1
|
Valdés-Varela L, Gueimonde M, Ruas-Madiedo P. Probiotics for Prevention and Treatment of Clostridium difficile Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:101-116. [PMID: 38175473 DOI: 10.1007/978-3-031-42108-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Probiotics have been claimed as a valuable tool to restore the balance in the intestinal microbiota following a dysbiosis caused by, among other factors, antibiotic therapy. This perturbed environment could favor the overgrowth of Clostridium difficile, and in fact, the occurrence of C. difficile-associated infections (CDI) is increasing in recent years. In spite of the high number of probiotics able to in vitro inhibit the growth and/or toxicity of this pathogen, its application for treatment or prevention of CDI is still scarce since there are not enough well-defined clinical studies supporting efficacy. Only a few strains, such as Lactobacillus rhamnosus GG and Saccharomyces boulardii, have been studied in more extent. The increasing knowledge about the probiotic mechanisms of action against C. difficile, some of them reviewed here, makes promising the application of these live biotherapeutic agents against CDI. Nevertheless, more effort must be paid to standardize the clinical studies conducted to evaluate probiotic products, in combination with antibiotics, in order to select the best candidate for C. difficile infections.
Collapse
Affiliation(s)
- Lorena Valdés-Varela
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lacteos de Asturias - Consejo Superior de Investigaciones Cientıficas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lacteos de Asturias - Consejo Superior de Investigaciones Cientıficas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lacteos de Asturias - Consejo Superior de Investigaciones Cientıficas (IPLA-CSIC), Villaviciosa, Asturias, Spain.
| |
Collapse
|
2
|
Bergamini V, Resca E, Portone A, Petrachi T, Ganzerli F, Truzzi S, Mari G, Rovati L, Dominici M, Veronesi E. Label-Free Optical Sensing and Medical Grade Resins: An Advanced Approach to Investigate Cell-Material Interaction and Biocompatibility. Pharmaceutics 2023; 15:2043. [PMID: 37631257 PMCID: PMC10459080 DOI: 10.3390/pharmaceutics15082043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The Corning Epic® label-free (ELF) system is an innovative technology widely used in drug discovery, immunotherapy, G-protein-associated studies, and biocompatibility tests. Here, we challenge the use of ELF to further investigate the biocompatibility of resins used in manufacturing of blood filters, a category of medical devices representing life-saving therapies for the increasing number of patients with kidney failure. The biocompatibility assays were carried out by developing a cell model aimed at mimicking the clinical use of the blood filters and complementing the existing cytotoxicity assay requested by ISO10993-5. Experiments were performed by putting fibroblasts in both direct contact with two types of selected resins, and indirect contact by means of homemade customized well inserts that were precisely designed and developed for this technology. For both types of contact, fibroblasts were cultured in medium and human plasma. ELF tests confirmed the biocompatibility of both resins, highlighting a statistically significant different biological behavior of a polyaromatic resin compared to control and ion-exchanged resin, when materials were in indirect contact and soaking with plasma. Overall, the ELF test is able to mimic clinical scenarios and represents a promising approach to investigate biocompatibility, showing peculiar biological behaviors and suggesting the activation of specific intracellular pathways.
Collapse
Affiliation(s)
- Valentina Bergamini
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| | - Elisa Resca
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| | - Alberto Portone
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| | - Tiziana Petrachi
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| | - Francesco Ganzerli
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| | - Stefano Truzzi
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| | - Giorgio Mari
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| | - Luigi Rovati
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vivarelli, 10, 41125 Modena, Italy
| | - Massimo Dominici
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Hospital of Modena, Via del Pozzo, 71, 41125 Modena, Italy
| | - Elena Veronesi
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| |
Collapse
|
3
|
Stange K, Schumacher T, Miersch C, Whelan R, Klünemann M, Röntgen M. Methionine Sources Differently Affect Production of Reactive Oxygen Species, Mitochondrial Bioenergetics, and Growth of Murine and Quail Myoblasts In Vitro. Curr Issues Mol Biol 2023; 45:2661-2680. [PMID: 37185698 PMCID: PMC10136669 DOI: 10.3390/cimb45040174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
An optimal supply of L-methionine (L-Met) improves muscle growth, whereas over-supplementation exerts adverse effects. To understand the underlying mechanisms, this study aims at exploring effects on the growth, viability, ROS production, and mitochondrial bioenergetics of C2C12 (mouse) and QM7 (quail) myoblasts additionally supplemented (100 or 1000 µM) with L-Met, DL-methionine (DL-Met), or DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA). In both cell lines, all the supplements stimulated cell growth. However, in contrast to DL-Met, 1000 µM of L-Met (C2C12 cells only) or DL-HMTBA started to retard growth. This negative effect was stronger with DL-HMTBA and was accompanied by significantly elevated levels of extracellular H2O2, an indicator for OS, in both cell types. In addition, oversupplementation with DL-HMTBA (1000 µM) induced adaptive responses in mitochondrial bioenergetics, including reductions in basal (C2C12 and QM7) and ATP-synthase-linked (C2C12) oxygen consumption, maximal respiration rate, and reserve capacity (QM7). Only QM7 cells switched to nonmitochondrial aerobic glycolysis to reduce ROS production. In conclusion, we found a general negative effect of methionine oversupplementation on cell proliferation. However, only DL-HMTBA-induced growth retardation was associated with OS and adaptive, species-specific alterations in mitochondrial functionality. OS could be better compensated by quail cells, highlighting the role of species differences in the ability to cope with methionine oversupplementation.
Collapse
Affiliation(s)
- Katja Stange
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Toni Schumacher
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Claudia Miersch
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Nutritional Physiology and Dietetics, International University of Applied Sciences (IU), Juri-Gagarin-Ring 152, 99084 Erfurt, Germany
| | - Rose Whelan
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - Martina Klünemann
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - Monika Röntgen
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
4
|
Dong T, Han C, Liu X, Wang Z, Wang Y, Kang Q, Wang P, Zhou F. Live Cells versus Fixated Cells: Kinetic Measurements of Biomolecular Interactions with the LigandTracer Method and Surface Plasmon Resonance Microscopy. Mol Pharm 2023; 20:2094-2104. [PMID: 36939457 DOI: 10.1021/acs.molpharmaceut.2c01047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Cell-based kinetic studies of ligand or candidate drug binding to membrane proteins have produced affinity and kinetic values that are different from measurements using purified proteins. However, ligand binding to fixated cells whose membrane constituents (e.g., proteins and their glycosylated forms) are partially connected by a cross-linking reagent has not been compared to that to live cells. Under the same experimental conditions for the LigandTracer method, we measured the interactions of fluorophore-labeled lectins and antibody molecules with glycans at HFF cells and the human epithelial growth receptor 2 at SKBR3 cells, respectively. In conjunction with surface plasmon resonance microscopy, the effects of labels and cell/sub-cell heterogeneity on binding kinetics were investigated. Our results revealed that, for cell constituents whose structures and functions are not closely dependent on cell viability, the ligand binding kinetics at fixated cells is only slightly different from that at live cells. The altered kinetics is explained on the basis of a less mobile receptor confined in a local environment created by partially interconnected protein molecules. We show that cell/sub-cell heterogeneity and labels on the ligands can alter the binding reaction more significantly. Thus, fixating cells not only simplifies experimental procedures for drug screening and renders assays more robust but also provides reliable kinetic information about drug binding to cell constituents whose structures are not changed by chemical fixation.
Collapse
Affiliation(s)
- Tianbao Dong
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Chaowei Han
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Xin Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Zhichao Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yanhui Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Qing Kang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
5
|
Schiff HV, Rivas CM, Pederson WP, Sandoval E, Gillman S, Prisco J, Kume M, Dussor G, Vagner J, Ledford JG, Price TJ, DeFea KA, Boitano S. β-Arrestin-biased proteinase-activated receptor-2 antagonist C781 limits allergen-induced airway hyperresponsiveness and inflammation. Br J Pharmacol 2023; 180:667-680. [PMID: 35735078 PMCID: PMC10311467 DOI: 10.1111/bph.15903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma is a heterogenous disease strongly associated with inflammation that has many different causes and triggers. Current asthma treatments target symptoms such as bronchoconstriction and airway inflammation. Despite recent advances in biological therapies, there remains a need for new classes of therapeutic agents with novel, upstream targets. The proteinase-activated receptor-2 (PAR2) has long been implicated in allergic airway inflammation and asthma and it remains an intriguing target for novel therapies. Here, we describe the actions of C781, a newly developed low MW PAR2 biased antagonist, in vitro and in vivo in the context of acute allergen exposure. EXPERIMENTAL APPROACH A human bronchial epithelial cell line expressing PAR2 (16HBE14o- cells) was used to evaluate the modulation in vitro, by C781, of physiological responses to PAR2 activation and downstream β-arrestin/MAPK and Gq/Ca2+ signalling. Acute Alternaria alternata sensitized and challenged mice were used to evaluate C781 as a prophylactically administered modulator of airway hyperresponsiveness, inflammation and mucus overproduction in vivo. KEY RESULTS C781 reduced in vitro physiological signalling in response to ligand and proteinase activation. C781 effectively antagonized β-arrestin/MAPK signalling without significant effect on Gq/Ca2+ signalling in vitro. Given prophylactically, C781 modulated airway hyperresponsiveness, airway inflammation and mucus overproduction of the small airways in an acute allergen-challenged mouse model. CONCLUSION AND IMPLICATIONS Our work demonstrates the first biased PAR2 antagonist for β-arrestin/MAPK signalling. C781 is efficacious as a prophylactic treatment for allergen-induced airway hyperresponsiveness and inflammation in mice. It exemplifies a key pharmacophore for PAR2 that can be optimized for clinical development.
Collapse
Affiliation(s)
- Hillary V. Schiff
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
| | - Candy M. Rivas
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona
| | - William P. Pederson
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona
| | - Estevan Sandoval
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
| | - Samuel Gillman
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona
| | - Joy Prisco
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
| | - Moeno Kume
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Josef Vagner
- Bio5 Collaborative Research Center, University of Arizona
| | - Julie G. Ledford
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Department of Cellular and Molecular Medicine, University of Arizona
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Kathryn A. DeFea
- University of California Riverside, Biomedical Sciences and PARMedics, Incorporated
| | - Scott Boitano
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
- Department of Physiology, University of Arizona
| |
Collapse
|
6
|
Peter B, Kanyo N, Kovacs KD, Kovács V, Szekacs I, Pécz B, Molnár K, Nakanishi H, Lagzi I, Horvath R. Glycocalyx Components Detune the Cellular Uptake of Gold Nanoparticles in a Size- and Charge-Dependent Manner. ACS APPLIED BIO MATERIALS 2022; 6:64-73. [PMID: 36239448 PMCID: PMC9846697 DOI: 10.1021/acsabm.2c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Functionalized nanoparticles (NPs) are widely used in targeted drug delivery and biomedical imaging due to their penetration into living cells. The outer coating of most cells is a sugar-rich layer of the cellular glycocalyx, presumably playing an important part in any uptake processes. However, the exact role of the cellular glycocalyx in NP uptake is still uncovered. Here, we in situ monitored the cellular uptake of gold NPs─functionalized with positively charged alkaline thiol (TMA)─into adhered cancer cells with or without preliminary glycocalyx digestion. Proteoglycan (PG) components of the glycocalyx were treated by the chondroitinase ABC enzyme. It acts on chondroitin 4-sulfate, chondroitin 6-sulfate, and dermatan sulfate and slowly on hyaluronate. The uptake measurements of HeLa cells were performed by applying a high-throughput label-free optical biosensor based on resonant waveguide gratings. The positively charged gold NPs were used with different sizes [d = 2.6, 4.2, and 7.0 nm, small (S), medium (M), and large(L), respectively]. Negatively charged citrate-capped tannic acid (CTA, d = 5.5 nm) NPs were also used in control experiments. Real-time biosensor data confirmed the cellular uptake of the functionalized NPs, which was visually proved by transmission electron microscopy. It was found that the enzymatic digestion facilitated the entry of the positively charged S- and M-sized NPs, being more pronounced for the M-sized. Other enzymes digesting different components of the glycocalyx were also employed, and the results were compared. Glycosaminoglycan digesting heparinase III treatment also increased, while glycoprotein and glycolipid modifying neuraminidase decreased the NP uptake by HeLa cells. This suggests that the sialic acid residues increase, while heparan sulfate decreases the uptake of positively charged NPs. Our results raise the hypothesis that cellular uptake of 2-4 nm positively charged NPs is facilitated by glycoprotein and glycolipid components of the glycocalyx but inhibited by PGs.
Collapse
Affiliation(s)
- Beatrix Peter
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary,
| | - Nicolett Kanyo
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary
| | - Kinga Dora Kovacs
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary,Department
of Biological Physics, Eötvös
University, BudapestH 1117, Hungary
| | - Viktor Kovács
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary
| | - Inna Szekacs
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary
| | - Béla Pécz
- Thin
Films Laboratory, Institute of Technical
Physics and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary
| | - Kinga Molnár
- Department
of Anatomy, Cell and Developmental Biology, ELTE, Eötvös Loránd University, Pázmány Péter Stny. 1/C, BudapestH-1117, Hungary
| | - Hideyuki Nakanishi
- Department
of Macromolecular Science and Engineering, Graduate School of Science
and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto606-8585, Japan
| | - Istvan Lagzi
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem Rkp. 3, BudapestH-1111, Hungary,ELKH-BME
Condensed Matter Research Group, Műegyetem Rkp. 3, BudapestH-1111, Hungary
| | - Robert Horvath
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary
| |
Collapse
|
7
|
Vlachodimou A, de Vries H, Pasoli M, Goudswaard M, Kim SA, Kim YC, Scortichini M, Marshall M, Linden J, Heitman LH, Jacobson KA, IJzerman AP. Kinetic profiling and functional characterization of 8-phenylxanthine derivatives as A 2B adenosine receptor antagonists. Biochem Pharmacol 2022; 200:115027. [PMID: 35395239 DOI: 10.1016/j.bcp.2022.115027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022]
Abstract
A2B adenosine receptor (A2BAR) antagonists have therapeutic potential in inflammation-related diseases such as asthma, chronic obstructive pulmonary disease and cancer. However, no drug is currently clinically approved, creating a demand for research on novel antagonists. Over the last decade, the study of target binding kinetics, along with affinity and potency, has been proven valuable in early drug discovery stages, as it is associated with improved in vivo drug efficacy and safety. In this study, we report the synthesis and biological evaluation of a series of xanthine derivatives as A2BAR antagonists, including an isothiocyanate derivative designed to bind covalently to the receptor. All 28 final compounds were assessed in radioligand binding experiments, to evaluate their affinity and for those qualifying, kinetic binding parameters. Both structure-affinity and structure-kinetic relationships were derived, providing a clear relationship between affinity and dissociation rate constants. Two structurally similar compounds, 17 and 18, were further evaluated in a label-free assay due to their divergent kinetic profiles. An extended cellular response was associated with long A2BAR residence times. This link between a ligand's A2BAR residence time and its functional effect highlights the importance of binding kinetics as a selection parameter in the early stages of drug discovery.
Collapse
Affiliation(s)
- Anna Vlachodimou
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Henk de Vries
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Milena Pasoli
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Miranda Goudswaard
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Soon-Ai Kim
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Yong-Chul Kim
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mirko Scortichini
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Melissa Marshall
- Department of Internal Medicine and Molecular Physiology & Biological Physics, University of Virginia Health Science Center, Charlottesville, VA 22908, USA
| | - Joel Linden
- Department of Internal Medicine and Molecular Physiology & Biological Physics, University of Virginia Health Science Center, Charlottesville, VA 22908, USA
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands; Oncode Institute, Leiden, the Netherlands
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands.
| |
Collapse
|
8
|
Designing of various biosensor devices for determination of apoptosis: A comprehensive review. Biochem Biophys Res Commun 2021; 578:42-62. [PMID: 34536828 DOI: 10.1016/j.bbrc.2021.08.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022]
Abstract
Apoptosis is a type of cell death caused by the occurrence of both pathological and physiological conditions triggered by ligation of death receptors outside the cell or triggered by DNA damage and/or cytoskeleton disruption. Timely monitoring of apoptosis can effectively help early diagnosis of related diseases and continuous assessment of the effectiveness of drugs. Detecting caspases, a protease family closely related to cellular apoptosis, and its identification as markers of apoptosis is a popular procedure. Biosensors are used for early diagnosis and play a very important role in preventing disease progression in various body sections. Recently, there has been a widespread increase in the desire to use materials made of paper (e.g. nitrocellulose membrane) for Point-of-Care (POC) testing systems since paper and paper-like materials are cheap, abundant and degradable. Microfluidic paper-based analytical devices (μPADs) are highly promising as they are cost-effective, easy to use, fast, precise and sustainable over time and under different environmental conditions. In this review, we focused our efforts on compiling the different approaches on identifying apoptosis pathway while giving brief information about apoptosis and biosensors. This review includes recent advantages in biosensing techniques to simply determine what happened in the cell life and which direction it would continue. As a conclusion, we believed that the review may help to researchers to compare/update the knowledge about diagnosis of the apoptosis pathway while reminding the basic definitions about the apoptosis and biosensor technologies.
Collapse
|
9
|
Dvorak V, Wiedmer T, Ingles-Prieto A, Altermatt P, Batoulis H, Bärenz F, Bender E, Digles D, Dürrenberger F, Heitman LH, IJzerman AP, Kell DB, Kickinger S, Körzö D, Leippe P, Licher T, Manolova V, Rizzetto R, Sassone F, Scarabottolo L, Schlessinger A, Schneider V, Sijben HJ, Steck AL, Sundström H, Tremolada S, Wilhelm M, Wright Muelas M, Zindel D, Steppan CM, Superti-Furga G. An Overview of Cell-Based Assay Platforms for the Solute Carrier Family of Transporters. Front Pharmacol 2021; 12:722889. [PMID: 34447313 PMCID: PMC8383457 DOI: 10.3389/fphar.2021.722889] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
The solute carrier (SLC) superfamily represents the biggest family of transporters with important roles in health and disease. Despite being attractive and druggable targets, the majority of SLCs remains understudied. One major hurdle in research on SLCs is the lack of tools, such as cell-based assays to investigate their biological role and for drug discovery. Another challenge is the disperse and anecdotal information on assay strategies that are suitable for SLCs. This review provides a comprehensive overview of state-of-the-art cellular assay technologies for SLC research and discusses relevant SLC characteristics enabling the choice of an optimal assay technology. The Innovative Medicines Initiative consortium RESOLUTE intends to accelerate research on SLCs by providing the scientific community with high-quality reagents, assay technologies and data sets, and to ultimately unlock SLCs for drug discovery.
Collapse
Affiliation(s)
- Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Helena Batoulis
- Drug Discovery Sciences–Lead Discovery, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Felix Bärenz
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Eckhard Bender
- Drug Discovery Sciences–Lead Discovery, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Daniela Digles
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | | | - Laura H. Heitman
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Stefanie Kickinger
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Daniel Körzö
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Philipp Leippe
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Thomas Licher
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | | | | | | | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vanessa Schneider
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Hubert J. Sijben
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | | | | | | | | | - Marina Wright Muelas
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Diana Zindel
- Drug Discovery Sciences–Lead Discovery, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Claire M. Steppan
- Pfizer Worldwide Research, Development and Medical, Groton, MA, United States
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Amelia T, van Veldhoven JPD, Falsini M, Liu R, Heitman LH, van Westen GJP, Segala E, Verdon G, Cheng RKY, Cooke RM, van der Es D, IJzerman AP. Crystal Structure and Subsequent Ligand Design of a Nonriboside Partial Agonist Bound to the Adenosine A 2A Receptor. J Med Chem 2021; 64:3827-3842. [PMID: 33764785 PMCID: PMC8154574 DOI: 10.1021/acs.jmedchem.0c01856] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
In this study, we
determined the crystal structure of an engineered
human adenosine A2A receptor bound to a partial agonist
and compared it to structures cocrystallized with either a full agonist
or an antagonist/inverse agonist. The interaction between the partial
agonist, belonging to a class of dicyanopyridines, and amino acids
in the ligand binding pocket inspired us to develop a small library
of derivatives and assess their affinity in radioligand binding studies
and potency and intrinsic activity in a functional, label-free, intact
cell assay. It appeared that some of the derivatives retained the
partial agonist profile, whereas other ligands turned into inverse
agonists. We rationalized this remarkable behavior with additional
computational docking studies.
Collapse
Affiliation(s)
- Tasia Amelia
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.,School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, 40132 Bandung, Indonesia
| | - Jacobus P D van Veldhoven
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Matteo Falsini
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rongfang Liu
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gerard J P van Westen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Elena Segala
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, United Kingdom
| | - Grégory Verdon
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, United Kingdom
| | - Robert K Y Cheng
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, United Kingdom
| | - Robert M Cooke
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, United Kingdom
| | - Daan van der Es
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
11
|
Recent progress in surface plasmon resonance based sensors: A comprehensive review. Heliyon 2021; 7:e06321. [PMID: 33869818 PMCID: PMC8035490 DOI: 10.1016/j.heliyon.2021.e06321] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/21/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
In the recent years, researchers have contributed substantially in the field of Surface Plasmon Resonance (SPR) sensors and its applications. SPR sensors show the salient features, such as label-free detection, real-time monitoring, small sample size, furnish accurate outcomes at low cost, and smooth handling. Moreover, the SPR sensors are also well-known because of its quantitative and qualitative excellent performance in real-time applications, including drug discovery, environment monitoring, food safety, medical diagnosis, clinical diagnosis, biological studies, and biomolecule interactions. This paper exhibits a comprehensive review of SPR based sensors, such as prism-based SPR with the applications (e.g., biomolecule interaction, medical diagnostic, etc.), fiber-based SPR, and waveguide-based SPR. Furthermore, we summarized the modern designs and techniques with their limitations and challenges in detail. The erudition outlined in this paper can be given an exceptional benefit for the researchers and industry people in the field of SPR based sensors.
Collapse
|
12
|
Rakhimova O, Schmidt A, Landström M, Johansson A, Kelk P, Romani Vestman N. Cytokine Secretion, Viability, and Real-Time Proliferation of Apical-Papilla Stem Cells Upon Exposure to Oral Bacteria. Front Cell Infect Microbiol 2021; 10:620801. [PMID: 33718256 PMCID: PMC7945949 DOI: 10.3389/fcimb.2020.620801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 01/09/2023] Open
Abstract
The use of stem cells from the apical papilla (SCAPs) has been proposed as a means of promoting root maturation in permanent immature teeth, and plays a significant role in regenerative dental procedures. However, the role of SCAPs may be compromised by microenvironmental factors, such as hypoxic conditions and the presence of bacteria from infected dental root canals. We aim to investigate oral bacterial modulation of SCAP in terms of binding capacity using flow cytometry and imaging, real-time cell proliferation monitoring, and cytokine secretion (IL-6, IL-8, and TGF-β isoforms) under anaerobic conditions. SCAPs were exposed to key species in dental root canal infection, namely Actinomyces gerensceriae, Slackia exigua, Fusobacterium nucleatum, and Enterococcus faecalis, as well as two probiotic strains, Lactobacillus gasseri strain B6 and Lactobacillus reuteri (DSM 17938). We found that A. gerensceriae, S. exigua, F. nucleatum, and E. faecalis, but not the Lactobacillus probiotic strains bind to SCAPs on anaerobic conditions. Enterococcus faecalis and F. nucleatum exhibited the strongest binding capacity, resulting in significantly reduced SCAP proliferation. Notably, F. nucleatum, but not E. faecalis, induce production of the proinflammatory chemokine IL-8 and IL-10 from SCAPs. Production of TGF-β1 and TGF-β2 by SCAPs was dependent on species, cell line, and time, but secretion of TGF-β3 did not vary significantly over time. In conclusion, SCAP response is compromised when exposed to bacterial stimuli from infected dental root canals in anaerobic conditions. Thus, stem cell-mediated endodontic regenerative studies need to include microenvironmental conditions, such as the presence of microorganisms to promote further advantage in the field.
Collapse
Affiliation(s)
| | - Alexej Schmidt
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Maréne Landström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Peyman Kelk
- Section for Anatomy, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Nelly Romani Vestman
- Department of Endodontics, County Council of Västerbotten, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Eldawud R, Wagner A, Dong C, Gupta N, Rojanasakul Y, O'Doherty G, Stueckle TA, Dinu CZ. Potential antitumor activity of digitoxin and user-designed analog administered to human lung cancer cells. Biochim Biophys Acta Gen Subj 2020; 1864:129683. [PMID: 32679249 DOI: 10.1016/j.bbagen.2020.129683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/19/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cardiac glycosides (CGs), such as digitoxin, are traditionally used for treatment of congestive heart failure; recently they also gained attention for their anticancer properties. Previous studies showed that digitoxin and a synthetic L-sugar monosaccharide analog treatment decreases cancer cell proliferation, increases apoptosis, and pro-adhesion abilities; however, no reports are available on their potential to alter lung cancer cell cytoskeleton structure and reduce migratory ability. Herein, we investigated the anticancer effects of digitoxin and its analog, digitoxigenin-α-L-rhamnoside (D6MA), to establish whether cytoskeleton reorganization and reduced motility are drug-induced cellular outcomes. METHODS We treated non-small cell lung carcinoma cells (NSCLCs) with sub-therapeutic, therapeutic, and toxic concentrations of digitoxin and D6MA respectively, followed by both single point and real-time assays to evaluate changes in cellular gene and protein expression, adhesion, elasticity, and migration. RESULTS Digitoxin and D6MA induced a decrease in matrix metalloproteinases expression via altered focal adhesion signaling and a suppression of the phosphoinositide 3-kinases / protein kinase B pathway which lead to enhanced adhesion, altered elasticity, and reduced motility of NSCLCs. Global gene expression analysis identified dose-dependent changes to nuclear factor kappa-light-chain-enhancer, epithelial tumor, and microtubule dynamics signaling. CONCLUSIONS Our study demonstrates that digitoxin and D6MA can target antitumor signaling pathways to alter NSCLC cytoskeleton and migratory ability to thus potentially reduce their tumorigenicity. SIGNIFICANCE Discovering signaling pathways that control cancer's cell phenotype and how such pathways are affected by CG treatment will potentially allow for active usage of synthetic CG analogs as therapeutic agents in advanced lung conditions.
Collapse
Affiliation(s)
- Reem Eldawud
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Alixandra Wagner
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Chenbo Dong
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Neha Gupta
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Yon Rojanasakul
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - George O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Todd A Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
14
|
Monitoring cell endocytosis of liposomes by real-time electrical impedance spectroscopy. Anal Bioanal Chem 2020; 412:6371-6380. [PMID: 32451643 DOI: 10.1007/s00216-020-02592-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
Evaluation and understanding the effect of drug delivery in in vitro systems is fundamental in drug discovery. We present an assay based on real-time electrical impedance spectroscopy (EIS) measurements that can be used to follow the internalisation and cytotoxic effect of a matrix metalloproteinase (MMP)-sensitive liposome formulation loaded with oxaliplatin (OxPt) on colorectal cancer cells. The EIS response identified two different cellular processes: (i) a negative peak in the cell index (CI) within the first 5 h, due to onset of liposome endocytosis, followed by (ii) a subsequent CI increase, due to the reattachment of cells until the onset of cytotoxicity with a decrease in CI. Free OxPt or OxPt-loaded Stealth liposomes did not show this two-stage EIS response; the latter can be due to the fact that Stealth cannot be cleaved by MMPs and thus is not taken up by the cells. Real-time bright-field imaging supported the EIS data, showing variations in cell adherence and cell morphology after exposure to the different liposome formulations. A drastic decrease in cell coverage as well as rounding up of cells during the first 5 h of exposure to OxPt-loaded (MMP)-sensitive liposome formulation is reflected by the first negative EIS response, which indicates the onset of liposome endocytosis. Graphical abstract.
Collapse
|
15
|
Vlachodimou A, Konstantinopoulou K, IJzerman AP, Heitman LH. Affinity, binding kinetics and functional characterization of draflazine analogues for human equilibrative nucleoside transporter 1 (SLC29A1). Biochem Pharmacol 2020; 172:113747. [DOI: 10.1016/j.bcp.2019.113747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022]
|
16
|
The influence of geometry and other fundamental challenges for bio-sensing with field effect transistors. Biophys Rev 2019; 11:757-763. [PMID: 31588960 DOI: 10.1007/s12551-019-00592-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
We present a review of field effect transistors (FET) from the point of view of their applications to label-free sensing in the era of genomics and proteomics. Here, rather than a collection of Bio-FET achievements, we propose an analysis of the different issues hampering the use of these devices into clinical applications. We make a particular emphasis on the influence of the sensor geometry in the phenomena of mass transport of analytes, which is a topic that has been traditionally overlooked in the analysis and design of biosensors, but that plays a central role in the achievement of low limits of detection. Other issues like the screening of charges by the ions in liquids with physiological ionic strength and the non-specific binding are also reviewed. In conclusion, we give an overview of different solutions that have been proposed to address all these challenges, demonstrating the potential of field effect transistors owing to their ease of integration with other semiconductor components for developing cost-effective, highly multiplexed sensors for next-generation medicines.
Collapse
|
17
|
Inami W, Fukuta M, Kawata Y, Terakawa S. Visualization of ultraviolet absorption distribution beyond the diffraction limit of light by electron-beam excitation-assisted optical microscope. J Microsc 2019; 276:46-50. [PMID: 31578711 DOI: 10.1111/jmi.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/26/2022]
Abstract
We demonstrated that the high spatial resolution absorption contrast imaging of the crystal of vitamin B9 has absorption at ultraviolet wavelengths. The absorption wavelength matches with the wavelength of the emission of the fluorescent thin film of an electron-beam excitation-assisted (EXA) optical microscope. The fine crystal structure was imaged beyond the optical diffraction limit. The image contrast corresponded with the thickness of the crystal. The illumination light is absorbed with the vitamin B9 crystal and the intensity of the transmitted light depends on the thickness of the vitamin B9 crystal. The EXA optical microscope is useful for analysis of growth of a crystal, bioimaging and so on.
Collapse
Affiliation(s)
- W Inami
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan.,Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan
| | - M Fukuta
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Y Kawata
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan.,Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan
| | | |
Collapse
|
18
|
Hazekawa M, Nishinakagawa T, Kawakubo-Yasukochi T, Nakashima M. Evaluation of IC 50 levels immediately after treatment with anticancer reagents using a real-time cell monitoring device. Exp Ther Med 2019; 18:3197-3205. [PMID: 31555392 PMCID: PMC6755379 DOI: 10.3892/etm.2019.7876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 06/13/2019] [Indexed: 11/05/2022] Open
Abstract
A real-time cell-monitoring analysis (RTCA) system was previously developed based on the change in impedance when cells attach and spread in a culture dish coated with a gold microelectrode array. However, the potential applications of this system have not yet been fully demonstrated. The purpose of this study was to test the utility of the RTCA system to determine the cytotoxicity of four anticancer agents in carcinoma cells. The results were compared with those of the conventional WST-8 assay at the endpoint to determine the potential of the RTCA system as a new real-time assay method to evaluate cytotoxicity. iCELLigence was used as the RTCA system in this study. Suspensions of oral squamous cell carcinoma (OSCC) cell lines were seeded (2×104 cells/well) onto the E-plate (the culture plate of the iCELLigence system). After 24 h of culture, anticancer agents were added to each well, and changes in electrical impedance (cell index, CI) were recorded for another 72 h of culture. Cell proliferation was detected in real-time by the RTCA device in an automated, high throughput manner. Then, the IC50 profiles of the four anticancer agents were calculated based on the real-time cell index values. The results indicated that the RTCA system was useful in evaluating cytotoxic reactions immediately after the addition of the anticancer agents as it was able to record the data in real-time. Furthermore, the IC50 levels measured by the real-time assay were lower than those measured by the endpoint assay. Thus, RTCA systems can be used to evaluate chemotherapeutic agents in cancer cells as well as their side effects in normal cells.
Collapse
Affiliation(s)
- Mai Hazekawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Takuya Nishinakagawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Tomoyo Kawakubo-Yasukochi
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Manabu Nakashima
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
19
|
Vlachodimou A, IJzerman AP, Heitman LH. Label-free detection of transporter activity via GPCR signalling in living cells: A case for SLC29A1, the equilibrative nucleoside transporter 1. Sci Rep 2019; 9:13802. [PMID: 31551431 PMCID: PMC6760145 DOI: 10.1038/s41598-019-48829-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022] Open
Abstract
Transporters are important therapeutic but yet understudied targets due to lack of available assays. Here we describe a novel label-free, whole-cell method for the functional assessment of Solute Carrier (SLC) inhibitors. As many SLC substrates are also ligands for G protein-coupled receptors (GPCRs), transporter inhibition may affect GPCR signalling due to a change in extracellular concentration of the substrate/ligand, which can be monitored by an impedance-based label-free assay. For this study, a prototypical SLC/GPCR pair was selected, i.e. the equilibrative nucleoside transporter-1 (SLC29A1/ENT1) and an adenosine receptor (AR), for which adenosine is the substrate/ligand. ENT1 inhibition with three reference compounds was monitored sensitively via AR activation on human osteosarcoma cells. Firstly, the inhibitor addition resulted in an increased apparent potency of adenosine. Secondly, all inhibitors concentration-dependently increased the extracellular adenosine concentration, resulting in an indirect quantitative assessment of their potencies. Additionally, AR activation was abolished by AR antagonists, confirming that the monitored impedance was AR-mediated. In summary, we developed a novel assay as an in vitro model system that reliably assessed the potency of SLC29A1 inhibitors via AR signalling. As such, the method may be applied broadly as it has the potential to study a multitude of SLCs via concomitant GPCR signalling.
Collapse
Affiliation(s)
- Anna Vlachodimou
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
20
|
Chen JY, Pan Y, Collins TJ, Penn LS, Xi N, Xi J. Examining the feasibility of a "top-down" approach to enhancing the keratinocyte-implant adhesion. Exp Cell Res 2019; 376:105-113. [PMID: 30772381 DOI: 10.1016/j.yexcr.2019.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 11/16/2022]
Abstract
The adhesion of human epidermal keratinocytes to the implant surface is one of the most critical steps during the patient's recovery from implantation of transcutaneous prosthesis. To improve the success rate of transcutaneous prosthetic implants, we explored a new "top-down" approach to promoting this dynamic adhering process through modulation of upstream cell signaling pathways. To examine the feasibility of this novel approach, we first established an in vitro platform that is capable of providing a non-invasive, real-time, quantitative characterization of the keratinocyte-implant interaction. This platform is based on the dissipation monitoring function of the quartz crystal microbalance with dissipation monitoring (QCM-D) in conjunction with the open-module setup of the QCM-D. We then employed this platform to assess the effects of various pathways-specific modulators on the adhering process of keratinocytes. We demonstrated that this "top-down" approach is as effective in enhancing the adhesion of keratinocytes as the conventional "bottom-up" approach that relies on modifying the substrate surface with the adhesion protein such as fibronectin. We envision that this new "top-down" approach combined with the QCM-D-based in vitro platform will help facilitate the future development of new therapies for enhancing osseointegration and promoting wound healing.
Collapse
Affiliation(s)
- Jennifer Y Chen
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, United States
| | - Yue Pan
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Tucker J Collins
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, United States
| | - Lynn S Penn
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, United States
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, China
| | - Jun Xi
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
21
|
Carey TR, Cotner KL, Li B, Sohn LL. Developments in label-free microfluidic methods for single-cell analysis and sorting. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1529. [PMID: 29687965 PMCID: PMC6200655 DOI: 10.1002/wnan.1529] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/06/2018] [Accepted: 03/23/2018] [Indexed: 11/08/2022]
Abstract
Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Thomas R Carey
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley Graduate Division, Berkeley, California
| | - Kristen L Cotner
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley Graduate Division, Berkeley, California
| | - Brian Li
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley Graduate Division, Berkeley, California
| | - Lydia L Sohn
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley Graduate Division, Berkeley, California
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California
| |
Collapse
|
22
|
The Interaction between Laminin-332 and α3β1 Integrin Determines Differentiation and Maintenance of CAFs, and Supports Invasion of Pancreatic Duct Adenocarcinoma Cells. Cancers (Basel) 2018; 11:cancers11010014. [PMID: 30583482 PMCID: PMC6356648 DOI: 10.3390/cancers11010014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
Ranking among the most lethal tumour entities, pancreatic duct adenocarcinoma cells invade neighbouring tissue resulting in high incidence of metastasis. They are supported by tumour stroma fibroblasts which have undergone differentiation into cancer-associated fibroblasts (CAFs). Stiffness of cell substratum, cytokines, such as transforming growth factor-β (TGF-β), and stromal matrix proteins, such as laminin-332, are factors which promote CAF differentiation. In a spheroid culture system, differentiation of CAFs was analysed for laminin-332 production, laminin-binding integrin repertoire, adhesion and migration behaviour, and, in heterospheroids, for their interplay with the pancreatic duct adenocarcinoma AsPC-I cells. Our data reveal that CAFs produce laminin-332 thus contributing to its ectopic deposition within the tumour stroma. Moreover, CAF differentiation correlates with an increased expression of α3β1 integrin, the principal laminin-332-receptor. Beyond its role as novel CAF marker protein, integrin α3β1 crucially determines differentiation and maintenance of the CAF phenotype, as knock-out of the integrin α3 subunit reversed the CAF differentiated state. AsPC-I cells co-cultured in heterospheroids with integrin α3-deficient CAFs invaded less than from heterospheroids with wild-type CAFs. This study highlights the role of integrin α3β1 integrin-laminin-332 interaction of CAFs which promotes and sustains differentiation of CAFs and promotes carcinoma invasion.
Collapse
|
23
|
Park JS, Grijalva SI, Aziz MK, Chi T, Li S, Sayegh MN, Wang A, Cho HC, Wang H. Multi-parametric cell profiling with a CMOS quad-modality cellular interfacing array for label-free fully automated drug screening. LAB ON A CHIP 2018; 18:3037-3050. [PMID: 30168827 PMCID: PMC8513687 DOI: 10.1039/c8lc00156a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cells are complex systems with concurrent multi-physical responses, and cell physiological signals are often encoded with spatiotemporal dynamics and further coupled with multiple cellular activities. However, most existing electronic sensors are only single-modality and cannot capture multi-parametric cellular responses. In this paper, a 1024-pixel CMOS quad-modality cellular interfacing array that enables multi-parametric cell profiling for drug development is presented. The quad-modality CMOS array features cellular impedance characterization, optical detection, extracellular potential recording, and biphasic current stimulation. The fibroblast transparency and surface adhesion are jointly monitored by cellular impedance and optical sensing modalities for comprehensive cell growth evaluation. Simultaneous current stimulation and opto-mechanical monitoring based on cardiomyocytes are demonstrated without any stimulation/sensing dead-zone. Furthermore, drug dose-dependent multi-parametric feature extractions in cardiomyocytes from their extracellular potentials and opto-mechanical signals are presented. The CMOS array demonstrates great potential for fully automated drug screening and drug safety assessments, which may substantially reduce the drug screening time and cost in future new drug development.
Collapse
Affiliation(s)
- Jong Seok Park
- The School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang AC, Gu Y, Han Y, Mei Z, Chiu YJ, Geng L, Cho SH, Lo YH. Computational cell analysis for label-free detection of cell properties in a microfluidic laminar flow. Analyst 2018; 141:4142-50. [PMID: 27163941 DOI: 10.1039/c6an00295a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although a flow cytometer, being one of the most popular research and clinical tools for biomedicine, can analyze cells based on the cell size, internal structures such as granularity, and molecular markers, it provides little information about the physical properties of cells such as cell stiffness and physical interactions between the cell membrane and fluid. In this paper, we propose a computational cell analysis technique using cells' different equilibrium positions in a laminar flow. This method utilizes a spatial coding technique to acquire the spatial position of the cell in a microfluidic channel and then uses mathematical algorithms to calculate the ratio of cell mixtures. Most uniquely, the invented computational cell analysis technique can unequivocally detect the subpopulation of each cell type without labeling even when the cell type shows a substantial overlap in the distribution plot with other cell types, a scenario limiting the use of conventional flow cytometers and machine learning techniques. To prove this concept, we have applied the computation method to distinguish live and fixed cancer cells without labeling, count neutrophils from human blood, and distinguish drug treated cells from untreated cells. Our work paves the way for using computation algorithms and fluidic dynamic properties for cell classification, a label-free method that can potentially classify over 200 types of human cells. Being a highly cost-effective cell analysis method complementary to flow cytometers, our method can offer orthogonal tests in companion with flow cytometers to provide crucial information for biomedical samples.
Collapse
Affiliation(s)
- Alex Ce Zhang
- Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093-0407, USA.
| | - Yi Gu
- Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093-0407, USA.
| | - Yuanyuan Han
- Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093-0407, USA.
| | - Zhe Mei
- Nanocellect Biomedical, Inc., San Diego, CA 92121, USA
| | - Yu-Jui Chiu
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0418, USA
| | - Lina Geng
- School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Sung Hwan Cho
- Nanocellect Biomedical, Inc., San Diego, CA 92121, USA
| | - Yu-Hwa Lo
- Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093-0407, USA. and Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0418, USA
| |
Collapse
|
25
|
Doornbos ML, Vermond SC, Lavreysen H, Tresadern G, IJzerman AP, Heitman LH. Impact of allosteric modulation: Exploring the binding kinetics of glutamate and other orthosteric ligands of the metabotropic glutamate receptor 2. Biochem Pharmacol 2018; 155:356-365. [DOI: 10.1016/j.bcp.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/14/2018] [Indexed: 01/22/2023]
|
26
|
Ediriweera MK, Tennekoon KH, Samarakoon SR. In vitro assays and techniques utilized in anticancer drug discovery. J Appl Toxicol 2018; 39:38-71. [DOI: 10.1002/jat.3658] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Meran Keshawa Ediriweera
- Institute of Biochemistry, Molecular Biology and Biotechnology; University of Colombo; Colombo 03 Sri Lanka
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology; University of Colombo; Colombo 03 Sri Lanka
| | | |
Collapse
|
27
|
Wagner A, White AP, Tang MC, Agarwal S, Stueckle TA, Rojanasakul Y, Gupta RK, Dinu CZ. Incineration of Nanoclay Composites Leads to Byproducts with Reduced Cellular Reactivity. Sci Rep 2018; 8:10709. [PMID: 30013129 PMCID: PMC6048035 DOI: 10.1038/s41598-018-28884-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Addition of nanoclays into a polymer matrix leads to nanocomposites with enhanced properties to be used in plastics for food packaging applications. Because of the plastics' high stored energy value, such nanocomposites make good candidates for disposal via municipal solid waste plants. However, upon disposal, increased concerns related to nanocomposites' byproducts potential toxicity arise, especially considering that such byproducts could escape disposal filters to cause inhalation hazards. Herein, we investigated the effects that byproducts of a polymer polylactic acid-based nanocomposite containing a functionalized montmorillonite nanoclay (Cloisite 30B) could pose to human lung epithelial cells, used as a model for inhalation exposure. Analysis showed that the byproducts induced toxic responses, including reductions in cellular viability, changes in cellular morphology, and cytoskeletal alterations, however only at high doses of exposure. The degree of dispersion of nanoclays in the polymer matrix appeared to influence the material characteristics, degradation, and ultimately toxicity. With toxicity of the byproduct occurring at high doses, safety protocols should be considered, along with deleterious effects investigations to thus help aid in safer, yet still effective products and disposal strategies.
Collapse
Affiliation(s)
- Alixandra Wagner
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Andrew P White
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Man Chio Tang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Sushant Agarwal
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Todd A Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Yon Rojanasakul
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Rakesh K Gupta
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
28
|
Probiotics for Prevention and Treatment of Clostridium difficile Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:161-176. [PMID: 29383669 DOI: 10.1007/978-3-319-72799-8_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Probiotics have been claimed as a valuable tool to restore the balance in the intestinal microbiota following a dysbiosis caused by, among other factors, antibiotic therapy. This perturbed environment could favor the overgrowth of Clostridium difficile and, in fact, the occurrence of C. difficile-associated infections (CDI) is being increasing in recent years. In spite of the high number of probiotics able to in vitro inhibit the growth and/or toxicity of this pathogen, its application for treatment or prevention of CDI is still scarce since there are not enough well-defined clinical studies supporting efficacy. Only a few strains, such as Lactobacillus rhamnosus GG and Saccharomyces boulardii have been studied in more extent. The increasing knowledge about the probiotic mechanisms of action against C. difficile, some of them reviewed here, makes promising the application of these live biotherapeutic agents against CDI. Nevertheless, more effort must be paid to standardize the clinical studied conducted to evaluate probiotic products, in combination with antibiotics, in order to select the best candidate for C. difficile infections.
Collapse
|
29
|
Doornbos ML, Van der Linden I, Vereyken L, Tresadern G, IJzerman AP, Lavreysen H, Heitman LH. Constitutive activity of the metabotropic glutamate receptor 2 explored with a whole-cell label-free biosensor. Biochem Pharmacol 2018; 152:201-210. [DOI: 10.1016/j.bcp.2018.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022]
|
30
|
Peter B, Ungai-Salanki R, Szabó B, Nagy AG, Szekacs I, Bősze S, Horvath R. High-Resolution Adhesion Kinetics of EGCG-Exposed Tumor Cells on Biomimetic Interfaces: Comparative Monitoring of Cell Viability Using Label-Free Biosensor and Classic End-Point Assays. ACS OMEGA 2018; 3:3882-3891. [PMID: 29732447 PMCID: PMC5928488 DOI: 10.1021/acsomega.7b01902] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/05/2018] [Indexed: 05/25/2023]
Abstract
A high-throughput label-free resonant waveguide grating biosensor, the Epic BenchTop, was utilized to in situ monitor the adhesion process of cancer cells on Arg-Gly-Asp tripeptide displaying biomimetic polymer surfaces. Using highly adherent human cervical adenocarcinoma (HeLa) cells as a model system, cell adhesion kinetic data with outstanding temporal resolution were obtained. We found that pre-exposing the cells to various concentrations of the main extract of green tea, the (-)-epigallocatechin gallate (EGCG), largely affected the temporal evolution of the adhesion process. For unexposed and low dosed cells, sigmoid shaped spreading kinetics was recorded. Higher dose of EGCG resulted in a complete absence of the sigmoidal character, and displayed adsorption-like kinetics. By using the first derivatives of the kinetic curves, a simple model was developed to quantify the sigmoidal character and the transition from sigmoidal to adsorption-like kinetics. The calculations showed that the transition happened at EGCG concentration of around 60 μg/mL. Using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide end-point assay, we concluded that EGCG is cytostatic but not cytotoxic. The effect of EGCG was also characterized by flow cytometry. We concluded that, using the introduced label-free methodology, the shape of the cell adhesion kinetic curves can be used to quantify in vitro cell viability in a fast, cost-effective, and highly sensitive manner.
Collapse
Affiliation(s)
- Beatrix Peter
- Doctoral
School of Molecular and Nanotechnologies, Faculty of Information Technology, University of Pannonia, Egyetem utca 10, H-8200 Veszprém, Hungary
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
| | - Rita Ungai-Salanki
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
- Department
of Biological Physics, Eötvös
Loránd University, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary
- CellSorter
Company for Innovations, Erdőalja út 174, H-1037 Budapest, Hungary
| | - Bálint Szabó
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
- Department
of Biological Physics, Eötvös
Loránd University, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary
- CellSorter
Company for Innovations, Erdőalja út 174, H-1037 Budapest, Hungary
| | - Agoston G. Nagy
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE
Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 112, P.O. Box 32, H-1518 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
| |
Collapse
|
31
|
Miersch C, Stange K, Röntgen M. Separation of functionally divergent muscle precursor cell populations from porcine juvenile muscles by discontinuous Percoll density gradient centrifugation. BMC Cell Biol 2018. [PMID: 29523096 PMCID: PMC5845299 DOI: 10.1186/s12860-018-0156-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Satellite cells (SC) and their descendants, muscle precursor cells (MPC), play a key role in postnatal muscle development, regeneration, and plasticity. Several studies have provided evidence that SC and MPC represent a heterogeneous population differing in their biochemical and functional properties. The identification and characterization of functionally divergent SC subpopulations should help to reveal the precise involvement of SC/MPC in these myogenic processes. The aim of the present work was therefore to separate SC subpopulations by using Percoll gradients and to characterize their myogenic marker profiles and their functional properties (adhesion, proliferation, and differentiation). RESULTS SC/MPC from muscles of 4-day-old piglets were isolated by trypsin digestion and enriched by Percoll density gradient centrifugation. A mixed myogenic cell population was obtained from the 40/70% interface (termed: mixed P40/70) of a 25/40/70% Percoll gradient. Thereafter, by using a more stepped 25/40/50/70% Percoll gradient, mixed P40/70 was divided into subpopulation 40/50 (SP40/50) collected from the 40/50% interface and subpopulation 50/70 (SP50/70) collected from the 50/70% interface. All three isolated populations proliferated and showed a myogenic phenotype characterized by the ability to express myogenic markers (Pax7, MyoD1, Desmin, and MyoG) and to differentiate into myotubes. However, compared with mixed P40/70, SP40/50 and SP50/70 exhibited distinct functional behavior. Growth kinetic curves over 90 h obtained by the xCELLigence system and proliferation assays revealed that SP40/50 and mixed P40/70 constituted a fast adhering and fast proliferating phenotype. In contrast, SP50/70 showed considerably slower adhesion and proliferation. The fast-proliferating SP40/50 showed the highest myogenic differentiation potential with higher fusion rates and the formation of more middle-sized and large myotubes. CONCLUSIONS The described Percoll density gradient centrifugation represents a useful tool for subdividing pig SC/MPC populations with divergent myogenic functions. The physiological role of SC subpopulations during myogenesis and the interaction of these populations can now be analyzed to a greater extent, shedding light on postnatal growth variations in pigs and probably in other animals.
Collapse
Affiliation(s)
- Claudia Miersch
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Growth and Development Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Katja Stange
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Growth and Development Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Monika Röntgen
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Growth and Development Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
32
|
Chen JY, Penn LS, Xi J. Quartz crystal microbalance: Sensing cell-substrate adhesion and beyond. Biosens Bioelectron 2018; 99:593-602. [DOI: 10.1016/j.bios.2017.08.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/03/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
|
33
|
Loiodice S, Nogueira da Costa A, Atienzar F. Current trends in in silico, in vitro toxicology, and safety biomarkers in early drug development. Drug Chem Toxicol 2017; 42:113-121. [DOI: 10.1080/01480545.2017.1400044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Simon Loiodice
- Department of Non-Clinical Development, UCB Biopharma SPRL, Braine-l’Alleud, Belgium
| | | | - Franck Atienzar
- Department of Non-Clinical Development, UCB Biopharma SPRL, Braine-l’Alleud, Belgium
| |
Collapse
|
34
|
Shen H, Zhou T, Hu J. A high-throughput QCM chip configuration for the study of living cells and cell-drug interactions. Anal Bioanal Chem 2017; 409:6463-6473. [PMID: 28889243 DOI: 10.1007/s00216-017-0591-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022]
Abstract
In this study, we present a novel design of interference-free, negligible installation-induced stress, suitable for the fabrication of high-throughput quartz crystal microbalance (HQCM) chips. This novel HQCM chip configuration was fabricated using eight independent yet same-batch quartz crystal resonators within a common glass substrate with eight through-holes of diameter slightly larger than that of the quartz resonator. Each quartz resonator's rim was adhered to the inner part of the through-hole via silicone glue to form the rigid (quartz)-soft (silicone)-rigid (glass) structure (RSRS) which effectively eliminates the acoustic couplings among different resonators and largely alleviates the installation-induced stresses. The consistence of the eight resonators was verified by very similar equivalent circuit parameters and very close response slopes to liquid density and viscosity. The HQCM chip was then employed for real-time and continuous monitoring of H9C2 cardiomyoblast adhesions and viscoelastic changes induced by the treatments of two types of drugs: drugs that affect the cytoskeletons, including nocodazole, paclitaxel, and Y-27632, and drugs that affect the contractile properties of the cells: verapamil and different dosages of isoprenaline. Meanwhile, we compared the cytoskeleton affecting drug-induced viscoelastic changes of H9C2 with those of human umbilical vein endothelial cells (HUVECs). The results described here provide the first solution to fabricate HQCM chips that are free from the limitation of resonator number, installation-induced stress, and acoustic interferences among resonators, which should find wide applications in areas of cell phenotype assay, cytotoxicity test, drug evaluation and screening, etc. Graphical abstract Schematic illustration of the principle and configuration of interference-free high-throughput QCM chip to evaluate and screen drugs based on cell viscoelasticity.
Collapse
Affiliation(s)
- Haibo Shen
- Cell Mechanics and Biosensing Institute, Hunan Agricultural University, 405 Life Sciences Building, Furong District, Changsha, Hunan, 410128, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Tiean Zhou
- Cell Mechanics and Biosensing Institute, Hunan Agricultural University, 405 Life Sciences Building, Furong District, Changsha, Hunan, 410128, China. .,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Jiajin Hu
- Cell Mechanics and Biosensing Institute, Hunan Agricultural University, 405 Life Sciences Building, Furong District, Changsha, Hunan, 410128, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
35
|
Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Sci Rep 2017; 7:8965. [PMID: 28827726 PMCID: PMC5566322 DOI: 10.1038/s41598-017-08121-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
The possibility of detecting and classifying living cells in a label-free and non-invasive manner holds significant theranostic potential. In this work, Hyperspectral Imaging (HSI) has been successfully applied to the analysis of macrophagic polarization, given its central role in several pathological settings, including the regulation of tumour microenvironment. Human monocyte derived macrophages have been investigated using hyperspectral reflectance confocal microscopy, and hyperspectral datasets have been analysed in terms of M1 vs. M2 polarization by Principal Components Analysis (PCA). Following PCA, Linear Discriminant Analysis has been implemented for semi-automatic classification of macrophagic polarization from HSI data. Our results confirm the possibility to perform single-cell-level in vitro classification of M1 vs. M2 macrophages in a non-invasive and label-free manner with a high accuracy (above 98% for cells deriving from the same donor), supporting the idea of applying the technique to the study of complex interacting cellular systems, such in the case of tumour-immunity in vitro models.
Collapse
|
36
|
Doornbos MLJ, Cid JM, Haubrich J, Nunes A, van de Sande JW, Vermond SC, Mulder-Krieger T, Trabanco AA, Ahnaou A, Drinkenburg WH, Lavreysen H, Heitman LH, IJzerman AP, Tresadern G. Discovery and Kinetic Profiling of 7-Aryl-1,2,4-triazolo[4,3-a]pyridines: Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 2. J Med Chem 2017; 60:6704-6720. [DOI: 10.1021/acs.jmedchem.7b00669] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Maarten L. J. Doornbos
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O.
Box 9502, 2300RA Leiden, The Netherlands
| | - José María Cid
- Janssen Research and Development, Calle Jarama 75A, 45007, Toledo, Spain
| | - Jordi Haubrich
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O.
Box 9502, 2300RA Leiden, The Netherlands
| | - Alexandro Nunes
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O.
Box 9502, 2300RA Leiden, The Netherlands
| | - Jasper W. van de Sande
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O.
Box 9502, 2300RA Leiden, The Netherlands
| | - Sophie C. Vermond
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O.
Box 9502, 2300RA Leiden, The Netherlands
| | - Thea Mulder-Krieger
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O.
Box 9502, 2300RA Leiden, The Netherlands
| | - Andrés A. Trabanco
- Janssen Research and Development, Calle Jarama 75A, 45007, Toledo, Spain
| | - Abdellah Ahnaou
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Hilde Lavreysen
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Laura H. Heitman
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O.
Box 9502, 2300RA Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O.
Box 9502, 2300RA Leiden, The Netherlands
| | - Gary Tresadern
- Janssen Research and Development, Calle Jarama 75A, 45007, Toledo, Spain
| |
Collapse
|
37
|
Neuhaus AA, Couch Y, Sutherland BA, Buchan AM. Novel method to study pericyte contractility and responses to ischaemia in vitro using electrical impedance. J Cereb Blood Flow Metab 2017; 37:2013-2024. [PMID: 27418036 PMCID: PMC5464697 DOI: 10.1177/0271678x16659495] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pericytes are contractile vascular mural cells overlying capillary endothelium, and they have been implicated in a variety of functions including regulation of cerebral blood flow. Recent work has suggested that both in vivo and ex vivo, ischaemia causes pericytes to constrict and die, which has implications for microvascular reperfusion. Assessing pericyte contractility in tissue slices and in vivo is technically challenging, while in vitro techniques remain unreliable. Here, we used isolated cultures of human brain vascular pericytes to examine their contractile potential in vitro using the iCelligence electrical impedance system. Contraction was induced using the vasoactive peptide endothelin-1, and relaxation was demonstrated using adenosine and sodium nitroprusside. Endothelin-1 treatment also resulted in increased proliferation, which we were able to monitor in the same cell population from which we recorded contractile responses. Finally, the observation of pericyte contraction in stroke was reproduced using chemical ischaemia, which caused a profound and irreversible contraction clearly preceding cell death. These data demonstrate that isolated pericytes retain a contractile phenotype in vitro, and that it is possible to quantify this contraction using real-time electrical impedance recordings, providing a significant new platform for assessing the effects of vasoactive and vasculoprotective compounds on pericyte contractility.
Collapse
Affiliation(s)
- Ain A Neuhaus
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yvonne Couch
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Brad A Sutherland
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,4 School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Alastair M Buchan
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,2 Medical Sciences Division, University of Oxford, Oxford, UK.,3 Acute Vascular Imaging Centre, University of Oxford, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
38
|
Molecular and functional heterogeneity of early postnatal porcine satellite cell populations is associated with bioenergetic profile. Sci Rep 2017; 7:45052. [PMID: 28344332 PMCID: PMC5366807 DOI: 10.1038/srep45052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
During postnatal development, hyperplastic and hypertrophic processes of skeletal muscle growth depend on the activation, proliferation, differentiation, and fusion of satellite cells (SC). Therefore, molecular and functional SC heterogeneity is an important component of muscle plasticity and will greatly affect long-term growth performance and muscle health. However, its regulation by cell intrinsic and extrinsic factors is far from clear. In particular, there is only minor information on the early postnatal period which is critical for muscle maturation and the establishment of adult SC pools. Here, we separated two SC subpopulations (P40/50, P50/70) from muscle of 4-day-old piglets. Our results characterize P40/50 as homogeneous population of committed (high expression of Myf5), fast-proliferating muscle progenitors. P50/70 constituted a slow-proliferating phenotype and contains high numbers of differentiated SC progeny. During culture, P50/70 is transformed to a population with lower differentiation potential that contains 40% Pax7-positive cells. A reversible state of low mitochondrial activity that results from active down-regulation of ATP-synthase is associated with the transition of some of the P50/70 cells to this more primitive fate typical for a reserve cell population. We assume that P40/50 and P50/70 subpopulations contribute unequally in the processes of myofiber growth and maintenance of the SC pool.
Collapse
|
39
|
Parviz M, Gaus K, Gooding JJ. Simultaneous impedance spectroscopy and fluorescence microscopy for the real-time monitoring of the response of cells to drugs. Chem Sci 2017; 8:1831-1840. [PMID: 28451304 PMCID: PMC5396555 DOI: 10.1039/c6sc05159f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/28/2016] [Indexed: 12/12/2022] Open
Abstract
A dual fluorescence microscopy and electrochemical strategy to investigate how cell-surface interactions influence the cellular responses to cues for the cell-based biosensing of drug efficacy is reported herein. The combined method can be used to not only monitor the importance of controlling the cellular adhesive environment on the cell response to drugs but it also provides biological information on the timescales of downstream outside-in signaling from soluble cues. As an example of the use of the combined method, we show how adhesive cues influence the signalling responses of cells to soluble cues. G-protein-coupled receptors were used as the target for the soluble cues. The changes in cell adhesion, cell morphology and Ca2+ flux induced by soluble histamine were simultaneously monitored as a function of the spacing of the adhesive ligand RGD on the interdigitated indium tin oxide electrodes. The simultaneous measurements revealed that the timescales of histamine-induced Ca2+ mobilization and the decrease in cell-cell adhesions are correlated. Furthermore, cells on the surfaces with an RGD spacing of 31 nm were shown to display a faster release of Ca2+ and change in cell adhesion upon histamine stimulation compared to cells on other surfaces.
Collapse
Affiliation(s)
- M Parviz
- School of Chemistry , ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of New South Wales , New South Wales 2052 , Australia .
- Australian Centre for NanoMedicine , University of New South Wales , New South Wales 2052 , Australia
| | - K Gaus
- Australian Centre for NanoMedicine , University of New South Wales , New South Wales 2052 , Australia
- EMBL Australia Node in Single Molecule Science , ARC Centre of Excellence in Advanced Molecular Imaging , University of New South Wales , New South Wales 2052 , Australia
| | - J J Gooding
- School of Chemistry , ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of New South Wales , New South Wales 2052 , Australia .
- Australian Centre for NanoMedicine , University of New South Wales , New South Wales 2052 , Australia
| |
Collapse
|
40
|
Wyganowska-Swiatkowska M, Urbaniak P, Lipinski D, Szalata M, Borysiak K, Jakun J, Kotwicka M. Effects of enamel matrix proteins on adherence, proliferation and migration of epithelial cells: A real-time in vitro study. Exp Ther Med 2016; 13:160-168. [PMID: 28123485 PMCID: PMC5245141 DOI: 10.3892/etm.2016.3918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
Enamel matrix derivative (EMD) can mimic odontogenic effects by inducing the proliferation and differentiation of connective tissue progenitor cells, stimulating bone growth and arresting epithelial cells migration. To the best of our knowledge, there is no data indicating that any active component of EMD reduces epithelial cell viability. The present study examines the impact of commercial lyophilized EMD, porcine recombinant amelogenin (prAMEL; 21.3 kDa) and tyrosine-rich amelogenin peptide (TRAP) on the adherence, proliferation and migration of human epithelial cells in real-time. The tongue carcinoma cell line SCC-25 was stimulated with EMD, porcine recombinant AMEL and TRAP, at concentrations of 12.5, 25 and 50 µg/ml. Cell adherence, migration and proliferation were monitored in real-time using the xCELLigence system. No significant effects of EMD on the morphology, adhesion, proliferation and migration of SCC-25 cells were observed. However, porcine recombinant AMEL had a dose-dependent inhibitory effect on SCC-25 cell proliferation and migration. Predominantly, no notable differences were found between control and TRAP-treated cells in terms of cell adhesion and migration, a decrease in proliferation was observed, but this was not statistically significant. EMD and its active components do not increase the tongue cancer cell viability.
Collapse
Affiliation(s)
- Marzena Wyganowska-Swiatkowska
- Department of Conservative Dentistry and Periodontology, Collegium Stomatologicum, Poznań University of Medical Sciences, 60-812 Poznań, Poland
| | - Paulina Urbaniak
- Department of Cell Biology, Poznań University of Medical Sciences, 60-806 Poznań, Poland
| | - Daniel Lipinski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland
| | - Marlena Szalata
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland
| | - Karolina Borysiak
- Department of Cell Biology, Poznań University of Medical Sciences, 60-806 Poznań, Poland
| | - Jerzy Jakun
- Urology Research Center, Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Malgorzata Kotwicka
- Department of Cell Biology, Poznań University of Medical Sciences, 60-806 Poznań, Poland
| |
Collapse
|
41
|
Amin J, Ramachandran K, Williams SJ, Lee A, Novikova L, Stehno-Bittel L. A simple, reliable method for high-throughput screening for diabetes drugs using 3D β-cell spheroids. J Pharmacol Toxicol Methods 2016; 82:83-89. [DOI: 10.1016/j.vascn.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/27/2022]
|
42
|
Wagner A, Eldawud R, White A, Agarwal S, Stueckle TA, Sierros KA, Rojanasakul Y, Gupta RK, Dinu CZ. Toxicity evaluations of nanoclays and thermally degraded byproducts through spectroscopical and microscopical approaches. Biochim Biophys Acta Gen Subj 2016; 1861:3406-3415. [PMID: 27612663 DOI: 10.1016/j.bbagen.2016.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/23/2016] [Accepted: 09/04/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Montmorillonite is a type of nanoclay that originates from the clay fraction of the soil and is incorporated into polymers to form nanocomposites with enhanced mechanical strength, barrier, and flammability properties used for food packaging, automotive, and medical devices. However, with implementation in such consumer applications, the interaction of montmorillonite-based composites or derived byproducts with biological systems needs to be investigated. METHODS Herein we examined the potential of Cloisite Na+ (pristine) and Cloisite 30B (organically modified montmorillonite nanoclay) and their thermally degraded byproducts' to induce toxicity in model human lung epithelial cells. The experimental set-up mimicked biological exposure in manufacturing and disposal areas and employed cellular treatments with occupationally relevant doses of nanoclays previously characterized using spectroscopical and microscopical approaches. For nanoclay-cellular interactions and for cellular analyses respectively, biosensorial-based analytical platforms were used, with induced cellular changes being confirmed via live cell counts, viability assays, and cell imaging. RESULTS Our analysis of byproducts' chemical and physical properties revealed both structural and functional changes. Real-time high throughput analyses of exposed cellular systems confirmed that nanoclay induced significant toxic effects, with Cloisite 30B showing time-dependent decreases in live cell count and cellular viability relative to control and pristine nanoclay, respectively. Byproducts produced less toxic effects; all treatments caused alterations in the cell morphology upon exposure. CONCLUSIONS Our morphological, behavioral, and viability cellular changes show that nanoclays have the potential to produce toxic effects when used both in manufacturing or disposal environments. GENERAL SIGNIFICANCE The reported toxicological mechanisms prove the extensibility of a biosensorial-based platform for cellular behavior analysis upon treatment with a variety of nanomaterials.
Collapse
Affiliation(s)
- Alixandra Wagner
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Reem Eldawud
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Andrew White
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Sushant Agarwal
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Todd A Stueckle
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Konstantinos A Sierros
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Rakesh K Gupta
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
43
|
Fukuta M, Masuda Y, Inami W, Kawata Y. Label-free cellular structure imaging with 82 nm lateral resolution using an electron-beam excitation-assisted optical microscope. OPTICS EXPRESS 2016; 24:16487-16495. [PMID: 27464102 DOI: 10.1364/oe.24.016487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present label-free and high spatial-resolution imaging for specific cellular structures using an electron-beam excitation-assisted optical microscope (EXA microscope). Images of the actin filament and mitochondria of stained HeLa cells, obtained by fluorescence and EXA microscopy, were compared to identify cellular structures. Based on these results, we demonstrated the feasibility of identifying label-free cellular structures at a spatial resolution of 82 nm. Using numerical analysis, we calculated the imaging depth region and determined the spot size of a cathodoluminescent (CL) light source to be 83 nm at the membrane surface.
Collapse
|
44
|
Sherwood CL, Boitano S. Airway epithelial cell exposure to distinct e-cigarette liquid flavorings reveals toxicity thresholds and activation of CFTR by the chocolate flavoring 2,5-dimethypyrazine. Respir Res 2016. [PMID: 27184162 DOI: 10.1186/s12931‐016‐0369‐9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The potential for adverse respiratory effects following exposure to electronic (e-) cigarette liquid (e-liquid) flavorings remains largely unexplored. Given the multitude of flavor permutations on the market, identification of those flavor constituents that negatively impact the respiratory tract is a daunting task. In this study we examined the impact of common e-liquid flavoring chemicals on the airway epithelium, the cellular monolayer that provides the first line of defense against inhaled particulates, pathogens, and toxicants. METHODS We used the xCELLigence real-time cell analyzer (RTCA) as a primary high-capacity screening tool to assess cytotoxicity thresholds and physiological effects of common e-liquid flavoring chemicals on immortalized human bronchial epithelial cells (16HBE14o-). The RTCA was used secondarily to assess the capability of 16HBE14o- cells to respond to cellular signaling agonists following a 24 h exposure to select flavoring chemicals. Finally, we conducted biophysical measurements of well-differentiated primary mouse tracheal epithelial (MTE) cells with an Ussing chamber to measure the effects of e-cigarette flavoring constituents on barrier function and ion conductance. RESULTS In our high-capacity screens five of the seven flavoring chemicals displayed changes in cellular impedance consistent with cell death at concentrations found in e-liquid. Vanillin and the chocolate flavoring 2,5-dimethylpyrazine caused alterations in cellular physiology indicative of a cellular signaling event. At subcytotoxic levels, 24 h exposure to 2,5-dimethylpyrazine compromised the ability of airway epithelial cells to respond to signaling agonists important in salt and water balance at the airway surface. Biophysical measurements of 2,5-dimethylpyrazine on primary MTE cells revealed alterations in ion conductance consistent with an efflux at the apical airway surface that was accompanied by a transient loss in transepithelial resistance. Mechanistic studies confirmed that the increases in ion conductance evoked by 2,5-dimethylpyrazine were largely attributed to a protein kinase A-dependent (PKA) activation of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. CONCLUSIONS Data from our high-capacity screening assays demonstrates that individual e-cigarette liquid flavoring chemicals vary in their cytotoxicity profiles and that some constituents evoke a cellular physiological response on their own independent of cell death. The activation of CFTR by 2,5-dimethylpyrazine may have detrimental consequences for airway surface liquid homeostasis in individuals that use e-cigarettes habitually.
Collapse
Affiliation(s)
- Cara L Sherwood
- Asthma and Airway Disease Research Center, Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5030, USA. .,Bio5 Collaborative Research Institute, Arizona Health Sciences Center, Tucson, AZ, USA.
| | - Scott Boitano
- Asthma and Airway Disease Research Center, Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5030, USA.,Bio5 Collaborative Research Institute, Arizona Health Sciences Center, Tucson, AZ, USA.,Department of Physiology, Arizona Health Sciences Center, Tucson, AZ, USA
| |
Collapse
|
45
|
Sherwood CL, Boitano S. Airway epithelial cell exposure to distinct e-cigarette liquid flavorings reveals toxicity thresholds and activation of CFTR by the chocolate flavoring 2,5-dimethypyrazine. Respir Res 2016; 17:57. [PMID: 27184162 PMCID: PMC4869201 DOI: 10.1186/s12931-016-0369-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/13/2015] [Indexed: 01/20/2023] Open
Abstract
Background The potential for adverse respiratory effects following exposure to electronic (e-) cigarette liquid (e-liquid) flavorings remains largely unexplored. Given the multitude of flavor permutations on the market, identification of those flavor constituents that negatively impact the respiratory tract is a daunting task. In this study we examined the impact of common e-liquid flavoring chemicals on the airway epithelium, the cellular monolayer that provides the first line of defense against inhaled particulates, pathogens, and toxicants. Methods We used the xCELLigence real-time cell analyzer (RTCA) as a primary high-capacity screening tool to assess cytotoxicity thresholds and physiological effects of common e-liquid flavoring chemicals on immortalized human bronchial epithelial cells (16HBE14o-). The RTCA was used secondarily to assess the capability of 16HBE14o- cells to respond to cellular signaling agonists following a 24 h exposure to select flavoring chemicals. Finally, we conducted biophysical measurements of well-differentiated primary mouse tracheal epithelial (MTE) cells with an Ussing chamber to measure the effects of e-cigarette flavoring constituents on barrier function and ion conductance. Results In our high-capacity screens five of the seven flavoring chemicals displayed changes in cellular impedance consistent with cell death at concentrations found in e-liquid. Vanillin and the chocolate flavoring 2,5-dimethylpyrazine caused alterations in cellular physiology indicative of a cellular signaling event. At subcytotoxic levels, 24 h exposure to 2,5-dimethylpyrazine compromised the ability of airway epithelial cells to respond to signaling agonists important in salt and water balance at the airway surface. Biophysical measurements of 2,5-dimethylpyrazine on primary MTE cells revealed alterations in ion conductance consistent with an efflux at the apical airway surface that was accompanied by a transient loss in transepithelial resistance. Mechanistic studies confirmed that the increases in ion conductance evoked by 2,5-dimethylpyrazine were largely attributed to a protein kinase A-dependent (PKA) activation of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. Conclusions Data from our high-capacity screening assays demonstrates that individual e-cigarette liquid flavoring chemicals vary in their cytotoxicity profiles and that some constituents evoke a cellular physiological response on their own independent of cell death. The activation of CFTR by 2,5-dimethylpyrazine may have detrimental consequences for airway surface liquid homeostasis in individuals that use e-cigarettes habitually.
Collapse
Affiliation(s)
- Cara L Sherwood
- Asthma and Airway Disease Research Center, Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5030, USA. .,Bio5 Collaborative Research Institute, Arizona Health Sciences Center, Tucson, AZ, USA.
| | - Scott Boitano
- Asthma and Airway Disease Research Center, Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5030, USA.,Bio5 Collaborative Research Institute, Arizona Health Sciences Center, Tucson, AZ, USA.,Department of Physiology, Arizona Health Sciences Center, Tucson, AZ, USA
| |
Collapse
|
46
|
Nederpelt I, Vergroesen R, IJzerman A, Heitman L. Persistent GnRH receptor activation in pituitary αT3-1 cells analyzed with a label-free technology. Biosens Bioelectron 2016; 79:721-7. [DOI: 10.1016/j.bios.2015.12.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/10/2015] [Accepted: 12/20/2015] [Indexed: 12/21/2022]
|
47
|
A real-time assay for neutrophil chemotaxis. Biotechniques 2016; 60:245-51. [PMID: 27177817 DOI: 10.2144/000114416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 02/05/2016] [Indexed: 11/23/2022] Open
Abstract
Neutrophils are the predominant cells during acute phases of inflammation, and it is now recognized that these leukocytes play an important role in modulation of the immune response. Directed migration of these cells to the sites of injury, known as chemotaxis, is driven by chemoattractants present at the endothelial cell surface or in the extracellular matrix (ECM). Since uncontrolled or excessive neutrophil chemotaxis is involved in pathological conditions such as atherosclerosis and severe asthma, studying the chemical cues triggering neutrophil migration is essential for understanding the biology of these cells and developing new anti-inflammatory therapies. Although several methods have been developed to evaluate neutrophil chemotaxis, these techniques are generally labor-intensive or alter the native form of these cells and their physiological response. Here we report a rapid, non-invasive, impedance-based, and label-free assay for real-time assessment of neutrophil chemotaxis.
Collapse
|
48
|
Safety pharmacology studies using EFP and impedance. J Pharmacol Toxicol Methods 2016; 81:223-32. [PMID: 27084108 DOI: 10.1016/j.vascn.2016.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 12/17/2022]
Abstract
INTRODUCTION While extracellular field potential (EFP) recordings using multi-electrode arrays (MEAs) are a well-established technique for monitoring changes in cardiac and neuronal function, impedance is a relatively unexploited technology. The combination of EFP, impedance and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has important implications for safety pharmacology as functional information about contraction and field potentials can be gleaned from human cardiomyocytes in a beating monolayer. The main objectives of this study were to demonstrate, using a range of different compounds, that drug effects on contraction and electrophysiology can be detected using a beating monolayer of hiPSC-CMs on the CardioExcyte 96. METHODS hiPSC-CMs were grown as a monolayer on NSP-96 plates for the CardioExcyte 96 (Nanion Technologies) and recordings were made in combined EFP and impedance mode at physiological temperature. The effect of the hERG blockers, E4031 and dofetilide, hERG trafficking inhibitor, pentamidine, β-adrenergic receptor agonist, isoproterenol, and calcium channel blocker, nifedipine, was tested on the EFP and impedance signals. RESULTS Combined impedance and EFP measurements were made from hiPSC-CMs using the CardioExcyte 96 (Nanion Technologies). E4031 and dofetilide, known to cause arrhythmia and Torsades de Pointes (TdP) in humans, decreased beat rate in impedance and EFP modes. Early afterdepolarization (EAD)-like events, an in vitro marker of TdP, could also be detected using this system. Isoproterenol and nifedipine caused an increase in beat rate. A long-term study (over 30h) of pentamidine, a hERG trafficking inhibitor, showed a concentration and time-dependent effect of pentamidine. DISCUSSION In the light of the new Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative to improve guidelines and standardize assays and protocols, the use of EFP and impedance measurements from hiPSCs may become critical in determining the proarrhythmic risk of potential drug candidates. The combination of EFP offering information about cardiac electrophysiology, and impedance, providing information about contractility from the same area of a synchronously beating monolayer of human cardiomyocytes in a 96-well plate format has important implications for future cardiac safety testing.
Collapse
|
49
|
Zhu K, Wu M, Lai H, Guo C, Li J, Wang Y, Chen Y, Wang C, Shi J. Nanoparticle-enhanced generation of gene-transfected mesenchymal stem cells for in vivo cardiac repair. Biomaterials 2015; 74:188-99. [PMID: 26461114 DOI: 10.1016/j.biomaterials.2015.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023]
Abstract
Transplantation of gene-transfected bone marrow-derived mesenchymal stem cells (BMMSCs) is a promising strategy for ischemic myocardium repair, but current therapeutic strategy suffers from high toxicity and inefficient gene transfection in primary BMMSCs. Here we designed and synthesized molecularly organic-inorganic hybrid hollow mesoporous organosilica nanoparticles (HMONs) based on nano-synthetic chemistry, which are featured with concurrent large pore size over 20 nm, small particulate size, hollow cavity and high dispersity for gene transfection in BMMSCs and subsequent in vivo cardiac repair. To efficiently create the therapeutic gene-transfected stem-cell lines, hepatocyte growth factor (HGF) gene was applied to transfect BMMSCs via biocompatible surface-engineered HMONs as a high-performance gene-delivery nanosystem. On the rat model of myocardial infarction, transplantation of HGF gene-transfected BMMSCs enables the largely decreased apoptotic cardiomyocytes, reduced infarct scar size, relieved interstitial fibrosis, and increased angiogenesis in myocardium. The resultant cardiac repair further promotes the significant improvement of heart function. Therefore, the fabricated organic-inorganic hybrid HMONs with large pore size represent a generalizable strategy and platform for gene transfection in BMMSCs and further regenerative medicine.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, PR China
| | - Meiying Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, PR China
| | - Changfa Guo
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, PR China
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, PR China
| | - Yulin Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, PR China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, PR China.
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.
| |
Collapse
|
50
|
Monitoring in real time the cytotoxic effect of Clostridium difficile upon the intestinal epithelial cell line HT29. J Microbiol Methods 2015; 119:66-73. [PMID: 26436983 DOI: 10.1016/j.mimet.2015.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 01/05/2023]
Abstract
The incidence and severity of Clostridium difficile infections (CDI) has been increased not only among hospitalized patients, but also in healthy individuals traditionally considered as low risk population. Current treatment of CDI involves the use of antibiotics to eliminate the pathogen, although recurrent relapses have also been reported. For this reason, the search of new antimicrobials is a very active area of research. The strategy to use inhibitors of toxin's activity has however been less explored in spite of being a promising option. In this regard, the lack of fast and reliable in vitro screening methods to search for novel anti-toxin drugs has hampered this approach. The aim of the current study was to develop a method to monitor in real time the cytotoxicity of C. difficile upon the human colonocyte-like HT29 line, since epithelial intestinal cells are the primary targets of the toxins. The label-free, impedance based RCTA (real time cell analyser) technology was used to follow overtime the behaviour of HT29 in response to C. difficile LMG21717 producing both A and B toxins. Results obtained showed that the selection of the medium to grow the pathogen had a great influence in obtaining toxigenic supernatants, given that some culture media avoided the release of the toxins. A cytotoxic dose- and time-dependent effect of the supernatant obtained from GAM medium upon HT29 and Caco2 cells was detected. The sigmoid-curve fit of data obtained with HT29 allowed the calculation of different toxicological parameters, such as EC50 and LOAEL values. Finally, the modification in the behaviour of HT29 reordered in the RTCA was correlated with the cell rounding effect, typically induced by these toxins, visualized by time-lapsed captures using an optical microscope. Therefore, this RTCA method developed to test cytotoxicity kinetics of C. difficile supernatants upon IEC could be a valuable in vitro model for the screening of new anti-CDI agents.
Collapse
|