1
|
Liu W, Huang X. Very virulent infectious bursal disease virus infection triggered microscopic changes, apoptosis, and inflammatory cytokines imbalance in chicken spleen and thymus. Avian Pathol 2025; 54:62-75. [PMID: 38995197 DOI: 10.1080/03079457.2024.2380420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
Infectious bursal disease virus (IBDV) can cause a highly contagious disease, resulting in severe damage to the immune system that causes immunosuppression in young chickens. Both spleen and thymus are important immune organs, which play a key role in eliciting protective immune responses. However, the effects of very virulent IBDV (vvIBDV) strain LJ-5 infection on chicken spleen and thymus are still unknown. In the present study, 3-week-old specific pathogen-free chickens were infected with vvIBDV for 1-5 days. The vvIBDV infection significantly increased the spleen index and decreased the thymus index. Microscopic analysis indicated necrosis, depletion of the lymphoid cells, and complete loss of structural integrity in spleen and thymus. Ultrastructural analysis displayed mitochondrial and nuclear damage, including mitochondrial cristae breaks, and deformation of nuclear membrane in vvIBDV-infected spleen and thymus tissues. Cytokine levels increased in the spleen and thymus after IBDV infection, promoting inflammation and causing an inflammatory imbalance. Moreover, the mRNA expression of apoptosis-related genes was significantly upregulated in the vvIBDV-infected group compared to the control group. Meanwhile, the mRNA expression of mitochondrial dynamics was altered in the spleen and thymus of vvIBDV-infected chickens. These results suggested that vvIBDV infection triggers an imbalance of inflammatory cytokines, and apoptosis in the spleen and thymus, resulting in immune injury in chickens. This study provides basic data for the further study of vvIBDV pathogenesis.
Collapse
Affiliation(s)
- Weiye Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Xuewei Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
2
|
Sotiridis A, Makris A, Koskolou M, Geladas ND. On the mechanisms of stress-induced human spleen contraction: training for a higher blood oxygen-carrying capacity. Eur J Appl Physiol 2024; 124:3477-3493. [PMID: 39207549 DOI: 10.1007/s00421-024-05589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Despite its comparatively limited size in humans, spleen has been shown able to expel red-blood cells in the circulation and thus augment blood oxygen-carrying capacity under certain physiologic conditions. In the present state-of-the-art review, the short- and long-term regulation of spleen volume will be discussed. With regards to the physiological mechanism underlying spleen contraction, sympathetic activation stands as the prime contributor to the response. A dose-dependent relationship between specific interventions of apnea, exercise and hypoxia (imposed separately or in combination) and spleen contraction alleges to the trainability of the spleen organ. The trainability of the spleen is further substantiated by virtue of cross-sectional and longitudinal studies reporting robust increases in both organ volume at rest and subsequent spleen contraction. Alternative ways to assess the relationship between hematologic gains and the magnitude of spleen contraction (i.e., the reduction of spleen volume) will be presented herein. In extension of changes in the conventional measures of hemoglobin concentration and hematocrit, assessment of hemoglobin mass and total blood volume using the (safe, low-cost and time-efficient) CO-rebreathing technique could deepen scientific knowledge on the efficiency of human spleen contraction.
Collapse
Affiliation(s)
- Alexandros Sotiridis
- Section of Sports Medicine and Biology of Exercise, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece.
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.
| | - Anastasios Makris
- Section of Sports Medicine and Biology of Exercise, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Koskolou
- Section of Sports Medicine and Biology of Exercise, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Nickos D Geladas
- Section of Sports Medicine and Biology of Exercise, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Bai Y, Feng M, Zhao J, Wang J, Ke Q, Jiang Z, Jiang P, Chen S, Chen L, Liu W, Jiang T, Li Y, Tian G, Zhou T, Xu P. Machine vision-assisted genomic prediction and genome-wide association of spleen-related traits in large yellow croaker infected with visceral white-nodules disease. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109948. [PMID: 39384056 DOI: 10.1016/j.fsi.2024.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
High-resolution and high-throughput genotype-to-phenotype studies in fish are rapidly advancing, driven by innovative technologies that aim to address the challenges of modern breeding models. In recent years, machine vision and deep learning techniques, particularly convolutional neural networks (CNNs), have achieved significant success in image recognition and segmentation. Moreover, qualitative and quantitative analysis of disease resistance has always been a crucial field of research in genetics. This motivation has led us to investigate the potential of large yellow croaker visceral white-nodules disease (VWND) in encoding information on disease resistance for the task of accession classification. In this study, we proposed an image segmentation framework for the feature extraction of the spleen after VWND infection based on machine vision. We utilized deep CNNs and threshold segmentation for automatic feature learning and object segmentation. This approach eliminates subjectivity and enhances work efficiency compared to using hand-crafted features. Additionally, we employed spleen-related traits to conduct genome-wide association analysis (GWAS), which led to the identification of 24 significant SNPs and 10 major quantitative trait loci. The results of function enrichment analysis on candidate genes also indicated potential relationships with immune regulation mechanisms. Furthermore, we explored the use of genomic selection (GS) technology for phenotype prediction of extreme individuals, which further supports the predictability of spleen-related phenotypes for VWND resistance in large yellow croakers. Our findings demonstrate that artificial intelligence (AI)-based phenotyping approaches can deliver state-of-the-art performance for genetics research. We hope this work will provide a paradigm for applying deep learning and machine vision to phenotyping in aquaculture species.
Collapse
Affiliation(s)
- Yulin Bai
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Miaosheng Feng
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiaying Wang
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhou Jiang
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Pengxin Jiang
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Sijing Chen
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Longyu Chen
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Wei Liu
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tingsen Jiang
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yichen Li
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China
| | - Guopeng Tian
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
4
|
Xia FF, Li QK, Zhang Y. Comparison of splenic embolization and splenectomy for traumatic splenic rupture: a meta-analysis. MINIM INVASIV THER 2024; 33:278-286. [PMID: 38923908 DOI: 10.1080/13645706.2024.2372308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION This study aims to assess the safety and clinical efficacy of percutaneous splenic embolization (PSE) and splenectomy as approaches to treating cases of traumatic splenic rupture (TSR). MATERIAL AND METHODS Eligible articles published throughout August 2023 were identified. Endpoints compared between PSE and splenectomy patient groups included operative time, intraoperative hemorrhage, duration of hospitalization, postoperative complication rates, and measures of immune function. RESULTS Thirteen studies, involving 474 and 520 patients in the PSE and splenectomy groups respectively, were incorporated into this meta-analysis. As compared to the splenectomy group, individuals treated via PSE exhibited a significant reduction in pooled operative time (p < 0.00001) and hospitalization duration (p < 0.00001), with corresponding reductions in rates of intraoperative hemorrhage (p < 0.00001), total complications (p < 0.0001), incisional infection (p < 0.0001), ileus (p = 0.0004), and abdominal infection (p = 0.02). The immune status of these PSE group patients was also improved, as evidenced by significantly higher pooled CD4+ (30 days), CD4+/CD8+ (30 days), and CD3+ (30 days) values (p < 0.0001, 0.0001, and 0.0001, respectively). CONCLUSIONS Compared to splenectomy, PSE-based TSR treatment can significantly reduce operative time, rate of postoperative complications, and incidence of intraoperative hemorrhage, while improving post-procedural immune functionality.
Collapse
Affiliation(s)
- Feng-Fei Xia
- Department of Interventional Medicine, Binzhou People's Hospital, affiliated to Shandong First Medical University, Binzhou, China
| | - Quan-Kui Li
- Department of Oncology, Binzhou People's Hospital, affiliated to Shandong First Medical University, Binzhou, China
| | - Yi Zhang
- Hospital Administration Office, Binzhou People's Hospital, affiliated to Shandong First Medical University, Binzhou, China
| |
Collapse
|
5
|
Boehm T. Understanding vertebrate immunity through comparative immunology. Nat Rev Immunol 2024:10.1038/s41577-024-01083-9. [PMID: 39317775 DOI: 10.1038/s41577-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Evolutionary immunology has entered a new era. Classical studies, using just a handful of model animal species, combined with clinical observations, provided an outline of how innate and adaptive immunity work together to ensure tissue homeostasis and to coordinate the fight against infections. However, revolutionary advances in cellular and molecular biology, genomics and methods of genetic modification now offer unprecedented opportunities. They provide immunologists with the possibility to consider, at unprecedented scale, the impact of the astounding phenotypic diversity of vertebrates on immune system function. This Perspective is intended to highlight some of the many interesting, but largely unexplored, biological phenomena that are related to immune function among the roughly 60,000 existing vertebrate species. Importantly, hypotheses arising from such wide-ranging comparative studies can be tested in representative and genetically tractable species. The emerging general principles and the discovery of their evolutionarily selected variations may inspire the future development of novel therapeutic strategies for human immune disorders.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Freiburg, Germany.
- Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Zhao N, Li JX, Han YJ, Lv LP, Deng J, Zhang YY. A promising strategy to improve the stability and immunogenicity of killed but metabolically active vaccines: low-temperature preparation and coating of nanoparticles. NANOSCALE 2024; 16:17118-17125. [PMID: 39189698 DOI: 10.1039/d4nr02323d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Bacteria are becoming an increasingly serious threat to human health. The emergence of super bacteria makes clinical treatment more difficult. Vaccines are one of the most effective means of preventing and treating bacterial infections. As a new class of vaccines, killed but metabolically active (KBMA) vaccines provide the immunogenicity of live vaccines and the safety of inactivated vaccines. Herein, a promising strategy is proposed to improve the stability and immunogenicity of KBMA vaccines. KBMA vaccines were produced at low temperature (4 °C), and the bacterial surface was engineered using mesoporous silica nanoparticle (MSN) coating. Compared to vaccines prepared at room temperature, the metabolic activity of KBMA vaccines prepared at 4 °C remarkably improved. Benefiting from the induction of MSNs, the stability of KBMA vaccines was increased and the preservation time was prolonged at 4 °C. Meanwhile, metabolomics analysis showed that the metabolite spectrum of live bacteria changed after photochemical treatment and MSN coating, which interfered with organic acid metabolism pathways, lipid metabolism and biosynthesis of secondary metabolites. Furthermore, the immune response in the mice treated with KBMA/MSN vaccines was similar to that in those treated with live vaccines and stronger than that in those treated with inactivated vaccines. In comparison with the control group, bacteria tissue burdens of KBMA/MSN group were significantly reduced. CD4+ T cells dominated immune responses for the protection of mice. Thus, the current work promotes the application of KBMA vaccines, providing an alternative choice for treating bacterial infections.
Collapse
Affiliation(s)
- Ning Zhao
- Academy of Military Medical Sciences, Beijing 100850, China.
| | - Jia-Xv Li
- Academy of Military Medical Sciences, Beijing 100850, China.
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yong-Jiao Han
- Academy of Military Medical Sciences, Beijing 100850, China.
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Li-Ping Lv
- Academy of Military Medical Sciences, Beijing 100850, China.
| | - Jiang Deng
- Academy of Military Medical Sciences, Beijing 100850, China.
| | - Yan-Yu Zhang
- Academy of Military Medical Sciences, Beijing 100850, China.
| |
Collapse
|
7
|
Lee M, Kim HJ, Lee D, Kim Y, Park W, Jo YH. Forensic utility of carboxyhemoglobin levels in postmortem spleen specimens in South Korea. Forensic Sci Int 2024; 361:112107. [PMID: 38878614 DOI: 10.1016/j.forsciint.2024.112107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 08/06/2024]
Abstract
In order to determine whether CO poisoning was the definitive cause of death, the concentration of carboxyhemoglobin (COHb) in spleen specimens was analyzed using a gas chromatography-thermal conductivity detector. 125 cases of forensic autopsy reports containing COHb analysis requests were analyzed and subdivided into two groups, improbable and highly probable of CO intoxication. In the first group which consists of 100 cases, the results of COHb analysis were negative, and the circumstances of death, as well as the postmortem findings could not validate the exposure to CO. In the second group which consists of 25 cases, the results of COHb were positive, and both postmortem findings and circumstances of death confirmed the exposure to CO. In the cases of indoors and vehicle fires or those including the use of briquettes, COHb levels reached 43.1-97.5 %, whereas in individuals without any feature of CO poisoning had COHb level high as 29.8 %. However, certain cases without any connection to fire nor CO exposure also contained significant amount of CO based on post-mortem analysis. This study focuses on cases without any relationship to fire or CO and proves that COHb levels below 30 % may be considered as a contributing factor to but not exclusively as the cause of death.
Collapse
Affiliation(s)
- Miyeon Lee
- Daejeon District Office, National Forensic Service, Daejeon 34054, Republic of Korea.
| | - Hyun Jee Kim
- Forensic Chemical Division, National Forensic Service, Wonju 26460, Republic of Korea
| | - Doyeon Lee
- Daejeon District Office, National Forensic Service, Daejeon 34054, Republic of Korea
| | - Yuna Kim
- Forensic Chemical Division, National Forensic Service, Wonju 26460, Republic of Korea
| | - Wooyong Park
- Forensic Chemical Division, National Forensic Service, Wonju 26460, Republic of Korea
| | - Young-Hoon Jo
- Daejeon District Office, National Forensic Service, Daejeon 34054, Republic of Korea
| |
Collapse
|
8
|
Liu X, Huang W, Bishir M, Hodgkinson C, Goldman D, Chang SL. Sex-dependent responses to high concentration of binge ethanol in spleen of adolescent F344 rats. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1063-1075. [PMID: 38627206 DOI: 10.1111/acer.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND We previously reported that binge ethanol induces atrophy of the spleen, a key immune organ, in adolescent male F344 rats. Because there are significant sex effects in immune function, we investigated whether binge ethanol exerts sex-dependent effects on the spleen, including producing splenic atrophy. METHODS We gave F344 rats ethanol (4.8 g/kg/day; 52% w/v; i.g.) on postnatal days [PND] 36 ~ 38 and sacrificed them on PND 39 for spleen collection. We performed immunophenotyping analysis of splenic cells and examined the expression of 158 genes related to alcohol metabolism, epigenetic modification, and immune regulation in the spleens of adolescent (PND 39) male and female rats. RESULTS Following a 3-day ethanol exposure, a loss of body weight, and absolute and relative spleen weight, was seen only in male adolescent rats. Ethanol altered the relative proportions of lymphocyte subtypes in both sexes with different patterns. We also found that 3-day ethanol exposure induced sex-dependent gene expression changes in spleen. Among the 158 genes studied, the expression of only three genes was significantly increased in female rats. However, the expression of 30 genes was significantly increased/decreased in male rats. Female rats had greater expression of alcohol metabolizing enzyme genes in the spleen under physiological conditions and when stimulated by binge ethanol. The genes are involved in epigenetic modification were differentially expressed in a sex-dependent manner. CONCLUSION We found that male adolescent rats were more sensitive to binge ethanol than female rats. Differential expression of the genes related to alcohol metabolism and epigenetic modification (of DNA methyltransferase and histone deacetylases) between the sexes could account for the observed sex-dependent responses to binge ethanol in adolescent rats.
Collapse
Affiliation(s)
- Xiangqian Liu
- Institute of NeuroImmune Pharmacology, South Orange, New Jersey, USA
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenfei Huang
- Institute of NeuroImmune Pharmacology, South Orange, New Jersey, USA
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| | - Muhammed Bishir
- Institute of NeuroImmune Pharmacology, South Orange, New Jersey, USA
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| | - Colin Hodgkinson
- Laboratory of Neurogenetics, NIAAA, NIH, Rockville, Maryland, USA
| | - David Goldman
- Laboratory of Neurogenetics, NIAAA, NIH, Rockville, Maryland, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, South Orange, New Jersey, USA
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| |
Collapse
|
9
|
Wu L, Xie Y, Ni B, Jin P, Li B, Cai M, Wang B, Wu C, Liang Y, Wang X. Revealing splenectomy-driven microRNA hsa-7b-5p's role in pancreatic cancer progression. iScience 2024; 27:109045. [PMID: 38361622 PMCID: PMC10864800 DOI: 10.1016/j.isci.2024.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/04/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Splenectomy often accompanies distal pancreatectomy for pancreatic cancer. However, debates persist on splenic function loss impact. Prior studies in mice revealed splenectomy promotes pancreatic cancer growth by altering CD4/Foxp3 and CD8/Foxp3 ratios. The effect on other immune cells remains unclear. Clinical observations indicate splenectomy induces immunosuppression, heightening recurrence and metastasis risk. Here, we established an orthotopic pancreatic cancer model with splenectomy and observed a significant increase in tumor burden. Flow cytometry revealed elevated MDSCs, CD8+PD-1high+ T cells, and reduced CD4+ T cells, CD8+ T cells, and natural killer cells in tumors. Bulk sequencing identified increased MicroRNA (miRNA) hsa-7b-5p post-splenectomy, correlating with staging and immunosuppression. Similar results were obtained in vivo by constructing a KPC-miRNA hsa-7b-5p-sh cell line. These findings suggest that splenectomy enhances the expression of miRNA hsa-7b-5p, inhibits the tumor immune microenvironment, and promotes pancreatic cancer growth.
Collapse
Affiliation(s)
- Liangliang Wu
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bo Ni
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Peng Jin
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Bin Li
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Mingzhi Cai
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Baogui Wang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Chengyan Wu
- Department of Bioinformation, Beijing University of Technology, Beijing 100124, China
| | - Yuexiang Liang
- Department of Gastrointestinal Oncology, The First Affiliated Hospital of Hainan Medical University, Longhua Road, Longhua District, Haikou 570102, China
| | - Xiaona Wang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
10
|
Ning C, Xiao W, Liang Z, Wu Y, Fan H, Wang S, Kong X, Wang Y, Wu A, Li Y, Yuan Z, Wu J, Yang C. Melatonin alleviates T-2 toxin-induced oxidative damage, inflammatory response, and apoptosis in piglet spleen and thymus. Int Immunopharmacol 2024; 129:111653. [PMID: 38354511 DOI: 10.1016/j.intimp.2024.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
T-2 toxin, an unavoidable contaminant in animal feeds, can induce oxidative stress and damage immune organs. Melatonin (MT), a natural and potent antioxidant, has shown promise as a detoxifier for various mycotoxins. However, the detoxifying effect of MT on T-2 toxin has not been previously reported. In order to investigate the protective effect of MT added to diets on the immune system of T-2 toxin-exposed piglets, twenty piglets weaned at 28d of age were randomly divided into control, T-2 toxin (1 mg/kg), MT (5 mg/kg), and T-2 toxin (1 mg/kg) + MT (5 mg/kg) groups(n = 5 per group). Our results demonstrated that MT mitigated T-2 toxin-induced histoarchitectural alterations in the spleen and thymus, such as hemorrhage, decreased white pulp size in the spleen, and medullary cell sparing in the thymus. Further research revealed that MT promoted the expression of Nrf2 and increased the activities of antioxidant enzymes CAT and SOD, while reducing the production of the lipid peroxidation product MDA. Moreover, MT inhibited the NF-κB signaling pathway, regulated the expression of downstream cytokines IL-1β, IL-6, TNF-α, and TGF-β1. MT also suppressed the activation of caspase-3 while down-regulating the ratio of Bax/Bcl-2 to reduce apoptosis. Additionally, MT ameliorated the T-2 toxin-induced disorders of immune cells and immune molecules in the blood. In conclusion, our findings suggest that MT may effectively protect the immune system of piglets against T-2 toxin-induced damage by inhibiting oxidative stress, inflammatory response, and apoptosis in the spleen and thymus. Therefore, MT holds the potential as an antidote for T-2 toxin poisoning.
Collapse
Affiliation(s)
- Can Ning
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wenguang Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zengenni Liang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch Graduate School, Hunan University, Changsha 410125, China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Hui Fan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Siqi Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xiangyi Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yongkang Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Aoao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuanyuan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
11
|
Wang L, Huang N, Cai Q, Guo S, Ai H. Differences in physiology and behavior between male winner and loser mice in the tube test. Behav Processes 2024; 216:105013. [PMID: 38460912 DOI: 10.1016/j.beproc.2024.105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Social hierarchy is a crucial element for survival, reproduction, fitness, and the maintenance of a stable social group in social animals. This study aimed to investigate the physiological indicators, nociception, unfamiliar female mice preference, spatial learning memory, and contextual fear memory of male mice with different social status in the same cage. Our findings revealed significant differences in the trunk temperature and contextual fear memory between winner and loser mice. However, there were no major discrepancies in body weight, random and fasting blood glucose levels, whisker number, frontal and perianal temperature, spleen size, mechanical and thermal pain thresholds, preference for unfamiliar female mice, and spatial memory. In conclusion, social status can affect mice in multiple ways, and, therefore, its influence should be considered when conducting studies using these animals.
Collapse
Affiliation(s)
- Li Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qian Cai
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Siyuan Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Heng Ai
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Costes V, Sellem E, Marthey S, Hoze C, Bonnet A, Schibler L, Kiefer H, Jaffrezic F. Multi-omics data integration for the identification of biomarkers for bull fertility. PLoS One 2024; 19:e0298623. [PMID: 38394258 PMCID: PMC10890740 DOI: 10.1371/journal.pone.0298623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Bull fertility is an important economic trait, and the use of subfertile semen for artificial insemination decreases the global efficiency of the breeding sector. Although the analysis of semen functional parameters can help to identify infertile bulls, no tools are currently available to enable precise predictions and prevent the commercialization of subfertile semen. Because male fertility is a multifactorial phenotype that is dependent on genetic, epigenetic, physiological and environmental factors, we hypothesized that an integrative analysis might help to refine our knowledge and understanding of bull fertility. We combined -omics data (genotypes, sperm DNA methylation at CpGs and sperm small non-coding RNAs) and semen parameters measured on a large cohort of 98 Montbéliarde bulls with contrasting fertility levels. Multiple Factor Analysis was conducted to study the links between the datasets and fertility. Four methodologies were then considered to identify the features linked to bull fertility variation: Logistic Lasso, Random Forest, Gradient Boosting and Neural Networks. Finally, the features selected by these methods were annotated in terms of genes, to conduct functional enrichment analyses. The less relevant features in -omics data were filtered out, and MFA was run on the remaining 12,006 features, including the 11 semen parameters and a balanced proportion of each type of-omics data. The results showed that unlike the semen parameters studied the-omics datasets were related to fertility. Biomarkers related to bull fertility were selected using the four methodologies mentioned above. The most contributory CpGs, SNPs and miRNAs targeted genes were all found to be involved in development. Interestingly, fragments derived from ribosomal RNAs were overrepresented among the selected features, suggesting roles in male fertility. These markers could be used in the future to identify subfertile bulls in order to increase the global efficiency of the breeding sector.
Collapse
Affiliation(s)
- Valentin Costes
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
| | - Eli Sellem
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
| | - Sylvain Marthey
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Chris Hoze
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
| | - Aurélie Bonnet
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
| | | | - Hélène Kiefer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Florence Jaffrezic
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
| |
Collapse
|
13
|
Sun J, Ruiz Daniels R, Balic A, Andresen AMS, Bjørgen H, Dobie R, Henderson NC, Koppang EO, Martin SAM, Fosse JH, Taylor RS, Macqueen DJ. Cell atlas of the Atlantic salmon spleen reveals immune cell heterogeneity and cell-specific responses to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109358. [PMID: 38176627 DOI: 10.1016/j.fsi.2024.109358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
The spleen is a conserved secondary lymphoid organ that emerged in parallel to adaptive immunity in early jawed vertebrates. Recent studies have applied single cell transcriptomics to reveal the cellular composition of spleen in several species, cataloguing diverse immune cell types and subpopulations. In this study, 51,119 spleen nuclei transcriptomes were comprehensively investigated in the commercially important teleost Atlantic salmon (Salmo salar L.), contrasting control animals with those challenged with the bacterial pathogen Aeromonas salmonicida. We identified clusters of nuclei representing the expected major cell types, namely T cells, B cells, natural killer-like cells, granulocytes, mononuclear phagocytes, endothelial cells, mesenchymal cells, erythrocytes and thrombocytes. We discovered heterogeneity within several immune lineages, providing evidence for resident macrophages and melanomacrophages, infiltrating monocytes, several candidate dendritic cell subpopulations, and B cells at distinct stages of differentiation, including plasma cells and an igt + subset. We provide evidence for twelve candidate T cell subsets, including cd4+ T helper and regulatory T cells, one cd8+ subset, three γδT subsets, and populations double negative for cd4 and cd8. The number of genes showing differential expression during the early stages of Aeromonas infection was highly variable across immune cell types, with the largest changes observed in macrophages and infiltrating monocytes, followed by resting mature B cells. Our analysis provides evidence for a local inflammatory response to infection alongside B cell maturation in the spleen, and upregulation of ccr9 genes in igt + B cells, T helper and cd8+ cells, and monocytes, consistent with the recruitment of immune cell populations to the gut to deal with Aeromonas infection. Overall, this study provides a new cell-resolved perspective of the immune actions of Atlantic salmon spleen, highlighting extensive heterogeneity hidden to bulk transcriptomics. We further provide a large catalogue of cell-specific marker genes that can be leveraged to further explore the function and structural organization of the salmonid immune system.
Collapse
Affiliation(s)
- Jianxuan Sun
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Håvard Bjørgen
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Erling Olaf Koppang
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Richard S Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK.
| |
Collapse
|
14
|
Hilal MA, Kuemmerli C, Sijberden JP, Moekotte A, Zimmitti G, Alseidi A, Asbun HJ, Marudanayagam R, Bonds M, Kunzler F, Sutcliffe R, Eren E, Primrose JN, Williams AP. Autogenic splenic implantation versus splenectomy in patients undergoing distal pancreatectomy for benign or low-grade malignant lesions of the distal pancreas: study protocol for a multicentre, open-label, randomized controlled trial (RESTORE). Trials 2024; 25:31. [PMID: 38195501 PMCID: PMC10775497 DOI: 10.1186/s13063-023-07714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/07/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The spleen plays a significant role in the clearance of circulating microorganisms. Sequelae of splenectomy, especially immunodeficiency, can have a deleterious effect on a patient's health and even lead to death. Hence, splenectomy should be avoided and spleen preservation during elective surgery has become a treatment goal. However, this cannot be achieved in every patient due to intraoperative technical difficulties or oncological reasons. Autogenic splenic implantation (ASI) is currently the only possible way to preserve splenic function when a splenectomy is necessary. Experience largely stems from trauma patients with a splenic rupture. Splenic immune function can be measured by the body's clearing capacity of encapsulated bacteria. The aim of this study is to assess the splenic immune function after ASI was performed during minimally invasive (laparoscopic or robotic) distal pancreatectomy with splenectomy. METHODS This is the protocol for a multicentre, randomized, open-labelled trial. Thirty participants with benign or low-grade malignant lesions of the distal pancreas requiring minimally invasive distal pancreatectomy and splenectomy will be allocated to either additional intraoperative ASI (intervention) or no further intervention (control). An additional 15 patients who will undergo spleen-preserving distal pancreatectomy serve as the control group with normal splenic function. Six months postoperatively, after assumed restoration of splenic function, patients will be given a Salmonella typhi (Typhim Vi™) vaccine. The Salmonella typhi vaccine is a polysaccharide vaccine. The specific antibody titres immediately before and 4 to 6 weeks after vaccination will be measured. The ratio between pre- and post-vaccination antibody count is the primary outcome measure and secondary outcome measures include intraoperative details, length of hospital stay, 30-day mortality and morbidity. DISCUSSION This study will investigate the splenic immune function of patients who undergo ASI during minimally invasive distal pancreatectomy with splenectomy. The splenic immune function will be measured using the surrogate outcome of specific antibody titre after vaccination with a Salmonella typhi vaccine. The results will reveal details about splenic function after ASI and guide further treatment options for patients when a splenectomy cannot be avoided. It might eventually lead to a new standard of care making sometimes more demanding and time-consuming spleen-preserving procedures redundant. TRIAL REGISTRATION International Standard Randomized Controlled Trials Number (ISRCTN) ISRCTN10171587. Prospectively registered on 18 February 2019.
Collapse
Affiliation(s)
- Mohammed Abu Hilal
- Department of Surgery, Fondazione Poliambulanza Istituto Ospedaliero, Via Leonida Bissolati, 57, 25124, Brescia, Italy.
- Department of Surgery, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 2YD, UK.
| | - Christoph Kuemmerli
- Department of Surgery, Fondazione Poliambulanza Istituto Ospedaliero, Via Leonida Bissolati, 57, 25124, Brescia, Italy
- Department of Surgery, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 2YD, UK
| | - Jasper P Sijberden
- Department of Surgery, Fondazione Poliambulanza Istituto Ospedaliero, Via Leonida Bissolati, 57, 25124, Brescia, Italy
- Department of Surgery, Amsterdam UMC Location, University of Amsterdam, Amsterdam, The Netherlands
| | - Alma Moekotte
- Department of Surgery, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 2YD, UK
| | - Giuseppe Zimmitti
- Department of Surgery, Fondazione Poliambulanza Istituto Ospedaliero, Via Leonida Bissolati, 57, 25124, Brescia, Italy
| | - Adnan Alseidi
- Division of Hepatopancreatobiliary and Endocrine Surgery, Virginia Mason Medical Center, Seattle, WA, USA
- Department of Surgery, University of California - San Francisco, San Francisco, CA, USA
| | - Horacio J Asbun
- Division of Hepatobiliary and Pancreas Surgery, Miami Cancer Institute, Miami, FL, USA
| | - Ravi Marudanayagam
- Department of Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Morgan Bonds
- Division of Hepatopancreatobiliary and Endocrine Surgery, Virginia Mason Medical Center, Seattle, WA, USA
| | - Filipe Kunzler
- Division of Hepatobiliary and Pancreas Surgery, Miami Cancer Institute, Miami, FL, USA
| | - Robert Sutcliffe
- Department of Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Efrem Eren
- NIHR Southampton Clinical Research Facility, NIHR Southampton Biomedical Research Centre and Southampton NIHR CRUK Experimental Cancer Medicine Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - John N Primrose
- Department of Surgery, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 2YD, UK
| | - Anthony P Williams
- NIHR Southampton Clinical Research Facility, NIHR Southampton Biomedical Research Centre and Southampton NIHR CRUK Experimental Cancer Medicine Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
15
|
Cools M, Grijp C, Neirinck J, Tavernier SJ, Schelstraete P, Van De Velde J, Morbée L, De Baere E, Bonroy C, van Bever Y, Bruggenwirth H, Vermont C, Hannema SE, De Rijke Y, Abdulhadi-Atwan M, Zangen D, Verdin H, Haerynck F. Spleen function is reduced in individuals with NR5A1 variants with or without a difference of sex development: a cross-sectional study. Eur J Endocrinol 2024; 190:34-43. [PMID: 38128121 DOI: 10.1093/ejendo/lvad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE NR5A1 is a key regulator of sex differentiation and has been implicated in spleen development through transcription activation of TLX1. Concerns exist about hypo- or asplenism in individuals who have a difference of sex development (DSD) due to an NR5A1 disease-causing variant. We aimed to assess spleen anatomy and function in a clinical cohort of such individuals and in their asymptomatic family member carriers. DESIGN Cross-sectional assessment in 22 patients with a DSD or primary ovarian insufficiency and 5 asymptomatic carriers from 18 families, harboring 14 different NR5A1 variants. METHODS Spleen anatomy was assessed by ultrasound, spleen function by peripheral blood cell count, white blood cell differentiation, percentage of nonswitched memory B cells, specific pneumococcal antibody response, % pitted red blood cells, and Howell-Jolly bodies. RESULTS Patients and asymptomatic heterozygous individuals had significantly decreased nonswitched memory B cells compared to healthy controls, but higher than asplenic patients. Thrombocytosis and spleen hypoplasia were present in 50% of heterozygous individuals. Four out of 5 individuals homozygous for the previously described p.(Arg103Gln) variant had asplenia. CONCLUSIONS Individuals harboring a heterozygous NR5A1 variant that may cause DSD have a considerable risk for functional hyposplenism, irrespective of their gonadal phenotype. Splenic function should be assessed in these individuals, and if affected or unknown, prophylaxis is recommended to prevent invasive encapsulated bacterial infections. The splenic phenotype associated with NR5A1 variants is more severe in homozygous individuals and is, at least for the p.(Arg103Gln) variant, associated with asplenism.
Collapse
Affiliation(s)
- Martine Cools
- Department of Internal Medicine and Pediatrics, Pediatric Endocrinology Service, Ghent University, Ghent University Hospital, 9000 Ghent, Belgium
| | - Celien Grijp
- Department of Internal Medicine and Pediatrics, Pediatric Endocrinology Service, Ghent University, Ghent University Hospital, 9000 Ghent, Belgium
| | - Jana Neirinck
- Department of Diagnostic Science, Ghent University, Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Simon J Tavernier
- Department of Internal Medicine and Pediatrics, PID Research Lab, Ghent University, 9000 Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Petra Schelstraete
- Department of Internal Medicine and Pediatrics, Pediatric Pulmonology and Infectious Diseases, Ghent University, Ghent University Hospital, 9000 Ghent, Belgium
| | - Julie Van De Velde
- Department of Internal Medicine and Pediatrics, Pediatric Endocrinology Service, Ghent University, Ghent University Hospital, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Lieve Morbée
- Department of Radiology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Carolien Bonroy
- Department of Diagnostic Science, Ghent University, Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hennie Bruggenwirth
- Department of Clinical Genetics, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Clementien Vermont
- Department of Pediatric Infectious Diseases and Immunology, Erasmus Medical Center-Sophia Children's Hospital, 3015 GD Rotterdam, The Netherlands
| | - Sabine E Hannema
- Department of Pediatric Endocrinology, Erasmus Medical Center-Sophia Children's Hospital, 3015 GD Rotterdam, The Netherlands
- Department of Paediatric Endocrinology, Gastroenterology Endocrinology Metabolism, Reproduction and Development, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yolanda De Rijke
- Department of Clinical Chemistry, Erasmus MC, University Medical Center 3015 GD Rotterdam, The Netherlands
| | - Maha Abdulhadi-Atwan
- Department of Pediatrics, Pediatric Endocrinology Service, Palestine Red Crescent Society Hospital, PO Box 421, Hebron, Palestine
| | - David Zangen
- Division of Pediatric Endocrinology, Faculty of Medicine, Hadassah University Hospital, Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Hannah Verdin
- Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, PID Research Lab, Ghent University, 9000 Ghent, Belgium
- Department of Pediatric Pulmonology and Immunology, Centre for Primary Immune Deficiency, Jeffrey Modell Diagnostic and Research Centre for PID, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Jiao A, Zhang C, Wang X, Sun L, Liu H, Su Y, Lei L, Li W, Ding R, Ding C, Dou M, Tian P, Sun C, Yang X, Zhang L, Zhang B. Single-cell sequencing reveals the evolution of immune molecules across multiple vertebrate species. J Adv Res 2024; 55:73-87. [PMID: 36871615 PMCID: PMC10770119 DOI: 10.1016/j.jare.2023.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
INTRODUCTION Both innate and adaptive immune system undergo evolution from low to high vertebrates. Due to the limitation of conventional approaches in identifying broader spectrum of immune cells and molecules from various vertebrates, it remains unclear how immune molecules evolve among vertebrates. OBJECTIVES Here, we utilized carry out comparative transcriptome analysis in various immune cells across seven vertebrate species. METHODS Single-cell RNA sequencing (scRNA-seq). RESULTS We uncovered both conserved and species-specific profiling of gene expression in innate and adaptive immunity. Macrophages exhibited highly-diversified genes and developed sophisticated molecular signaling networks along with evolution, indicating effective and versatile functions in higher species. In contrast, B cells conservatively evolved with less differentially-expressed genes in analyzed species. Interestingly, T cells represented a dominant immune cell populations in all species and unique T cell populations were identified in zebrafish and pig. We also revealed compensatory TCR cascade components utilized by different species. Inter-species comparison of core gene programs demonstrated mouse species has the highest similarity in immune transcriptomes to human. CONCLUSIONS Therefore, our comparative study reveals gene transcription characteristics across multiple vertebrate species during the evolution of immune system, providing insights for species-specific immunity as well as the translation of animal studies to human physiology and disease.
Collapse
Affiliation(s)
- Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China; Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi 710061, China
| | - Wenhua Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Renyi Ding
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Chenguang Ding
- The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Meng Dou
- The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Puxun Tian
- The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China; Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi 710061, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China; Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi 710061, China.
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China; Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
17
|
Alexandre YO, Mueller SN. Splenic stromal niches in homeostasis and immunity. Nat Rev Immunol 2023; 23:705-719. [PMID: 36973361 DOI: 10.1038/s41577-023-00857-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
The spleen is a gatekeeper of systemic immunity where immune responses against blood-borne pathogens are initiated and sustained. Non-haematopoietic stromal cells construct microanatomical niches in the spleen that make diverse contributions to physiological spleen functions and regulate the homeostasis of immune cells. Additional signals from spleen autonomic nerves also modify immune responses. Recent insight into the diversity of the splenic fibroblastic stromal cells has revised our understanding of how these cells help to orchestrate splenic responses to infection and contribute to immune responses. In this Review, we examine our current understanding of how stromal niches and neuroimmune circuits direct the immunological functions of the spleen, with a focus on T cell immunity.
Collapse
Affiliation(s)
- Yannick O Alexandre
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
18
|
Mei Q, Zheng R, Li J, Ma X, Wang L, Wei Y, Luo X, Guan J, Zhang X. Transcriptomic analysis reveals differentially expressed genes and key immune pathways in the spleen of the yak (Bos grunniens) at different growth stage. Gene 2023; 884:147743. [PMID: 37640116 DOI: 10.1016/j.gene.2023.147743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Yak is one of the rare and unique cattle species on the Qinghai-Tibetan Plateau, which has strong adaptability to the extreme environment of the plateau. The spleens are important functional organs that enable animals to adapt to their external environment and are vital in the growth and development process. To further investigate changes in immune function during yak development, we compared the transcriptome profiles of spleen tissues among juvenile (1-day old), youth (15-months old), and prime (5-years old) yaks. Immunology of spleen development was evaluated based on histological analyses and global gene expression was examined by using RNA-sequencing (RNA-seq) technology. In this work, we found 6378 genes with significant differences between the spleen of juvenile yak and youth yak, with the largest difference between groups. There were 3144 genes with significant differences between the spleen of young yak and prime yak, with the smallest differences between groups. Further, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for the functional annotation of these genes. GO and KEGG analysis showed that some of them were related to growth, disease, immune, and metabolism. However, the genetic mechanism underlying the adaptability of yak spleens at different ages to harsh plateau environments remains unknown. These findings are important for studying the mechanisms of spleen development in yaks of different age groups.
Collapse
Affiliation(s)
- Qundi Mei
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Rui Zheng
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Juan Li
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Xuefeng Ma
- Chongqing Institute for Food and Drug Control, Chongqing 404100, China.
| | - Li Wang
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Yong Wei
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Sichuan Animal Sciences Academy, Chengdu 610066, China.
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China.
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China.
| | - Xiangfei Zhang
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China.
| |
Collapse
|
19
|
Chen W, Xin J, Wei X, Ding Q, Shen Y, Xu X, Wei Y, Lv Y, Wang J, Li Z, Zhang W, Zu X. Integrated transcriptomic and metabolomic profiles reveal the protective mechanism of modified Danggui Buxue decoction on radiation-induced leukopenia in mice. Front Pharmacol 2023; 14:1178724. [PMID: 37601071 PMCID: PMC10434993 DOI: 10.3389/fphar.2023.1178724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Leukopenia caused by radiation hinders the continuous treatment of cancers. Danggui Buxue Decoction (DBD) has been widely used in clinical owing to low toxicity and definite therapeutic effects to increase leukocytes. Meanwhile, icaritin (ICT) has also been proved to have the effect of boosting peripheral blood cells proliferation. However, there is no study to prove the efficacy of MDBD (Modified Danggui Buxue Decoction), a derivative herbal formula composed of DBD and ICT, in the treatment of radiation-induced leukopenia. In this study, we performed a model of 3.5 Gy whole-body radiation to induce leukopenia in mice. The results of pharmacodynamic studies demonstrated that MDBD could significantly increase the white blood cells in peripheral blood by improving the activity of bone marrow nuclear cells, reducing bone marrow damage, modulating spleen index, and regulating hematopoietic factors to alleviate leukopenia. We also analyzed the integrated results of metabolomics and transcriptomics and found that MDBD could relieve leukopenia and alleviate bone marrow damage by targeting steroid biosynthesis and IL-17 signaling pathway, in which the key genes are Jun, Cxcl2 and Egr1. Therefore, our study provides a basis for the effectiveness and compatibility in the combination of traditional Chinese medicine formula and small molecule drugs.
Collapse
Affiliation(s)
- Wei Chen
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jiayun Xin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintong Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qianqian Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yunheng Shen
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xike Xu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yanping Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanhui Lv
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanhong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weidong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianpeng Zu
- School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
20
|
Lütge M, De Martin A, Gil-Cruz C, Perez-Shibayama C, Stanossek Y, Onder L, Cheng HW, Kurz L, Cadosch N, Soneson C, Robinson MD, Stoeckli SJ, Ludewig B, Pikor NB. Conserved stromal-immune cell circuits secure B cell homeostasis and function. Nat Immunol 2023; 24:1149-1160. [PMID: 37202489 PMCID: PMC10307622 DOI: 10.1038/s41590-023-01503-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 04/03/2023] [Indexed: 05/20/2023]
Abstract
B cell zone reticular cells (BRCs) form stable microenvironments that direct efficient humoral immunity with B cell priming and memory maintenance being orchestrated across lymphoid organs. However, a comprehensive understanding of systemic humoral immunity is hampered by the lack of knowledge of global BRC sustenance, function and major pathways controlling BRC-immune cell interactions. Here we dissected the BRC landscape and immune cell interactome in human and murine lymphoid organs. In addition to the major BRC subsets underpinning the follicle, including follicular dendritic cells, PI16+ RCs were present across organs and species. As well as BRC-produced niche factors, immune cell-driven BRC differentiation and activation programs governed the convergence of shared BRC subsets, overwriting tissue-specific gene signatures. Our data reveal that a canonical set of immune cell-provided cues enforce bidirectional signaling programs that sustain functional BRC niches across lymphoid organs and species, thereby securing efficient humoral immunity.
Collapse
Affiliation(s)
- Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | | | - Yves Stanossek
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
- Department of Otorhinolaryngology Head and Neck Surgery, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Lisa Kurz
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Nadine Cadosch
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Charlotte Soneson
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Mark D Robinson
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Sandro J Stoeckli
- Department of Otorhinolaryngology Head and Neck Surgery, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland.
| | - Natalia B Pikor
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland.
| |
Collapse
|
21
|
Elchaninov A, Vishnyakova P, Lokhonina A, Kiseleva V, Menyailo E, Antonova M, Mamedov A, Arutyunyan I, Bolshakova G, Goldshtein D, Bao X, Fatkhudinov T, Sukhikh G. Spleen regeneration after subcutaneous heterotopic autotransplantation in a mouse model. Biol Res 2023; 56:15. [PMID: 36991509 DOI: 10.1186/s40659-023-00427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Splenectomy may lead to severe postoperative complications, including sepsis and cancers. A possible solution to this problem is heterotopic autotransplantation of the spleen. Splenic autografts rapidly restore the regular splenic microanatomy in model animals. However, the functional competence of such regenerated autografts in terms of lympho- and hematopoietic capacity remains uncertain. Therefore, this study aimed to monitor the dynamics of B and T lymphocyte populations, the monocyte-macrophage system, and megakaryocytopoiesis in murine splenic autografts. METHODS The model of subcutaneous splenic engraftment was implemented in C57Bl male mice. Cell sources of functional recovery were studied using heterotopic transplantations from B10-GFP donors to C57Bl recipients. The cellular composition dynamics were studied by immunohistochemistry and flow cytometry. Expression of regulatory genes at mRNA and protein levels was assessed by real-time PCR and Western blot, respectively. RESULTS Characteristic splenic architecture is restored within 30 days post-transplantation, consistent with other studies. The monocyte-macrophage system, megakaryocytes, and B lymphocytes show the highest rates, whereas the functional recovery of T cells takes longer. Cross-strain splenic engraftments using B10-GFP donors indicate the recipient-derived cell sources of the recovery. Transplantations of scaffolds populated with splenic stromal cells or without them afforded no restoration of the characteristic splenic architecture. CONCLUSIONS Allogeneic subcutaneous transplantation of splenic fragments in a mouse model leads to their structural recovery within 30 days, with full reconstitution of the monocyte-macrophage, megakaryocyte and B lymphocyte populations. The circulating hematopoietic cells provide the likely source for the cell composition recovery.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia.
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anastasiya Lokhonina
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Viktoria Kiseleva
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Egor Menyailo
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Maria Antonova
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Aiaz Mamedov
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Irina Arutyunyan
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Galina Bolshakova
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Dmitry Goldshtein
- Laboratory of Stem Cells Genetics, Research Center of Medical Genetics, Moscow, Russia
| | - Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China
| | - Timur Fatkhudinov
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
22
|
Wu X, Wang J, Li B, Gong M, Cao C, Song L, Qin L, Wang Y, Zhang Y, Li Y. Chlorogenic acid, rutin, and quercetin from Lysimachia christinae alleviate triptolide-induced multi-organ injury in vivo by modulating immunity and AKT/mTOR signal pathway to inhibit ferroptosis and apoptosis. Toxicol Appl Pharmacol 2023; 467:116479. [PMID: 36963520 DOI: 10.1016/j.taap.2023.116479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Drug-induced organ injury is one of the key factors causing organ failure and death in the global public. Triptolide (TP) is the main immunosuppressive component of Tripterygium wilfordii Hook. f. (Leigongteng, LGT) for the first-line management of autoimmune conditions, but it can cause serious multi-organ injury. Lysimachia christinae (Jinqiancao, JQC) is a detoxifying Chinese medicine and could suppress LGT's toxicity. It contains many immune enhancement and organ protection components including chlorogenic acid (CA), rutin (Rut), and quercetin (Que). This study aimed to explore the protection of combined treatments of these organ-protective ingredients of JQC on TP-induced liver, kidney, and heart injury and initially explore the mechanisms. Molecular docking showed that CA, Rut, and Que. bound AKT/mTOR pathway-related molecules intimately and might competitively antagonize TP. Corresponding in vivo results showed that the combination activated TP-inhibited protein of AKT/mTOR pathway, and reversed TP-induced excessive ferroptosis (excessive Fe 2+ and lipid peroxidation malondialdehyde accumulation, decreased levels of antioxidant enzymes catalase, glutathione peroxidase, glutathione-s transferase, reduced glutathione, and superoxide dismutase, and down-regulated P62/nuclear factor erythroid-2-related factor 2/heme oxygenase-1 pathway), and apoptosis (activated apoptotic factor Fas and Bax and inhibited Bcl-2) in the organ of mice to varying degrees. In conclusion, the combined treatments of CA, Rut, and Que. from JQC inhibited TP-induced multi-organ injury in vivo, and the mechanism may largely involve immunomodulation and activation of the AKT/mTOR pathway-mediated cell death reduction including ferroptosis and apoptosis inhibition.
Collapse
Affiliation(s)
- Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Bingyin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Mingzhu Gong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Can Cao
- College of Chinese medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yanmei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
23
|
Zhang YT, Tian W, Lu YS, Li ZM, Ren DD, Zhang Y, Sha JY, Huo XH, Li SS, Sun YS. American ginseng with different processing methods ameliorate immunosuppression induced by cyclophosphamide in mice via the MAPK signaling pathways. Front Immunol 2023; 14:1085456. [PMID: 37153583 PMCID: PMC10160487 DOI: 10.3389/fimmu.2023.1085456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
This study aimed to clarify the effects of two processed forms of American ginseng (Panax quinquefolius L.) on immunosuppression caused by cyclophosphamide (CTX) in mice. In the CTX-induced immunosuppressive model, mice were given either steamed American ginseng (American ginseng red, AGR) or raw American ginseng (American ginseng soft branch, AGS) by intragastric administration. Serum and spleen tissues were collected, and the pathological changes in mice spleens were observed by conventional HE staining. The expression levels of cytokines were detected by ELISA, and the apoptosis of splenic cells was determined by western blotting. The results showed that AGR and AGS could relieve CTX-induced immunosuppression through the enhanced immune organ index, improved cell-mediated immune response, increased serum levels of cytokines (TNF-α, IFN-γ, and IL-2) and immunoglobulins (IgG, IgA, and IgM), as well as macrophage activities including carbon clearance and phagocytic index. AGR and AGS downregulated the expression of BAX and elevated the expression of Bcl-2, p-P38, p-JNK, and p-ERK in the spleens of CTX-injected animals. Compared to AGS, AGR significantly improved the number of CD4+CD8-T lymphocytes, the spleen index, and serum levels of IgA, IgG, TNF-α, and IFN-γ. The expression of the ERK/MAPK pathway was markedly increased. These findings support the hypothesis that AGR and AGS are effective immunomodulatory agents capable of preventing immune system hypofunction. Future research may investigate the exact mechanism to rule out any unforeseen effects of AGR and AGS.
Collapse
Affiliation(s)
- Yan-Ting Zhang
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Wei Tian
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Yu-Shun Lu
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Zhi-Man Li
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Duo-Duo Ren
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Yue Zhang
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Ji-Yue Sha
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Xiao-Hui Huo
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Shan-Shan Li
- Institute of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
- *Correspondence: Shan-Shan Li, ; Yin-Shi Sun,
| | - Yin-Shi Sun
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Shan-Shan Li, ; Yin-Shi Sun,
| |
Collapse
|
24
|
Li W, Lan Y, Wang L, He L, Tang R, Price M, Yue B, Fan Z. Comparative transcriptomes of nine tissues for the Heilongjiang brown frog (Rana amurensis). Sci Rep 2022; 12:20759. [PMID: 36456629 PMCID: PMC9715712 DOI: 10.1038/s41598-022-24631-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
The Heilongjiang brown frog (Rana amurensis) is widely used in traditional Chinese medicine. In particular, the oviduct and skin have been developed into various health products. However, limited numbers of complete genomes of amphibian species have been reported, excluding the Heilongjiang brown frog. Here, the transcriptomes of 45 samples from the liver, spleen, heart, ovaries, thigh muscles, skin, oviduct, stomach and intestine of five Heilongjiang brown frog were reassembled and analyzed. A total of 1,085,532 unigenes with an average length of 676.6 bp and N50 of 722 bp were obtained. Comparative transcriptomics of different tissues detected tissue-specific expression. There were 3248 differentially expressed genes (DEGs) in the ovary, and the number of unique DEGs between the ovary and spleen was the largest. The results of DEGs enrichment showed there were many pathways and items related to protein synthesis and metabolism in the oviduct. The DEGs of the skin were enriched with many bacterial defense items, indicating that there were a large number of antimicrobial peptides in the skin. Thus, these were suitable as biological sources for the development and extraction of antimicrobial peptides. Through the assembly of transcriptome sequencing data and functional annotation of the Heilongjiang brown frog genome, this study provides reference materials for further exploring and utilizing functional gene resources of frogs and lays a foundation for medical research and the development of new products.
Collapse
Affiliation(s)
- Wanyu Li
- grid.13291.380000 0001 0807 1581Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan China
| | - Yue Lan
- grid.13291.380000 0001 0807 1581Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan China
| | - Lei Wang
- grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan China ,Sichuan Engineering Research Center for Medicinal Animals, Xichang, 615000 Sichuan China
| | - Lewei He
- grid.13291.380000 0001 0807 1581Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan China
| | - Ruixiang Tang
- grid.13291.380000 0001 0807 1581Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan China
| | - Megan Price
- grid.13291.380000 0001 0807 1581Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan China
| | - Bisong Yue
- grid.13291.380000 0001 0807 1581Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan China ,Sichuan Engineering Research Center for Medicinal Animals, Xichang, 615000 Sichuan China
| | - Zhenxin Fan
- grid.13291.380000 0001 0807 1581Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan China
| |
Collapse
|
25
|
Porto-Pedrosa MLM, de Miranda CDM, Lopes ME, Nakagaki BN, Mafra K, de Paula CMP, Diniz AB, Costa KMDO, Antunes MM, Oliveira AG, Balderas R, Lopes RP, Menezes GB. High-dimensional intravital microscopy reveals major changes in splenic immune system during postnatal development. Front Immunol 2022; 13:1002919. [PMID: 36531990 PMCID: PMC9755845 DOI: 10.3389/fimmu.2022.1002919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
Spleen is a key organ for immunologic surveillance, acting as a firewall for antigens and parasites that spread through the blood. However, how spleen leukocytes evolve across the developmental phase, and how they spatially organize and interact in vivo is still poorly understood. Using a novel combination of selected antibodies and fluorophores to image in vivo the spleen immune environment, we described for the first time the dynamics of immune development across postnatal period. We found that spleens from adults and infants had similar numbers and arrangement of lymphoid cells. In contrast, splenic immune environment in newborns is sharply different from adults in almost all parameters analysed. Using this in vivo approach, B cells were the most frequent subtype throughout the development. Also, we revealed how infections - using a model of malaria - can change the spleen immune profile in adults and infants, which could become the key to understanding different severity grades of infection. Our new imaging solutions can be extremely useful for different groups in all areas of biological investigation, paving a way for new intravital approaches and advances.
Collapse
Affiliation(s)
- Maria Luiza Mundim Porto-Pedrosa
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Dutra Moreira de Miranda
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mateus Eustáquio Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Brenda Naemi Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kassiana Mafra
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cristina Maria Pinto de Paula
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ariane Barros Diniz
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karen Marques de Oliveira Costa
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maisa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André Gustavo Oliveira
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Robert Balderas
- BD Biosciences, Department of Biological Sciences, San Jose, CA, United States
| | - Rodrigo Pestana Lopes
- BD Biosciences, Department of Medical & Scientific Affairs, São Paulo, São Paulo, Brazil
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil,*Correspondence: Gustavo Batista Menezes,
| |
Collapse
|
26
|
Feng P, Wu J, Ren Y, Zhang L, Cao J, Yang L. Early pregnancy regulates the expression of prolactin and its receptor in the thymus, the liver, the spleen and lymph nodes in sheep. Domest Anim Endocrinol 2022; 81:106731. [PMID: 35635981 DOI: 10.1016/j.domaniend.2022.106731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022]
Abstract
As a pituitary hormone, prolactin (PRL) is also synthesized by immune system cells, and exerts its effects on the immune system by binding to its receptor (PRLR) via endocrine and paracrine/autocrine pathways. The immune organs adapt to the presence of fetal alloantigens during pregnancy, and the immune system is composed of primary organs and secondary organs. The objective of this study is to analyze the effects of early pregnancy on expression of PRL and PRLR in maternal immune organs in sheep. In this study, the thymus, lymph node, the spleen and the liver were sampled at day 16 of the estrous cycle, and at days 13, 16, and 25 of pregnancy in ewes. Expression of PRL and PRLR was analyzed through quantitative real-time PCR, Western blot and immunohistochemistry. Our data showed that there were an upregulation of PRL and PRLR in the thymus, lymph node and the spleen, and a downregulation in the liver during early pregnancy in ewes. In conclusion, it is reported for the first time that early pregnancy has tissue specific effects on expression of PRL isoform and PRLR isoform in the thymus, lymph node, the spleen and the liver, which may be owing to these organs exerting different functions during early pregnancy, and necessary for the successful pregnancy in sheep.
Collapse
Affiliation(s)
- P Feng
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - J Wu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Y Ren
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - L Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - J Cao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - L Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China.
| |
Collapse
|
27
|
Experimental infection of Toxoplasma gondii in specific pathogen-free and commercial broiler chicks. Comp Immunol Microbiol Infect Dis 2022; 90-91:101890. [DOI: 10.1016/j.cimid.2022.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022]
|
28
|
Liu Y, Azad MAK, Kong X, Zhu Q, Yu Z. Dietary bile acids supplementation modulates immune response, antioxidant capacity, glucose, and lipid metabolism in normal and intrauterine growth retardation piglets. Front Nutr 2022; 9:991812. [PMID: 36211492 PMCID: PMC9534482 DOI: 10.3389/fnut.2022.991812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 12/29/2022] Open
Abstract
Intrauterine growth retardation (IUGR) results in intestinal dysfunction contributing to metabolic syndrome and growth lag of piglets. Bile acid (BA) presents various bioactivities, including regulation roles in antioxidant, anti-inflammation, and glucose and lipid metabolism. Forty-eight weaned piglets were allocated to four groups in a 2 × 2 factorial arrangement with the effects of BA supplementation and IUGR challenge. Twenty-four IUGR piglets and 24 normal birth weight (NBW) piglets were allocated into two groups, respectively, including the control group fed with a basal diet, and the treatment group fed a basal diet supplemented with 400 mg/kg BA. The experiment lasted 28 days. The results indicated that BA improved liver and spleen indexes in IUGR piglets, whereas decreased blood RDW-CV and RDW-SD regardless of IUGR (P < 0.05). Dietary BA supplementation decreased plasma CAT activity and liver GSH concentration regardless of IUGR, whereas increased plasma GSH and liver H2O2 and decreased liver T-AOC in weaned piglets (P < 0.05). In addition, IUGR downregulated liver Nrf1 and Nrf2 expression levels, while BA supplementation upregulated the Nrf2 expression of liver in weaned piglets (P < 0.05). Dietary BA decreased (P < 0.05) jejunal GSH concentration and ileal CAT activity regardless of IUGR. Furthermore, IUGR upregulated (P < 0.05) jejunal SOD and CAT expression levels; however, dietary BA upregulated ileal Nrf1 (P < 0.05) and Keap1 (P = 0.07) expression levels in piglets regardless of IUGR. Moreover, IUGR upregulated the liver lipid synthesis (FAS) and downregulated HSL and SCD1 expression levels, while dietary BA downregulated liver FAS and SCD1 expression levels (P < 0.05). However, BA supplementation could enhance liver gluconeogenesis by upregulating (P < 0.05) the liver G6PC and PCK1 expression levels in the NBW piglets but not in the IUGR piglets. Collectively, these findings suggest that BA could regulate the redox status of weaned piglets by regulating the Nrf2/Keap1 pathway and improving liver glucose and lipid metabolism of IUGR piglets. These findings will provide a reference for the application of BA in swine production; moreover, considering the physiological similarity between pigs and humans, these findings will provide a reference for IUGR research in humans.
Collapse
Affiliation(s)
- Yang Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Md. Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiangfeng Kong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Xiangfeng Kong
| | - Qian Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zugong Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Zugong Yu
| |
Collapse
|
29
|
Wang Z, Tian X, Wang C, Qi X, Gracia‐Sancho J, Dong L. Transforming one organ into another to overcome challenges in tissue engineering. PORTAL HYPERTENSION & CIRRHOSIS 2022; 1:116-124. [DOI: 10.1002/poh2.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2025]
Abstract
AbstractTissue engineering (TE) is promising for the regeneration of failed organs. However, immune rejection, shortage of seed cells, and unintegrated blood vessels restrict the development and clinical application of TE. The last factor is the most challenging and intractable. Harnessing the mature blood vessel network in existing dispensable organs could be a powerful approach to effectively overcome the obstacles. After being remodeled to harbor an immunosuppressive and proregenerative niche, these potential target organs can be transformed into other organs with specific physiological functions, compensating the latter's failed native functions. Organ transformation, such as a hepatized spleen, represents an effective and encouraging TE strategy. In this review, we discuss the current development and obstacles of TE and its feasibility and superiority in organ transformation.
Collapse
Affiliation(s)
- Zhenzhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences Nanjing University Nanjing Jiangsu China
| | - Xuejiao Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences Nanjing University Nanjing Jiangsu China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Taipa Macau SAR China
| | - Xiaolong Qi
- CHESS Center, Institute of Portal Hypertension The First Hospital of Lanzhou University Lanzhou Gansu China
| | - Jordi Gracia‐Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital University of Bern Bern Switzerland
- Liver Vascular Biology Research Group IDIBAPS Research Institute, CIBEREHD Barcelona Spain
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences Nanjing University Nanjing Jiangsu China
- Chemistry and Biomedicine Innovative Center Nanjing University Nanjing Jiangsu China
| |
Collapse
|
30
|
Mumu SK, Mustafa A. Modulation of acute stress and immune response in tilapia, Oreochromis niloticus, using longevity spinach, Gynura procumbens extract, as nutraceuticals. J Immunoassay Immunochem 2022; 43:678-694. [PMID: 35658838 DOI: 10.1080/15321819.2022.2080558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We investigated the effects of different concentrations of longevity spinach, Gynura procumbens, on the hematological parameters of acutely stressed Nile tilapia, Oreochromis niloticus, (average weight 461.81 ± 16.60 g and average length 28.71 ± 0.34 cm) and determined the best concentration. The fish were subjected to hormonal stress in this research. We fed the stress control group commercial feed with 0.01% hydrocortisone, a stress hormone (0.01% of fish body weight) without Gynura. All the treatment groups were supplemented with Gynura extracts (0.5 g/kg, 1.0 g/kg, and 1.5 g/kg of feed weight) in combination with hydrocortisone. We evaluated blood glucose, lysozyme activity, phagocytic capacity, hematocrit, spleen somatic index, and hepatosomatic index. During the acute stress period, G. procumbens has been shown to decrease the levels of blood glucose in 1.5 g/kg treatment group (49.60 mg/dl at Day 1; 53.75 mg/dl at Day 3) compared to stress control group (80.00 mg/dl at Day 1; 69.20 mg/dl at Day 3). Higher lysozyme activity observed in 1.5 g/kg Gynura treatment group (11.44 T/min at 540 nm) compared to control (7.85 T/min at 540 nm). The 1.5 g/kg treatment group maintained the homeostatic level of significant physiological parameters including phagocytic capacity, packed cell volume, and hepatosomatic index. These findings are promising for the development of new nutraceuticals for the aquaculture industry.
Collapse
Affiliation(s)
- Sinthia Kabir Mumu
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Ahmed Mustafa
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| |
Collapse
|
31
|
Photoperiodic Modulation in Immune and Reproductive Systems in Japanese Quails ( Coturnix japonica): A Morphometric Perspective. Vet Sci 2022; 9:vetsci9050248. [PMID: 35622776 PMCID: PMC9147197 DOI: 10.3390/vetsci9050248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2022] Open
Abstract
The present study was designed to elucidate a relationship between lymphoid organs and reproductive activity in male Japanese quails (Coturnix japonica) bred in a temperate region of Pakistan (30.3753° N, 69.3451° E) in response to photoperiodic changes. The research focused primarily on the relative morphological changes in primary (thymus and bursa of Fabricius) and secondary (spleen) lymphoid organs with respect to seasonal variations in the histomorphometry of testicular tissue. For this purpose, a comparable number of clinically healthy Japanese quails were exsanguinated during active (April–May), regressive (September–October) and inactive (January–February) reproductive phases. Following an extensive gross measurement of lymphoid and reproductive organs, a histomorphometric analysis was performed on sampled tissues by employing ImageJ® software. Blood was collected for hormonal and leukocytic analysis. One-way ANOVA was used for statistical comparison. Testes had the highest parenchymal development in the active phase (80.66 ± 21.22 µm) and the lowest in the inactive phase (27.80 ± 7.22 µm). Conversely, a percentage change was evident in the sizes of primary (bursa: 61.5%, thymus: 46.9%) and secondary (spleen: 23.9%) lymphoid organs during inactive and active reproductive phases. This study demonstrated that a physiological trade-off is imperative between immune and reproductive systems for optimum survivability and reproductive performance.
Collapse
|
32
|
Elchaninov A, Vishnyakova P, Sukhikh G, Fatkhudinov T. Spleen: Reparative Regeneration and Influence on Liver. Life (Basel) 2022; 12:life12050626. [PMID: 35629294 PMCID: PMC9148119 DOI: 10.3390/life12050626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
This review considers experimental findings on splenic repair, obtained in two types of small animal (mouse, rat, and rabbit) models: splenic resections and autologous transplantations of splenic tissue. Resection experiments indicate that the spleen is able to regenerate, though not necessarily to the initial volume. The recovery lasts one month and preserves the architecture, albeit with an increase in the relative volume of lymphoid follicles. The renovated tissues, however, exhibit skewed functional profiles; notably, the decreased production of antibodies and the low cytotoxic activity of T cells, consistent with the decline of T-dependent zones and prolonged reduction in T cell numbers. Species-specific differences are evident as well, with the post-repair organ mass deficiency most pronounced in rabbit models. Autotransplantations of splenic material are of particular clinical interest, as the procedure can possibly mitigate the development of post-splenectomy syndrome. Under these conditions, regeneration lasts 1-2 months, depending on the species. The transplants effectively destroy senescent erythrocytes, assist in microbial clearance, and produce antibodies, thus averting sepsis and bacterial pneumonia. Meanwhile, cellular sources of splenic recovery in such models remain obscure, as well as the time required for T and B cell number reconstitution.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (P.V.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Correspondence:
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (P.V.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (P.V.); (G.S.)
| | - Timur Fatkhudinov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia
| |
Collapse
|
33
|
Expression characteristics and interaction networks of microRNAs in spleen tissues of grass carp (Ctenopharyngodon idella). PLoS One 2022; 17:e0266189. [PMID: 35344574 PMCID: PMC8959171 DOI: 10.1371/journal.pone.0266189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
The spleen is an important immune organ in fish. MicroRNAs (miRNAs) have been shown to play an important role in the regulation of immune function. However, miRNA expression profiles and their interaction networks associated with the postnatal late development of spleen tissue are still poorly understood in fish. The grass carp (Ctenopharyngodon idella) is an important economic aquaculture species in China. Here, two small RNA libraries were constructed from the spleen tissue of healthy grass carp at one-year-old and three-year-old. A total of 324 known conserved miRNAs and 9 novel miRNAs were identified by using bioinformatic analysis. Family analysis showed that 23 families such as let-7, mir-1, mir-10, mir-124, mir-8, mir-7, mir-9, and mir-153 were highly conserved between vertebrates and invertebrates. In addition, 14 families such as mir-459, mir-430, mir-462, mir-7147, mir-2187, and mir-722 were present only in fish. Expression analysis showed that the expression patterns of miRNAs in the spleen of one-year-old and three-year-old grass carp were highly consistent, and the percentage of miRNAs with TPM > 100 was above 39%. Twenty significant differentially expressed (SDE) miRNAs were identified. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that these SDE miRNAs were primarily involved in erythrocyte differentiation, lymphoid organ development, immune response, lipid metabolic process, the B cell receptor signaling pathway, the T cell receptor signaling pathway, and the PPAR signaling pathway. In addition, the following miRNA-mRNA interaction networks were constructed: immune and hematopoietic, cell proliferation and differentiation, and lipid metabolism. This study determined the miRNA transcriptome as well as miRNA-mRNA interaction networks in normal spleen tissue during the late development stages of grass carp. The results expand the number of known miRNAs in grass carp and are a valuable resource for better understanding the molecular biology of the spleen development in grass carp.
Collapse
|
34
|
Low-dose cyclophosphamide combined with IL-2 inhibits tumor growth by decreasing regulatory T cells and increasing CD8+ T cells and natural killer cells in mice. Immunobiology 2022; 227:152212. [DOI: 10.1016/j.imbio.2022.152212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/05/2022] [Accepted: 03/26/2022] [Indexed: 11/19/2022]
|
35
|
Li Y, Xu M, Zhang Z, Halimu G, Li Y, Li Y, Gu W, Zhang B, Wang X. In vitro study on the toxicity of nanoplastics with different charges to murine splenic lymphocytes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127508. [PMID: 34688005 DOI: 10.1016/j.jhazmat.2021.127508] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Nanoplastics can be ingested by organisms and penetrate biological barriers to affect multiple physiological functions. However, few studies have focused on the effects of nanoplastics on the mammalian immune system. We evaluated the effects and underlying mechanism of nanoplastics of varying particle sizes and surface charges on murine splenic lymphocytes. We found that nanoplastics penetrated into splenic lymphocytes and that nanoplastics of a diameter of 50 nm were absorbed more efficiently by the cells. The nanoplastics decreased cell viability, induce cell apoptosis, up-regulated apoptosis-related protein expression, elicited the production of reactive oxygen species, altered mitochondrial membrane potential, and impaired mitochondrial function. Positively charged nanoplastics exerted the strongest toxicity. Negatively charged and uncharged nanoplastics caused oxidative stress and mitochondrial structural damage in lymphocytes, while positively charged nanoplastics induced endogenous apoptosis directly. Moreover, nanoplastics inhibited the expression of activated T cell markers on the T cell surface, while inhibiting the differentiation of CD8+ T cells and the expression of helper T cell cytokines. In terms of the mechanism, a series of key signaling molecules in the pathways of T cell activation and function were markedly down-regulated after exposure to nanoplastics.
Collapse
Affiliation(s)
- Yuqi Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Pollution Ecology and Environment Engineering, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China.
| | - Zhichun Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Gulinare Halimu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Yansheng Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Wu Gu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Bowen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Xiujuan Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Pollution Ecology and Environment Engineering, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China
| |
Collapse
|
36
|
Qiao Y, Zhao Y, Wang G, Song Y, Wei Z, Jin M, Yang D, Yin J, Li J, Liu W. Protection from Benzene-induced Immune Dysfunction in Mice. Toxicology 2022; 468:153103. [DOI: 10.1016/j.tox.2022.153103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
37
|
Zhu S, Liu Y, Li Y, Yi J, Yang B, Li Y, Ouyang Z, Liu B, Shang P, Mehmood K, Abbas RZ, Ahmed S, Chang YF, Guo J, Pan J, Hu L, Tang Z, Li Y, Zhang H. The potential risks of herbicide butachlor to immunotoxicity via induction of autophagy and apoptosis in the spleen. CHEMOSPHERE 2022; 286:131683. [PMID: 34351278 DOI: 10.1016/j.chemosphere.2021.131683] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Butachlor being an important member of chloroacetanilide herbicides, is frequently used in agriculture to control unwanted weeds. Exposure to butachlor can induce cancer, human lymphocyte aberration, and immunotoxic effects in animals. The current experimental trial was executed to determine the potential risks of herbicide butachlor to immunotoxicity and its mechanism of adverse effects on the spleen. For this purpose, mice were exposed to 8 mg/kg butachlor for 28 days, and the toxicity of butachlor on the spleen of mice was evaluated. We found that butachlor exposure led to an increase in serum ALB, GLU, TC, TG, and TP and changes in the morphological structure of the spleen of mice. More importantly, results showed that butachlor significantly increased the expression level of ATG-5, decreased the protein expression of LC3B and M-TOR, and significantly decreased the mRNA content of M-TOR and p62. Results revealed that the mRNA contents of APAF-1, CYTC, and CASP-9 related genes were significantly decreased after butachlor treatment. Subsequently, the mRNA levels of inflammatory cytokines (IL-1β, TNF-α, IL-10) were reduced in the spleen of treated mice. This study suggested that butachlor induce spleen toxicity and activate the immune response of spleen tissue by targeting the CYTC/BCL2/M-TOR pathway and caspase cascading activation of spleen autophagy and apoptosis pathways which may ultimately lead to immune system disorders.
Collapse
Affiliation(s)
- Shanshan Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yingwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yangwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bijing Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhuanxu Ouyang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bingxian Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China.
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture Faisalabad, Pakistan
| | - Shakeel Ahmed
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, 5090000, Chile
| | - Yung-Fu Chang
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
38
|
Zhang L, Yang G, Zhang Q, Feng P, Gao M, Yang L. Early pregnancy affects expression of Toll-like receptor signaling members in ovine spleen. Anim Reprod 2021; 18:e20210009. [PMID: 34394755 PMCID: PMC8356075 DOI: 10.1590/1984-3143-ar2021-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
Toll-like receptors (TLRs) are involved to the maternal immune tolerance. The spleen is essential for adaptive immune reactions. However, it is unclear that early pregnancy regulates TLR-mediated signalings in the maternal spleen. The purpose of this study was to investigate the effects of early pregnancy on expression of TLR signaling members in the ovine spleen. Ovine spleens were collected at day 16 of the estrous cycle, and at days 13, 16 and 25 of pregnancy (n = 6 for each group). Real-time quantitative PCR, western blot and immunohistochemistry analysis were used to detect TLR signaling members, including TLR2, TLR3, TLR4, TLR5, TLR7, TLR9, myeloid differentiation primary-response protein 88 (MyD88), tumor necrosis factor receptor associated factor 6 (TRAF6) and interleukin-1-receptor-associated kinase 1 (IRAK1). The results showed that expression levels of TLR2, TLR4 and IRAK1 were downregulated, but expression levels of TLR3, TLR5, TLR7, TLR9, TRAF6 and MyD88 were increased during early pregnancy. In addition, MyD88 protein was located in the capsule, trabeculae and splenic cords of the maternal spleen. This paper reports for the first time that early pregnancy has effects on TLR signaling pathways in the ovine spleen, which is beneficial for understanding the maternal immune tolerance during early pregnancy.
Collapse
Affiliation(s)
- Leying Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Gengxin Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Qiongao Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Pengfei Feng
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Meihong Gao
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
39
|
Lütge M, Pikor NB, Ludewig B. Differentiation and activation of fibroblastic reticular cells. Immunol Rev 2021; 302:32-46. [PMID: 34046914 PMCID: PMC8361914 DOI: 10.1111/imr.12981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022]
Abstract
Secondary lymphoid organs (SLO) are underpinned by fibroblastic reticular cells (FRC) that form dedicated microenvironmental niches to secure induction and regulation of innate and adaptive immunity. Distinct FRC subsets are strategically positioned in SLOs to provide niche factors and govern efficient immune cell interaction. In recent years, the use of specialized mouse models in combination with single-cell transcriptomics has facilitated the elaboration of the molecular FRC landscape at an unprecedented resolution. While single-cell RNA-sequencing has advanced the resolution of FRC subset characterization and function, the high dimensionality of the generated data necessitates careful analysis and validation. Here, we reviewed novel findings from high-resolution transcriptomic analyses that refine our understanding of FRC differentiation and activation processes in the context of infection and inflammation. We further discuss concepts, strategies, and limitations for the analysis of single-cell transcriptome data from FRCs and the wide-ranging implications for our understanding of stromal cell biology.
Collapse
Affiliation(s)
- Mechthild Lütge
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Natalia B Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
40
|
Li X, Li T, Wang Z, Wei J, Liu J, Zhang Y, Zhao Z. Distribution of perfluorooctane sulfonate in mice and its effect on liver lipidomic. Talanta 2021; 226:122150. [PMID: 33676699 DOI: 10.1016/j.talanta.2021.122150] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 01/24/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is an emerging persistent organic pollutant (POP), and the harm caused by the enrichment of PFOS in living organism has attracted more and more attention. In this work, animal exposure model to PFOS was established. Mass spectrometry (MS), mass spectrometry imaging (MSI), hematoxylin and eosin (H&E) staining and lipidomics were combined for the study of the organ targeting of PFOS, the toxicity and possible mechanism caused by PFOS. PFOS most accumulated in the liver, followed by the lungs, kidneys, spleen, heart and brain. Combined with H&E staining and matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) results, it was found that the accumulation of PFOS indeed caused damage in particular areas of specific organ, like in the liver and in the marginal area of the heart. This work found that PFOS could cross the blood-brain barrier, entered the brain and caused the neurotoxicity, which was surprising and might be the reason that high dose of PFOS could cause convulsions. From the liver lipidomic analysis, we found that PFOS exposure mainly affected glycerophospholipid metabolism and sphingolipid metabolism. The up-regulated ceramide and lysophosphatidylcholine (LPC) might lead to liver cell apoptosis, and the decrease in liver triglyceride (TG) content might result in insufficient energy in mice and cause liver morphological damage. Phosphatidylcholine (PC) synthesis via phosphatidylethanolamine N-methyltransferase (PEMT) pathway might be a mechanism of self-protection in animals against PFOS induced inflammation. This study might provide new insight into underlying toxicity mechanism after exposure to PFOS.
Collapse
Affiliation(s)
- Xing Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tuo Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenpeng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
| | - Jinchao Wei
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
| | - Jianan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
| | - Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
41
|
Giorgetti OB, Shingate P, O'Meara CP, Ravi V, Pillai NE, Tay BH, Prasad A, Iwanami N, Tan HH, Schorpp M, Venkatesh B, Boehm T. Antigen receptor repertoires of one of the smallest known vertebrates. SCIENCE ADVANCES 2021; 7:7/1/eabd8180. [PMID: 33523858 PMCID: PMC7775753 DOI: 10.1126/sciadv.abd8180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 05/06/2023]
Abstract
The rules underlying the structure of antigen receptor repertoires are not yet fully defined, despite their enormous importance for the understanding of adaptive immunity. With current technology, the large antigen receptor repertoires of mice and humans cannot be comprehensively studied. To circumvent the problems associated with incomplete sampling, we have studied the immunogenetic features of one of the smallest known vertebrates, the cyprinid fish Paedocypris sp. "Singkep" ("minifish"). Despite its small size, minifish has the key genetic facilities characterizing the principal vertebrate lymphocyte lineages. As described for mammals, the frequency distributions of immunoglobulin and T cell receptor clonotypes exhibit the features of fractal systems, demonstrating that self-similarity is a fundamental property of antigen receptor repertoires of vertebrates, irrespective of body size. Hence, minifish achieve immunocompetence via a few thousand lymphocytes organized in robust scale-free networks, thereby ensuring immune reactivity even when cells are lost or clone sizes fluctuate during immune responses.
Collapse
Affiliation(s)
- Orlando B Giorgetti
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Prashant Shingate
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Connor P O'Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Vydianathan Ravi
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Nisha E Pillai
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Aravind Prasad
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Heok Hui Tan
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore.
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
42
|
Ganesh S, Utebay B, Heit J, Coskun AF. Cellular sociology regulates the hierarchical spatial patterning and organization of cells in organisms. Open Biol 2020; 10:200300. [PMID: 33321061 PMCID: PMC7776581 DOI: 10.1098/rsob.200300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Advances in single-cell biotechnology have increasingly revealed interactions of cells with their surroundings, suggesting a cellular society at the microscale. Similarities between cells and humans across multiple hierarchical levels have quantitative inference potential for reaching insights about phenotypic interactions that lead to morphological forms across multiple scales of cellular organization, namely cells, tissues and organs. Here, the functional and structural comparisons between how cells and individuals fundamentally socialize to give rise to the spatial organization are investigated. Integrative experimental cell interaction assays and computational predictive methods shape the understanding of societal perspective in the determination of the cellular interactions that create spatially coordinated forms in biological systems. Emerging quantifiable models from a simpler biological microworld such as bacterial interactions and single-cell organisms are explored, providing a route to model spatio-temporal patterning of morphological structures in humans. This analogical reasoning framework sheds light on structural patterning principles as a result of biological interactions across the cellular scale and up.
Collapse
Affiliation(s)
- Shambavi Ganesh
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.,School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Beliz Utebay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jeremy Heit
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
43
|
Grzymkowski J, Wyatt B, Nascone-Yoder N. The twists and turns of left-right asymmetric gut morphogenesis. Development 2020; 147:147/19/dev187583. [PMID: 33046455 DOI: 10.1242/dev.187583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many organs develop left-right asymmetric shapes and positions that are crucial for normal function. Indeed, anomalous laterality is associated with multiple severe birth defects. Although the events that initially orient the left-right body axis are beginning to be understood, the mechanisms that shape the asymmetries of individual organs remain less clear. Here, we summarize new evidence challenging century-old ideas about the development of stomach and intestine laterality. We compare classical and contemporary models of asymmetric gut morphogenesis and highlight key unanswered questions for future investigation.
Collapse
Affiliation(s)
- Julia Grzymkowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Brent Wyatt
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
44
|
Crane GM, Liu YC, Chadburn A. Spleen: Development, anatomy and reactive lymphoid proliferations. Semin Diagn Pathol 2020; 38:112-124. [PMID: 32591155 DOI: 10.1053/j.semdp.2020.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
The unique architecture of the spleen enables it to play a key role in the interactions between the circulatory, reticuloendothelial and immune systems. Response to circulating antigens in the setting of infection, autoimmune disease or other conditions may result in a range of benign lymphoid proliferations. Moreover, patients with underlying immune deficiency may also show abnormal lymphoid proliferations within the spleen. This review will highlight the histologic, immunophenotypic and clinical features of reactive lymphoid proliferations to aid in their recognition and provide a context for understanding their development in relation to normal splenic structure and function.
Collapse
Affiliation(s)
- Genevieve M Crane
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Yen-Chun Liu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
45
|
Weinzirl J, Scheffers T, Garnitschnig L, Andrae L, Heusser P. Does the Spleen Have a Function in Digestion? Medical History, Phylogenetic and Embryological Development of the Splenogastric System. Complement Med Res 2020; 27:357-363. [PMID: 32229731 DOI: 10.1159/000506390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 02/07/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Before the spleen was discovered to be a lymphatic blood organ, it had for centuries been considered to be a digestive organ. Concepts of a regulative, secretory and resorptive function in the digestive system were based mainly on a postulated connection between the stomach and the spleen. Splenogastric vascular connections have recently been rediscovered by modern surgery. SUMMARY To test the hypothesis that the spleen has a digestive function, this article reviews the literature focusing on the interaction between the spleen and the stomach. We examine the historical medical view of the spleen and stomach system and the reasons why a digestive function was abandoned in the 17th and 18th centuries. We then review the rediscovery of the splenogastric system and the present-day state of knowledge (anatomical origin, variability, haemodynamics) and present it in terms of the phylogenetic and embryological development of the spleen and stomach system. Key Message: Splenogastric arteries and gastrosplenic veins form a portal system which directly connects the spleen and stomach parenchyma. Despite its mesodermal anlage, phylogenetically and embryologically the spleen is intimately interconnected with the entodermal stomach parenchyma but detaches from this in the course of development. Further study is required to establish whether the splenogastric system is merely an evolutive remnant or actually a part of a functioning spleen-stomach system as postulated in complementary and integrative medicine.
Collapse
Affiliation(s)
- Johannes Weinzirl
- Institute for Integrative Medicine, Faculty of Health, Witten/Herdecke University, Herdecke, Germany,
| | - Tom Scheffers
- Institute for Integrative Medicine, Faculty of Health, Witten/Herdecke University, Herdecke, Germany
| | - Lydia Garnitschnig
- Institute for Integrative Medicine, Faculty of Health, Witten/Herdecke University, Herdecke, Germany
| | - Lukas Andrae
- Department of Internal Medicine, Community Hospital Herdecke, Herdecke, Germany
| | - Peter Heusser
- Institute for Integrative Medicine, Faculty of Health, Witten/Herdecke University, Herdecke, Germany
| |
Collapse
|
46
|
Willard-Mack CL, Elmore SA, Hall WC, Harleman J, Kuper CF, Losco P, Rehg JE, Rühl-Fehlert C, Ward JM, Weinstock D, Bradley A, Hosokawa S, Pearse G, Mahler BW, Herbert RA, Keenan CM. Nonproliferative and Proliferative Lesions of the Rat and Mouse Hematolymphoid System. Toxicol Pathol 2020; 47:665-783. [PMID: 31526133 DOI: 10.1177/0192623319867053] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative changes in rats and mice. The purpose of this publication is to provide a standardized nomenclature for classifying changes observed in the hematolymphoid organs, including the bone marrow, thymus, spleen, lymph nodes, mucosa-associated lymphoid tissues, and other lymphoid tissues (serosa-associated lymphoid clusters and tertiary lymphoid structures) with color photomicrographs illustrating examples of the lesions. Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. The nomenclature for these organs is divided into 3 terminologies: descriptive, conventional, and enhanced. Three terms are listed for each diagnosis. The rationale for this approach and guidance for its application to toxicologic pathology are described in detail below.
Collapse
Affiliation(s)
| | - Susan A Elmore
- Thymus subgroup lead.,National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Johannes Harleman
- Lymph node subgroup lead.,Neoplasm subgroup leads.,Independent Consultant, Darmstadt, Germany
| | - C Frieke Kuper
- Associated lymphoid organs subgroup lead.,Independent Consultant, Utrecht, the Netherlands
| | - Patricia Losco
- General hematolymphoid subgroup lead.,Independent Consultant, West Chester, PA, USA
| | - Jerold E Rehg
- Spleen subgroup leads.,Neoplasm subgroup leads.,Saint Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jerrold M Ward
- Spleen subgroup leads.,Neoplasm subgroup leads.,Global VetPathology, Montgomery Village, MD, USA
| | | | - Alys Bradley
- Charles River Laboratories, Tranent, Scotland, United Kingdom
| | - Satoru Hosokawa
- Eisai Co, Ltd, Drug Safety Research Laboratories, Ibaraki, Japan
| | | | - Beth W Mahler
- Experimental Pathology Laboratories, Research Triangle Park, NC, USA
| | - Ronald A Herbert
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | |
Collapse
|
47
|
Transcription factor Tlx1 marks a subset of lymphoid tissue organizer-like mesenchymal progenitor cells in the neonatal spleen. Sci Rep 2019; 9:20408. [PMID: 31892733 PMCID: PMC6938487 DOI: 10.1038/s41598-019-56984-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
The spleen is comprised of spatially distinct compartments whose functions, such as immune responses and removal of aged red blood cells, are tightly controlled by the non-hematopoietic stromal cells that provide regionally-restricted signals to properly activate hematopoietic cells residing in each area. However, information regarding the ontogeny and relationships of the different stromal cell types remains limited. Here we have used in vivo lineage tracing analysis and in vitro mesenchymal stromal cell assays and found that Tlx1, a transcription factor essential for embryonic spleen organogenesis, marks neonatal stromal cells that are selectively localized in the spleen and retain mesenchymal progenitor potential to differentiate into mature follicular dendritic cells, fibroblastic reticular cells and marginal reticular cells. Furthermore, by establishing a novel three-dimensional cell culture system that enables maintenance of Tlx1-expressing cells in vitro, we discovered that signals from the lymphotoxin β receptor and TNF receptor promote differentiation of these cells to express MAdCAM-1, CCL19 and CXCL13, representative functional molecules expressed by different subsets of mature stromal cells in the spleen. Taken together, these findings indicate that mesenchymal progenitor cells expressing Tlx1 are a subset of lymphoid tissue organizer-like cells selectively found in the neonatal spleen.
Collapse
|
48
|
Xie L, Tao Y, Wu R, Ye Q, Xu H, Li Y. Congenital asplenia due to a tlx1 mutation reduces resistance to Aeromonas hydrophila infection in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2019; 95:538-545. [PMID: 31678534 DOI: 10.1016/j.fsi.2019.10.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
It is documented that tlx1, an orphan homeobox gene, plays critical roles in the regulation of early spleen developmental in mammalian species. However, there is no direct evidence supporting the functions of tlx1 in non-mammalian species, especially in fish. In this study, we demonstrated that tlx1 is expressed in the splenic primordia as early as 52 hours post-fertilization (hpf) in zebrafish. A tlx1-/- homozygous mutant line was generated via CRISPR/Cas9 to elucidate the roles of tlx1 in spleen development in zebrafish. In the tlx1-/- background, tlx1-/- cells persisted in the splenic primordia until 52 hpf but were no longer detectable after 53 hpf, suggesting perturbation of early spleen development. The zebrafish also exhibited congenital asplenia caused by the tlx1 mutation. Asplenic zebrafish can survive and breed normally under standard laboratory conditions, but the survival rate of animals infected with Aeromonas hydrophila was significantly lower than that of wild-type (WT) zebrafish. In asplenic zebrafish, the mononuclear phagocyte system was partially impaired, as demonstrated by retarded b7r expression and reduced ccr2 expression after injection with an inactivated A. hydrophila vaccine. Furthermore, the expression of MHCII/IgM was significantly reduced in the congenitally asplenic fish compared with that of the WT zebrafish. Taken together, our data suggest that tlx1 is a crucial regulator of spleen development in fish, as it is in mammals. We have also provided a new perspective for studying the role of the spleen during pathogen challenge in fish.
Collapse
Affiliation(s)
- Lang Xie
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yixi Tao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Ronghua Wu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Qin Ye
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hao Xu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
49
|
Kerkhofs C, Stevens SJC, Faust SN, Rae W, Williams AP, Wurm P, Østern R, Fockens P, Würfel C, Laass M, Kokke F, Stegmann APA, Brunner HG. Mutations in RPSA and NKX2-3 link development of the spleen and intestinal vasculature. Hum Mutat 2019; 41:196-202. [PMID: 31498527 PMCID: PMC6972609 DOI: 10.1002/humu.23909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
Idiopathic intestinal varicosis is a developmental disorder defined by dilated and convoluted submucosal veins in the colon or small bowel. A limited number of families with idiopathic intestinal varices has been reported, but the genetic cause has not yet been identified. We performed whole‐exome and targeted Sanger sequencing of candidate genes in five intestinal varicosis families. In four families, mutations in the RPSA gene were found, a gene previously linked to congenital asplenia. Individuals in these pedigrees had intestinal varicose veins and angiodysplasia, often in combination with asplenia. In a further four‐generation pedigree that only showed intestinal varicosities, the RPSA gene was normal. Instead, a nonsense mutation in the homeobox gene NKX2‐3 was detected which cosegregated with the disease in this large family with a LOD (logarithm of the odds) score of 3.3. NKX2‐3 is a component of a molecular pathway underlying spleen and gut vasculature development in mice. Our results provide a molecular basis for familial idiopathic intestinal varices. We provide evidence for a relationship between the molecular pathways underlying the development of the spleen and intestinal mucosal vasculature that is conserved between humans and mice. We propose that clinical management of intestinal varices, should include assessment of a functional spleen.
Collapse
Affiliation(s)
- Chantal Kerkhofs
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Servi J C Stevens
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Saul N Faust
- NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton, NHS Foundation Trust, Southampton, UK.,Departments of Immunology and Paediatric Immunology and Infectious Diseases, University Hospital Southampton, UK
| | - William Rae
- NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton, NHS Foundation Trust, Southampton, UK.,Departments of Immunology and Paediatric Immunology and Infectious Diseases, University Hospital Southampton, UK
| | - Anthony P Williams
- NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton, NHS Foundation Trust, Southampton, UK.,Departments of Immunology and Paediatric Immunology and Infectious Diseases, University Hospital Southampton, UK
| | - Peter Wurm
- Department of Gastroenterology, University Hospitals of Leicester, NHS Trust, Leicester, UK
| | - Rune Østern
- Department of Pathology and Medical Genetics, St. Olavs Hospital, Trondheim, Norway
| | - Paul Fockens
- Department of Gastrointestinal diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Christiane Würfel
- Department of Pediatrics, University Hospital Dresden, Dresden, Germany
| | - Martin Laass
- Department of Pediatrics, University Hospital Dresden, Dresden, Germany
| | - Freddy Kokke
- Department of Pediatric Gastroenterology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
50
|
Hanadhita D, Rahma A, Prawira AY, Mayasari NLPI, Satyaningtijas AS, Hondo E, Agungpriyono S. The spleen morphophysiology of fruit bats. Anat Histol Embryol 2019; 48:315-324. [PMID: 30968443 PMCID: PMC7159459 DOI: 10.1111/ahe.12442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/12/2019] [Accepted: 03/16/2019] [Indexed: 11/29/2022]
Abstract
Spleen is one of the important lymphoid organs with wide variations of morphological and physiological functions according to species. Morphology and function of the spleen in bats, which are hosts to several viral strains without exhibiting clinical symptoms, remain to be fully elucidated. This study aims to examine the spleen morphology of fruit bats associated with their physiological functions. Spleen histological observations were performed in three fruit bats species: Cynopterus titthaecheilus (n = 9), Rousettus leschenaultii (n = 3) and Pteropus vampyrus (n = 3). The spleens of these fruit bats were surrounded by a thin capsule. Red pulp consisted of splenic cord and wide vascular space filled with blood. Ellipsoids in all three studied species were found numerously and adjacent to one another forming macrophages aggregates. White pulp consisted of periarteriolar lymphoid sheaths (PALS), lymphoid follicles and marginal zone. The lymphoid follicle contained a germinal centre and a tingible body macrophage that might reflect an active immune system. The marginal zone was prominent and well developed. This study reports some differences in spleen structure of fruit bats compared to other bat species previously reported and discusses possible physiological implications of the spleen based on its morphology.
Collapse
Affiliation(s)
- Desrayni Hanadhita
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Anisa Rahma
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Andhika Yudha Prawira
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Ni Luh Putu Ika Mayasari
- Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Aryani Sismin Satyaningtijas
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | - Srihadi Agungpriyono
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| |
Collapse
|