1
|
Chou LS, Zhang J, Jildeh TR. Metabolic Functions of the Infrapatellar Fat Pad: Implications for Knee Health and Pathology. JBJS Rev 2024; 12:01874474-202410000-00001. [PMID: 39361777 DOI: 10.2106/jbjs.rvw.24.00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
» Despite being historically viewed as a vestigial structure, the infrapatellar fat pad (IPFP) is now recognized as a metabolically active structure, influencing knee health through cytokine production and metabolic pathways.» With distinct anatomical regions, the IPFP contains diverse cell types including adipocytes, fibroblasts, and immune cells, influencing its functional roles, pathology, and contributions to knee disorders.» The IPFP acts as an endocrine organ by releasing adipokines such as adiponectin, leptin, and tumor necrosis factor α, regulating energy balance, immune responses, and tissue remodelling, with implications for knee joint health.» The IPFP's metabolic interactions with neighboring tissues influence joint health, clinical conditions such as knee pain, osteoarthritis, postoperative complications, and ganglion cysts, highlighting its therapeutic potential and clinical relevance.» Understanding the multifaceted metabolic role of the IPFP opens avenues for collaborative approaches that integrate orthopaedics, endocrinology, and immunology to develop innovative therapeutic strategies targeting the intricate connections between adipokines, joint health, and immune responses.
Collapse
Affiliation(s)
- Lee S Chou
- Department of Orthopaedic Surgery, Michigan State University, East Lansing, Michigan
| | | | | |
Collapse
|
2
|
Komaravolu RK, Mehta-D'souza P, Conner T, Allen M, Lumry J, Batushansky A, Pezant NP, Montgomery CG, Griffin TM. Sex-specific effects of injury and beta-adrenergic activation on metabolic and inflammatory mediators in a murine model of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2024; 32:1097-1112. [PMID: 38527663 PMCID: PMC11330734 DOI: 10.1016/j.joca.2024.03.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/09/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVE Metabolic processes are intricately linked to the resolution of innate inflammation and tissue repair, two critical steps for treating post-traumatic osteoarthritis (PTOA). Based on lipolytic and immunoregulatory actions of norepinephrine, we hypothesized that intra-articular β-adrenergic receptor (βAR) stimulation would suppress PTOA-associated inflammation in the infrapatellar fat pad (IFP) and synovium. DESIGN We used the βAR agonist isoproterenol to perturb intra-articular metabolism 3.5 weeks after applying a non-invasive single-load compression injury to knees of 12-week-old male and female mice. We examined the acute effects of intra-articular isoproterenol treatment relative to saline on IFP histology, multiplex gene expression of synovium-IFP tissue, synovial fluid metabolomics, and mechanical allodynia. RESULTS Injured knees developed PTOA pathology characterized by heterotopic ossification, articular cartilage loss, and IFP atrophy and fibrosis. Isoproterenol suppressed the upregulation of pro-fibrotic genes and downregulated the expression of adipose genes and pro-inflammatory genes (Adam17, Cd14, Icam1, Csf1r, and Casp1) in injured joints of female (but not male) mice. Analysis of published single-cell RNA-seq data identified elevated catecholamine-associated gene expression in resident-like synovial-IFP macrophages after injury. Injury substantially altered synovial fluid metabolites by increasing amino acids, peptides, sphingolipids, phospholipids, bile acids, and dicarboxylic acids, but these changes were not appreciably altered by isoproterenol. Intra-articular injection of either isoproterenol or saline increased mechanical allodynia in female mice, whereas neither substance affected male mice. CONCLUSIONS Acute βAR activation altered synovial-IFP transcription in a sex and injury-dependent manner, suggesting that women with PTOA may be more sensitive than men to treatments targeting sympathetic neural signaling pathways.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Isoproterenol/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Disease Models, Animal
- Sex Factors
- Synovial Membrane/metabolism
- Adipose Tissue/metabolism
- Inflammation Mediators/metabolism
- Receptors, Adrenergic, beta/metabolism
- Injections, Intra-Articular
- Knee Injuries/complications
- Knee Injuries/metabolism
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/etiology
- Cartilage, Articular/metabolism
- Cartilage, Articular/drug effects
- Cartilage, Articular/pathology
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Ravi K Komaravolu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Padmaja Mehta-D'souza
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Taylor Conner
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Madeline Allen
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK 73019, USA.
| | - Jessica Lumry
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Nathan P Pezant
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Courtney G Montgomery
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Oklahoma City VA Health Care System, Oklahoma City, OK 73104, USA; Oklahoma Center for Geroscience and the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
3
|
Kobak KA, Batushansky A, Jopkiewicz A, Peelor FF, Kinter MT, Miller BF, Griffin TM. Effect of biological sex and short-term high-fat diet on cellular proliferation, ribosomal biogenesis, and targeted protein abundance in murine articular cartilage. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100495. [PMID: 39040627 PMCID: PMC11260562 DOI: 10.1016/j.ocarto.2024.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Objective To identify factors contributing to sex-differences in OA risk by evaluating the short-term effect of high-fat (HF) diet on sex-specific changes in cartilage cell proliferation, ribosomal biogenesis, and targeted extra-cellular and cellular protein abundance. Materials and methods Knee cartilage was harvested to the subchondral bone from 20-week-old female and male C57BL/6J mice fed a low-fat or HF diet for 4 weeks and labeled with deuterium oxide for 1, 3, 5, 7, 15, or 21 days. Deuterium enrichment was quantified in isolated DNA and RNA to measure cell proliferation and ribosomal biogenesis, respectively. Protein concentration was measured using targeted high resolution accurate mass spectrometry. Results HF diet increased the maximal deuterium incorporation into DNA from approximately 40 to 50%, albeit at a slower rate. These findings, which were magnified in female versus male mice, indicate a greater number of proliferating cells with longer half-lives under HF diet conditions. HF diet caused distinct sex-dependent effects on deuterium incorporation into RNA, increasing the fraction of ribosomes undergoing biogenesis in male mice and doubling the rate of ribosome biogenesis in female mice. HF diet altered cartilage protein abundance similarly in both sexes, except for matrilin-3, which was more abundant in HF versus LF conditions in female mice only. Overall, HF diet treatment had a stronger effect than sex on cartilage protein abundance, with most changes involving extracellular matrix and matrix-associated proteins. Conclusions Short-term HF diet broadly altered cartilage matrix protein abundance, while sex-dependent effects primarily involved differences in cell proliferation and ribosomal biogenesis.
Collapse
Affiliation(s)
- Kamil A. Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Anita Jopkiewicz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Frederick F. Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Michael T. Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| | - Timothy M. Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
4
|
Li K, Leng Y, Lei D, Zhang H, Ding M, Lo WLA. Causal link between metabolic related factors and osteoarthritis: a Mendelian randomization investigation. Front Nutr 2024; 11:1424286. [PMID: 39206315 PMCID: PMC11349640 DOI: 10.3389/fnut.2024.1424286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Metabolic syndrome (MetS) is significantly associated with osteoarthritis (OA), especially in MetS patients with blood glucose abnormalities, such as elevated fasting blood glucose (FG), which may increase OA risk. Dietary modifications, especially the intake of polyunsaturated fatty acids (PUFAs), are regarded as a potential means of preventing MetS and its complications. However, regarding the effects of FG, Omega-3s, and Omega-6s on OA, the research conclusions are conflicting, which is attributed to the complexity of the pathogenesis of OA. Therefore, it is imperative to thoroughly evaluate multiple factors to fully understand their role in OA, which needs further exploration and clarification. Methods Two-sample univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) were employed to examine the causal effect of metabolic related factors on hip OA (HOA) or knee OA (KOA). The exposure and outcome datasets were obtained from Open GWAS IEU. All cases were independent European ancestry data. Three MR methods were performed to estimate the causal effect: inverse-variance weighting (IVW), weighted median method (WMM), and MR-Egger regression. Additionally, the intercept analysis in MR-Egger regression is used to estimate pleiotropy, and the IVW method and MR-Egger regression are used to test the heterogeneity. Results The UVMR analysis revealed a causal relationship between FG and HOA. By MVMR analysis, the study discovered a significant link between FG (OR = 0.79, 95%CI: 0.64∼0.99, p = 0.036) and KOA after accounting for body mass index (BMI), age, and sex hormone-binding globulin (SHBG). However, no causal effects of FG on HOA were seen. Omega-3s and Omega-6s did not have a causal influence on HOA or KOA. No significant evidence of pleiotropy was identified. Discussion The MR investigation showed a protective effect of FG on KOA development but no causal relationship between FG and HOA. No causal effect of Omega-3s and Omega-6s on HOA and KOA was observed. Shared genetic overlaps might also exist between BMI and age, SHBG and PUFAs for OA development. This finding offers a novel insight into the treatment and prevention of KOA from glucose metabolism perspective. The FG cutoff value should be explored in the future, and consideration should be given to demonstrating the study in populations other than Europeans.
Collapse
Affiliation(s)
- Kai Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Leng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Lei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haojie Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minghui Ding
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Wang MG, Seale P, Furman D. The infrapatellar fat pad in inflammaging, knee joint health, and osteoarthritis. NPJ AGING 2024; 10:34. [PMID: 39009582 PMCID: PMC11250832 DOI: 10.1038/s41514-024-00159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Osteoarthritis (OA) is the most common form of arthritis and accounts for nearly $140 billion in annual healthcare expenditures only in the United States. Obesity, aging, and joint injury are major risk factors for OA development and progression, but the mechanisms contributing to pathology remain unclear. Emerging evidence suggests that cellular dysregulation and inflammation in joint tissues, including intra-articular adipose tissue depots, may contribute to disease severity. In particular, the infrapatellar fat pad (IFP), located in the knee joint, which provides a protective cushion for joint loading, also secretes multiple endocrine factors and inflammatory cytokines (inflammaging) that can regulate joint physiology and disease. Correlates of cartilage degeneration and OA-associated disease severity include inflammation and fibrosis of IFP in model organisms and human studies. In this article, we discuss recent progress in understanding the roles and regulation of intra-articular fat tissue in regulating joint biology and OA.
Collapse
Affiliation(s)
- Magnolia G Wang
- Department of Biology, School of Arts and Sciences, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Furman
- Center for AI and Data Science of Aging, Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Stanford 1000 Immunomes Project, Stanford University, Stanford, CA, 94305, USA.
- IIMT, Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, 29, Argentina.
| |
Collapse
|
6
|
Van den Langenbergh J, Bastiaansen-Jenniskens Y, van Osch G, Runhaar J, Bierma-Zeinstra S, Soballe K, Laursen J, Liljensoe A, Kops N, Mechlenburg I, Clockaerts S. PLOD2 gene expression in infrapatellar fat pad is correlated with fat mass in obese patients with end-stage knee osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100469. [PMID: 38694906 PMCID: PMC11061337 DOI: 10.1016/j.ocarto.2024.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/06/2024] [Indexed: 05/04/2024] Open
Abstract
Objective To investigate associations between obesity-linked systemic factors and gene expression indicative for the inflammatory and fibrotic processes in the infrapatellar fat pad (IFP), in a population of obese patients with end-stage knee osteoarthritis (KOA). Methods We collected human IFPs from 48 patients with a mean body mass index (BMI) of 35.44 kg/m2 during total knee replacement procedures. These patients were part of a randomized controlled trial and met the criteria of having OA and a BMI of ≥30 kg/m2. Blood samples were collected to assess serum levels of glucose, total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, and leptin. Total body composition was measured using dual-energy X-ray absorptiometry. Gene expressions of IL6, TNFA, COL1A1, IL1B, ASMA, PLOD2 in the IFP were analyzed. Results Univariate analysis resulted in a positive correlation between BMI and procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) expression (r2 = 0.13). In univariate analyses of obesity-linked systemic factors and PLOD2, significant correlations were found for lean mass (r2 = 0.20), fat mass (r2 = 0.20), serum cholesterol (r2 = 0.17), serum triglycerides (r2 = 0.19) and serum leptin (r2 = 0.10). A multiple linear regression model indicated fat mass to be a strong predictor of PLOD2 production in the IFP (r2 = 0.22, P = 0.003). Conclusion Our study demonstrates the positive association between fat mass and PLOD2 expression in the IFP of obese end-stage knee OA patients. This may indicate that within this patient population the fibrotic process in the IFP is influenced by systemic adipose tissue, next to local inflammatory processes.
Collapse
Affiliation(s)
- J. Van den Langenbergh
- KU Leuven, Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Leuven, Belgium
| | - Y.M. Bastiaansen-Jenniskens
- Erasmus MC, University Medical Center Rotterdam, Department of Orthopaedics and Sports Medicine, Rotterdam, Netherlands
| | - G.J.V.M. van Osch
- Erasmus MC, University Medical Center Rotterdam, Department of Orthopaedics and Sports Medicine, Rotterdam, Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Otorhinolaryngology, Rotterdam, Netherlands
| | - J. Runhaar
- Erasmus MC, University Medical Center Rotterdam, Department of General Practice, Rotterdam, Netherlands
| | - S.M.A. Bierma-Zeinstra
- Erasmus MC, University Medical Center Rotterdam, Department of Orthopaedics and Sports Medicine, Rotterdam, Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of General Practice, Rotterdam, Netherlands
| | - K. Soballe
- Aarhus University Hospital, Orthopaedic Research Unit, Aarhus, Denmark
| | - J. Laursen
- Aarhus University Hospital, Orthopaedic Research Unit, Aarhus, Denmark
| | - A. Liljensoe
- Aarhus University Hospital, Orthopaedic Research Unit, Aarhus, Denmark
| | - N. Kops
- Erasmus MC, University Medical Center Rotterdam, Department of Orthopaedics and Sports Medicine, Rotterdam, Netherlands
| | - I. Mechlenburg
- Aarhus University Hospital, Orthopaedic Research Unit, Aarhus, Denmark
| | - S. Clockaerts
- KU Leuven, Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Leuven, Belgium
- H.H. Z. Lier, Orthopedic Surgery and Traumatology, Lier, Belgium
| |
Collapse
|
7
|
Yuan Z, Jiang D, Yang M, Tao J, Hu X, Yang X, Zeng Y. Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies. Orthop Surg 2024; 16:532-550. [PMID: 38296798 PMCID: PMC10925521 DOI: 10.1111/os.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
Osteoarthritis (OA) is the most common chronic degenerative joint disease in middle-aged and elderly people, characterized by joint pain and dysfunction. Macrophages are key players in OA pathology, and their activation state has been studied extensively. Various studies have suggested that macrophages might respond to stimuli in their microenvironment by changing their phenotypes to pro-inflammatory or anti-inflammatory phenotypes, which is called macrophage polarization. Macrophages accumulate and become polarized (M1 or M2) in many tissues, such as synovium, adipose tissue, bone marrow, and bone mesenchymal tissues in joints, while resident macrophages as well as other stromal cells, including fibroblasts, chondrocytes, and osteoblasts, form the joint and function as an integrated unit. In this study, we focus exclusively on synovial macrophages, adipose tissue macrophages, and osteoclasts, to investigate their roles in the development of OA. We review recent key findings related to macrophage polarization and OA, including pathogenesis, molecular pathways, and therapeutics. We summarize several signaling pathways in macrophage reprogramming related to OA, including NF-κB, MAPK, TGF-β, JAK/STAT, PI3K/Akt/mTOR, and NLRP3. Of note, despite the increasing availability of treatments for osteoarthritis, like intra-articular injections, surgery, and cellular therapy, the demand for more effective clinical therapies has remained steady. Therefore, we also describe the current prospective therapeutic methods that deem macrophage polarization to be a therapeutic target, including physical stimulus, chemical compounds, and biological molecules, to enhance cartilage repair and alleviate the progression of OA.
Collapse
Affiliation(s)
- Zimu Yuan
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Decheng Jiang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Mengzhu Yang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Jie Tao
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Xin Hu
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| | - Xiao Yang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| | - Yi Zeng
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
8
|
Hengtrakool P, Leearamwat N, Sengprasert P, Wongphoom J, Chaichana T, Taweevisit M, Ngarmukos S, Tanavalee A, Palaga T, Reantragoon R. Infrapatellar fat pad adipose tissue-derived macrophages display a predominant CD11c+CD206+ phenotype and express genotypes attributable to key features of OA pathogenesis. Front Immunol 2024; 15:1326953. [PMID: 38361943 PMCID: PMC10867170 DOI: 10.3389/fimmu.2024.1326953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024] Open
Abstract
Objectives In knee osteoarthritis (OA), macrophages are the most predominant immune cells that infiltrate synovial tissues and infrapatellar fat pads (IPFPs). Both M1 and M2 macrophages have been described, but their role in OA has not been fully investigated. Therefore, we investigated macrophage subpopulations in IPFPs and synovial tissues of knee OA patients and their correlation with disease severity, examined their transcriptomics, and tested for factors that influenced their polarization. Methods Synovial tissues and IPFPs were obtained from knee OA patients undergoing total knee arthroplasty. Macrophages isolated from these joint tissues were characterized via flow cytometry. Transcriptomic profiling of each macrophage subpopulations was performed using NanoString technology. Peripheral blood monocyte-derived macrophages (MDMs) were treated with synovial fluid and synovial tissue- and IPFP-conditioned media. Synovial fluid-treated MDMs were treated with platelet-rich plasma (PRP) and its effects on macrophage polarization were observed. Results Our findings show that CD11c+CD206+ macrophages were predominant in IPFPs and synovial tissues compared to other macrophage subpopulations (CD11c+CD206-, CD11c-CD206+, and CD11c-CD206- macrophages) of knee OA patients. The abundance of macrophages in IPFPs reflected those in synovial tissues but did not correlate with disease severity as determined from Mankin scoring of cartilage destruction. Our transcriptomics data demonstrated highly expressed genes that were related to OA pathogenesis in CD11c+CD206+ macrophages than CD11c+CD206-, CD11c-CD206+, and CD11c-CD206- macrophages. In addition, MDMs treated with synovial fluid, synovial tissue-conditioned media, or IPFP-conditioned media resulted in different polarization profiles of MDMs. IPFP-conditioned media induced increases in CD86+CD206+ MDMs, whereas synovial tissue-conditioned media induced increases in CD86+CD206- MDMs. Synovial fluid treatment (at 1:8 dilution) induced a very subtle polarization in each macrophage subpopulation. PRP was able to shift macrophage subpopulations and partially reverse the profiles of synovial fluid-treated MDMs. Conclusion Our study provides an insight on the phenotypes and genotypes of macrophages found in IPFPs and synovial tissues of knee OA patients. We also show that the microenvironment plays a role in driving macrophages to polarize differently and shifting macrophage profiles can be reversed by PRP.
Collapse
Affiliation(s)
- Patchanika Hengtrakool
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nitigorn Leearamwat
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Panjana Sengprasert
- Immunology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jutamas Wongphoom
- Department of Pathology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Thiamjit Chaichana
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Mana Taweevisit
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Srihatach Ngarmukos
- Department of Orthopedics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Biologics for Knee Osteoarthritis Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Aree Tanavalee
- Department of Orthopedics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Biologics for Knee Osteoarthritis Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Rangsima Reantragoon
- Immunology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Tang S, Yao L, Ruan J, Kang J, Cao Y, Nie X, Lan W, Zhu Z, Han W, Liu Y, Tian J, Seale P, Qin L, Ding C. Single-cell atlas of human infrapatellar fat pad and synovium implicates APOE signaling in osteoarthritis pathology. Sci Transl Med 2024; 16:eadf4590. [PMID: 38266107 DOI: 10.1126/scitranslmed.adf4590] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/18/2023] [Indexed: 01/26/2024]
Abstract
The infrapatellar fat pad (IPFP) and synovium play essential roles in maintaining knee joint homeostasis and in the progression of osteoarthritis (OA). The cellular and transcriptional mechanisms regulating the function of these specialized tissues under healthy and diseased conditions are largely unknown. Here, single-cell and single-nuclei RNA sequencing of human IPFP and synovial tissues were performed to elucidate the cellular composition and transcriptional profile. Computational trajectory analysis revealed that dipeptidyl peptidase 4+ mesenchymal cells function as a common progenitor for IPFP adipocytes and synovial lining layer fibroblasts, suggesting that IPFP and synovium represent an integrated tissue unit. OA induced a profibrotic and inflammatory phenotype in mesenchymal lineage cells with biglycan+ intermediate fibroblasts as a major contributor to OA fibrosis. Apolipoprotein E (APOE) signaling from intermediate fibroblasts and macrophages was identified as a critical regulatory factor. Ex vivo incubation of human cartilage with soluble APOE accelerated proteoglycan degeneration. Inhibition of APOE signaling by intra-articular injection of an anti-APOE neutralizing antibody attenuated the progression of collagenase-induced OA in mice, demonstrating a detrimental effect of APOE on cartilage. Our studies provide a framework for designing further therapeutic strategies for OA by describing the cellular and transcriptional landscape of human IPFP and synovium in healthy versus OA joints.
Collapse
Affiliation(s)
- Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Lutian Yao
- Department of Orthopaedic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jianzhao Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jingliang Kang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yumei Cao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xiaoyu Nie
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Weiren Lan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Weiyu Han
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yongguang Liu
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jing Tian
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|
10
|
Shin H, Prasad V, Lupancu T, Malik S, Achuthan A, Biondo M, Kingwell BA, Thiem M, Gottschalk M, Weighardt H, Förster I, de Steiger R, Hamilton JA, Lee KMC. The GM-CSF/CCL17 pathway in obesity-associated osteoarthritic pain and disease in mice. Osteoarthritis Cartilage 2023; 31:1327-1341. [PMID: 37225052 DOI: 10.1016/j.joca.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVES We have previously identified a granulocyte macrophage-colony stimulating factor (GM-CSF)/C-C motif ligand 17 (CCL17) pathway in monocytes/macrophages, in which GM-CSF regulates the formation of CCL17, and it is important for an experimental osteoarthritis (OA) model. We explore here additional OA models, including in the presence of obesity, such as a requirement for this pathway. DESIGN The roles of GM-CSF, CCL17, CCR4, and CCL22 in various experimental OA models, including those incorporating obesity (eight-week high-fat diet), were investigated using gene-deficient male mice. Pain-like behavior and arthritis were assessed by relative static weight distribution and histology, respectively. Cell populations (flow cytometry) and cytokine messenger RNA (mRNA) expression (qPCR) in knee infrapatellar fat pad were analyzed. Human OA sera were collected for circulating CCL17 levels (ELISA) and OA knee synovial tissue for gene expression (qPCR). RESULTS We present evidence that: i) GM-CSF, CCL17, and CCR4, but not CCL22, are required for the development of pain-like behavior and optimal disease in three experimental OA models, as well as for exacerbated OA development due to obesity, ii) obesity alone leads to spontaneous knee joint damage in a GM-CSF- and CCL17-dependent manner, and iii) in knee OA patients, early indications are that BMI correlates with a lower Oxford Knee Score (r = -0.458 and p = 0.0096), with elevated circulating CCL17 levels (r = 0.2108 and p = 0.0153) and with elevated GM-CSF and CCL17 gene expression in OA synovial tissue. CONCLUSIONS The above findings indicate that GM-CSF, CCL17, and CCR4 are involved in obesity-associated OA development, broadening their potential as targets for possible treatments for OA.
Collapse
Affiliation(s)
- Heonsu Shin
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Varun Prasad
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Tanya Lupancu
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Shveta Malik
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Adrian Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Mark Biondo
- CSL Ltd, Bio21 Institute, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Bronwyn A Kingwell
- CSL Ltd, Bio21 Institute, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Manja Thiem
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Marlene Gottschalk
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Richard de Steiger
- Department of Surgery, Epworth Healthcare, University of Melbourne, Richmond, Victoria 3121, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Victoria 3021, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
11
|
Xia W, Liu Y, Jiang X, Li M, Zheng S, Zhang Z, Huang X, Luo S, Khoong Y, Hou M, Zan T. Lean adipose tissue macrophage derived exosome confers immunoregulation to improve wound healing in diabetes. J Nanobiotechnology 2023; 21:128. [PMID: 37046252 PMCID: PMC10091677 DOI: 10.1186/s12951-023-01869-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic non-healing wounds, a prevalent complication of diabetes, are associated with increased mortality in diabetic patients. Excessive accumulation of M1 macrophages in diabetic wounds promotes inflammation and results in dysregulated tissue repair. Adipose tissue macrophages (ATMs) derived from healthy lean donors have the ability to improve glucose tolerance and insulin sensitivity, as well as modulate inflammation. MicroRNAs (miRs), which can be packaged into exosomes (Exos) and secreted from cells, serve as essential regulators of macrophage polarization. Here, we revealed that ATMs isolated from lean mice secrete miRs-containing Exos, which modulate macrophage polarization and promote rapid diabetic wound healing when administered to diabetes-prone db/db mice. The miRs sequence of tissue samples from wounds treated with Exos secreted by lean ATMs (ExosLean) revealed that miR-222-3p was up-regulated. Further analyses showed that inhibiting miR-222-3p using a miR inhibitor impaired the macrophage-reprogramming effect of ExosLean. In the excisional skin wound mouse model, locally inhibiting miR-222-3p disrupted healing dynamics and failed to modulate macrophage polarization. Mechanistic studies revealed a connection between miR-222-3p, Bcl2l11/Bim, an inflammatory response effector, macrophage polarization, and diabetic wound healing. In summary, ExosLean act as positive regulators of macrophage polarization by regulating miR levels in wounds and accelerating wound healing, and thus have important implications for wound management in diabetes.
Collapse
Affiliation(s)
- Wenzheng Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yunhan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xingyu Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shengwu Zheng
- Department of Burn and Plastic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Zewei Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shenying Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Meng Hou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
12
|
Lynskey SJ, Macaluso MJ, Gill SD, McGee SL, Page RS. Biomarkers of Osteoarthritis—A Narrative Review on Causal Links with Metabolic Syndrome. Life (Basel) 2023; 13:life13030730. [PMID: 36983885 PMCID: PMC10051744 DOI: 10.3390/life13030730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Development of OA (OA) is multifactorial and is strongly associated with risk factors such as aging, trauma, metabolic disorders, and obesity. Metabolic Syndrome (MetS)-associated OA, collectively coined MetS-OA, is an increasingly recognized entity in which metabolic disorders and low-grade inflammation play a key mechanistic role in the disruption of joint homeostasis and cartilage degradation. Although there have been enormous efforts to discover biomarkers of MetS and OA, studies investigating a pathophysiological link between MetS and OA are relatively limited, and no serum blood marker has proved diagnostic so far. OA biomarkers that are necessary to discriminate and diagnose early disease remain to be elicited, explained in part by limited prospective studies, and therefore limited tools available to utilize in any prognostic capacity. Biomarker validation projects have been established by the Biomarker Consortium to determine biochemical markers demonstrating predictive validity for knee OA. Given that the metabolic constituents of MetS are treatable to varying extents, it stands to reason that treating these, and monitoring such treatment, may help to mitigate deleterious links with OA development. This narrative review will describe the current state of biomarker identification and utility in OA associated with MetS. We discuss the pathophysiological mechanisms of disease according to constituent pathologies of MetS and how identification of biomarkers may guide future investigation of novel targets.
Collapse
Affiliation(s)
- Samuel James Lynskey
- Department of Orthopaedic Surgery, Geelong University Hospital, Geelong, VIC 3220, Australia
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
- Barwon Health Laboratory, Barwon Health, University Hospital Geelong, Geelong, VIC 3220, Australia
- Correspondence:
| | - Marc Julian Macaluso
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Stephen D. Gill
- Department of Orthopaedic Surgery, Geelong University Hospital, Geelong, VIC 3220, Australia
- Barwon Centre for Orthopaedic Research and Education (BCORE), St. John of God Hospital, Deakin University, Barwon Health, Geelong, VIC 3220, Australia
- IMPACT—the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Sean L. McGee
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
- IMPACT—the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Richard S. Page
- Department of Orthopaedic Surgery, Geelong University Hospital, Geelong, VIC 3220, Australia
- Barwon Centre for Orthopaedic Research and Education (BCORE), St. John of God Hospital, Deakin University, Barwon Health, Geelong, VIC 3220, Australia
- IMPACT—the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
13
|
Collins KH, Guilak F. Trimming the fat - is leptin crosstalk the link between obesity and osteoarthritis? Osteoarthritis Cartilage 2023; 31:23-25. [PMID: 36273787 DOI: 10.1016/j.joca.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- K H Collins
- Department of Orthopedic Surgery, Washington University, St Louis, MO, USA; Shriners Hospitals for Children, St Louis, MO, USA; Center of Regenerative Medicine, Washington University, St Louis, MO, USA
| | - F Guilak
- Department of Orthopedic Surgery, Washington University, St Louis, MO, USA; Shriners Hospitals for Children, St Louis, MO, USA; Center of Regenerative Medicine, Washington University, St Louis, MO, USA.
| |
Collapse
|
14
|
Synovial Fluid in Knee Osteoarthritis Extends Proinflammatory Niche for Macrophage Polarization. Cells 2022; 11:cells11244115. [PMID: 36552878 PMCID: PMC9776803 DOI: 10.3390/cells11244115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophage polarization is a steering factor of osteoarthritis (OA) progression. Synovial fluid (SF) obtained from OA patients with different Kellgren-Lawrence grades (KL grades) holds several proinflammatory factors and was hypothesized to induce macrophage differentiation and polarization by providing the needed microenvironment. U937 cells and peripheral-blood-mononuclear-cell-derived monocytes (PBMC-derived CD14+ cells) were induced with SFs of progressive KL grades for 48 h, and the status of the differentiated cells was evaluated by cell surface markers representing M1 and M2 macrophage phenotypes. Functional viability assessment of the differentiated cells was performed by cytokine estimation. The fraction of macrophages and their phenotypes were estimated by immunophenotyping of SF-isolated cells of different KL grades. A grade-wise proteome analysis of SFs was performed in search of the factors which are influential in macrophage differentiation and polarization. In the assay on U937 cells, induction with SF of KL grade III and IV showed a significant increase in M1 type (CD86+). The percentage of M2 phenotype (CD163+) was significantly higher after the induction with SF of KL grade II. A Significantly higher M1/M2 ratio was estimated in the cells induced with KL grade III and IV. The cell differentiation pattern in the assay on PBMC-derived CD14+ cells showed a grade-wise decline in both M1 (CD11C+, CD86+) and M2 phenotype (CD163+). Cytokine estimation specific to M1 (TNF-α, IL-6, IL-1β, IFN-γ) and M2 (IL-4 and IL-10) macrophages corelated with the differentiation pattern in the U937 cell assay, while it did not reveal any significant changes in the PBMC-derived CD14+ cells assay. SF cells' immunophenotyping showed the highest percentage of CD14+ macrophages in KL grade II; CD86+ and CD163+ cells were minimal in all KL grades' SFs. The proteome analysis revealed significantly expressed MIF, CAPG/MCP, osteopontin, and RAS-related RAB proteins in KL grade III and IV samples, which are linked with macrophages' movement, polarization, and migration-behavior. In conclusion, this study demonstrated that SF in OA joints acts as a niche and facilitates M1 phenotype polarization by providing a proinflammatory microenvironment.
Collapse
|
15
|
Xiong S, Tan J, Wang Y, He J, Hu F, Wu X, Liu Z, Lin S, Li X, Chen Z, Mao R. Fibrosis in fat: From other diseases to Crohn’s disease. Front Immunol 2022; 13:935275. [PMID: 36091035 PMCID: PMC9453038 DOI: 10.3389/fimmu.2022.935275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Creeping fat is a specific feature of Crohn’s disease (CD) and is characterized by mesenteric fat wrapping around the intestine. It highly correlates with intestinal transmural inflammation, muscular hypertrophy, fibrosis, and stricture formation. However, the pathogenesis of creeping fat remains unclear. Molecular crosstalk exists between mesenteric fat and the intestine. Indeed, creeping fat contains different types of cells, including adipocytes and immune cells. These cell types can produce various cytokines, fatty acids, and growth factors, which affect the mesenteric fat function and modulate intestinal inflammation and immunity. Moreover, adipocyte progenitors can produce extracellular matrix to adapt to fat expansion. Previous studies have shown that fat fibrosis is an important feature of adipose tissue malfunction and exists in other diseases, including metabolic disorders, cancer, atrial fibrillation, and osteoarthritis. Furthermore, histological sections of CD showed fibrosis in the creeping fat. However, the role of fibrosis in the mesenteric fat of CD is not well understood. In this review, we summarized the possible mechanisms of fat fibrosis and its impact on other diseases. More specifically, we illustrated the role of various cells (adipocyte progenitors, macrophages, mast cells, and group 1 innate lymphoid cells) and molecules (including hypoxia-inducible factor 1-alpha, transforming growth factor-beta, platelet-derived growth factor, and peroxisome proliferator-activated receptor-gamma) in the pathogenesis of fat fibrosis in other diseases to understand the role of creeping fat fibrosis in CD pathogenesis. Future research will provide key information to decipher the role of fat fibrosis in creeping fat formation and intestinal damage, thereby helping us identify novel targets for the diagnosis and treatment of CD.
Collapse
Affiliation(s)
- Shanshan Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinyu Tan
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinshen He
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fan Hu
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Wu
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zishan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sinan Lin
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuehua Li
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhihui Chen
- Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ren Mao, ; Zhihui Chen,
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Gastroenterology, Huidong People’s Hospital, Huizhou, China
- *Correspondence: Ren Mao, ; Zhihui Chen,
| |
Collapse
|
16
|
Das P, Jana S, Kumar Nandi S. Biomaterial-Based Therapeutic Approaches to Osteoarthritis and Cartilage Repair Through Macrophage Polarization. CHEM REC 2022; 22:e202200077. [PMID: 35792527 DOI: 10.1002/tcr.202200077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/15/2022] [Indexed: 11/06/2022]
Abstract
There is an ever-increasing clinical and socioeconomic burden associated with cartilage lesions & osteoarthritis (OA). Its progression, chondrocyte death & hypertrophy are all facilitated by inflamed synovium & joint environment. Due to their capacity to switch between pro- & anti-inflammatory phenotypes, macrophages are increasingly being recognized as a key player in the healing process, which has been largely overlooked in the past. A biomaterial's inertness has traditionally been a goal while developing them in order to reduce the likelihood of adverse reactions from the host organism. A better knowledge of how macrophages respond to implanted materials has made it feasible to determine the biomaterial architectural parameters that control the host response & aid in effective tissue integration. Thus, this review summarizes novel therapeutic techniques for avoiding OA or increasing cartilage repair & regeneration that might be developed using new technologies tuning macrophages into desirable functional phenotypes.
Collapse
Affiliation(s)
- Piyali Das
- Department of Microbiology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, India
| | - Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, 700037, Kolkata, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, 700037, Kolkata, India
| |
Collapse
|
17
|
Li Z, Lin Z, Liu S, Yagi H, Zhang X, Yocum L, Romero‐Lopez M, Rhee C, Makarcyzk MJ, Yu I, Li EN, Fritch MR, Gao Q, Goh KB, O'Donnell B, Hao T, Alexander PG, Mahadik B, Fisher JP, Goodman SB, Bunnell BA, Tuan RS, Lin H. Human Mesenchymal Stem Cell-Derived Miniature Joint System for Disease Modeling and Drug Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105909. [PMID: 35436042 PMCID: PMC9313499 DOI: 10.1002/advs.202105909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Indexed: 05/12/2023]
Abstract
Diseases of the knee joint such as osteoarthritis (OA) affect all joint elements. An in vitro human cell-derived microphysiological system capable of simulating intraarticular tissue crosstalk is desirable for studying etiologies/pathogenesis of joint diseases and testing potential therapeutics. Herein, a human mesenchymal stem cell-derived miniature joint system (miniJoint) is generated, in which engineered osteochondral complex, synovial-like fibrous tissue, and adipose tissue are integrated into a microfluidics-enabled bioreactor. This novel design facilitates different tissues communicating while still maintaining their respective phenotypes. The miniJoint exhibits physiologically relevant changes when exposed to interleukin-1β mediated inflammation, which are similar to observations in joint diseases in humans. The potential of the miniJoint in predicting in vivo efficacy of drug treatment is confirmed by testing the "therapeutic effect" of the nonsteroidal anti-inflammatory drug, naproxen, as well as four other potential disease-modifying OA drugs. The data demonstrate that the miniJoint recapitulates complex tissue interactions, thus providing a robust organ chip model for the study of joint pathology and the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Zhong Li
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Zixuan Lin
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Silvia Liu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPA15261USA
| | - Haruyo Yagi
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Xiurui Zhang
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Lauren Yocum
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | | | - Claire Rhee
- Department of Orthopaedic SurgeryStanford UniversityStanfordCA94305USA
| | - Meagan J. Makarcyzk
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPA15260USA
| | - Ilhan Yu
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Eileen N. Li
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPA15260USA
| | - Madalyn R. Fritch
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Qi Gao
- Department of Orthopaedic SurgeryStanford UniversityStanfordCA94305USA
| | - Kek Boon Goh
- Institute of PhysicsUniversity of FreiburgFreiburg79104Germany
- School of EngineeringMonash University MalaysiaSelangor47500Malaysia
| | - Benjamen O'Donnell
- Center for Stem Cell Research and Regenerative MedicineTulane University School of MedicineOrleansLA70112USA
| | - Tingjun Hao
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Peter G. Alexander
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Bhushan Mahadik
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - John P. Fisher
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Stuart B. Goodman
- Department of Orthopaedic SurgeryStanford UniversityStanfordCA94305USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research and Regenerative MedicineTulane University School of MedicineOrleansLA70112USA
- Present address:
Department of Microbiology, Immunology, and GeneticsUniversity of North Texas Health Science CenterFort WorthTX76107USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPA15260USA
- McGowan Institute for Regenerative MedicineUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
- Present address:
The Chinese University of Hong KongShatinHong Kong SAR999077China
| | - Hang Lin
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPA15260USA
- McGowan Institute for Regenerative MedicineUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| |
Collapse
|
18
|
Rothbauer M, Reihs EI, Fischer A, Windhager R, Jenner F, Toegel S. A Progress Report and Roadmap for Microphysiological Systems and Organ-On-A-Chip Technologies to Be More Predictive Models in Human (Knee) Osteoarthritis. Front Bioeng Biotechnol 2022; 10:886360. [PMID: 35782494 PMCID: PMC9240813 DOI: 10.3389/fbioe.2022.886360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA), a chronic debilitating joint disease affecting hundreds of million people globally, is associated with significant pain and socioeconomic costs. Current treatment modalities are palliative and unable to stop the progressive degeneration of articular cartilage in OA. Scientific attention has shifted from the historical view of OA as a wear-and-tear cartilage disorder to its recognition as a whole-joint disease, highlighting the contribution of other knee joint tissues in OA pathogenesis. Despite much progress in the field of microfluidic systems/organs-on-a-chip in other research fields, current in vitro models in use do not yet accurately reflect the complexity of the OA pathophenotype. In this review, we provide: 1) a detailed overview of the most significant recent developments in the field of microsystems approaches for OA modeling, and 2) an OA-pathophysiology-based bioengineering roadmap for the requirements of the next generation of more predictive and authentic microscale systems fit for the purpose of not only disease modeling but also of drug screening to potentially allow OA animal model reduction and replacement in the near future.
Collapse
Affiliation(s)
- Mario Rothbauer
- Karl Chiari Lab for Orthopeadic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Faculty of Technical Chemistry, Vienna University of Technology, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Eva I. Reihs
- Karl Chiari Lab for Orthopeadic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Faculty of Technical Chemistry, Vienna University of Technology, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Anita Fischer
- Karl Chiari Lab for Orthopeadic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopeadic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Florien Jenner
- Veterinary Tissue Engineering and Regenerative Medicine Vienna (VETERM), Equine Surgery Unit, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopeadic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
19
|
Sanchez-Lopez E, Coras R, Torres A, Lane NE, Guma M. Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol 2022; 18:258-275. [PMID: 35165404 PMCID: PMC9050956 DOI: 10.1038/s41584-022-00749-9] [Citation(s) in RCA: 291] [Impact Index Per Article: 145.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a progressive degenerative disease resulting in joint deterioration. Synovial inflammation is present in the OA joint and has been associated with radiographic and pain progression. Several OA risk factors, including ageing, obesity, trauma and mechanical loading, play a role in OA pathogenesis, likely by modifying synovial biology. In addition, other factors, such as mitochondrial dysfunction, damage-associated molecular patterns, cytokines, metabolites and crystals in the synovium, activate synovial cells and mediate synovial inflammation. An understanding of the activated pathways that are involved in OA-related synovial inflammation could form the basis for the stratification of patients and the development of novel therapeutics. This Review focuses on the biology of the OA synovium, how the cells residing in or recruited to the synovium interact with each other, how they become activated, how they contribute to OA progression and their interplay with other joint structures.
Collapse
Affiliation(s)
- Elsa Sanchez-Lopez
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, CA, USA
| | - Roxana Coras
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Alyssa Torres
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Nancy E Lane
- Division of Rheumatology, Department of Medicine, University of California Davis, Davis, CA, USA
| | - Monica Guma
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA.
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain.
- San Diego VA Healthcare Service, San Diego, CA, USA.
| |
Collapse
|
20
|
Batushansky A, Zhu S, Komaravolu RK, South S, Mehta-D'souza P, Griffin TM. Fundamentals of OA. An initiative of Osteoarthritis and Cartilage. Obesity and metabolic factors in OA. Osteoarthritis Cartilage 2022; 30:501-515. [PMID: 34537381 PMCID: PMC8926936 DOI: 10.1016/j.joca.2021.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Obesity was once considered a risk factor for knee osteoarthritis (OA) primarily for biomechanical reasons. Here we provide an additional perspective by discussing how obesity also increases OA risk by altering metabolism and inflammation. DESIGN This narrative review is presented in four sections: 1) metabolic syndrome and OA, 2) metabolic biomarkers of OA, 3) evidence for dysregulated chondrocyte metabolism in OA, and 4) metabolic inflammation: joint tissue mediators and mechanisms. RESULTS Metabolic syndrome and its components are strongly associated with OA. However, evidence for a causal relationship is context dependent, varying by joint, gender, diagnostic criteria, and demographics, with additional environmental and genetic interactions yet to be fully defined. Importantly, some aspects of the etiology of obesity-induced OA appear to be distinct between men and women, especially regarding the role of adipose tissue. Metabolomic analyses of serum and synovial fluid have identified potential diagnostic biomarkers of knee OA and prognostic biomarkers of disease progression. Connecting these biomarkers to cellular pathophysiology will require future in vivo studies of joint tissue metabolism. Such studies will help reveal when a metabolic process or a metabolite itself is a causal factor in disease progression. Current evidence points towards impaired chondrocyte metabolic homeostasis and metabolic-immune dysregulation as likely factors connecting obesity to the increased risk of OA. CONCLUSIONS A deeper understanding of how obesity alters metabolic and inflammatory pathways in synovial joint tissues is expected to provide new therapeutic targets and an improved definition of "metabolic" and "obesity" OA phenotypes.
Collapse
Affiliation(s)
- A Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - S Zhu
- Department of Biomedical Sciences, Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, 45701, USA.
| | - R K Komaravolu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - S South
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - P Mehta-D'souza
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - T M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA; Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
21
|
Haubruck P, Pinto MM, Moradi B, Little CB, Gentek R. Monocytes, Macrophages, and Their Potential Niches in Synovial Joints - Therapeutic Targets in Post-Traumatic Osteoarthritis? Front Immunol 2021; 12:763702. [PMID: 34804052 PMCID: PMC8600114 DOI: 10.3389/fimmu.2021.763702] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Synovial joints are complex structures that enable normal locomotion. Following injury, they undergo a series of changes, including a prevalent inflammatory response. This increases the risk for development of osteoarthritis (OA), the most common joint disorder. In healthy joints, macrophages are the predominant immune cells. They regulate bone turnover, constantly scavenge debris from the joint cavity and, together with synovial fibroblasts, form a protective barrier. Macrophages thus work in concert with the non-hematopoietic stroma. In turn, the stroma provides a scaffold as well as molecular signals for macrophage survival and functional imprinting: “a macrophage niche”. These intricate cellular interactions are susceptible to perturbations like those induced by joint injury. With this review, we explore how the concepts of local tissue niches apply to synovial joints. We introduce the joint micro-anatomy and cellular players, and discuss their potential interactions in healthy joints, with an emphasis on molecular cues underlying their crosstalk and relevance to joint functionality. We then consider how these interactions are perturbed by joint injury and how they may contribute to OA pathogenesis. We conclude by discussing how understanding these changes might help identify novel therapeutic avenues with the potential of restoring joint function and reducing post-traumatic OA risk.
Collapse
Affiliation(s)
- Patrick Haubruck
- Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Marlene Magalhaes Pinto
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Babak Moradi
- Clinic of Orthopaedics and Trauma Surgery, University Clinic of Schleswig-Holstein, Kiel, Germany
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Lee CH, Chiang CF, Kuo FC, Su SC, Huang CL, Liu JS, Lu CH, Hsieh CH, Wang CC, Lee CH, Shen PH. High-Molecular-Weight Hyaluronic Acid Inhibits IL-1β-Induced Synovial Inflammation and Macrophage Polarization through the GRP78-NF-κB Signaling Pathway. Int J Mol Sci 2021; 22:ijms222111917. [PMID: 34769349 PMCID: PMC8584972 DOI: 10.3390/ijms222111917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Recent evidence has suggested that synovial inflammation and macrophage polarization were involved in the pathogenesis of osteoarthritis (OA). Additionally, high-molecular-weight hyaluronic acid (HMW-HA) was often used clinically to treat OA. GRP78, an endoplasmic reticulum (ER) stress chaperone, was suggested to contribute to the hyperplasia of synovial cells in OA. However, it was still unclear whether HMW-HA affected macrophage polarization through GRP78. Therefore, we aimed to identify the effect of HMW-HA in primary synovial cells and macrophage polarization and to investigate the role of GRP78 signaling. We used IL-1β to treat primary synoviocytes to mimic OA, and then treated them with HMW-HA. We also collected conditioned medium (CM) to culture THP-1 macrophages and examine the changes in the phenotype. IL-1β increased the expression of GRP78, NF-κB (p65 phosphorylation), IL-6, and PGE2 in primary synoviocytes, accompanied by an increased macrophage M1/M2 polarization. GRP78 knockdown significantly reversed the expression of IL-1β-induced GRP78-related downstream molecules and macrophage polarization. HMW-HA with GRP78 knockdown had additive effects in an IL-1β culture. Finally, the synovial fluid from OA patients revealed significantly decreased IL-6 and PGE2 levels after the HMW-HA treatment. Our study elucidated a new form of signal transduction for HMW-HA-mediated protection against synovial inflammation and macrophage polarization and highlighted the involvement of the GRP78-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chien-Hsing Lee
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Chi-Fu Chiang
- National Defense Medical Center, School of Dentistry, Taipei 114, Taiwan;
| | - Feng-Chih Kuo
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Sheng-Chiang Su
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Chia-Luen Huang
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Jhih-Syuan Liu
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Chieh-Hua Lu
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Chang-Hsun Hsieh
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Chih-Chien Wang
- National Defense Medical Center, Department of Orthopedics, Tri-Service General Hospital, Taipei 114, Taiwan;
| | - Chian-Her Lee
- Department of Orthopedics, Taipei Medical University, Taipei 110, Taiwan;
| | - Pei-Hung Shen
- National Defense Medical Center, Department of Orthopedics, Tri-Service General Hospital, Taipei 114, Taiwan;
- Correspondence:
| |
Collapse
|
23
|
Zhang H, Li J, Xiang X, Zhou B, Zhao C, Wei Q, Sun Y, Chen J, Lai B, Luo Z, Li A. Tert-butylhydroquinone attenuates osteoarthritis by protecting chondrocytes and inhibiting macrophage polarization. Bone Joint Res 2021; 10:704-713. [PMID: 34724799 PMCID: PMC8636180 DOI: 10.1302/2046-3758.1011.bjr-2020-0242.r4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aims Tert-butylhydroquinone (tBHQ) has been identified as an inhibitor of oxidative stress-induced injury and apoptosis in human neural stem cells. However, the role of tBHQ in osteoarthritis (OA) is unclear. This study was carried out to investigate the role of tBHQ in OA. Methods OA animal model was induced by destabilization of the medial meniscus (DMM). Different concentrations of tBHQ (25 and 50 mg/kg) were intraperitoneally injected in ten-week-old female mice. Chondrocytes were isolated from articular cartilage of mice and treated with 5 ng/ml lipopolysaccharide (LPS) or 10 ng/ml interleukin 1 beta (IL-1β) for 24 hours, and then treated with different concentrations of tBHQ (10, 20, and 40 μM) for 12 hours. The expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in blood were measured. The expression levels of interleukin 6 (IL-6), IL-1β, and tumour necrosis factor alpha (TNF-α) leptin in plasma were measured using enzyme-linked immunoabsorbent assay (ELISA) kits. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathway proteins, and macrophage repolarization-related markers, were detected by western blot. Results Tert-butylhydroquinone significantly attenuated cartilage destruction in DMM-induced mice in vivo. It demonstrated clear evidence of inhibiting IL-1β-induced chondrocyte apoptosis, inflammation, and differentiation defect in vitro. Meanwhile, tBHQ inhibited LPS-induced activation of NF-κB and MAPK signalling pathways, and also inhibited LPS-induced reactive oxygen species production and macrophages repolarization in vitro. Conclusion Taken together, tBHQ might be a potential therapeutic strategy for protecting against OA development. Cite this article: Bone Joint Res 2021;10(11):704–713.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jie Li
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaobing Xiang
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Bengen Zhou
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Changqing Zhao
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Qiushi Wei
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Youqiang Sun
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jianfa Chen
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Boyong Lai
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Zequan Luo
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Aihua Li
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Hahn AK, Batushansky A, Rawle RA, Prado Lopes EB, June RK, Griffin TM. Effects of long-term exercise and a high-fat diet on synovial fluid metabolomics and joint structural phenotypes in mice: an integrated network analysis. Osteoarthritis Cartilage 2021; 29:1549-1563. [PMID: 34461226 PMCID: PMC8542629 DOI: 10.1016/j.joca.2021.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/18/2021] [Accepted: 08/04/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore how systemic factors that modify knee osteoarthritis risk are connected to 'whole-joint' structural changes by evaluating the effects of high-fat diet and wheel running exercise on synovial fluid (SF) metabolomics. METHODS Male mice were fed a defined control or high-fat (60% kcal fat) diet from 6 to 52 weeks of age, and half the animals were housed with running wheels from 26 to 52 weeks of age (n = 9-13 per group). Joint tissue structure and osteoarthritis pathology were evaluated by histology and micro-computed tomography. Systemic metabolic and inflammatory changes were evaluated by body composition, glucose tolerance testing, and serum biomarkers. SF metabolites were analyzed by high performance-liquid chromatography mass spectrometry. We built correlation-based network models to evaluate the connectivity between systemic and local metabolic biomarkers and osteoarthritis structural pathology within each experimental group. RESULTS High-fat diet caused moderate osteoarthritis, including cartilage pathology, synovitis and increased subchondral bone density. In contrast, voluntary exercise had a negligible effect on these joint structure components. 1,412 SF metabolite features were detected, with high-fat sedentary mice being the most distinct. Diet and activity uniquely altered SF metabolites attributed to amino acids, lipids, and steroids. Notably, high-fat diet increased network connections to systemic biomarkers such as interleukin-1β and glucose intolerance. In contrast, exercise increased local joint-level network connections, especially among subchondral bone features and SF metabolites. CONCLUSION Network mapping showed that obesity strengthened SF metabolite links to blood glucose and inflammation, whereas exercise strengthened SF metabolite links to subchondral bone structure.
Collapse
Affiliation(s)
- A K Hahn
- Molecular Biosciences Program, Montana State University, Bozeman, MT, 59717, USA; Department of Cell Biology & Neuroscience, Montana State University, Bozeman, MT, 59717, USA; Department of Biological and Environmental Sciences, Carroll College, Helena, MT, 59625, USA
| | - A Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK, 73104, USA
| | - R A Rawle
- Molecular Biosciences Program, Montana State University, Bozeman, MT, 59717, USA; Department of Microbiology & Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - E B Prado Lopes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK, 73104, USA
| | - R K June
- Molecular Biosciences Program, Montana State University, Bozeman, MT, 59717, USA; Department of Cell Biology & Neuroscience, Montana State University, Bozeman, MT, 59717, USA; Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, USA.
| | - T M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK, 73104, USA; Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
25
|
Single-Cell RNA-Sequencing Identifies Infrapatellar Fat Pad Macrophage Polarization in Acute Synovitis/Fat Pad Fibrosis and Cell Therapy. Bioengineering (Basel) 2021; 8:bioengineering8110166. [PMID: 34821732 PMCID: PMC8615266 DOI: 10.3390/bioengineering8110166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis and progression of knee inflammatory pathologies is modulated partly by residing macrophages in the infrapatellar fat pad (IFP), thus, macrophage polarization towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes is important in joint disease pathologies. Alteration of M1/M2 balance contributes to the initiation and progression of joint inflammation and can be potentially altered with mesenchymal stem cell (MSC) therapy. In an acute synovial/IFP inflammation rat model a single intra-articular injection of IFP-MSC was performed, having as controls (1) diseased rats not receiving IFP-MSC and (2) non-diseased rats. After 4 days, cell specific transcriptional profiling via single-cell RNA-sequencing was performed on isolated IFP tissue from each group. Eight transcriptomically distinct cell populations were identified within the IFP across all three treatment groups with a noted difference in the proportion of myeloid cells across the groups. Largely myeloid cells consisted of macrophages (>90%); one M1 sub-cluster highly expressing pro-inflammatory markers and two M2 sub-clusters with one of them expressing higher levels of canonical M2 markers. Notably, the diseased samples (11.9%) had the lowest proportion of cells expressing M2 markers relative to healthy (14.8%) and MSC treated (19.4%) samples. These results suggest a phenotypic polarization of IFP macrophages towards the pro-inflammatory M1 phenotype in an acute model of inflammation, which are alleviated by IFP-MSC therapy inducing a switch towards an alternate M2 status. Understanding the IFP cellular heterogeneity and associated transcriptional programs may offer insights into novel therapeutic strategies for disabling joint disease pathologies.
Collapse
|
26
|
Joint obesity as a pathogenic factor in osteoarthritis. Osteoarthritis Cartilage 2021; 29:1239-1241. [PMID: 34126200 DOI: 10.1016/j.joca.2021.05.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 02/02/2023]
|
27
|
Gui C, Parson J, Meyer GA. Harnessing adipose stem cell diversity in regenerative medicine. APL Bioeng 2021; 5:021501. [PMID: 33834153 PMCID: PMC8018797 DOI: 10.1063/5.0038101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Since the first isolation of mesenchymal stem cells from lipoaspirate in the early 2000s, adipose tissue has been a darling of regenerative medicine. It is abundant, easy to access, and contains high concentrations of stem cells (ADSCs) exhibiting multipotency, proregenerative paracrine signaling, and immunomodulation-a winning combination for stem cell-based therapeutics. While basic science, preclinical and clinical findings back up the translational potential of ADSCs, the vast majority of these used cells from a single location-subcutaneous abdominal fat. New data highlight incredible diversity in the adipose morphology and function in different anatomical locations or depots. Even in isolation, ADSCs retain a memory of this diversity, suggesting that the optimal adipose source material for ADSC isolation may be application specific. This review discusses our current understanding of the heterogeneity in the adipose organ, how that heterogeneity translates into depot-specific ADSC characteristics, and how atypical ADSC populations might be harnessed for regenerative medicine applications. While our understanding of the breadth of ADSC heterogeneity is still in its infancy, clear trends are emerging for application-specific sourcing to improve regenerative outcomes.
Collapse
Affiliation(s)
- Chang Gui
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Jacob Parson
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Gretchen A. Meyer
- Author to whom correspondence should be addressed:. Tel.: (314) 286-1425. Fax: (314) 747-0674
| |
Collapse
|
28
|
Zeng N, Liao T, Chen XY, Yan ZP, Li JT, Ni GX. Treadmill running induces remodeling of the infrapatellar fat pad in an intensity-dependent manner. J Orthop Surg Res 2021; 16:354. [PMID: 34074301 PMCID: PMC8167986 DOI: 10.1186/s13018-021-02501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To investigate the response of the infrapatellar fat pad (IFP) to running at different intensities and further explore the underlying mechanisms of these responses under different running-induced loadings. METHODS Animals were randomly assigned into the sedentary (SED), low-intensity running (LIR), medium-intensity running (MIR), and high-intensity running (HIR) groups. The rats in the LIR, MIR, and HIR groups were subjected to an 8-week treadmill running protocol. In each group, the IFP was examined at the baseline and at the 8th week to perform histomorphology, immunohistochemistry, and mRNA expression analyses. RESULTS Compared with LIR and MIR, HIR for 8 weeks led to a substantial increase in the surface cellularity (1.67 ± 1.15), fibrosis (1.29 ± 0.36), and vascularity (33.31 ± 8.43) of the IFP but did not increase IFP inflammation or M1 macrophage polarization. Low-to-medium-intensity running resulted in unchanged or decreased fibrosis, vascularity, and surface cellularity in the IFP compared to those of the SED group. Furthermore, serum leptin and visfatin levels were significantly lower in the LIR and MIR groups than in the SED group or the HIR group (P < 0.05). CONCLUSION The effect of running on IFP remodeling was intensity dependent. In contrast to LIR and MIR, HIR increased the fibrosis and vascularity of the IFP. HIR-induced IFP fibrosis was probably due to mechanical stress, rather than pathological proinflammatory M1/M2 polarization.
Collapse
Affiliation(s)
- Ni Zeng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Tao Liao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Xin-Yuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhi-Peng Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Jie-Ting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Guo-Xin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, People's Republic of China.
| |
Collapse
|
29
|
Luna M, Guss JD, Vasquez-Bolanos LS, Alepuz AJ, Dornevil S, Strong J, Alabi D, Shi Q, Pannellini T, Otero M, Brito IL, van der Meulen MCH, Goldring SR, Hernandez CJ. Obesity and load-induced posttraumatic osteoarthritis in the absence of fracture or surgical trauma. J Orthop Res 2021; 39:1007-1016. [PMID: 32658313 PMCID: PMC7855296 DOI: 10.1002/jor.24799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 02/04/2023]
Abstract
Osteoarthritis is increasingly viewed as a heterogeneous disease with multiple phenotypic subgroups. Obesity enhances joint degeneration in mouse models of posttraumatic osteoarthritis (PTOA). Most models of PTOA involve damage to surrounding tissues caused by surgery/fracture; it is unclear if obesity enhances cartilage degeneration in the absence of surgery/fracture. We used a nonsurgical animal model of load-induced PTOA to determine the effect of obesity on cartilage degeneration 2 weeks after loading. Cartilage degeneration was caused by a single bout of cyclic tibial loading at either a high or moderate load magnitude in adult male mice with severe obesity (C57Bl6/J + high-fat diet), mild obesity (toll-like receptor 5 deficient mouse [TLR5KO]), or normal adiposity (C57Bl6/J mice + normal diet and TLR5KO mice in which obesity was prevented by manipulation of the gut microbiome). Two weeks after loading, cartilage degeneration occurred in limbs loaded at a high magnitude, as determined by OARSI scores (P < .001). However, the severity of cartilage damage did not differ among groups. Osteophyte width and synovitis of loaded limbs did not differ among groups. Furthermore, obesity did not enhance cartilage damage in limbs evaluated 6 weeks after loading. Constituents of the gut microbiota differed among groups. Our findings suggest that, in the absence of surgery/fracture, obesity may not influence cartilage loss after a single mechanical insult, suggesting that either damage to surrounding tissues or repeated mechanical insult is necessary for obesity to influence cartilage degeneration. These findings further illustrate heterogeneity in PTOA phenotypes and complex interactions between mechanical/metabolic factors in cartilage loss.
Collapse
Affiliation(s)
- Marysol Luna
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Jason D. Guss
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Adrian J. Alepuz
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Sophie Dornevil
- College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Jasmin Strong
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Denise Alabi
- College of Arts and Sciences, Cornell University, Ithaca, NY, USA
| | - Qiaojuan Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Marjolein C. H. van der Meulen
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Hospital for Special Surgery, New York, NY, USA
| | | | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
30
|
Kouroupis D, Willman MA, Best TM, Kaplan LD, Correa D. Infrapatellar fat pad-derived mesenchymal stem cell-based spheroids enhance their therapeutic efficacy to reverse synovitis and fat pad fibrosis. Stem Cell Res Ther 2021; 12:44. [PMID: 33413649 PMCID: PMC7792122 DOI: 10.1186/s13287-020-02107-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background To investigate the in vitro and in vivo anti-inflammatory/anti-fibrotic capacity of IFP-MSC manufactured as 3D spheroids. Our hypothesis is that IFP-MSC do not require prior cell priming to acquire a robust immunomodulatory phenotype in vitro in order to efficiently reverse synovitis and IFP fibrosis, and secondarily delay articular cartilage damage in vivo. Methods Human IFP-MSC immunophenotype, tripotentiality, and transcriptional profiles were assessed in 3D settings. Multiplex secretomes were assessed in IFP-MSC spheroids [Crude (non-immunoselected), CD146+ or CD146− immunoselected cells] and compared with 2D cultures with and without prior inflammatory/fibrotic cell priming. Functionally, IFP-MSC spheroids were assessed for their immunopotency on human PBMC proliferation and their effect on stimulated synoviocytes with inflammation and fibrotic cues. The anti-inflammatory and anti-fibrotic spheroid properties were further evaluated in vivo in a rat model of acute synovitis/fat pad fibrosis. Results Spheroids enhanced IFP-MSC phenotypic, transcriptional, and secretory immunomodulatory profiles compared to 2D cultures. Further, CD146+ IFP-MSC spheroids showed enhanced secretory and transcriptional profiles; however, these attributes were not reflected in a superior capacity to suppress activated PBMC. This suggests that 3D culturing settings are sufficient to induce an enhanced immunomodulatory phenotype in both Crude and CD146-immunoselected IFP-MSC. Crude IFP-MSC spheroids modulated the molecular response of synoviocytes previously exposed to inflammatory cues. Therapeutically, IFP-MSC spheroids retained substance P degradation potential in vivo, while effectively inducing resolution of inflammation/fibrosis of the synovium and fat pad. Furthermore, their presence resulted in arrest of articular cartilage degradation in a rat model of progressive synovitis and fat pad fibrosis. Conclusions 3D spheroids confer IFP-MSC a reproducible and enhanced immunomodulatory effect in vitro and in vivo, circumventing the requirement of non-compliant cell priming or selection before administration and thereby streamlining cell products manufacturing protocols.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, 1450 NW 10th Ave (3014), Miami, FL, 33136, USA.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, 1450 NW 10th Ave (3014), Miami, FL, 33136, USA
| | - Melissa A Willman
- Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, 1450 NW 10th Ave (3014), Miami, FL, 33136, USA
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, 1450 NW 10th Ave (3014), Miami, FL, 33136, USA
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, 1450 NW 10th Ave (3014), Miami, FL, 33136, USA
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, 1450 NW 10th Ave (3014), Miami, FL, 33136, USA. .,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, 1450 NW 10th Ave (3014), Miami, FL, 33136, USA.
| |
Collapse
|
31
|
Collins KH, Lenz KL, Pollitt EN, Ferguson D, Hutson I, Springer LE, Oestreich AK, Tang R, Choi YR, Meyer GA, Teitelbaum SL, Pham CTN, Harris CA, Guilak F. Adipose tissue is a critical regulator of osteoarthritis. Proc Natl Acad Sci U S A 2021; 118:e2021096118. [PMID: 33443201 PMCID: PMC7817130 DOI: 10.1073/pnas.2021096118] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA), the leading cause of pain and disability worldwide, disproportionally affects individuals with obesity. The mechanisms by which obesity leads to the onset and progression of OA are unclear due to the complex interactions among the metabolic, biomechanical, and inflammatory factors that accompany increased adiposity. We used a murine preclinical model of lipodystrophy (LD) to examine the direct contribution of adipose tissue to OA. Knee joints of LD mice were protected from spontaneous or posttraumatic OA, on either a chow or high-fat diet, despite similar body weight and the presence of systemic inflammation. These findings indicate that adipose tissue itself plays a critical role in the pathophysiology of OA. Susceptibility to posttraumatic OA was reintroduced into LD mice using implantation of a small adipose tissue depot derived from wild-type animals or mouse embryonic fibroblasts that undergo spontaneous adipogenesis, implicating paracrine signaling from fat, rather than body weight, as a mediator of joint degeneration.
Collapse
Affiliation(s)
- Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Kristin L Lenz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Eleanor N Pollitt
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Daniel Ferguson
- Division of Endocrinology, Washington University, St. Louis, MO 63110
| | - Irina Hutson
- Division of Endocrinology, Washington University, St. Louis, MO 63110
| | - Luke E Springer
- Division of Rheumatology, Washington University, St. Louis, MO 63110
| | - Arin K Oestreich
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Yun-Rak Choi
- Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Gretchen A Meyer
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Program in Physical Therapy, Washington University, St. Louis, MO 63110
| | - Steven L Teitelbaum
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110
| | | | - Charles A Harris
- Division of Endocrinology, Washington University, St. Louis, MO 63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110;
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Epidemiologic studies reveal that the link between obesity and osteoarthritis cannot be uniquely explained by overweight-associated mechanical overload. For this reason, much attention focuses on the endocrine activity of adipose tissues. In addition to the systemic role of visceral and subcutaneous adipose tissues, many arguments highlight the involvement of local adipose tissues in osteoarthritis. RECENT FINDINGS Alteration in MRI signal intensity of the infrapatellar fat pad may predict both accelerated knee osteoarthritis and joint replacement. In this context, recent studies show that mesenchymal stromal cells could play a pivotal role in the pathological remodelling of intra-articular adipose tissues (IAATs) in osteoarthritis. In parallel, recent findings underline bone marrow adipose tissue as a major player in the control of the bone microenvironment, suggesting its possible role in osteoarthritis. SUMMARY The recent description of adipose tissues of various phenotypes within an osteoarthritic joint allows us to evoke their direct involvement in the initiation and progression of the osteoarthritic process. We can expect in the near future the discovery of novel molecules targeting these tissues.
Collapse
Affiliation(s)
| | - Florent Eymard
- Department of Rheumatology, AP-HP Henri Mondor Hospital
- Gly-CRRET Research Unit 4397, Université Paris-Est Créteil
| | - Francis Berenbaum
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA)
- Sorbonne Université, INSERM CRSA, AP-HP Hopital Saint Antoine, Paris, France
| | - Xavier Houard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA)
| |
Collapse
|
33
|
Sun AR, Udduttula A, Li J, Liu Y, Ren PG, Zhang P. Cartilage tissue engineering for obesity-induced osteoarthritis: Physiology, challenges, and future prospects. J Orthop Translat 2021; 26:3-15. [PMID: 33437618 PMCID: PMC7773977 DOI: 10.1016/j.jot.2020.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a multifactorial joint disease with pathological changes that affect whole joint tissue. Obesity is acknowledged as the most influential risk factor for both the initiation and progression of OA in weight-bearing and non-weight-bearing joints. Obesity-induced OA is a newly defined phenotypic group in which chronic low-grade inflammation has a central role. Aside from persistent chronic inflammation, abnormal mechanical loading due to increased body weight on weight-bearing joints is accountable for the initiation and progression of obesity-induced OA. The current therapeutic approaches for OA are still evolving. Tissue-engineering-based strategy for cartilage regeneration is one of the most promising treatment breakthroughs in recent years. However, patients with obesity-induced OA are often excluded from cartilage repair attempts due to the abnormal mechanical demands, altered biomechanical and biochemical activities of cells, persistent chronic inflammation, and other obesity-associated factors. With the alarming increase in the number of obese populations globally, the need for an innovative therapeutic approach that could effectively repair and restore the damaged synovial joints is of significant importance for this sub-population of patients. In this review, we discuss the involvement of the systemic and localized inflammatory response in obesity-induced OA and the impact of altered mechanical loading on pathological changes in the synovial joint. Moreover, we examine the current strategies in cartilage tissue engineering and address the critical challenges of cell-based therapies for OA. Besides, we provide examples of innovative ways and potential strategies to overcome the obstacles in the treatment of obesity-induced OA. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Altogether, this review delivers insight into obesity-induced OA and offers future research direction on the creation of tissue engineering-based therapies for obesity-induced OA.
Collapse
Affiliation(s)
- Antonia RuJia Sun
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Anjaneyulu Udduttula
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Yanzhi Liu
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Pei-Gen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
34
|
Effects of Curcumin in a Mouse Model of Very High Fat Diet-Induced Obesity. Biomolecules 2020; 10:biom10101368. [PMID: 32992936 PMCID: PMC7650718 DOI: 10.3390/biom10101368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023] Open
Abstract
Worldwide rates of Western-diet-induced obesity epidemics are growing dramatically. Being linked with numerous comorbidities and complications, including cardiovascular disease, type 2 diabetes, cancer, chronic inflammation, and osteoarthritis (OA), obesity represents one of the most threatening challenges for modern healthcare. Mouse models are an invaluable tool for investigating the effects of diets and their bioactive components against high fat diet (HFD)-induced obesity and its comorbidities. During recent years, very high fat diets (VHFDs), providing 58–60% kcal fat, have become a popular alternative to more traditional HFDs, providing 40–45% total kcal fat, due to the faster induction of obesity and stronger metabolic responses. This project aims to investigate if the 60% fat VHFD is suitable to evaluate the protective effects of curcumin in diet-induced obesity and osteoarthritis. B6 male mice, prone to diet-induced metabolic dysfunction, were supplemented with VHFD without or with curcumin for 13 weeks. Under these experimental conditions, feeding mice a VHFD for 13 weeks did not result in expected robust manifestations of the targeted pathophysiologic conditions. Supplementing the diet with curcumin, in turn, protected the animals against obesity without significant changes in white adipocyte size, glucose clearance, and knee cartilage integrity. Additional research is needed to optimize diet composition, curcumin dosage, and duration of dietary interventions to establish the VHFD-induced obesity for evaluating the effects of curcumin on metabolic dysfunctions related to obesity and osteoarthritis.
Collapse
|
35
|
Belluzzi E, Macchi V, Fontanella CG, Carniel EL, Olivotto E, Filardo G, Sarasin G, Porzionato A, Granzotto M, Pozzuoli A, Berizzi A, Scioni M, Caro RD, Ruggieri P, Vettor R, Ramonda R, Rossato M, Favero M. Infrapatellar Fat Pad Gene Expression and Protein Production in Patients with and without Osteoarthritis. Int J Mol Sci 2020; 21:ijms21176016. [PMID: 32825633 PMCID: PMC7503946 DOI: 10.3390/ijms21176016] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common joint disorders. Evidence suggests that the infrapatellar fat pad (IFP) is directly involved in OA pathology. However, a comparison between OA versus non-OA IFP is still missing. Thus, the aim of this study was to compare IFP molecular, adipocytes and extracellular matrix characteristics of patients affected by OA, and patients undergoing anterior cruciate ligament (ACL) reconstruction. We hypothesized that not only inflammation but also changes in adipocytes and extracellular matrix (ECM) composition might be involved in OA pathogenesis. Fifty-three patients were enrolled. IFP biopsies were obtained, evaluating: (a) lymphocytic infiltration and vascularization; (b) adipocytes area and number; (c) adipo-cytokines and extracellular matrix gene expression levels; (d) IL-6 and VEGF protein production; (e) collagen fibers distribution. OA IFP was more inflamed and vascularized compared to ACL IFP. OA IFP adipocytes were larger and numerically lower (1.3-fold) than ACL IFP adipocytes. An increase of gene expression of typical white adipose tissue genes was observed in OA compared to ACL IFP. Collagen-types distribution was different in the OA IFP group compared to controls, possibly explaining the change of the biomechanical characteristics found in OA IFP. Statistical linear models revealed that the adipocyte area correlated with BMI in the OA group. In conclusion, inflammation and fibrotic changes of OA IFP could represent novel therapeutic targets to counteract OA.
Collapse
Affiliation(s)
- Elisa Belluzzi
- Musculoskeletal Pathology and Oncology Laboratory, Orthopedic and Traumatologic Clinic, Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35128 Padova, Italy; (E.B.); (A.P.)
| | - Veronica Macchi
- Institute of Human Anatomy, Department of Neurosciences, University of Padova, 35121 Padova, Italy; (V.M.); (G.S.); (A.P.); (R.D.C.)
- L.i.f.e. L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padova, Italy
| | - Chiara Giulia Fontanella
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy;
- Centre for Mechanics of Biological Materials, University of Padova, 35131 Padova, Italy;
| | - Emanuele Luigi Carniel
- Centre for Mechanics of Biological Materials, University of Padova, 35131 Padova, Italy;
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Eleonora Olivotto
- RAMSES Laboratory, RIT Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Gloria Sarasin
- Institute of Human Anatomy, Department of Neurosciences, University of Padova, 35121 Padova, Italy; (V.M.); (G.S.); (A.P.); (R.D.C.)
| | - Andrea Porzionato
- Institute of Human Anatomy, Department of Neurosciences, University of Padova, 35121 Padova, Italy; (V.M.); (G.S.); (A.P.); (R.D.C.)
- L.i.f.e. L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padova, Italy
| | - Marnie Granzotto
- Clinica Medica 3, Department of Medicine—DIMED, University of Padova, School of Medicine, 35128 Padova, Italy; (M.G.); (R.V.)
| | - Assunta Pozzuoli
- Musculoskeletal Pathology and Oncology Laboratory, Orthopedic and Traumatologic Clinic, Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35128 Padova, Italy; (E.B.); (A.P.)
| | - Antonio Berizzi
- Orthopaedic and Traumatologic Clinic, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128 Padova, Italy; (A.B.); (P.R.)
| | - Manuela Scioni
- Department of Statistical Sciences, University of Padova, 35121 Padova, Italy;
| | - Raffaele De Caro
- Institute of Human Anatomy, Department of Neurosciences, University of Padova, 35121 Padova, Italy; (V.M.); (G.S.); (A.P.); (R.D.C.)
- L.i.f.e. L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padova, Italy
| | - Pietro Ruggieri
- Orthopaedic and Traumatologic Clinic, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128 Padova, Italy; (A.B.); (P.R.)
| | - Roberto Vettor
- Clinica Medica 3, Department of Medicine—DIMED, University of Padova, School of Medicine, 35128 Padova, Italy; (M.G.); (R.V.)
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine-DIMED, University—Hospital of Padova, Via Giustiniani, 2, 35128 Padova, Italy; (R.R.); (M.F.)
| | - Marco Rossato
- Clinica Medica 3, Department of Medicine—DIMED, University of Padova, School of Medicine, 35128 Padova, Italy; (M.G.); (R.V.)
- Correspondence: ; Tel.: +39-049-8218747
| | - Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED, University—Hospital of Padova, Via Giustiniani, 2, 35128 Padova, Italy; (R.R.); (M.F.)
- Internal Medicine I, Cà Foncello Hospital, 31100 Treviso, Italy
| |
Collapse
|
36
|
Wang M, Lessard SG, Singh P, Pannellini T, Chen T, Rourke BJ, Chowdhury L, Craveiro V, Sculco PK, Meulen MCH, Otero M. Knee fibrosis is associated with the development of osteoarthritis in a murine model of tibial compression. J Orthop Res 2020. [DOI: 10.1002/jor.24815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Mengying Wang
- HSS Research Institute Hospital for Special Surgery New York New York
- School of Public Health, Xi'an Jiaotong University Health Science Center Xi'an China
| | | | - Purva Singh
- HSS Research Institute Hospital for Special Surgery New York New York
| | - Tania Pannellini
- HSS Research Institute Hospital for Special Surgery New York New York
| | - Tony Chen
- HSS Research Institute Hospital for Special Surgery New York New York
| | - Brennan J. Rourke
- HSS Research Institute Hospital for Special Surgery New York New York
| | - Luvana Chowdhury
- HSS Research Institute Hospital for Special Surgery New York New York
| | - Vinicius Craveiro
- HSS Research Institute Hospital for Special Surgery New York New York
| | - Peter K. Sculco
- The Stavros Niarchos Foundation Complex Joint Reconstruction Center Hospital for Special Surgery New York New York
| | - Marjolein C. H. Meulen
- HSS Research Institute Hospital for Special Surgery New York New York
- Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca New York
- Meinig School of Biomedical Engineering Cornell University Ithaca New York
| | - Miguel Otero
- HSS Research Institute Hospital for Special Surgery New York New York
| |
Collapse
|
37
|
Greif DN, Kouroupis D, Murdock CJ, Griswold AJ, Kaplan LD, Best TM, Correa D. Infrapatellar Fat Pad/Synovium Complex in Early-Stage Knee Osteoarthritis: Potential New Target and Source of Therapeutic Mesenchymal Stem/Stromal Cells. Front Bioeng Biotechnol 2020; 8:860. [PMID: 32850724 PMCID: PMC7399076 DOI: 10.3389/fbioe.2020.00860] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
The infrapatellar fat pad (IFP) has until recently been viewed as a densely vascular and innervated intracapsular/extrasynovial tissue with biomechanical roles in the anterior compartment of the knee. Over the last decade, secondary to the proposition that the IFP and synovium function as a single unit, its recognized tight molecular crosstalk with emerging roles in the pathophysiology of joint disease, and the characterization of immune-related resident cells with varying phenotypes (e.g., pro and anti-inflammatory macrophages), this structural complex has gained increasing attention as a potential therapeutic target in patients with various knee pathologies including osteoarthritis (KOA). Furthermore, the description of the presence of mesenchymal stem/stromal cells (MSC) as perivascular cells within the IFP (IFP-MSC), exhibiting immunomodulatory, anti-fibrotic and neutralizing activities over key local mediators, has promoted the IFP as an alternative source of MSC for cell-based therapy protocols. These complementary concepts have supported the growing notion of immune and inflammatory events participating in the pathogenesis of KOA, with the IFP/synovium complex engaging not only in amplifying local pathological responses, but also as a reservoir of potential therapeutic cell-based products. Consequently, the aim of this review is to outline the latest discoveries related with the IFP/synovium complex as both an active participant during KOA initiation and progression thus emerging as a potential target, and a source of therapeutic IFP-MSCs. Finally, we discuss how these notions may help the design of novel treatments for KOA through modulation of local cellular and molecular cascades that ultimately lead to joint destruction.
Collapse
Affiliation(s)
- Dylan N Greif
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Christopher J Murdock
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States.,Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
38
|
Kouroupis D, Bowles AC, Greif DN, Leñero C, Best TM, Kaplan LD, Correa D. Regulatory-compliant conditions during cell product manufacturing enhance in vitro immunomodulatory properties of infrapatellar fat pad-derived mesenchymal stem/stromal cells. Cytotherapy 2020; 22:677-689. [PMID: 32723596 DOI: 10.1016/j.jcyt.2020.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/22/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS Mesenchymal stem/stromal cell (MSC)-based therapies have gained attention as potential alternatives for multiple musculoskeletal indications based on their trophic and immunomodulatory properties. The infrapatellar fat pad (IFP) serves as a reservoir of MSCs, which play crucial roles modulating inflammatory and fibrotic events at the IFP and its neighboring tissue, the synovium. In an effort to comply with the existing regulatory framework regarding cell-based product manufacturing, we interrogated the in vitro immunomodulatory capacity of human-derived IFP-MSCs processed under different conditions, including a regulatory-compliant protocol, in addition to their response to the inflammatory and fibrotic environments often present in joint disease. METHODS Immunophenotype, telomere length, transcriptional and secretory immunomodulatory profiles and functional immunopotency assay were assessed in IFP-MSCs expanded in regular fetal bovine serum (FBS)-supplemented medium and side-by-side compared with same-donor cells processed with two media alternatives (i.e., regulatory-compliant pooled human platelet lysate [hPL] and a chemically reinforced/serum-reduced [Ch-R] formulation). Finally, to assess the effects of such formulations on the ability of the cells to respond to pro-inflammatory and pro-fibrotic conditions, all three groups were stimulated ex vivo (i.e., cell priming) with a cocktail containing TNFα, IFNγ and connective tissue growth factor (tumor-initiating cells) and compared with non-induced cohorts assessing the same outcomes. RESULTS Non-induced and primed IFP-MSCs expanded in either hPL or Ch-R showed distinct morphology in vitro, similar telomere dynamics and distinct phenotypical and molecular profiles when compared with cohorts grown in FBS. Gene expression of IL-8, CD10 and granulocyte colony-stimulating factor was highly enriched in similarly processed IFP-MSCs. Cell surface markers related to the immunomodulatory capacity, including CD146 and CD10, were highly expressed, and secretion of immunomodulatory and pro-angiogenic factors was significantly enhanced with both hPL and Ch-R formulations. Upon priming, the immunomodulatory phenotype was enhanced, resulting in further increase in CD146 and CD10, significant CXCR4 presence and reduction in TLR3. Similarly, transcriptional and secretory profiles were enriched and more pronounced in IFP-MSCs expanded in either hPL or Ch-R, suggesting a synergistic effect between these formulations and inflammatory/fibrotic priming conditions. Collectively, increased indoleamine-2,3-dioxygenase activity and prostaglandin E2 secretion for hPL- and Ch-R-expanded IFP-MSCs were functionally reflected by their robust T-cell proliferation suppression capacity in vitro compared with IFP-MSCs expanded in FBS, even after priming. CONCLUSIONS Compared with processing using an FBS-supplemented medium, processing IFP-MSCs with either hPL or Ch-R similarly enhances their immunomodulatory properties, which are further increased after exposure to an inflammatory/fibrotic priming environment. This evidence supports the adoption of regulatory-compliant practices during the manufacturing of a cell-based product based on IFP-MSCs and anticipates a further enhanced response once the cells face the pathological environment after intra-articular administration. Mechanistically, the resulting functionally enhanced cell-based product has potential utilization as a novel, minimally invasive cell therapy for joint disease through modulation of local immune and inflammatory events.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Annie C Bowles
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biomedical Engineering, University of Miami College of Engineering, Miami, Florida, USA
| | - Dylan N Greif
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Clarissa Leñero
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA; Cryovida Banco de Células Madre Adultas, Guadalajara, Jalisco, Mexico
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
39
|
Primorac D, Molnar V, Rod E, Jeleč Ž, Čukelj F, Matišić V, Vrdoljak T, Hudetz D, Hajsok H, Borić I. Knee Osteoarthritis: A Review of Pathogenesis and State-Of-The-Art Non-Operative Therapeutic Considerations. Genes (Basel) 2020; 11:E854. [PMID: 32722615 PMCID: PMC7464436 DOI: 10.3390/genes11080854] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Being the most common musculoskeletal progressive condition, osteoarthritis is an interesting target for research. It is estimated that the prevalence of knee osteoarthritis (OA) among adults 60 years of age or older is approximately 10% in men and 13% in women, making knee OA one of the leading causes of disability in elderly population. Today, we know that osteoarthritis is not a disease characterized by loss of cartilage due to mechanical loading only, but a condition that affects all of the tissues in the joint, causing detectable changes in tissue architecture, its metabolism and function. All of these changes are mediated by a complex and not yet fully researched interplay of proinflammatory and anti-inflammatory cytokines, chemokines, growth factors and adipokines, all of which can be measured in the serum, synovium and histological samples, potentially serving as biomarkers of disease stage and progression. Another key aspect of disease progression is the epigenome that regulates all the genetic expression through DNA methylation, histone modifications, and mRNA interference. A lot of work has been put into developing non-surgical treatment options to slow down the natural course of osteoarthritis to postpone, or maybe even replace extensive surgeries such as total knee arthroplasty. At the moment, biological treatments such as platelet-rich plasma, bone marrow mesenchymal stem cells and autologous microfragmented adipose tissue containing stromal vascular fraction are ordinarily used. Furthermore, the latter two mentioned cell-based treatment options seem to be the only methods so far that increase the quality of cartilage in osteoarthritis patients. Yet, in the future, gene therapy could potentially become an option for orthopedic patients. In the following review, we summarized all of the latest and most important research in basic sciences, pathogenesis, and non-operative treatment.
Collapse
Affiliation(s)
- Dragan Primorac
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Eberly College of Science, The Pennsylvania State University, University Park, State College, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Medical School, University of Split, 21000 Split, Croatia
- School of Medicine, Faculty of Dental Medicine and Health, University “Josip Juraj Strossmayer”, 31000 Osijek, Croatia
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96 450 Coburg, Germany
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Vilim Molnar
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Eduard Rod
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Željko Jeleč
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Nursing, University North, 48 000 Varaždin, Croatia
| | - Fabijan Čukelj
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Split, 21000 Split, Croatia
| | - Vid Matišić
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
| | - Trpimir Vrdoljak
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Department of Orthopedics, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Damir Hudetz
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Orthopedics, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Hana Hajsok
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Zagreb, 10000 Zagreb, Croatia
| | - Igor Borić
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Split, 21000 Split, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| |
Collapse
|
40
|
Abstract
Being the most common musculoskeletal progressive condition, osteoarthritis is an interesting target for research. It is estimated that the prevalence of knee osteoarthritis (OA) among adults 60 years of age or older is approximately 10% in men and 13% in women, making knee OA one of the leading causes of disability in elderly population. Today, we know that osteoarthritis is not a disease characterized by loss of cartilage due to mechanical loading only, but a condition that affects all of the tissues in the joint, causing detectable changes in tissue architecture, its metabolism and function. All of these changes are mediated by a complex and not yet fully researched interplay of proinflammatory and anti-inflammatory cytokines, chemokines, growth factors and adipokines, all of which can be measured in the serum, synovium and histological samples, potentially serving as biomarkers of disease stage and progression. Another key aspect of disease progression is the epigenome that regulates all the genetic expression through DNA methylation, histone modifications, and mRNA interference. A lot of work has been put into developing non-surgical treatment options to slow down the natural course of osteoarthritis to postpone, or maybe even replace extensive surgeries such as total knee arthroplasty. At the moment, biological treatments such as platelet-rich plasma, bone marrow mesenchymal stem cells and autologous microfragmented adipose tissue containing stromal vascular fraction are ordinarily used. Furthermore, the latter two mentioned cell-based treatment options seem to be the only methods so far that increase the quality of cartilage in osteoarthritis patients. Yet, in the future, gene therapy could potentially become an option for orthopedic patients. In the following review, we summarized all of the latest and most important research in basic sciences, pathogenesis, and non-operative treatment.
Collapse
|
41
|
Addition of High Molecular Weight Hyaluronic Acid to Fibroblast-Like Stromal Cells Modulates Endogenous Hyaluronic Acid Metabolism and Enhances Proteolytic Processing and Secretion of Versican. Cells 2020; 9:cells9071681. [PMID: 32668663 PMCID: PMC7407811 DOI: 10.3390/cells9071681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
We have examined the effect of exogenous linear chain high molecular weight hyaluronic acid (HMW HA) on endogenously synthesized hyaluronic acid (HA) and associated binding proteins in primary cultures of fibroblast-like stromal cells that were obtained by collagenase digestion of the murine peripatellar fat pad. The cultures were expanded in DMEM that was supplemented with fetal bovine serum and basic fibroblast growth factor (bFGF) then exposed to macrophage-colony-stimulating factor (MCSF) to induce macrophage properties, before activation of inflammatory pathways using E. coli lipopolysaccharide (LPS). Under all culture conditions, a significant amount of endogenously synthesized HA localized in LAMP1-positive lysosomal vesicles. However, this intracellular pool was depleted after the addition of exogenous HMW HA and was accompanied by enhanced proteolytic processing and secretion of de novo synthesized versican, much of which was associated with endosomal compartments. No changes were detected in synthesis, secretion, or proteolytic processing of aggrecan or lubricin (PRG4). The addition of HMW HA also modulated a range of LPS-affected genes in the TLR signaling and phagocytosis pathways, as well as endogenous HA metabolism genes, such as Has1, Hyal1, Hyal2, and Tmem2. However, there was no evidence for association of endogenous or exogenous HMW HA with cell surface CD44, TLR2 or TLR4 protein, suggesting that its physiochemical effects on pericelluar pH and/or ionic strength might be the primary modulators of signal transduction and vesicular trafficking by this cell type. We discuss the implications of these findings in terms of a potential in vivo effect of therapeutically applied HMW HA on the modification of osteoarthritis-related joint pathologies, such as pro-inflammatory and degradative responses of multipotent mesenchymal cells residing in the synovial membrane, the underlying adipose tissue, and the articular cartilage surface.
Collapse
|
42
|
Perivascular Fibro-Adipogenic Progenitor Tracing during Post-Traumatic Osteoarthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1909-1920. [PMID: 32533926 DOI: 10.1016/j.ajpath.2020.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/03/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
Abstract
Perivascular mural cells surround capillaries and microvessels and have diverse regenerative or fibrotic functions after tissue injury. Subsynovial fibrosis is a well-known pathologic feature of osteoarthritis, yet transgenic animals for use in visualizing perivascular cell contribution to fibrosis during arthritic changes have not been developed. Here, inducible Pdgfra-CreERT2 reporter mice were subjected to joint-destabilization surgery to induce arthritic changes, and cell lineage was traced over an 8-week period with a focus on the joint-associated fat pad. Results showed that, at baseline, inducible Pdgfra reporter activity highlighted adventitial and, to a lesser extent, pericytic cells within the infrapatellar fat pad. Joint-destabilization surgery was associated with marked fibrosis of the infrapatellar fat pad, accompanied by an expansion of perivascular Pdgfra-expressing cellular descendants, many of which adopted α-smooth muscle actin expression. Gene expression analysis of microdissected infrapatellar fat pad confirmed enrichment in membrane-bound green fluorescent protein/Pdgfra-expressing cells, along with a gene signature that corresponded with injury-associated fibro-adipogenic progenitors. Our results highlight dynamic changes in joint-associated perivascular fibro-adipogenic progenitors during osteoarthritis.
Collapse
|
43
|
Huang Z, Chen J, Li B, Zeng B, Chou CH, Zheng X, Xie J, Li H, Hao Y, Chen G, Pei F, Shen B, Kraus VB, Wei H, Zhou X, Cheng L. Faecal microbiota transplantation from metabolically compromised human donors accelerates osteoarthritis in mice. Ann Rheum Dis 2020; 79:646-656. [PMID: 32205337 PMCID: PMC7384301 DOI: 10.1136/annrheumdis-2019-216471] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Emerging evidence suggests that the microbiome plays an important role in the pathogenesis of osteoarthritis (OA). We aimed to test the two-hit model of OA pathogenesis and potentiation in which one 'hit' is provided by an adverse gut microbiome that activates innate immunity; the other 'hit' is underlying joint damage. METHODS Medical history, faecal and blood samples were collected from human healthy controls (OA-METS-, n=4), knee OA without metabolic syndrome (OA+METS-, n=7) and knee OA with metabolic syndrome (OA+METS+, n=9). Each group of human faecal samples, whose microbial composition was identified by 16S rRNA sequencing, was pooled and transplanted into germ-free mice 2 weeks prior to meniscal/ligamentous injury (MLI) (n≥6 per group). Eight weeks after MLI, mice were evaluated for histological OA severity and synovitis, systemic inflammation and gut permeability. RESULTS Histological OA severity following MLI was minimal in germ-free mice. Compared with the other groups, transplantation with the OA+METS+ microbiome was associated with higher mean systemic concentrations of inflammatory biomarkers (interleukin-1β, interleukin-6 and macrophage inflammatory protein-1α), higher gut permeability and worse OA severity. A greater abundance of Fusobacterium and Faecalibaterium and lesser abundance of Ruminococcaceae in transplanted mice were consistently correlated with OA severity and systemic biomarkers concentrations. CONCLUSION The study clearly establishes a direct gut microbiome-OA connection that sets the stage for a new means of exploring OA pathogenesis and potentially new OA therapeutics. Alterations of Fusobacterium, Faecalibaterium and Ruminococcaceae suggest a role of these particular microbes in exacerbating OA.
Collapse
Affiliation(s)
- ZeYu Huang
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Chen
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - BoLei Li
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Ching-Heng Chou
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Xin Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - JingWei Xie
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Hao Li
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Hao
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guo Chen
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - FuXing Pei
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Bin Shen
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Virginia B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
- Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Hong Wei
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Wu CL, Harasymowicz NS, Klimak MA, Collins KH, Guilak F. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis Cartilage 2020; 28:544-554. [PMID: 31926267 PMCID: PMC7214213 DOI: 10.1016/j.joca.2019.12.007] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/15/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a family of degenerative diseases affecting multiple joint tissues. Despite the diverse etiology and pathogenesis of OA, increasing evidence suggests that macrophages can play a significant role in modulating joint inflammation, and thus OA severity, via various secreted mediators. Recent advances in next-generation sequencing technologies coupled with proteomic and epigenetic tools have greatly facilitated research to elucidate the embryonic origin of macrophages in various tissues including joint synovium. Furthermore, scientists have now begun to appreciate that macrophage polarization can span beyond the conventionally recognized binary states (i.e., pro-inflammatory M1-like vs anti-inflammatory M2-like) and may encompass a broad spectrum of phenotypes. Although the presence of these cells has been shown in multiple joint tissues, additional mechanistic studies are required to provide a comprehensive understanding of the precise role of these diverse macrophage populations in OA onset and progression. New approaches that can modulate macrophages into desired functional phenotypes may provide novel therapeutic strategies for preventing OA or enhancing cartilage repair and regeneration.
Collapse
Affiliation(s)
- C-L Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - N S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - M A Klimak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - K H Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - F Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
45
|
Warmink K, Kozijn AE, Bobeldijk I, Stoop R, Weinans H, Korthagen NM. High-fat feeding primes the mouse knee joint to develop osteoarthritis and pathologic infrapatellar fat pad changes after surgically induced injury. Osteoarthritis Cartilage 2020; 28:593-602. [PMID: 32222415 DOI: 10.1016/j.joca.2020.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Obesity is one of the greatest risk factors for osteoarthritis (OA) and evidence is accumulating that inflammatory mediators and innate immunity play an important role. The infrapatellar fat pad (IPFP) could be a potential local source of inflammatory mediators in the knee. Here, we combine surgical joint damage with high-fat feeding in mice to investigate inflammatory responses in the IPFP during OA development. DESIGN Mice (n = 30) received either a low-fat diet (LFD), high-fat diet (HFD) for 18 weeks or switched diets (LFD > HFD) after 10 weeks. OA was induced by surgical destabilization of the medial meniscus (DMM), contralateral knees served as sham controls. An additional HFD-only group (n = 15) received no DMM. RESULTS The most pronounced inflammation, characterized by macrophage crown-like structures (CLS), was found in HFD + DMM mice, CLS increased compared to HFD only (mean difference = 7.26, 95%CI [1.52-13.0]) and LFD + DMM (mean difference = 6.35, 95%CI [0.53-12.18). The M1 macrophage marker iNOS increased by DMM (ratio = 2.48, 95%CI [1.37-4.50]), while no change in M2 macrophage marker CD206 was observed. Fibrosis was minimal by HFD alone, but in combination with DMM it increased with 23.45% (95%CI [13.67-33.24]). CONCLUSIONS These findings indicate that a high-fat diet alone does not trigger inflammation or fibrosis in the infrapatellar fat pad, but in combination with an extra damage trigger, like DMM, induces inflammation and fibrosis in the infrapatellar fat pad. These data suggest that HFD provides a priming effect on the infrapatellar fat pad and that combined actions bring the joint in a metabolic state of progressive OA.
Collapse
Affiliation(s)
- K Warmink
- Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - A E Kozijn
- Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, the Netherlands; Metabolic Health Research, TNO, Leiden, the Netherlands.
| | - I Bobeldijk
- Metabolic Health Research, TNO, Leiden, the Netherlands.
| | - R Stoop
- Metabolic Health Research, TNO, Leiden, the Netherlands.
| | - H Weinans
- Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - N M Korthagen
- Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Equine Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
46
|
Griffin TM, Batushansky A, Hudson J, Lopes EBP. Correlation network analysis shows divergent effects of a long-term, high-fat diet and exercise on early stage osteoarthritis phenotypes in mice. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:119-131. [PMID: 32099720 PMCID: PMC7031811 DOI: 10.1016/j.jshs.2019.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Obesity increases knee osteoarthritis (OA) risk through metabolic, inflammatory, and biomechanical factors, but how these systemic and local mediators interact to drive OA pathology is not well understood. We tested the effect of voluntary running exercise after chronic diet-induced obesity on knee OA-related cartilage and bone pathology in mice. We then used a correlation-based network analysis to identify systemic and local factors associated with early-stage knee OA phenotypes among the different diet and exercise groups. METHODS Male C57BL/6J mice were fed a defined control (10% kcal fat) or high fat (HF) (60% kcal fat) diet from 6 to 37 weeks of age. At 25 weeks, one-half of the mice from each diet group were housed in cages with running wheels for the remainder of the study. Histology, micro computed tomography, and magnetic resonance imaging were used to evaluate changes in joint tissue structure and OA pathology. These local variables were then compared to systemic metabolic (body mass, body fat, and glucose tolerance), inflammatory (serum adipokines and inflammatory mediators), and functional (mechanical tactile sensitivity and grip strength) outcomes using a correlation-based network analysis. Diet and exercise effects were evaluated by two-way analysis of variance. RESULTS An HF diet increased the infrapatellar fat pad size and posterior joint osteophytes, and wheel running primarily altered the subchondral cortical and trabecular bone. Neither HF diet nor exercise altered average knee cartilage OA scores compared to control groups. However, the coefficient of variation was ≥25% for many outcomes, and some mice in both diet groups developed moderate OA (≥33% maximum score). This supported using correlation-based network analyses to identify systemic and local factors associated with early-stage knee OA phenotypes. In wheel-running cohorts, an HF diet reduced the network size compared to the control diet group despite similar running distances, suggesting that diet-induced obesity dampens the effects of exercise on systemic and local OA-related factors. Each of the 4 diet and activity groups showed mostly unique networks of local and systemic factors correlated with early-stage knee OA. CONCLUSION Despite minimal group-level effects of chronic diet-induced obesity and voluntary wheel running on knee OA pathology under the current test durations, diet and exercise substantially altered the relationships among systemic and local variables associated with early-stage knee OA. These results suggest that distinct pre-OA phenotypes may exist prior to the development of disease.
Collapse
MESH Headings
- Adipokines/blood
- Animals
- Cartilage, Articular/pathology
- Cartilage, Articular/physiopathology
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Hand Strength
- Hyperalgesia/physiopathology
- Inflammation Mediators/blood
- Male
- Mice, Inbred C57BL
- Obesity/complications
- Obesity/physiopathology
- Osteoarthritis, Knee/etiology
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/pathology
- Osteoarthritis, Knee/physiopathology
- Physical Conditioning, Animal
Collapse
Affiliation(s)
- Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA; Reynolds Oklahoma Center on Aging and Departments of Biochemistry and Molecular Biology, Physiology, and Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA
| | - Joanna Hudson
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA
| | - Erika Barboza Prado Lopes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA
| |
Collapse
|
47
|
Gao YH, Zhao CW, Liu B, Dong N, Ding L, Li YR, Liu JG, Feng W, Qi X, Jin XH. An update on the association between metabolic syndrome and osteoarthritis and on the potential role of leptin in osteoarthritis. Cytokine 2020; 129:155043. [PMID: 32078923 DOI: 10.1016/j.cyto.2020.155043] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/22/2020] [Accepted: 02/11/2020] [Indexed: 12/23/2022]
Abstract
Metabolic syndrome (MetS) has been associated with osteoarthritis (OA). Leptin, which is one of the markers of MetS, has been associated with OA pathophysiology. This study aimed to provide an update on the association between MetS and OA and on the potential role of leptin in OA. In this review, we summarized the current knowledge of the association between MetS and OA and updated the evidence on the potential role of leptin in OA. Clinical studies have investigated the epidemiologic association between MetS or its components and OA. Results suggested strong epidemiologic associations between MetS and OA, especially in the Asian population. Animal studies also indicated that metabolic dysregulation may lead to OA pathogenesis. The systemic role of MetS in OA pathophysiology is associated with obesity-related inflammation, the beneficial role of n-3 polyunsaturated fatty acids and deleterious role of cholesterol, physical inactivity, hypertension-induced subchondral ischemia, dyslipidemia-induced ectopic lipid deposition in chondrocytes, hyperglycemia-induced local effects of oxidative stress and advanced glycation end-products, low-grade systemic inflammation, and obesity-related adipokines by inducing the expression of proinflammtory factors. Leptin levels in serum/plasma and synovial fluid were associated with joint pain, radiographic progression, bone formation biomarkers, cartilage volume, knee OA incidence, and total joint arthroplasty in OA patients. Elevated leptin expression and increased effect of leptin on infrapatellar fat pad, synovium, articular cartilage, and bone were also involved in the pathogenesis of OA. Current knowledge indicates a convincing epidemiologic association between MetS and OA, especially in the Asian population. Animal studies have also shown that metabolic dysregulation may lead to OA pathogenesis. Accumulating evidence suggests that leptin may play a potential role in OA pathogenesis. Therefore, leptin and its receptor may be an emerging target for intervention in metabolic-associated OA.
Collapse
Affiliation(s)
- Yu-Hang Gao
- Department of Orthopaedic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Cheng-Wu Zhao
- Department of Sports Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bo Liu
- Department of Ultrasound, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ning Dong
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lu Ding
- Department of Orthopaedic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ye-Ran Li
- Department of Orthopaedic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jian-Guo Liu
- Department of Orthopaedic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wei Feng
- Department of Orthopaedic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xin Qi
- Department of Orthopaedic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Xian-Hua Jin
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
48
|
Chen Y, Jiang W, Yong H, He M, Yang Y, Deng Z, Li Y. Macrophages in osteoarthritis: pathophysiology and therapeutics. Am J Transl Res 2020; 12:261-268. [PMID: 32051751 PMCID: PMC7013211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Osteoarthritis (OA) is the most common cause of disability in worldwide population, which is characterized by cartilage breakdown, synovial fibrosis, osteophyte formation and pain. Synovial inflammation is usually found in both early and late stages in most of the OA patients. Macrophages, the major component of the mononuclear phagocyte system, play a critical role in OA pathogenesis through the induction of inflammatory mediators, growth factors and proteinases. So, drugs that can target macrophages and macrophage-associated inflammatory pathways at an appropriate stage may help to inhibit or slow down the progression of OA. However, despite an emerging role of synovial macrophages in OA pathogenesis, little is known about the biology of synovial tissue macrophages, and attempts to target macrophages therapeutically have had limited success. But the use of selective targets of macrophages may minimize the side effects and support the promising therapeutic strategy in the treatment of OA. More pre-clinical animal models and clinical trials are necessary to evaluate the role of selective targets of macrophages in the prevention and treatment of OA. This review article discusses the association of macrophages in OA development and possible OA therapeutics by targeting macrophages.
Collapse
Affiliation(s)
- Yulin Chen
- Baishilong Community Health Service Center, People’s Hospital of LonghuaShenzhen 518109, Guangdong, China
| | - Wei Jiang
- Bone and Joint Department of Shenzhen People’s HospitalShenzhen, Guangdong, China
- The First Affiliated Hospital of Nanfan University of Science and TechenologyShenzhen, Guangdong, China
- The Second Clinical Medical College of Jinan UniversityShenzhen 518020, Guangdong, China
| | - Huang Yong
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong, China
| | - Miao He
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Yuntao Yang
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| |
Collapse
|
49
|
Sansone V, Applefield RC, De Luca P, Pecoraro V, Gianola S, Pascale W, Pascale V. Does a high-fat diet affect the development and progression of osteoarthritis in mice?: A systematic review. Bone Joint Res 2020; 8:582-592. [PMID: 31934329 PMCID: PMC6946912 DOI: 10.1302/2046-3758.812.bjr-2019-0038.r1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Aims The aim of this study was to systematically review the literature for evidence of the effect of a high-fat diet (HFD) on the onset or progression of osteoarthritis (OA) in mice. Methods A literature search was performed in PubMed, Embase, Web of Science, and Scopus to find all studies on mice investigating the effects of HFD or Western-type diet on OA when compared with a control diet (CD). The primary outcome was the determination of cartilage loss and alteration. Secondary outcomes regarding local and systemic levels of proteins involved in inflammatory processes or cartilage metabolism were also examined when reported. Results In total, 14 publications met our inclusion criteria and were included in our review. Our meta-analysis showed that, when measured by the modified Mankin Histological-Histochemical Grading System, there was a significantly higher rate of OA in mice fed a HFD than in mice on a CD (standardized mean difference (SMD) 1.27, 95% confidence interval (CI) 0.63 to 1.91). Using the Osteoarthritis Research Society International (OARSI) score, there was a trend towards HFD causing OA (SMD 0.78, 95% CI -0.04 to 1.61). In terms of OA progression, a HFD consistently worsened the progression of surgically induced OA when compared with a CD. Finally, numerous inflammatory cytokines such as tumour necrosis factor alpha (TNF-α), interleukin (IL)-1β, and leptin, among others, were found to be altered by a HFD. Conclusion A HFD seems to induce or exacerbate the progression of OA in mice. The metabolic changes and systemic inflammation brought about by a HFD appear to be key players in the onset and progression of OA. Cite this article:Bone Joint Res 2019;8:582–592.
Collapse
Affiliation(s)
- Valerio Sansone
- Department of Orthopaedics, Universitá degli Studi di Milano and IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | | | - Valentina Pecoraro
- Department of Laboratory Medicine, Ospedale Civile Sant'Agostino Estense di Baggiovra, Baggiovara, Italy
| | | | | | - Valerio Pascale
- Department of Orthopaedics, Universitá degli Studi di Milano and IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
50
|
Dickson BM, Roelofs AJ, Rochford JJ, Wilson HM, De Bari C. The burden of metabolic syndrome on osteoarthritic joints. Arthritis Res Ther 2019; 21:289. [PMID: 31842972 PMCID: PMC6915944 DOI: 10.1186/s13075-019-2081-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023] Open
Abstract
Background The prevalence of osteoarthritis (OA) increases with obesity, with up to two thirds of the elderly obese population affected by OA of the knee. The metabolic syndrome (MetS), frequently associated with central obesity and characterised by elevated waist circumference, raised fasting plasma glucose concentration, raised triglycerides, reduced high-density lipoproteins, and/or hypertension, is implicated in the pathogenesis of OA. This narrative review discusses the mechanisms involved in the influence of MetS on OA, with a focus on the effects on macrophages and chondrocytes. Main text A skewing of macrophages towards a pro-inflammatory M1 phenotype within synovial and adipose tissues is thought to play a role in OA pathogenesis. The metabolic perturbations typical of MetS are important drivers of pro-inflammatory macrophage polarisation and activity. This is mediated via alterations in the levels and activities of the cellular nutrient sensors 5′ adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin complex 1 (mTORC1), intracellular accumulation of metabolic intermediates such as succinate and citrate, and increases in free fatty acids (FFAs) and hyperglycaemia-induced advanced glycation end-products (AGEs) that bind to receptors on the macrophage surface. Altered levels of adipokines, including leptin and adiponectin, further influence macrophage polarisation. The metabolic alterations in MetS also affect the cartilage through direct effects on chondrocytes by stimulating the production of pro-inflammatory and catabolic factors and possibly by suppressing autophagy and promoting cellular senescence. Conclusions The influence of MetS on OA pathogenesis involves a wide range of metabolic alterations that directly affect macrophages and chondrocytes. The relative burden of intra-articular versus systemic adipose tissue in the MetS-associated OA remains to be clarified. Understanding how altered metabolism interacts with joints affected by OA is crucial for the development of further strategies for treating this debilitating condition, such as supplementing existing therapies with metformin and utilising ω-3 fatty acid derivatives to restore imbalances in ω-3 and ω-6 fatty acids.
Collapse
Affiliation(s)
- Bruce M Dickson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Anke J Roelofs
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|