adjustable microporous structure and electron rich properties. This review also provides novel insights regarding functional polymer materials that have high ability of greenhouse gas capture and absorbing selectivity will be obtained by reasonable molecular design and efficient synthesis.
Collapse
|
16
|
Grebenyuk D, Shaulskaya M, Shevchenko A, Zobel M, Tedeeva M, Kustov A, Sadykov I, Tsymbarenko D. Tuning the Cerium-Based Metal-Organic Framework Formation by Template Effect and Precursor Selection. ACS OMEGA 2023; 8:48394-48404. [PMID: 38144061 PMCID: PMC10733954 DOI: 10.1021/acsomega.3c07906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023]
Abstract
The novel metal-organic framework [(CH3)2NH2]2[Ce2(bdc)4(DMF)2]·2H2O (Ce-MOF, H2bdc-terephthalic acid, DMF-N,N-dimethylformamide) was synthesized by a simple solvothermal method. Ce-MOF has 3D connectivity of bcu type with a dinuclear fragment connected with eight neighbors, while three types of guest species are residing in its pores: water, DMF, and dimethylammonium cations. Dimethylamine was demonstrated to have a decisive templating effect on the formation of Ce-MOF, as its deliberate addition to the solvothermal reaction allows the reproducible synthesis of the new framework. Otherwise, the previously reported MOF Ce5(bdc)7.5(DMF)4 (Ce5) or its composite with nano-CeO2 (CeO2@Ce5) was obtained. Various Ce carboxylate precursors and synthetic conditions were explored to evidence the major stability of Ce-MOF and Ce5 within the Ce carboxylate-H2bdc-DMF system. The choice of precursor impacts the surface area of Ce-MOF and thus its reactivity in an oxidative atmosphere. The in situ PXRD and TG-DTA-MS study of Ce-MOF in a nonoxidative atmosphere demonstrates that it eliminates H2O and DMF along with (CH3)2NH guest species in two distinct stages at 70 and 250 °C, respectively, yielding [Ce2(bdc)3(H2bdc)]. The H2bdc molecule is removed at 350 °C with the formation of novel modification of Ce2(bdc)3, which is stable at least up to 450 °C. According to the total X-ray scattering study with pair distribution function analysis, the most pronounced local structure transformation occurs upon departure of DMF and (CH3)2NH guest species, which is in line with the in situ PXRD experiment. In an oxidative atmosphere, Ce-MOF undergoes combustion to CeO2 at a temperature as low as 390 °C. MOF-derived CeO2 from Ce-MOF, Ce5, and CeO2@Ce5 exhibits catalytic activity in the CO oxidation reaction.
Collapse
Affiliation(s)
- Dimitry Grebenyuk
- Lomonosov
Moscow State University, Moscow 119991, Russia
- Faculty
of Materials Science, MSU-BIT University, Shenzhen 518172, China
| | | | - Artem Shevchenko
- Lomonosov
Moscow State University, Moscow 119991, Russia
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Mirijam Zobel
- Institute
of Crystallography, RWTH Aachen University, Aachen 52066, Germany
| | - Marina Tedeeva
- Lomonosov
Moscow State University, Moscow 119991, Russia
| | - Alexander Kustov
- Lomonosov
Moscow State University, Moscow 119991, Russia
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ilia Sadykov
- Paul
Scherrer
Institute, Villigen 5232, Switzerland
| | | |
Collapse
|
17
|
Shi B, Zen A, Kapil V, Nagy PR, Grüneis A, Michaelides A. Many-Body Methods for Surface Chemistry Come of Age: Achieving Consensus with Experiments. J Am Chem Soc 2023; 145:25372-25381. [PMID: 37948071 PMCID: PMC10683001 DOI: 10.1021/jacs.3c09616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
The adsorption energy of a molecule onto the surface of a material underpins a wide array of applications, spanning heterogeneous catalysis, gas storage, and many more. It is the key quantity where experimental measurements and theoretical calculations meet, with agreement being necessary for reliable predictions of chemical reaction rates and mechanisms. The prototypical molecule-surface system is CO adsorbed on MgO, but despite intense scrutiny from theory and experiment, there is still no consensus on its adsorption energy. In particular, the large cost of accurate many-body methods makes reaching converged theoretical estimates difficult, generating a wide range of values. In this work, we address this challenge, leveraging the latest advances in diffusion Monte Carlo (DMC) and coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] to obtain accurate predictions for CO on MgO. These reliable theoretical estimates allow us to evaluate the inconsistencies in published temperature-programed desorption experiments, revealing that they arise from variations in employed pre-exponential factors. Utilizing this insight, we derive new experimental estimates of the (electronic) adsorption energy with a (more) precise pre-exponential factor. As a culmination of all of this effort, we are able to reach a consensus between multiple theoretical calculations and multiple experiments for the first time. In addition, we show that our recently developed cluster-based CCSD(T) approach provides a low-cost route toward achieving accurate adsorption energies. This sets the stage for affordable and reliable theoretical predictions of chemical reactions on surfaces to guide the realization of new catalysts and gas storage materials.
Collapse
Affiliation(s)
- Benjamin
X. Shi
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Andrea Zen
- Dipartimento
di Fisica Ettore Pancini, Università
di Napoli Federico II, Monte S. Angelo, I-80126 Napoli, Italy
- Department
of Earth Sciences, University College London, Gower Street, WC1E 6BT London, U.K.
| | - Venkat Kapil
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Péter R. Nagy
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3, H-1111 Budapest, Hungary
- HUN-REN-BME
Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Andreas Grüneis
- Institute
for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Angelos Michaelides
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| |
Collapse
|
18
|
Plater MJ, Esslemont AJ, Harrison WTA. Porous and Close Packed Supramolecular Assemblies from 2,4-Difluoronitrobenzene with Three Different Linkers and an n-Butylamine Cap. Int J Mol Sci 2023; 24:14683. [PMID: 37834130 PMCID: PMC10572935 DOI: 10.3390/ijms241914683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
A porous structure formed from sheets with cavities and two close packed structures were crystallised from building blocks prepared from 2,4-difluoronitrobenzene, a diamine linker and n-butylamine. The porous structure crystallised from a flexible building block prepared using 1,4-diaminobutane as linker. The close packed structures were prepared using either piperazine or 1,4-bis(aminomethyl)benzene as a linker and have less conformational freedom.
Collapse
Affiliation(s)
- M. John Plater
- Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK; (A.J.E.); (W.T.A.H.)
| | | | | |
Collapse
|
19
|
Gong H, Patino DU, Ilavsky J, Kuzmenko I, Peña-Alcántara AE, Zhu C, Coffey AH, Michalek L, Elabd A, Gao X, Chen S, Xu C, Yan H, Jiang Y, Wang W, Peng Y, Zeng Y, Lyu H, Moon H, Bao Z. Tunable 1D and 2D Polyacrylonitrile Nanosheet Superstructures. ACS NANO 2023; 17:18392-18401. [PMID: 37668312 DOI: 10.1021/acsnano.3c05792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Carbon superstructures are widely applied in energy and environment-related areas. Among them, the flower-like polyacrylonitrile (PAN)-derived carbon materials have shown great promise due to their high surface area, large pore volume, and improved mass transport. In this work, we report a versatile and straightforward method for synthesizing one-dimensional (1D) nanostructured fibers and two-dimensional (2D) nanostructured thin films based on flower-like PAN chemistry by taking advantage of the nucleation and growth behavior of PAN. The resulting nanofibers and thin films exhibited distinct morphologies with intersecting PAN nanosheets, which formed through rapid nucleation on existing PAN. We further constructed a variety of hierarchical PAN superstructures based on different templates, solvents, and concentrations. These PAN nanosheet superstructures can be readily converted to carbon superstructures. As a demonstration, the nanostructured thin film exhibited a contact angle of ∼180° after surface modification with fluoroalkyl monolayers, which is attributed to high surface roughness enabled by the nanosheet assemblies. This study offers a strategy for the synthesis of nanostructured carbon materials for various applications.
Collapse
Affiliation(s)
- Huaxin Gong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Diego Uruchurtu Patino
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jan Ilavsky
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ivan Kuzmenko
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Aidan H Coffey
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lukas Michalek
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ahmed Elabd
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xin Gao
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Shucheng Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Chengyi Xu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Weichen Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yucan Peng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Hao Lyu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hanul Moon
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Emam HE, Ahmed HB, El-Shahat M, Abdel-Gawad H, Abdelhameed RM. Selective separation of chlorophyll-a using recyclable hybrids based on Zn-MOF@cellulosic fibers. Sci Rep 2023; 13:15208. [PMID: 37709829 PMCID: PMC10502031 DOI: 10.1038/s41598-023-42151-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
Chlorophyll-a as pigments, exist in the green organelles for plants that act in photosynthesis. Different studies were considered with demonstration of an effective separation technique of Chlorophyll-a without decomposition; however, the reported methods were disadvantageous with expensiveness and low quantum yield. The current work uniquely represents an investigative method for the separation of Chlorophyll-a from spinach extract using cellulosic hybrids based on ZIF-8 @cellulosic fibers (Zn-zeolitic imidazolate frameworks@cellulosic fibers) as a cost effective and recyclable absorbents. To obtain hybrids, ZIF-8 was in-situ prepared over the cellulosic fibers (bamboo, modal and cotton). The untreated and treated fibers were well characterized via FTIR, SEM, EDX, XRD, in order to approve the successive impregnation of ZIF-8. Whereas, the microscopic images showed that, microcrystalline ZIF-8 rods with length of 1.3-4.4 µm were grown over the cellulosic fibers. The obtained hybrids and the untreated fibers were exploited in the separation of Chlorophyll-a via the adsorption/desorption process. The chlorophyll-adsorption was followed Langmuir isotherm and pseudo-second order model. The Langmuir maximum capacities of Chlorophyll-a onto hybrids were followed the order of ZIF-8@cotton (583.6 mg/g) > ZIF-8@modal (561.3 mg/g) > ZIF-8@bamboo (528.7 mg/g). After incorporation of ZIF-8, the maximum adsorption capacities of cellulosic fibers were enhanced by 1.4-1.9 times. Adsorption of chlorophyll onto the applied hybrids was lowered by 27-28%, after five repetitive washing cycles. The data summarized that; chlorophyll was effectively separated by the synthesized ZIF-8@cellulosic fibers hybrids, whereas, the prepared hybrids showed good reusability for application on wider scaled purposes.
Collapse
Affiliation(s)
- Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt.
| | - Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Hassan Abdel-Gawad
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
21
|
Palacios G, Kundu S, Santos LAP, Gomes MAF. Physical properties of a generalized model of multilayer adsorption of dimers. Phys Rev E 2023; 108:034115. [PMID: 37849126 DOI: 10.1103/physreve.108.034115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
We investigate the transport properties of a complex porous structure with branched fractal architectures formed due to the gradual deposition of dimers in a model of multilayer adsorption. We thoroughly study the interplay between the orientational anisotropy parameter p_{0} of deposited dimers and the formation of porous structures, as well as its impact on the conductivity of the system, through extensive numerical simulations. By systematically varying the value of p_{0}, several critical and off-critical scaling relations characterizing the behavior of the system are examined. The results demonstrate that the degree of orientational anisotropy of dimers plays a significant role in determining the structural and physical characteristics of the system. We find that the Einstein relation relating to the size scaling of the electrical conductance holds true only in the limiting case of p_{0}→1. Monitoring the fractal dimension of the interface of the multilayer formation for various p_{0} values, we reveal that in a wide range of p_{0}>0.2 interface shows the characteristic of a self-avoiding random walk, compared to the limiting case of p_{0}→0 where it is characterized by the fractal dimension of the backbone of ordinary percolation cluster at criticality. Our results thus can provide useful information about the fundamental mechanisms underlying the formation and behavior of wide varieties of amorphous and disordered systems that are of paramount importance both in science and technology as well as in environmental studies.
Collapse
Affiliation(s)
- G Palacios
- CRCN-NE/CNEN, 50740-545, Recife, PE, Brazil
| | - Sumanta Kundu
- Department of Physics and Astronomy, University of Padova, I-35131 Padova, Italy
- INFN, Sezione di Padova, I-35131 Padova, Italy
| | - L A P Santos
- CRCN-NE/CNEN, 50740-545, Recife, PE, Brazil
- SCIENTS, 53635-015 Igarassu, PE, Brazil
| | - M A F Gomes
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| |
Collapse
|
22
|
Bailey T, Jackson A, Berbece RA, Wu K, Hondow N, Martin E. Gradient Boosted Machine Learning Model to Predict H 2, CH 4, and CO 2 Uptake in Metal-Organic Frameworks Using Experimental Data. J Chem Inf Model 2023; 63:4545-4551. [PMID: 37463276 PMCID: PMC10428209 DOI: 10.1021/acs.jcim.3c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Indexed: 07/20/2023]
Abstract
Predictive screening of metal-organic framework (MOF) materials for their gas uptake properties has been previously limited by using data from a range of simulated sources, meaning the final predictions are dependent on the performance of these original models. In this work, experimental gas uptake data has been used to create a Gradient Boosted Tree model for the prediction of H2, CH4, and CO2 uptake over a range of temperatures and pressures in MOF materials. The descriptors used in this database were obtained from the literature, with no computational modeling needed. This model was repeated 10 times, showing an average R2 of 0.86 and a mean absolute error (MAE) of ±2.88 wt % across the runs. This model will provide gas uptake predictions for a range of gases, temperatures, and pressures as a one-stop solution, with the data provided being based on previous experimental observations in the literature, rather than simulations, which may differ from their real-world results. The objective of this work is to create a machine learning model for the inference of gas uptake in MOFs. The basis of model development is experimental as opposed to simulated data to realize its applications by practitioners. The real-world nature of this research materializes in a focus on the application of algorithms as opposed to the detailed assessment of the algorithms.
Collapse
Affiliation(s)
- Tom Bailey
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Adam Jackson
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Kejun Wu
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
- Zhejiang
Provincial Key Laboratory of Advanced Chemical Engineering Manufacture
Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Nicole Hondow
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Elaine Martin
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
23
|
Yang J, Qiu H, Huang L, Meng S, Yang Y. Porphyrinic Porous Aromatic Frameworks for Carbon Dioxide Adsorption and Separation. Chempluschem 2023; 88:e202300292. [PMID: 37483159 DOI: 10.1002/cplu.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The capture of carbon dioxide (CO2 ) from industrial process emissions is increasingly important for the mitigation and prevention of the disruptive effects of global warming. In this study, PAF (porous aromatic frameworks)-TPB(1,3,5-triphenylbenzene) and three-dimensional PAF-TPM (tetraphenylmethane) porphyrin-based aromatic porous materials were synthesized through the Scholl reaction. The CO2 and N2 adsorption isotherms at 273 K and 298 K were studied to determine the performance in carbon dioxide capture at flue gas conditions. There is a significant difference in the adsorption capacity of the two materials for CO2 and N2 , so they can be used for CO2 /N2 adsorption separation. PAF-TPM has better CO2 /N2 separation at low pressure (150 mbar), while PAF-TPB has the advantage of greater CO2 /N2 separation at high pressure (1 bar). It can be applied to CO2 adsorption separation at low and high pressure, respectively. In particular, PAF-TPB has a CO2 /N2 separation efficiency of up to 100.9 at 1 bar and 273 K. This work provides ideas for the design and synthesis of organic porous materials for the adsorption separation of CO2 and N2 .
Collapse
Affiliation(s)
- Jierui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Huiting Qiu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Long Huang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Shuang Meng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Yunhui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| |
Collapse
|
24
|
Gatou MA, Vagena IA, Lagopati N, Pippa N, Gazouli M, Pavlatou EA. Functional MOF-Based Materials for Environmental and Biomedical Applications: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2224. [PMID: 37570542 PMCID: PMC10421186 DOI: 10.3390/nano13152224] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Over the last ten years, there has been a growing interest in metal-organic frameworks (MOFs), which are a unique category of porous materials that combine organic and inorganic components. MOFs have garnered significant attention due to their highly favorable characteristics, such as environmentally friendly nature, enhanced surface area and pore volume, hierarchical arrangements, and adjustable properties, as well as their versatile applications in fields such as chemical engineering, materials science, and the environmental and biomedical sectors. This article centers on examining the advancements in using MOFs for environmental remediation purposes. Additionally, it discusses the latest developments in employing MOFs as potential tools for disease diagnosis and drug delivery across various ailments, including cancer, diabetes, neurological disorders, and ocular diseases. Firstly, a concise overview of MOF evolution and the synthetic techniques employed for creating MOFs are provided, presenting their advantages and limitations. Subsequently, the challenges, potential avenues, and perspectives for future advancements in the utilization of MOFs in the respective application domains are addressed. Lastly, a comprehensive comparison of the materials presently employed in these applications is conducted.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
25
|
Korobkov SM, Birin KP, Khodan AN, Grafov OY, Gorbunova YG, Tsivadze AY. Nanostructured Aluminum Oxyhydroxide-A Prospective Support for Functional Porphyrin-Based Materials. Int J Mol Sci 2023; 24:12165. [PMID: 37569539 PMCID: PMC10418628 DOI: 10.3390/ijms241512165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
A method for the grafting of unsymmetrical A2BC-type 5,15-bis(4-butoxyphenyl)-10-(4-carboxyphenyl)-20-(phenanthrenoimidazolyl)-porphyrin onto the surface of nanostructured aluminum oxyhydroxide modified with a single SiO2 layer (NAOM) was successfully developed. A straightforward procedure towards surface modification of NAOM allowed us to prepare a new porphyrin-containing hybrid material. The obtained 3D heterostructure was extensively characterized using XPS, TEM and diffuse reflectance spectroscopy. Structural and morphological peculiarities of the inorganic support before and after the immobilization procedure were studied and discussed in detail. The stability of the material against leaching and the porphyrin immobilization ratio ca. 14% by weight were also revealed.
Collapse
Affiliation(s)
- Stepan M. Korobkov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, bldg 4, 119071 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Kirill P. Birin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, bldg 4, 119071 Moscow, Russia
| | - Anatole N. Khodan
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, bldg 4, 119071 Moscow, Russia
| | - Oleg Yu. Grafov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, bldg 4, 119071 Moscow, Russia
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, bldg 4, 119071 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| | - Aslan Yu. Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, bldg 4, 119071 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| |
Collapse
|
26
|
Hadjikyprianou E, Petrides S, Kourtellaris A, Tasiopoulos AJ, Georgiades SN. Catalysis of a Diels-Alder Reaction between Azachalcones and Cyclopentadiene by a Recyclable Copper(II)-PEIP Metal-Organic Framework. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5298. [PMID: 37570002 PMCID: PMC10419979 DOI: 10.3390/ma16155298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted considerable interest as emerging heterogeneous catalysts for organic transformations of synthetic utility. Herein, a Lewis-acidic MOF, {[Cu3(PEIP)2(5-NH2-mBDC)(DMF)]·7DMF}∞, denoted as Cu(ΙΙ)-PEIP, has been synthesized via a one-pot process and deployed as an efficient heterogeneous catalyst for a Diels-Alder cycloaddition. Specifically, the [4 + 2] cycloaddition of 13 substituted azachalcone dienophiles with cyclopentadiene has been investigated. MOF-catalyzed reaction conditions were optimized, leading to the selection of water as the solvent, in the presence of 10% mol sodium dodecyl sulfate (SDS) to address substrate solubility. The Cu(II)-PEIP catalyst showed excellent activity under these green and mild conditions, exhibiting comparable or, in some cases, superior efficiency to a homogeneous catalyst often employed in Diels-Alder reactions, namely, Cu(OTf)2. The nature of the azachalcone substituent played a significant role in the reactivity of the dienophiles, with electron-withdrawing (EW) substituents enhancing conversion and electron-donating (ED) ones exhibiting the opposite effect. Coordinating substituents appeared to enhance the endo selectivity. Importantly, the Cu(II)-PEIP catalyst can be readily isolated from the reaction mixture and recycled up to four times without any significant reduction in conversion or selectivity.
Collapse
Affiliation(s)
| | | | | | | | - Savvas N. Georgiades
- Department of Chemistry, University of Cyprus, 1 Panepistimiou Avenue, Aglandjia, 2109 Nicosia, Cyprus
| |
Collapse
|
27
|
Deng L, Ma DH, Xie ZL, Lin RY, Zhou ZH. Crown ether-like discrete clusters for sodium binding and gas adsorption. Dalton Trans 2023. [PMID: 37318454 DOI: 10.1039/d3dt00341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hexanuclear polyoxomolybdenum-based discrete supermolecules Nax[MoV6O6(μ2-O)9(Htrz)6-x(trz)x]·nH2O (x = 0, n = 15, 1; x = 1, n = 12, 2; x = 2, n = 10, 3; x = 2, n = 49, 4; Htrz = 1H-1,2,3-triazole) have been prepared and fully characterized with different amounts of sodium cations inside and outside the intrinsic holes. Structural analyses demonstrate that they all exist a triangular channel constructed by six molybdenum-oxygen groups with inner diameters of 2.86 (1), 2.48 (2), and 3.04 (3/4) Å, respectively. Zero, one, or two univalent enthetic guest Na+ have been hosted around the structural centers, which reflect the expansion and contraction effects at microscopic level. Water-soluble species can serve as crown ether-like metallacycles before and after the sodium binding. Diverse nanoscale pores are further formed through intermolecular accumulations with hydrogen bonding. Gas adsorption studies indicate that 2-4 can selectively adsorb CO2 and O2 but have little or even no affinities toward H2, N2, and CH4. Theoretical calculations corroborate the roles of Na+ and auxiliary ligand with different states in bond distances, molecular orbitals, electrostatic potentials, and lattice energies in these discrete clusters. The binding orders of sodium cations in 2-4 are similar with the classical crown ethers, where 2 is the strongest one with 2.226(4)av Å for sodium cation bonded to six O atoms.
Collapse
Affiliation(s)
- Lan Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Deng-Hui Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, China
| | - Zhen-Lang Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Rong-Yan Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
28
|
Huang C, Tang J, Liu Y, Chen T, Qi J, Sun S, Hao H, Zeng W, Zhao J, Wu M. Hyperthermia-triggered NO release based on Cu-doped polypyrrole for synergistic catalytic/gas cancer therapy. Acta Biomater 2023:S1742-7061(23)00330-6. [PMID: 37302733 DOI: 10.1016/j.actbio.2023.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) is a crucial gaseous medium for tumor growth and progression, but it may also cause mitochondrial disorder and DNA damage by drastically increasing its concentration in tumor. Due to its challenging administration and unpredictable release, NO based gas therapy is difficult to eliminate malignant tumor at low safe doses. To address these issues, herein, we develop a multifunctional nanocatalyst called Cu-doped polypyrrole (CuP) as an intelligent nanoplatform (CuP-B@P) to deliver the NO precursor BNN6 and specifically release NO in tumors. Under the aberrant metabolic environment of tumors, CuP-B@P catalyzes the conversion of antioxidant GSH into GSSG and excess H2O2 into ·OH through Cu+/Cu2+ cycle, which results in oxidative damage to tumor cells and the concomitant release of cargo BNN6. More importantly, after laser exposure, nanocatalyst CuP can absorb and convert photons into hyperthermia, which in turn, accelerates the aforesaid catalytic efficiency and pyrolyzes BNN6 into NO. Under the synergistic effect of hyperthermia, oxidative damage, and NO burst, almost complete tumor elimination is achieved in vivo with negligible toxicity to body. Such an ingenious combination of NO prodrug and nanocatalytic medicine provides a new insight into the development of NO based therapeutic strategies. STATEMENT OF SIGNIFICANCE: A hyperthermia-responsive NO delivery nanoplatform (CuP-B@P) based on Cu-doped polypyrrole was designed and fabricated, in which CuP catalyzed the conversion of H2O2 and GSH into ·OH and GSSG to induce intratumoral oxidative damage. After laser irradiation, hyperthermia ablation and responsive release of NO further coupled with oxidative damage to eliminate malignant tumors. This versatile nanoplatform provides new insights into the combined application of catalytic medicine and gas therapy.
Collapse
Affiliation(s)
- Chenyi Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jia Tang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yuanqi Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ting Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Junyang Qi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Huisong Hao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Weiwei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Jing Zhao
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
29
|
Demir H, Daglar H, Gulbalkan HC, Aksu GO, Keskin S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
30
|
Martínez-Peña F, Infante-Tadeo S, Sánchez Costa J, Pizarro AM. Reversible Chromism of Tethered Ruthenium(II) Complexes in the Solid State. Inorg Chem 2023; 62:6779-6785. [PMID: 37079909 DOI: 10.1021/acs.inorgchem.3c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Tethered ruthenium(II) complexes [Ru(η6:κ1-arene:N)Cl2] (where arene:N is 2-aminobiphenyl (1) and 2-benzylpyridine (2)) can convert into their open-tethered chlorido counterparts [Ru(η6-arene:NH)Cl3], 1·HCl and 2·HCl, at room temperature via solid-state reaction in the presence of HCl vapors. The reaction is accompanied by a change in color, is fully reversible, and crystallinity is maintained in both molecular materials. Organoruthenium tethers are presented as nonporous materials capable of capturing and releasing HCl reversibly in the crystalline solid state.
Collapse
|
31
|
Wang P, Qi BB, Gu AT, Chen KW, Gong CH, Yi Y. An Economical Modification Method for MIL-101 to Capture Radioiodine Gaseous: Adsorption Properties and Enhancement Mechanism. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/4126562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Radioactive iodine is one of the inevitable by-products of nuclear energy application. However, it is a great threat to public health and the adsorbent needs to be adopted for removing the radioactive iodine. The iodine adsorbent needs to have some advantages, such as simple preparation method, low cost, high absorption capacity, and recyclable utilization. In order to meet the above requirements, the etched material of institute Lavoisier 101 (MIL-101) was prepared to absorb the gaseous iodine. After the MIL-101 is etched, the iodine adsorption performance has been greatly improved. The iodine adsorption experiment of etched MIL-101 with different etching time (1 h, 3 h, 4 h, and 6 h) was completed, the results show that the optimal etching time is 4 hours and the capture capacity of the etched MIL-101 is 371 wt%, which is about 22% higher than that of original MIL-101. The experiment results of XRD, FT-IR, and XPS prove that the components and structure of etched MIL-101 are accordable with those of MIL-101. The surface roughness is introduced in this work. The pore roughness is also an important factor to the adsorption capacity, and the related research also supports this conclusion. Furthermore, after iodine is absorbed, etched MIL-101 can be treated by ethanol for iodine release, and the etched MIL-101 has satisfied recyclability within three cycles. Compared with MIL-101, etched MIL-101 not only had good reversible adsorption of iodine but also can adsorb low-concentration iodine. The etched MIL-101 has a broad application prospect in nuclear emergency response and radiation detection.
Collapse
|
32
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
33
|
Ando H, Nakao Y. Localization of nuclear wave functions of lithium in [Li +@C 60]PF 6-: molecular insights into two-site disorder-order transition. Phys Chem Chem Phys 2023; 25:8446-8462. [PMID: 36917209 DOI: 10.1039/d2cp05835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Lithium endohedral fullerene, Li+@C60, is a porous system ideal for studying the quantized translational motion of the Li+ nucleus under subnanoscale confinement. The quantized nuclear motion strongly depends on the anharmonic and polarizable adsorbent potential within the C60 cage, which can be perturbed by cage distortion and/or exterior ions. In our recent paper, H. Ando and Y. Nakao, Phys. Chem. Chem. Phys., 2021, 23, 9785-9803, we focused on a [Li+@C60]PF6- salt and theoretically investigated how the Li+ ion in each C60 cage is simultaneously localized at two equivalent disordered sites in 24 K < T ≪ 100 K. At 24 K, the salt exhibits a disorder-order transition, whereby every Li+ ion becomes mostly localized at one of the two disordered sites below that temperature. Herein we discuss the origin of this transition with special attention to the local structural distortion and intermolecular interactions. Using the Fourier grid Hamiltonian method and a model function that fits a post-Hartree-Fock potential energy surface, we obtained hundreds of low-energy nuclear wave functions of Li+ confined within the cage. The weak distortions of the C60 cage and the PF6- coordination sphere below 24 K and concurrent inversion-symmetry breaking affect intermolecular interactions, thus making the wave functions of the nuclear ground state and several low-energy excited states localized around the experimental high-occupancy disordered site. This demonstrates that the distortions correlate closely with the two-site disorder-order transition. Finally, we reveal that two absorption peaks in the terahertz frequency range show substantial blueshifts upon cooling below 24 K, which serve as fingerprints of the transition.
Collapse
Affiliation(s)
- Hideo Ando
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan.
| | - Yoshihide Nakao
- Faculty of Life Science, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan
| |
Collapse
|
34
|
Golomb MJ, Tolborg K, Calbo J, Walsh A. Role of Counterions in the Structural Stabilisation of Redox-Active Metal-Organic Frameworks. Chemistry 2023; 29:e202203843. [PMID: 36519633 PMCID: PMC10946919 DOI: 10.1002/chem.202203843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The crystal structures of metal-organic frameworks (MOFs) are typically determined by the strong chemical bonds formed between the organic and inorganic building units. However, the latest generation of redox-active frameworks often rely on counterions in the pores to access specific charge states of the components. Here, we model the crystal structures of three layered MOFs based on the redox-active ligand 2,5-dihydroxybenzoquinone (dhbq): Ti2 (Cl2 dhbq)3 , V2 (Cl2 dhbq)3 and Fe2 (Cl2 dhbq)3 with implicit and explicit counterions. Our full-potential first-principles calculations indicate that while the reported hexagonal structure is readily obtained for Ti and V, the Fe framework is stabilised only by the presence of explicit counterions. For high counterion concentrations, we observe the formation of an electride-like pocket in the pore center. An outlook is provided on the implications of solvent and counterion control for engineering the structures and properties of porous solids.
Collapse
Affiliation(s)
- M. J. Golomb
- Department of MaterialsImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - K. Tolborg
- Department of MaterialsImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - J. Calbo
- Instituto de Ciencia MolecularUniversidad de Valencia46890PaternaSpain
| | - A. Walsh
- Department of MaterialsImperial College LondonExhibition RoadLondonSW7 2AZUK
| |
Collapse
|
35
|
Ren E, Coudert FX. Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materials. Chem Sci 2023; 14:1797-1807. [PMID: 36819873 PMCID: PMC9931060 DOI: 10.1039/d2sc05810c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Molecular adsorption in nanoporous materials has many large-scale industrial applications ranging from separation to storage. To design the best materials, computational simulations are key to guiding the experimentation and engineering processes. Because nanoporous materials exist in a plethora of forms, we need to speed up the existing simulation tools to be able to screen databases of hundreds of thousands of structures. Here, we describe a new algorithm that quickly calculates adsorption enthalpies by sampling the surface of the material instead of the whole porous space. This surface sampling has been tested on the CoRE MOF 2019 database and has been proven to be more than 2 orders of magnitude faster than the gold standard method (Widom insertion), with an acceptable level of error on an enthalpy value of 0.34 kJ mol-1, and is therefore proposed as a valuable addition to the high-throughput screening toolbox.
Collapse
Affiliation(s)
- Emmanuel Ren
- CEA, DES, ISEC, DMRC, Univ. Montpellier Marcoule France.,Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris 75005 Paris France
| | - François-Xavier Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris 75005 Paris France
| |
Collapse
|
36
|
Das RP, Singh BG, Aishwarya J, Kumbhare LB, Kunwar A. 3,3'-Diselenodipropionic acid immobilised gelatin gel: a biomimic catalytic nitric oxide generating material for topical wound healing application. Biomater Sci 2023; 11:1437-1450. [PMID: 36602012 DOI: 10.1039/d2bm01964g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) plays a pivotal role in the wound healing process and promotes the generation of healthy endothelium. In this work, a simple method has been developed for fabricating a diselenide grafted gelatin gel, which reduces NO donors such as S-nitroso-N-acetylpenicillamine (SNAP) by glutathione peroxidase-like mechanism to produce NO. Briefly, the process involved covalently conjugating 3,3'-diselenodipropionic acid (DSePA) with gelatin via carbodiimide coupling. The resulting gelatin-DSePA conjugate (G-Se-Se-G) demonstrated NO production upon incubation with SNAP and glutathione (GSH) with the flux of 4.8 ± 0.6 nmol cm-2 min-1 and 1.6 ± 0.1 nmol cm-2 min-1 at 10 min and 40 min, respectively. The G-Se-Se-G recovered even after 5 days of incubation with the reaction mixture retaining catalytic activity up to 74%. Subsequently, G-Se-Se-G was suspended (5% w/v) in water with lecithin (6% w/w of gelatin) and F127 (3% w/w of gelatin) to prepare gel through temperature dependant gelation method. The fabricated G-Se-Se-G gel exhibited desirable rheological characteristics and excellent mechanical stability under storage conditions and did not cause any significant toxicity in normal human keratinocytes (HaCaT) and fibroblast cells (WI38) up to 50 μg ml-1 of selenium equivalent. Finally, mice studies confirmed that topically applied G-Se-Se-G gel and SNAP promoted faster epithelization and collagen deposition at the wound site. In conclusion, the development of a biomimetic NO generating gel with sustained activity and biocompatibility was achieved.
Collapse
Affiliation(s)
- Ram P Das
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - J Aishwarya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India.,Advanced Centre for Treatment, Research and Education in Cancer, Mumbai-410210, India
| | - Liladhar B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
37
|
Hahm YE, Kweon S, Park MB, Park YD. Highly Sensitive and Selective Organic Gas Sensors Based on Nitrided ZSM-5 Zeolite. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7196-7203. [PMID: 36695727 DOI: 10.1021/acsami.2c18498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
For next-generation gas sensors, conductive polymers have strong potential for overcoming the existing deficiencies of conventional inorganic sensors based on metallic oxides. However, the signal of organic gas sensors is inferior to that of inorganic metal oxide gas sensors because of organic gas sensors' poor charge carrier transport. Herein, the combination of an organic transistor-type gas sensor and a zeolite with strong gas-adsorbing properties is proposed and experimentally demonstrated. Among the various investigated zeolites, ZSM-5 with ∼5.5 Å pore openings enhanced the adsorption for small gas molecules when combined with a polymer active layer, where it provided a pathway for gas molecules to penetrate the zeolite channels. Moreover, nitrided ZSM-5 (N-ZSM-5) enhanced the sensing performance of NO2 molecules selectively because N in the N-ZSM-5 framework strongly interacted with NO2 molecules. These results open the possibility for zeolite-modified organic gas sensors that selectively adsorb target gas molecules via heteroatoms substituted into the zeolite framework.
Collapse
Affiliation(s)
- Yea Eun Hahm
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Sungjoon Kweon
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Min Bum Park
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yeong Don Park
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
38
|
Zhang Z, Valente DS, Shi Y, Limbu DK, Momeni MR, Shakib FA. In Silico High-Throughput Design and Prediction of Structural and Electronic Properties of Low-Dimensional Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9494-9507. [PMID: 36749899 DOI: 10.1021/acsami.2c22665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The advent of π-stacked layered metal-organic frameworks (MOFs), which offer electrical conductivity on top of permanent porosity and high surface area, opened up new horizons for designing compact MOF-based devices such as battery electrodes, supercapacitors, and spintronics. Permutation of structural building blocks, including metal nodes and organic linkers, in these electrically conductive (EC) materials, results in new systems with unprecedented and unexplored physical and chemical properties. With the ultimate goal of providing a platform for accelerated material design and discovery, here we lay the foundations for the creation of the first comprehensive database of EC-MOFs with an experimentally guided approach. The first phase of this database, coined EC-MOF/Phase-I, is composed of 1,057 bulk and monolayer structures built by all possible combinations of experimentally reported organic linkers, functional groups, and metal nodes. A high-throughput screening (HTS) workflow is constructed to implement density functional theory calculations with periodic boundary conditions to optimize the structures and calculate some of their most relevant properties. Because research and development in the area of EC-MOFs has long been suffering from the lack of appropriate initial crystal structures, all of the geometries and property data have been made available for the use of the community through an online platform that was developed during the course of this work. This database provides comprehensive physical and chemical data of EC-MOFs as well as the convenience of selecting appropriate materials for specific applications, thus accelerating the design and discovery of EC-MOF-based compact devices.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Dylan S Valente
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yuliang Shi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Dil K Limbu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mohammad R Momeni
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri─Kansas City, Kansas City, Missouri 64110, United States
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
39
|
Zotkin MA, Alentiev DA, Shorunov SV, Sokolov SE, Gavrilova NN, Bermeshev MV. Micropocrous polynorbornenes bearing carbocyclic substituents: Structure-property study. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Rapid room temperature synthesis and CO2 uptake performance of nanocrystalline ZIF-67 and Ni@ZIF-67. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
41
|
Ami T, Oka K, Tsuchiya K, Kosaka W, Miyasaka H, Tohnai N. The introduction of a base component to porous organic salts and their CO 2 storage capability. CrystEngComm 2023. [DOI: 10.1039/d3ce00086a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The introduction of a base component to porous organic salts allows them to have CO2 storage capability.
Collapse
|
42
|
Xie Y, Wang M, Sun Q, Wang D, Li C. Recent Advances in Tetrakis (4‐Carboxyphenyl) Porphyrin‐Based Nanocomposites for Tumor Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P.R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| |
Collapse
|
43
|
Milam-Guerrero J, Yang B, To DT, Myung NV. Nitrous Oxide Is No Laughing Matter: A Historical Review of Nitrous Oxide Gas-Sensing Capabilities Highlighting the Need for Further Exploration. ACS Sens 2022; 7:3598-3610. [PMID: 36453566 DOI: 10.1021/acssensors.2c01275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nitrous oxide (N2O), also known as laughing gas, is arguably one of the most detrimental greenhouse gases while concurrently being overlooked by the public. Specifically, N2O is ∼300 times more damaging than its better-known counterpart carbon dioxide (CO2) and has a longer-lived lifetime in the atmosphere than CO2. There exist both natural and anthropogenic sources of N2O, and thus, for a better understanding of sources, capture, and decomposition, it is pivotal to identify N2O within the nitrogen biosphere. This review covers the past and current low-cost N2O gas-sensing technologies, focusing specifically on low-cost metal oxide semiconductors (MOSs), chemiresistive and electrochemical sensors that can provide spatial and temporal monitoring of N2O emissions from various sources. Additionally, compositional modifications to MOsS using metal-organic frameworks (MOFs) are discussed, potentially facilitating new awareness and efforts for increased sensing performance and functionality in N2O detection.
Collapse
Affiliation(s)
- JoAnna Milam-Guerrero
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46530, United States
| | - Bingxin Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46530, United States
| | - Dung T To
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46530, United States
| | - Nosang V Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46530, United States
| |
Collapse
|
44
|
Salazar J, Carmona T, Zacconi FC, Venegas-Yazigi D, Cabello-Verrugio C, Il Choi W, Vilos C. The Human Dermis as a Target of Nanoparticles for Treating Skin Conditions. Pharmaceutics 2022; 15:10. [PMID: 36678639 PMCID: PMC9860843 DOI: 10.3390/pharmaceutics15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Skin has a preventive role against any damage raised by harmful microorganisms and physical and chemical assaults from the external environment that could affect the body's internal organs. Dermis represents the main section of the skin, and its contribution to skin physiology is critical due to its diverse cellularity, vasculature, and release of molecular mediators involved in the extracellular matrix maintenance and modulation of the immune response. Skin structure and complexity limit the transport of substances, promoting the study of different types of nanoparticles that penetrate the skin layers under different mechanisms intended for skin illness treatments and dermo-cosmetic applications. In this work, we present a detailed morphological description of the dermis in terms of its structures and resident cells. Furthermore, we analyze the role of the dermis in regulating skin homeostasis and its alterations in pathophysiological conditions, highlighting its potential as a therapeutic target. Additionally, we describe the use of nanoparticles for skin illness treatments focused on dermis release and promote the use of metal-organic frameworks (MOFs) as an integrative strategy for skin treatments.
Collapse
Affiliation(s)
- Javier Salazar
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - Thais Carmona
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
- Departamento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Química “Andrés M. Del Rio” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
- Materials Chemistry Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago 9170022, Chile
| | - Flavia C. Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (cND3), Universidad de Talca, Talca 3460000, Chile
| | - Diego Venegas-Yazigi
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
- Materials Chemistry Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago 9170022, Chile
| | - Claudio Cabello-Verrugio
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370035, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370035, Chile
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Republic of Korea
| | - Cristian Vilos
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (cND3), Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
45
|
Chiappone A, Pedico A, Porcu S, Pirri CF, Lamberti A, Roppolo I. Photocurable 3D-Printable Systems with Controlled Porosity towards CO 2 Air Filtering Applications. Polymers (Basel) 2022; 14:polym14235265. [PMID: 36501659 PMCID: PMC9740396 DOI: 10.3390/polym14235265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
Porous organic polymers are versatile platforms, easily adaptable to a wide range of applications, from air filtering to energy devices. Their fabrication via vat photopolymerization enables them to control the geometry on a multiscale level, obtaining hierarchical porosity with enhanced surface-to-volume ratio. In this work, a photocurable ink based on 1,6 Hexanediol diacrylate and containing a high internal phase emulsion (HIPE) is presented, employing PLURONIC F-127 as a surfactant to generate stable micelles. Different parameters were studied to assess the effects on the morphology of the pores, the printability and the mechanical properties. The tests performed demonstrates that only water-in-oil emulsions were suitable for 3D printing. Afterwards, 3D complex porous objects were printed with a Digital Light Processing (DLP) system. Structures with large, interconnected, homogeneous porosity were fabricated with high printing precision (300 µm) and shape fidelity, due to the addition of a Radical Scavenger and a UV Absorber that improved the 3D printing process. The formulations were then used to build scaffolds with complex architecture to test its application as a filter for CO2 absorption and trapping from environmental air. This was obtained by surface decoration with NaOH nanoparticles. Depending on the surface coverage, tested specimens demonstrated long-lasting absorption efficiency.
Collapse
Affiliation(s)
- Annalisa Chiappone
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, S.S. 554 bivio Sestu, 09042 Monserrato, Italy
| | - Alessandro Pedico
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technology Polito, Italian Institute of Technology, Via Livorno 60, 10144 Turin, Italy
| | - Stefania Porcu
- Department of Physics, Università di Cagliari, S.p. no. 8 Km 0700, 09042 Monserrato, Italy
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technology Polito, Italian Institute of Technology, Via Livorno 60, 10144 Turin, Italy
| | - Andrea Lamberti
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technology Polito, Italian Institute of Technology, Via Livorno 60, 10144 Turin, Italy
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technology Polito, Italian Institute of Technology, Via Livorno 60, 10144 Turin, Italy
- Correspondence: ; Tel.: +39-0110907412
| |
Collapse
|
46
|
Acharya AP, Sezginel KB, Gideon HP, Greene AC, Lawson HD, Inamdar S, Tang Y, Fraser AJ, Patel KV, Liu C, Rosi NL, Chan SY, Flynn JL, Wilmer CE, Little SR. In silico identification and synthesis of a multi-drug loaded MOF for treating tuberculosis. J Control Release 2022; 352:242-255. [PMID: 36273529 DOI: 10.1016/j.jconrel.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Conventional drug delivery systems have been applied to a myriad of active ingredients but may be difficult to tailor for a given drug. Herein, we put forth a new strategy, which designs and selects the drug delivery material by considering the properties of encapsulated drugs (even multiple drugs, simultaneously). Specifically, through an in-silico screening process of 5109 MOFs using grand canonical Monte Carlo simulations, a customized MOF (referred as BIO-MOF-100) was selected and experimentally verified to be biologically stable, and capable of loading 3 anti-Tuberculosis drugs Rifampicin+Isoniazid+Pyrazinamide at 10% + 28% + 23% wt/wt (total > 50% by weight). Notably, the customized BIO-MOF-100 delivery system cleared naturally Pyrazinamide-resistant Bacillus Calmette-Guérin, reduced growth of virulent Erdman infection in macaque macrophages 10-100-fold compared to soluble drugs in vitro and was also significantly reduced Erdman growth in mice. These data suggest that the methodology of identifying-synthesizing materials can be used to generate solutions for challenging applications such as simultaneous delivery of multiple, small hydrophilic and hydrophobic molecules in the same molecular framework.
Collapse
Affiliation(s)
- Abhinav P Acharya
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA; Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Kutay B Sezginel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA
| | - Hannah P Gideon
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Ashlee C Greene
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA
| | - Harrison D Lawson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA
| | - Sahil Inamdar
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Ying Tang
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Amy J Fraser
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Kush V Patel
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Chong Liu
- Department of Chemistry, University of Pittsburgh, PA 15261, USA
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, PA 15261, USA
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Christopher E Wilmer
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA; Department of Electrical and Computer Engineering, University of Pittsburgh, PA 15261, USA; Clinical and Translational Science Institute, University of Pittsburgh, PA 15261, USA
| | - Steven R Little
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA; Department of Bioengineering, University of Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, PA 15261, USA; Department of Ophthalmology, University of Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15261, USA; Department of Immunology, University of Pittsburgh School of Medicine, PA 15261, USA; Clinical and Translational Science Institute, University of Pittsburgh, PA 15261, USA.
| |
Collapse
|
47
|
Singh N, Simeski F, Ihme M. Computing Thermodynamic Properties of Fluids Augmented by Nanoconfinement: Application to Pressurized Methane. J Phys Chem B 2022; 126:8623-8631. [PMID: 36279403 DOI: 10.1021/acs.jpcb.2c04347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nanoconfined fluids exhibit remarkably different thermodynamic behavior compared to the bulk phase. These confinement effects render predictions of thermodynamic quantities of nanoconfined fluids challenging. In particular, confinement creates a spatially varying density profile near the wall that is primarily responsible for adsorption and capillary condensation behavior. Significant fluctuations in thermodynamic quantities, inherent in such nanoscale systems, coupled to strong fluid-wall interactions give rise to this near-wall density profile. Empirical models have been proposed to explain and model these effects, yet no first-principles based formulation has been developed. We present a statistical mechanics framework that embeds such a coupling to describe the effect of the fluid-wall interaction in amplifying the near-wall density behavior for compressible gases at elevated pressures such as pressurized methane in confinement. We show that the proposed theory predicts accurately the adsorbed layer thickness as obtained with small-angle neutron scattering measurements. Furthermore, the predictions of density under confinement from the proposed theory are shown to be in excellent agreement with available experimental and atomistic simulations data for a range of temperatures for nanoconfined methane. While the framework is presented for evaluating the near-wall density, owing to its rigorous foundation in statistical mechanics, the proposed theory can also be generalized for predicting phase-transition and nonequilibrium transport of nanoconfined fluids.
Collapse
Affiliation(s)
- Narendra Singh
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Filip Simeski
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Matthias Ihme
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.,Department of Photon Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
48
|
Emam HE, Abdelhameed RM. Separation of anthocyanin from roselle extract by cationic nano-rode ZIF-8 constructed using removable template. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Li X, Shu X, Shi Y, li H, Pei X. MOFs and bone: Application of MOFs in bone tissue engineering and bone diseases. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
A Review on Cyanide Gas Elimination Methods and Materials. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207125. [PMID: 36296717 PMCID: PMC9610612 DOI: 10.3390/molecules27207125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 01/24/2023]
Abstract
Cyanide gas is highly toxic and volatile and is among the most typical toxic and harmful pollutants to human health and the environment found in industrial waste gas. In the military context, cyanide gas has been used as a systemic toxic agent. In this paper, we review cyanide gas elimination methods, focusing on adsorption and catalysis approaches. The research progress on materials capable of affecting cyanide gas adsorption and catalytic degradation is discussed in depth, and the advantages and disadvantages of various materials are summarized. Finally, suggestions are provided for future research directions with respect to cyanide gas elimination materials.
Collapse
|