1
|
Gerwe H, Schaller E, Sortino R, Opar E, Martínez-Tambella J, Bermudez M, Lane JR, Gorostiza P, Decker M. Photo-BQCA: Positive Allosteric Modulators Enabling Optical Control of the M 1 Receptor. Angew Chem Int Ed Engl 2024; 63:e202411438. [PMID: 39136071 DOI: 10.1002/anie.202411438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/26/2024] [Indexed: 10/09/2024]
Abstract
The field of G protein-coupled receptor (GPCR) research has greatly benefited from the spatiotemporal resolution provided by light controllable, i.e., photoswitchable ligands. Most of the developed tools have targeted the Rhodopsin-like family (Class A), the largest family of GPCRs. However, to date, all such Class A photoswitchable ligands were designed to act at the orthosteric binding site of these receptors. Herein, we report the development of the first photoswitchable allosteric modulators of Class A GPCRs, designed to target the M1 muscarinic acetylcholine receptor. The presented benzyl quinolone carboxylic acid (BQCA) derivatives, Photo-BQCisA and Photo-BQCtrAns, exhibit complementary photopharmacological behavior and allow reversible control of the receptor using light as an external stimulus. This makes them valuable tools to further investigate M1 receptor signaling and a proof of concept for photoswitchable allosteric modulators at Class A receptors.
Collapse
Affiliation(s)
- Hubert Gerwe
- Pharmaceutical and Medicinal Chemistry Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg (JMU), Am Hubland, 97074, Würzburg, Germany
| | - Eva Schaller
- Pharmaceutical and Medicinal Chemistry Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg (JMU), Am Hubland, 97074, Würzburg, Germany
| | - Rosalba Sortino
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac, 10-12, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, Carrer de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
- University of Barcelona-Doctoral program, Barcelona, 08007, Spain
| | - Ekin Opar
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac, 10-12, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, Carrer de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
- University of Barcelona-Doctoral program, Barcelona, 08007, Spain
| | - Joaquín Martínez-Tambella
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac, 10-12, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, Carrer de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
- University of Barcelona-Doctoral program, Barcelona, 08007, Spain
| | - Marcel Bermudez
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - J Robert Lane
- (1) Centre of Membrane Proteins and Receptors (COMPARE), (2) Dept. of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac, 10-12, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, Carrer de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg (JMU), Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
2
|
Zhang H, Wu T, Wu Y, Peng Y, Wei X, Lu T, Jiao Y. Binding sites and design strategies for small molecule GLP-1R agonists. Eur J Med Chem 2024; 275:116632. [PMID: 38959726 DOI: 10.1016/j.ejmech.2024.116632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a pivotal receptor involved in blood glucose regulation and influencing feeding behavior. It has received significant attention in the treatment of obesity and diabetes due to its potent incretin effect. Peptide GLP-1 receptor agonists (GLP-1RAs) have achieved tremendous success in the market, driving the vigorous development of small molecule GLP-1RAs. Currently, several small molecules have entered the clinical research stage. Additionally, recent discoveries of GLP-1R positive allosteric modulators (PAMs) are also unveiling new regulatory patterns and treatment methods. This article reviews the structure and functional mechanisms of GLP-1R, recent reports on small molecule GLP-1RAs and PAMs, as well as the optimization process. Furthermore, it combines computer simulations to analyze structure-activity relationships (SAR) studies, providing a foundation for exploring new strategies for designing small molecule GLP-1RAs.
Collapse
Affiliation(s)
- Haibo Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Tianxiao Wu
- Jiangsu Vcare PharmaTech Co., Ltd., 136 Huakang Road, Nanjing, 211800, China
| | - Yong Wu
- Jiangsu Vcare PharmaTech Co., Ltd., 136 Huakang Road, Nanjing, 211800, China
| | - Yuran Peng
- Jiangsu Vcare PharmaTech Co., Ltd., 136 Huakang Road, Nanjing, 211800, China
| | - Xian Wei
- Department of Pharmacy, Youjiang Medical University for Nationalities, 98 ChengXiang Road, Baise, 533000, China.
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| | - Yu Jiao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
3
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Rückert A, Ast J, Hasib A, Nasteska D, Viloria K, Broichhagen J, Hodson DJ. Fine-tuned photochromic sulfonylureas for optical control of beta cell Ca 2+ fluxes. Diabet Med 2023; 40:e15220. [PMID: 37669696 PMCID: PMC10947021 DOI: 10.1111/dme.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
We previously developed, synthesized and tested light-activated sulfonylureas for optical control of KATP channels and pancreatic beta cell activity in vitro and in vivo. Such technology relies on installation of azobenzene photoswitches onto the sulfonylurea backbone, affording light-dependent isomerization, alteration in ligand affinity for SUR1 and hence KATP channel conductance. Inspired by molecular dynamics simulations and to further improve photoswitching characteristics, we set out to develop a novel push-pull closed ring azobenzene unit, before installing this on the sulfonylurea glimepiride as a small molecule recipient. Three fine-tuned, light-activated sulfonylureas were synthesized, encompassing azetidine, pyrrolidine and piperidine closed rings. Azetidine-, pyrrolidine- and piperidine-based sulfonylureas all increased beta cell Ca2+ -spiking activity upon continuous blue light illumination, similarly to first generation JB253. Notably, the pyrrolidine-based sulfonylurea showed superior switch OFF performance to JB253. As such, third generation sulfonylureas afford more precise optical control over primary pancreatic beta cells, and showcase the potential of pyrrolidine-azobenzenes as chemical photoswitches across drug classes.
Collapse
Affiliation(s)
| | - Julia Ast
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE)University of BirminghamBirminghamUK
| | - Annie Hasib
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE)University of BirminghamBirminghamUK
| | - Daniela Nasteska
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE)University of BirminghamBirminghamUK
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | | | - David J. Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE)University of BirminghamBirminghamUK
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Marcus DJ, Bruchas MR. Optical Approaches for Investigating Neuromodulation and G Protein-Coupled Receptor Signaling. Pharmacol Rev 2023; 75:1119-1139. [PMID: 37429736 PMCID: PMC10595021 DOI: 10.1124/pharmrev.122.000584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Despite the fact that roughly 40% of all US Food and Drug Administration (FDA)-approved pharmacological therapeutics target G protein-coupled receptors (GPCRs), there remains a gap in our understanding of the physiologic and functional role of these receptors at the systems level. Although heterologous expression systems and in vitro assays have revealed a tremendous amount about GPCR signaling cascades, how these cascades interact across cell types, tissues, and organ systems remains obscure. Classic behavioral pharmacology experiments lack both the temporal and spatial resolution to resolve these long-standing issues. Over the past half century, there has been a concerted effort toward the development of optical tools for understanding GPCR signaling. From initial ligand uncaging approaches to more recent development of optogenetic techniques, these strategies have allowed researchers to probe longstanding questions in GPCR pharmacology both in vivo and in vitro. These tools have been employed across biologic systems and have allowed for interrogation of everything from specific intramolecular events to pharmacology at the systems level in a spatiotemporally specific manner. In this review, we present a historical perspective on the motivation behind and development of a variety of optical toolkits that have been generated to probe GPCR signaling. Here we highlight how these tools have been used in vivo to uncover the functional role of distinct populations of GPCRs and their signaling cascades at a systems level. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) remain one of the most targeted classes of proteins for pharmaceutical intervention, yet we still have a limited understanding of how their unique signaling cascades effect physiology and behavior at the systems level. In this review, we discuss a vast array of optical techniques that have been devised to probe GPCR signaling both in vitro and in vivo.
Collapse
Affiliation(s)
- David J Marcus
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| |
Collapse
|
6
|
Palasis KA, Peddie V, Turner DJL, Zhang X, Yu J, Abell AD. Exploring Photoswitchable Binding Interactions with Small-Molecule- and Peptide-Based Inhibitors of Trypsin. Chembiochem 2023; 24:e202300453. [PMID: 37584529 DOI: 10.1002/cbic.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023]
Abstract
The ability to photochemically activate a drug, both when and where needed, requires optimisation of the difference in biological activity between each isomeric state. As a step to this goal, we report small-molecule- and peptide-based inhibitors of the same protease-trypsin-to better understand how photoswitchable drugs interact with their biological target. The best peptidic inhibitor displayed a more than fivefold difference in inhibitory activity between isomeric states, whereas the best small-molecule inhibitor only showed a 3.4-fold difference. Docking and molecular modelling suggest this result is due to a large change in 3D structure in the key binding residues of the peptidic inhibitor upon isomerisation; this is not observed for the small-molecule inhibitor. Hence, we demonstrate that significant structural changes in critical binding motifs upon irradiation are essential for maximising the difference in biological activity between isomeric states. This is an important consideration in the design of future photoswitchable drugs for clinical applications.
Collapse
Affiliation(s)
- Kathryn A Palasis
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Victoria Peddie
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Dion J L Turner
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Xiaozhou Zhang
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- Guangxi Key Laboratory of Electrochemical and, Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
Emerging molecular technologies for light-mediated modulation of pancreatic beta-cell function. Mol Metab 2022; 64:101552. [PMID: 35863638 PMCID: PMC9352964 DOI: 10.1016/j.molmet.2022.101552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Background Optogenetic modalities as well as optochemical and photopharmacological strategies, collectively termed optical methods, have revolutionized the control of cellular functions via light with great spatiotemporal precision. In comparison to the major advances in the photomodulation of signaling activities noted in neuroscience, similar applications to endocrine cells of the pancreas, particularly insulin-producing β-cells, have been limited. The availability of tools allowing light-mediated changes in the trafficking of ions such as K+ and Ca2+ and signaling intermediates such as cyclic adenosine monophosphate (cAMP), renders β-cells and their glucose-stimulated insulin secretion (GSIS) amenable to optoengineering for drug-free control of blood sugar. Scope of review The molecular circuit of the GSIS in β-cells is described with emphasis on intermediates which are targetable for optical intervention. Various pharmacological agents modifying the release of insulin are reviewed along with their documented side effects. These are contrasted with optical approaches, which have already been employed for engineering β-cell function or are considered for future such applications. Principal obstacles are also discussed as the implementation of optogenetics is pondered for tissue engineering and biology applications of the pancreas. Major Conclusions Notable advances in optogenetic, optochemical and photopharmacological tools are rendering feasible the smart engineering of pancreatic cells and tissues with light-regulated function paving the way for novel solutions for addressing pancreatic pathologies including diabetes.
Collapse
|
8
|
Morstein J, Romano G, Hetzler BE, Plante A, Haake C, Levitz J, Trauner D. Photoswitchable Serotonins for Optical Control of the 5-HT 2A Receptor. Angew Chem Int Ed Engl 2022; 61:e202117094. [PMID: 34989082 PMCID: PMC9423688 DOI: 10.1002/anie.202117094] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/11/2022]
Abstract
Serotonin receptors play central roles in neuromodulation and are critical drug targets for psychiatric disorders. Optical control of serotonin receptor subtypes has the potential to greatly enhance our understanding of the spatiotemporal dynamics of receptor function. While other neuromodulatory receptors have been successfully rendered photoswitchable, reversible photocontrol of serotonin receptors has not been achieved, representing a major gap in GPCR photopharmacology. Herein, we develop the first tools that allow for such control. Azo5HT-2 shows light-dependent 5-HT2A R agonism, with greater activity in the cis-form. Based on docking and test compound analysis, we also develop photoswitchable orthogonal, remotely-tethered ligands (PORTLs). These BG-Azo5HTs provide rapid, reversible, and repeatable optical control following conjugation to SNAP-tagged 5-HT2A R. Overall, this study provides a foundation for the broad extension of photopharmacology to the serotonin receptor family.
Collapse
Affiliation(s)
- Johannes Morstein
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Giovanna Romano
- Physiology, Biophysics, and Systems Biology Graduate Program and Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Belinda E Hetzler
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Ambrose Plante
- Physiology, Biophysics, and Systems Biology Graduate Program and Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Caleb Haake
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Joshua Levitz
- Physiology, Biophysics, and Systems Biology Graduate Program and Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
9
|
Optical control of Class A G protein-coupled receptors with photoswitchable ligands. Curr Opin Pharmacol 2022; 63:102192. [DOI: 10.1016/j.coph.2022.102192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/26/2022]
|
10
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
11
|
Kumar P, Lavis LD. Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience. Annu Rev Neurosci 2022; 45:131-150. [PMID: 35226826 DOI: 10.1146/annurev-neuro-110520-030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pratik Kumar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| |
Collapse
|
12
|
Malik F, Li Z. Non-peptide agonists and positive allosteric modulators of glucagon-like peptide-1 receptors: Alternative approaches for treatment of Type 2 diabetes. Br J Pharmacol 2022; 179:511-525. [PMID: 33724441 PMCID: PMC8820177 DOI: 10.1111/bph.15446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptors belong to the pharmaceutically important Class B family of GPCRs and are involved in many biologically significant signalling pathways. Its incretin peptide ligand GLP-1 analogues are effective treatments for Type 2 diabetes. Although developing non-peptide low MW drugs targeting GLP-1 receptors remains elusive, considerable progress has been made in discovering non-peptide agonists and positive allosteric modulators (PAMs) of GLP-1 receptors with demonstrated efficacy. Many of these compounds induce biased signalling in GLP-1 receptor-mediated functional pathways. High-quality structures of GLP-1 receptors in both inactive and active states have been reported, revealing detailed molecular interactions between GLP-1 receptors and non-peptide agonists or PAMs. These progresses raise the exciting possibility of developing non-peptide drugs of GLP-1 receptors as alternative treatments for Type 2 diabetes. The insight into the interactions between the receptor and the non-peptide ligand is also useful for developing non-peptide ligands targeting other Class B GPCRs. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.
Collapse
Affiliation(s)
- Faisal Malik
- Department of Chemistry and BiochemistryUniversity of the Sciences in PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Zhijun Li
- Department of Chemistry and BiochemistryUniversity of the Sciences in PhiladelphiaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
13
|
Morstein J, Romano G, Hetzler B, Plante A, Haake C, Levitz J, Trauner D. Photoswitchable Serotonins for Optical Control of the 5‐HT2A Receptor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | | | | | - Dirk Trauner
- New York University Department of Chemistry 100 Washington Square East 10003 New York UNITED STATES
| |
Collapse
|
14
|
Abstract
Azobenzenes are archetypal molecules that have a central role in fundamental and applied research. Over the course of almost two centuries, the area of azobenzenes has witnessed great achievements; azobenzenes have evolved from simple dyes to 'little engines' and have become ubiquitous in many aspects of our lives, ranging from textiles, cosmetics, food and medicine to energy and photonics. Despite their long history, azobenzenes continue to arouse academic interest, while being intensively produced for industrial purposes, owing to their rich chemistry, versatile and straightforward design, robust photoswitching process and biodegradability. The development of azobenzenes has stimulated the production of new coloured and light-responsive materials with various applications, and their use continues to expand towards new high-tech applications. In this Review, we highlight the latest achievements in the synthesis of red-light-responsive azobenzenes and the emerging application areas of photopharmacology, photoswitchable adhesives and biodegradable materials for drug delivery. We show how the synthetic versatility and adaptive properties of azobenzenes continue to inspire new research directions, with limits imposed only by one's imagination.
Collapse
|
15
|
Ricart-Ortega M, Berizzi AE, Pereira V, Malhaire F, Catena J, Font J, Gómez-Santacana X, Muñoz L, Zussy C, Serra C, Rovira X, Goudet C, Llebaria A. Mechanistic Insights into Light-Driven Allosteric Control of GPCR Biological Activity. ACS Pharmacol Transl Sci 2020; 3:883-895. [PMID: 33073188 DOI: 10.1021/acsptsci.0c00054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors (GPCR), including the metabotrobic glutamate 5 receptor (mGlu5), are important therapeutic targets and the development of allosteric ligands for targeting GPCRs has become a desirable approach toward modulating receptor activity. Traditional pharmacological approaches toward modulating GPCR activity are still limited since precise spatiotemporal control of a ligand is lost as soon as it is administered. Photopharmacology proposes the use of photoswitchable ligands to overcome this limitation, since their activity can be reversibly controlled by light with high precision. As this is still a growing field, our understanding of the molecular mechanisms underlying the light-induced changes of different photoswitchable ligand pharmacology is suboptimal. For this reason, we have studied the mechanisms of action of alloswitch-1 and MCS0331; two freely diffusible, mGlu5 phenylazopyridine photoswitchable negative allosteric modulators. We combined photochemical, cell-based, and in vivo photopharmacological approaches to investigate the effects of trans-cis azobenzene photoisomerization on the functional activity and binding ability of these ligands to the mGlu5 allosteric pocket. From these results, we conclude that photoisomerization can take place inside and outside the ligand binding pocket, and this leads to a reversible loss in affinity, in part, due to changes in dissociation rates from the receptor. Ligand activity for both photoswitchable ligands deviates from high-affinity mGlu5 negative allosteric modulation (in the trans configuration) to reduced affinity for the mGlu5 in their cis configuration. Importantly, this mechanism translates to dynamic and reversible control over pain following local injection and illumination of negative allosteric modulators into a brain region implicated in pain control.
Collapse
Affiliation(s)
- Maria Ricart-Ortega
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain.,IGF, CNRS, INSERM, University of Montpellier, F-34094 Montpellier, France
| | - Alice E Berizzi
- IGF, CNRS, INSERM, University of Montpellier, F-34094 Montpellier, France
| | - Vanessa Pereira
- IGF, CNRS, INSERM, University of Montpellier, F-34094 Montpellier, France
| | - Fanny Malhaire
- IGF, CNRS, INSERM, University of Montpellier, F-34094 Montpellier, France
| | - Juanlo Catena
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain
| | - Joan Font
- IGF, CNRS, INSERM, University of Montpellier, F-34094 Montpellier, France
| | | | - Lourdes Muñoz
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain.,SIMchem, Service of Synthesis of High Added Value Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain
| | - Charleine Zussy
- IGF, CNRS, INSERM, University of Montpellier, F-34094 Montpellier, France
| | - Carmen Serra
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain.,SIMchem, Service of Synthesis of High Added Value Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain
| | - Xavier Rovira
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain
| | - Cyril Goudet
- IGF, CNRS, INSERM, University of Montpellier, F-34094 Montpellier, France
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain.,SIMchem, Service of Synthesis of High Added Value Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain
| |
Collapse
|
16
|
Shchepinova MM, Hanyaloglu AC, Frost GS, Tate EW. Chemical biology of noncanonical G protein-coupled receptor signaling: Toward advanced therapeutics. Curr Opin Chem Biol 2020; 56:98-110. [PMID: 32446179 DOI: 10.1016/j.cbpa.2020.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022]
Abstract
G protein-coupled receptors (GPCRs), the largest family of signaling membrane proteins, are the target of more than 30% of the drugs on the market. Recently, it has become clear that GPCR functions are far more multidimensional than previously thought, with multiple noncanonical aspects coming to light, including biased, oligomeric, and compartmentalized signaling. These additional layers of functional selectivity greatly expand opportunities for advanced therapeutic interventions, but the development of new chemical biology tools is absolutely required to improve our understanding of noncanonical GPCR regulation and pave the way for future drugs. In this opinion, we highlight the most notable examples of chemical and chemogenetic tools addressing new paradigms in GPCR signaling, discuss their promises and limitations, and explore future directions.
Collapse
Affiliation(s)
- Maria M Shchepinova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK.
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Dept. Surgery and Cancer, Imperial College, London, UK
| | - Gary S Frost
- Department of Medicine, Faculty of Medicine, Nutrition and Dietetic Research Group, Imperial College, London, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
17
|
Berizzi AE, Goudet C. Strategies and considerations of G-protein-coupled receptor photopharmacology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 88:143-172. [PMID: 32416866 DOI: 10.1016/bs.apha.2019.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
G-protein-coupled receptor (GPCR) pharmacology tends to be complex and at times poorly understood. This has led to the development of GPCR-targeting agents that often demonstrate poor pharmacokinetic properties and poor selectivity for their target receptors. One approach that is emerging as a means of addressing these limitations is the use of molecules whose activity can be controlled by light. Photopharmacology involves the incorporation of a photoswitch into the structure of a given compound, cage or linker and following irradiation with light, undergoes a structural rearrangement, which changes its biological activity. The use of light-regulated ligands offers the opportunity to modulate and understand GPCR signaling in a more spatiotemporal manner than classical pharmacological approaches. In this chapter we will discuss some of the advancements that have been made in photopharmacology, particularly in developing photoswitchable ligands that target class A GPCRs, e.g., muscarinic acetylcholine receptors, class B GPCRs, e.g., glucagon-like peptide-1 receptor, and class C GPCRs, e.g., metabotrobic glutamate receptors. Given the intricacy of GPCR pharmacology, this chapter will also discuss some of the challenges the field faces when designing photopharmacological tools. Furthermore, it will propose that it is with a full appreciation of the spectrum of pharmacological and pharmacokinetic properties of photoswitchable ligands that research will be better placed to develop ligands with a reduced risk of failure during preclinical progression. This will likely enable photopharmacological approaches to continue to find novel applications and offer new perspectives in understanding (patho)physiology to ultimately inform future GPCR drug discovery efforts.
Collapse
Affiliation(s)
- Alice E Berizzi
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France.
| | - Cyril Goudet
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France.
| |
Collapse
|
18
|
Gómez-Santacana X, de Munnik SM, Mocking TAM, Hauwert NJ, Sun S, Vijayachandran P, de Esch IJP, Vischer HF, Wijtmans M, Leurs R. A toolbox of molecular photoswitches to modulate the CXCR3 chemokine receptor with light. Beilstein J Org Chem 2019; 15:2509-2523. [PMID: 31728165 PMCID: PMC6839561 DOI: 10.3762/bjoc.15.244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
We report a detailed structure-activity relationship for the scaffold of VUF16216, a compound we have previously communicated as a small-molecule efficacy photoswitch for the peptidergic chemokine GPCR CXCR3. A series of photoswitchable azobenzene ligands was prepared through various synthetic strategies and multistep syntheses. Photochemical and pharmacological properties were used to guide the design iterations. Investigations of positional and substituent effects reveal that halogen substituents on the ortho-position of the outer ring are preferred for conferring partial agonism on the cis form of the ligands. This effect could be expanded by an electron-donating group on the para-position of the central ring. A variety of efficacy differences between the trans and cis forms emerges from these compounds. Tool compounds VUF15888 (4d) and VUF16620 (6e) represent more subtle efficacy switches, while VUF16216 (6f) displays the largest efficacy switch, from antagonism to full agonism. The compound class disclosed here can aid in new photopharmacology studies of CXCR3 signaling.
Collapse
Affiliation(s)
- Xavier Gómez-Santacana
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, The Netherlands.,present address: Institute of Functional Genomics, Université de Montpellier, Unité 5302 CNRS and Unité U1191, INSERM, 34090 Montpellier, France
| | - Sabrina M de Munnik
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, The Netherlands
| | - Tamara A M Mocking
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, The Netherlands
| | - Niels J Hauwert
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, The Netherlands
| | - Shanliang Sun
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, The Netherlands
| | - Prashanna Vijayachandran
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, The Netherlands
| | - Henry F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Trads JB, Hüll K, Matsuura BS, Laprell L, Fehrentz T, Görldt N, Kozek KA, Weaver CD, Klöcker N, Barber DM, Trauner D. Sign Inversion in Photopharmacology: Incorporation of Cyclic Azobenzenes in Photoswitchable Potassium Channel Blockers and Openers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Julie B. Trads
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) Ludwig Maximilian University Munich Butenandtstr. 5–13 81377 Munich Germany
- Center for DNA Nanotechnology Department of Chemistry and iNANO Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Katharina Hüll
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) Ludwig Maximilian University Munich Butenandtstr. 5–13 81377 Munich Germany
- Department of Chemistry New York University 100 Washington Square East New York NY 10003-6699 USA
| | - Bryan S. Matsuura
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) Ludwig Maximilian University Munich Butenandtstr. 5–13 81377 Munich Germany
- Department of Chemistry New York University 100 Washington Square East New York NY 10003-6699 USA
| | - Laura Laprell
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) Ludwig Maximilian University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Timm Fehrentz
- Institute of Neural and Sensory Physiology, Medical Faculty University of Düsseldorf Düsseldorf Germany
| | - Nicole Görldt
- Institute of Neural and Sensory Physiology, Medical Faculty University of Düsseldorf Düsseldorf Germany
| | - Krystian A. Kozek
- Department of Pharmacology Vanderbilt University School of Medicine Nashville TN USA
| | - C. David Weaver
- Departments of Pharmacology and Chemistry Institute of Chemical Biology Vanderbilt University School of Medicine Nashville TN USA
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty University of Düsseldorf Düsseldorf Germany
| | - David M. Barber
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) Ludwig Maximilian University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Dirk Trauner
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) Ludwig Maximilian University Munich Butenandtstr. 5–13 81377 Munich Germany
- Department of Chemistry New York University 100 Washington Square East New York NY 10003-6699 USA
| |
Collapse
|
20
|
Trads JB, Hüll K, Matsuura BS, Laprell L, Fehrentz T, Görldt N, Kozek KA, Weaver CD, Klöcker N, Barber DM, Trauner D. Sign Inversion in Photopharmacology: Incorporation of Cyclic Azobenzenes in Photoswitchable Potassium Channel Blockers and Openers. Angew Chem Int Ed Engl 2019; 58:15421-15428. [PMID: 31441199 DOI: 10.1002/anie.201905790] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/30/2019] [Indexed: 01/22/2023]
Abstract
Photopharmacology relies on ligands that change their pharmacodynamics upon photoisomerization. Many of these ligands are azobenzenes that are thermodynamically more stable in their elongated trans-configuration. Often, they are biologically active in this form and lose activity upon irradiation and photoisomerization to their cis-isomer. Recently, cyclic azobenzenes, so-called diazocines, have emerged, which are thermodynamically more stable in their bent cis-form. Incorporation of these switches into a variety of photopharmaceuticals could convert dark-active ligands into dark-inactive ligands, which is preferred in most biological applications. This "pharmacological sign-inversion" is demonstrated for a photochromic blocker of voltage-gated potassium channels, termed CAL, and a photochromic opener of G protein-coupled inwardly rectifying potassium (GIRK) channels, termed CLOGO.
Collapse
Affiliation(s)
- Julie B Trads
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.,Center for DNA Nanotechnology, Department of Chemistry and iNANO, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Katharina Hüll
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.,Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003-6699, USA
| | - Bryan S Matsuura
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.,Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003-6699, USA
| | - Laura Laprell
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Timm Fehrentz
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Nicole Görldt
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Krystian A Kozek
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - C David Weaver
- Departments of Pharmacology and Chemistry, Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - David M Barber
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Dirk Trauner
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.,Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003-6699, USA
| |
Collapse
|
21
|
Albert L, Vázquez O. Photoswitchable peptides for spatiotemporal control of biological functions. Chem Commun (Camb) 2019; 55:10192-10213. [PMID: 31411602 DOI: 10.1039/c9cc03346g] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Light is unsurpassed in its ability to modulate biological interactions. Since their discovery, chemists have been fascinated by photosensitive molecules capable of switching between isomeric forms, known as photoswitches. Photoswitchable peptides have been recognized for many years; however, their functional implementation in biological systems has only recently been achieved. Peptides are now acknowledged as excellent protein-protein interaction modulators and have been important in the emergence of photopharmacology. In this review, we briefly explain the different classes of photoswitches and summarize structural studies when they are incorporated into peptides. Importantly, we provide a detailed overview of the rapidly increasing number of examples, where biological modulation is driven by the structural changes. Furthermore, we discuss some of the remaining challenges faced in this field. These exciting proof-of-principle studies highlight the tremendous potential of photocontrollable peptides as optochemical tools for chemical biology and biomedicine.
Collapse
Affiliation(s)
- Lea Albert
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany.
| | | |
Collapse
|
22
|
Wootten D, Miller LJ. Structural Basis for Allosteric Modulation of Class B G Protein-Coupled Receptors. Annu Rev Pharmacol Toxicol 2019; 60:89-107. [PMID: 31454292 DOI: 10.1146/annurev-pharmtox-010919-023301] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances in our understanding of the structure and function of class B G protein-coupled receptors (GPCRs) provide multiple opportunities for targeted development of allosteric modulators. Given the pleiotropic signaling patterns emanating from these receptors in response to a variety of natural agonist ligands, modulators have the potential to sculpt the responses to meet distinct needs of different groups of patients. In this review, we provide insights into how this family of GPCRs differs from the rest of the superfamily, how orthosteric agonists bind and activate these receptors, the potential for allosteric modulators to interact with various regions of these targets, and the allosteric influence of endogenous proteins on the pharmacology of these receptors, all of which are important considerations when developing new therapies.
Collapse
Affiliation(s)
- Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, and Department of Pharmacology, Monash University, Parkville 3052, Australia; .,School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Laurence J Miller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, and Department of Pharmacology, Monash University, Parkville 3052, Australia; .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA;
| |
Collapse
|
23
|
Song S, Wang L, Li J, Huang X, Yu R. The allosteric modulation effects of doxycycline, minocycline, and their derivatives on the neuropeptide receptor PAC1-R. Acta Biochim Biophys Sin (Shanghai) 2019; 51:627-637. [PMID: 31056648 DOI: 10.1093/abbs/gmz045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 11/13/2022] Open
Abstract
Class B G-protein coupled receptors (GPCR) PAC1-R is a neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP)-preferring receptor that mediates the effective neuroprotective activity. Based on our previous data showing that doxycycline and minocycline work as the positive allosteric modulator (PAM) of PAC1-R, we used computer molecular docking and isothermal titration calorimetry assay to further determine the bindings of doxycycline/minocycline's derivatives including tetracycline/tigecycline with the N-terminal extracellular domain of PAC1-R (PAC1-EC1). Then the cAMP assay combined with the PAC1-R natural agonist PACAP27 was used to confirm the possible PAM roles of the small-molecule antibiotics. The results showed that tetracycline/tigecycline had significant lower affinity to PAC1-EC1 than doxycycline/minocycline, which was consistent with their non-positive allosteric modulation activity on PAC1-R. Furthermore, by comparing the key residues contributing to the PAM binding with the predicted allosteric site in PAC1-EC1, we characterized four motifs contributing to PAM binding in PAC1-EC1. The site-directed mutation results showed that ASN60 played the most important role in the PAM binding of the small-molecule antibiotics, while ASP116 played a sensitive marginal role in the PAM binding. These results not only help to explain the clinical and experimental neuroprotective effects of doxycycline/minocycline, but also help to characterize the PAM binding site in PAC1-EC1, which will promote the screening and characterization of novel small-molecule PAMs targeting PAC1-EC1 with drug development potency in nerve system disease.
Collapse
Affiliation(s)
- Suqin Song
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Like Wang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Junfeng Li
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoling Huang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rongjie Yu
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Ricart-Ortega M, Font J, Llebaria A. GPCR photopharmacology. Mol Cell Endocrinol 2019; 488:36-51. [PMID: 30862498 DOI: 10.1016/j.mce.2019.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
New technologies for spatial and temporal remote control of G protein-coupled receptors (GPCRs) are necessary to unravel the complexity of GPCR signalling in cells, tissues and living organisms. An effective approach, recently developed, consists on the design of light-operated ligands whereby light-dependent GPCR activity regulation can be achieved. In this context, the use of light provides an advantage as it combines safety, easy delivery, high resolution and it does not interfere with most cellular processes. In this review we summarize the most relevant successful achievements in GPCR photopharmacology. These recent findings constitute a significant advance in research studies on the molecular dynamics of receptor activation and their physiological roles in vivo. Moreover, these molecules hold potential toward clinical uses as light-operated drugs, which can overcome some of the problems of conventional pharmacology.
Collapse
Affiliation(s)
- Maria Ricart-Ortega
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; IGF, CNRS, INSERM, University de Montpellier, F-34094, Montpellier, France.
| | - Joan Font
- IGF, CNRS, INSERM, University de Montpellier, F-34094, Montpellier, France.
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| |
Collapse
|
25
|
Morstein J, Awale M, Reymond JL, Trauner D. Mapping the Azolog Space Enables the Optical Control of New Biological Targets. ACS CENTRAL SCIENCE 2019; 5:607-618. [PMID: 31041380 PMCID: PMC6487453 DOI: 10.1021/acscentsci.8b00881] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 06/01/2023]
Abstract
Photopharmacology relies on molecules that change their biological activity upon irradiation. Many of these are derived from known drugs by replacing their core with an isosteric azobenzene photoswitch (azologization). The question is how many of the known bioactive ligands could be addressed in such a way. Here, we systematically assess the space of molecules amenable to azologization from databases of bioactive molecules (DrugBank, PDB, CHEMBL) and the Cambridge Structural Database. Shape similarity scoring functions (3DAPfp) and analyses of dihedral angles are employed to quantify the structural homology between a bioactive molecule and the cis or trans isomer of its corresponding azolog ("azoster") and assess which isomer is likely to be active. Our analysis suggests that a very large number of bioactive ligands (>40 000) is amenable to azologization and that many new biological targets could be addressed with photopharmacology. N-Aryl benzamides, 1,2-diarylethanes, and benzyl phenyl ethers are particularly suited for this approach, while benzylanilines and sulfonamides appear to be less well-matched. On the basis of our analysis, the majority of azosters are expected to be active in their trans form. The broad applicability of our approach is demonstrated with photoswitches that target a nuclear hormone receptor (RAR) and a lipid processing enzyme (LTA4 hydrolase).
Collapse
Affiliation(s)
- Johannes Morstein
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| | - Mahendra Awale
- Department
of Chemistry and Biochemistry, National Center for Competence in Research
NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jean-Louis Reymond
- Department
of Chemistry and Biochemistry, National Center for Competence in Research
NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Dirk Trauner
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| |
Collapse
|
26
|
Agnetta L, Bermudez M, Riefolo F, Matera C, Claro E, Messerer R, Littmann T, Wolber G, Holzgrabe U, Decker M. Fluorination of Photoswitchable Muscarinic Agonists Tunes Receptor Pharmacology and Photochromic Properties. J Med Chem 2019; 62:3009-3020. [DOI: 10.1021/acs.jmedchem.8b01822] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Luca Agnetta
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Carrer Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Carrer Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
| | - Enrique Claro
- Institut de Neurociències (INc) and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
| | - Regina Messerer
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Timo Littmann
- Institute of Pharmacy, University of Regensburg, Universitätstraße 31, 93053 Regensburg, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Ulrike Holzgrabe
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
27
|
Smelcerovic A, Lazarevic J, Tomovic K, Anastasijevic M, Jukic M, Kocic G, Anderluh M. An Overview, Advantages and Therapeutic Potential of Nonpeptide Positive Allosteric Modulators of Glucagon-Like Peptide-1 Receptor. ChemMedChem 2019; 14:514-521. [PMID: 30609277 DOI: 10.1002/cmdc.201800699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/21/2018] [Indexed: 11/12/2022]
Abstract
Due to uncomfortable injection regimens of peptidic agonists of glucagon-like peptide-1 receptor (GLP-1R), orally available nonpeptide positive allosteric modulators (PAMs) of GLP-1Rs are foreseen as the possible future mainstream therapy for type 2 diabetes. Herein, current GLP-1R PAMs are reviewed. Based on the effectiveness and in silico predicted physicochemical properties, pharmacokinetics, and toxicity, possible candidates for further development as oral drugs were selected. The suggestion is that GLP-1R PAMs might be used orally alone or in combination with dipeptidyl peptidase-4 (DPP-4) inhibitors, which could offer an optimal treatment option next to metformin monotherapy in type 2 diabetes mellitus, or in a wider spectrum of indications. Quercetin acts as a GLP-1R PAM and DPP-4 inhibitor, and therefore, might be considered as a pioneering agent with a dual mechanism of action, in terms of GLP-1R positive allosteric modulation and DPP-4 inhibition for potentiating GLP-1 dependent effects.
Collapse
Affiliation(s)
- Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Djindjica 81, 18000, Niš, Serbia
| | - Jelena Lazarevic
- Department of Chemistry, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Djindjica 81, 18000, Niš, Serbia
| | - Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Djindjica 81, 18000, Niš, Serbia
| | - Marija Anastasijevic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Djindjica 81, 18000, Niš, Serbia
| | - Marko Jukic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000, Slovenia
| | - Gordana Kocic
- Institute of Biochemistry, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Djindjica 81, 18000, Niš, Serbia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000, Slovenia
| |
Collapse
|
28
|
Acosta-Ruiz A, Broichhagen J, Levitz J. Optical Regulation of Class C GPCRs by Photoswitchable Orthogonal Remotely Tethered Ligands. Methods Mol Biol 2019; 1947:103-136. [PMID: 30969413 DOI: 10.1007/978-1-4939-9121-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
G protein-coupled receptors (GPCRs) respond to a wide range of extracellular cues to initiate complex downstream signaling cascades that control myriad aspects of cell function. Despite a long-standing appreciation of their importance to both basic physiology and disease treatment, it remains a major challenge to understand the dynamic activation patterns of GPCRs and the mechanisms by which they modulate biological processes at the molecular, cellular, and tissue levels. Unfortunately, classical methods of pharmacology and genetic knockout are often unable to provide the requisite precision needed to probe such questions. This is an especially pressing challenge for the class C GPCR family which includes receptors for the major excitatory and inhibitory neurotransmitters, glutamate and GABA, which signal in a rapid, spatially-delimited manner and contain many different subtypes whose roles are difficult to disentangle. The desire to manipulate class C GPCRs with spatiotemporal precision, genetic targeting, and subtype specificity has led to the development of a variety of photopharmacological tools. Of particular promise are the photoswitchable orthogonal remotely tethered ligands ("PORTLs") which attach to self-labeling tags that are genetically encoded into full length, wild-type metabotropic glutamate receptors (mGluRs) and allow the receptor to be liganded and un-liganded in response to different wavelengths of illumination. While powerful for studying class C GPCRs, a number of detailed considerations must be made when working with these tools. The protocol included here should provide a basis for the development, characterization, optimization, and application of PORTLs for a wide range of GPCRs.
Collapse
Affiliation(s)
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
29
|
Frank JA, Broichhagen J, Yushchenko DA, Trauner D, Schultz C, Hodson DJ. Optical tools for understanding the complexity of β-cell signalling and insulin release. Nat Rev Endocrinol 2018; 14:721-737. [PMID: 30356209 DOI: 10.1038/s41574-018-0105-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Following stimulation, pancreatic β-cells must orchestrate a plethora of signalling events to ensure the appropriate release of insulin and maintenance of normal glucose homeostasis. Failure at any point in this cascade leads to impaired insulin secretion, elevated blood levels of glucose and eventually type 2 diabetes mellitus. Likewise, β-cell replacement or regeneration strategies for the treatment of both type 1 and type 2 diabetes mellitus might fail if the correct cell signalling phenotype cannot be faithfully recreated. However, current understanding of β-cell function is complicated because of the highly dynamic nature of their intracellular and intercellular signalling as well as insulin release itself. β-Cells must precisely integrate multiple signals stemming from multiple cues, often with differing intensities, frequencies and cellular and subcellular localizations, before converging these signals onto insulin exocytosis. In this respect, optical approaches with high resolution in space and time are extremely useful for properly deciphering the complexity of β-cell signalling. An increased understanding of β-cell signalling might identify new mechanisms underlying insulin release, with relevance for future drug therapy and de novo stem cell engineering of functional islets.
Collapse
Affiliation(s)
- James A Frank
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Dmytro A Yushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dirk Trauner
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, New York University, New York, NY, USA
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany.
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA.
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
30
|
Matera C, Gomila AMJ, Camarero N, Libergoli M, Soler C, Gorostiza P. Photoswitchable Antimetabolite for Targeted Photoactivated Chemotherapy. J Am Chem Soc 2018; 140:15764-15773. [DOI: 10.1021/jacs.8b08249] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Núria Camarero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Michela Libergoli
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Concepció Soler
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat 08908, Barcelona, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
31
|
Gómez-Santacana X, de Munnik SM, Vijayachandran P, Da Costa Pereira D, Bebelman JPM, de Esch IJP, Vischer HF, Wijtmans M, Leurs R. Photoswitching the Efficacy of a Small-Molecule Ligand for a Peptidergic GPCR: from Antagonism to Agonism. Angew Chem Int Ed Engl 2018; 57:11608-11612. [PMID: 29926530 DOI: 10.1002/anie.201804875] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 01/29/2023]
Abstract
For optical control of GPCR function, we set out to develop small-molecule ligands with photoswitchable efficacy in which both configurations bind the target protein but exert distinct pharmacological effects, that is, stimulate or antagonize GPCR activation. Our design was based on a previously identified efficacy hotspot for the peptidergic chemokine receptor CXCR3 and resulted in the synthesis and characterization of five new azobenzene-containing CXCR3 ligands. G protein activation assays and real-time electrophysiology experiments demonstrated photoswitching from antagonism to partial agonism and even to full agonism (compound VUF16216). SAR evaluation suggests that the size and electron-donating properties of the substituents on the inner aromatic ring are important for the efficacy photoswitching. These compounds are the first GPCR azo ligands with a nearly full efficacy photoswitch and may become valuable pharmacological tools for the optical control of peptidergic GPCR signaling.
Collapse
Affiliation(s)
- Xavier Gómez-Santacana
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Sabrina M de Munnik
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Prashanna Vijayachandran
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Daniel Da Costa Pereira
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Jan Paul M Bebelman
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Henry F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Gómez-Santacana X, de Munnik SM, Vijayachandran P, Da Costa Pereira D, Bebelman JPM, de Esch IJP, Vischer HF, Wijtmans M, Leurs R. Photoswitching the Efficacy of a Small-Molecule Ligand for a Peptidergic GPCR: from Antagonism to Agonism. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xavier Gómez-Santacana
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Sabrina M. de Munnik
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Prashanna Vijayachandran
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Daniel Da Costa Pereira
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Jan Paul M. Bebelman
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Iwan J. P. de Esch
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Henry F. Vischer
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Maikel Wijtmans
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry; Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
33
|
Affiliation(s)
- Katharina Hüll
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| | - Johannes Morstein
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| | - Dirk Trauner
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| |
Collapse
|
34
|
Nasteska D, Hodson DJ. The role of beta cell heterogeneity in islet function and insulin release. J Mol Endocrinol 2018; 61:R43-R60. [PMID: 29661799 PMCID: PMC5976077 DOI: 10.1530/jme-18-0011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022]
Abstract
It is becoming increasingly apparent that not all insulin-secreting beta cells are equal. Subtle differences exist at the transcriptomic and protein expression levels, with repercussions for beta cell survival/proliferation, calcium signalling and insulin release. Notably, beta cell heterogeneity displays plasticity during development, metabolic stress and type 2 diabetes mellitus (T2DM). Thus, heterogeneity or lack thereof may be an important contributor to beta cell failure during T2DM in both rodents and humans. The present review will discuss the molecular and cellular features of beta cell heterogeneity at both the single-cell and islet level, explore how this influences islet function and insulin release and look into the alterations that may occur during obesity and T2DM.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Edgbaston, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- COMPARE University of Birmingham and University of Nottingham MidlandsBirmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Edgbaston, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- COMPARE University of Birmingham and University of Nottingham MidlandsBirmingham, UK
| |
Collapse
|
35
|
Abstract
Endocrine organs secrete a variety of hormones involved in the regulation of a multitude of body functions. Although pancreatic islets were discovered at the turn of the 19th century, other endocrine glands remained commonly described as diffuse endocrine systems. Over the last two decades, development of new imaging techniques and genetically-modified animals with cell-specific fluorescent tags or specific hormone deficiencies have enabled in vivo imaging of endocrine organs and revealed intricate endocrine cell network structures and plasticity. Overall, these new tools have revolutionized our understanding of endocrine function. The overarching aim of this Review is to describe the current mechanistic understanding that has emerged from imaging studies of endocrine cell network structure/function relationships in animal models, with a particular emphasis on the pituitary gland and the endocrine pancreas.
Collapse
Affiliation(s)
- Patrice Mollard
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, F-34094, Montpellier, France
| | - Marie Schaeffer
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, F-34094, Montpellier, France.
| |
Collapse
|
36
|
Affiliation(s)
- Diego Alejandro Rodríguez-Soacha
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius Maximilian University of Würzburg; Würzburg 97074 Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius Maximilian University of Würzburg; Würzburg 97074 Germany
| |
Collapse
|
37
|
Hauwert NJ, Mocking TAM, Da Costa Pereira D, Kooistra AJ, Wijnen LM, Vreeker GCM, Verweij EWE, De Boer AH, Smit MJ, De Graaf C, Vischer HF, de Esch IJP, Wijtmans M, Leurs R. Synthesis and Characterization of a Bidirectional Photoswitchable Antagonist Toolbox for Real-Time GPCR Photopharmacology. J Am Chem Soc 2018; 140:4232-4243. [PMID: 29470065 PMCID: PMC5879491 DOI: 10.1021/jacs.7b11422] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Noninvasive methods
to modulate G protein-coupled receptors (GPCRs)
with temporal and spatial precision are in great demand. Photopharmacology
uses photons to control in situ the biological properties
of photoswitchable small-molecule ligands, which bodes well for chemical
biological precision approaches. Integrating the light-switchable
configurational properties of an azobenzene into the ligand core,
we developed a bidirectional antagonist toolbox for an archetypical
family A GPCR, the histamine H3 receptor (H3R). From 16 newly synthesized photoswitchable compounds, VUF14738
(28) and VUF14862 (33) were selected as
they swiftly and reversibly photoisomerize and show over 10-fold increased
or decreased H3R binding affinities, respectively, upon
illumination at 360 nm. Both ligands combine long thermal half-lives
with fast and high photochemical trans-/cis conversion, allowing their use in real-time electrophysiology experiments
with oocytes to confirm dynamic photomodulation of H3R
activation in repeated second-scale cycles. VUF14738 and VUF14862
are robust and fatigue-resistant photoswitchable GPCR antagonists
suitable for spatiotemporal studies of H3R signaling.
Collapse
Affiliation(s)
- Niels J Hauwert
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Tamara A M Mocking
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Daniel Da Costa Pereira
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Albert J Kooistra
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Lisa M Wijnen
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Gerda C M Vreeker
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Eléonore W E Verweij
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Albertus H De Boer
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Chris De Graaf
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Henry F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Maikel Wijtmans
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| |
Collapse
|
38
|
Abstract
The last few years have witnessed significant advances in the use of light as a stimulus to control biomolecular interactions. Great efforts have been devoted to the development of genetically encoded optobiological and small photochromic switches. Newly discovered small molecules now allow researchers to build molecular systems that are sensitive to a wider range of wavelengths of light than ever before with improved switching fidelities and increased lifetimes of the photoactivated states. Because these molecules are relatively small and adopt predictable conformations they are well suited as tools to interrogate cellular function in a spatially and temporally contolled fashion and for applications in photopharmacology.
Collapse
Affiliation(s)
- Robert J Mart
- School of Chemistry & Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - Rudolf K Allemann
- School of Chemistry & Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
39
|
Dolles D, Strasser A, Wittmann HJ, Marinelli O, Nabissi M, Pertwee RG, Decker M. The First Photochromic Affinity Switch for the Human Cannabinoid Receptor 2. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201700032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dominik Dolles
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius Maximilian University of Würzburg; Würzburg Germany
| | - Andrea Strasser
- Pharmaceutical and Medicinal Chemistry II; Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Hans-Joachim Wittmann
- Pharmaceutical and Medicinal Chemistry II; Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Oliviero Marinelli
- School of Pharmacy; Department of Experimental Medicine; University of Camerino; Camerino Italy
| | - Massimo Nabissi
- School of Pharmacy; Department of Experimental Medicine; University of Camerino; Camerino Italy
| | - Roger G. Pertwee
- School of Medicine, Medical Sciences and Nutrition; Institute of Medical Sciences; University of Aberdeen; Aberdeen Scotland UK
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius Maximilian University of Würzburg; Würzburg Germany
| |
Collapse
|
40
|
Frank JA, Yushchenko DA, Fine NHF, Duca M, Citir M, Broichhagen J, Hodson DJ, Schultz C, Trauner D. Optical control of GPR40 signalling in pancreatic β-cells. Chem Sci 2017; 8:7604-7610. [PMID: 29568424 PMCID: PMC5848828 DOI: 10.1039/c7sc01475a] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023] Open
Abstract
Fatty acids activate GPR40 and K+ channels to modulate β-cell function. Herein, we describe the design and synthesis of FAAzo-10, a light-controllable GPR40 agonist based on Gw-9508. FAAzo-10 is a potent GPR40 agonist in the trans-configuration and can be inactivated on isomerization to cis with UV-A light. Irradiation with blue light reverses this effect, allowing FAAzo-10 activity to be cycled ON and OFF with a high degree of spatiotemporal precision. In dissociated primary mouse β-cells, FAAzo-10 also inactivates voltage-activated and ATP-sensitive K+ channels, and allows us to control glucose-stimulated Ca2+ oscillations in whole islets with light. As such, FAAzo-10 is a useful tool to study the complex effects, with high specificity, which FA-derivatives such as Gw-9508 exert at multiple targets in mouse β-cells.
Collapse
Affiliation(s)
- James Allen Frank
- Department of Chemistry , Center for Integrated Protein Science , Ludwig Maximilians University Munich , Butenandtstraße 5-13 , 81377 Munich , Germany
| | - Dmytro A Yushchenko
- European Molecular Biology Laboratory (EMBL) , Cell Biology & Biophysics Unit , Meyerhofstraße 1 , 69117 Heidelberg , Germany .
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , Flemingovo namesti 2 , 16610 Prague 6 , Czech Republic
| | - Nicholas H F Fine
- Institute of Metabolism and Systems Research (IMSR) , University of Birmingham , Birmingham , B15 2TT , UK .
- Centre for Endocrinology, Diabetes and Metabolism , Birmingham Health Partners , Birmingham , B15 2TH , UK
- COMPARE University of Birmingham and University of Nottingham Midlands , UK
| | - Margherita Duca
- Department of Chemistry , Center for Integrated Protein Science , Ludwig Maximilians University Munich , Butenandtstraße 5-13 , 81377 Munich , Germany
- Department of Chemistry , University of Milan , Via Golgi 19 , 20133 , Milan , Italy
| | - Mevlut Citir
- European Molecular Biology Laboratory (EMBL) , Cell Biology & Biophysics Unit , Meyerhofstraße 1 , 69117 Heidelberg , Germany .
| | - Johannes Broichhagen
- Department of Chemistry , Center for Integrated Protein Science , Ludwig Maximilians University Munich , Butenandtstraße 5-13 , 81377 Munich , Germany
- Max-Planck Institute of Medical Research , Jahnstr. 29 , 69120 Heidelberg , Germany
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) , University of Birmingham , Birmingham , B15 2TT , UK .
- Centre for Endocrinology, Diabetes and Metabolism , Birmingham Health Partners , Birmingham , B15 2TH , UK
- COMPARE University of Birmingham and University of Nottingham Midlands , UK
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL) , Cell Biology & Biophysics Unit , Meyerhofstraße 1 , 69117 Heidelberg , Germany .
- Dept. of Physiology and Pharmacology , Oregon Health and Science University , Portland , OR 97237 , USA
| | - Dirk Trauner
- Department of Chemistry , Center for Integrated Protein Science , Ludwig Maximilians University Munich , Butenandtstraße 5-13 , 81377 Munich , Germany
- Department of Chemistry , New York University , 100 Washington Square East , New York , NY 10003-6699 , USA .
| |
Collapse
|
41
|
Khamo JS, Krishnamurthy VV, Sharum SR, Mondal P, Zhang K. Applications of Optobiology in Intact Cells and Multicellular Organisms. J Mol Biol 2017; 429:2999-3017. [PMID: 28882542 DOI: 10.1016/j.jmb.2017.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022]
Abstract
Temporal kinetics and spatial coordination of signal transduction in cells are vital for cell fate determination. Tools that allow for precise modulation of spatiotemporal regulation of intracellular signaling in intact cells and multicellular organisms remain limited. The emerging optobiological approaches use light to control protein-protein interaction in live cells and multicellular organisms. Optobiology empowers light-mediated control of diverse cellular and organismal functions such as neuronal activity, intracellular signaling, gene expression, cell proliferation, differentiation, migration, and apoptosis. In this review, we highlight recent developments in optobiology, focusing on new features of second-generation optobiological tools. We cover applications of optobiological approaches in the study of cellular and organismal functions, discuss current challenges, and present our outlook. Taking advantage of the high spatial and temporal resolution of light control, optobiology promises to provide new insights into the coordination of signaling circuits in intact cells and multicellular organisms.
Collapse
Affiliation(s)
- John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Savanna R Sharum
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
42
|
Jones BJ, Scopelliti R, Tomas A, Bloom SR, Hodson DJ, Broichhagen J. Potent Prearranged Positive Allosteric Modulators of the Glucagon-like Peptide-1 Receptor. ChemistryOpen 2017; 6:501-505. [PMID: 28794944 PMCID: PMC5542757 DOI: 10.1002/open.201700062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 11/11/2022] Open
Abstract
Drugs that allosterically modulate G protein-coupled receptor (GPCR) activity display higher specificity and may improve disease treatment. However, the rational design of compounds that target the allosteric site is difficult, as conformations required for receptor activation are poorly understood. Guided by photopharmacology, a set of prearranged positive allosteric modulators (PAMs) with restricted degrees of freedom was designed and tested against the glucagon-like peptide-1 receptor (GLP-1R), a GPCR involved in glucose homeostasis. Compounds incorporating a trans-stilbene comprehensively outperformed those with a cis-stilbene, as well as the benchmark BETP, as GLP-1R PAMs. We also identified major effects of ligand conformation on GLP-1R binding kinetics and signal bias. Thus, we describe a photopharmacology-directed approach for rational drug design, and introduce a new class of stilbene-containing PAM for the specific regulation of GPCR activity.
Collapse
Affiliation(s)
- Ben J. Jones
- Imperial College London, Section of Investigative MedicineDivision of Diabetes, Endocrinology and MetabolismLondonW12 0NNUK
| | - Rosario Scopelliti
- École Polytechnique Fédérale de LausanneISIC SB, Laboratory of Protein EngineeringAv. Forel 21015LausanneSwitzerland
| | - Alejandra Tomas
- Imperial College LondonSection of Cell Biology and Functional Genomics, Department of MedicineLondonW12 0NNUK
| | - Stephen R. Bloom
- Imperial College London, Section of Investigative MedicineDivision of Diabetes, Endocrinology and MetabolismLondonW12 0NNUK
| | - David J. Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE)University of BirminghamBirminghamB15 2TTUK
- Centre for Endocrinology, Diabetes and MetabolismBirmingham Health PartnersBirminghamB15 2THUK
| | - Johannes Broichhagen
- École Polytechnique Fédérale de LausanneISIC SB, Laboratory of Protein EngineeringAv. Forel 21015LausanneSwitzerland
- Current address: Max Planck Institute for Medical ResearchDepartment of Chemical BiologyJahnstraße 2969120HeidelbergGermany
| |
Collapse
|
43
|
Mehta ZB, Johnston NR, Nguyen-Tu MS, Broichhagen J, Schultz P, Larner DP, Leclerc I, Trauner D, Rutter GA, Hodson DJ. Remote control of glucose homeostasis in vivo using photopharmacology. Sci Rep 2017; 7:291. [PMID: 28331198 PMCID: PMC5428208 DOI: 10.1038/s41598-017-00397-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/21/2017] [Indexed: 01/26/2023] Open
Abstract
Photopharmacology describes the use of light to precisely deliver drug activity in space and time. Such approaches promise to improve drug specificity by reducing off-target effects. As a proof-of-concept, we have subjected the fourth generation photoswitchable sulfonylurea JB253 to comprehensive toxicology assessment, including mutagenicity and maximum/repeated tolerated dose studies, as well as in vivo testing in rodents. Here, we show that JB253 is well-tolerated with minimal mutagenicity and can be used to optically-control glucose homeostasis in anesthetized mice following delivery of blue light to the pancreas. These studies provide the first demonstration that photopharmacology may one day be applicable to the light-guided treatment of type 2 diabetes and other metabolic disease states in vivo in humans.
Collapse
Affiliation(s)
- Zenobia B Mehta
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Natalie R Johnston
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Marie-Sophie Nguyen-Tu
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Johannes Broichhagen
- Department of Chemistry and Center for Integrated Protein Science, LMU Munich, Munich, Germany
- Max-Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Peter Schultz
- Department of Chemistry and Center for Integrated Protein Science, LMU Munich, Munich, Germany
| | - Dean P Larner
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Edgbaston, B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, B15 2TH, UK
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Dirk Trauner
- Department of Chemistry and Center for Integrated Protein Science, LMU Munich, Munich, Germany.
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Edgbaston, B15 2TT, UK.
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, B15 2TH, UK.
| |
Collapse
|
44
|
Spangler SM, Bruchas MR. Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Curr Opin Pharmacol 2017; 32:56-70. [PMID: 27875804 PMCID: PMC5395328 DOI: 10.1016/j.coph.2016.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 12/19/2022]
Abstract
Optogenetics has revolutionized neuroscience by providing means to control cell signaling with spatiotemporal control in discrete cell types. In this review, we summarize four major classes of optical tools to manipulate neuromodulatory GPCR signaling: opsins (including engineered chimeric receptors); photoactivatable proteins; photopharmacology through caging-photoswitchable molecules; fluorescent protein based reporters and biosensors. Additionally, we highlight technologies to utilize these tools in vitro and in vivo, including Cre dependent viral vector expression and two-photon microscopy. These emerging techniques targeting specific members of the GPCR signaling pathway offer an expansive base for investigating GPCR signaling in behavior and disease states, in addition to paving a path to potential therapeutic developments.
Collapse
Affiliation(s)
- Skylar M Spangler
- Department of Anesthesiology, Basic Research Division, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Basic Research Division, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|