1
|
Song Y, Li C, Wang J, Yang H, He H, Liu Y, Zhang S, Deng C. Co-CoSe heterogeneous fibers with strong interfacial built-in electric field as bifunctional electrocatalyst for high-performance Zn-air battery. J Colloid Interface Sci 2025; 677:140-150. [PMID: 39142155 DOI: 10.1016/j.jcis.2024.08.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
The explorations of efficient electrocatalysts to accelerate oxygen reactions in a wide temperature range is a crucial issue to the development of zinc-air batteries (ZAB) for all-climate applications. Herein, the Co-CoSe heterogeneous furry fibers (Co-CoSe@NHF) are developed as a bifunctional oxygen electrocatalyst for ZAB towards wide-temperature range applications. The Co-CoSe heterostructure with large work function difference (ΔWF) endows interfacial electron redistribution, which builds strong interfacial built-in electric field (BIEF) and improves the oxygen reactions. Meanwhile, the Co-CoSe heterostructure is encapsulated by in-situ grown carbon nanotubes, and forms the hollow fiber (NHF) with furry surface and beads-on-string configuration. The highly porous and conductive NHF configuration facilitates the fast kinetics and favors to accommodates volume change during cycling. As a result, the Co-CoSe@NHF achieves the superior bifunctional properties and good reliability for oxygen reactions. Integrated with the Co-CoSe@NHF fiber, the ZAB cell delivers the superior power density (301 mW cm-2) and long-term cycling stability over 280 h at 25 °C, and maintains the power densities of 126 mW cm-2 even the temperature decreases to -25 °C. Moreover, the solid-state ZAB exhibits significant flexibility and superior properties in a wide temperature range. Therefore, this work not only proposes a new strategy to design the high-performance bifunctional electrocatalysts, but also propels the development of flexible power sources for all-climate applications.
Collapse
Affiliation(s)
- Yang Song
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electric Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Caiyun Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electric Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Jin Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electric Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Hongrui Yang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electric Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Hanwen He
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electric Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Yukun Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electric Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Sen Zhang
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China.
| | - Chao Deng
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electric Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang, China.
| |
Collapse
|
2
|
Shen Y, Yan F, Yang H, Xu J, Geng B, Liu L, Zhu C, Zhang X, Chen Y. Encapsulating CoNi nanoparticles into nitrogen-doped carbon nanotube arrays as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. J Colloid Interface Sci 2025; 677:842-852. [PMID: 39126802 DOI: 10.1016/j.jcis.2024.07.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The high theoretical specific energy and environmental friendliness of zinc-air batteries (ZABs) have garnered significant attention. However, the practical application of ZABs requires overcoming the sluggish kinetics associated with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, 3D self-supported nitrogen-doped carbon nanotubes (N-CNTs) arrays encapsulated by CoNi nanoparticles on carbon fiber cloth (CoNi@N-CNTs/CFC) are synthesized as bifunctional catalysts for OER and ORR. The 3D interconnected N-CNTs arrays not only improve the electrical conductivity, the permeation and gas escape capabilities of the electrode, but also enhance the corrosion resistance of CoNi metals. DFT calculations reveal that the co-existence of Co and Ni synergistically reduces the energy barrier for OOH conversion to OH, thereby optimizing the Gibbs free energy of the catalysts. Additionally, analysis of the change in energy barrier during the rate-determining step suggests that the primary catalytic active center is Ni site for OER. As a result, CoNi@N-CNTs/CFC exhibits superior catalytic activity with an overpotential of 240 mV at 10 mA cm-2 toward OER, and the onset potential of 0.92 V for ORR. Moreover, utilization of CoNi@N-CNTs/CFC in liquid and solid-state ZABs exhibited exceptional stability, manifesting a consistent cycling operation lasting for 100 and 15 h, respectively.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Feng Yan
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Huan Yang
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jia Xu
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Bo Geng
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Lina Liu
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chunling Zhu
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Xitian Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Yujin Chen
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
3
|
Hasany M, Kohestanian M, Rezaei B, Keller SS, Mehrali M. Hygroscopic Nature of Lithium Ions: A Simple Key to Super Tough Atmosphere-Stable Hydrogel Electrolytes. ACS NANO 2024; 18:30512-30529. [PMID: 39363426 DOI: 10.1021/acsnano.4c08687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Gel electrolytes have emerged as a versatile solution to address numerous limitations associated with liquid electrolytes in electrical energy storage (EES) devices, in terms of safety, flexibility, and affordability. Aqueous gel electrolytes, in particular, exhibit exceptional features by offering one of the highest ion solvation capacities and ionic conductivities. The two main challenges with hydrogel electrolytes are their easy freezing at subzero temperatures and rapid dehydration under open conditions, leading to the failure of the EES device. In response, we present an uncomplicated and quick-to-make hydrogel electrolyte system offering impressive mechanical properties (205.5 kPa tensile strength, 2880 kJ/m3 toughness, and 3030% strain at the break), along with antifreezing and antiflammability attributes. Notably, the hydrogel electrolyte demonstrates high ionic conductivity and superior performance in supercapacitor cells over a wide range of temperatures (-40 to 80 °C) and under various deformations. The hydrogel electrolyte maintains its capabilities under open conditions over an extended period of time, even at 50 °C, showcased by powering a wristwatch. The atmospheric stability of the hydrogel electrolyte demonstrated in this study introduces promising prospects for the future of EES devices spanning from production to end-user consumption.
Collapse
Affiliation(s)
- Masoud Hasany
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mohammad Kohestanian
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Babak Rezaei
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Stephan Sylvest Keller
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Wang J, Li B, Tang T, Li C, Yang H, He H, Lin X, Song Y, Zhang S, Deng C. Co/CoTe heterostructure internal hairy fibers as high-efficiency oxygen electrocatalyst for Zn-air batteries. J Colloid Interface Sci 2024; 679:947-956. [PMID: 39486233 DOI: 10.1016/j.jcis.2024.10.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
The design of highly efficient catalysts to enhance the kinetics of oxygen reduction (OER) and oxygen evolution (ORR) reactions is the key issue for the development of high-performance Zn-air battery. In this work, we report the design of Co-CoTe heterostructured fibers as the bifunctional oxygen catalyst for Zn-air battery. Firstly, the theoretical analysis was carried out on Co-CoTe heterostructure. The large work function difference is favorable to construct strong interfacial built-in electric field (BIEF), and the low energy barrier endows high catalytic activities. Moreover, the in-situ grown carbon shell was designed to build "core-shell" Co-CoTe/C unit to realize its high performance. They assemble the Co-CoTe@HFS fiber with good self-supporting and flexible features. Taken the advantages of the strong BIEF, the "core-shell" basic unit, and the freestanding substrate, the Co-CoTe@HFS fiber achieves the good electrocatalytic properties and high reliability. The full Zn-air battery (ZAB) with the Co/CoTe@HFS air cathode achieves the high peak power density and cycling stability over long-term cycling. Therefore, this work provides a clue to design bifunctional oxygen catalysts for high-performance ZABs.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Bing Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Tiantian Tang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Caiyun Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Hongrui Yang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Hanwen He
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Xinshuang Lin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Yang Song
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Sen Zhang
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China.
| | - Chao Deng
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China.
| |
Collapse
|
5
|
Yang Z, Li P, Li J, Li C, Zhang Y, Kong T, Liao M, Song T, Li J, Liu P, Cao S, Wang Y, Chen P, Peng H, Wang B. All-in-One Polymer Gel Electrolyte towards High-Efficiency and Stable Fiber Zinc-Air Battery. Angew Chem Int Ed Engl 2024:e202414772. [PMID: 39370522 DOI: 10.1002/anie.202414772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Fiber zinc-air batteries are explored as promising power systems for wearable and portable electronic devices due to their intrinsic safety and the use of ambient oxygen as cathode material. However, challenges such as limited zinc anode reversibility and sluggish cathode reaction kinetics result in poor cycling stability and low energy efficiency. To address these challenges, we design a polydopamine-based all-in-one gel electrolyte (PAGE) that simultaneously regulates the reversibility of zinc anodes and the kinetics of air cathodes through polydopamine interfacial and redox chemistry, respectively. The intrinsic catechol and carboxylate groups in PAGE regulate the transport and solvation structure of Zn2+, facilitating dendrite-free zinc deposition with a lamellar stacking morphology. Additionally, the oxidation of redox-active catechol groups in PAGE replaces the sluggish oxygen evolution reaction on the air cathode and reduces the energy barrier for charging, enabling fiber zinc-air batteries to achieve a significantly improved energy efficiency of 95 % and a longer lifespan of 40 hours. Further integration into self-powered electronic textiles underscores its potential for next-generation wearable systems.
Collapse
Affiliation(s)
- Zhe Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, 200438, Shanghai, China
| | - Pengzhou Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, 200438, Shanghai, China
| | - Jiaxin Li
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Chuanfa Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, 200438, Shanghai, China
| | - Yanan Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, 200438, Shanghai, China
| | - Taoyi Kong
- Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Meng Liao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, 200438, Shanghai, China
| | - Tianbing Song
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, 200438, Shanghai, China
| | - Jinyan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, 200438, Shanghai, China
| | - Peiyu Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, 200438, Shanghai, China
| | - Siwei Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, 200438, Shanghai, China
| | - Yonggang Wang
- Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, 200438, Shanghai, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, 200438, Shanghai, China
| | - Bingjie Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, 200438, Shanghai, China
| |
Collapse
|
6
|
Song CY, Huang CJ, Xu HM, Zhang ZJ, Shuai TY, Zhan QN, Li GR. High-Performance Bifunctional Electrocatalysts for Flexible and Rechargeable Zn-Air Batteries: Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402761. [PMID: 38953299 DOI: 10.1002/smll.202402761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Flexible rechargeable Zn-air batteries (FZABs) exhibit high energy density, ultra-thin, lightweight, green, and safe features, and are considered as one of the ideal power sources for flexible wearable electronics. However, the slow and high overpotential oxygen reaction at the air cathode has become one of the key factors restricting the development of FZABs. The improvement of activity and stability of bifunctional catalysts has become a top priority. At the same time, FZABs should maintain the battery performance under different bending and twisting conditions, and the design of the overall structure of FZABs is also important. Based on the understanding of the three typical configurations and working principles of FZABs, this work highlights two common strategies for applying bifunctional catalysts to FZABs: 1) powder-based flexible air cathode and 2) flexible self-supported air cathode. It summarizes the recent advances in bifunctional oxygen electrocatalysts and explores the various types of catalyst structures as well as the related mechanistic understanding. Based on the latest catalyst research advances, this paper introduces and discusses various structure modulation strategies and expects to guide the synthesis and preparation of efficient bifunctional catalysts. Finally, the current status and challenges of bifunctional catalyst research in FZABs are summarized.
Collapse
Affiliation(s)
- Chen-Yu Song
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
7
|
Xu M, Cao R, Hao B, Wang D, Luo D, Dou H, Chen Z. Single-Anion Conductive Solid-State Electrolytes with Hierarchical Ionic Highways for Flexible Zinc-Air Battery. Angew Chem Int Ed Engl 2024; 63:e202407380. [PMID: 38887170 DOI: 10.1002/anie.202407380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/20/2024]
Abstract
Flexible zinc-air batteries are leading power sources for next-generation smart wearable electronics. However, flexible zinc-air batteries suffer from the highly-corrosive safety risk and limited lifespan due to the absence of reliable solid-state electrolytes (SSEs). Herein, a single-anion conductive SSE with high-safety is constructed by incorporating a highly amorphous dual-cation ionomer into a robust hybrid matrix of functional carbon nanotubes and polyacrylamide polymer. The as-fabricated SSE obtains dual-penetrating ionomer-polymer networks and hierarchical ionic highways, which contribute to mechanical robustness with 1200 % stretchability, decent water uptake and retention, and superhigh ion conductivity of 245 mS ⋅ cm-1 and good Zn anode reversibility. Remarkably, the flexible solid-state zinc-air batteries delivers a high specific capacity of 764 mAh ⋅ g-1 and peak power density of 152 mW ⋅ cm-2 as well as sustains excellent cycling stability for 1050 cycles (350 hours). This work offers a new paradigm of OH- conductors and broadens the definition and scope of OH- conductors.
Collapse
Affiliation(s)
- Mi Xu
- State Key Laboratory of Catalysis, Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Rui Cao
- State Key Laboratory of Catalysis, Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| | - Boying Hao
- State Key Laboratory of Catalysis, Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| | - Dongdong Wang
- State Key Laboratory of Catalysis, Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| | - Dan Luo
- State Key Laboratory of Catalysis, Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| | - Haozhen Dou
- State Key Laboratory of Catalysis, Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| | - Zhongwei Chen
- State Key Laboratory of Catalysis, Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
8
|
Wang H, Niu X, Liu W, Yin R, Dai J, Guo W, Kong C, Ma L, Ding X, Wu F, Shi W, Deng T, Cao X. S-Block Metal Mg-Mediated Co─N─C as Efficient Oxygen Electrocatalyst for Durable and Temperature-Adapted Zn-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403865. [PMID: 38965796 PMCID: PMC11425636 DOI: 10.1002/advs.202403865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/14/2024] [Indexed: 07/06/2024]
Abstract
In the quest to enhance Zn-air batteries (ZABs) for operating across a wide spectrum of temperatures, synthesizing robust oxygen electrocatalysts is paramount. Conventional strategies focusing on orbital hybridization of d-d and p-d aim to moderate the excessive interaction between the d-band of the transition metal active site and oxygen intermediate, yet often yield suboptimal performance. Herein, an innovative s-block metal modulation is reported to refine the electronic structure and catalytic behavior of Co─NC catalysts. Employing density functional theory (DFT) calculations, it is revealed that incorporating Mg markedly depresses the d-band center of Co sites, thereby fine-tuning the adsorption energy of the oxygen reduction reaction (ORR) intermediate. Consequently, the Mg-modified Co─NC catalyst (MgCo─NC) unveils remarkable intrinsic ORR activity with a significantly reduced activation energy (Ea) of 10.0 kJ mol-1, outstripping the performance of both Co─NC (17.6 kJ mol-1), benchmark Pt/C (15.9 kJ mol-1), and many recent reports. Moreover, ZABs outfitted with the finely tuned Mg0.1Co0.9─NC realize a formidable power density of 157.0 mW cm-2, paired with an extremely long cycle life of 1700 h, and an exceptionally minimal voltage gap decay rate of 0.006 mV h-1. Further, the Mg0.1Co0.9─NC-based flexible ZAB presents a mere 2% specific capacity degradation when the temperature fluctuates from 25 to -20 °C, underscoring its robustness and suitability for practical deployment in diverse environmental conditions.
Collapse
Affiliation(s)
- Henan Wang
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xinxin Niu
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenxian Liu
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ruilian Yin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jiale Dai
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wei Guo
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Chao Kong
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lu Ma
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xia Ding
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Fangfang Wu
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenhui Shi
- Center for Membrane and Water Science and Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tianqi Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xiehong Cao
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
9
|
Xiao BH, Xiao K, Li JX, Xiao CF, Cao S, Liu ZQ. Flexible electrochemical energy storage devices and related applications: recent progress and challenges. Chem Sci 2024; 15:11229-11266. [PMID: 39055032 PMCID: PMC11268522 DOI: 10.1039/d4sc02139h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Given the escalating demand for wearable electronics, there is an urgent need to explore cost-effective and environmentally friendly flexible energy storage devices with exceptional electrochemical properties. However, the existing types of flexible energy storage devices encounter challenges in effectively integrating mechanical and electrochemical performances. This review is intended to provide strategies for the design of components in flexible energy storage devices (electrode materials, gel electrolytes, and separators) with the aim of developing energy storage systems with excellent performance and deformability. Firstly, a concise overview is provided on the structural characteristics and properties of carbon-based materials and conductive polymer materials utilized in flexible energy storage devices. Secondly, the fabrication process and strategies for optimizing their structures are summarized. Subsequently, a comprehensive review is presented regarding the applications of carbon-based materials and conductive polymer materials in various fields of flexible energy storage, such as supercapacitors, lithium-ion batteries, and zinc-ion batteries. Finally, the challenges and future directions for next-generation flexible energy storage systems are proposed.
Collapse
Affiliation(s)
- Bo-Hao Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
- School of Materials Science & Engineering, Jiangsu University Zhenjiang 212013 China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Jian-Xi Li
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Can-Fei Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Shunsheng Cao
- School of Materials Science & Engineering, Jiangsu University Zhenjiang 212013 China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
10
|
Dou H, Xu M, Zhang Z, Luo D, Yu A, Chen Z. Biomass Solid-State Electrolyte with Abundant Ion and Water Channels for Flexible Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401858. [PMID: 38569594 DOI: 10.1002/adma.202401858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Flexible zinc-air batteries are the leading candidates as the next-generation power source for flexible/wearable electronics. However, constructing safe and high-performance solid-state electrolytes (SSEs) with intrinsic hydroxide ion (OH-) conduction remains a fundamental challenge. Herein, by adopting the natural and robust cellulose nanofibers (CNFs) as building blocks, the biomass SSEs with penetrating ion and water channels are constructed by knitting the OH--conductive CNFs and water-retentive CNFs together via an energy-efficient tape casting. Benefiting from the abundant ion and water channels with interconnected hydrated OH- wires for fast OH- conduction under a nanoconfined environment, the biomass SSEs reveal the high water-uptake, impressive OH- conductivity of 175 mS cm-1 and mechanical robustness simultaneously, which overcomes the commonly existed dilemma between ion conductivity and mechanical property. Remarkably, the flexible zinc-air batteries assemble with biomass SSEs deliver an exceptional cycle lifespan of 310 h and power density of 126 mW cm-2. The design methodology for water and ion channels opens a new avenue to design high-performance SSEs for batteries.
Collapse
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mi Xu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhen Zhang
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Dan Luo
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
11
|
Li H, Xu F, Li Y, Sun J. Self-Healing Ionogel-Enabled Self-Healing and Wide-Temperature Flexible Zinc-Air Batteries with Ultra-Long Cycling Lives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402193. [PMID: 38569521 PMCID: PMC11220675 DOI: 10.1002/advs.202402193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Hydrogel-based zinc-air batteries (ZABs) are promising flexible rechargeable batteries. However, the practical application of hydrogel-based ZABs is limited by their short service life, narrow operating temperature range, and repair difficulty. Herein, a self-healing ionogel is synthesized by the photopolymerization of acrylamide and poly(ethylene glycol) monomethyl ether acrylate in 1-ethyl-3-methylimidazolium dicyanamide with zinc acetate dihydrate and first used as an electrolyte to fabricate self-healing ZABs. The obtained self-healing ionogel has a wide operating temperature range, good environmental and electrochemical stability, high ionic conductivity, satisfactory mechanical strength, repeatable and efficient self-healing properties enabled by the reversibility of hydrogen bonding, and the ability to inhibit the production of dendrites and by-products. Notably, the self-healing ionogel has the highest ionic conductivity and toughness compared to other reported self-healing ionogels. The prepared self-healing ionogel is used to assemble self-healing flexible ZABs with a wide operating temperature range. These ZABs have ultra-long cycling lives and excellent stability under harsh conditions. After being damaged, the ZABs can repeatedly self-heal to recover their battery performance, providing a long-lasting and reliable power supply for wearable devices. This work opens new opportunities for the development of electrolytes for ZABs.
Collapse
Affiliation(s)
- Hongli Li
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Fuchang Xu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Yang Li
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
12
|
Shi H, Gao S, Liu X, Wang Y, Zhou S, Liu Q, Zhang L, Hu G. Recent Advances in Catalyst Design and Performance Optimization of Nanostructured Cathode Materials in Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309557. [PMID: 38705855 DOI: 10.1002/smll.202309557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Indexed: 05/07/2024]
Abstract
This review focuses on the advanced design and optimization of nanostructured zinc-air batteries (ZABs), with the aim of boosting their energy storage and conversion capabilities. The findings show that ZABs favor porous nanostructures owing to their large surface area, and this enhances the battery capacity, catalytic activity, and life cycle. In addition, the nanomaterials improve the electrical conductivity, ion transport, and overall battery stability, which crucially reduces dendrite growth on the zinc anodes and improves cycle life and energy efficiency. To obtain a superior performance, the importance of controlling the operational conditions and using custom nanostructural designs, optimal electrode materials, and carefully adjusted electrolytes is highlighted. In conclusion, porous nanostructures and nanoscale materials significantly boost the energy density, longevity, and efficiency of Zn-air batteries. It is suggested that future research should focus on the fundamental design principles of these materials to further enhance the battery performance and drive sustainable energy solutions.
Collapse
Affiliation(s)
- Haiyang Shi
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
- School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China
| | - Sanshuang Gao
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Yin Wang
- Hubei Key Laboratory of Low-Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Shuxing Zhou
- Hubei Key Laboratory of Low-Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Lei Zhang
- School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| |
Collapse
|
13
|
Zhou X, Zhou Y, Yu L, Qi L, Oh KS, Hu P, Lee SY, Chen C. Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications. Chem Soc Rev 2024; 53:5291-5337. [PMID: 38634467 DOI: 10.1039/d3cs00551h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Rechargeable batteries, typically represented by lithium-ion batteries, have taken a huge leap in energy density over the last two decades. However, they still face material/chemical challenges in ensuring safety and long service life at temperatures beyond the optimum range, primarily due to the chemical/electrochemical instabilities of conventional liquid electrolytes against aggressive electrode reactions and temperature variation. In this regard, a gel polymer electrolyte (GPE) with its liquid components immobilized and stabilized by a solid matrix, capable of retaining almost all the advantageous natures of the liquid electrolytes and circumventing the interfacial issues that exist in the all-solid-state electrolytes, is of great significance to realize rechargeable batteries with extended working temperature range. We begin this review with the main challenges faced in the development of GPEs, based on extensive literature research and our practical experience. Then, a significant section is dedicated to the requirements and design principles of GPEs for wide-temperature applications, with special attention paid to the feasibility, cost, and environmental impact. Next, the research progress of GPEs is thoroughly reviewed according to the strategies applied. In the end, we outline some prospects of GPEs related to innovations in material sciences, advanced characterizations, artificial intelligence, and environmental impact analysis, hoping to spark new research activities that ultimately bring us a step closer to realizing wide-temperature rechargeable batteries.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China.
- School of Science, Hubei University of Technology, Wuhan 430070, P. R. China.
| | - Yifang Zhou
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China.
| | - Le Yu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China.
| | - Luhe Qi
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China.
| | - Kyeong-Seok Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Pei Hu
- School of Science, Hubei University of Technology, Wuhan 430070, P. R. China.
| | - Sang-Young Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China.
| |
Collapse
|
14
|
Song Y, Xia L, Salla M, Xi S, Fu W, Wang W, Gao M, Huang S, Huang S, Wang X, Yu X, Niu T, Zhang Y, Wang S, Han M, Ni M, Wang Q, Zhang H. A Hybrid Redox-Mediated Zinc-Air Fuel Cell for Scalable and Sustained Power Generation. Angew Chem Int Ed Engl 2024; 63:e202314796. [PMID: 38391058 DOI: 10.1002/anie.202314796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Zinc-air batteries (ZABs) have attracted considerable attention for their high energy density, safety, low noise, and eco-friendliness. However, the capacity of mechanically rechargeable ZABs was limited by the cumbersome procedure for replacing the zinc anode, while electrically rechargeable ZABs suffer from issues including low depth of discharge, zinc dendrite and dead zinc formation, and sluggish oxygen evolution reaction, etc. To address these issues, we report a hybrid redox-mediated zinc-air fuel cell (HRM-ZAFC) utilizing 7,8-dihydroxyphenazine-2-sulfonic acid (DHPS) as the anolyte redox mediator, which shifts the zinc oxidation reaction from the electrode surface to a separate fuel tank. This approach decouples fuel feeding and electricity generation, providing greater operation flexibility and scalability for large-scale power generation applications. The DHPS-mediated ZAFC exhibited a superior peak power density of 0.51 W/cm2 and a continuous discharge capacity of 48.82 Ah with ZnO as the discharge product in the tank, highlighting its potential for power generation.
Collapse
Affiliation(s)
- Yuxi Song
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Lingchao Xia
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Kowloon, Hong Kong
| | - Manohar Salla
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore, Singapore
| | - Weiyin Fu
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Wanwan Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Mengqi Gao
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Songpeng Huang
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Shiqiang Huang
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Xun Wang
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Xingzi Yu
- College of Mechanical and Vehicle Engineering, Chongqing University, No.174, Shazheng Street, Shapingba District, 400044, China
| | - Tong Niu
- College of Mechanical and Vehicle Engineering, Chongqing University, No.174, Shazheng Street, Shapingba District, 400044, China
| | - Yuqi Zhang
- College of Mechanical and Vehicle Engineering, Chongqing University, No.174, Shazheng Street, Shapingba District, 400044, China
| | - Shijie Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Ming Han
- School of Engineering, Temasek Polytechnic, 21 Tampines Ave 1, 529757, Singapore, Singapore
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Kowloon, Hong Kong
| | - Qing Wang
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Hang Zhang
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| |
Collapse
|
15
|
Zhu D, Li J, Zheng Z, Ye S, Pan Y, Wu J, She F, Lai L, Zhou Z, Chen J, Li H, Wei L, Chen Y. Water and Salt Concentration-Dependent Electrochemical Performance of Hydrogel Electrolytes in Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16175-16185. [PMID: 38509690 DOI: 10.1021/acsami.3c19112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Zinc-ion batteries (ZIBs) are promising energy storage devices with safe, nonflammable electrolytes and abundant, low-cost electrode materials. Their practical applications are hampered by various water-related undesirable reactions, such as the hydrogen evolution reaction (HER), corrosion of zinc metal, and water-induced decay of cathode materials. Polymer hydrogel electrolytes were used to control these reactions. However, salt, water, and polymeric backbones intervene in polymer hydrogels, and currently, there are no systematic studies on how salt and water concentrations synergistically affect polymer hydrogels' electrochemical performance. Here, we used an in situ polymerization method to synthesize polyacrylamide (PAM) hydrogels with varied Zn(ClO4)2 (0.5 to 2.0 mol kg-1) and water (40 to 90 wt %) concentrations. Their electrochemical performances in Zn||Ti half-cells, Zn||Zn symmetrical cells, and Zn||V2O5 full cells have been comprehensively evaluated. Although the ionic conductivity of electrolytes increases with the salt concentration, a high salt concentration of 2.0 mol kg-1 with more Zn2+ solvated H2O would induce more severe HER and Zn corrosion at the electrolyte/electrode interfaces. A narrow window of the water concentration at 70-80 wt % is optimal to balance needs for achieving a high ionic conductivity and restricting water-related undesirable reactions. The chemically more active water counts roughly 64.1-73.1 wt % of the total water in electrolytes. PAM hydrogel electrolyte with 1.0 mol kg-1 Zn(ClO4)2 and 80 wt % water enables 1200 h of stable cycling in a Zn||Zn symmetric cell and 99.24% of Coulombic efficiency in a Zn||Ti half-cell. Due to the water-induced decay of V2O5, the electrolyte with 70 wt % water delivers the best performance in a Zn||V2O5 full cell, which can retain 73.7% of its initial capacity after 400 charge/discharge cycles. Our results show that achieving precise control of salt and water concentrations of hydrogel electrolytes in their optimal windows to reduce the fraction of chemically more active water while retaining high ionic conductivity is essential to enabling high-performance ZIBs.
Collapse
Affiliation(s)
- Di Zhu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Jing Li
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Zhi Zheng
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Songbo Ye
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Yuqi Pan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Jiacheng Wu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Fangxin She
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Leo Lai
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Zihan Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Jiaxiang Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| |
Collapse
|
16
|
Zhao M, Cheng T, Li T, Bi R, Yin Y, Li X. A Choline-Based Antifreezing Complexing Agent with Selective Compatibility for Zn-Br 2 Flow Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307627. [PMID: 38063849 DOI: 10.1002/smll.202307627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/30/2023] [Indexed: 04/19/2024]
Abstract
The high freezing point of polybromides, charging products, is a significant obstacle to the rapid development of zinc-bromine flow batteries (Zn-Br2 FBs). Here, a choline-based complexing agent (CCA) is constructed to liquefy the polybromides at low temperatures. Depending on quaternary ammonium group, choline can effectively complex with polybromide anions and form dense oil-phase that has excellent antifreezing property. Benefiting from indispensable strong ion-ion interaction, the highly selectively compatible CCA, consisting of choline and N-methyl-N-ethyl-morpholinium salts (CCA-M), can be achieved to further enhance bromine fixing ability. Interestingly, the formed polybromides with CCA-M are able to keep liquid even at -40 °C. The CCA-M endows Zn-Br2 FBs at 40 mA cm-2 with unprecedented long cycle life (over 150 cycles) and high Coulombic efficiency (CE, average ≈98.8%) at -20 °C, but also at room temperature (over 1200 cycles, average CE: ≈94.7%). The CCA shows a promising prospect of application and should be extended to other antifreezing bromine-based energy storage systems.
Collapse
Affiliation(s)
- Ming Zhao
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Cheng
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyu Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Ran Bi
- Comprehensive Energy Research Center, Science and Technology Research Institute, China Three Gorges Corporation, Beijing, 100038, China
| | - Yanbin Yin
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| |
Collapse
|
17
|
Xie J, Lin D, Lei H, Wu S, Li J, Mai W, Wang P, Hong G, Zhang W. Electrolyte and Interphase Engineering of Aqueous Batteries Beyond "Water-in-Salt" Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306508. [PMID: 37594442 DOI: 10.1002/adma.202306508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Aqueous batteries are promising alternatives to non-aqueous lithium-ion batteries due to their safety, environmental impact, and cost-effectiveness. However, their energy density is limited by the narrow electrochemical stability window (ESW) of water. The "Water-in-salts" (WIS) strategy is an effective method to broaden the ESW by reducing the "free water" in the electrolyte, but the drawbacks (high cost, high viscosity, poor low-temperature performance, etc.) also compromise these inherent superiorities. In this review, electrolyte and interphase engineering of aqueous batteries to overcome the drawbacks of the WIS strategy are summarized, including the developments of electrolytes, electrode-electrolyte interphases, and electrodes. First, the main challenges of aqueous batteries and the problems of the WIS strategy are comprehensively introduced. Second, the electrochemical functions of various electrolyte components (e.g., additives and solvents) are summarized and compared. Gel electrolytes are also investigated as a special form of electrolyte. Third, the formation and modification of the electrolyte-induced interphase on the electrode are discussed. Specifically, the modification and contribution of electrode materials toward improving the WIS strategy are also introduced. Finally, the challenges of aqueous batteries and the prospects of electrolyte and interphase engineering beyond the WIS strategy are outlined for the practical applications of aqueous batteries.
Collapse
Affiliation(s)
- Junpeng Xie
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Dewu Lin
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Hang Lei
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Shuilin Wu
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Jinliang Li
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Wenjie Mai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Guo Hong
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
18
|
Wang Z, Xue R, Zhang H, Zhang Y, Tang X, Wang H, Shao A, Ma Y. A Hydrogel Electrolyte toward a Flexible Zinc-Ion Battery and Multifunctional Health Monitoring Electronics. ACS NANO 2024; 18:7596-7609. [PMID: 38415583 DOI: 10.1021/acsnano.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The compact design of an environmentally adaptive battery and effectors forms the foundation for wearable electronics capable of time-resolved, long-term signal monitoring. Herein, we present a one-body strategy that utilizes a hydrogel as the ionic conductive medium for both flexible aqueous zinc-ion batteries and wearable strain sensors. The poly(vinyl alcohol) hydrogel network incorporates nano-SiO2 and cellulose nanofibers (referred to as PSC) in an ethylene glycol/water mixed solvent, balancing the mechanical properties (tensile strength of 6 MPa) and ionic diffusivity at -20 °C (2 orders of magnitude higher than 2 M ZnCl2 electrolyte). Meanwhile, cathode lattice breathing during the solvated Zn2+ intercalation and dendritic Zn protrusion at the anode interface are mitigated. Besides the robust cyclability of the Zn∥PSC∥V2O5 prototype within a wide temperature range (from -20 to 80 °C), this microdevice seamlessly integrates a zinc-ion battery with a strain sensor, enabling precise monitoring of the muscle response during dynamic body movement. By employing transmission-mode operando XRD, the self-powered sensor accurately documents the real-time phasic evolution of the layered cathode and synchronized strain change induced by Zn deposition, which presents a feasible solution of health monitoring by the miniaturized electronics.
Collapse
Affiliation(s)
- Zhiqiao Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Rongrong Xue
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Huiqing Zhang
- Training Center for Engineering Practices, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Yichi Zhang
- Queen Mary University of London Engineering School, NPU, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Xiaoyu Tang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Helin Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Ahu Shao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Yue Ma
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
19
|
Wang Y, Katyal N, Tang Y, Li H, Shin K, Liu W, He R, Xu M, Henkelman G, Bao SJ. One-Step Pyrolysis Construction of Bimetallic Atom-Cluster Sites for Boosting Bifunctional Catalytic Activity in Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306504. [PMID: 37926769 DOI: 10.1002/smll.202306504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Indexed: 11/07/2023]
Abstract
Due to their unique advantages, single atoms and clusters of transition metals are expected to achieve a breakthrough in catalytic activity, but large-scale production of active materials remains a challenge. In this work, a simple solvent-free one-step annealing method is developed and applied to construct diatomic and cluster active sites in activated carbon by utilizing the strong anchoring ability of phenanthroline to metal ions, which can be scaled for mass productions. Benefiting from the synergy between the different metals, the obtained sub-nano-bimetallic atom-cluster catalysts (FeNiAC -NC) exhibit high oxygen reduction reactions (ORR) activity (E1/2 = 0.936 V vs. RHE) and a small ORR/oxygen evolution reaction (OER) potential gap of only 0.594 V. An in-house pouch Zn-air battery is assembled using an FeNiAC -NC catalyst, which demonstrates a stability of 1000 h, outperforming previous reports. The existence of clusters and their effects on catalytic activity is analyzed by density functional theory calculations to reveal the chemistry of nano-bimetallic atom-cluster catalysts.
Collapse
Affiliation(s)
- Youpeng Wang
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Naman Katyal
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yang Tang
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Hua Li
- School of Materials and Energy, Electron Microscopy Centre, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Kihyun Shin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Wenqian Liu
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Ruilin He
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Maowen Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Shu-Juan Bao
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
20
|
Offia-Kalu NE, Nwanonenyi SC, Abdulhakeem B, Dzade NY, Onwalu PA. Theoretical investigation of electronic, energetic, and mechanical properties of polyvinyl alcohol/cellulose composite hydrogel electrolyte. J Mol Graph Model 2024; 127:108667. [PMID: 38071797 DOI: 10.1016/j.jmgm.2023.108667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 01/23/2024]
Abstract
Hydrogels are a new class of electrolytic materials employed in zinc-air batteries due to their significant on the battery's performance. However, the effectiveness of electrolytic hydrogel is affected by factors such as water content, temperature, additives, etc. Using DMol3 and molecular dynamics modeling techniques, this research aimed at investigating the electronic properties, effect of water content, and temperature on the binding energy, cohesive energy, and the mechanical properties of polyvinyl alcohol/cellulose-based composite hydrogel at the molecular level. The electronic optimized structures of the polymeric materials and parameters such as frontier molecular orbitals, band gap and electron density were analyzed. The results revealed that the binding energies of hydrogel polymer composite increased as the number of water molecules in the composite increased up to 60 % after which the binding energy decreased. In addition, the temperature increase led to a decrease in the binding energy of the composite. The cohesive energy density of the composite was highest at 40 % water content while higher temperatures decreased the cohesive energy density of the hydrogel. As the number of water molecules increased from 29 to 256, the tensile modulus increased from 0.707 × 10-3 to 2.821 × 10-3 Gpa; while the bulk modulus (K) increased in the order of K 40 > 50 > 30 > 20 > 10 respectively. These results serve as a theoretical enlightenment and a guide for experimental works in the field of energy conversion and storage devices.
Collapse
Affiliation(s)
- Nkechi Elizabeth Offia-Kalu
- Department of Polymer and Textile Engineering, Federal University of Technology, Owerri, Imo State, Nigeria; Department of Material Science and Engineering, African University of Science and Technology, Abuja, Nigeria.
| | - Simeon Chukwudozie Nwanonenyi
- Department of Polymer and Textile Engineering, Federal University of Technology, Owerri, Imo State, Nigeria; African Centre for Excellence in Future Energies and Electrochemical Systems, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Bello Abdulhakeem
- Department of Material Science and Engineering, African University of Science and Technology, Abuja, Nigeria; Department of Theoretical and Applied Physics, African University of Science and Technology, Abuja, Nigeria; Centre for Cyber Physical Food, Energy and Water System (CCP-FEWS), Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg, South Africa.
| | - Nelson Yaw Dzade
- Department of Energy and Mineral Engineering, Pennsylvania State University, USA
| | - Peter Azikiwe Onwalu
- Department of Material Science and Engineering, African University of Science and Technology, Abuja, Nigeria
| |
Collapse
|
21
|
Liang Z, Zhang J, Zheng H, Cao R. Hierarchically porous aggregates of Co-N-C nanoparticles for oxygen electrocatalysis. Chem Commun (Camb) 2024; 60:2216-2219. [PMID: 38305766 DOI: 10.1039/d3cc05597c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Herein, a novel assembled Co-N-C (A-Co-N-C) material was reported for the first time by pyrolyzing zeolitic imidazolate framework-67 (ZIF-67) nanoparticle aggregates caused by the introduction of surfactant polystyrene sulfonic acid (PSS). The A-Co-N-C has a large surface area of 455 m2 g-1 with micropores (101 m2 g-1) and mesopores (354 m2 g-1). The A-Co-N-C exhibits good bifunctional catalytic oxygen reduction/evolution reaction (ORR/OER) and Zn-air battery activity. This work provides a simple but efficient strategy for constructing hierarchically porous aggregates of Co-N-C nanoparticles.
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jieling Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
22
|
Xie W, Zhu K, Yang H, Yang W. Advancements in Achieving High Reversibility of Zinc Anode for Alkaline Zinc-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306154. [PMID: 37562369 DOI: 10.1002/adma.202306154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Rechargeable alkaline zinc-based batteries (ZBBs) have attracted extensive research attention due to their advantages of low cost, high specific energy, and high safety. Although the investigation of cathodes for alkaline secondary ZBBs has reached a relatively advanced stage, the exploration of zinc anodes is still in its infancy. Zinc anodes in alkaline electrolytes encounter challenges such as dendrite formation, passivation, corrosion during periods of cell inactivity, and hydrogen evolution during cycling, thereby limiting their rechargeability and storability. Drawing upon the latest research on zinc anodes, six fundamental strategies that encompass a wide range of aspects are identified and categorized, from electrode modifications and electrolytes to charge protocols. Specifically, these strategies include 3D structures, coatings, alloying, additives, separators, and charge protocols. They serve as an insight summary of the current research progress on zinc anodes. Additionally, the complementary nature of these strategies allows for flexible combinations, enabling further enhancement of the overall performance of zinc anodes. Finally, several future directions for the advancement of practical alkaline Zn anode are proposed. This comprehensive review not only consolidates the existing knowledge but also paves the way for broader research opportunities in the pursuit of high-performance alkaline zinc anodes.
Collapse
Affiliation(s)
- Weili Xie
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaiyue Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanmiao Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Ran L, Xu Y, Zhu X, Chen S, Qiu X. Mn Single-Atom Tuning Fe-N-C Catalyst Enables Highly Efficient and Durable Oxygen Electrocatalysis and Zinc-Air Batteries. ACS NANO 2024; 18:750-760. [PMID: 38150590 DOI: 10.1021/acsnano.3c09100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Fe-N-C catalyst is one of most promising candidates for oxygen electrocatalysis reaction in zinc-air batteries (ZABs), but achieving sustained high activity is still a challenging issue. Herein, we demonstrate that introducing Mn single atoms into Fe-N-C (Mn1@Fe-N-C/CNTs) enables the realization of highly efficient and durable oxygen electrocatalysis performance and application in ZABs. Multiple characterizations confirm that Mn1@Fe-N-C/CNTs is equipped with Mn-N2O2 and Fe-N4 sites and Fe nanoparticles. The Mn-N2O2 sites not only tune the electron structure of Fe-Nx sites to enhance intrinsic activity, but also scavenge the attack of radicals from Fe-Nx sites for improvement in ORR durability. As a result, Mn1@Fe-N-C/CNTs exhibits enhanced ORR performance to traditional Fe-N-C catalysts with high E1/2 of 0.89 V vs reversible hydrogen electrode (RHE) and maintains ORR activity after 15 000 CV. Impressively, Mn1@Fe-N-C/CNTs also presents excellent OER activity and the difference (ΔE) between E1/2 of ORR and OER potential at 10 mA cm-2 (Ej10) is only 0.59 V, outperforming most reported catalysts. In addition, the maintainable bifunctional activity of Mn1@Fe-N-C/CNTs is demonstrated in ZABs with almost unchanged cycle voltage efficiency up to 200 h. This work highlights the critical role of Mn single atoms in enhancing ORR activity and stability, promoting the development of advanced catalysts.
Collapse
Affiliation(s)
- Lan Ran
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yan Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xinwang Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shanyong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xiaoqing Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
24
|
Feng X, Chen G, Cui Z, Qin R, Jiao W, Huang Z, Shang Z, Ma C, Zheng X, Han Y, Huang W. Engineering Electronic Structure of Nitrogen-Carbon Sites by sp 3 -Hybridized Carbon and Incorporating Chlorine to Boost Oxygen Reduction Activity. Angew Chem Int Ed Engl 2024; 63:e202316314. [PMID: 38032121 DOI: 10.1002/anie.202316314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Development of efficient and easy-to-prepare low-cost oxygen reaction electrocatalysts is essential for widespread application of rechargeable Zn-air batteries (ZABs). Herein, we mixed NaCl and ZIF-8 by simple physical milling and pyrolysis to obtain a metal-free porous electrocatalyst doped with Cl (mf-pClNC). The mf-pClNC electrocatalyst exhibits a good oxygen reduction reaction (ORR) activity (E1/2 =0.91 V vs. RHE) and high stability in alkaline electrolyte, exceeding most of the reported transition metal carbon-based electrocatalysts and being comparable to commercial Pt/C electrocatalysts. Likewise, the mf-pClNC electrocatalyst also shows state-of-the-art ORR activity and stability in acidic electrolyte. From experimental and theoretical calculations, the better ORR activity is most likely originated from the fact that the introduced Cl promotes the increase of sp3 -hybridized carbon, while the sp3 -hybridized carbon and Cl together modify the electronic structure of the N-adjacent carbons, as the active sites, while NaCl molten-salt etching provides abundant paths for the transport of electrons/protons. Furthermore, the liquid rechargeable ZAB using the mf-pClNC electrocatalyst as the cathode shows a fulfilling performance with a peak power density of 276.88 mW cm-2 . Flexible quasi-solid-state rechargeable ZAB constructed with the mf-pClNC electrocatalyst as the cathode exhibits an exciting performance both at low, high and room temperatures.
Collapse
Affiliation(s)
- Xueting Feng
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhibo Cui
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rong Qin
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wensheng Jiao
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zeyi Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ziang Shang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
25
|
Han M, Li TC, Chen X, Yang HY. Electrolyte Modulation Strategies for Low-Temperature Zn Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304901. [PMID: 37695085 DOI: 10.1002/smll.202304901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/31/2023] [Indexed: 09/12/2023]
Abstract
Aqueous rechargeable Zn metal batteries (ARZBs) are extensively studied recently because of their low-cost, high-safety, long lifespan, and other unique merits. However, the terrible ion conductivity and insufficient interfacial redox dynamics at low temperatures restrict their extended applications under harsh environments such as polar inspections, deep sea exploration, and daily use in cold regions. Electrolyte modulation is considered to be an effective way to achieve low-temperature operation for ARZBs. In this review, first, the fundamentals of the liquid-solid transition of water at low temperatures are revealed, and an in-depth understanding of the critical factors for inferior performance at low temperatures is given. Furthermore, the electrolyte modulation strategies are categorized into anion/concentration regulation, organic co-solvent/additive introduction, anti-freezing hydrogels construction, and eutectic mixture design strategies, and emphasize the recent progress of these strategies in low-temperature Zn batteries. Finally, promising design principles for better electrolytes are recommended and future research directions about high-performance ARZBs at low temperatures are provided.
Collapse
Affiliation(s)
- Mingming Han
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, 311231, China
| | - Tian Chen Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Xiang Chen
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
26
|
Lv XW, Wang Z, Lai Z, Liu Y, Ma T, Geng J, Yuan ZY. Rechargeable Zinc-Air Batteries: Advances, Challenges, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306396. [PMID: 37712176 DOI: 10.1002/smll.202306396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Indexed: 09/16/2023]
Abstract
Rechargeable zinc-air batteries (Re-ZABs) are one of the most promising next-generation batteries that can hold more energy while being cost-effective and safer than existing devices. Nevertheless, zinc dendrites, non-portability, and limited charge-discharge cycles have long been obstacles to the commercialization of Re-ZABs. Over the past 30 years, milestone breakthroughs have been made in technical indicators (safety, high energy density, and long battery life), battery components (air cathode, zinc anode, and gas diffusion layer), and battery configurations (flexibility and portability), however, a comprehensive review on advanced design strategies for Re-ZABs system from multiple angles is still lacking. This review underscores the progress and strategies proposed so far to pursuit the high-efficiency Re-ZABs system, including the aspects of rechargeability (from primary to rechargeable), air cathode (from unifunctional to bifunctional), zinc anode (from dendritic to stable), electrolytes (from aqueous to non-aqueous), battery configurations (from non-portable to portable), and industrialization progress (from laboratorial to practical). Critical appraisals of the advanced modification approaches (such as surface/interface modulation, nanoconfinement catalysis, defect electrochemistry, synergistic electrocatalysis, etc.) are highlighted for cost-effective flexible Re-ZABs with good sustainability and high energy density. Finally, insights are further rendered properly for the future research directions of advanced zinc-air batteries.
Collapse
Affiliation(s)
- Xian-Wei Lv
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhongli Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhuangzhuang Lai
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuping Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Tianyi Ma
- School of Science, RMIT University Melbourne, Melbourne, Victoria, 3000, Australia
| | - Jianxin Geng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, College of Chemistry, Nankai University, Tianjin, 300350, China
| |
Collapse
|
27
|
Pan Y, Xin Y, Li Y, Xu Z, Tang C, Liu X, Yin Y, Zhang J, Xu F, Li C, Mai Y. Nitrogen-Doped Carbon Cubosomes as an Efficient Electrocatalyst with High Accessibility of Internal Active Sites. ACS NANO 2023. [PMID: 38009536 DOI: 10.1021/acsnano.3c07963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Porous carbon particles (PCPs) present considerable potential for applications across a wide range of fields, particularly within the realms of energy and catalysis. The control of their overall morphologies and pore structures has remained a big challenge. Here, using metal-organic frameworks (MOFs) as the precursor and polymer cubosomes (PCs) as the template, nitrogen-doped carbon cubosomes (SP-NCs) with a single primitive bicontinuous architecture are prepared. SP-NCs inherit the high porosity of MOFs, generating a high specific surface area of 825 m2 g-1 and uniformly distributed active sites with a 5.9 at % nitrogen content. Thanks to the presence of three-dimensional continuous mesochannels that enable much higher accessibility of internal active sites over those of their porous counterparts' lack of continuous channels, SP-NCs exhibit superior electrocatalytic performance for oxygen reduction reaction with a half-wave potential of 0.87 V, situating them in the leading level of the reported carbon electrocatalysts. Serving as an air cathode catalyst of the Zn-air battery, SP-NCs exhibit excellent performance, outperforming the commercial Pt/C catalysts.
Collapse
Affiliation(s)
- Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yupeng Xin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinghua Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhi Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yucheng Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiacheng Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
28
|
Wang L, Qin Y, Li H, Huang Z, Gao M, Isimjan TT, Yang X. Oxygen vacancy engineering of mesoporous Bi-Fe 2O 3@NC multi-channel microspheres for remarkable oxygen reduction and aqueous/flexible Zn-air batteries. J Colloid Interface Sci 2023; 650:719-727. [PMID: 37441965 DOI: 10.1016/j.jcis.2023.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Designing multi-channel mesoporous structure and introducing oxygen vacancies to synergistically enhance oxygen reduction reaction (ORR) activity is crucial for the practical application of zinc-air batteries (ZABs) in the field of energy storage and conversion. Herein, a novel multi-channel mesoporous Bi-Fe2O3 microsphere with abundant oxygen vacancies supported on nitrogen-doped carbon (denoted as Bi-Fe2O3@NC) is constructed and the designated catalyst demonstrates a higher half-wave potential (0.88 V), large limiting current density (5.8 mA cm-2@0.4 V), and superior stability. Besides, the aqueous ZAB utilizing Bi-Fe2O3@NC cathode achieves a high power density of 198.6 mW cm-2 and maintains exceptional stability for 459 h at 5 mA cm-2, superior to most previously reported catalysts. Furthermore, a solid-state ZAB assembled with Bi-Fe2O3@NC shows a power density of 55.9 mW cm-2, highlighting its potential for flexible ZAB applications. The prominent ORR performance of Bi-Fe2O3@NC can be ascribed to its unique multi-channel mesoporous structure and abundant oxygen vacancies, which increase the exposure of active sites and facilitate efficient electron/mass transport. This work provides valuable insights for the rational design of advanced ORR catalysts for the practical requirements of aqueous/flexible ZABs in energy storage and conversion.
Collapse
Affiliation(s)
- Lixia Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yanjing Qin
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huatong Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhiyang Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Mingcheng Gao
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
29
|
Li W, Wu W, Yu L, Sun J, Xu L, Wang Y, Lu Q. Acid Etching Strategy: Optimizing Bifunctional Activities of Metal/Nitrogen-doped Carbon Catalysts for Efficient Rechargeable Zn-Air Batteries. Chem Asian J 2023; 18:e202300547. [PMID: 37544904 DOI: 10.1002/asia.202300547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Transition metal-embedded heteroatom carbon composites are regarded as an important branch of bifunctional catalysts for rechargeable Zn-air batteries. The inevitable transition metal particles on the carbon skeleton may affect the availability of the metal-heteroatom-carbon catalytic site. Herein, we propose an acid treatment strategy to remove the bare transition metal particles, thus regulating the electrochemical surface area. The OER activities are highly related to the electrochemical surface area for the catalysts with different acid treatment times. In addition, there exists an optimal acid treatment time to achieve the highest ORR and OER activities with the ΔE value of 0.75 V. Given the superior bifunctional activities after acid treatment, we further assemble the rechargeable Zn-air batteries with the optimal catalyst, which achieves a peak power density of 364 mW cm-2 and long cycling life of 500 h at 10 mA cm-2 . This work affords an efficient strategy to enhance the ORR/OER activities and may guide the design of transition metal/heteroatom carbon composites.
Collapse
Affiliation(s)
- Wangzu Li
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, S. A. R, 999077, P. R. China
| | - Weixing Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, S. A. R, 999077, P. R. China
| | - Luo Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, S. A. R, 999077, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Jiping Sun
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, S. A. R, 999077, P. R. China
| | - Liangpang Xu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, S. A. R, 999077, P. R. China
| | - Ying Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, S. A. R, 999077, P. R. China
| | - Qian Lu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, S. A. R, 999077, P. R. China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, UNIST-NUIST Environment and Energy Jointed Lab, School of Environmental Science and Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| |
Collapse
|
30
|
Niu J, Liu Y, Wang X, Liu J, Zhao Z, Liu X, Ostrikov KK. Biomass-Derived Bifunctional Cathode Electrocatalyst and Multiadaptive Gel Electrolyte for High-Performance Flexible Zn-Air Batteries in Wide Temperature Range. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302727. [PMID: 37222632 DOI: 10.1002/smll.202302727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Indexed: 05/25/2023]
Abstract
High-efficiency and low-cost bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), as well as gel electrolytes with high thermal and mechanical adaptability are required for the development of flexible batteries. Herein, abundant Setaria Viridis (SV) biomass is selected as the precursor to prepare porous N-doped carbon tubes with high specific surface area and the 900 °C calcination product of SV (SV-900) shows the optimum ORR/OER activities with a small EOER -EORR of 0.734 V. Meanwhile, a new multifunctional gel electrolyte named C20E2G5 is prepared using cellulose extracted from another widely distributed biomass named flax as the skeleton, epichlorohydrin as the cross-linker and glycerol as the antifreezing agent. C20E2G5 possesses high ionic conductivity from -40 to + 60 °C, excellent tensile and compressive resistance, high adhesion, strong freezing and heat resistance. Moreover, the symmetrical cell assembled with C20E2G5 can significantly inhibit Zn dendrite growth. Finally, flexible solid-state Zn-air batteries assembled with SV-900 and C20E2G5 show high open circuit voltage, large energy density, and long-term operation stability between -40 and + 60 °C. This biomass-based approach is generic and can be used for the development of diverse next-generation electrochemical energy conversion and storage devices.
Collapse
Affiliation(s)
- Jiaqi Niu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Yuan Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Xingqi Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Jiaojiao Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Zijuan Zhao
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| |
Collapse
|
31
|
Wang Q, Kaushik S, Xiao X, Xu Q. Sustainable zinc-air battery chemistry: advances, challenges and prospects. Chem Soc Rev 2023; 52:6139-6190. [PMID: 37565571 DOI: 10.1039/d2cs00684g] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Sustainable zinc-air batteries (ZABs) are considered promising energy storage devices owing to their inherent safety, high energy density, wide operating temperature window, environmental friendliness, etc., showing great prospect for future large-scale applications. Thus, tremendous efforts have been devoted to addressing the critical challenges associated with sustainable ZABs, aiming to significantly improve their energy efficiency and prolong their operation lifespan. The growing interest in sustainable ZABs requires in-depth research on oxygen electrocatalysts, electrolytes, and Zn anodes, which have not been systematically reviewed to date. In this review, the fundamentals of ZABs, oxygen electrocatalysts for air cathodes, physicochemical properties of ZAB electrolytes, and issues and strategies for the stabilization of Zn anodes are systematically summarized from the perspective of fundamental characteristics and design principles. Meanwhile, significant advances in the in situ/operando characterization of ZABs are highlighted to provide insights into the reaction mechanism and dynamic evolution of the electrolyte|electrode interface. Finally, several critical thoughts and perspectives are provided regarding the challenges and opportunities for sustainable ZABs. Therefore, this review provides a thorough understanding of the advanced sustainable ZAB chemistry, hoping that this timely and comprehensive review can shed light on the upcoming research horizons of this prosperous area.
Collapse
Affiliation(s)
- Qichen Wang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Shubham Kaushik
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| |
Collapse
|
32
|
Sun B, Zong Y, Bao K, Wang M, Wang P, Xu H, Jin Y. Activating Gel Polymer Electrolyte Based Zinc-Ion Conduction with Filler-Integration for Advanced Zinc Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37916-37924. [PMID: 37491187 DOI: 10.1021/acsami.3c06702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Quasi solid zinc batteries (QSZBs) based on gel electrolyte have performed as a significant application prospect as advanced high energy density electrochemical storage devices with safety, low cost, eco-friendliness, and flexibility. While, the practical application of QSZBs was enormously restricted by low ionic conductivity and poor strength of pure gel electrolyte. Here, in order to activate the zinc ion conduction in gel electrolyte, the kinds of inorganic fillers constituting the composite electrolyte was investigated. The theoretical study was also revealed by density functional theory to have deep insight into the mechanism. In particular, appropriate filler amount (ZnO#20) can make a noteworthy ion conductivity elevation (1.3 × 10-3 S cm-1) which is much better than the control sample (2.0 × 10-4 S cm-1) at -20 °C. As a result, the symmetric cell with ZnO#20 can achieve a long-term cycling life of over 1500 h. Moreover, the pouch cell coupled with vanadium pentoxide is assembled, and corresponding versatility is also identified with twisting, refrigeration (-20 °C) and cutting.
Collapse
Affiliation(s)
- Bin Sun
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- Zhengzhou Foguang Power Generation Joint-Stock Equipment Co. LTD., Zhengzhou 450001, P. R. China
| | - Yuanzhi Zong
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Kangkang Bao
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Minghui Wang
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Panpan Wang
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huaxing Xu
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yang Jin
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
33
|
Ma Q, Long G, Tang X, Li X, Wang X, You C, Fan W, Wang Q. Zinc-Mediated Template Synthesis of Hierarchical Porous N-Doped Carbon Electrocatalysts for Efficient Oxygen Reduction. Molecules 2023; 28:4257. [PMID: 37298734 PMCID: PMC10254328 DOI: 10.3390/molecules28114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The development of highly active and low-cost catalysts for use in oxygen reduction reaction (ORR) is crucial to many advanced and eco-friendly energy techniques. N-doped carbons are promising ORR catalysts. However, their performance is still limited. In this work, a zinc-mediated template synthesis strategy for the development of a highly active ORR catalyst with hierarchical porous structures was presented. The optimal catalyst exhibited high ORR performance in a 0.1 M KOH solution, with a half-wave potential of 0.89 V vs. RHE. Additionally, the catalyst exhibited excellent methanol tolerance and stability. After a 20,000 s continuous operation, no obvious performance decay was observed. When used as the air-electrode catalyst in a zinc-air battery (ZAB), it delivered an outstanding discharging performance, with peak power density and specific capacity as high as 196.3 mW cm-2 and 811.5 mAh gZn-1, respectively. Its high performance and stability endow it with potential in practical and commercial applications as a highly active ORR catalyst. Additionally, it is believed that the presented strategy can be applied to the rational design and fabrication of highly active and stable ORR catalysts for use in eco-friendly and future-oriented energy techniques.
Collapse
Affiliation(s)
- Qianhui Ma
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.M.); (X.T.); (X.L.)
| | - Guifa Long
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, China;
| | - Xulei Tang
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.M.); (X.T.); (X.L.)
| | - Xiaobao Li
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.M.); (X.T.); (X.L.)
| | - Xianghui Wang
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.M.); (X.T.); (X.L.)
| | - Chenghang You
- Hainan Provincial Key Laboratory of Fine Chemistry, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China;
| | - Wenjun Fan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Qingqing Wang
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.M.); (X.T.); (X.L.)
- Hainan Provincial Key Laboratory of Fine Chemistry, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China;
| |
Collapse
|
34
|
Yan Y, Duan S, Liu B, Wu S, Alsaid Y, Yao B, Nandi S, Du Y, Wang TW, Li Y, He X. Tough Hydrogel Electrolytes for Anti-Freezing Zinc-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211673. [PMID: 36932878 DOI: 10.1002/adma.202211673] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Indexed: 05/05/2023]
Abstract
As the soaring demand for energy storage continues to grow, batteries that can cope with extreme conditions are highly desired. Yet, existing battery materials are limited by weak mechanical properties and freeze-vulnerability, prohibiting safe energy storage in devices that are exposed to low temperature and unusual mechanical impacts. Herein, a fabrication method harnessing the synergistic effect of co-nonsolvency and "salting-out" that can produce poly(vinyl alcohol) hydrogel electrolytes with unique open-cell porous structures, composed of strongly aggregated polymer chains, and containing disrupted hydrogen bonds among free water molecules, is introduced. The hydrogel electrolyte simultaneously combines high strength (tensile strength 15.6 MPa), freeze-tolerance (< -77 °C), high mass transport (10× lower overpotential), and dendrite and parasitic reactions suppression for stable performance (30 000 cycles). The high generality of this method is further demonstrated with poly(N-isopropylacrylamide) and poly(N-tertbutylacrylamide-co-acrylamide) hydrogels. This work takes a further step toward flexible battery development for harsh environments.
Collapse
Affiliation(s)
- Yichen Yan
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sidi Duan
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bo Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shuwang Wu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yousif Alsaid
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bowen Yao
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sunny Nandi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Physics, Tezpur University, Assam, 784028, India
| | - Yingjie Du
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ta-Wei Wang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuzhang Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
35
|
Chang J, Yang Y. Recent advances in zinc-air batteries: self-standing inorganic nanoporous metal films as air cathodes. Chem Commun (Camb) 2023; 59:5823-5838. [PMID: 37096450 DOI: 10.1039/d3cc00742a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Zinc-air batteries (ZABs) have promising prospects as next-generation electrochemical energy systems due to their high safety, high power density, environmental friendliness, and low cost. However, the air cathodes used in ZABs still face many challenges, such as the low catalytic activity and poor stability of carbon-based materials at high current density/voltage. To achieve high activity and stability of rechargeable ZABs, chemically and electrochemically stable air cathodes with bifunctional oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) activity, fast reaction rate with low platinum group metal (PGM) loading or PGM-free materials are required, which are difficult to achieve with common electrocatalysts. Meanwhile, inorganic nanoporous metal films (INMFs) have many advantages as self-standing air cathodes, such as high activity and stability for both the ORR/OER under highly alkaline conditions. The high surface area, three-dimensional channels, and porous structure with controllable crystal growth facet/direction make INMFs an ideal candidate as air cathodes for ZABs. In this review, we first revisit some critical descriptors to assess the performance of ZABs, and recommend the standard test and reported manner. We then summarize the recent progress of low-Pt, low-Pd, and PGM-free-based materials as air cathodes with low/non-PGM loading for rechargeable ZABs. The structure-composition-performance relationship between INMFs and ZABs is discussed in-depth. Finally, we provide our perspectives on the further development of INMFs towards rechargeable ZABs, as well as current issues that need to be addressed. This work will not only attract researchers' attention and guide them to assess and report the performance of ZABs more accurately, but also stimulate more innovative strategies to drive the practical application of INMFS for ZABs and other energy-related technologies.
Collapse
Affiliation(s)
- Jinfa Chang
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
| | - Yang Yang
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA
- Renewable Energy and Chemical Transformation Cluster, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
- The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
36
|
Cao Q, Wan L, Xu Z, Kuang W, Liu H, Zhang X, Zhang W, Lu Y, Yao Y, Wang B, Liu K. A Fluorinated Covalent Organic Framework with Accelerated Oxygen Transfer Nanochannels for High-Performance Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210550. [PMID: 36745936 DOI: 10.1002/adma.202210550] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/08/2023] [Indexed: 05/17/2023]
Abstract
The establishment of abundant three-phase interfaces with accelerated mass transfer in air cathodes is highly desirable for the development of high-rate and long-cycling rechargeable zinc-air batteries (ZABs). Covalent organic frameworks (COFs) exhibit tailored nanopore structures, facilitating the rational tuning of their specific properties. Here, by finely tuning the fluorinated nanopores of a COF, a novel air cathode for rechargeable ZABs is unprecedentedly designed and synthesized. COF nanosheets are decorated with fluorinated alkyl chains, which shows high affinity to oxygen (O2 ), in its nanopores (fluorinated COF). The fluorinated COF nanosheets are stacked into well-defined O2 -transport channels, which are then assembled into aerophilic "nano-islands" on the hydrophilic FeNi layered-double-hydroxide (FeNi LDH) electrocatalyst surface. Therefore, the mass-transport "highway" for O2 and water is segregated on the nanoscale, which significantly enlarges the area of three-phase boundaries and greatly promotes the mass-transfer therein. ZABs based on the COF-modified air cathode deliver a small charge/discharge voltage gap (0.64 V at 5 mA cm-2 ), a peak power density (118 mW cm-2 ), and a stable cyclability. This work provides a feasible approach for the design of the air cathodes for high-performance ZABs, and will expand the new application of COFs.
Collapse
Affiliation(s)
- Qingbin Cao
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Lei Wan
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ziang Xu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Wenmin Kuang
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Hao Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xin Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Weili Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yang Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yujian Yao
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Baoguo Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
37
|
Chai L, Song J, Sun Y, Liu X, Li X, Fan M, Pan J, Sun X. Intelligent Chip-Controlled Smart Oxygen Electrodes for Constructing Rechargeable Zinc-Air Batteries with Excellent Energy Efficiency and Durability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15439-15448. [PMID: 36921252 DOI: 10.1021/acsami.2c22218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
High-performance rechargeable oxygen electrodes are key devices for realizing high-specific-energy batteries, including zinc-air and lithium-air batteries. However, these batteries have severe problems of premature decay in energy efficiency by serious corrosion, wide charge-discharge gap, and catalyst peeling off. Herein, we propose a "smart dual-oxygen electrode", which is composed of an intelligent switch control module + heterostructured Fe1Ni3-LDH/PNCNF OER catalysis electrode layer + ion conductive | electronic insulating membrane + Pt/C ORR catalysis electrode layer, where OER and ORR layers are automatically switched by the intelligent switch control module as required. This smart dual-oxygen electrode offers an ultralow energy efficiency decay rate of 0.0067% after 300 cycles during cycling, much lower than that of the commercial Pt/C electrode (1.82%). The assembled rechargeable zinc-air battery (RZAB) displays a super narrow voltage gap and achieves a high energy efficiency of 71.7%, far higher than that of the existing RZABs (about 50%). Therefore, this strategy provides a complete solution for designing various high-performance metal-air secondary batteries.
Collapse
Affiliation(s)
- Lulu Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinlu Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanzhi Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoguang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xifei Li
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shanxi 710048, China
| | - Maohong Fan
- School of Energy Resources, University of Wyoming, 1000 E. University Ave. Dept. 3012, Laramie, Wyoming 82071, United States
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5 B9, Canada
| |
Collapse
|
38
|
Liu W, Niu X, Feng J, Yin R, Ma S, Que W, Dai J, Tang J, Wu F, Shi W, Liu X, Cao X. Tunable Heterogeneous FeCo Alloy-Mo 0.82N Bifunctional Electrocatalysts for Temperature-Adapted Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15344-15352. [PMID: 36920344 DOI: 10.1021/acsami.2c21616] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The practical applications of temperature-tolerant Zn-air batteries (ZABs) rely on highly active and stable bifunctional catalysts that accelerate cathodic oxygen reduction (ORR) and oxygen evolution (OER) reactions. Herein, we successfully integrated fascinating transition metal nitrides and FeCo alloys through a simple coordination assembly and pyrolysis process. Importantly, the alloy-to-nitride ratio in the heterogeneous catalyst can be carefully regulated through the subsequent etching process. Moreover, the composition-dependent ORR/OER performance of the FeCo-Mo0.82N catalysts was revealed. Aqueous ZABs using the optimized FeCo-Mo0.82N-60 as a cathode exhibit a high peak power density of 149.7 mW cm-2 and an impressive stability of 600 h with a low charge-discharge voltage gap decay rate of 0.025 mV h-1, which exceeds those of most of recent reports. Furthermore, the FeCo-Mo0.82N-60-based flexible ZABs display a small specific capacity degradation (3%) from 40 to -10 °C, demonstrating excellent temperature tolerance.
Collapse
Affiliation(s)
- Wenxian Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinxin Niu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jinxiu Feng
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ruilian Yin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Suli Ma
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wenbin Que
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiale Dai
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiawei Tang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Fangfang Wu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wenhui Shi
- Center for Membrane and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Xiehong Cao
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
39
|
Jiao M, Dai L, Ren HR, Zhang M, Xiao X, Wang B, Yang J, Liu B, Zhou G, Cheng HM. A Polarized Gel Electrolyte for Wide-Temperature Flexible Zinc-Air Batteries. Angew Chem Int Ed Engl 2023; 62:e202301114. [PMID: 36869006 DOI: 10.1002/anie.202301114] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/05/2023]
Abstract
The development of flexible zinc-air batteries (FZABs) has attracted broad attention in the field of wearable electronic devices. Gel electrolyte is one of the most important components in FZABs, which is urgent to be optimized to match with Zn anode and adapt to severe climates. In this work, a polarized gel electrolyte of polyacrylamide-sodium citric (PAM-SC) is designed for FZABs, in which the SC molecules contain large amount of polarized -COO- functional groups. The polarized -COO- groups can form an electrical field between gel electrolyte and Zn anode to suppress Zn dendrite growth. Besides, the -COO- groups in PAM-SC can fix H2 O molecules, which prevents water from freezing and evaporating. The polarized PAM-SC hydrogel delivers a high ionic conductivity of 324.68 mS cm-1 and water retention of 96.85 % after being exposed for 96 h. FZABs with the PAM-SC gel electrolyte exhibit long cycling life of 700 cycles at -40 °C, showing the application prospect under extreme conditions.
Collapse
Affiliation(s)
- Miaolun Jiao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lixin Dai
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hong-Rui Ren
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Mengtian Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiao Xiao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Boran Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jinlong Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bilu Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Guangmin Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Institute of Technology for Carbon Neutrality, Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
40
|
Zhong X, Zheng Z, Xu J, Xiao X, Sun C, Zhang M, Ma J, Xu B, Yu K, Zhang X, Cheng HM, Zhou G. Flexible Zinc-Air Batteries with Ampere-Hour Capacities and Wide-Temperature Adaptabilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209980. [PMID: 36716772 DOI: 10.1002/adma.202209980] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Flexible Zn-air batteries (FZABs) have significant potentials as efficient energy storage devices for wearable electronics because of their safeties and high energy-to-cost ratios. However, their application is limited by their short cycle lives, low discharge capacities per cycle, and high charge/discharge polarizations. Accordingly, herein, a poly(sodium acrylate)-polyvinyl alcohol (PANa-PVA)-ionic liquid (IL) hydrogel (PANa-PVA-IL) is prepared using a hygroscopic IL, 1-ethyl-3-methylimidazolium chloride, as an additive for twin-chain PANa-PVA. PANa-PVA-IL exhibits a high conductivity of 306.9 mS cm-1 and a water uptake of 2515 wt% at room temperature. Moreover, a low-cost bifunctional catalyst, namely, Co9 S8 nanoparticles anchored on N- and S-co-doped activated carbon black pearls 2000 (Co9 S8 -NSABP), is synthesized, which demonstrates a low O2 reversibility potential gap of 0.629 V. FZABs based on PANa-PVA-IL and Co9 S8 -NSABP demonstrate high discharge capacities of 1.67 mAh cm-2 per cycle and long cycle lives of 330 h. Large-scale flexible rechargeable Zn-air pouch cells exhibit total capacities of 1.03 Ah and energy densities of 246 Wh kgcell -1 . This study provides new information about hydrogels with high ionic conductivities and water uptakes and should facilitate the application of FZABs in wearable electronics.
Collapse
Affiliation(s)
- Xiongwei Zhong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhiyang Zheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jiahe Xu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiao Xiao
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chongbo Sun
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Mengtian Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jiabin Ma
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Baomin Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kuang Yu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xuan Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
41
|
Xiao X, Zheng Z, Zhong X, Gao R, Piao Z, Jiao M, Zhou G. Rational Design of Flexible Zn-Based Batteries for Wearable Electronic Devices. ACS NANO 2023; 17:1764-1802. [PMID: 36716429 DOI: 10.1021/acsnano.2c09509] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The advent of 5G and the Internet of Things has spawned a demand for wearable electronic devices. However, the lack of a suitable flexible energy storage system has become the "Achilles' Heel" of wearable electronic devices. Additional problems during the transformation of the battery structure from conventional to flexible also present a severe challenge to the battery design. Flexible Zn-based batteries, including Zn-ion batteries and Zn-air batteries, have long been considered promising candidates due to their high safety, eco-efficiency, substantial reserve, and low cost. In the past decade, researchers have come up with elaborate designs for each portion of flexible Zn-based batteries to improve the ionic conductivities, mechanical properties, environment adaptabilities, and scalable productions. It would be helpful to summarize the reported strategies and compare their pros and cons to facilitate further research toward the commercialization of flexible Zn-based batteries. In this review, the current progress in developing flexible Zn-based batteries is comprehensively reviewed, including their electrolytes, cathodes, and anodes, and discussed in terms of their synthesis, characterization, and performance validation. By clarifying the challenges in flexible Zn-based battery design, we summarize the methodology from previous investigations and propose challenges for future development. In the end, a research paradigm of Zn-based batteries is summarized to fit the burgeoning requirement of wearable electronic devices in an iterative process, which will benefit the future development of Zn-based batteries.
Collapse
Affiliation(s)
- Xiao Xiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Zhiyang Zheng
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Xiongwei Zhong
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Runhua Gao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Zhihong Piao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Miaolun Jiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
42
|
Pei Z, Tan H, Gu J, Lu L, Zeng X, Zhang T, Wang C, Ding L, Cullen PJ, Chen Z, Zhao S. A polymeric hydrogel electrocatalyst for direct water oxidation. Nat Commun 2023; 14:818. [PMID: 36781856 PMCID: PMC9925792 DOI: 10.1038/s41467-023-36532-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Metal-free electrocatalysts represent a main branch of active materials for oxygen evolution reaction (OER), but they excessively rely on functionalized conjugated carbon materials, which substantially restricts the screening of potential efficient carbonaceous electrocatalysts. Herein, we demonstrate that a mesostructured polyacrylate hydrogel can afford an unexpected and exceptional OER activity - on par with that of benchmark IrO2 catalyst in alkaline electrolyte, together with a high durability and good adaptability in various pH environments. Combined theoretical and electrokinetic studies reveal that the positively charged carbon atoms within the carboxylate units are intrinsically active toward OER, and spectroscopic operando characterizations also identify the fingerprint superoxide intermediate generated on the polymeric hydrogel backbone. This work expands the scope of metal-free materials for OER by providing a new class of polymeric hydrogel electrocatalysts with huge extension potentials.
Collapse
Affiliation(s)
- Zengxia Pei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2008, Australia.
| | - Hao Tan
- grid.59053.3a0000000121679639National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029 PR China
| | - Jinxing Gu
- grid.267033.30000 0004 0462 1680Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR USA
| | - Linguo Lu
- grid.267033.30000 0004 0462 1680Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR USA
| | - Xin Zeng
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2008 Australia
| | - Tianqi Zhang
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2008 Australia
| | - Cheng Wang
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2008 Australia
| | - Luyao Ding
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2008 Australia
| | - Patrick J. Cullen
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2008 Australia
| | - Zhongfang Chen
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA.
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2008, Australia.
| |
Collapse
|
43
|
Chen S, Liang X, Hu S, Li X, Zhang G, Wang S, Ma L, Wu CML, Zhi C, Zapien JA. Inducing Fe 3d Electron Delocalization and Spin-State Transition of FeN 4 Species Boosts Oxygen Reduction Reaction for Wearable Zinc-Air Battery. NANO-MICRO LETTERS 2023; 15:47. [PMID: 36763196 PMCID: PMC9918713 DOI: 10.1007/s40820-023-01014-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/26/2022] [Indexed: 05/30/2023]
Abstract
Transition metal-nitrogen-carbon materials (M-N-Cs), particularly Fe-N-Cs, have been found to be electroactive for accelerating oxygen reduction reaction (ORR) kinetics. Although substantial efforts have been devoted to design Fe-N-Cs with increased active species content, surface area, and electronic conductivity, their performance is still far from satisfactory. Hitherto, there is limited research about regulation on the electronic spin states of Fe centers for Fe-N-Cs electrocatalysts to improve their catalytic performance. Here, we introduce Ti3C2 MXene with sulfur terminals to regulate the electronic configuration of FeN4 species and dramatically enhance catalytic activity toward ORR. The MXene with sulfur terminals induce the spin-state transition of FeN4 species and Fe 3d electron delocalization with d band center upshift, enabling the Fe(II) ions to bind oxygen in the end-on adsorption mode favorable to initiate the reduction of oxygen and boosting oxygen-containing groups adsorption on FeN4 species and ORR kinetics. The resulting FeN4-Ti3C2Sx exhibits comparable catalytic performance to those of commercial Pt-C. The developed wearable ZABs using FeN4-Ti3C2Sx also exhibit fast kinetics and excellent stability. This study confirms that regulation of the electronic structure of active species via coupling with their support can be a major contributor to enhance their catalytic activity.
Collapse
Affiliation(s)
- Shengmei Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
| | - Xiongyi Liang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
| | - Sixia Hu
- Sustech Core Research Facilities, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Xinliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
| | - Guobin Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, People's Republic of China.
| | - Shuyun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
| | - Longtao Ma
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Chi-Man Lawrence Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China.
| |
Collapse
|
44
|
Fan X, Wang H, Liu X, Liu J, Zhao N, Zhong C, Hu W, Lu J. Functionalized Nanocomposite Gel Polymer Electrolyte with Strong Alkaline-Tolerance and High Zinc Anode Stability for Ultralong-Life Flexible Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209290. [PMID: 36455877 DOI: 10.1002/adma.202209290] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Increasing pursuit of next-generation wearable electronics has put forward the demand of reliable energy devices with high flexibility, durability, and enhanced electrochemical performances. Flexible aqueous zinc-air batteries (FAZABs) have attracted great interests owing to the high energy density, safety, and environmental benignity, for which quasi-solid-state gel polymer electrolytes (QSGPEs) are state-of-the-art electrolytes with high ionic conductivity, flexibility, and resistance to leakage problems of traditional liquid electrolytes. Compared to commonly used PVA-KOH electrolyte with poor electrolyte retention capability and cycling stability, a new type of sulfonate functionalized nanocomposite QSGPE is applied in FAZABs with high ionic conductivity, strong alkaline tolerance, and high zinc anode stability. Notably, the existence of (1) strong anionic sulfonate groups of QSGPEs, contributing to the exposure of preferred Zn (002) plane that is more resistant to zinc dendrite formation, and (2) nano-attapulgite electrolyte additives, beneficial for the enhancement of ionic conductivity, electrolyte uptake, and retention capability, endows a ultralong cycling life of 450 h for the fabricated FAZAB. Furthermore, flexible energy belts and knittable energy wires fabricated with a series/parallel unit of several FAZABs can be used to power various wearable electronics.
Collapse
Affiliation(s)
- Xiayue Fan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Haozhi Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Xiaorui Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Naiqin Zhao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Material, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Tianjin Key Laboratory of Composite and Functional Material, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Tianjin Key Laboratory of Composite and Functional Material, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| |
Collapse
|
45
|
Zhang Q, Liu X, Zhu X, Wan Y, Zhong C. Interface Engineering of Zinc Electrode for Rechargeable Alkaline Zinc-Based Batteries. SMALL METHODS 2023; 7:e2201277. [PMID: 36605007 DOI: 10.1002/smtd.202201277] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Rechargeable aqueous zinc-based batteries have gained considerable interest because of their advantages of high theoretical capacity, being eco-friendly, and cost effectiveness. In particular, zinc-based batteries with alkaline electrolyte show great promise due to their high working voltage. However, there remain great challenges for the commercialization of the rechargeable alkaline zinc-based batteries, which are mainly impeded by the limited reversibility of the zinc electrode. The critical problems refer to the dendrites growth, electrode passivation, shape change, and side reactions, affecting discharge capacity, columbic efficiency, and cycling stability of the battery. All the issues are highly associated with the interfacial properties, including both electrons and ions transport behavior at the electrode interface. Herein, this work concentrates on the fundamental electrochemistry of the challenges in the zinc electrode and the design strategies for developing high-performance zinc electrodes with regard to optimizing the interfaces between host and active materials as well as electrode and electrolyte. In addition, potential directions for the investigation of electrodes and electrolytes for high-performance zinc-based batteries are presented, aiming at promoting the development of rechargeable alkaline zinc-based batteries.
Collapse
Affiliation(s)
- Quanchao Zhang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
| | - Xiaorui Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiangbo Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
46
|
Javed N, Noor T, Iqbal N, Naqvi SR. A review on development of metal-organic framework-derived bifunctional electrocatalysts for oxygen electrodes in metal-air batteries. RSC Adv 2023; 13:1137-1161. [PMID: 36686941 PMCID: PMC9841892 DOI: 10.1039/d2ra06741b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Worldwide demand for oil, coal, and natural gas has increased recently because of odd weather patterns and economies recovering from the pandemic. By using these fuels at an astonishing rate, their reserves are running low with each passing decade. Increased reliance on these sources is contributing significantly to both global warming and power shortage problems. It is vital to highlight and focus on using renewable energy sources for power production and storage. This review aims to discuss one of the cutting-edge technologies, metal-air batteries, which are currently being researched for energy storage applications. A battery that employs an external cathode of ambient air and an anode constructed of pure metal in which an electrolyte can be aqueous or aprotic electrolyte is termed as a metal-air battery (MAB). Due to their reportedly higher energy density, MABs are frequently hailed as the electrochemical energy storage of the future for applications like grid storage or electric car energy storage. The demand of the upcoming energy storage technologies can be satisfied by these MABs. The usage of metal-organic frameworks (MOFs) in metal-air batteries as a bi-functional electrocatalyst has been widely studied in the last decade. Metal ions or arrays bound to organic ligands to create one, two, or three-dimensional structures make up the family of molecules known as MOFs. They are a subclass of coordination polymers; metal nodes and organic linkers form different classes of these porous materials. Because of their modular design, they offer excellent synthetic tunability, enabling precise chemical and structural control that is highly desirable in electrode materials of MABs.
Collapse
Affiliation(s)
- Najla Javed
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 CampusIslamabad 44000Pakistan+92 51 9085 5121
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 CampusIslamabad 44000Pakistan+92 51 9085 5121
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST)Islamabad 44000Pakistan
| | - Salman Raza Naqvi
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 CampusIslamabad 44000Pakistan+92 51 9085 5121
| |
Collapse
|
47
|
Xia X, Yang J, Liu Y, Zhang J, Shang J, Liu B, Li S, Li W. Material Choice and Structure Design of Flexible Battery Electrode. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204875. [PMID: 36403240 PMCID: PMC9875691 DOI: 10.1002/advs.202204875] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Indexed: 06/16/2023]
Abstract
With the development of flexible electronics, the demand for flexibility is gradually put forward for its energy supply device, i.e., battery, to fit complex curved surfaces with good fatigue resistance and safety. As an important component of flexible batteries, flexible electrodes play a key role in the energy density, power density, and mechanical flexibility of batteries. Their large-scale commercial applications depend on the fulfillment of the commercial requirements and the fabrication methods of electrode materials. In this paper, the deformable electrode materials and structural design for flexible batteries are summarized, with the purpose of flexibility. The advantages and disadvantages of the application of various flexible materials (carbon nanotubes, graphene, MXene, carbon fiber/carbon fiber cloth, and conducting polymers) and flexible structures (buckling structure, helical structure, and kirigami structure) in flexible battery electrodes are discussed. In addition, the application scenarios of flexible batteries and the main challenges and future development of flexible electrode fabrication are also discussed, providing general guidance for the research of high-performance flexible electrodes.
Collapse
Affiliation(s)
- Xiangling Xia
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, China
| | - Jack Yang
- Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Liu
- College of Sciences, Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing, 312000, China
| | - Jiujun Zhang
- College of Sciences, Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
- School of Materials Science and Engineering, Fuzhou University, Fujian, 350108, China
| | - Jie Shang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Bin Liu
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, China
| | - Sean Li
- Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wenxian Li
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, China
- Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- College of Sciences, Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
48
|
Xin F, Lyu Q. A Review on Thermal Properties of Hydrogels for Electronic Devices Applications. Gels 2022; 9:gels9010007. [PMID: 36661775 PMCID: PMC9858193 DOI: 10.3390/gels9010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrogels, as a series of three-dimensional, crosslinked, hydrophilic network polymers, exhibit extraordinary properties in softness, mechanical robustness and biocompatibility, which have been extensively utilized in various fields, especially for electronic devices. However, since hydrogels contain plenty of water, the mechanical and electrochemical properties are susceptible to temperature. The thermal characteristics of hydrogels can significantly affect the performance of flexible electronic devices. In this review, recent research on the thermal characteristics of hydrogels and their applications in electronic devices is summarized. The focus of future work is also proposed. The thermal stability, thermoresponsiveness and thermal conductivity of hydrogels are discussed in detail. Anti-freezing and anti-drying properties are the critical points for the thermal stability of hydrogels. Methods such as introducing soluble ions and organic solvents into hydrogels, forming ionogels, modifying polymer chains and incorporating nanomaterials can improve the thermal stability of hydrogels under extreme environments. In addition, the critical solution temperature is crucial for thermoresponsive hydrogels. The thermoresponsive capacity of hydrogels is usually affected by the composition, concentration, crosslinking degree and hydrophilic/hydrophobic characteristics of copolymers. In addition, the thermal conductivity of hydrogels plays a vital role in the electronics applications. Adding nanocomposites into hydrogels is an effective way to enhance the thermal conductivity of hydrogels.
Collapse
Affiliation(s)
- Fei Xin
- Key Laboratory of Ministry of Education for Electronic Equipment Structure Design, Xidian University, Xi’an 710071, China
- Correspondence:
| | - Qiang Lyu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
49
|
Chen S, Wang H, Zhu M, You F, Lin W, Chan D, Lin W, Li P, Tang Y, Zhang Y. Revitalizing zinc-ion batteries with advanced zinc anode design. NANOSCALE HORIZONS 2022; 8:29-54. [PMID: 36268641 DOI: 10.1039/d2nh00354f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rechargeable aqueous zinc-ion batteries (AZIBs) have attracted significant attention in large-scale energy storage systems due to their unique merits, such as intrinsic safety, low cost, and relatively high theoretical energy density. However, the dilemma of the uncontrollable Zn dendrites, severe hydrogen evolution reaction (HER), and side reactions that occur on the Zn anodes have hindered their commercialization. Herein, a state-of-the-art review of the rational design of highly reversible Zn anodes for high-performance AZIBs is provided. Firstly, the fundamental understanding of Zn deposition, with regard to the nucleation, electro-crystallization, and growth of the Zn nucleus is systematically clarified. Subsequently, a comprehensive survey of the critical factors influencing Zn plating together with the current main challenges is presented. Accordingly, the rational strategies emphasizing structural design, interface engineering, and electrolyte optimization have been summarized and analyzed in detail. Finally, future perspectives on the remaining challenges are recommended, and this review is expected to shed light on the future development of stable Zn anodes toward high-performance AZIBs.
Collapse
Affiliation(s)
- Shuwei Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Huibo Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, P. R. China
| | - Mengyu Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Fan You
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Wang Lin
- Army Logistics Academy, Chongqing 401311, P. R. China
| | - Dan Chan
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Wanxin Lin
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Peng Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| |
Collapse
|
50
|
Fan X, Zhong C, Liu J, Ding J, Deng Y, Han X, Zhang L, Hu W, Wilkinson DP, Zhang J. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chem Rev 2022; 122:17155-17239. [PMID: 36239919 DOI: 10.1021/acs.chemrev.2c00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ever-increasing demand for flexible and portable electronics has stimulated research and development in building advanced electrochemical energy devices which are lightweight, ultrathin, small in size, bendable, foldable, knittable, wearable, and/or stretchable. In such flexible and portable devices, semi-solid/solid electrolytes besides anodes and cathodes are the necessary components determining the energy/power performances. By serving as the ion transport channels, such semi-solid/solid electrolytes may be beneficial to resolving the issues of leakage, electrode corrosion, and metal electrode dendrite growth. In this paper, the fundamentals of semi-solid/solid electrolytes (e.g., chemical composition, ionic conductivity, electrochemical window, mechanical strength, thermal stability, and other attractive features), the electrode-electrolyte interfacial properties, and their relationships with the performance of various energy devices (e.g., supercapacitors, secondary ion batteries, metal-sulfur batteries, and metal-air batteries) are comprehensively reviewed in terms of materials synthesis and/or characterization, functional mechanisms, and device assembling for performance validation. The most recent advancements in improving the performance of electrochemical energy devices are summarized with focuses on analyzing the existing technical challenges (e.g., solid electrolyte interphase formation, metal electrode dendrite growth, polysulfide shuttle issue, electrolyte instability in half-open battery structure) and the strategies for overcoming these challenges through modification of semi-solid/solid electrolyte materials. Several possible directions for future research and development are proposed for going beyond existing technological bottlenecks and achieving desirable flexible and portable electrochemical energy devices to fulfill their practical applications. It is expected that this review may provide the readers with a comprehensive cross-technology understanding of the semi-solid/solid electrolytes for facilitating their current and future researches on the flexible and portable electrochemical energy devices.
Collapse
Affiliation(s)
- Xiayue Fan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Jia Ding
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Lei Zhang
- Energy, Mining & Environment, National Research Council of Canada, Vancouver, British ColumbiaV6T 1W5, Canada
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| | - David P Wilkinson
- Department of Chemical and Biochemical Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1W5, Canada
| | - Jiujun Zhang
- Energy, Mining & Environment, National Research Council of Canada, Vancouver, British ColumbiaV6T 1W5, Canada
- Department of Chemical and Biochemical Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1W5, Canada
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, China
| |
Collapse
|