1
|
Barker H, Ferraro MJ. Exploring the versatile roles of the endocannabinoid system and phytocannabinoids in modulating bacterial infections. Infect Immun 2024; 92:e0002024. [PMID: 38775488 PMCID: PMC11237442 DOI: 10.1128/iai.00020-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
The endocannabinoid system (ECS), initially identified for its role in maintaining homeostasis, particularly in regulating brain function, has evolved into a complex orchestrator influencing various physiological processes beyond its original association with the nervous system. Notably, an expanding body of evidence emphasizes the ECS's crucial involvement in regulating immune responses. While the specific role of the ECS in bacterial infections remains under ongoing investigation, compelling indications suggest its active participation in host-pathogen interactions. Incorporating the ECS into the framework of bacterial pathogen infections introduces a layer of complexity to our understanding of its functions. While some studies propose the potential of cannabinoids to modulate bacterial function and immune responses, the outcomes inherently hinge on the specific infection and cannabinoid under consideration. Moreover, the bidirectional relationship between the ECS and the gut microbiota underscores the intricate interplay among diverse physiological processes. The ECS extends its influence far beyond its initial discovery, emerging as a promising therapeutic target across a spectrum of medical conditions, encompassing bacterial infections, dysbiosis, and sepsis. This review comprehensively explores the complex roles of the ECS in the modulation of bacteria, the host's response to bacterial infections, and the dynamics of the microbiome. Special emphasis is placed on the roles of cannabinoid receptor types 1 and 2, whose signaling intricately influences immune cell function in microbe-host interactions.
Collapse
Affiliation(s)
- Hailey Barker
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Ferraro
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Castel J, Li G, Onimus O, Leishman E, Cani PD, Bradshaw H, Mackie K, Everard A, Luquet S, Gangarossa G. NAPE-PLD in the ventral tegmental area regulates reward events, feeding and energy homeostasis. Mol Psychiatry 2024; 29:1478-1490. [PMID: 38361126 DOI: 10.1038/s41380-024-02427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) transmission between the ventral tegmental area (VTA) and the nucleus accumbens (NAc), which conveys reward-values and scales reinforced behaviors. However, whether and how NAPE-PLD may contribute to the regulation of feeding and reward-dependent behaviors has not yet been investigated. This biological question is of paramount importance since NAEs are altered in obesity and metabolic disorders. Here, we show that transcriptomic meta-analysis highlights a potential role for NAPE-PLD within the VTA→NAc circuit. Using brain-specific invalidation approaches, we report that the integrity of NAPE-PLD is required for the proper homeostasis of NAEs within the midbrain VTA and it affects food-reward behaviors. Moreover, region-specific knock-down of NAPE-PLD in the VTA enhanced food-reward seeking and reinforced behaviors, which were associated with increased in vivo DA release dynamics in response to both food- and non-food-related rewards together with heightened tropism towards food consumption. Furthermore, midbrain knock-down of NAPE-PLD, which increased energy expenditure and adapted nutrient partitioning, elicited a relative protection against high-fat diet-mediated body fat gain and obesity-associated metabolic features. In conclusion, these findings reveal a new key role of VTA NAPE-PLD in shaping DA-dependent events, feeding behaviors and energy homeostasis, thus providing new insights on the regulation of body metabolism.
Collapse
Affiliation(s)
- Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Guangping Li
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Oriane Onimus
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Patrice D Cani
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Heather Bradshaw
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
- Gill Center for Biomolecular Science, Indiana University Bloomington, Bloomington, IN, USA
| | - Amandine Everard
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
- Institut universitaire de France (IUF), Paris, France.
| |
Collapse
|
3
|
Zhao H, Zhang Y, Hou L, Lu H, Zhang Y, Xing M. Effects of environmentally relevant cypermethrin and sulfamethoxazole on intestinal health, microbiome, and liver metabolism in grass carp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106760. [PMID: 37977013 DOI: 10.1016/j.aquatox.2023.106760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
The incorrect use of antibiotics and pesticides poses significant risks of biological toxicity. Their simultaneous exposure could jeopardize fish health and hinder sustainable aquaculture. Here, we subjected grass carp to waterborne cypermethrin (0.65 μg/L) or/and sulfamethoxazole (0.30 μg/L) treatments for a duration of 6 weeks. We closely monitored the effects on intestinal function, the intestinal microbiome, and the liver metabolome. The results revealed that exposure to waterborne cypermethrin or/and sulfamethoxazole compromised intestinal barrier function and decreased the expression of intestinal tight junction proteins. Additionally, heightened levels of pro-inflammatory cytokines in the intestines and reduced antioxidant levels indicated systemic inflammation and oxidative stress, with more severe effects observed in the combined exposure group. 16S rRNA sequencing of intestinal tissues suggested Firmicutes play a key role in the intestinal microbiota. GC/MS metabolomics of the liver showed more differential metabolites (56) in the co-exposure group compared to cypermethrin (45) or sulfamethoxazole (32) alone, indicating greater toxicological effects with combined exposure. Our analyses also suggest that ATP-binding cassette transporters could serve as a novel endpoint for assessing the risk of pesticide and antibiotic mixtures in grass carp. In summary, this study underscores the potential ecological risks posed by antibiotics and pesticides to aquatic environments and products. It emphasizes the importance of the gut-liver axis as a comprehensive pathway for assessing the toxicity in fish exposed to environmental contaminants.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yingxue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| |
Collapse
|
4
|
Castel J, Li G, Oriane O, Leishman E, Cani PD, Bradshaw H, Mackie K, Everard A, Luquet S, Gangarossa G. NAPE-PLD in the ventral tegmental area regulates reward events, feeding and energy homeostasis. RESEARCH SQUARE 2023:rs.3.rs-3199777. [PMID: 37790425 PMCID: PMC10543029 DOI: 10.21203/rs.3.rs-3199777/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) transmission between the ventral tegmental area (VTA) and the nucleus accumbens (NAc), which conveys reward-values and scales reinforced behaviors. However, whether and how NAPE-PLD may contribute to the regulation of feeding and reward-dependent behaviors has not yet been investigated. This biological question is of paramount importance since NAEs are altered in obesity and metabolic disorders. Here, we show that transcriptomic meta-analysis highlights a potential role for NAPE-PLD within the VTA®NAc circuit. Using brain-specific invalidation approaches, we report that the integrity of NAPE-PLD is required for the proper homeostasis of NAEs within the midbrain VTA and it affects food-reward behaviors. Moreover, region-specific knock-down of NAPE-PLD in the VTA enhanced food-reward seeking and reinforced behaviors, which were associated with increased in vivo DA release dynamics in response to both food and non-food-related rewards together with heightened tropism towards food consumption. Furthermore, midbrain knock-down of NAPE-PLD, which increased energy expenditure and adapted nutrient partitioning, elicited a relative protection against high-fat diet-mediated body fat gain and obesity-associated metabolic features. In conclusion, these findings reveal a new key role of VTA NAPE-PLD in shaping DA-dependent events, feeding behaviors and energy homeostasis, thus providing new insights on the regulation of body metabolism.
Collapse
Affiliation(s)
- Julien Castel
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Meccariello R. Molecular Advances on Cannabinoid and Endocannabinoid Research. Int J Mol Sci 2023; 24:12760. [PMID: 37628940 PMCID: PMC10454180 DOI: 10.3390/ijms241612760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Since ancient times, cannabis has been used for recreational and medical purposes [...].
Collapse
Affiliation(s)
- Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, 80133 Naples, Italy
| |
Collapse
|
6
|
Levichev A, Faumont S, Berner RZ, Purcell Z, White AM, Chicas-Cruz K, Lockery SR. The conserved endocannabinoid anandamide modulates olfactory sensitivity to induce hedonic feeding in C. elegans. Curr Biol 2023; 33:1625-1639.e4. [PMID: 37084730 PMCID: PMC10175219 DOI: 10.1016/j.cub.2023.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/23/2023]
Abstract
The ability of cannabis to increase food consumption has been known for centuries. In addition to producing hyperphagia, cannabinoids can amplify existing preferences for calorically dense, palatable food sources, a phenomenon called hedonic amplification of feeding. These effects result from the action of plant-derived cannabinoids that mimic endogenous ligands called endocannabinoids. The high degree of conservation of cannabinoid signaling at the molecular level across the animal kingdom suggests hedonic feeding may also be widely conserved. Here, we show that exposure of Caenorhabditis elegans to anandamide, an endocannabinoid common to nematodes and mammals, shifts both appetitive and consummatory responses toward nutritionally superior food, an effect analogous to hedonic feeding. We find that anandamide's effect on feeding requires the C. elegans cannabinoid receptor NPR-19 but can also be mediated by the human CB1 cannabinoid receptor, indicating functional conservation between the nematode and mammalian endocannabinoid systems for the regulation of food preferences. Furthermore, anandamide has reciprocal effects on appetitive and consummatory responses to food, increasing and decreasing responses to inferior and superior foods, respectively. Anandamide's behavioral effects require the AWC chemosensory neurons, and anandamide renders these neurons more sensitive to superior foods and less sensitive to inferior foods, mirroring the reciprocal effects seen at the behavioral level. Our findings reveal a surprising degree of functional conservation in the effects of endocannabinoids on hedonic feeding across species and establish a new system to investigate the cellular and molecular basis of endocannabinoid system function in the regulation of food choice.
Collapse
Affiliation(s)
- Anastasia Levichev
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Serge Faumont
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Rachel Z Berner
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Zhifeng Purcell
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Amanda M White
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Kathy Chicas-Cruz
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Shawn R Lockery
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
7
|
Myers MN, Abou-Rjeileh U, Chirivi M, Parales-Girón J, Lock AL, Tam J, Zachut M, Contreras GA. Cannabinoid-1 receptor activation modulates lipid mobilization and adipogenesis in the adipose tissue of dairy cows. J Dairy Sci 2023; 106:3650-3661. [PMID: 36907764 DOI: 10.3168/jds.2022-22556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/27/2022] [Indexed: 03/12/2023]
Abstract
Amplified adipose tissue (AT) lipolysis and suppressed lipogenesis characterize the periparturient period of dairy cows. The intensity of lipolysis recedes with the progression of lactation; however, when lipolysis is excessive and prolonged, disease risk is exacerbated and productivity compromised. Interventions that minimize lipolysis while maintaining adequate supply of energy and enhancing lipogenesis may improve periparturient cows' health and lactation performance. Cannabinoid-1 receptor (CB1R) activation in rodent AT enhances the lipogenic and adipogenic capacity of adipocytes, yet the effects in dairy cow AT remain unknown. Using a synthetic CB1R agonist and an antagonist, we determined the effects of CB1R stimulation on lipolysis, lipogenesis, and adipogenesis in the AT of dairy cows. Adipose tissue explants were collected from healthy, nonlactating and nongestating (NLNG; n = 6) or periparturient (n = 12) cows at 1 wk before parturition and at 2 and 3 wk postpartum (PP1 and PP2, respectively). Explants were treated with the β-adrenergic agonist isoproterenol (1 μM) in the presence of the CB1R agonist arachidonyl-2'-chloroethylamide (ACEA) ± the CB1R antagonist rimonabant (RIM). Lipolysis was quantified based on glycerol release. We found that ACEA reduced lipolysis in NLNG cows; however, it did not exhibit a direct effect on AT lipolysis in periparturient cows. Inhibition of CB1R with RIM in postpartum cow AT did not alter lipolysis. To evaluate adipogenesis and lipogenesis, preadipocytes isolated from NLNG cows' AT were induced to differentiate in the presence or absence of ACEA ± RIM for 4 and 12 d. Live cell imaging, lipid accumulation, and expressions of key adipogenic and lipogenic markers were assessed. Preadipocytes treated with ACEA had higher adipogenesis, whereas ACEA+RIM reduced it. Adipocytes treated with ACEA and RIM for 12 d exhibited enhanced lipogenesis compared with untreated cells (control). Lipid content was reduced in ACEA+RIM but not with RIM alone. Collectively, our results support that lipolysis may be reduced by CB1R stimulation in NLNG cows but not in periparturient cows. In addition, our findings demonstrate that adipogenesis and lipogenesis are enhanced by activation of CB1R in the AT of NLNG dairy cows. In summary, we provide initial evidence which supports that the sensitivity of the AT endocannabinoid system to endocannabinoids, and its ability to modulate AT lipolysis, adipogenesis, and lipogenesis, vary based on dairy cows' lactation stage.
Collapse
Affiliation(s)
- Madison N Myers
- Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Ursula Abou-Rjeileh
- Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Miguel Chirivi
- Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Jair Parales-Girón
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Adam L Lock
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem, Israel 9112001
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Volcani Institute, Rishon LeZion, Israel 7505101
| | - G Andres Contreras
- Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
8
|
Food intake behaviors change as a function of maternal diet and time-restricted feeding. NUTR HOSP 2023; 40:419-427. [PMID: 36880723 DOI: 10.20960/nh.04213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
INTRODUCTION changes in dietary/energetic composition during the critical period of development (pregnancy/lactation) or even during meal times may contribute to changes in metabolic and behavioral parameters such as feeding behavior. OBJECTIVE the study aimed to examine the repercussions of time-restricted feeding on feeding behavior and on some parameters of glycemic and lipemic metabolism of the offspring of adult rats whose mothers were fed a westernized diet during pregnancy and lactation. METHODS initially, 43 male Wistar rats were used. At 60 days of life, the rats were divided into 4 groups: C: control group; RC: control group with time-restricted feeding; W: westernized diet during pregnancy/lactation group; RW: westernized diet group during pregnancy/lactation group with time-restricted feeding. The following parameters were evaluated: behavioral sequence of satiety (BSS), biochemical parameters, and abdominal fat. RESULTS findings highlighted a high level of abdominal fat in the groups whose mothers were submitted to a westernized diet, as well as hypertriglyceridemia, and clear differences in feed rate and meal length. This study showed that the westernized diet ingested by mothers during pregnancy and lactation induced hyperlipidemia and changes in the feeding behavior of their adult offspring. CONCLUSIONS these changes may be responsible for eating disorders and risk factors for metabolism disturbance-related diseases.
Collapse
|
9
|
Endocannabinoid System: Chemical Characteristics and Biological Activity. Pharmaceuticals (Basel) 2023; 16:ph16020148. [PMID: 37017445 PMCID: PMC9966761 DOI: 10.3390/ph16020148] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The endocannabinoid system (eCB) has been studied to identify the molecular structures present in Cannabis sativa. eCB consists of cannabinoid receptors, endogenous ligands, and the associated enzymatic apparatus responsible for maintaining energy homeostasis and cognitive processes. Several physiological effects of cannabinoids are exerted through interactions with various receptors, such as CB1 and CB2 receptors, vanilloid receptors, and the recently discovered G-protein-coupled receptors (GPR55, GPR3, GPR6, GPR12, and GPR19). Anandamide (AEA) and 2-arachidoylglycerol (2-AG), two small lipids derived from arachidonic acid, showed high-affinity binding to both CB1 and CB2 receptors. eCB plays a critical role in chronic pain and mood disorders and has been extensively studied because of its wide therapeutic potential and because it is a promising target for the development of new drugs. Phytocannabinoids and synthetic cannabinoids have shown varied affinities for eCB and are relevant to the treatment of several neurological diseases. This review provides a description of eCB components and discusses how phytocannabinoids and other exogenous compounds may regulate the eCB balance. Furthermore, we show the hypo- or hyperfunctionality of eCB in the body and how eCB is related to chronic pain and mood disorders, even with integrative and complementary health practices (ICHP) harmonizing the eCB.
Collapse
|
10
|
Divín D, Goméz Samblas M, Kuttiyarthu Veetil N, Voukali E, Świderská Z, Krajzingrová T, Těšický M, Beneš V, Elleder D, Bartoš O, Vinkler M. Cannabinoid receptor 2 evolutionary gene loss makes parrots more susceptible to neuroinflammation. Proc Biol Sci 2022; 289:20221941. [PMID: 36475439 PMCID: PMC9727682 DOI: 10.1098/rspb.2022.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In vertebrates, cannabinoids modulate neuroimmune interactions through two cannabinoid receptors (CNRs) conservatively expressed in the brain (CNR1, syn. CB1) and in the periphery (CNR2, syn. CB2). Our comparative genomic analysis indicates several evolutionary losses in the CNR2 gene that is involved in immune regulation. Notably, we show that the CNR2 gene pseudogenized in all parrots (Psittaciformes). This CNR2 gene loss occurred because of chromosomal rearrangements. Our positive selection analysis suggests the absence of any specific molecular adaptations in parrot CNR1 that would compensate for the CNR2 loss in the modulation of the neuroimmune interactions. Using transcriptomic data from the brains of birds with experimentally induced sterile inflammation we highlight possible functional effects of such a CNR2 gene loss. We compare the expression patterns of CNR and neuroinflammatory markers in CNR2-deficient parrots (represented by the budgerigar, Melopsittacus undulatus and five other parrot species) with CNR2-intact passerines (represented by the zebra finch, Taeniopygia guttata). Unlike in passerines, stimulation with lipopolysaccharide resulted in neuroinflammation in the parrots linked with a significant upregulation of expression in proinflammatory cytokines (including interleukin 1 beta (IL1B) and 6 (IL6)) in the brain. Our results indicate the functional importance of the CNR2 gene loss for increased sensitivity to brain inflammation.
Collapse
Affiliation(s)
- Daniel Divín
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Mercedes Goméz Samblas
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Nithya Kuttiyarthu Veetil
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Eleni Voukali
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Zuzana Świderská
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Tereza Krajzingrová
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Martin Těšický
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Vladimír Beneš
- Genomics Core Facility, European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Daniel Elleder
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Oldřich Bartoš
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic
| | - Michal Vinkler
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| |
Collapse
|
11
|
Cherkasova V, Wang B, Gerasymchuk M, Fiselier A, Kovalchuk O, Kovalchuk I. Use of Cannabis and Cannabinoids for Treatment of Cancer. Cancers (Basel) 2022; 14:5142. [PMID: 36291926 PMCID: PMC9600568 DOI: 10.3390/cancers14205142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
The endocannabinoid system (ECS) is an ancient homeostasis mechanism operating from embryonic stages to adulthood. It controls the growth and development of many cells and cell lineages. Dysregulation of the components of the ECS may result in uncontrolled proliferation, adhesion, invasion, inhibition of apoptosis and increased vascularization, leading to the development of various malignancies. Cancer is the disease of uncontrolled cell division. In this review, we will discuss whether the changes to the ECS are a cause or a consequence of malignization and whether different tissues react differently to changes in the ECS. We will discuss the potential use of cannabinoids for treatment of cancer, focusing on primary outcome/care-tumor shrinkage and eradication, as well as secondary outcome/palliative care-improvement of life quality, including pain, appetite, sleep, and many more factors. Finally, we will complete this review with the chapter on sex- and gender-specific differences in ECS and response to cannabinoids, and equality of the access to treatments with cannabinoids.
Collapse
Affiliation(s)
- Viktoriia Cherkasova
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marta Gerasymchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Anna Fiselier
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
12
|
Andersson KE. Emerging drugs for the treatment of bladder storage dysfunction. Expert Opin Emerg Drugs 2022; 27:277-287. [PMID: 35975727 DOI: 10.1080/14728214.2022.2113057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Current drug treatment of lower urinary tract disorders, for example, overactive bladder syndrome and lower urinary tract symptoms associated with benign prostatic hyperplasia, is moderately effective, has a low treatment persistence and some short- and long-term adverse events. Even if combination therapy with approved drugs may offer advantages in some patients, there is still a need for new agents. AREAS COVERED New b3-adrenoceptor agonists, antimuscarinics, the naked Maxi-K channel gene, a novel 5HT/NA reuptake inhibitor and soluble guanylate cyclase activators are discussed. Focus is given to P2X3 receptor antagonists, small molecule blockers of TRP channels, the roles of cannabis on incontinence in patients with multiple sclerosis, and of drugs acting directly on CB1 and CB2 receptor or indirectly via endocannabinoids by inhibition of fatty acid aminohydrolase. EXPERT OPINION New potential alternatives to currently used drugs/drug principles are emerging, but further clinical testing is required before they can be evaluated as therapeutic alternatives. It seems that for the near future individualized treatment with approved drugs and their combinations will be the prevailing therapeutic approach.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA.,Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Plau J, Golczak M, Paik J, Calderon RM, Blaner WS. Retinol-binding protein 2 (RBP2): More than just dietary retinoid uptake. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159179. [PMID: 35533980 PMCID: PMC9191623 DOI: 10.1016/j.bbalip.2022.159179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/28/2022] [Accepted: 04/22/2022] [Indexed: 01/21/2023]
Abstract
Retinol-binding protein 2 (RBP2, also known as cellular retinol-binding protein 2 (CRBP2)) is a member of the fatty acid-binding protein family and has been extensively studied for its role in facilitating dietary vitamin A (retinol) uptake and metabolism within enterocytes of the small intestine. RBP2 is present in highest concentrations in the proximal small intestine where it constitutes approximately 0.1-0.5% of soluble protein. Recent reports have established that RBP2 binds monoacylglycerols (MAGs) with high affinity, including the canonical endocannabinoid 2-arachidonoylglycerol (2-AG). Crystallographic studies reveal that retinol, 2-AG, or other long-chain MAGs alternatively can bind in the retinol-binding pocket of RBP2. It also has been demonstrated recently that Rbp2-deficient mice are more susceptible to developing obesity and associated metabolic phenotypes when exposed to a high fat diet, or as they age when fed a conventional chow diet. When subjected to an oral fat challenge, the Rbp2-deficient mice release into the circulation significantly more, compared to littermate controls, of the intestinal hormone glucose-dependent insulinotropic polypeptide (GIP). These new findings regarding RBP2 structure and actions within the intestine are the focus of this review.
Collapse
Affiliation(s)
- Jacqueline Plau
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Marcin Golczak
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Rossana M Calderon
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America.
| |
Collapse
|
14
|
Dias-Rocha CP, Almeida MM, Woyames J, Mendonça R, Andrade CBV, Pazos-Moura CC, Trevenzoli IH. Maternal high-fat diet alters thermogenic markers but not muscle or brown adipose cannabinoid receptors in adult rats. Life Sci 2022; 306:120831. [PMID: 35882274 DOI: 10.1016/j.lfs.2022.120831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 12/26/2022]
Abstract
AIMS The endocannabinoid system (ECS) increases food intake, appetite for fat and lipogenesis, while decreases energy expenditure (thermogenesis), contributing to metabolic dysfunctions. We demonstrated that maternal high-fat diet (HFD) alters cannabinoid signaling in brown adipose tissue (BAT) of neonate and weanling male rat offspring, which have increased adiposity but also higher energy expenditure in adulthood. In this study, the main objective was to investigate the ECS expression in thermogenic tissues as BAT and skeletal muscle of adult rats programmed by maternal HFD. We hypothesized that maternal HFD would modulate ECS and energy metabolism markers in BAT and skeletal muscle of adult male offspring. MATERIALS AND METHODS Female rats received standard diet (9.4 % of calories as fat) or isocaloric HFD (28.9 % of calories as fat) for 8 weeks premating and throughout gestation and lactation. Male offspring were weaned on standard diet and euthanatized in adulthood. KEY FINDINGS Maternal HFD increased body weight, adiposity, glycemia, leptinemia while decreased testosterone levels in adult offspring. Maternal HFD did not change cannabinoid receptors in BAT or skeletal muscle as hypothesized but increased the content of uncoupling protein and tyrosine hydroxylase (thermogenic markers) in parallel to changes in mitochondrial morphology in skeletal muscle of adult offspring. SIGNIFICANCE In metabolic programming models, the ECS modulation in the BAT and skeletal muscle may be more important early in life to adapt energy metabolism during maternal dietary insult, and other mechanisms are possibly involved in muscle metabolism long-term regulation.
Collapse
Affiliation(s)
- Camilla P Dias-Rocha
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Mariana M Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Juliana Woyames
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Raphael Mendonça
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Cherley B V Andrade
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Carmen C Pazos-Moura
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis H Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Lomas T, Bartels M, Van De Weijer M, Pluess M, Hanson J, VanderWeele TJ. The Architecture of Happiness. EMOTION REVIEW 2022. [DOI: 10.1177/17540739221114109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Happiness is an increasingly prominent topic of interest across academia. However, relatively little attention has been paid to how it is created, especially not in a multidimensional sense. By ‘created’ we do not mean its influencing factors, for which there is extensive research, but how it actually forms in the person. The work that has been done in this arena tends to focus on physiological dynamics, which are certainly part of the puzzle. But they are not the whole picture, with psychological, phenomenological, and socio cultural processes also playing their part. As a result, this paper offers a multidimensional overview of scholarship on the ‘architecture’ of happiness, providing a stimulus for further work into this important topic.
Collapse
|
16
|
Cuddihey H, MacNaughton WK, Sharkey KA. Role of the Endocannabinoid System in the Regulation of Intestinal Homeostasis. Cell Mol Gastroenterol Hepatol 2022; 14:947-963. [PMID: 35750314 PMCID: PMC9500439 DOI: 10.1016/j.jcmgh.2022.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
The maintenance of intestinal homeostasis is fundamentally important to health. Intestinal barrier function and immune regulation are key determinants of intestinal homeostasis and are therefore tightly regulated by a variety of signaling mechanisms. The endocannabinoid system is a lipid mediator signaling system widely expressed in the gastrointestinal tract. Accumulating evidence suggests the endocannabinoid system is a critical nexus involved in the physiological processes that underlie the control of intestinal homeostasis. In this review we will illustrate how the endocannabinoid system is involved in regulation of intestinal permeability, fluid secretion, and immune regulation. We will also demonstrate a reciprocal regulation between the endocannabinoid system and the gut microbiome. The role of the endocannabinoid system is complex and multifaceted, responding to both internal and external factors while also serving as an effector system for the maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Hailey Cuddihey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K. MacNaughton
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Correspondence Address correspondence to: Keith Sharkey, PhD, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
17
|
Ortiz-Alvarez L, Xu H, Di X, Kohler I, Osuna-Prieto FJ, Acosta FM, Vilchez-Vargas R, Link A, Plaza-Díaz J, van der Stelt M, Hankemeier T, Clemente-Postigo M, Tinahones FJ, Gil A, Rensen PCN, Ruiz JR, Martinez-Tellez B. Plasma Levels of Endocannabinoids and Their Analogues Are Related to Specific Fecal Bacterial Genera in Young Adults: Role in Gut Barrier Integrity. Nutrients 2022; 14:2143. [PMID: 35631284 PMCID: PMC9143287 DOI: 10.3390/nu14102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To investigate the association of plasma levels of endocannabinoids with fecal microbiota. METHODS Plasma levels of endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), as well as their eleven analogues, and arachidonic acid (AA), were measured using liquid chromatography-tandem mass spectrometry in 92 young adults. DNA extracted from stool samples was analyzed using 16S rRNA gene sequencing. Lipopolysaccharide levels were measured in plasma samples. RESULTS Plasma levels of endocannabinoids and their analogues were not related to beta or alpha diversity indexes. Plasma levels of AEA and related N-acylethanolamines correlated positively with the relative abundance of Faecalibacterium genus (all rho ≥ 0.26, p ≤ 0.012) and Akkermansia genus (all rho ≥ 0.22, p ≤ 0.036), and negatively with the relative abundance of Bilophila genus (all rho ≤ -0.23, p ≤ 0.031). Moreover, plasma levels of 2-AG and other acylglycerols correlated positively with the relative abundance of Parasutterella (all rho ≥ 0.24, p ≤ 0.020) and Odoribacter genera (all rho ≥ 0.27, p ≤ 0.011), and negatively with the relative abundance of Prevotella genus (all rho ≤ -0.24, p ≤ 0.023). In participants with high lipopolysaccharide values, the plasma levels of AEA and related N-acylethanolamines, as well as AA and 2-AG, were negatively correlated with plasma levels of lipopolysaccharide (all rho ≤ -0.24, p ≤ 0.020). CONCLUSION Plasma levels of endocannabinoids and their analogues are correlated to specific fecal bacterial genera involved in maintaining gut barrier integrity in young adults. This suggests that plasma levels of endocannabinoids and their analogues may play a role in the gut barrier integrity in young adults.
Collapse
Affiliation(s)
- Lourdes Ortiz-Alvarez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (J.P.-D.); (A.G.)
| | - Huiwen Xu
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (J.P.-D.); (A.G.)
| | - Xinyu Di
- Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and Pharmacology, Leiden University, 2300 Leiden, The Netherlands;
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands;
- Center for Analytical Sciences Amsterdam, 1098 Amsterdam, The Netherlands
| | - Francisco J. Osuna-Prieto
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Center for Biomedical Research, Department of Analytical Chemistry, Institute of Nutrition and Food Technology, University of Granada, 18071 Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Health Sciences Technology Park, 18071 Granada, Spain
| | - Francisco M. Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Turku PET Centre, University of Turku, 20014 Turku, Finland
- Turku PET Centre, Turku University Hospital, 20521 Turku, Finland
- InFLAMES Research Flagship Centre, University of Turku, 20014 Turku, Finland
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (R.V.-V.); (A.L.)
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (R.V.-V.); (A.L.)
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (J.P.-D.); (A.G.)
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2300 Leiden, The Netherlands;
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research (LACDR), Department of Systems Biomedicine and Pharmacology, Leiden University, 2300 Leiden, The Netherlands;
| | - Mercedes Clemente-Postigo
- Department of Cell Biology, Physiology and Immunology, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain;
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29016 Malaga, Spain;
- Centro de Investigación Biomédica En Red (CIBER), Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Malaga, Spain
| | - Francisco J. Tinahones
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29016 Malaga, Spain;
- Centro de Investigación Biomédica En Red (CIBER), Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Malaga, Spain
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (J.P.-D.); (A.G.)
- Centro de Investigación Biomédica En Red (CIBER), Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Malaga, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Parque Tecnológico Ciencias de la Salud, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria, 18014 Granada, Spain
| | - Patrick C. N. Rensen
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 Leiden, The Netherlands;
| | - Jonatan R. Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Instituto de Investigación Biosanitaria, 18014 Granada, Spain
- Department of Physical and Sports Education, School of Sports Science, University of Granada, 18071 Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 Leiden, The Netherlands;
- CERNEP Research Center, Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), University of Almería, 04120 Almeria, Spain
| |
Collapse
|
18
|
Efficacy of omega-3-rich Camelina sativa on the metabolic and clinical markers in nonalcoholic fatty liver disease: a randomized, controlled trial. Eur J Gastroenterol Hepatol 2022; 34:537-545. [PMID: 35421019 DOI: 10.1097/meg.0000000000002297] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Recently, omega-3 fatty acids and antioxidants co-supplementation was considered as alternative treatment in the management of nonalcoholic fatty liver disease (NAFLD). This trial evaluated effects of Camelina sativa oil (CSO) as a rich source of omega-3 fatty acids and antioxidants on anthropometric indices, lipid profile, liver enzymes, and adiponectin in NAFLD patients. PARTICIPANTS AND METHODS This triple-blind, placebo-controlled, randomized clinical trial was conducted on 46 NAFLD patients who were randomly assigned to either a CSO supplement or placebo for 12 weeks. Both groups received a loss weight diet. Levels of liver enzymes, adiponectin, lipid profile, atherogenic index, and anthropometric indices were assessed for all patients at baseline and post-intervention. RESULTS CSO caused significant differences in weight, BMI, waist circumference, waist-to-hip ratio, triglyceride, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), TC/HDL-c, LDL-c/HDL-c, atherogenic index, alanine aminotransferase, and adiponectin concentrations in the CSO group compared with the placebo group (P < 0.046 for all). No significant differences were found in hip circumference, neck circumference, HDL-c, and other liver enzymes in the CSO group compared with the placebo group (P = 0.790, P = 0.091, P = 0.149, P < 0.159 for liver enzymes, respectively). DISCUSSION AND CONCLUSION This study showed that CSO supplementation for 12 weeks causes significant changes in all of anthropometric indices (except hip circumference and neck circumference), ALT, lipid profile (except HDL-c), atherogenic index, and adiponectin in NAFLD patients.
Collapse
|
19
|
Endocannabinoid signaling of homeostatic status modulates functional connectivity in reward and salience networks. Psychopharmacology (Berl) 2022; 239:1311-1319. [PMID: 34212205 DOI: 10.1007/s00213-021-05890-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/27/2021] [Indexed: 12/24/2022]
Abstract
RATIONALE Endocannabinoids are well poised to regulate crosstalk between energy sensing of hunger and satiety and reward-driven motivation. OBJECTIVES Here, we aimed to unravel associations between plasma endocannabinoids and brain connectivity in homeostatic and reward circuits across hunger and satiety states. METHODS Fifteen participants (7 females) underwent two counter-balanced resting-state functional magnetic resonance imaging scans, one after overnight fasting and one after consumption of a standardized filling meal (satiety). Before each scan, we drew blood to measure plasma endocannabinoid concentrations (anandamide [AEA], anandamide-derived POEA, and 2-arachidonoylglycerol [2-AG]), analyzed with liquid chromatography tandem mass spectrometry. RESULTS We found that AEA levels were associated with increased connectivity between the lateral hypothalamus and the ventral striatum during satiety. Furthermore, fasting AEA levels correlated with connectivity between the ventral striatum and the anterior cingulate cortex and the insula. CONCLUSIONS Altogether, results suggest that peripheral AEA concentrations are sensitive to homeostatic changes and linked to neural communication in reward and salience networks. Findings may have significant implications for understanding normal and abnormal interactions between homeostatic input and reward valuation.
Collapse
|
20
|
Effectiveness of omega-3 and prebiotics on adiponectin, leptin, liver enzymes lipid profile and anthropometric indices in patients with non-alcoholic fatty liver disease: A randomized controlled trial. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
21
|
Wu G, Tawfeeq HR, Lackey AI, Zhou Y, Sifnakis Z, Zacharisen SM, Xu H, Doran JM, Sampath H, Zhao L, Lam YY, Storch J. Gut Microbiota and Phenotypic Changes Induced by Ablation of Liver- and Intestinal-Type Fatty Acid-Binding Proteins. Nutrients 2022; 14:1762. [PMID: 35565729 PMCID: PMC9099671 DOI: 10.3390/nu14091762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal fatty acid-binding protein (IFABP; FABP2) and liver fatty acid-binding protein (LFABP; FABP1) are small intracellular lipid-binding proteins. Deficiency of either of these proteins in mice leads to differential changes in intestinal lipid transport and metabolism, and to markedly divergent changes in whole-body energy homeostasis. The gut microbiota has been reported to play a pivotal role in metabolic process in the host and can be affected by host genetic factors. Here, we examined the phenotypes of wild-type (WT), LFABP-/-, and IFABP-/- mice before and after high-fat diet (HFD) feeding and applied 16S rRNA gene V4 sequencing to explore guild-level changes in the gut microbiota and their associations with the phenotypes. The results show that, compared with WT and IFABP-/- mice, LFABP-/- mice gained more weight, had longer intestinal transit time, less fecal output, and more guilds containing bacteria associated with obesity, such as members in family Desulfovibrionaceae. By contrast, IFABP-/- mice gained the least weight, had the shortest intestinal transit time, the most fecal output, and the highest abundance of potentially beneficial guilds such as those including members from Akkermansia, Lactobacillus, and Bifidobacterium. Twelve out of the eighteen genotype-related bacterial guilds were associated with body weight. Interestingly, compared with WT mice, the levels of short-chain fatty acids in feces were significantly higher in LFABP-/- and IFABP-/- mice under both diets. Collectively, these studies show that the ablation of LFABP or IFABP induced marked changes in the gut microbiota, and these were associated with HFD-induced phenotypic changes in these mice.
Collapse
Affiliation(s)
- Guojun Wu
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA; (G.W.); (H.S.); (L.Z.)
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hiba R. Tawfeeq
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Atreju I. Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yinxiu Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
| | - Zoe Sifnakis
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
| | - Sophia M. Zacharisen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
| | - Heli Xu
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Justine M. Doran
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
| | - Harini Sampath
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA; (G.W.); (H.S.); (L.Z.)
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Liping Zhao
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA; (G.W.); (H.S.); (L.Z.)
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yan Y. Lam
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA; (G.W.); (H.S.); (L.Z.)
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
- Gut Microbiota and Metabolism Group, Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
22
|
Christie S, Brookes S, Zagorodnyuk V. Endocannabinoids in Bladder Sensory Mechanisms in Health and Diseases. Front Pharmacol 2021; 12:708989. [PMID: 34290614 PMCID: PMC8287826 DOI: 10.3389/fphar.2021.708989] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 01/23/2023] Open
Abstract
The recent surge in research on cannabinoids may have been fueled by changes in legislation in several jurisdictions, and by approval for the use of cannabinoids for treatment of some chronic diseases. Endocannabinoids act largely, but not exclusively on cannabinoid receptors 1 and 2 (CBR1 and CBR2) which are expressed in the bladder mainly by the urothelium and the axons and endings of motor and sensory neurons. A growing body of evidence suggests that endocannabinoid system constitutively downregulates sensory bladder function during urine storage and micturition, under normal physiological conditions. Similarly, exogenous cannabinoid agonists have potent modulatory effects, as do inhibitors of endocannabinoid inactivation. Results suggest a high potential of cannabinoids to therapeutically ameliorate lower urinary tract symptoms in overactive bladder and painful bladder syndromes. At least part of this may be mediated via effects on sensory nerves, although actions on efferent nerves complicate interpretation. The sensory innervation of bladder is complex with at least eight classes identified. There is a large gap in our knowledge of the effects of endocannabinoids and synthetic agonists on different classes of bladder sensory neurons. Future studies are needed to reveal the action of selective cannabinoid receptor 2 agonists and/or peripherally restricted synthetic cannabinoid receptor 1 agonists on bladder sensory neurons in animal models of bladder diseases. There is significant potential for these novel therapeutics which are devoid of central nervous system psychotropic actions, and which may avoid many of the side effects of current treatments for overactive bladder and painful bladder syndromes.
Collapse
Affiliation(s)
| | | | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
23
|
Vlaardingerbroek H, van den Akker ELT, Hokken-Koelega ACS. Appetite- and weight-inducing and -inhibiting neuroendocrine factors in Prader-Willi syndrome, Bardet-Biedl syndrome and craniopharyngioma versus anorexia nervosa. Endocr Connect 2021; 10:R175-R188. [PMID: 33884958 PMCID: PMC8183618 DOI: 10.1530/ec-21-0111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
Obesity is reaching an epidemic state and has a major impact on health and economy. In most cases, obesity is caused by lifestyle factors. However, the risk of becoming obese differs highly between people. Individual's differences in lifestyle, genetic, and neuroendocrine factors play a role in satiety, hunger and regulation of body weight. In a small percentage of children and adults with obesity, an underlying hormonal or genetic cause can be found. The aim of this review is to present and compare data on the extreme ends of the obesity and undernutrition spectrum in patients with Prader-Willi syndrome (PWS), Bardet-Biedl syndrome (BBS), acquired hypothalamic obesity in craniopharyngioma patients, and anorexia nervosa. This may give more insight into the role of neuroendocrine factors and might give direction for future research in conditions of severe obesity and underweight.
Collapse
Affiliation(s)
- H Vlaardingerbroek
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Correspondence should be addressed to H Vlaardingerbroek:
| | - E L T van den Akker
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - A C S Hokken-Koelega
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Daddam JR, Hammon HM, Tröscher A, Vogel L, Gnott M, Kra G, Levin Y, Sauerwein H, Zachut M. Phosphoproteomic Analysis of Subcutaneous and Omental Adipose Tissue Reveals Increased Lipid Turnover in Dairy Cows Supplemented with Conjugated Linoleic Acid. Int J Mol Sci 2021; 22:ijms22063227. [PMID: 33810070 PMCID: PMC8005193 DOI: 10.3390/ijms22063227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 01/07/2023] Open
Abstract
Phosphoproteomics is a cutting-edge technique that can be utilized to explore adipose tissue (AT) metabolism by quantifying the repertoire of phospho-peptides (PP) in AT. Dairy cows were supplemented with conjugated linoleic acid (CLA, n = 5) or a control diet (CON, n = 5) from 63 d prepartum to 63 d postpartum; cows were slaughtered at 63 d postpartum and AT was collected. We performed a quantitative phosphoproteomics analysis of subcutaneous (SC) and omental (OM) AT using nanoUPLC-MS/MS and examined the effects of CLA supplementation on the change in the phosphoproteome. A total of 5919 PP were detected in AT, and the abundance of 854 (14.4%) were differential between CON and CLA AT (p ≤ 0.05 and fold change ± 1.5). The abundance of 470 PP (7.9%) differed between OM and SC AT, and the interaction treatment vs. AT depot was significant for 205 PP (3.5% of total PP). The integrated phosphoproteome demonstrated the up- and downregulation of PP from proteins related to lipolysis and lipogenesis, and phosphorylation events in multiple pathways, including the regulation of lipolysis in adipocytes, mTOR signaling, insulin signaling, AMPK signaling, and glycolysis. The differential regulation of phosphosite on a serine residue (S777) of fatty acid synthase (FASN) in AT of CLA-supplemented cows was related to lipogenesis and with more phosphorylation sites compared to acetyl-coenzyme A synthetase (ACSS2). Increased protein phosphorylation was seen in acetyl-CoA carboxylase 1 (ACACA;8 PP), FASN (9 PP), hormone sensitive lipase (LIPE;6 PP), perilipin (PLIN;3 PP), and diacylglycerol lipase alpha (DAGLA;1 PP) in CLA vs. CON AT. The relative gene expression in the SC and OM AT revealed an increase in LIPE and FASN in CLA compared to CON AT. In addition, the expression of DAGLA, which is a lipid metabolism enzyme related to the endocannabinoid system, was 1.6-fold higher in CLA vs. CON AT, and the expression of the cannabinoid receptor CNR1 was reduced in CLA vs. CON AT. Immunoblots of SC and OM AT showed an increased abundance of FASN and a lower abundance of CB1 in CLA vs. CON. This study presents a complete map of the SC and the OM AT phosphoproteome in dairy cows following CLA supplementation and discloses many unknown phosphorylation sites, suggestive of increased lipid turnover in AT, for further functional investigation.
Collapse
Affiliation(s)
- Jayasimha Rayalu Daddam
- Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Volcani Center, Rishon Lezion 7505101, Israel; (J.R.D.); (G.K.)
| | - Harald M. Hammon
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology “Oskar Kellner”, 18196 Dummerstorf, Germany; (H.M.H.); (L.V.); (M.G.)
| | | | - Laura Vogel
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology “Oskar Kellner”, 18196 Dummerstorf, Germany; (H.M.H.); (L.V.); (M.G.)
| | - Martina Gnott
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology “Oskar Kellner”, 18196 Dummerstorf, Germany; (H.M.H.); (L.V.); (M.G.)
| | - Gitit Kra
- Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Volcani Center, Rishon Lezion 7505101, Israel; (J.R.D.); (G.K.)
- Department of Animal Science, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Helga Sauerwein
- Physiology Unit, Institute of Animal Science, University of Bonn, 53115 Bonn, Germany;
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Volcani Center, Rishon Lezion 7505101, Israel; (J.R.D.); (G.K.)
- Correspondence: ; Tel.: +972-3968-3022
| |
Collapse
|
25
|
Rosager EV, Møller C, Sjögren M. Treatment studies with cannabinoids in anorexia nervosa: a systematic review. Eat Weight Disord 2021; 26:407-415. [PMID: 32240516 DOI: 10.1007/s40519-020-00891-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/14/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Anorexia nervosa (AN) is a psychiatric disorder with a high mortality and unknown etiology, and effective treatment is lacking. For decades, cannabis has been known to cause physical effects on the human body, including increasing appetite, which may be beneficial in the treatment of AN. OBJECTIVE To systematically review the literature for evidence of an effect of cannabinoids on (1) weight gain, and (2) other outcomes, in AN. METHOD A systematic review was done using three databases Embase, PubMed and Psychinfo. The review was registered in PROSPERO with ID number CRD42019141293 and was done according to PRISMA guidelines. RESULTS There were 1288 studies identified and after thorough review and exclusion of copies, 4 studies met the inclusion criteria. Three studies used the same AN population and utilized data from one original study, leaving only two original studies. Both of these were Randomized Controlled Trials that explored the effects of delta-9-tetrahydrocannabinol (Δ9-THC) or dronabinol in AN, whereof one study was properly designed and powered and showed a weight increase of an added 1 kg over 4 weeks over placebo. DISCUSSION AND CONCLUSION There are few studies and the level of evidence is low. The only properly designed, low bias and highly powered study found a weight increasing effect of dronabinol in AN, while the other, using Δ9-THC at a high dose, found no effect and where the dose may have counteracted the weight gaining effects due to adverse events. More research on cannabinoids in anorexia nervosa is warranted, especially its effects on psychopathology. LEVEL OF EVIDENCE Level I, systematic review.
Collapse
Affiliation(s)
- Emilie Vangsgaard Rosager
- Mental Health Center Ballerup, Copenhagen University, Institute for Clinical Medicine, Maglevaenget 32, 2750, Ballerup, Denmark
| | - Christian Møller
- Mental Health Center Ballerup, Copenhagen University, Institute for Clinical Medicine, Maglevaenget 32, 2750, Ballerup, Denmark
| | - Magnus Sjögren
- Mental Health Center Ballerup, Copenhagen University, Institute for Clinical Medicine, Maglevaenget 32, 2750, Ballerup, Denmark.
| |
Collapse
|
26
|
Hypothalamic endocannabinoids in obesity: an old story with new challenges. Cell Mol Life Sci 2021; 78:7469-7490. [PMID: 34718828 PMCID: PMC8557709 DOI: 10.1007/s00018-021-04002-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
The crucial role of the hypothalamus in the pathogenesis of obesity is widely recognized, while the precise molecular and cellular mechanisms involved are the focus of intense research. A disrupted endocannabinoid system, which critically modulates feeding and metabolic functions, through central and peripheral mechanisms, is a landmark indicator of obesity, as corroborated by investigations centered on the cannabinoid receptor CB1, considered to offer promise in terms of pharmacologically targeted treatment for obesity. In recent years, novel insights have been obtained, not only into relation to the mode of action of CB receptors, but also CB ligands, non-CB receptors, and metabolizing enzymes considered to be part of the endocannabinoid system (particularly the hypothalamus). The outcome has been a substantial expansion in knowledge of this complex signaling system and in drug development. Here we review recent literature, providing further evidence on the role of hypothalamic endocannabinoids in regulating energy balance and the implication for the pathophysiology of obesity. We discuss how these lipids are dynamically regulated in obesity onset, by diet and metabolic hormones in specific hypothalamic neurons, the impact of gender, and the role of endocannabinoid metabolizing enzymes as promising targets for tackling obesity and related diseases.
Collapse
|
27
|
Drori A, Gammal A, Azar S, Hinden L, Hadar R, Wesley D, Nemirovski A, Szanda G, Salton M, Tirosh B, Tam J. CB 1R regulates soluble leptin receptor levels via CHOP, contributing to hepatic leptin resistance. eLife 2020; 9:60771. [PMID: 33210603 PMCID: PMC7728447 DOI: 10.7554/elife.60771] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
The soluble isoform of leptin receptor (sOb-R), secreted by the liver, regulates leptin bioavailability and bioactivity. Its reduced levels in diet-induced obesity (DIO) contribute to hyperleptinemia and leptin resistance, effects that are regulated by the endocannabinoid (eCB)/CB1R system. Here we show that pharmacological activation/blockade and genetic overexpression/deletion of hepatic CB1R modulates sOb-R levels and hepatic leptin resistance. Interestingly, peripheral CB1R blockade failed to reverse DIO-induced reduction of sOb-R levels, increased fat mass and dyslipidemia, and hepatic steatosis in mice lacking C/EBP homologous protein (CHOP), whereas direct activation of CB1R in wild-type hepatocytes reduced sOb-R levels in a CHOP-dependent manner. Moreover, CHOP stimulation increased sOb-R expression and release via a direct regulation of its promoter, while CHOP deletion reduced leptin sensitivity. Our findings highlight a novel molecular aspect by which the hepatic eCB/CB1R system is involved in the development of hepatic leptin resistance and in the regulation of sOb-R levels via CHOP. When the human body has stored enough energy from food, it releases a hormone called leptin that travels to the brain and stops feelings of hunger. This hormone moves through the bloodstream and can affect other organs, such as the liver, which also help control our body’s energy levels. Most people with obesity have very high levels of leptin in their blood, but are resistant to its effects and will therefore continue to feel hungry despite having stored enough energy. One of the proteins that controls the levels of leptin is a receptor called sOb-R, which is released by the liver and binds to leptin as it travels in the blood. Individuals with high levels of this receptor often have less free leptin in their bloodstream and a lower body weight. Another protein that helps the body to regulate its energy levels is the cannabinoid-1 receptor, or CB1R for short. In people with obesity, this receptor is overactive and has been shown to contribute to leptin resistance, which is when the brain becomes less receptive to leptin. Previous work in mice showed that blocking CB1R reduced the levels of leptin and allowed mice to react to this hormone normally again, but it remained unclear whether CB1R affects how other organs, such as the liver, respond to leptin. To answer this question, Drori et al. blocked the CB1R receptor in the liver of mice eating a high-fat diet, either by using a drug or by deleting the gene that codes for this protein. This caused mice to have higher levels of sOb-R circulating in their bloodstream. Further experiments showed that this change in sOb-R was caused by the levels of a protein called CHOP increasing in the liver when CB1R was blocked. Drori et al. found that inhibiting CB1R caused these obese mice to lose weight and have healthier, less fatty livers as a result of their livers no longer being resistant to the effects of leptin. Scientists, doctors and pharmaceutical companies are trying to develop new strategies to combat obesity. The results from these experiments suggest that blocking CB1R in the liver could allow this organ to react to leptin appropriately again. Drugs blocking CB1R, including the one used in this study, will be tested in clinical trials and could provide a new approach for treating obesity.
Collapse
Affiliation(s)
- Adi Drori
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaad Gammal
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shahar Azar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Wesley
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse & Alcoholism, Bethesda, United States
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gergő Szanda
- MTA-SE Laboratory of Molecular Physiology, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Boaz Tirosh
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
28
|
Dijkstra DJ, Verkaik-Schakel RN, Eskandar S, Limonciel A, Stojanovska V, Scherjon SA, Plösch T. Mid-gestation low-dose LPS administration results in female-specific excessive weight gain upon a western style diet in mouse offspring. Sci Rep 2020; 10:19618. [PMID: 33184349 PMCID: PMC7665071 DOI: 10.1038/s41598-020-76501-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/15/2020] [Indexed: 01/03/2023] Open
Abstract
Gestational complications, including preeclampsia and gestational diabetes, have long-term adverse consequences for offspring's metabolic and cardiovascular health. A low-grade systemic inflammatory response is likely mediating this. Here, we examine the consequences of LPS-induced gestational inflammation on offspring's health in adulthood. LPS was administered to pregnant C57Bl/6J mice on gestational day 10.5. Maternal plasma metabolomics showed oxidative stress, remaining for at least 5 days after LPS administration, likely mediating the consequences for the offspring. From weaning on, all offspring was fed a control diet; from 12 to 24 weeks of age, half of the offspring received a western-style diet (WSD). The combination of LPS-exposure and WSD resulted in hyperphagia and increased body weight and body fat mass in the female offspring. This was accompanied by changes in glucose tolerance, leptin and insulin levels and gene expression in liver and adipose tissue. In the hypothalamus, expression of genes involved in food intake regulation was slightly changed. We speculate that altered food intake behaviour is a result of dysregulation of hypothalamic signalling. Our results add to understanding of how maternal inflammation can mediate long-term health consequences for the offspring. This is relevant to many gestational complications with a pro-inflammatory reaction in place.
Collapse
Affiliation(s)
- Dorieke J Dijkstra
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, CB22, 9713GZ, Groningen, The Netherlands
| | - Rikst Nynke Verkaik-Schakel
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, CB22, 9713GZ, Groningen, The Netherlands
| | - Sharon Eskandar
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, CB22, 9713GZ, Groningen, The Netherlands.,Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Violeta Stojanovska
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Sicco A Scherjon
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, CB22, 9713GZ, Groningen, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, CB22, 9713GZ, Groningen, The Netherlands. .,Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
29
|
Type 2 Diabetes Alters Vascular Cannabinoid Receptor 1 Expression, Phosphorylation Status, and Vasorelaxation in Rat Aorta. Molecules 2020; 25:molecules25214948. [PMID: 33114620 PMCID: PMC7662259 DOI: 10.3390/molecules25214948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
Previous studies have suggested a role of the endocannabinoid system in metabolic diseases, such as diabetes. We investigated the effect of diabetes on cannabinoid receptor type 1 (CB1) expression and cannabinoid-induced vasorelaxation in rat aorta rings. Aortas from healthy rats and from rats with experimentally induced diabetes were used to compare the vasorelaxant effect of the cannabinoid agonist arachidonylcyclopropylamide (ACPA) and CB1 expression and localization. After 4–8 weeks of diabetes induction, CB1 receptor expression and CB1 phosphorylation were higher in aortic rings, in association with greater vasorelaxation induced by the CB1 agonist ACPA compared to healthy rats. The vasorelaxant effect observed in healthy rats is similar throughout the study. Further studies are needed to elucidate the implications of CB1 receptor overexpression in diabetes and its influence on the progression of the cardiovascular complications of this metabolic disease.
Collapse
|
30
|
Rochefort G, Provencher V, Castonguay-Paradis S, Perron J, Lacroix S, Martin C, Flamand N, Di Marzo V, Veilleux A. Intuitive eating is associated with elevated levels of circulating omega-3-polyunsaturated fatty acid-derived endocannabinoidome mediators. Appetite 2020; 156:104973. [PMID: 32971226 DOI: 10.1016/j.appet.2020.104973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
The regulation of food intake and eating behaviours involves interactions between different systems. The endocannabinoidome, comprising several fatty acid-derived mediators, plays a central role in the regulation of food intake. Alterations of this system have been suggested to intervene in the aetiology of eating disorders. This study aimed to examine the associations between non-pathological eating behaviours and circulating endocannabinoidome mediators in a heterogeneous human population. Plasma 2-monoacyl-glycerol and N-acyl-ethanolamine congeners were measured by LC-MS/MS in a sample of 190 men and women. Eating behaviours were assessed using the Three-Factor Eating Questionnaire (TFEQ) and the Intuitive Eating Scale-2 (IES-2). Following adjustment for body mass index and age, plasma levels of omega-3 polyunsaturated fatty acid-derived 2-monoacyl-glycerols, 2-eicosapentaenoyl-glycerol (2-EPG) and 2-docosapentaenoyl-glycerol (2-DPG), were associated with higher intuitive eating scores (0.15 ≤ rho ≤ 0.20; p < 0.05). These associations were independent of the dietary intake of the fatty acid precursors of these 2-monoacyl-glycerols. However, almost no association was found between plasma levels of N-acyl-ethanolamine congeners and the TFEQ or the IES-2 scores. The results of the present study suggest the association of 2-monoacyl-glycerols, especially 2-EPG and 2-DPG, in the regulation of intuitive eating and the potential implication therein of bioactive lipids.
Collapse
Affiliation(s)
- Gabrielle Rochefort
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Véronique Provencher
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada
| | - Sophie Castonguay-Paradis
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Julie Perron
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Sébastien Lacroix
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Cyril Martin
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, G1V 4G5, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Nicolas Flamand
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, G1V 4G5, QC, Canada; Département de Médecine, Faculté de Médecine, Université Laval, 1050 Avenue de La Médecine, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Vincenzo Di Marzo
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, G1V 4G5, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Département de Médecine, Faculté de Médecine, Université Laval, 1050 Avenue de La Médecine, Québec, G1V 0A6, QC, Canada; Joint International Unit on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Alain Veilleux
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada.
| |
Collapse
|
31
|
D’Angelo S, Motti ML, Meccariello R. ω-3 and ω-6 Polyunsaturated Fatty Acids, Obesity and Cancer. Nutrients 2020; 12:nu12092751. [PMID: 32927614 PMCID: PMC7551151 DOI: 10.3390/nu12092751] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, nutraceutical bioactive compounds in foods have been discovered for their potential health benefits regarding the prevention of chronic disorders, such as cancer, and inflammatory, cardiovascular, and metabolic diseases. Dietary omega-3 polyunsaturated fatty acids (ω-3PUFAs), including alpha-linolenic acid, docosapentaenoic acid, and eicosapentaenoic acid, are mostly attractive. They are available for the customers worldwide from commonly used foods and/or as components of commercial food supplements. The anti-inflammatory and hypotriglyceridemic effects of these fatty acids are well known, whereas pro-inflammatory properties have been recognized in their dietary counterparts, the ω-6PUFAs. Both ω-3 and ω-6PUFAs contribute to the production of lipid mediators such as endocannabinoids that are notably involved in control of food intake, energy sensing, and food-related disorders. In this review, we present ω-3 and ω-6PUFAs and their derivatives, endocannabinoids; discuss the anti-obesity effects of ω-3PUFAs; their roles in inflammation and colorectal cancer development; and how their action can be co-preventative and co-therapeutic.
Collapse
|
32
|
Rastelli M, Van Hul M, Terrasi R, Lefort C, Régnier M, Beiroa D, Delzenne NM, Everard A, Nogueiras R, Luquet S, Muccioli GG, Cani PD. Intestinal NAPE-PLD contributes to short-term regulation of food intake via gut-to-brain axis. Am J Physiol Endocrinol Metab 2020; 319:E647-E657. [PMID: 32776827 DOI: 10.1152/ajpendo.00146.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective was to explore the physiological role of the intestinal endocannabinoids in the regulation of appetite upon short-term exposure to high-fat-diet (HFD) and understand the mechanisms responsible for aberrant gut-brain signaling leading to hyperphagia in mice lacking Napepld in the intestinal epithelial cells (IECs). We generated a murine model harboring an inducible NAPE-PLD deletion in IECs (NapepldΔIEC). After an overnight fast, we exposed wild-type (WT) and NapepldΔIEC mice to different forms of lipid challenge (HFD or gavage), and we compared the modification occurring in the hypothalamus, in the vagus nerve, and at endocrine level 30 and 60 min after the stimulation. NapepldΔIEC mice displayed lower hypothalamic levels of N-oleoylethanolamine (OEA) in response to HFD. Lower mRNA expression of anorexigenic Pomc occurred in the hypothalamus of NapepldΔIEC mice after lipid challenge. This early hypothalamic alteration was not the consequence of impaired vagal signaling in NapepldΔIEC mice. Following lipid administration, WT and NapepldΔIEC mice had similar portal levels of glucagon-like peptide-1 (GLP-1) and similar rates of GLP-1 inactivation. Administration of exendin-4, a full agonist of GLP-1 receptor (GLP-1R), prevented the hyperphagia of NapepldΔIEC mice upon HFD. We conclude that in response to lipid, NapepldΔIEC mice displayed reduced OEA in brain and intestine, suggesting an impairment of the gut-brain axis in this model. We speculated that decreased levels of OEA likely contributes to reduce GLP-1R activation, explaining the observed hyperphagia in this model. Altogether, we elucidated novel physiological mechanisms regarding the gut-brain axis by which intestinal NAPE-PLD regulates appetite rapidly after lipid exposure.
Collapse
Affiliation(s)
- Marialetizia Rastelli
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Romano Terrasi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Charlotte Lefort
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Marion Régnier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Daniel Beiroa
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| |
Collapse
|
33
|
Fowler N, Klump KL. A virtual issue highlighting animal studies of eating disorders as valuable tools for examining neurobiological underpinnings and treatment of eating disorders. Int J Eat Disord 2020; 53:1569-1578. [PMID: 32488869 PMCID: PMC7485142 DOI: 10.1002/eat.23302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/29/2022]
Abstract
While studies in humans suggest a role for psychosocial factors as well as biological and genetic processes in the development of eating disorders, the specific etiologic mechanisms remain largely unknown. In this virtual issue, we present a collection of 14 archived articles from the International Journal of Eating Disorders to highlight the utility of animal studies of eating disorders to advance our understanding of eating disorder etiology. Selected articles establish animal studies as valid tools to study disordered eating behavior, offer insight into potential neurobiological mechanisms, and highlight novel targets for future pharmacological treatments. Clinical implications of each article's findings are included to demonstrate the translational value of animal studies for the eating disorders field. We hope that the exciting concepts and findings in this issue inspire future animal studies of eating disorders.
Collapse
Affiliation(s)
- Natasha Fowler
- Department of Psychology, Michigan State University, East Lansing, MI
| | - Kelly L. Klump
- Department of Psychology, Michigan State University, East Lansing, MI
| |
Collapse
|
34
|
de Almeida MM, Dias-Rocha CP, Reis-Gomes CF, Wang H, Cordeiro A, Pazos-Moura CC, Joss-Moore L, Trevenzoli IH. Maternal high-fat diet up-regulates type-1 cannabinoid receptor with estrogen signaling changes in a sex- and depot- specific manner in white adipose tissue of adult rat offspring. Eur J Nutr 2020; 60:1313-1326. [PMID: 32671459 DOI: 10.1007/s00394-020-02318-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Obesity and high-fat (HF) diet are associated with over activation of the endocannabinoid system (ECS). We have demonstrated that maternal HF diet induces early obesity and modulates cannabinoid signaling in visceral (VIS) and subcutaneous (SUB) white adipose tissue (WAT) in weanling rat offspring. We hypothesized that perinatal maternal HF diet would program the expression of ECS in adipose tissue in a long-term way in parallel to alterations in epigenetic markers and sex hormone signaling. METHODS Progenitor female rats received control diet (C, 9% fat) or isocaloric high-fat diet (HF, 28% fat) for 8 weeks before mating, gestation, and lactation. All pups were weaned to C diet and they were euthanized at 180 days old. RESULTS Maternal HF diet induced overweight and increased SUB WAT mass of male and female adult offspring. Maternal HF diet induced hypertrophy of VIS and SUB adipocytes only in female offspring associated with increased type 1 cannabinoid receptor protein (CB1) and mRNA (Cnr1) levels. These changes were associated with increased estrogen receptor α binding to Cnr1 promoter in SUB WAT of adult female offspring, which may contribute to higher expression of Cnr1. CONCLUSION Increased CB1 signaling in adipose tissue might contribute to higher adiposity programmed by maternal HF diet because endocannabinoids stimulate the accumulation of fat in the adipose tissue. Our findings provide molecular insights into sex-specific targets for anti-obesity therapies based on the endocannabinoid system.
Collapse
Affiliation(s)
- Mariana Macedo de Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Laboratory of Molecular Endocrinology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, 21941-902, Brazil.
| | - Camilla P Dias-Rocha
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Clara F Reis-Gomes
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Haimei Wang
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Aline Cordeiro
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carmen C Pazos-Moura
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lisa Joss-Moore
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Isis H Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
Lotfi Yagin N, Aliasgharzadeh S, Alizadeh M, Aliasgari F, Mahdavi R. The association of circulating endocannabinoids with appetite regulatory substances in obese women. Obes Res Clin Pract 2020; 14:321-325. [PMID: 32580926 DOI: 10.1016/j.orcp.2020.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 03/31/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS Endocannabinoids especially anadamide (AEA) and 2‑arachidonoylglycerol (2-AG) together with appetite modulators have recently been of great importance in body weight regulation and obesity incidence. The present study was carried out to investigate AEA and 2-AG levels and their association with leptin, insulin, orexin - A, and anthropometric indices in obese women. METHODS The demographic and anthropometric data of 180 overweight/ obese women with mean age 34.2±8.27 years old, and mean BMI 32.54±3.73kg/m2 were evaluated. The plasma levels of anadamide and 2‑arachidonoylglycerol levels and also serum levels of leptin, insulin and orexin- A concentrations were measured. Pearson and spearmen correlation tests along with hieratical regression test were used to assess the association of endocannabinoids levels with anthropometric indices and appetite modulators. RESULTS Significant correlations were revealed between AEA and 2-AG with leptin, BMI, waist circumference (WC) and body fat percent (BF%) (P<0.001). 2-AG levels correlated positively with mean insulin levels (P<0.001). Neither AEA nor 2-AG correlated significantly with serum orexin - A levels. Leptin, insulin, BMI, WC, and BF% were significant independent predictors of AEA and 2-AG in the hierarchical regression model (P<.001) and explained 65% and 68% of variance in AEA and 2-AG respectively (P<0.001). CONCLUSION The findings showed that levels of AEA and 2-AG were associated with BMI, WC, BF%, and leptin and insulin levels. Also, BMI, WC, BF%, leptin and, insulin levels can have predictive value for determining AEA and 2-AG.
Collapse
Affiliation(s)
- Neda Lotfi Yagin
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Aliasgharzadeh
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Aliasgari
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Blanco-Gandía MC, Miñarro J, Rodríguez-Arias M. Common Neural Mechanisms of Palatable Food Intake and Drug Abuse: Knowledge Obtained with Animal Models. Curr Pharm Des 2020; 26:2372-2384. [DOI: 10.2174/1381612826666200213123608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
Abstract
Eating is necessary for survival, but it is also one of the great pleasures enjoyed by human beings.
Research to date shows that palatable food can be rewarding in a similar way to drugs of abuse, indicating
considerable comorbidity between eating disorders and substance-use disorders. Analysis of the common characteristics
of both types of disorder has led to a new wave of studies proposing a Gateway Theory of food as a vulnerability
factor that modulates the development of drug addiction. The homeostatic and hedonic mechanisms of
feeding overlap with some of the mechanisms implicated in drug abuse and their interaction plays a crucial role in
the development of drug addiction. Studies in animal models have shown how palatable food sensitizes the reward
circuit and makes individuals more sensitive to other substances of abuse, such as cocaine or alcohol. However,
when palatable food is administered continuously as a model of obesity, the consequences are different, and
studies provide controversial data. In the present review, we will cover the main homeostatic and hedonic mechanisms
that regulate palatable food intake behavior and will explain, using animal models, how different types of
diet and their intake patterns have direct consequences on the rewarding effects of psychostimulants and ethanol.
Collapse
Affiliation(s)
- Maria C. Blanco-Gandía
- Department of Psychology and Sociology, University of Zaragoza, C/ Ciudad Escolar s/n, 44003, Teruel, Spain
| | - José Miñarro
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicologia, Universitat de Valencia, Avda. Blasco Ibanez, 21, 46010 Valencia, Spain
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicologia, Universitat de Valencia, Avda. Blasco Ibanez, 21, 46010 Valencia, Spain
| |
Collapse
|
37
|
Forner-Piquer I, Santangeli S, Maradonna F, Rabbito A, Piscitelli F, Habibi HR, di Marzo V, Carnevali O. Comments on Disruption of the gonadal endocannabinoid system in zebrafish exposed to diisononyl phthalate - Forner-Piquer et al. (2018)": rebuttal to Prosser CM. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114028. [PMID: 32085902 DOI: 10.1016/j.envpol.2020.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Isabel Forner-Piquer
- Dipartimento Scienze Della Vita e Dell'ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Stefania Santangeli
- Dipartimento Scienze Della Vita e Dell'ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Maradonna
- Dipartimento Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; INBB, Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136, Rome, Italy
| | - Alessandro Rabbito
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Vincezo di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy
| | - Oliana Carnevali
- Dipartimento Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; INBB, Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136, Rome, Italy.
| |
Collapse
|
38
|
Saleh-Ghadimi S, Alizadeh M, Jafari-Vayghan H, Darabi M, Golmohammadi A, Kheirouri S. Effect of flaxseed oil supplementation on the erythrocyte membrane fatty acid composition and endocannabinoid system modulation in patients with coronary artery disease: a double-blind randomized controlled trial. GENES AND NUTRITION 2020; 15:9. [PMID: 32370762 PMCID: PMC7201600 DOI: 10.1186/s12263-020-00665-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/05/2020] [Indexed: 01/09/2023]
Abstract
Background The endocannabinoid system (ECS) overactivation, associated with increased inflammatory process, may act as a risk factor for coronary artery disease (CAD). Dietary fat may influence the ECS tone. The aim of the present study was to investigate the effect of flaxseed oil on the erythrocyte membrane fatty acid profile and ECS activity by the measurement of serum N-arachydonoil ethanolamine (AEA) and cannabinoid receptor type-1 (CB1), cannabinoid receptor type-2 (CB2), and fatty acid amide hydrolase (FAAH) mRNA expression. Methods This clinical trial was performed on 44 patients with CAD. The intervention group received 1.5% fat milk supplemented with flaxseed oil (containing 2.5 g α-linolenic acid or ALA), while the placebo group received 1.5% fat milk for 10 weeks. The fatty acid profile of erythrocyte membrane phospholipids was measured by gas chromatography. The AEA level was determined using an ELISA kit, and real-time PCR was performed to measure CB1, CB2, and FAAH mRNA expression pre- and post-intervention. Results Flaxseed oil supplementation resulted in a significant increase in the ALA content and a significant reduction in linoleic acid (LA) content of membrane phospholipids, compared to the placebo group (MD = − 0.35 and 2.89, respectively; P < 0.05). The within group analysis showed that flaxseed oil supplementation caused a significant reduction in both LA and arachidonic acid (MD = − 4.84 and − 4.03, respectively; P < 0.05) and an elevation in the ALA (MD = 0.37, P < 0.001) content of membrane phospholipids compared with the baseline. In the intervention group, a marked reduction was observed in the serum AEA level after 10 weeks of intervention, compared with the placebo group (MD = 0.64, P = 0.016). Changes in CB2 mRNA expression in the flaxseed oil group were significant (fold change = 1.30, P = 0.003), compared with the placebo group. Conclusion Flaxseed oil supplementation could attenuate the ECS tone by decreasing the AEA level and increasing CB2 mRNA expression. Therefore, flaxseed oil may be considered a promising agent with cardioprotective properties.
Collapse
Affiliation(s)
- Sevda Saleh-Ghadimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Golmohammadi
- Cardiovascular Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
D'Addario C, Zaplatic E, Giunti E, Pucci M, Micioni Di Bonaventura MV, Scherma M, Dainese E, Maccarrone M, Nilsson IA, Cifani C, Fadda P. Epigenetic regulation of the cannabinoid receptor CB1 in an activity-based rat model of anorexia nervosa. Int J Eat Disord 2020; 53:432-446. [PMID: 32275093 DOI: 10.1002/eat.23271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Both environmental and genetic factors are known to contribute to the development of anorexia nervosa (AN), but the exact etiology remains poorly understood. Herein, we studied the transcriptional regulation of the endocannabinoid system, an interesting target for body weight maintenance and the control of food intake and energy balance. METHOD We used two well-characterized animal models of AN: (a) the activity-based anorexia (ABA) model in which rats, housed with running wheels and subjected to daily food restriction, show reductions in body weight and increase in physical activity; (b) the genetic anx/anx mouse displaying the core features of AN: low food intake and emaciation. RESULTS Among the evaluated endocannabinoid system components, we observed a selective and significant down-regulation of the gene encoding for the type 1 cannabinoid receptor (Cnr1) in ABA rats' hypothalamus and nucleus accumbens and, in the latter area, a consistent, significant and correlated increase in DNA methylation at the gene promoter. No changes were evident in the anx/anx mice except for a down-regulation of Cnr1, in the prefrontal cortex. DISCUSSION Our findings support a possible role for Cnr1 in the ABA animal model of AN. In particular, its regulation in the nucleus accumbens appears to be triggered by environmental cues due to the consistent epigenetic modulation of the promoter. These data warrant further studies on Cnr1 regulation as a possible target for treatment of AN.
Collapse
Affiliation(s)
- Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeta Zaplatic
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Elisa Giunti
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Enrico Dainese
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,Lipid Neurochemistry Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Ida A Nilsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Hospital, Stockholm, Sweden
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,CNR Institute of Neuroscience - Cagliari, National Research Council, Cagliari, Italy
| |
Collapse
|
40
|
Fellous T, De Maio F, Kalkan H, Carannante B, Boccella S, Petrosino S, Maione S, Di Marzo V, Iannotti FA. Phytocannabinoids promote viability and functional adipogenesis of bone marrow-derived mesenchymal stem cells through different molecular targets. Biochem Pharmacol 2020; 175:113859. [DOI: 10.1016/j.bcp.2020.113859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
|
41
|
STENSSON NICLAS, GERDLE BJÖRN, ERNBERG MALIN, MANNERKORPI KAISA, KOSEK EVA, GHAFOURI BIJAR. Increased Anandamide and Decreased Pain and Depression after Exercise in Fibromyalgia. Med Sci Sports Exerc 2020; 52:1617-1628. [DOI: 10.1249/mss.0000000000002293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Saleh-Ghadimi S, Kheirouri S, Maleki V, Jafari-Vayghan H, Alizadeh M. Endocannabinoid system and cardiometabolic risk factors: A comprehensive systematic review insight into the mechanistic effects of omega-3 fatty acids. Life Sci 2020; 250:117556. [PMID: 32184122 DOI: 10.1016/j.lfs.2020.117556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Increased levels of endocannabinoids, 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (AEA) have a pathophysiological role in the setting of cardiometabolic diseases. This systematic review was carried out to appraise the effect of omega-3 on cardiometabolic risk factors by highlighting the mediating effect of endocannabinoids. SCOPUS, PubMed, Embase, Google Scholar and ProQuest databases were searched until January 2020. All published English-language animal studies and clinical trials that evaluated the effects of omega-3 on cardiometabolic diseases with a focus on endocannabinoids were included. Of 1407 studies, 16 animal studies and three clinical trials were included for analysis. Eleven animal studies and two human studies showed a marked reduction in 2-AG and AEA levels following intake of omega-3 which correlated with decreased adiposity, weight gain and improved glucose homeostasis. Moreover, endocannabinoids were elevated in three studies that replaced omega-3 with omega-6. Omega-3 showed anti-inflammatory properties due to reduced levels of inflammatory cytokines, regulation of T-cells function and increased levels of eicosapentaenoyl ethanolamide, docosahexaenoyl ethanolamide and oxylipins; however, a limited number of studies examined a correlation between inflammatory cytokines and endocannabinoids following omega-3 administration. In conclusion, omega-3 modulates endocannabinoid tone, which subsequently attenuates inflammation and cardiometabolic risk factors. However, further randomized clinical trials are needed before any recommendations are made to target the ECS using omega-3 as an alternative therapy to drugs for cardiometabolic disease improvement.
Collapse
Affiliation(s)
- Sevda Saleh-Ghadimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
43
|
Lackey AI, Chen T, Zhou YX, Bottasso Arias NM, Doran JM, Zacharisen SM, Gajda AM, Jonsson WO, Córsico B, Anthony TG, Joseph LB, Storch J. Mechanisms underlying reduced weight gain in intestinal fatty acid-binding protein (IFABP) null mice. Am J Physiol Gastrointest Liver Physiol 2020; 318:G518-G530. [PMID: 31905021 PMCID: PMC7099495 DOI: 10.1152/ajpgi.00120.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
Abstract
Intestinal-fatty acid binding protein (IFABP; FABP2) is a 15-kDa intracellular protein abundantly present in the cytosol of the small intestinal (SI) enterocyte. High-fat (HF) feeding of IFABP-/- mice resulted in reduced weight gain and fat mass relative to wild-type (WT) mice. Here, we examined intestinal properties that may underlie the observed lean phenotype of high fat-fed IFABP-/- mice. No alterations in fecal lipid content were found, suggesting that the IFABP-/- mice are not malabsorbing dietary fat. However, the total excreted fecal mass, normalized to food intake, was increased for the IFABP-/- mice relative to WT mice. Moreover, intestinal transit time was more rapid in the IFABP-/- mice. IFABP-/- mice displayed a shortened average villus length, a thinner muscularis layer, reduced goblet cell density, and reduced Paneth cell abundance. The number of proliferating cells in the crypts of IFABP-/- mice did not differ from that of WT mice, suggesting that the blunt villi phenotype is not due to alterations in proliferation. IFABP-/- mice were observed to have altered expression of genes and proteins related to intestinal structure, while immunohistochemical analyses revealed increased staining for markers of inflammation. Taken together, these studies indicate that the ablation of IFABP, coupled with high-fat feeding, leads to changes in gut motility and morphology, which likely contribute to the relatively leaner phenotype occurring at the whole-body level. Thus, IFABP is likely involved in dietary lipid sensing and signaling, influencing intestinal motility, intestinal structure, and nutrient absorption, thereby impacting systemic energy metabolism.NEW & NOTEWORTHY Intestinal fatty acid binding protein (IFABP) is thought to be essential for the efficient uptake and trafficking of dietary fatty acids. In this study, we demonstrate that high-fat-fed IFABP-/- mice have an increased fecal output and are likely malabsorbing other nutrients in addition to lipid. Furthermore, we observe that the ablation of IFABP leads to marked alterations in intestinal morphology and secretory cell abundance.
Collapse
Affiliation(s)
- Atreju I Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Tina Chen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Yin X Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Natalia M Bottasso Arias
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Justine M Doran
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Sophia M Zacharisen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Angela M Gajda
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - William O Jonsson
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Betina Córsico
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Laurie B Joseph
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| |
Collapse
|
44
|
Soares PN, Miranda RA, Peixoto TC, Caramez FAH, Guarda DS, Manhães AC, de Oliveira E, de Moura EG, Lisboa PC. Cigarette smoke during lactation in rat female progeny: Late effects on endocannabinoid and dopaminergic systems. Life Sci 2019; 232:116575. [PMID: 31211999 DOI: 10.1016/j.lfs.2019.116575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/07/2023]
Abstract
AIMS Maternal smoking is considered a risk factor for childhood obesity. In a rat model of tobacco exposure during breastfeeding, we previously reported hyperphagia, overweight, increased visceral fat and hyperleptinemia in adult female offspring. Obesity and eating disorders are associated with impairment in the endocannabinoid (EC) and dopaminergic (DA) systems. Considering that women are prone to eating disorders, we hypothesize that adult female Wistar rats that were exposed to cigarette smoke (CS) during the suckling period would develop EC and DA systems deregulation, possibly explaining the eating disorder in this model. MATERIAL AND METHODS To mimic maternal smoking, from postnatal day 3 to 21, dams and offspring were exposed to a smoking machine, 4×/day/1 h (CS group). Control animals were exposed to ambient air. Offspring were evaluated at 26 weeks of age. KEY FINDINGS Concerning the EC system, the CS group had increased expression of diacylglycerol lipase (DAGL) in the lateral hypothalamus (LH) and decreased in the liver. In the visceral adipose tissue, the EC receptor (CB1r) was decreased. Regarding the DA system, the CS group showed higher dopamine transporter (DAT) protein expression in the prefrontal cortex (PFC) and lower DA receptor (D2r) in the arcuate nucleus (ARC). We also assessed the hypothalamic leptin signaling, which was shown to be unchanged. CS offspring showed decreased plasma 17β-estradiol. SIGNIFICANCE Neonatal CS exposure induces changes in some biomarkers of the EC and DA systems, which can partially explain the hyperphagia observed in female rats.
Collapse
Affiliation(s)
- P N Soares
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - R A Miranda
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - T C Peixoto
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - F A H Caramez
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - D S Guarda
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - A C Manhães
- Neurophysiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - E de Oliveira
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - E G de Moura
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - P C Lisboa
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
45
|
Di Marzo V, Silvestri C. Lifestyle and Metabolic Syndrome: Contribution of the Endocannabinoidome. Nutrients 2019; 11:nu11081956. [PMID: 31434293 PMCID: PMC6722643 DOI: 10.3390/nu11081956] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Lifestyle is a well-known environmental factor that plays a major role in facilitating the development of metabolic syndrome or eventually exacerbating its consequences. Various lifestyle factors, especially changes in dietary habits, extreme temperatures, unusual light-dark cycles, substance abuse, and other stressful factors, are also established modifiers of the endocannabinoid system and its extended version, the endocannabinoidome. The endocannabinoidome is a complex lipid signaling system composed of a plethora (>100) of fatty acid-derived mediators and their receptors and anabolic and catabolic enzymes (>50 proteins) which are deeply involved in the control of energy metabolism and its pathological deviations. A strong link between the endocannabinoidome and another major player in metabolism and dysmetabolism, the gut microbiome, is also emerging. Here, we review several examples of how lifestyle modifications (westernized diets, lack or presence of certain nutritional factors, physical exercise, and the use of cannabis) can modulate the propensity to develop metabolic syndrome by modifying the crosstalk between the endocannabinoidome and the gut microbiome and, hence, how lifestyle interventions can provide new therapies against cardiometabolic risk by ensuring correct functioning of both these systems.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- École de nutrition, Université Laval, Québec, QC G1V 0A6, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC G1V 0A6, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC G1V 4G5, Canada
- Department de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Cristoforo Silvestri
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC G1V 0A6, Canada.
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC G1V 4G5, Canada.
- Department de médecine, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
46
|
Hawken ER, Normandeau CP, Gardner Gregory J, Cécyre B, Bouchard JF, Mackie K, Dumont ÉC. A novel GPR55-mediated satiety signal in the oval Bed Nucleus of the Stria Terminalis. Neuropsychopharmacology 2019; 44:1274-1283. [PMID: 30647449 PMCID: PMC6785105 DOI: 10.1038/s41386-018-0309-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 12/26/2022]
Abstract
Nestled within feeding circuits, the oval (ov) region of the Bed Nucleus of the Stria Terminalis (BNST) may be critical for monitoring energy balance through changes in synaptic strength. Here we report that bidirectional plasticity at ovBNST GABA synapses was tightly linked to the caloric state of male rats, seesawing between long-term potentiation (iLTP, fed) and depression (iLTD, food restricted). L-α-lysophosphatidylinositol (LPI) acting on GPR55 receptors and 2-arachidonoylglycerol (2-AG) through CB1R were respectively responsible for fed (iLTP) and food restricted (iLTD) states. Thus, we have characterized a potential gating mechanism within the ovBNST that may signal metabolic state within the rat brain feeding circuitry.
Collapse
Affiliation(s)
- E. R. Hawken
- 0000 0004 1936 8331grid.410356.5Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| | - C. P. Normandeau
- 0000 0004 1936 8331grid.410356.5Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| | - J. Gardner Gregory
- 0000 0004 1936 8331grid.410356.5Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| | - B. Cécyre
- 0000 0001 2292 3357grid.14848.31École d’optométrie, Université de Montréal, Montréal, QC Canada
| | - J.-F. Bouchard
- 0000 0001 2292 3357grid.14848.31École d’optométrie, Université de Montréal, Montréal, QC Canada
| | - K. Mackie
- 0000 0001 0790 959Xgrid.411377.7Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana USA
| | - É. C. Dumont
- 0000 0004 1936 8331grid.410356.5Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| |
Collapse
|
47
|
Miralpeix C, Fosch A, Casas J, Baena M, Herrero L, Serra D, Rodríguez-Rodríguez R, Casals N. Hypothalamic endocannabinoids inversely correlate with the development of diet-induced obesity in male and female mice. J Lipid Res 2019; 60:1260-1269. [PMID: 31138606 PMCID: PMC6602126 DOI: 10.1194/jlr.m092742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid (eCB) system regulates energy homeostasis and is linked to obesity development. However, the exact dynamic and regulation of eCBs in the hypothalamus during obesity progression remain incompletely described and understood. Our study examined the time course of responses in two hypothalamic eCBs, 2-arachidonoylglycerol (2-AG) and arachidonoylethanolamine (AEA), in male and female mice during diet-induced obesity and explored the association of eCB levels with changes in brown adipose tissue (BAT) thermogenesis and body weight. We fed mice a high-fat diet (HFD), which induced a transient increase (substantial at 7 days) in hypothalamic eCBs, followed by a progressive decrease to basal levels with a long-term HFD. This transient rise at early stages of obesity is considered a physiologic compensatory response to BAT thermogenesis, which is activated by diet surplus. The eCB dynamic was sexually dimorphic: hypothalamic eCBs levels were higher in female mice, who became obese at later time points than males. The hypothalamic eCBs time course positively correlated with thermogenesis activation, but negatively matched body weight, leptinemia, and circulating eCB levels. Increased expression of eCB-synthetizing enzymes accompanied the transient hypothalamic eCB elevation. Icv injection of eCB did not promote BAT thermogenesis; however, administration of thermogenic molecules, such as central leptin or a peripheral β3-adrenoreceptor agonist, induced a significant increase in hypothalamic eCBs, suggesting a directional link from BAT thermogenesis to hypothalamic eCBs. This study contributes to the understanding of hypothalamic regulation of obesity.
Collapse
Affiliation(s)
- Cristina Miralpeix
- Basic Sciences Department, Faculty of Medicine and Health Sciences Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Anna Fosch
- Basic Sciences Department, Faculty of Medicine and Health Sciences Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Josefina Casas
- Department on Biomedical Chemistry, Research Unit of BioActive Molecules Institut de Química Avançada de Catalunya, 08034 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Miguel Baena
- Basic Sciences Department, Faculty of Medicine and Health Sciences Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Laura Herrero
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolors Serra
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
48
|
Laleh P, Yaser K, Alireza O. Oleoylethanolamide: A novel pharmaceutical agent in the management of obesity-an updated review. J Cell Physiol 2018; 234:7893-7902. [PMID: 30537148 DOI: 10.1002/jcp.27913] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/16/2018] [Indexed: 01/05/2023]
Abstract
Obesity as a multifactorial disorder has been shown a dramatically growing trend recently. Besides genetic and environmental factors, dysregulation of the endocannabinoid system tone is involved in the pathogenesis of obesity. This study reviewed the potential efficacy of Oleoylethanolamide (OEA) as an endocannabinoid-like compound in the energy homeostasis and appetite control in people with obesity. OEA as a lipid mediator and bioactive endogenous ethanolamide fatty acid is structurally similar to the endocannabinoid system compounds; nevertheless, it is unable to induce to the cannabinoid receptors. Unlike endocannabinoids, OEA negatively acts on the food intake and suppress appetite via various mechanisms. Indeed, OEA as a ligand of PPAR-α, GPR-119, and TRPV1 receptors participates in the regulation of energy intake and energy expenditure, feeding behavior, and weight gain control. OEA delays meal initiation, reduces meal size, and increases intervals between meals. Considering side effects of some approaches used for the management of obesity such as antiobesity drugs and surgery as well as based on sufficient evidence about the protective effects of OEA in the improvement of common abnormalities in people with obese, its supplementation as a novel efficient and FDA approved pharmaceutical agent can be recommended.
Collapse
Affiliation(s)
- Payahoo Laleh
- Department of Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Khajebishak Yaser
- Talented Student Center, Student Research Committee, Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ostadrahimi Alireza
- Department of Nutrition, Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Zachut M, Kra G, Moallem U, Livshitz L, Levin Y, Udi S, Nemirovski A, Tam J. Characterization of the endocannabinoid system in subcutaneous adipose tissue in periparturient dairy cows and its association to metabolic profiles. PLoS One 2018; 13:e0205996. [PMID: 30403679 PMCID: PMC6221292 DOI: 10.1371/journal.pone.0205996] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/04/2018] [Indexed: 12/30/2022] Open
Abstract
Adipose tissue (AT) plays a major role in metabolic adaptations in postpartum (PP) dairy cows. The endocannabinoid (eCB) system is a key regulator of metabolism and energy homeostasis; however, information about this system in ruminants is scarce. Therefore, this work aimed to assess the eCB system in subcutaneous AT, and to determine its relation to the metabolic profile in peripartum cows. Biopsies of AT were performed at 14 d prepartum, and 4 and 30 d PP from 18 multiparous peripartum cows. Cows were categorized retrospectively according to those with high body weight (BW) loss (HWL, 8.5 ± 1.7% BW loss) or low body weight loss (LWL, 2.9 ± 2.5% BW loss) during the first month PP. The HWL had higher plasma non-esterified fatty acids and a lower insulin/glucagon ratio PP than did LWL. Two-fold elevated AT levels of the main eCBs, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), were found 4 d PP compared with prepartum in HWL, but not in LWL cows. AT levels of the eCB-like molecules oleoylethanolamide, palmitoylethanolamide, and of arachidonic acid were elevated PP compared with prepartum in all cows. The abundance of monoglyceride lipase (MGLL), the 2-AG degrading enzyme, was lower in HWL vs. LWL AT PP. The relative gene expression of the cannabinoid receptors CNR1 and CNR2 in AT tended to be higher in HWL vs. LWL PP. Proteomic analysis of AT showed an enrichment of the inflammatory pathways’ acute phase signaling and complement system in HWL vs. LWL cows PP. In summary, eCB levels in AT were elevated at the onset of lactation as part of the metabolic adaptations in PP dairy cows. Furthermore, activating the eCB system in AT is most likely associated with a metabolic response of greater BW loss, lipolysis, and AT inflammation in PP dairy cows.
Collapse
Affiliation(s)
- Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Volcani Center, Rishon Lezion, Israel
- * E-mail:
| | - Gitit Kra
- Department of Ruminant Science, Institute of Animal Sciences, Volcani Center, Rishon Lezion, Israel
| | - Uzi Moallem
- Department of Ruminant Science, Institute of Animal Sciences, Volcani Center, Rishon Lezion, Israel
| | - Lilya Livshitz
- Department of Ruminant Science, Institute of Animal Sciences, Volcani Center, Rishon Lezion, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Shiran Udi
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
50
|
Chianese R, Coccurello R, Viggiano A, Scafuro M, Fiore M, Coppola G, Operto FF, Fasano S, Laye S, Pierantoni R, Meccariello R. Impact of Dietary Fats on Brain Functions. Curr Neuropharmacol 2018; 16:1059-1085. [PMID: 29046155 PMCID: PMC6120115 DOI: 10.2174/1570159x15666171017102547] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adequate dietary intake and nutritional status have important effects on brain functions and on brain health. Energy intake and specific nutrients excess or deficiency from diet differently affect cognitive processes, emotions, behaviour, neuroendocrine functions and synaptic plasticity with possible protective or detrimental effects on neuronal physiology. Lipids, in particular, play structural and functional roles in neurons. Here the importance of dietary fats and the need to understand the brain mechanisms activated by peripheral and central metabolic sensors. Thus, the manipulation of lifestyle factors such as dietary interventions may represent a successful therapeutic approach to maintain and preserve brain health along lifespan. METHODS This review aims at summarizing the impact of dietary fats on brain functions. RESULTS Starting from fat consumption, nutrient sensing and food-related reward, the impact of gut-brain communications will be discussed in brain health and disease. A specific focus will be on the impact of fats on the molecular pathways within the hypothalamus involved in the control of reproduction via the expression and the release of Gonadotropin-Releasing Hormone. Lastly, the effects of specific lipid classes such as polyunsaturated fatty acids and of the "fattest" of all diets, commonly known as "ketogenic diets", on brain functions will also be discussed. CONCLUSION Despite the knowledge of the molecular mechanisms is still a work in progress, the clinical relevance of the manipulation of dietary fats is well acknowledged and such manipulations are in fact currently in use for the treatment of brain diseases.
Collapse
Affiliation(s)
- Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy
| | - Marika Scafuro
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Giangennaro Coppola
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy.,UO Child and Adolescent Neuropsychiatry, Medical School, University of Salerno, Salerno, Italy
| | | | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sophie Laye
- INRA, Bordeaux University, Nutrition and Integrative Neurobiology, UMR, Bordeaux, France
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, Naples, Italy
| |
Collapse
|