1
|
Szabó J, Renczés E, Borbélyová V, Ostatníková D, Celec P. Assessing sociability using the Three-Chamber Social Interaction Test and the Reciprocal Interaction Test in a genetic mouse model of ASD. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:24. [PMID: 39342245 PMCID: PMC11439274 DOI: 10.1186/s12993-024-00251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with heterogeneous symptomatology. Arguably, the most pervasive shortfall of ASD are the deficits in sociability and the animal models of the disorder are expected to exhibit such impairments. The most widely utilized behavioral task for assessing sociability in rodents is the Three-Chamber Social Interaction Test (SIT). However, SIT has been yielding inconsistent results in social interaction behavior across different rodent models of ASD, which could be pointing to the suboptimal methodology of the task. Here, we compared social behavior assessed in SIT and in another prominent sociability behavioral assay, Reciprocal Interaction Test (RCI), in a SH3 and multiple ankyrin repeated domains 3 (SHANK3) mouse model of ASD. Head-to-head comparison showed no association (p = 0.15, 0.25, 0.43) and a fixed bias (p = 0.01, < 0.001, < 0.001) in sociability assessment between the behavioral assays in both wild-type (WT) controls and Shank3B(-/-) mice. Adult Shank3B(-/-) mice of both sexes displayed normative sociability in SIT when compared to the WT controls (p = 0.74) but exhibited less than half of social interaction (p < 0.001) and almost three times more social disinterest (p < 0.001) when compared to WT mice in RCI. At least in the Shank3B(-/-) mouse model of ASD, we presume RCI could be a preferable way of assessing social interaction compared to SIT. Considering the variability of animal models of ASD and the wide palette of tools available for the assessment of their behavior, a consensus approach would be needed for observational and interventional analyses.
Collapse
Affiliation(s)
- Jakub Szabó
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Emese Renczés
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Daniela Ostatníková
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
2
|
Rivalan M, Alonso L, Mosienko V, Bey P, Hyde A, Bader M, Winter Y, Alenina N. Serotonin drives aggression and social behaviors of laboratory male mice in a semi-natural environment. Front Behav Neurosci 2024; 18:1450540. [PMID: 39359324 PMCID: PMC11446219 DOI: 10.3389/fnbeh.2024.1450540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Aggression is an adaptive social behavior crucial for the stability and prosperity of social groups. When uncontrolled, aggression leads to pathological violence that disrupts group structure and individual wellbeing. The comorbidity of uncontrolled aggression across different psychopathologies makes it a potential endophenotype of mental disorders with the same neurobiological substrates. Serotonin plays a critical role in regulating impulsive and aggressive behaviors. Mice lacking in brain serotonin, due to the ablation of tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme in serotonin synthesis, could serve as a potential model for studying pathological aggression. Home cage monitoring allows for the continuous observation and quantification of social and non-social behaviors in group-housed, freely-moving mice. Using an ethological approach, we investigated the impact of central serotonin ablation on the everyday expression of social and non-social behaviors and their correlations in undisturbed, group-living Tph2-deficient and wildtype mice. By training a machine learning algorithm on behavioral time series, "allogrooming", "struggling at feeder", and "eating" emerged as key behaviors dissociating one genotype from the other. Although Tph2-deficient mice exhibited characteristics of pathological aggression and reduced communication compared to wildtype animals, they still demonstrated affiliative huddle behaviors to normal levels. Altogether, such a distinct and dynamic phenotype of Tph2-deficient mice influenced the group's structure and the subsequent development of its hierarchical organization. These aspects were analyzed using social network analysis and the Glicko rating methods. This study demonstrates the importance of the ethological approach for understanding the global impact of pathological aggression on various aspects of life, both at the individual and group levels. Home cage monitoring allows the observation of the natural behaviors of mice in a semi-natural habitat, providing an accurate representation of real-world phenomena and pathological mechanisms. The results of this study provide insights into the neurobiological substrate of pathological aggression and its potential role in complex brain disorders.
Collapse
Affiliation(s)
- Marion Rivalan
- Humboldt University Institute of Biology, Chair of Cognitive Neurobiology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Neuroscience Paris-Saclay, CNRS, Université Paris-Saclay, Saclay, France
| | - Lucille Alonso
- Humboldt University Institute of Biology, Chair of Cognitive Neurobiology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- University of Bordeaux, CNRS, IINS, UMR 5297, Bordeaux, France
| | - Valentina Mosienko
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University Walk, Bristol, United Kingdom
| | - Patrik Bey
- Humboldt University Institute of Biology, Chair of Cognitive Neurobiology, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexia Hyde
- Humboldt University Institute of Biology, Chair of Cognitive Neurobiology, Berlin, Germany
| | - Michael Bader
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - York Winter
- Humboldt University Institute of Biology, Chair of Cognitive Neurobiology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
3
|
Varga A, Kedves R, Sághy K, Garab D, Zádor F, Lendvai B, Lévay G, Román V. R-Baclofen Treatment Corrects Autistic-like Behavioral Deficits in the RjIbm(m):FH Fawn-Hooded Rat Strain. Pharmaceuticals (Basel) 2024; 17:939. [PMID: 39065788 PMCID: PMC11279403 DOI: 10.3390/ph17070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The Fawn-hooded rat has long been used as a model for various peripheral and central disorders and the data available indicate that the social behavior of this strain may be compromised. However, a thorough description of the Fawn-hooded rat is unavailable in this regard. The objective of the present study was to investigate various aspects of the Fawn-hooded rat's social behavior in depth. Our results show that several facets of socio-communicational behavior are impaired in the RjIbm(m):FH strain, including defective ultrasonic vocalizations in pups upon maternal deprivation, reduced social play in adolescence and impaired social novelty discrimination in adulthood. In addition, Fawn-hooded rats exhibited heightened tactile sensitivity and hyperactivity. The defects observed were comparable to those induced by prenatal valproate exposure, a widely utilized model of autism spectrum disorder. Further on, the pro-social drug R-baclofen (0.25-1 mg/kg) reversed the autistic-like defects observed in Fawn-hooded rats, specifically the deficiency in ultrasonic vocalization, tactile sensitivity and social novelty discrimination endpoints. In conclusion, the asocial, hypersensitive and hyperactive phenotype as well as the responsivity to R-baclofen indicate this variant of the Fawn-hooded rat strain may serve as a model of autism spectrum disorder and could be useful in the identification of novel drug candidates.
Collapse
Affiliation(s)
- Anita Varga
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
- Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Rita Kedves
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
| | - Katalin Sághy
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
| | - Dénes Garab
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
| | - Ferenc Zádor
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
| | - Balázs Lendvai
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
- Richter Department, Semmelweis University, Gyömrői út 19-21, 1103 Budapest, Hungary
| | - György Lévay
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Vas utca 17, 1088 Budapest, Hungary
| | - Viktor Román
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
- Richter Department, Semmelweis University, Gyömrői út 19-21, 1103 Budapest, Hungary
| |
Collapse
|
4
|
Wilson RJ, Suh YP, Dursun I, Li X, da Costa Souza F, Grodzki AC, Cui JY, Lehmler HJ, Lein PJ. Developmental exposure to the Fox River PCB mixture modulates behavior in juvenile mice. Neurotoxicology 2024; 103:146-161. [PMID: 38885884 PMCID: PMC11489981 DOI: 10.1016/j.neuro.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Developmental exposures to PCBs are implicated in the etiology of neurodevelopmental disorders (NDDs). This observation is concerning given the continued presence of PCBs in the human environment and the increasing incidence of NDDs. Previous studies reported that developmental exposure to legacy commercial PCB mixtures (Aroclors) or single PCB congeners found in Aroclors caused NDD-relevant behavioral phenotypes in animal models. However, the PCB congener profile in contemporary human samples is dissimilar to that of the legacy Aroclors, raising the question of whether human-relevant PCB mixtures similarly interfere with normal brain development. To address this question, we assessed the developmental neurotoxicity of the Fox River Mixture (FRM), which was designed to mimic the congener profile identified in fish from the PCB-contaminated Fox River that constitute a primary protein source in the diet of surrounding communities. Adult female C57BL/6 J mouse dams (8-10 weeks old) were exposed to vehicle (peanut oil) or FRM at 0.1, 1.0, or 6.0 mg/kg/d in their diet throughout gestation and lactation, and neurodevelopmental outcomes were assessed in their pups. Ultrasonic vocalizations (USVs) and measures of general development were quantified at postnatal day (P) 7, while performance in the spontaneous alternation task and the 3-chambered social approach/social novelty task was assessed on P35. Triiodothyronine (T3) and thyroxine (T4) were quantified in serum collected from the dams when pups were weaned and from pups on P28 and P35. Developmental exposure to FRM did not alter pup weight or body temperature on P7, but USVs were significantly decreased in litters exposed to FRM at 0.1 or 6.0 mg/kg/d in the maternal diet. FRM also impaired male and female pups' performance in the social novelty task. Compared to sex-matched vehicles, significantly decreased social novelty was observed in male and female pups in the 0.1 and 6.0 mg/kg/d dose groups. FRM did not alter performance in the spontaneous alternation or social approach tasks. FRM increased serum T3 levels but decreased serum T4 levels in P28 male pups in the 1.0 and 6.0 mg/kg/d dose groups. In P35 female pups and dams, serum T3 levels decreased in the 6.0 mg/kg/d dose group while T4 levels were not altered. Collectively, these findings suggest that FRM interferes with the development of social communication and social novelty, but not memory, supporting the hypothesis that contemporary PCB exposures pose a risk to the developing brain. FRM had sex, age, and dose-dependent effects on serum thyroid hormone levels that overlapped but did not perfectly align with the FRM effects on behavioral outcomes. These observations suggest that changes in thyroid hormone levels are not likely the major factor underlying the behavioral deficits observed in FRM-exposed animals.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Department of Molecular Biosciences, University of California Davis, Davis, CA, USA
| | - Youjun P Suh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Ilknur Dursun
- Department of Molecular Biosciences, University of California Davis, Davis, CA, USA; Istinye University, School of Medicine, Department of Physiology, Istanbul 34396, Turkey
| | - Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
| | | | - Ana Cristina Grodzki
- Department of Molecular Biosciences, University of California Davis, Davis, CA, USA
| | - Julia Y Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California Davis, Davis, CA, USA.
| |
Collapse
|
5
|
Cum M, Santiago Pérez JA, Wangia E, Lopez N, Wright ES, Iwata RL, Li A, Chambers AR, Padilla-Coreano N. A systematic review and meta-analysis of how social memory is studied. Sci Rep 2024; 14:2221. [PMID: 38278973 PMCID: PMC10817899 DOI: 10.1038/s41598-024-52277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Social recognition is crucial for survival in social species, and necessary for group living, selective reproduction, pair bonding, and dominance hierarchies. Mice and rats are the most commonly used animal models in social memory research, however current paradigms do not account for the complex social dynamics they exhibit in the wild. To assess the range of social memories being studied, we conducted a systematic analysis of neuroscience articles testing the social memory of mice and rats published within the past two decades and analyzed their methods. Our results show that despite these rodent's rich social memory capabilities, the majority of social recognition papers explore short-term memories and short-term familiarity levels with minimal exposure between subject and familiar stimuli-a narrow type of social memory. We have identified several key areas currently understudied or underrepresented: kin relationships, mates, social ranks, sex variabilities, and the effects of aging. Additionally, reporting on social stimulus variables such as housing history, strain, and age, is limited, which may impede reproducibility. Overall, our data highlight large gaps in the diversity of social memories studied and the effects social variables have on social memory mechanisms.
Collapse
Affiliation(s)
- Meghan Cum
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | | | - Erika Wangia
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Naeliz Lopez
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Elizabeth S Wright
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Ryo L Iwata
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Albert Li
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Amelia R Chambers
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | | |
Collapse
|
6
|
Lee HHC, Sahin M. Rodent Models for ASD Biomarker Development. ADVANCES IN NEUROBIOLOGY 2024; 40:189-218. [PMID: 39562446 DOI: 10.1007/978-3-031-69491-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Advances in molecular biology and genetics are increasingly revealing the complex etiology of autism spectrum disorder (ASD). In parallel, a number of biochemical, anatomical, and electrophysiological measures are emerging as potential disease-relevant biomarkers that could inform the diagnosis and clinical management of ASD. Rodent ASD models play a key role in ASD research as essential experimental tools. Nevertheless, there are challenges and limitations to the validity and translational value of rodent models, including genetic relevance and cognitive performance differences between humans and rodents. In this chapter, we begin with a brief history of autism research, followed by prominent examples of disease-relevant mouse models enabled by current knowledge of genetics, molecular biology, and bioinformatics. These ASD-associated rodent models enable quantifiable biomarker development. Finally, we discuss the prospects of ASD biomarker development.
Collapse
Affiliation(s)
- Henry H C Lee
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Parrella NF, Hill AT, Dipnall LM, Loke YJ, Enticott PG, Ford TC. Inhibitory dysfunction and social processing difficulties in autism: A comprehensive narrative review. J Psychiatr Res 2024; 169:113-125. [PMID: 38016393 DOI: 10.1016/j.jpsychires.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
The primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) has a prominent role in regulating neural development and function, with disruption to GABAergic signalling linked to behavioural phenotypes associated with neurodevelopmental disorders, particularly autism. Such neurochemical disruption, likely resulting from diverse genetic and molecular mechanisms, particularly during early development, can subsequently affect the cellular balance of excitation and inhibition in neuronal circuits, which may account for the social processing difficulties observed in autism and related conditions. This comprehensive narrative review integrates diverse streams of research from several disciplines, including molecular neurobiology, genetics, epigenetics, and systems neuroscience. In so doing it aims to elucidate the relevance of inhibitory dysfunction to autism, with specific focus on social processing difficulties that represent a core feature of this disorder. Many of the social processing difficulties experienced in autism have been linked to higher levels of the excitatory neurotransmitter glutamate and/or lower levels of inhibitory GABA. While current therapeutic options for social difficulties in autism are largely limited to behavioural interventions, this review highlights the psychopharmacological studies that explore the utility of GABA modulation in alleviating such difficulties.
Collapse
Affiliation(s)
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lillian M Dipnall
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Early Life Epigenetics Group, Deakin University, Geelong, Australia
| | - Yuk Jing Loke
- Epigenetics Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Cum M, Pérez JS, Wangia E, Lopez N, Wright ES, Iwata RL, Li A, Chambers AR, Padilla-Coreano N. Mind the gap: A systematic review and meta-analysis of how social memory is studied. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572606. [PMID: 38187659 PMCID: PMC10769336 DOI: 10.1101/2023.12.20.572606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Social recognition is crucial for survival in social species, and necessary for group living, selective reproduction, pair bonding, and dominance hierarchies. Mice and rats are the most commonly used animal models in social memory research, however current paradigms do not account for the complex social dynamics they exhibit in the wild. To assess the range of social memories being studied, we conducted a systematic analysis of neuroscience articles testing the social memory of mice and rats published within the past two decades and analyzed their methods. Our results show that despite these rodent's rich social memory capabilities, the majority of social recognition papers explore short-term memories and short-term familiarity levels with minimal exposure between subject and familiar stimuli - a narrow type of social memory. We have identified several key areas currently understudied or underrepresented: kin relationships, mates, social ranks, sex variabilities, and the effects of aging. Additionally, reporting on social stimulus variables such as housing history, strain, and age, is limited, which may impede reproducibility. Overall, our data highlight large gaps in the diversity of social memories studied and the effects social variables have on social memory mechanisms.
Collapse
|
9
|
Willadsen M, Schwarting RKW, Wöhr M. Acute anxiogenic effects of escitalopram are associated with mild alterations in D-amphetamine-induced behavior and social approach evoked by playback of 50-kHz ultrasonic vocalizations in rats. Neuropharmacology 2023; 241:109734. [PMID: 37813275 DOI: 10.1016/j.neuropharm.2023.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Rats communicate through auditory signals in the ultrasonic range, so-called ultrasonic vocalizations (USV). Short, high-frequency 50-kHz USV are associated with positive affective states and are emitted in appetitive situations, often rewarding social interactions, such as rough-and-tumble play and mating. Exaggerated levels of 50-kHz USV emission can be observed in response to psychostimulants, most notably d-amphetamine (AMPH). There is robust evidence suggesting that 50-kHz USV serve as affiliative signals and help to maintain or re-establish social proximity. A key neurotransmitter involved in behavioral regulation is serotonin (5-hydroxytryptamine, 5-HT). This includes both, the regulation of anxiety-related behavior and ultrasonic communication. Here, we show that acute treatment with the selective 5-HT reuptake inhibitor (SSRI) escitalopram (ESC) leads to increased anxiety-related behavior in the elevated plus maze and tested whether such acute anxiogenic effects of ESC result in alterations in ultrasonic communication in sender and/or receiver. To this aim, we conducted a dose-response study in male rats and assessed AMPH-induced hyperactivity and 50-kHz ultrasonic calling in the sender and social approach behavior evoked by playback of pro-social 50-kHz USV in the receiver. Acute ESC treatment affected both, sender and receiver. This was reflected in a lack of AMPH-induced changes in acoustic features of 50-kHz USV and absence of social exploratory behavior evoked by 50-kHz USV playback, respectively. Albeit the SSRI effects were relatively mild, this supports the notion that the 5-HT system is involved in the regulation of a key aspect of the social behavior repertoire of rodents, namely socio-affective communication through 50-kHz USV.
Collapse
Affiliation(s)
- Maria Willadsen
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, D-35032, Marburg, Germany; Philipps-University of Marburg, Center for Mind, Brain and Behavior, D-35032, Marburg, Germany
| | - Rainer K W Schwarting
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, D-35032, Marburg, Germany; Philipps-University of Marburg, Center for Mind, Brain and Behavior, D-35032, Marburg, Germany
| | - Markus Wöhr
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, D-35032, Marburg, Germany; Philipps-University of Marburg, Center for Mind, Brain and Behavior, D-35032, Marburg, Germany; KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, B-3000, Leuven, Belgium; KU Leuven, Leuven Brain Institute, B-3000, Leuven, Belgium.
| |
Collapse
|
10
|
Reinhardt PR, Theis CDC, Juckel G, Freund N. Rodent models for mood disorders - understanding molecular changes by investigating social behavior. Biol Chem 2023; 404:939-950. [PMID: 37632729 DOI: 10.1515/hsz-2023-0190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Mood disorders, including depressive and bipolar disorders, are the group of psychiatric disorders with the highest prevalence and disease burden. However, their pathophysiology remains poorly understood. Animal models are an extremely useful tool for the investigation of molecular mechanisms underlying these disorders. For psychiatric symptom assessment in animals, a meaningful behavioral phenotype is needed. Social behaviors constitute naturally occurring complex behaviors in rodents and can therefore serve as such a phenotype, contributing to insights into disorder related molecular changes. In this narrative review, we give a fundamental overview of social behaviors in laboratory rodents, as well as their underlying neuronal mechanisms and their assessment. Relevant behavioral and molecular changes in models for mood disorders are presented and an outlook on promising future directions is given.
Collapse
Affiliation(s)
- Patrick R Reinhardt
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Candy D C Theis
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| | - Georg Juckel
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| |
Collapse
|
11
|
Anderson LL, Everett‐Morgan D, Petkova SP, Silverman JL, Arnold JC. Ictal vocalizations in the Scn1a +/- mouse model of Dravet syndrome. Epilepsia Open 2023; 8:776-784. [PMID: 36811143 PMCID: PMC10472354 DOI: 10.1002/epi4.12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE Ictal vocalizations have shown diagnostic utility in epilepsy patients. Audio recordings of seizures have also been used for seizure detection. The present study aimed to determine whether generalized tonic-clonic seizures in the Scn1a+/- mouse model of Dravet syndrome are associated with either audible mouse squeaks or ultrasonic vocalizations. METHODS Acoustic recordings were captured from group-housed Scn1a+/- mice undergoing video-monitoring to quantify spontaneous seizure frequency. We generated audio clips (n = 129) during a generalized tonic-clonic seizure (GTCS) that included 30 seconds immediately prior to the GTCS (preictal) and 30 seconds following the conclusion of the seizure (postictal). Nonseizure clips (n = 129) were also exported from the acoustic recordings. A blinded reviewer manually reviewed the audio clips, and vocalizations were identified as either an audible (<20 kHz) mouse squeak or ultrasonic (>20 kHz). RESULTS Spontaneous GTCS in Scn1a+/- mice were associated with a significantly higher number of total vocalizations. The number of audible mouse squeaks was significantly greater with GTCS activity. Nearly all (98%) the seizure clips contained ultrasonic vocalizations, whereas ultrasonic vocalizations were present in only 57% of nonseizure clips. The ultrasonic vocalizations emitted in the seizure clips were at a significantly higher frequency and were nearly twice as long in duration as those emitted in the nonseizure clips. Audible mouse squeaks were primarily emitted during the preictal phase. The greatest number of ultrasonic vocalizations was detected during the ictal phase. SIGNIFICANCE Our study shows that ictal vocalizations are exhibited by Scn1a+/- mice. Quantitative audio analysis could be developed as a seizure detection tool for the Scn1a+/- mouse model of Dravet syndrome.
Collapse
Affiliation(s)
- Lyndsey L. Anderson
- Lambert Initiative for Cannabinoid TherapeuticsThe University of SydneyCamperdownNew South WalesAustralia
- Discipline of Pharmacology, School of PharmacyFaculty of Medicine and Health, The University of SydneyCamperdownNew South WalesAustralia
- Brain and Mind CentreThe University of SydneyCamperdownNew South WalesAustralia
| | - Declan Everett‐Morgan
- Lambert Initiative for Cannabinoid TherapeuticsThe University of SydneyCamperdownNew South WalesAustralia
| | - Stela P. Petkova
- Department of Psychiatry and Behavioral Sciences, MIND Institute, School of MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, MIND Institute, School of MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Jonathon C. Arnold
- Lambert Initiative for Cannabinoid TherapeuticsThe University of SydneyCamperdownNew South WalesAustralia
- Discipline of Pharmacology, School of PharmacyFaculty of Medicine and Health, The University of SydneyCamperdownNew South WalesAustralia
- Brain and Mind CentreThe University of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
12
|
Achterberg EJM, Vanderschuren LJMJ. The neurobiology of social play behaviour: Past, present and future. Neurosci Biobehav Rev 2023; 152:105319. [PMID: 37454882 DOI: 10.1016/j.neubiorev.2023.105319] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Social play behaviour is a highly energetic and rewarding activity that is of great importance for the development of brain and behaviour. Social play is abundant during the juvenile and early adolescent phases of life, and it occurs in most mammalian species, as well as in certain birds and reptiles. To date, the majority of research into the neural mechanisms of social play behaviour has been performed in male rats. In the present review we summarize studies on the neurobiology of social play behaviour in rats, including work on pharmacological and genetic models for autism spectrum disorders, early life manipulations and environmental factors that influence play in rats. We describe several recent developments that expand the field, and highlight outstanding questions that may guide future studies.
Collapse
Affiliation(s)
- E J Marijke Achterberg
- Dept. of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands.
| | - Louk J M J Vanderschuren
- Dept. of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands.
| |
Collapse
|
13
|
Kareklas K, Teles MC, Dreosti E, Oliveira RF. Autism-associated gene shank3 is necessary for social contagion in zebrafish. Mol Autism 2023; 14:23. [PMID: 37391856 PMCID: PMC10311831 DOI: 10.1186/s13229-023-00555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Animal models enable targeting autism-associated genes, such as the shank3 gene, to assess their impact on behavioural phenotypes. However, this is often limited to simple behaviours relevant for social interaction. Social contagion is a complex phenotype forming the basis of human empathic behaviour and involves attention to the behaviour of others for recognizing and sharing their emotional or affective state. Thus, it is a form of social communication, which constitutes the most common developmental impairment across autism spectrum disorders (ASD). METHODS Here we describe the development of a zebrafish model that identifies the neurocognitive mechanisms by which shank3 mutation drives deficits in social contagion. We used a CRISPR-Cas9 technique to generate mutations to the shank3a gene, a zebrafish paralogue found to present greater orthology and functional conservation relative to the human gene. Mutants were first compared to wild types during a two-phase protocol that involves the observation of two conflicting states, distress and neutral, and the later recall and discrimination of others when no longer presenting such differences. Then, the whole-brain expression of different neuroplasticity markers was compared between genotypes and their contribution to cluster-specific phenotypic variation was assessed. RESULTS The shank3 mutation markedly reduced social contagion via deficits in attention contributing to difficulties in recognising affective states. Also, the mutation changed the expression of neuronal plasticity genes. However, only downregulated neuroligins clustered with shank3a expression under a combined synaptogenesis component that contributed specifically to variation in attention. LIMITATIONS While zebrafish are extremely useful in identifying the role of shank3 mutations to composite social behaviour, they are unlikely to represent the full complexity of socio-cognitive and communication deficits presented by human ASD pathology. Moreover, zebrafish cannot represent the scaling up of these deficits to higher-order empathic and prosocial phenotypes seen in humans. CONCLUSIONS We demonstrate a causal link between the zebrafish orthologue of an ASD-associated gene and the attentional control of affect recognition and consequent social contagion. This models autistic affect-communication pathology in zebrafish and reveals a genetic attention-deficit mechanism, addressing the ongoing debate for such mechanisms accounting for emotion recognition difficulties in autistic individuals.
Collapse
Affiliation(s)
- Kyriacos Kareklas
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156, Oeiras, Portugal
| | - Magda C Teles
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156, Oeiras, Portugal
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041, Lisbon, Portugal
| | - Elena Dreosti
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156, Oeiras, Portugal.
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041, Lisbon, Portugal.
| |
Collapse
|
14
|
Crawley JN. Twenty years of discoveries emerging from mouse models of autism. Neurosci Biobehav Rev 2023; 146:105053. [PMID: 36682425 DOI: 10.1016/j.neubiorev.2023.105053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
More than 100 single gene mutations and copy number variants convey risk for autism spectrum disorder. To understand the extent to which each mutation contributes to the trajectory of individual symptoms of autism, molecular genetics laboratories have introduced analogous mutations into the genomes of laboratory mice and other species. Over the past twenty years, behavioral neuroscientists discovered the consequences of mutations in many risk genes for autism in animal models, using assays with face validity to the diagnostic and associated behavioral symptoms of people with autism. Identified behavioral phenotypes complement electrophysiological, neuroanatomical, and biochemical outcome measures in mutant mouse models of autism. This review describes the history of phenotyping assays in genetic mouse models, to evaluate social and repetitive behaviors relevant to the primary diagnostic criteria for autism. Robust phenotypes are currently employed in translational investigations to discover effective therapeutic interventions, representing the future direction of an intensely challenging research field.
Collapse
|
15
|
Lee K, Mills Z, Cheung P, Cheyne JE, Montgomery JM. The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2022; 16:ph16010001. [PMID: 36678498 PMCID: PMC9866730 DOI: 10.3390/ph16010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
NMDA-type glutamate receptors are critical for synaptic plasticity in the central nervous system. Their unique properties and age-dependent arrangement of subunit types underpin their role as a coincidence detector of pre- and postsynaptic activity during brain development and maturation. NMDAR function is highly modulated by zinc, which is co-released with glutamate and concentrates in postsynaptic spines. Both NMDARs and zinc have been strongly linked to autism spectrum disorders (ASDs), suggesting that NMDARs are an important player in the beneficial effects observed with zinc in both animal models and children with ASDs. Significant evidence is emerging that these beneficial effects occur via zinc-dependent regulation of SHANK proteins, which form the backbone of the postsynaptic density. For example, dietary zinc supplementation enhances SHANK2 or SHANK3 synaptic recruitment and rescues NMDAR deficits and hypofunction in Shank3ex13-16-/- and Tbr1+/- ASD mice. Across multiple studies, synaptic changes occur in parallel with a reversal of ASD-associated behaviours, highlighting the zinc-dependent regulation of NMDARs and glutamatergic synapses as therapeutic targets for severe forms of ASDs, either pre- or postnatally. The data from rodent models set a strong foundation for future translational studies in human cells and people affected by ASDs.
Collapse
|
16
|
Berz A, Pasquini de Souza C, Wöhr M, Steinmüller S, Bruntsch M, Schäfer MKH, Schwarting RKW. Contingent Social Interaction Does Not Prevent Habituation towards Playback of Pro-Social 50-kHz Calls: Behavioral Responses and Brain Activation Patterns. Brain Sci 2022; 12:brainsci12111474. [PMID: 36358402 PMCID: PMC9688071 DOI: 10.3390/brainsci12111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022] Open
Abstract
Rats, which are highly social animals, are known to communicate using ultrasonic vocalizations (USV) in different frequency ranges. Calls around 50 kHz are related to positive affective states and promote social interactions. Our previous work has shown that the playback of natural 50-kHz USV leads to a strong social approach response toward the sound source, which is related to activation in the nucleus accumbens. In male Wistar rats, the behavioral response habituates, that is, becomes weaker or is even absent, when such playback is repeated several days later, an outcome found to be memory-dependent. Here, we asked whether such habituation is due to the lack of a contingent social consequence after playback in the initial test and whether activation of the nucleus accumbens, as measured by c-fos immunohistochemistry, can still be observed in a retest. To this end, groups of young male Wistar rats underwent an initial 50-kHz USV playback test, immediately after which they were either (1) kept temporarily alone, (2) exposed to a same-sex juvenile, or (3) to their own housing group. One week later, they underwent a retest with playback; this time not followed by social consequences but by brain removal for c-fos immunohistochemistry. Consistent with previous reports, behavioral changes evoked by the initial exposure to 50-kHz USV playback included a strong approach response. In the retest, no such response was found, irrespective of whether rats had experienced a contingent social consequence after the initial test or not. At the neural level, no substantial c-fos activation was found in the nucleus accumbens, but unexpected strong activation was detected in the anterior cingulate cortex, with some of it in GABAergic cells. The c-fos patterns did not differ between groups but cell numbers were individually correlated with behavior, i.e., rats that still approached in response to playback in the retest showed more activation. Together, these data do not provide substantial evidence that the lack of a contingent social consequence after 50-kHz USV playback accounts for approach habituation in the retest. Additionally, there is apparently no substantial activation of the nucleus accumbens in the retest, whereas the exploratory findings in the anterior cingulate cortex indicate that this brain area might be involved when individual rats still approach 50-kHz USV playback.
Collapse
Affiliation(s)
- Annuska Berz
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032 Marburg, Germany
| | - Camila Pasquini de Souza
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba 81530-000, PR, Brazil
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032 Marburg, Germany
- KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, B-3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sebastian Steinmüller
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, 35032 Marburg, Germany
| | - Maria Bruntsch
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032 Marburg, Germany
| | - Martin K.-H. Schäfer
- Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032 Marburg, Germany
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Philipps-University Marburg, 35032 Marburg, Germany
| | - Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032 Marburg, Germany
- Correspondence:
| |
Collapse
|
17
|
Jabarin R, Netser S, Wagner S. Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Mol Autism 2022; 13:41. [PMID: 36284353 PMCID: PMC9598038 DOI: 10.1186/s13229-022-00521-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022] Open
Abstract
MAIN: In recent years, substantial advances in social neuroscience have been realized, including the generation of numerous rodent models of autism spectrum disorder. Still, it can be argued that those methods currently being used to analyze animal social behavior create a bottleneck that significantly slows down progress in this field. Indeed, the bulk of research still relies on a small number of simple behavioral paradigms, the results of which are assessed without considering behavioral dynamics. Moreover, only few variables are examined in each paradigm, thus overlooking a significant portion of the complexity that characterizes social interaction between two conspecifics, subsequently hindering our understanding of the neural mechanisms governing different aspects of social behavior. We further demonstrate these constraints by discussing the most commonly used paradigm for assessing rodent social behavior, the three-chamber test. We also point to the fact that although emotions greatly influence human social behavior, we lack reliable means for assessing the emotional state of animals during social tasks. As such, we also discuss current evidence supporting the existence of pro-social emotions and emotional cognition in animal models. We further suggest that adequate social behavior analysis requires a novel multimodal approach that employs automated and simultaneous measurements of multiple behavioral and physiological variables at high temporal resolution in socially interacting animals. We accordingly describe several computerized systems and computational tools for acquiring and analyzing such measurements. Finally, we address several behavioral and physiological variables that can be used to assess socio-emotional states in animal models and thus elucidate intricacies of social behavior so as to attain deeper insight into the brain mechanisms that mediate such behaviors. CONCLUSIONS: In summary, we suggest that combining automated multimodal measurements with machine-learning algorithms will help define socio-emotional states and determine their dynamics during various types of social tasks, thus enabling a more thorough understanding of the complexity of social behavior.
Collapse
Affiliation(s)
- Renad Jabarin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
18
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
19
|
A Mini-Review Regarding the Modalities to Study Neurodevelopmental Disorders-Like Impairments in Zebrafish—Focussing on Neurobehavioural and Psychological Responses. Brain Sci 2022; 12:brainsci12091147. [PMID: 36138883 PMCID: PMC9496774 DOI: 10.3390/brainsci12091147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are complex disorders which can be associated with many comorbidities and exhibit multifactorial-dependent phenotypes. An important characteristic is represented by the early onset of the symptoms, during childhood or young adulthood, with a great impact on the socio-cognitive functioning of the affected individuals. Thus, the aim of our review is to describe and to argue the necessity of early developmental stages zebrafish models, focusing on NDDs, especially autism spectrum disorders (ASD) and also on schizophrenia. The utility of the animal models in NDDs or schizophrenia research remains quite controversial. Relevant discussions can be opened regarding the specific characteristics of the animal models and the relationship with the etiologies, physiopathology, and development of these disorders. The zebrafish models behaviors displayed as early as during the pre-hatching embryo stage (locomotor activity prone to repetitive behavior), and post-hatching embryo stage, such as memory, perception, affective-like, and social behaviors can be relevant in ASD and schizophrenia research. The neurophysiological processes impaired in both ASD and schizophrenia are generally highly conserved across all vertebrates. However, the relatively late individual development and conscious social behavior exhibited later in the larval stage are some of the most important limitations of these model animal species.
Collapse
|
20
|
Netser S, Nahardiya G, Weiss-Dicker G, Dadush R, Goussha Y, John SR, Taub M, Werber Y, Sapir N, Yovel Y, Harony-Nicolas H, Buxbaum JD, Cohen L, Crammer K, Wagner S. TrackUSF, a novel tool for automated ultrasonic vocalization analysis, reveals modified calls in a rat model of autism. BMC Biol 2022; 20:159. [PMID: 35820848 PMCID: PMC9277954 DOI: 10.1186/s12915-022-01299-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background Various mammalian species emit ultrasonic vocalizations (USVs), which reflect their emotional state and mediate social interactions. USVs are usually analyzed by manual or semi-automated methodologies that categorize discrete USVs according to their structure in the frequency-time domains. This laborious analysis hinders the effective use of USVs as a readout for high-throughput analysis of behavioral changes in animals. Results Here we present a novel automated open-source tool that utilizes a different approach towards USV analysis, termed TrackUSF. To validate TrackUSF, we analyzed calls from different animal species, namely mice, rats, and bats, recorded in various settings and compared the results with a manual analysis by a trained observer. We found that TrackUSF detected the majority of USVs, with less than 1% of false-positive detections. We then employed TrackUSF to analyze social vocalizations in Shank3-deficient rats, a rat model of autism, and revealed that these vocalizations exhibit a spectrum of deviations from appetitive calls towards aversive calls. Conclusions TrackUSF is a simple and easy-to-use system that may be used for a high-throughput comparison of ultrasonic vocalizations between groups of animals of any kind in any setting, with no prior assumptions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01299-y.
Collapse
Affiliation(s)
- Shai Netser
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel.,The Integrated Brain and Behavior Research Center (IBBR), Faculty of Natural Sciences, University of Haifa, Mt. Carmel, 3498838, Haifa, Israel
| | - Guy Nahardiya
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel.,The Integrated Brain and Behavior Research Center (IBBR), Faculty of Natural Sciences, University of Haifa, Mt. Carmel, 3498838, Haifa, Israel
| | - Gili Weiss-Dicker
- Department of Electrical Engineering, The Technion, 32000, Haifa, Israel
| | - Roei Dadush
- Department of Electrical Engineering, The Technion, 32000, Haifa, Israel
| | - Yizhaq Goussha
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel.,The Integrated Brain and Behavior Research Center (IBBR), Faculty of Natural Sciences, University of Haifa, Mt. Carmel, 3498838, Haifa, Israel
| | - Shanah Rachel John
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel.,The Integrated Brain and Behavior Research Center (IBBR), Faculty of Natural Sciences, University of Haifa, Mt. Carmel, 3498838, Haifa, Israel
| | - Mor Taub
- School of Zoology, Faculty of Life-Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Yuval Werber
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Haifa, Israel
| | - Nir Sapir
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Haifa, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life-Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Hala Harony-Nicolas
- The Department of Psychiatry and The Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- The Department of Psychiatry and The Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lior Cohen
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Koby Crammer
- Department of Electrical Engineering, The Technion, 32000, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel. .,The Integrated Brain and Behavior Research Center (IBBR), Faculty of Natural Sciences, University of Haifa, Mt. Carmel, 3498838, Haifa, Israel.
| |
Collapse
|
21
|
Brain Dp140 alters glutamatergic transmission and social behaviour in the mdx52 mouse model of Duchenne muscular dystrophy. Prog Neurobiol 2022; 216:102288. [PMID: 35654209 DOI: 10.1016/j.pneurobio.2022.102288] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 12/23/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle disorder caused by DMD mutations and is characterized by neurobehavioural comorbidities due to dystrophin deficiency in the brain. The lack of Dp140, a dystrophin short isoform, is clinically associated with intellectual disability and autism spectrum disorders (ASDs), but its postnatal functional role is not well understood. To investigate synaptic function in the presence or absence of brain Dp140, we utilized two DMD mouse models, mdx23 and mdx52 mice, in which Dp140 is preserved or lacking, respectively. ASD-like behaviours were observed in pups and 8-week-old mdx52 mice lacking Dp140. Paired-pulse ratio of excitatory postsynaptic currents, glutamatergic vesicle number in basolateral amygdala neurons, and glutamatergic transmission in medial prefrontal cortex-basolateral amygdala projections were significantly reduced in mdx52 mice compared to those in wild-type and mdx23 mice. ASD-like behaviour and electrophysiological findings in mdx52 mice were ameliorated by restoration of Dp140 following intra-cerebroventricular injection of antisense oligonucleotide drug-induced exon 53 skipping or intra-basolateral amygdala administration of Dp140 mRNA-based drug. Our results implicate Dp140 in ASD-like behaviour via altered glutamatergic transmission in the basolateral amygdala of mdx52 mice.
Collapse
|
22
|
Adhikari A, Buchanan FKB, Fenton TA, Cameron DL, Halmai JANM, Copping NA, Fink KD, Silverman JL. Touchscreen Cognitive Deficits, Hyperexcitability, and Hyperactivity in Males and Females Using Two Models of Cdkl5 Deficiency. Hum Mol Genet 2022; 31:3032-3050. [PMID: 35445702 PMCID: PMC9476626 DOI: 10.1093/hmg/ddac091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Many neurodevelopmental disorders (NDDs) are the result of mutations on the X chromosome. One severe NDD resulting from mutations on the X chromosome is CDKL5 deficiency disorder (CDD). CDD is an epigenetic, X-linked NDD characterized by intellectual disability (ID), pervasive seizures and severe sleep disruption, including recurring hospitalizations. CDD occurs at a 4:1 ratio, with a female bias. CDD is driven by the loss of cyclin-dependent kinase-like 5 (CDKL5), a serine/threonine kinase that is essential for typical brain development, synapse formation and signal transmission. Previous studies focused on male subjects from animal models, likely to avoid the complexity of X mosaicism. For the first time, we report translationally relevant behavioral phenotypes in young adult (8–20 weeks) females and males with robust signal size, including impairments in learning and memory, substantial hyperactivity and increased susceptibility to seizures/reduced seizure thresholds, in both sexes, and in two models of CDD preclinical mice, one with a general loss-of-function mutation and one that is a patient-derived mutation.
Collapse
Affiliation(s)
- Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - Fiona K B Buchanan
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - David L Cameron
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Julian A N M Halmai
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Nycole A Copping
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - Kyle D Fink
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| |
Collapse
|
23
|
Silverman JL, Thurm A, Ethridge SB, Soller MM, Petkova SP, Abel T, Bauman MD, Brodkin ES, Harony‐Nicolas H, Wöhr M, Halladay A. Reconsidering animal models used to study autism spectrum disorder: Current state and optimizing future. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12803. [PMID: 35285132 PMCID: PMC9189007 DOI: 10.1111/gbb.12803] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022]
Abstract
Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD) and intellectual disability (ID), are pervasive, often lifelong disorders, lacking evidence-based interventions for core symptoms. With no established biological markers, diagnoses are defined by behavioral criteria. Thus, preclinical in vivo animal models of NDDs must be optimally utilized. For this reason, experts in the field of behavioral neuroscience convened a workshop with the goals of reviewing current behavioral studies, reports, and assessments in rodent models. Goals included: (a) identifying the maximal utility and limitations of behavior in animal models with construct validity; (b) providing recommendations for phenotyping animal models; and (c) guidelines on how in vivo models should be used and reported reliably and rigorously while acknowledging their limitations. We concluded by recommending minimal criteria for reporting in manuscripts going forward. The workshop elucidated a consensus of potential solutions to several problems, including revisiting claims made about animal model links to ASD (and related conditions). Specific conclusions included: mice (or other rodent or preclinical models) are models of the neurodevelopmental insult, not specifically any disorder (e.g., ASD); a model that perfectly recapitulates a disorder such as ASD is untenable; and greater attention needs be given to validation of behavioral testing methods, data analysis, and critical interpretation.
Collapse
Affiliation(s)
- Jill L. Silverman
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping ServiceNational Institute of Mental HealthBethesdaMarylandUSA
| | - Sarah B. Ethridge
- Neurodevelopmental and Behavioral Phenotyping ServiceNational Institute of Mental HealthBethesdaMarylandUSA
| | - Makayla M. Soller
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Stela P. Petkova
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Ted Abel
- Department of Neuroscience and PharmacologyIowa Neuroscience Institute, University of IowaIowa CityIowaUSA
| | - Melissa D. Bauman
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Edward S. Brodkin
- Department of PsychiatryPerelman School of Medicine at the University of Pennsylvania, Translational Research LaboratoryPhiladelphiaPennsylvaniaUSA
| | - Hala Harony‐Nicolas
- Seaver Autism Center for Research and TreatmentIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Markus Wöhr
- Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological PsychologySocial and Affective Neuroscience Research Group, KU LeuvenLeuvenBelgium,Leuven Brain InstituteKU LeuvenLeuvenBelgium,Faculty of Psychology, Experimental and Biological Psychology, Behavioral NeurosciencePhilipps‐University of MarburgMarburgGermany,Center for Mind, Brain, and BehaviorPhilipps‐University of MarburgMarburgGermany
| | - Alycia Halladay
- Autism Science FoundationUSA,Department of Pharmacology and ToxicologyRutgers UniversityPiscatawayNew JerseyUSA
| |
Collapse
|
24
|
Petkova SP, Adhikari A, Berg EL, Fenton TA, Duis J, Silverman JL. Gait as a quantitative translational outcome measure in Angelman syndrome. Autism Res 2022; 15:821-833. [PMID: 35274462 PMCID: PMC9311146 DOI: 10.1002/aur.2697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/05/2023]
Abstract
Angelman syndrome (AS) is a genetic neurodevelopmental disorder characterized by developmental delay, lack of speech, seizures, intellectual disability, hypotonia, and motor coordination deficits. Motor abilities are an important outcome measure in AS as they comprise a broad repertoire of metrics including ataxia, hypotonia, delayed ambulation, crouched gait, and poor posture, and motor dysfunction affects nearly every individual with AS. Guided by collaborative work with AS clinicians studying gait, the goal of this study was to perform an in‐depth gait analysis using the automated treadmill assay, DigiGait. Our hypothesis is that gait presents a strong opportunity for a reliable, quantitative, and translational metric that can serve to evaluate novel pharmacological, dietary, and genetic therapies. In this study, we used an automated gait analysis system, in addition to standard motor behavioral assays, to evaluate components of motor, exploration, coordination, balance, and gait impairments across the lifespan in an AS mouse model. Our study demonstrated marked global motoric deficits in AS mice, corroborating previous reports. Uniquely, this is the first report of nuanced aberrations in quantitative spatial and temporal components of gait in AS mice compared to sex‐ and age‐matched wildtype littermates followed longitudinally using metrics that are analogous in AS individuals. Our findings contribute evidence toward the use of nuanced motor outcomes (i.e., gait) as valuable and translationally powerful metrics for therapeutic development for AS, as well as other genetic neurodevelopmental syndromes.
Collapse
Affiliation(s)
- Stela P Petkova
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Anna Adhikari
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Elizabeth L Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Timothy A Fenton
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Jessica Duis
- Section of Genetics & Inherited Metabolic Disease, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anshutz Medical Campus, Aurora, Colorado, USA
| | - Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
25
|
DiCarlo GE, Wallace MT. Modeling dopamine dysfunction in autism spectrum disorder: From invertebrates to vertebrates. Neurosci Biobehav Rev 2022; 133:104494. [PMID: 34906613 PMCID: PMC8792250 DOI: 10.1016/j.neubiorev.2021.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Autism Spectrum Disorder (ASD) is a highly heterogeneous neurodevelopmental disorder characterized by deficits in social communication and by patterns of restricted interests and/or repetitive behaviors. The Simons Foundation Autism Research Initiative's Human Gene and CNV Modules now list over 1000 genes implicated in ASD and over 2000 copy number variant loci reported in individuals with ASD. Given this ever-growing list of genetic changes associated with ASD, it has become evident that there is likely not a single genetic cause of this disorder nor a single neurobiological basis of this disorder. Instead, it is likely that many different neurobiological perturbations (which may represent subtypes of ASD) can result in the set of behavioral symptoms that we called ASD. One such of possible subtype of ASD may be associated with dopamine dysfunction. Precise regulation of synaptic dopamine (DA) is required for reward processing and behavioral learning, behaviors which are disrupted in ASD. Here we review evidence for DA dysfunction in ASD and in animal models of ASD. Further, we propose that these studies provide a scaffold for scientists and clinicians to consider subcategorizing the ASD diagnosis based on the genetic changes, neurobiological difference, and behavioral features identified in individuals with ASD.
Collapse
Affiliation(s)
- Gabriella E DiCarlo
- Massachusetts General Hospital, Department of Medicine, Boston, MA, United States
| | - Mark T Wallace
- Vanderbilt University Brain Institute, Nashville, TN, United States; Department of Psychology, Vanderbilt University, Nashville, TN, United States; Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
26
|
Deng P, Halmai JANM, Beitnere U, Cameron D, Martinez ML, Lee CC, Waldo JJ, Thongphanh K, Adhikari A, Copping N, Petkova SP, Lee RD, Lock S, Palomares M, O’Geen H, Carter J, Gonzalez CE, Buchanan FKB, Anderson JD, Fierro FA, Nolta JA, Tarantal AF, Silverman JL, Segal DJ, Fink KD. An in vivo Cell-Based Delivery Platform for Zinc Finger Artificial Transcription Factors in Pre-clinical Animal Models. Front Mol Neurosci 2022; 14:789913. [PMID: 35153670 PMCID: PMC8829036 DOI: 10.3389/fnmol.2021.789913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022] Open
Abstract
Zinc finger (ZF), transcription activator-like effectors (TALE), and CRISPR/Cas9 therapies to regulate gene expression are becoming viable strategies to treat genetic disorders, although effective in vivo delivery systems for these proteins remain a major translational hurdle. We describe the use of a mesenchymal stem/stromal cell (MSC)-based delivery system for the secretion of a ZF protein (ZF-MSC) in transgenic mouse models and young rhesus monkeys. Secreted ZF protein from mouse ZF-MSC was detectable within the hippocampus 1 week following intracranial or cisterna magna (CM) injection. Secreted ZF activated the imprinted paternal Ube3a in a transgenic reporter mouse and ameliorated motor deficits in a Ube3a deletion Angelman Syndrome (AS) mouse. Intrathecally administered autologous rhesus MSCs were well-tolerated for 3 weeks following administration and secreted ZF protein was detectable within the cerebrospinal fluid (CSF), midbrain, and spinal cord. This approach is less invasive when compared to direct intracranial injection which requires a surgical procedure.
Collapse
Affiliation(s)
- Peter Deng
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Biochemistry and Molecular Medicine, Genome Center, University of California, Davis, Davis, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Julian A. N. M. Halmai
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Ulrika Beitnere
- Department of Biochemistry and Molecular Medicine, Genome Center, University of California, Davis, Davis, CA, United States
| | - David Cameron
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Michele L. Martinez
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, Gene Therapy Center, and California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Charles C. Lee
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, Gene Therapy Center, and California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Jennifer J. Waldo
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Krista Thongphanh
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States
| | - Anna Adhikari
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Nycole Copping
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Stela P. Petkova
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Ruth D. Lee
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Samantha Lock
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Miranda Palomares
- Department of Biochemistry and Molecular Medicine, Genome Center, University of California, Davis, Davis, CA, United States
| | - Henriette O’Geen
- Department of Biochemistry and Molecular Medicine, Genome Center, University of California, Davis, Davis, CA, United States
| | - Jasmine Carter
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Casiana E. Gonzalez
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Fiona K. B. Buchanan
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Johnathan D. Anderson
- Department of Otolaryngology, University of California, Davis, Davis, CA, United States
| | - Fernando A. Fierro
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States
| | - Jan A. Nolta
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States
| | - Alice F. Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, Gene Therapy Center, and California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - David J. Segal
- Department of Biochemistry and Molecular Medicine, Genome Center, University of California, Davis, Davis, CA, United States
| | - Kyle D. Fink
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States,*Correspondence: Kyle D. Fink,
| |
Collapse
|
27
|
Berz AC, Wöhr M, Schwarting RKW. Response Calls Evoked by Playback of Natural 50-kHz Ultrasonic Vocalizations in Rats. Front Behav Neurosci 2022; 15:812142. [PMID: 35095442 PMCID: PMC8797927 DOI: 10.3389/fnbeh.2021.812142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Rats are highly social animals known to communicate with ultrasonic vocalizations (USV) of different frequencies. Calls around 50 kHz are thought to represent a positive affective state, whereas calls around 22 kHz are believed to serve as alarm or distress calls. During playback of natural 50-kHz USV, rats show a reliable and strong social approach response toward the sound source. While this response has been studied in great detail in numerous publications, little is known about the emission of USV in response to natural 50-kHz USV playback. To close this gap, we capitalized on three data sets previously obtained and analyzed USV evoked by natural 50-kHz USV playback in male juvenile rats. We compared different rat stocks, namely Wistar (WI) and Sprague-Dawley (SD) and investigated the pharmacological treatment with the dopaminergic D2 receptor antagonist haloperidol. These response calls were found to vary broadly inter-individually in numbers, mean peak frequencies, durations and frequency modulations. Despite the large variability, the results showed no major differences between experimental conditions regarding call likelihood or call parameters, representing a robust phenomenon. However, most response calls had clearly lower frequencies and were longer than typical 50-kHz calls, i.e., around 30 kHz and lasting generally around 0.3 s. These calls resemble aversive 22-kHz USV of adult rats but were of higher frequencies and shorter durations. Moreover, blockade of dopamine D2 receptors did not substantially affect the emission of response calls suggesting that they are not dependent on the D2 receptor function. Taken together, this study provides a detailed analysis of response calls toward playback of 50-kHz USV in juvenile WI and SD rats. This includes calls representing 50-kHz USV, but mostly calls with lower frequencies that are not clearly categorizable within the so far known two main groups of USV in adult rats. We discuss the possible functions of these response calls addressing their communicative functions like contact or appeasing calls, and whether they may reflect a state of frustration. In future studies, response calls might also serve as a new read-out in rat models for neuropsychiatric disorders, where acoustic communication is impaired, such as autism spectrum disorder.
Collapse
Affiliation(s)
- Annuska C. Berz
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
- *Correspondence: Annuska C. Berz,
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
- Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
28
|
|
29
|
Paprocka J, Ziętkiewicz S, Kosińska J, Kaczorowska E, Płoski R. Case Report: Lennox-Gastaut Epileptic Encephalopathy Responsive to Cannabidiol Treatment Associated With a Novel de novo Mosaic SHANK1 Variant. Front Genet 2021; 12:735292. [PMID: 34912368 PMCID: PMC8667173 DOI: 10.3389/fgene.2021.735292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
The SH3 and multiple ankyrin repeat domains (SHANKs) are a family of scaffolding proteins located in excitatory synapses required for their development and function. Molecular defects of SHANK3 are a well-known cause of several neurodevelopmental entities, in particular autism spectrum disorders and epilepsy, whereas relatively little is known about disease associations of SHANK1. Here, we propose a novel de novo mosaic p.(Gly126Arg) SHANK1 variant as the monogenic cause of disease in a patient who presented, from the age of 2 years, moderate intellectual disability, autism, and refractory epilepsy of the Lennox–Gastaut type. The epilepsy responded remarkably well to cannabidiol add-on therapy. In silico analyses including homology modeling and molecular dynamics simulations indicated the deleterious effect of SHANK1 p.(Gly126Arg) on the protein structure and the related function associated with protein–protein interactions. In particular, the variant was predicted to disrupt a hitherto unknown conserved region of SHANK1 protein with high homology to a recently recognized functionally relevant domain in SHANK3 implicated in ligand binding, including the “non-canonical” binding of Rap1.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurologsluy, Faculty of Medical Science in Katowice, Medical University of Silesia, Katowice, Poland
| | - Szymon Ziętkiewicz
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.,Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdańsk, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Kaczorowska
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
30
|
Sethi S, Keil Stietz KP, Valenzuela AE, Klocke CR, Silverman JL, Puschner B, Pessah IN, Lein PJ. Developmental Exposure to a Human-Relevant Polychlorinated Biphenyl Mixture Causes Behavioral Phenotypes That Vary by Sex and Genotype in Juvenile Mice Expressing Human Mutations That Modulate Neuronal Calcium. Front Neurosci 2021; 15:766826. [PMID: 34938155 PMCID: PMC8685320 DOI: 10.3389/fnins.2021.766826] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 01/13/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are putative environmental risks for neurodevelopmental disorders. Here, we tested two hypotheses: (1) developmental exposure to a human-relevant PCB mixture causes behavioral phenotypes relevant to neurodevelopmental disorders; and (2) expression of human mutations that dysregulate neuronal Ca2+ homeostasis influence sensitivity to behavioral effects of developmental PCB exposures. To test these hypotheses, we used mice that expressed a gain-of-function mutation (T4826I) in ryanodine receptor 1 (RYR1), the X-linked fragile X mental retardation 1 (FMR1) CGG repeat expansion or both mutations (double mutant; DM). Transgenic mice and wildtype (WT) mice were exposed to the MARBLES PCB mix at 0, 0.1, 1, and 6 mg/kg/day in the maternal diet throughout gestation and lactation. The MARBLES PCB mix simulates the relative proportions of the 12 most abundant PCB congeners found in the serum of pregnant women at increased risk for having a child with a neurodevelopmental disorder. We assessed ultrasonic vocalizations at postnatal day 7 (P7), spontaneous repetitive behaviors at P25-P30, and sociability at P27-P32. Developmental PCB exposure reduced ultrasonic vocalizations in WT litters in all dose groups, but had no effect on ultrasonic vocalizations in transgenic litters. Developmental PCB exposure significantly increased self-grooming and decreased sociability in WT males in the 0.1 mg/kg dose group, but had no effect on WT females in any dose group. Genotype alone influenced ultrasonic vocalizations, self-grooming and to a lesser extent sociability. Genotype alone also influenced effects of PCBs on sociability. PCB levels in the brain tissue of pups increased in a dose-dependent manner, but within any dose group did not differ between genotypes. In summary, developmental PCB exposure phenocopied social behavior phenotypes observed in mice expressing human mutations that modify intracellular Ca2+ dynamics, and expression of these mutations alleviated PCB effects on ultrasonic vocalizations and repetitive behavior, and modified the dose-response relationships and sex-dependent effects of PCB effects on social behavior. These findings suggest that: (1) developmental PCB exposure causes behavioral phenotypes that vary by sex and genotype; and (2) sex-specific responses to environmental factors may contribute to sex biases in the prevalence and/or severity of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Kimberly P. Keil Stietz
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Anthony E. Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Carolyn R. Klocke
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
- The MIND Institute, University of California, Davis, Davis, CA, United States
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- The MIND Institute, University of California, Davis, Davis, CA, United States
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- The MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
31
|
Guillory SB, Baskett VZ, Grosman HE, McLaughlin CS, Isenstein EL, Wilkinson E, Weissman J, Britvan B, Trelles MP, Halpern DB, Buxbaum JD, Siper PM, Wang AT, Kolevzon A, Foss-Feig JH. Social visual attentional engagement and memory in Phelan-McDermid syndrome and autism spectrum disorder: a pilot eye tracking study. J Neurodev Disord 2021; 13:58. [PMID: 34863106 PMCID: PMC8903604 DOI: 10.1186/s11689-021-09400-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current study used eye tracking to investigate attention and recognition memory in Phelan-McDermid syndrome (PMS), a rare genetic disorder characterized by intellectual disability, motor delays, and a high likelihood of comorbid autism spectrum disorder (ASD). Social deficits represent a core feature of ASD, including decreased propensity to orient to or show preference for social stimuli. METHODS We used a visual paired-comparison task with both social and non-social images, assessing looking behavior to a novel image versus a previously viewed familiar image to characterize social attention and recognition memory in PMS (n = 22), idiopathic ASD (iASD, n = 38), and typically developing (TD) controls (n = 26). The idiopathic ASD cohort was divided into subgroups with intellectual disabilities (ID; developmental quotient < 70) and without (developmental quotient > 70) and the PMS group into those with and without a co-morbid ASD diagnosis. RESULTS On measures of attention, the PMS group with a comorbid ASD diagnosis spent less time viewing the social images compared to non-social images; the rate of looking back and forth between images was lowest in the iASD with ID group. Furthermore, while all groups demonstrated intact recognition memory when novel non-social stimuli were initially presented (pre-switch), participants with PMS showed no preference during the post-switch memory presentation. In iASD, the group without ID, but not the group with ID, showed a novelty preference for social stimuli. Across indices, individuals with PMS and ASD performed more similarly to PMS without ASD and less similarly to the iASD group. CONCLUSION These findings demonstrate further evidence of differences in attention and memory for social stimuli in ASD and provide contrasts between iASD and PMS.
Collapse
Affiliation(s)
- Sylvia B Guillory
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA
| | | | - Hannah E Grosman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA
| | - Christopher S McLaughlin
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA
| | | | - Emma Wilkinson
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA
| | - Jordana Weissman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA
| | - Bari Britvan
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA
| | - M Pilar Trelles
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Danielle B Halpern
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Paige M Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - A Ting Wang
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jennifer H Foss-Feig
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA. .,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
32
|
Leithead AB, Tasker JG, Harony‐Nicolas H. The interplay between glutamatergic circuits and oxytocin neurons in the hypothalamus and its relevance to neurodevelopmental disorders. J Neuroendocrinol 2021; 33:e13061. [PMID: 34786775 PMCID: PMC8951898 DOI: 10.1111/jne.13061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/14/2021] [Accepted: 10/30/2021] [Indexed: 11/27/2022]
Abstract
Oxytocin (OXT) neurons of the hypothalamus are at the center of several physiological functions, including milk ejection, uterus contraction, and maternal and social behavior. In lactating females, OXT neurons show a pattern of burst firing and inter-neuron synchronization during suckling that leads to pulsatile release of surges of OXT into the bloodstream to stimulate milk ejection. This pattern of firing and population synchronization may be facilitated in part by hypothalamic glutamatergic circuits, as has been observed in vitro using brain slices obtained from male rats and neonates. However, it remains unknown how hypothalamic glutamatergic circuits influence OXT cell activity outside the context of lactation. In this review, we summarize the in vivo and in vitro studies that describe the synchronized burst firing pattern of OXT neurons and the implication of hypothalamic glutamate in this pattern of firing. We also make note of the few studies that have traced glutamatergic afferents to the hypothalamic paraventricular and supraoptic nuclei. Finally, we discuss the genetic findings implicating several glutamatergic genes in neurodevelopmental disorders, including autism spectrum disorder, thus underscoring the need for future studies to investigate the impact of these mutations on hypothalamic glutamatergic circuits and the OXT system.
Collapse
Affiliation(s)
- Amanda B. Leithead
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Seaver Autism Center for Research and TreatmentNew YorkNYUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Friedman Brain Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Jeffrey G. Tasker
- Neurobiology DivisionDepartment of Cell and Molecular BiologyTulane UniversityNew OrleansLAUSA
| | - Hala Harony‐Nicolas
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Seaver Autism Center for Research and TreatmentNew YorkNYUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Friedman Brain Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
33
|
Kight KE, Argue KJ, Bumgardner JG, Bardhi K, Waddell J, McCarthy MM. Social behavior in prepubertal neurexin 1α deficient rats: A model of neurodevelopmental disorders. Behav Neurosci 2021; 135:782-803. [PMID: 34323517 PMCID: PMC8649076 DOI: 10.1037/bne0000482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Loss-of-function mutations in the synaptic protein neurexin1α (NRXN1α) are associated with several neurodevelopmental disorders, including autism spectrum disorder (ASD), schizophrenia, and attention-deficit hyperactivity disorder (ADHD), and many of these disorders are defined by core deficits in social cognition. Mouse models of Nrxn1α deficiency are not amenable to studying aspects of social cognition because, in general, mice do not engage in complex social interactions such as social play or prosocial helping behaviors. Rats, on the contrary, engage in these complex, well-characterized social behaviors. Using the Nrxn1tm1Sage Sprague Dawley rat, we tested a range of cognitive and social behaviors in juveniles with haplo- or biallelic Nrxn1α mutation. We found a deficit in ultrasonic vocalizations (USVs) of male and female neonatal rats with Nrxn1α deficiency. A male-specific deficit in social play was observed in Nrxn1α-deficient juveniles, although sociability and social discrimination were unaltered. Nurturing behavior induced by exposure to pups was enhanced in male and female juveniles with biallelic Nrxn1α mutation. Performance in tasks of prosocial helping behavior and food retrieval indicated severe deficits in learning and cognition in juveniles with biallelic Nrxn1α mutation, and a less severe deficit in haploinsufficient rats, although Pavlovian learning was altered only in haploinsufficient males. We also observed a male-specific increase in mobility and object investigation in juveniles with complete Nrxn1α deficiency. Together, these observations more fully characterize the Nrxn1tm1Sage Sprague Dawley rat as a model for Nrxn1α-related neurodevelopmental disorders, and support a rationale for the juvenile rat as a more appropriate model for disorders that involve core deficits in complex social behaviors. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Katherine E Kight
- Department of Pharmacology, University of Maryland School of Medicine
| | - Kathryn J Argue
- Department of Pharmacology, University of Maryland School of Medicine
| | | | - Keti Bardhi
- Department of Pediatrics, University of Maryland School of Medicine
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine
| | | |
Collapse
|
34
|
Walker SM, Malkmus S, Eddinger K, Steinauer J, Roberts AJ, Shubayev VI, Grafe MR, Powell SB, Yaksh TL. Evaluation of neurotoxicity and long-term function and behavior following intrathecal 1 % 2-chloroprocaine in juvenile rats. Neurotoxicology 2021; 88:155-167. [PMID: 34801587 DOI: 10.1016/j.neuro.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 01/20/2023]
Abstract
Spinally-administered local anesthetics provide effective perioperative anesthesia and/or analgesia for children of all ages. New preparations and drugs require preclinical safety testing in developmental models. We evaluated age-dependent efficacy and safety following 1 % preservative-free 2-chloroprocaine (2-CP) in juvenile Sprague-Dawley rats. Percutaneous lumbar intrathecal 2-CP was administered at postnatal day (P)7, 14 or 21. Mechanical withdrawal threshold pre- and post-injection evaluated the degree and duration of sensory block, compared to intrathecal saline and naive controls. Tissue analyses one- or seven-days following injection included histopathology of spinal cord, cauda equina and brain sections, and quantification of neuronal apoptosis and glial reactivity in lumbar spinal cord. Following intrathecal 2-CP or saline at P7, outcomes assessed between P30 and P72 included: spinal reflex sensitivity (hindlimb thermal latency, mechanical threshold); social approach (novel rat versus object); locomotor activity and anxiety (open field with brightly-lit center); exploratory behavior (rearings, holepoking); sensorimotor gating (acoustic startle, prepulse inhibition); and learning (Morris Water Maze). Maximum tolerated doses of intrathecal 2-CP varied with age (1.0 μL/g at P7, 0.75 μL/g at P14, 0.5 μL/g at P21) and produced motor and sensory block for 10-15 min. Tissue analyses found no significant differences across intrathecal 2-CP, saline or naïve groups. Adult behavioral measures showed expected sex-dependent differences, that did not differ between 2-CP and saline groups. Single maximum tolerated in vivo doses of intrathecal 2-CP produced reversible spinal anesthesia in juvenile rodents without detectable evidence of developmental neurotoxicity. Current results cannot be extrapolated to repeated dosing or prolonged infusion.
Collapse
Affiliation(s)
- Suellen M Walker
- Department of Anesthesiology, University of California San Diego, CA, USA; Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health and Department of Anaesthesia and Pain Medicine, Great Ormond St Hospital Foundation Trust, London, United Kingdom.
| | - Shelle Malkmus
- Department of Anesthesiology, University of California San Diego, CA, USA
| | - Kelly Eddinger
- Department of Anesthesiology, University of California San Diego, CA, USA
| | - Joanne Steinauer
- Department of Anesthesiology, University of California San Diego, CA, USA
| | - Amanda J Roberts
- Animal Models Core, Scripps Research Institute, La Jolla, CA, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California San Diego, CA, USA; Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Marjorie R Grafe
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Susan B Powell
- Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California San Diego, CA, USA
| |
Collapse
|
35
|
Delling JP, Boeckers TM. Comparison of SHANK3 deficiency in animal models: phenotypes, treatment strategies, and translational implications. J Neurodev Disord 2021; 13:55. [PMID: 34784886 PMCID: PMC8594088 DOI: 10.1186/s11689-021-09397-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition, which is characterized by clinical heterogeneity and high heritability. Core symptoms of ASD include deficits in social communication and interaction, as well as restricted, repetitive patterns of behavior, interests, or activities. Many genes have been identified that are associated with an increased risk for ASD. Proteins encoded by these ASD risk genes are often involved in processes related to fetal brain development, chromatin modification and regulation of gene expression in general, as well as the structural and functional integrity of synapses. Genes of the SH3 and multiple ankyrin repeat domains (SHANK) family encode crucial scaffolding proteins (SHANK1-3) of excitatory synapses and other macromolecular complexes. SHANK gene mutations are highly associated with ASD and more specifically the Phelan-McDermid syndrome (PMDS), which is caused by heterozygous 22q13.3-deletion resulting in SHANK3-haploinsufficiency, or by SHANK3 missense variants. SHANK3 deficiency and potential treatment options have been extensively studied in animal models, especially in mice, but also in rats and non-human primates. However, few of the proposed therapeutic strategies have translated into clinical practice yet. MAIN TEXT This review summarizes the literature concerning SHANK3-deficient animal models. In particular, the structural, behavioral, and neurological abnormalities are described and compared, providing a broad and comprehensive overview. Additionally, the underlying pathophysiologies and possible treatments that have been investigated in these models are discussed and evaluated with respect to their effect on ASD- or PMDS-associated phenotypes. CONCLUSIONS Animal models of SHANK3 deficiency generated by various genetic strategies, which determine the composition of the residual SHANK3-isoforms and affected cell types, show phenotypes resembling ASD and PMDS. The phenotypic heterogeneity across multiple models and studies resembles the variation of clinical severity in human ASD and PMDS patients. Multiple therapeutic strategies have been proposed and tested in animal models, which might lead to translational implications for human patients with ASD and/or PMDS. Future studies should explore the effects of new therapeutic approaches that target genetic haploinsufficiency, like CRISPR-mediated activation of promotors.
Collapse
Affiliation(s)
- Jan Philipp Delling
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany. .,Ulm Site, DZNE, Ulm, Germany.
| |
Collapse
|
36
|
Excessive Laughter-like Vocalizations, Microcephaly, and Translational Outcomes in the Ube3a Deletion Rat Model of Angelman Syndrome. J Neurosci 2021; 41:8801-8814. [PMID: 34475199 PMCID: PMC8528495 DOI: 10.1523/jneurosci.0925-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder characterized by intellectual disabilities, motor and balance deficits, impaired communication, and a happy, excitable demeanor with frequent laughter. We sought to elucidate a preclinical outcome measure in male and female rats that addressed communication abnormalities of AS and other neurodevelopmental disorders in which communication is atypical and/or lack of speech is a core feature. We discovered, and herein report for the first time, excessive laughter-like 50 kHz ultrasonic emissions in the Ube3a mat-/pat+ rat model of AS, which suggests an excitable, playful demeanor and elevated positive affect, similar to the demeanor of individuals with AS. Also in line with the AS phenotype, Ube3a mat-/pat+ rats demonstrated aberrant social interactions with a novel partner, distinctive gait abnormalities, impaired cognition, an underlying LTP deficit, and profound reductions in brain volume. These unique, robust phenotypes provide advantages compared with currently available mouse models and will be highly valuable as outcome measures in the evaluation of therapies for AS.SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a severe neurogenetic disorder for which there is no cure, despite decades of research using mouse models. This study used a recently developed rat model of AS to delineate disease-relevant outcome measures to facilitate therapeutic development. We found the rat to be a strong model of AS, offering several advantages over mouse models by exhibiting numerous AS-relevant phenotypes, including overabundant laughter-like vocalizations, reduced hippocampal LTP, and volumetric anomalies across the brain. These findings are unconfounded by detrimental motor abilities and background strain, issues plaguing mouse models. This rat model represents an important advancement in the field of AS, and the outcome metrics reported herein will be central to the therapeutic pipeline.
Collapse
|
37
|
Berg EL, Petkova SP, Born HA, Adhikari A, Anderson AE, Silverman JL. Insulin-like growth factor-2 does not improve behavioral deficits in mouse and rat models of Angelman Syndrome. Mol Autism 2021; 12:59. [PMID: 34526125 PMCID: PMC8444390 DOI: 10.1186/s13229-021-00467-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Angelman Syndrome (AS) is a rare neurodevelopmental disorder for which there is currently no cure or effective therapeutic. Since the genetic cause of AS is known to be dysfunctional expression of the maternal allele of ubiquitin protein ligase E3A (UBE3A), several genetic animal models of AS have been developed. Both the Ube3a maternal deletion mouse and rat models of AS reliably demonstrate behavioral phenotypes of relevance to AS and therefore offer suitable in vivo systems in which to test potential therapeutics. One promising candidate treatment is insulin-like growth factor-2 (IGF-2), which has recently been shown to ameliorate behavioral deficits in the mouse model of AS and improve cognitive abilities across model systems. METHODS We used both the Ube3a maternal deletion mouse and rat models of AS to evaluate the ability of IGF-2 to improve electrophysiological and behavioral outcomes. RESULTS Acute systemic administration of IGF-2 had an effect on electrophysiological activity in the brain and on a metric of motor ability; however the effects were not enduring or extensive. Additional metrics of motor behavior, learning, ambulation, and coordination were unaffected and IGF-2 did not improve social communication, seizure threshold, or cognition. LIMITATIONS The generalizability of these results to humans is difficult to predict and it remains possible that dosing schemes (i.e., chronic or subchronic dosing), routes, and/or post-treatment intervals other than that used herein may show more efficacy. CONCLUSIONS Despite a few observed effects of IGF-2, our results taken together indicate that IGF-2 treatment does not profoundly improve behavioral deficits in mouse or rat models of AS. These findings shed cautionary light on the potential utility of acute systemic IGF-2 administration in the treatment of AS.
Collapse
Affiliation(s)
- Elizabeth L. Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Stela P. Petkova
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Heather A. Born
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX USA
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Anna Adhikari
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Anne E. Anderson
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX USA
| | - Jill L. Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| |
Collapse
|
38
|
Golden CEM, Wang VX, Harony-Nicolas H, Hof PR, Buxbaum JD. Reduced brain volume and white matter alterations in Shank3-deficient rats. Autism Res 2021; 14:1837-1842. [PMID: 34313403 PMCID: PMC9292834 DOI: 10.1002/aur.2568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/23/2021] [Accepted: 06/05/2021] [Indexed: 12/26/2022]
Abstract
Mutations and deletions in the SHANK3 gene cause the major neurodevelopmental features of Phelan-McDermid syndrome (PMS), which is characterized by intellectual disability, autism spectrum disorder, and sensory hyporeactivity. SHANK3 encodes a key structural component of excitatory synapses important for synaptogenesis. Clinical assessments and limited brain imaging studies of patients with PMS have uncovered regional volume reductions and white matter thinning. While these impairments have been replicated ex vivo in pups of a rat model, brain structure has not been assessed in rats in vivo or in adults. We assessed the brain structure of heterozygous and homozygous adult Shank3-deficient male rats in comparison to wild-type littermates with magnetic resonance imaging using both anatomical assessments and diffusion tensor imaging (DTI). Shank3-deficient rats showed a reduction in overall brain size and the absolute volume of the neocortex, piriform cortex, thalamus, forebrain, inferior and superior colliculi, internal capsule, and anterior commissure. The superior colliculus was decreased in relative volume. DTI revealed that axial diffusion and fractional anisotropy were reduced in the external capsule and mean diffusion was increased in the fornix, suggesting that restriction of diffusion perpendicular to the axis of the axonal fibers was impaired in these white matter tracts. Therefore, Shank3-deficient rats replicate the reduced brain volume and altered white matter phenotypes present in PMS. Our results indicate that the loss of a glutamatergic synaptic protein, Shank3, has structural consequences at the level of the whole brain. The brain regions that were altered represent potential cross-species structural biomarkers that warrant further study.
Collapse
Affiliation(s)
- Carla E M Golden
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victoria X Wang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hala Harony-Nicolas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick R Hof
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
39
|
Increased Vocalization of Rats in Response to Ultrasonic Playback as a Sign of Hypervigilance Following Fear Conditioning. Brain Sci 2021; 11:brainsci11080970. [PMID: 34439589 PMCID: PMC8393681 DOI: 10.3390/brainsci11080970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the effects of prior stress on rats' responses to 50-kHz (appetitive) and 22-kHz (aversive) ultrasonic playback. Rats were treated with 0, 1, 6 or 10 shocks (1 s, 1.0 mA each) and were exposed to playbacks the following day. Previous findings were confirmed: (i) rats moved faster during 50-kHz playback and slowed down after 22-kHz playback; (ii) they all approached the speaker, which was more pronounced during and following 50-kHz playback than 22-kHz playback; (iii) 50-kHz playback caused heart rate (HR) increase; 22-kHz playback caused HR decrease; (iv) the rats vocalized more often during and following 50-kHz playback than 22-kHz playback. The previous shock affected the rats such that singly-shocked rats showed lower HR throughout the experiment and a smaller HR response to 50-kHz playback compared to controls and other shocked groups. Interestingly, all pre-shocked rats showed higher locomotor activity during 50-kHz playback and a more significant decrease in activity following 22-kHz playback; they vocalized more often, their ultrasonic vocalizations (USV) were longer and at a higher frequency than those of the control animals. These last two observations could point to hypervigilance, a symptom of post-traumatic stress disorder (PTSD) in human patients. Increased vocalization may be a valuable measure of hypervigilance used for PTSD modeling.
Collapse
|
40
|
SHANK3 Genotype Mediates Speech and Language Phenotypes in a Nonclinical Population. AUTISM RESEARCH AND TREATMENT 2021; 2021:6634584. [PMID: 34188957 PMCID: PMC8195663 DOI: 10.1155/2021/6634584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/13/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
Mutations affecting the synaptic-scaffold gene SHANK3 represent the most common genetic causes of autism with intellectual disability, accounting for about 1-2% of cases. Rare variants of this gene have also been associated with schizophrenia, and its deletion results in the autistic condition known as Phelan–McDermid syndrome. Despite the importance of SHANK3 as a paradigmatic gene mediating neurodevelopmental disorders, its psychological effects in nonclinical populations have yet to be studied. We genotyped the nonsynonymous, functional SHANK3 SNP rs9616915 in a large population of typical individuals scored for autism spectrum traits (the Autism Quotient, AQ) and schizotypy spectrum traits (the Schizotypal Personality Questionnaire, SPQ-BR). Males, but not females, showed significant genotypic effects for the SPQ-BR subscale associated with speech and language: Odd Speech. These findings, in conjunction with animal model studies showing vocalization and auditory effects of SHANK3 mutations, and studies indicating severe language alterations and speech-associated white matter tract abnormalities in Phelan–McDermid syndrome, suggest that SHANK3 differentially affects the development and expression of human language and speech. Imaging genetic and speech-language studies of typical individuals carrying different genotypes of rs9616915 should provide novel insights into the neurological and psychological bases of speech and language alterations among individuals with SHANK3 mutations and Phelan–McDermid syndrome.
Collapse
|
41
|
Wöhr M, Kisko TM, Schwarting RK. Social Behavior and Ultrasonic Vocalizations in a Genetic Rat Model Haploinsufficient for the Cross-Disorder Risk Gene Cacna1c. Brain Sci 2021; 11:brainsci11060724. [PMID: 34072335 PMCID: PMC8229447 DOI: 10.3390/brainsci11060724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/27/2023] Open
Abstract
The top-ranked cross-disorder risk gene CACNA1C is strongly associated with multiple neuropsychiatric dysfunctions. In a recent series of studies, we applied a genomically informed approach and contributed extensively to the behavioral characterization of a genetic rat model haploinsufficient for the cross-disorder risk gene Cacna1c. Because deficits in processing social signals are associated with reduced social functioning as commonly seen in neuropsychiatric disorders, we focused on socio-affective communication through 22-kHz and 50-kHz ultrasonic vocalizations (USV). Specifically, we applied a reciprocal approach for studying socio-affective communication in sender and receiver by including rough-and-tumble play and playback of 22-kHz and 50-kHz USV. Here, we review the findings obtained in this recent series of studies and link them to the key features of 50-kHz USV emission during rough-and-tumble play and social approach behavior evoked by playback of 22-kHz and 50-kHz USV. We conclude that Cacna1c haploinsufficiency in rats leads to robust deficits in socio-affective communication through 22-kHz and 50-kHz USV and associated alterations in social behavior, such as rough-and-tumble play behavior.
Collapse
Affiliation(s)
- Markus Wöhr
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, B-3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, B-3000 Leuven, Belgium
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
- Correspondence: ; Tel.: +32-16-19-45-57
| | - Theresa M. Kisko
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
| | - Rainer K.W. Schwarting
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
| |
Collapse
|
42
|
Berz A, Pasquini de Souza C, Wöhr M, Schwarting RKW. Limited generalizability, pharmacological modulation, and state-dependency of habituation towards pro-social 50-kHz calls in rats. iScience 2021; 24:102426. [PMID: 33997703 PMCID: PMC8102916 DOI: 10.1016/j.isci.2021.102426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Communication constitutes a fundamental component of mammalian social behavior. Rats are highly social animals and emit 50-kHz ultrasonic vocalizations (USV), which function as social contact calls. Playback of 50-kHz USV leads to strong and immediate social approach responses in receiver rats, but this response is weak or even absent during repeated 50-kHz USV playback. Given the important role of 50-kHz USV in initiating social contact and coordinating social interactions, the occurrence of habituation is highly unexpected. It is not clear why a social signal characterized by significant incentive salience loses its power to change the behavior of the receiver so rapidly. Here, we show that the habituation phenomenon displayed by rats in response to repeated playback of 50-kHz USV (1) is characterized by limited generalizability because it is present in Wistar but not Sprague-Dawley rats, (2) can be overcome by amphetamine treatment, and (3) depends on the subject’s internal state. Rats display social approach in response to playback of pro-social 50-kHz calls Repeated playback leads to habituation with limited generalizability Habituation can be overcome by amphetamine treatment Habituation depends on the subject’s internal state
Collapse
Affiliation(s)
- Annuska Berz
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Gutenberg-Straße 18, 35032 Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Camila Pasquini de Souza
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, 81530-000 Curitiba, PR, Brazil
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Gutenberg-Straße 18, 35032 Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany.,KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Tiensestraat 102, 3000 Leuven, Belgium.,KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Gutenberg-Straße 18, 35032 Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| |
Collapse
|
43
|
Wöhr M. Measuring mania-like elevated mood through amphetamine-induced 50-kHz ultrasonic vocalizations in rats. Br J Pharmacol 2021; 179:4201-4219. [PMID: 33830495 DOI: 10.1111/bph.15487] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Rats emit 50-kHz ultrasonic vocalizations (USV) in appetitive situations, reflecting a positive affective state. Particularly high rates of 50-kHz USV are elicited by the psychostimulant d-amphetamine. Exaggerated 50-kHz USV emission evoked by d-amphetamine is modulated by dopamine, noradrenaline and 5-hydroxytyrptamine receptor ligands and inhibited by the mood stabilizer lithium, the gold standard anti-manic drug for treating bipolar disorder. This indicates that exaggerated 50-kHz USV emission can serve as a reliable and valid measure for assessing mania-like elevated mood in rats with sufficient translational power for gaining a better understanding of relevant pathophysiological mechanisms and the identification of new therapeutic targets. The improved capacity to study the effects of anti-manic pharmacological interventions on a broader range of behaviours by including exaggerated 50-kHz USV emission as preclinical outcome measure complementary to locomotor hyperactivity will refine rodent models for mania.
Collapse
Affiliation(s)
- Markus Wöhr
- Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
44
|
Lenell C, Broadfoot CK, Schaen-Heacock NE, Ciucci MR. Biological and Acoustic Sex Differences in Rat Ultrasonic Vocalization. Brain Sci 2021; 11:459. [PMID: 33916537 PMCID: PMC8067311 DOI: 10.3390/brainsci11040459] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
The rat model is a useful tool for understanding peripheral and central mechanisms of laryngeal biology. Rats produce ultrasonic vocalizations (USVs) that have communicative intent and are altered by experimental conditions such as social environment, stress, diet, drugs, age, and neurological diseases, validating the rat model's utility for studying communication and related deficits. Sex differences are apparent in both the rat larynx and USV acoustics and are differentially affected by experimental conditions. Therefore, the purpose of this review paper is to highlight the known sex differences in rat USV production, acoustics, and laryngeal biology detailed in the literature across the lifespan.
Collapse
Affiliation(s)
- Charles Lenell
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Communicative Sciences and Disorders, New York University, New York, NY 10001, USA
| | - Courtney K. Broadfoot
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Department of Communication Sciences and Disorders, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Nicole E. Schaen-Heacock
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Department of Communication Sciences and Disorders, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Michelle R. Ciucci
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Department of Communication Sciences and Disorders, University of Wisconsin Madison, Madison, WI 53706, USA
| |
Collapse
|
45
|
Wan L, Liu D, Xiao WB, Zhang BX, Yan XX, Luo ZH, Xiao B. Association of SHANK Family with Neuropsychiatric Disorders: An Update on Genetic and Animal Model Discoveries. Cell Mol Neurobiol 2021; 42:1623-1643. [PMID: 33595806 DOI: 10.1007/s10571-021-01054-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
The Shank family proteins are enriched at the postsynaptic density (PSD) of excitatory glutamatergic synapses. They serve as synaptic scaffolding proteins and appear to play a critical role in the formation, maintenance and functioning of synapse. Increasing evidence from genetic association and animal model studies indicates a connection of SHANK genes defects with the development of neuropsychiatric disorders. In this review, we first update the current understanding of the SHANK family genes and their encoded protein products. We then denote the literature relating their alterations to the risk of neuropsychiatric diseases. We further review evidence from animal models that provided molecular insights into the biological as well as pathogenic roles of Shank proteins in synapses, and the potential relationship to the development of abnormal neurobehavioral phenotypes.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Du Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Taikang Tongji Hospital, Wuhan, 430050, Hubei, China
| | - Wen-Biao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo-Xin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University, Changsha, 410013, Hunan, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
46
|
Seiffe A, Ramirez MF, Barrios CD, Albarrán MM, Depino AM. Early estradiol exposure masculinizes disease-relevant behaviors in female mice. Eur J Neurosci 2021; 53:2483-2499. [PMID: 33497491 DOI: 10.1111/ejn.15130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 11/29/2022]
Abstract
Most psychiatric disorders show a sex bias in incidence, symptomatology, and/or response to treatment. Males are more susceptible to neurodevelopmental disorders including autism spectrum disorder and attention-deficit activity disorder, while women are more prone to major depressive disorder and anxiety disorders after puberty. A striking difference between males and females in humans and other mammals is that males undergo a process of brain masculinization due to the early exposure to gonadal hormones. In rodents, this developmental organization of the brain is essential for adult males to express the appropriate sexual behaviors in the presence of a receptive female. Our goal was to determine whether this process of brain masculinization influences behaviors relevant to psychiatric disorders. To this aim, we studied sex differences and the effect of neonatal 17β-estradiol benzoate treatment of female mice on different disease-relevant behaviors. Our analysis includes postnatal behavior, juvenile play, and adult tests for sociability, repetitive behaviors, anxiety, and depression. Our results show that the sex differences observed in exploration, repetitive behaviors, and depression-related behaviors are largely reduced when females are neonatally treated with 17β-estradiol benzoate. These results suggest a role of neonatal sex steroids in the development of disease-relevant behaviors and provide evidence supporting a role for perinatal exposure to estrogens and androgens on the development and manifestation of psychiatric disorders.
Collapse
Affiliation(s)
- Araceli Seiffe
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauro Federico Ramirez
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudio Darío Barrios
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Milagros Albarrán
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amaicha Mara Depino
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
47
|
Berg EL, Ching TM, Bruun DA, Rivera JK, Careaga M, Ellegood J, Lerch JP, Wöhr M, Lein PJ, Silverman JL. Translational outcomes relevant to neurodevelopmental disorders following early life exposure of rats to chlorpyrifos. J Neurodev Disord 2020; 12:40. [PMID: 33327943 PMCID: PMC7745485 DOI: 10.1186/s11689-020-09342-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs), including intellectual disability, attention deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD), are pervasive, lifelong disorders for which pharmacological interventions are not readily available. Substantial increases in the prevalence of NDDs over a relatively short period may not be attributed solely to genetic factors and/or improved diagnostic criteria. There is now a consensus that multiple genetic loci combined with environmental risk factors during critical periods of neurodevelopment influence NDD susceptibility and symptom severity. Organophosphorus (OP) pesticides have been identified as potential environmental risk factors. Epidemiological studies suggest that children exposed prenatally to the OP pesticide chlorpyrifos (CPF) have significant mental and motor delays and strong positive associations for the development of a clinical diagnosis of intellectual delay or disability, ADHD, or ASD. METHODS We tested the hypothesis that developmental CPF exposure impairs behavior relevant to NDD phenotypes (i.e., deficits in social communication and repetitive, restricted behavior). Male and female rat pups were exposed to CPF at 0.1, 0.3, or 1.0 mg/kg (s.c.) from postnatal days 1-4. RESULTS These CPF doses did not significantly inhibit acetylcholinesterase activity in the blood or brain but significantly impaired pup ultrasonic vocalizations (USV) in both sexes. Social communication in juveniles via positive affiliative 50-kHz USV playback was absent in females exposed to CPF at 0.3 mg/kg and 1.0 mg/kg. In contrast, this CPF exposure paradigm had no significant effect on gross locomotor abilities or contextual and cued fear memory. Ex vivo magnetic resonance imaging largely found no differences between the CPF-exposed rats and the corresponding vehicle controls using strict false discovery correction; however, there were interesting trends in females in the 0.3 mg/kg dose group. CONCLUSIONS This work generated and characterized a rat model of developmental CPF exposure that exhibits adverse behavioral phenotypes resulting from perinatal exposures at levels that did not significantly inhibit acetylcholinesterase activity in the brain or blood. These data suggest that current regulations regarding safe levels of CPF need to be reconsidered.
Collapse
Affiliation(s)
- Elizabeth L Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Tianna M Ching
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Donald A Bruun
- MIND Institute and Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Josef K Rivera
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Milo Careaga
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps University of Marburg, Marburg, Germany
- Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Pamela J Lein
- MIND Institute and Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
48
|
Jacot-Descombes S, Keshav NU, Dickstein DL, Wicinski B, Janssen WGM, Hiester LL, Sarfo EK, Warda T, Fam MM, Harony-Nicolas H, Buxbaum JD, Hof PR, Varghese M. Altered synaptic ultrastructure in the prefrontal cortex of Shank3-deficient rats. Mol Autism 2020; 11:89. [PMID: 33203459 PMCID: PMC7671669 DOI: 10.1186/s13229-020-00393-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023] Open
Abstract
Background Deletion or mutations of SHANK3 lead to Phelan–McDermid syndrome and monogenic forms of autism spectrum disorder (ASD). SHANK3 encodes its eponymous scaffolding protein at excitatory glutamatergic synapses. Altered morphology of dendrites and spines in the hippocampus, cerebellum, and striatum have been associated with behavioral impairments in Shank3-deficient animal models. Given the attentional deficit in these animals, our study explored whether deficiency of Shank3 in a rat model alters neuron morphology and synaptic ultrastructure in the medial prefrontal cortex (mPFC). Methods We assessed dendrite and spine morphology and spine density in mPFC layer III neurons in Shank3-homozygous knockout (Shank3-KO), heterozygous (Shank3-Het), and wild-type (WT) rats. We used electron microscopy to determine the density of asymmetric synapses in mPFC layer III excitatory neurons in these rats. We measured postsynaptic density (PSD) length, PSD area, and head diameter (HD) of spines at these synapses. Results Basal dendritic morphology was similar among the three genotypes. Spine density and morphology were comparable, but more thin and mushroom spines had larger head volumes in Shank3-Het compared to WT and Shank3-KO. All three groups had comparable synapse density and PSD length. Spine HD of total and non-perforated synapses in Shank3-Het rats, but not Shank3-KO rats, was significantly larger than in WT rats. The total and non-perforated PSD area was significantly larger in Shank3-Het rats compared to Shank3-KO rats. These findings represent preliminary evidence for synaptic ultrastructural alterations in the mPFC of rats that lack one copy of Shank3 and mimic the heterozygous loss of SHANK3 in Phelan–McDermid syndrome. Limitations The Shank3 deletion in the rat model we used does not affect all isoforms of the protein and would only model the effect of mutations resulting in loss of the N-terminus of the protein. Given the higher prevalence of ASD in males, the ultrastructural study focused only on synaptic structure in male Shank3-deficient rats. Conclusions We observed increased HD and PSD area in Shank3-Het rats. These observations suggest the occurrence of altered synaptic ultrastructure in this animal model, further pointing to a key role of defective expression of the Shank3 protein in ASD and Phelan–McDermid syndrome.
Collapse
Affiliation(s)
- Sarah Jacot-Descombes
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Unit of Psychiatry, Department of Children and Teenagers, University Hospital and School of Medicine, Geneva, Switzerland.,Department of Legal Medicine, University Hospital and School of Medicine, Geneva, Switzerland
| | - Neha U Keshav
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dara L Dickstein
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences (USU), Bethesda, MD, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William G M Janssen
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liam L Hiester
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward K Sarfo
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tahia Warda
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Psychology Department, Rutgers University Brain Imaging Center (RUBIC), Rutgers University, Newark, NJ, 07102, USA
| | - Matthew M Fam
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hala Harony-Nicolas
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Merina Varghese
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
49
|
Wong H, Hooper AWM, Niibori Y, Lee SJ, Hategan LA, Zhang L, Karumuthil-Melethil S, Till SM, Kind PC, Danos O, Bruder JT, Hampson DR. Sexually dimorphic patterns in electroencephalography power spectrum and autism-related behaviors in a rat model of fragile X syndrome. Neurobiol Dis 2020; 146:105118. [PMID: 33031903 DOI: 10.1016/j.nbd.2020.105118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome (FXS), a neurodevelopmental disorder with autistic features, is caused by the loss of the fragile X mental retardation protein. Sex-specific differences in the clinical profile have been observed in FXS patients, but few studies have directly compared males and females in rodent models of FXS. To address this, we performed electroencephalography (EEG) recordings and a battery of autism-related behavioral tasks on juvenile and young adult Fmr1 knockout (KO) rats. EEG analysis demonstrated that compared to wild-type, male Fmr1 KO rats showed an increase in gamma frequency band power in the frontal cortex during the sleep-like immobile state, and both male and female KO rats failed to show an increase in delta frequency power in the sleep-like state, as observed in wild-type rats. Previous studies of EEG profiles in FXS subjects also reported abnormally increased gamma frequency band power, highlighting this parameter as a potential translatable biomarker. Both male and female Fmr1 KO rats displayed reduced exploratory behaviors in the center zone of the open field test, and increased distance travelled in an analysis of 24-h home cage activity, an effect that was more prominent during the nocturnal phase. Reduced wins against wild-type opponents in the tube test of social dominance was seen in both sexes. In contrast, increased repetitive behaviors in the wood chew test was observed in male but not female KO rats, while increased freezing in a fear conditioning test was observed only in the female KO rats. Our findings highlight sex differences between male and female Fmr1 KO rats, and indicate that the rat model of FXS could be a useful tool for the development of new therapeutics for treating this debilitating neurodevelopmental disorder.
Collapse
Affiliation(s)
- Hayes Wong
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | - Yosuke Niibori
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Shiron J Lee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Luca A Hategan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Sally M Till
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Olivier Danos
- Research and Early Development, REGENXBIO Inc., Rockville, MD, USA
| | - Joseph T Bruder
- Research and Early Development, REGENXBIO Inc., Rockville, MD, USA
| | - David R Hampson
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
50
|
Olszyński KH, Polowy R, Małż M, Boguszewski PM, Filipkowski RK. Playback of Alarm and Appetitive Calls Differentially Impacts Vocal, Heart-Rate, and Motor Response in Rats. iScience 2020; 23:101577. [PMID: 33083743 PMCID: PMC7553343 DOI: 10.1016/j.isci.2020.101577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 09/15/2020] [Indexed: 11/02/2022] Open
Abstract
Our rudimentary knowledge about rat intraspecific vocal system of information exchange is limited by experimental models of communication. Rats emit 50-kHz ultrasonic vocalizations in appetitive states and 22-kHz ones in aversive states. Both affective states influence heart rate. We propose a behavioral model employing exposure to pre-recorded playbacks in home-cage-like conditions. Fifty-kHz playbacks elicited the most vocalizations (>60 calls per minute, mostly of 50-kHz type), increased heart rate, and locomotor activity. In contrast, 22-kHz playback led to abrupt decrease in heart rate and locomotor activity. Observed effects were more pronounced in singly housed rats compared with the paired housed group; they were stronger when evoked by natural playback than by corresponding artificial tones. Finally, we also observed correlations between the number of vocalizations, heart rate levels, and locomotor activity. The correlations were especially strong in response to 50-kHz playback.
Collapse
Affiliation(s)
- Krzysztof H Olszyński
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St, 02-106 Warsaw, Poland
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St, 02-106 Warsaw, Poland
| | - Monika Małż
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St, 02-106 Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Robert K Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St, 02-106 Warsaw, Poland
| |
Collapse
|