1
|
Jorjani G, Roshandel G, Taherian MR, Mirbehbahani N, Moaddabshoar L, Ahmadi A, Salavati F, Nazari SSH, Vahidi M, Etemad K. Epidemiology and geographical patterns of common childhood cancers in Iran: Evidence from the National Cancer Registry. Cancer Epidemiol 2024; 93:102685. [PMID: 39490057 DOI: 10.1016/j.canep.2024.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/25/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Cancer is projected to become the primary cause of death in the 21st century. Although childhood cancer is relatively rare, it remains a significant contributor to mortality among children. This study examines the geographical distribution of childhood cancer incidence in Iranian provinces using data from the National Cancer Registry between 2014 and 2018. MATERIALS AND METHODS This registry-based study analyzed data from 14,711 children under 20 diagnosed with common childhood cancers, sourced from the Iranian National Population-based Cancer Registry for the period 2014-2018. The age-standardized incidence rates (ASR) were calculated using direct standardization methods and reported per 1 million person-years. Spatial autocorrelation measures, including global and local indices such as Moran's I and Getis-Ord's G, were employed to identify high-risk and low-risk areas, assess overall spatial dependence, and pinpoint specific clusters and hotspots of incidence rates. RESULTS ASR for childhood cancer in Iran was 119.56 per 1 million individuals aged 0-19 years. Boys had a higher ASR (129.98) than girls (107.68). Childhood cancer cases increased from 2765 in 2014 to 3354 in 2018, with leukemia as the most common type, followed by brain and nervous system, lymphoma, bone, and connective and soft tissue cancers. Spatial analysis identified high-risk clusters in central Iran (Isfahan, Yazd, Tehran) and low-risk clusters in the northeast (Kermanshah, West and East Azerbaijan, Kurdistan). CONCLUSION This study highlights high childhood cancer incidence in Iran, particularly among boys and in central regions, with elevated leukemia rates. These findings call for targeted prevention strategies and further research to address geographic and gender disparities and to improve care programs.
Collapse
Affiliation(s)
- Goljamal Jorjani
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohammad Reza Taherian
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nargesbeigom Mirbehbahani
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Leila Moaddabshoar
- Radiation Oncology Department, Cancer Institute, Imam-Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Ahmadi
- Department of Epidemiology and Biostatistics, School of Health and Modeling in Health Research Center Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Fereshteh Salavati
- Iranian National Population-Based Cancer Registry Secretariat, Cancer Office, Deputy of Health, Ministry of Health, Tehran, Iran.
| | - Seyed Saeed Hashemi Nazari
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahzad Vahidi
- Iranian National Population-Based Cancer Registry Secretariat, Cancer Office, Deputy of Health, Ministry of Health, Tehran, Iran.
| | - Koorosh Etemad
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wu HC, Lai Y, Liao Y, Deyssenroth M, Miller GW, Santella RM, Terry MB. Plasma metabolomics profiles and breast cancer risk. Breast Cancer Res 2024; 26:141. [PMID: 39385226 PMCID: PMC11463119 DOI: 10.1186/s13058-024-01896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women and incidence rates are increasing; metabolomics may be a promising approach for identifying the drivers of the increasing trends that cannot be explained by changes in known BC risk factors. METHODS We conducted a nested case-control study (median followup 6.3 years) within the New York site of the Breast Cancer Family Registry (BCFR) (n = 40 cases and 70 age-matched controls). We conducted a metabolome-wide association study using untargeted metabolomics coupling hydrophilic interaction liquid chromatography (HILIC) and C18 chromatography with high-resolution mass spectrometry (LC-HRMS) to identify BC-related metabolic features. RESULTS We found eight metabolic features associated with BC risk. For the four metabolites negatively associated with risk, the adjusted odds ratios (ORs) ranged from 0.31 (95% confidence interval (CI): 0.14, 0.66) (L-Histidine) to 0.65 (95% CI: 0.43, 0.98) (N-Acetylgalactosamine), and for the four metabolites positively associated with risk, ORs ranged from 1.61 (95% CI: 1.04, 2.51, (m/z: 101.5813, RT: 90.4, 1,3-dibutyl-1-nitrosourea, a potential carcinogen)) to 2.20 (95% CI: 1.15, 4.23) (11-cis-Eicosenic acid). These results were no longer statistically significant after adjusting for multiple comparisons. Adding the BC-related metabolic features to a model, including age, the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) risk score improved the accuracy of BC prediction from an area under the curve (AUC) of 66% to 83%. CONCLUSIONS If replicated in larger prospective cohorts, these findings offer promising new ways to identify exposures related to BC and improve BC risk prediction.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.
| | - Yunjia Lai
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY, 10032, USA
| | - Yuyan Liao
- Department of Epidemiology, Mailman School of Public Health of Columbia University, New York, NY, USA
| | - Maya Deyssenroth
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY, 10032, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY, 10032, USA
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Mary Beth Terry
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health of Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Waddingham CM, Hinton P, Villeneuve PJ, Brook JR, Lavigne E, Larsen K, King WD, Wen D, Meng J, Zhang J, Galarneau E, Harris SA. Exposure to ambient polycyclic aromatic hydrocarbons and early-onset female breast cancer in a case-control study in Ontario, Canada. Environ Epidemiol 2024; 8:e333. [PMID: 39386012 PMCID: PMC11463212 DOI: 10.1097/ee9.0000000000000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/02/2024] [Indexed: 10/12/2024] Open
Abstract
Background Ambient polycyclic aromatic hydrocarbons (PAHs) are a class of toxicologically important and understudied air pollutants. Epidemiologic evidence suggests that chronic exposure to PAHs increases breast cancer risk; however, there are few studies in nonoccupational settings that focus on early-onset diagnoses. Methods The relationship between residentially-based ambient PAH concentrations and female breast cancer, among those 18-45 years of age, was characterized in the Ontario Environment and Health Study (OEHS). The OEHS was a population-based case-control study undertaken in Ontario, Canada between 2013 and 2015. Primary incident breast cancers were identified within 3 months of diagnosis, and a population-based series of controls were recruited. Concentrations of ambient PAHs, using fluoranthene as a surrogate, were derived using a chemical transport model at a 2.5 km spatial resolution. These estimates were assigned to participants' residences at the time of the interview and 5 years prior. Logistic regression was used to estimate odds ratios (ORs) and their 95% confidence intervals (CIs) based on a quartile categorization of fluoranthene exposure while adjusting for a series of individual- and area-level risk factors. The shape of the exposure-response trend was evaluated using cubic splines. Results Median fluoranthene exposure for cases and controls was 0.0017 µg/m3 and 0.0014 µg/m3, respectively. In models adjusted for a parsimonious set of risk factors, the highest quartile of exposure was associated with an increased risk of breast cancer (OR = 2.16; 95% CI = 1.22, 3.84). Restricted spline analyses revealed nonlinear dose-response patterns. Conclusions These findings support the hypothesis that ambient PAH exposures increases the risk of early-onset breast cancer.
Collapse
Affiliation(s)
| | - Patrick Hinton
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Paul J. Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Jeffrey R. Brook
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Eric Lavigne
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristian Larsen
- Office of Environmental Health, Health Canada, Ottawa, Ontario Canada
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Geography and Planning, University of Toronto, Toronto, Ontario, Canada
| | - Will D. King
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Deyong Wen
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Jun Meng
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
- Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington
| | - Junhua Zhang
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Elisabeth Galarneau
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Shelley A. Harris
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Cardona B, Rodgers KM, Trowbridge J, Buren H, Rudel RA. Breast Cancer-Related Chemical Exposures in Firefighters. TOXICS 2024; 12:707. [PMID: 39453127 PMCID: PMC11511222 DOI: 10.3390/toxics12100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
To fill a research gap on firefighter exposures and breast cancer risk, and guide exposure reduction, we aimed to identify firefighter occupational exposures linked to breast cancer. We conducted a systematic search and review to identify firefighter chemical exposures and then identified the subset that was associated with breast cancer. To do this, we compared the firefighter exposures with chemicals that have been shown to increase breast cancer risk in epidemiological studies or increase mammary gland tumors in experimental toxicology studies. For each exposure, we assigned a strength of evidence for the association with firefighter occupation and for the association with breast cancer risk. We identified twelve chemicals or chemical groups that were both linked to breast cancer and were firefighter occupational exposures, including polycyclic aromatic hydrocarbons, volatile aromatics, per- and polyfluoroalkyl substances, persistent organohalogens, and halogenated organophosphate flame retardants. Many of these were found at elevated levels in firefighting environments and were statistically significantly higher in firefighters after firefighting or when compared to the general population. Common exposure sources included combustion byproducts, diesel fuel and exhaust, firefighting foams, and flame retardants. Our findings highlight breast-cancer-related chemical exposures in the firefighting profession to guide equitable worker's compensation policies and exposure reduction.
Collapse
Affiliation(s)
| | - Kathryn M. Rodgers
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jessica Trowbridge
- Department of Obstetrics Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Heather Buren
- United Fire Service Women, San Francisco, CA 94140, USA
| | | |
Collapse
|
5
|
Madrigal JM, Pruitt CN, Fisher JA, Liao LM, Graubard BI, Gierach GL, Silverman DT, Ward MH, Jones RR. Carcinogenic industrial air pollution and postmenopausal breast cancer risk in the National Institutes of Health AARP Diet and Health Study. ENVIRONMENT INTERNATIONAL 2024; 191:108985. [PMID: 39226766 PMCID: PMC11425761 DOI: 10.1016/j.envint.2024.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Chemicals emitted from industrial facilities include known or suspected mammary carcinogens and endocrine disruptors, but epidemiologic studies are limited. We evaluated associations between air emissions of multiple carcinogenic chemicals and postmenopausal breast cancer risk in a large prospective U.S. COHORT METHODS We used the U.S. Environmental Protection Agency's Toxics Release Inventory to estimate historical airborne emissions (1987-1995) of 19 known and probable carcinogens for participants enrolled (1995-1996) in the NIH-AARP Diet and Health Study. Among 170,402 women, 15,124 breast cancers were diagnosed through 2018. We constructed inverse distance- and wind-weighted average emissions metrics within 1, 2, 5, and 10 km of the enrollment address for each chemical. We estimated multivariable adjusted HRs and 95 % CIs for categories (quartiles, tertiles, medians) of each chemical in association with breast cancer overall and separately by type (invasive, ductal carcinoma in situ) and estrogen receptor (ER) status. RESULTS We observed an association between benzene emissions and breast cancer risk that was strongest at 1 km (HRQ4 vs. non-exposed = 2.06, 95 %CI: 1.34-3.17; p-trend = 0.001). The magnitude of the association weakened with increasing distance (2 km HRQ4 vs. non-exposed = 1.17, 95 %CI=0.92-1.49; p-trend = 0.19; 5 km HRQ4 vs. non-exposed = 1.05, 95 %CI=0.94-1.16; p-trend = 0.37; 10 km HRQ4 vs. non-exposed = 0.95, 95 %CI=0.89-1.02; p-trend = 0.19) and appeared to be most relevant for invasive rather than intraductal disease. Overall risk was also elevated for vinyl chloride at 5 km (HR≥median vs. non-exposed = 1.20, 95 %CI=1.01-1.43; p-trend = 0.04), but not 2 km or 10 km. We observed suggestive associations for asbestos, trichloroethylene, and styrene in different subgroup analyses, but risk patterns were not clear across distances. Associations with other chemicals were generally null, with limited evidence of heterogeneity by disease type or ER status. CONCLUSIONS An increased risk of breast cancer associated with relatively high levels of industrial benzene emissions warrants additional study, particularly among participants with diverse sociodemographic characteristics that live in areas with higher density of industrial facilities.
Collapse
Affiliation(s)
- Jessica M Madrigal
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA.
| | - Caroline N Pruitt
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | - Jared A Fisher
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | - Linda M Liao
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | - Barry I Graubard
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | - Gretchen L Gierach
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| |
Collapse
|
6
|
Heck JE, He D, Wing SE, Ritz B, Carey CD, Yang J, Stram DO, Le Marchand L, Park SL, Cheng I, Wu AH. Exposure to outdoor ambient air toxics and risk of breast cancer: The multiethnic cohort. Int J Hyg Environ Health 2024; 259:114362. [PMID: 38574449 DOI: 10.1016/j.ijheh.2024.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND A growing literature has reported associations between traffic-related air pollution and breast cancer, however there are fewer investigations into specific ambient agents and any putative risk of breast cancer development, particularly studies occurring in populations residing in higher pollution areas such as Los Angeles. OBJECTIVES To estimate breast cancer risks related to ambient air toxics exposure at residential addresses. METHODS We examined the relationships between ambient air toxics and breast cancer risk in the Multiethnic Cohort among 48,665 California female participants followed for cancer from 2003 through 2013. We obtained exposure data on chemicals acting as endocrine disruptors or mammary gland carcinogens from the National-Scale Air Toxics Assessment. Cox proportional hazards models were used to estimate breast cancer risk per one interquartile range (IQR) increase in air toxics exposure lagged by 5-years. Stratified analyses were conducted by race, ethnicity, and hormone receptor types. RESULTS Among all women, increased risks of invasive breast cancer were observed with toxicants related to industries [1,1,2,2-tetrachloroethane (hazard ratio [HR] = 4.22, 95% confidence interval [95% CI] 3.18-5.60), ethylene dichloride (HR = 2.81, 95% CI 2.20-3.59), and vinyl chloride (HR = 2.27, 95% CI 1.81, 2.85); these 3 agents were correlated (r2 = 0.45-0.77)]. Agents related to gasoline production or combustion were related to increased breast cancer risk [benzene (HR = 1.32, 95% CI 1.24, 1.41), ethylbenzene (HR = 1.20, 95% CI 1.13-1.28), toluene (HR = 1.29, 95% CI 1.20-1.38), naphthalene (HR = 1.11, 95% CI 1.02-2.22), acrolein (HR = 2.26, 95% CI 1.92, 2.65)]. Higher hazard ratios were observed in African Americans and Whites compared to other racial and ethnic groups (p-heterogeneity <0.05 for traffic-related air toxics, acrolein, and vinyl acetate). CONCLUSIONS Our findings suggest that specific toxic air pollutants may be associated with increase breast cancer risk.
Collapse
Affiliation(s)
- Julia E Heck
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, CA, USA; College of Health and Public Service, University of North Texas, Denton, TX, USA; Center for Racial and Ethnic Equity in Health and Society, University of North Texas, Denton, TX, USA.
| | - Di He
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, CA, USA
| | - Sam E Wing
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, CA, USA
| | - Chandra D Carey
- College of Health and Public Service, University of North Texas, Denton, TX, USA; Center for Racial and Ethnic Equity in Health and Society, University of North Texas, Denton, TX, USA
| | - Juan Yang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Daniel O Stram
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Loïc Le Marchand
- Epidemiology Section, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sungshim Lani Park
- Epidemiology Section, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA; University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Hassan S, Thacharodi A, Priya A, Meenatchi R, Hegde TA, R T, Nguyen HT, Pugazhendhi A. Endocrine disruptors: Unravelling the link between chemical exposure and Women's reproductive health. ENVIRONMENTAL RESEARCH 2024; 241:117385. [PMID: 37838203 DOI: 10.1016/j.envres.2023.117385] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
An Endocrine Disrupting Chemical (EDC) is any compound that disrupts the function of the endocrine system in humans and is ubiquitous in the environment either as a result of natural events or through anthropogenic activities. Bisphenol A, phthalates, parabens, pesticides, triclosan, polychlorinated biphenyls, and heavy metals, which are frequently found in the pharmaceutical, cosmetic, and packaging sectors, are some of the major sources of EDC pollutants. EDCs have been identified to have a deteriorating effect on the female reproductive system, as evidenced by the increasing number of reproductive disorders such as endometriosis, uterine fibroids, polycystic ovary syndrome, premature ovarian failure, menstrual irregularity, menarche, and infertility. Studying EDCs in relation to women's health is essential for understanding the complex interactions between environmental factors and health outcomes. It enables the development of strategies to mitigate risks, protect reproductive and overall health, and inform public policy decisions to safeguard women's well-being. Healthcare professionals must know the possible dangers of EDC exposure and ask about environmental exposures while evaluating patients. This may result in more precise diagnosis and personalized treatment regimens. This review summarises the existing understanding of prevalent EDCs that impact women's health and involvement in female reproductive dysfunction and underscores the need for more research. Further insights on potential mechanisms of action of EDCs on female has been emphasized in the article. We also discuss the role of nutritional intervention in reducing the effect of EDCs on women's reproductive health. EDC pollution can be further reduced by adhering to strict regulations prohibiting the release of estrogenic substances into the environment.
Collapse
Affiliation(s)
- Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India; Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA
| | - Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Anshu Priya
- SRF-ICMR, CSIR-Institute of Genomics and Integrative Biology (IGIB), South Campus, New Delhi, 110025, India
| | - R Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Thanushree A Hegde
- Department of Civil Engineering, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - Thangamani R
- Department of Civil Engineering, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - H T Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
8
|
Kay JE, Brody JG, Schwarzman M, Rudel RA. Application of the Key Characteristics Framework to Identify Potential Breast Carcinogens Using Publicly Available in Vivo, in Vitro, and in Silico Data. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17002. [PMID: 38197648 PMCID: PMC10777819 DOI: 10.1289/ehp13233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Chemicals that induce mammary tumors in rodents or activate estrogen or progesterone signaling are likely to increase breast cancer (BC) risk. Identifying chemicals with these activities can prompt steps to protect human health. OBJECTIVES We compiled data on rodent tumors, endocrine activity, and genotoxicity to assess the key characteristics (KCs) of rodent mammary carcinogens (MCs), and to identify other chemicals that exhibit these effects and may therefore increase BC risk. METHODS Using authoritative databases, including International Agency for Research on Cancer (IARC) Monographs and the US Environmental Protection's (EPA) ToxCast, we selected chemicals that induce mammary tumors in rodents, stimulate estradiol or progesterone synthesis, or activate the estrogen receptor (ER) in vitro. We classified these chemicals by their genotoxicity and strength of endocrine activity and calculated the overrepresentation (enrichment) of these KCs among MCs. Finally, we evaluated whether these KCs predict whether a chemical is likely to induce mammary tumors. RESULTS We identified 279 MCs and an additional 642 chemicals that stimulate estrogen or progesterone signaling. MCs were significantly enriched for steroidogenicity, ER agonism, and genotoxicity, supporting the use of these KCs to predict whether a chemical is likely to induce rodent mammary tumors and, by inference, increase BC risk. More MCs were steroidogens than ER agonists, and many increased both estradiol and progesterone. Enrichment among MCs was greater for strong endocrine activity vs. weak or inactive, with a significant trend. DISCUSSION We identified hundreds of compounds that have biological activities that could increase BC risk and demonstrated that these activities are enriched among MCs. We argue that many of these should not be considered low hazard without investigating their ability to affect the breast, and chemicals with the strongest evidence can be targeted for exposure reduction. We describe ways to strengthen hazard identification, including improved assessments for mammary effects, developing assays for more KCs, and more comprehensive chemical testing. https://doi.org/10.1289/EHP13233.
Collapse
Affiliation(s)
| | | | - Megan Schwarzman
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Family and Community Medicine, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
9
|
Elbaek Pedersen J, Hansen J. Risk of breast cancer in daughters of agricultural workers in Denmark. ENVIRONMENTAL RESEARCH 2024; 240:117374. [PMID: 37866542 DOI: 10.1016/j.envres.2023.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVES Agricultural workers face unique occupational hazards such as pesticide exposure, which has been associated with breast cancer. However, research considering the association between parental agricultural work and breast cancer in female offspring is lacking. Therefore, the aim of the present nested case-control study was to explore this association. METHODS The Danish Cancer Registry was utilized to identify women diagnosed with primary breast cancer. A total of 5587 cases were included in the study, and for each case, 20 cancer-free female controls were selected, matched on year of birth. It was a requisition that both cases and controls were born in Denmark and that either maternal or paternal employment history was available. RESULTS Adverse associations were consistently noted for different time windows of maternal employment in "Horticulture" and breast cancer. Inverse associations were observed for paternal employment in most of the examined agricultural industries, although a small increased risk was indicated for perinatal employment in "Horticulture". Furthermore, maternal preconceptional employment in "Horticulture" was observed to increase the risk of ER positive tumors (odds ratio [OR] = 1.79, 95% confidence interval [CI]: 1.13-2.85, whereas parental perinatal employment was linked to an elevated risk of ER negative tumors (maternal employment: OR = 2.48, 95% CI: 1.18-5.21; paternal employment: OR = 1.62, 95% CI: 0.70-3.77). CONCLUSIONS The present study indicates that maternal horticultural employment in different potential susceptible time windows may elevate the risk of breast cancer subtypes in daughters. These findings need to be reproduced in future prospective cohort studies, including information on e.g., pesticide exposure withing agricultural job categories and lifestyle factors.
Collapse
Affiliation(s)
| | - Johnni Hansen
- The Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
10
|
Jones RR, White AJ. Invited Perspective: New Motivations and Future Directions for Investigating Environmental Risk Factors for Breast Cancer. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:11301. [PMID: 38197649 PMCID: PMC10777818 DOI: 10.1289/ehp13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Affiliation(s)
- Rena R. Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Rockville, Maryland, USA
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina, USA
| |
Collapse
|
11
|
Cazzolla Gatti R, Di Paola A, Monaco A, Velichevskaya A, Amoroso N, Bellotti R. The spatial association between environmental pollution and long-term cancer mortality in Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158439. [PMID: 36113788 DOI: 10.1016/j.scitotenv.2022.158439] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Tumours are nowadays the second world‑leading cause of death after cardiovascular diseases. During the last decades of cancer research, lifestyle and random/genetic factors have been blamed for cancer mortality, with obesity, sedentary habits, alcoholism, and smoking contributing as supposed major causes. However, there is an emerging consensus that environmental pollution should be considered one of the main triggers. Unfortunately, all this preliminary scientific evidence has not always been followed by governments and institutions, which still fail to pursue research on cancer's environmental connections. In this unprecedented national-scale detailed study, we analyzed the links between cancer mortality, socio-economic factors, and sources of environmental pollution in Italy, both at wider regional and finer provincial scales, with an artificial intelligence approach. Overall, we found that cancer mortality does not have a random or spatial distribution and exceeds the national average mainly when environmental pollution is also higher, despite healthier lifestyle habits. Our machine learning analysis of 35 environmental sources of pollution showed that air quality ranks first for importance concerning the average cancer mortality rate, followed by sites to be reclaimed, urban areas, and motor vehicle density. Moreover, other environmental sources of pollution proved to be relevant for the mortality of some specific cancer types. Given these alarming results, we call for a rearrangement of the priority of cancer research and care that sees the reduction and prevention of environmental contamination as a priority action to put in place in the tough struggle against cancer.
Collapse
Affiliation(s)
- Roberto Cazzolla Gatti
- Department of Biological Sciences, Geological and Environmental (BiGeA), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Arianna Di Paola
- Institute for BioEconomy, National Research Council of Italy (IBE-CNR), 00100 Rome, Italy
| | - Alfonso Monaco
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "A. Moro", 70126 Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy.
| | | | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy; Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro", 70125 Bari, Italy
| | - Roberto Bellotti
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "A. Moro", 70126 Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| |
Collapse
|
12
|
Religious Slaughter. Anim Welf 2023. [DOI: 10.1007/978-3-031-17566-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Pan S, Guo Y, Yu W, Hong F, Qiao X, Zhang J, Xu P, Zhai Y. Environmental chemical TCPOBOP disrupts milk lipid homeostasis during pregnancy and lactation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114463. [PMID: 38321682 DOI: 10.1016/j.ecoenv.2022.114463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 02/08/2024]
Abstract
Humans are exposed to different kinds of environmental contaminants or drugs throughout their lifetimes. The widespread presence of these compounds has raised concerns about the consequent adverse effects on lactating women. The constitutive androstane receptor (CAR, Nr1i3) is known as a xenobiotic sensor for environmental pollution or drugs. In this study, the model environmental chemical 1, 4-bis [2-(3, 5-dichloropyridyloxy)] benzene, TCPOBOP (TC), which is a highly specific agonist of CAR, was used to investigate the effects of exogenous exposure on lactation function and offspring health in mice. The results revealed that TC exposure decreased the proliferation of mammary epithelial cells during pregnancy. This deficiency further compromised lobular-alveolar structures, resulting in alveolar cell apoptosis, as well as premature stoppage of the lactation cycle and aberrant lactation. Furthermore, TC exposure significantly altered the size and number of milk lipid droplets, suggesting that TC exposure inhibits milk lipid synthesis. Additionally, TC exposure interfered with the milk lipid metabolism network, resulting in the inability of TC-exposed mice to efficiently secrete nutrients and feed their offspring. These findings demonstrated that restricted synthesis and secretion of milk lipids would indirectly block mammary gland form and function, which explained the possible reasons for lactation failure and retarded offspring growth.
Collapse
Affiliation(s)
- Shijia Pan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yuan Guo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Wen Yu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Xiaoxiao Qiao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jia Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Pengfei Xu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
14
|
Kay JE, Cardona B, Rudel RA, Vandenberg LN, Soto AM, Christiansen S, Birnbaum LS, Fenton SE. Chemical Effects on Breast Development, Function, and Cancer Risk: Existing Knowledge and New Opportunities. Curr Environ Health Rep 2022; 9:535-562. [PMID: 35984634 PMCID: PMC9729163 DOI: 10.1007/s40572-022-00376-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Population studies show worrisome trends towards earlier breast development, difficulty in breastfeeding, and increasing rates of breast cancer in young women. Multiple epidemiological studies have linked these outcomes with chemical exposures, and experimental studies have shown that many of these chemicals generate similar effects in rodents, often by disrupting hormonal regulation. These endocrine-disrupting chemicals (EDCs) can alter the progression of mammary gland (MG) development, impair the ability to nourish offspring via lactation, increase mammary tissue density, and increase the propensity to develop cancer. However, current toxicological approaches to measuring the effects of chemical exposures on the MG are often inadequate to detect these effects, impairing our ability to identify exposures harmful to the breast and limiting opportunities for prevention. This paper describes key adverse outcomes for the MG, including impaired lactation, altered pubertal development, altered morphology (such as increased mammographic density), and cancer. It also summarizes evidence from humans and rodent models for exposures associated with these effects. We also review current toxicological practices for evaluating MG effects, highlight limitations of current methods, summarize debates related to how effects are interpreted in risk assessment, and make recommendations to strengthen assessment approaches. Increasing the rigor of MG assessment would improve our ability to identify chemicals of concern, regulate those chemicals based on their effects, and prevent exposures and associated adverse health effects.
Collapse
Affiliation(s)
| | | | | | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Linda S Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Suzanne E Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
15
|
Cheminformatics analysis of chemicals that increase estrogen and progesterone synthesis for a breast cancer hazard assessment. Sci Rep 2022; 12:20647. [PMID: 36450809 PMCID: PMC9712655 DOI: 10.1038/s41598-022-24889-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Factors that increase estrogen or progesterone (P4) action are well-established as increasing breast cancer risk, and many first-line treatments to prevent breast cancer recurrence work by blocking estrogen synthesis or action. In previous work, using data from an in vitro steroidogenesis assay developed for the U.S. Environmental Protection Agency (EPA) ToxCast program, we identified 182 chemicals that increased estradiol (E2up) and 185 that increased progesterone (P4up) in human H295R adrenocortical carcinoma cells, an OECD validated assay for steroidogenesis. Chemicals known to induce mammary effects in vivo were very likely to increase E2 or P4 synthesis, further supporting the importance of these pathways for breast cancer. To identify additional chemical exposures that may increase breast cancer risk through E2 or P4 steroidogenesis, we developed a cheminformatics approach to identify structural features associated with these activities and to predict other E2 or P4 steroidogens from their chemical structures. First, we used molecular descriptors and physicochemical properties to cluster the 2,012 chemicals screened in the steroidogenesis assay using a self-organizing map (SOM). Structural features such as triazine, phenol, or more broadly benzene ramified with halide, amine or alcohol, are enriched for E2 or P4up chemicals. Among E2up chemicals, phenol and benzenone are found as significant substructures, along with nitrogen-containing biphenyls. For P4up chemicals, phenol and complex aromatic systems ramified with oxygen-based groups such as flavone or phenolphthalein are significant substructures. Chemicals that are active for both E2up and P4up are enriched with substructures such as dihydroxy phosphanedithione or are small chemicals that contain one benzene ramified with chlorine, alcohol, methyl or primary amine. These results are confirmed with a chemotype ToxPrint analysis. Then, we used machine learning and artificial intelligence algorithms to develop and validate predictive classification QSAR models for E2up and P4up chemicals. These models gave reasonable external prediction performances (balanced accuracy ~ 0.8 and Matthews Coefficient Correlation ~ 0.5) on an external validation. The QSAR models were enriched by adding a confidence score that considers the chemical applicability domain and a ToxPrint assessment of the chemical. This profiling and these models may be useful to direct future testing and risk assessments for chemicals related to breast cancer and other hormonally-mediated outcomes.
Collapse
|
16
|
Koval LE, Dionisio KL, Friedman KP, Isaacs KK, Rager JE. Environmental mixtures and breast cancer: identifying co-exposure patterns between understudied vs breast cancer-associated chemicals using chemical inventory informatics. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:794-807. [PMID: 35710593 PMCID: PMC9742149 DOI: 10.1038/s41370-022-00451-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Although evidence linking environmental chemicals to breast cancer is growing, mixtures-based exposure evaluations are lacking. OBJECTIVE This study aimed to identify environmental chemicals in use inventories that co-occur and share properties with chemicals that have association with breast cancer, highlighting exposure combinations that may alter disease risk. METHODS The occurrence of chemicals within chemical use categories was characterized using the Chemical and Products Database. Co-exposure patterns were evaluated for chemicals that have an association with breast cancer (BC), no known association (NBC), and understudied chemicals (UC) identified through query of the Silent Spring Institute's Mammary Carcinogens Review Database and the U.S. Environmental Protection Agency's Toxicity Reference Database. UCs were ranked based on structure and physicochemical similarities and co-occurrence patterns with BCs within environmentally relevant exposure sources. RESULTS A total of 6793 chemicals had data available for exposure source occurrence analyses. 50 top-ranking UCs spanning five clusters of co-occurring chemicals were prioritized, based on shared properties with co-occuring BCs, including chemicals used in food production and consumer/personal care products, as well as potential endocrine system modulators. SIGNIFICANCE Results highlight important co-exposure conditions that are likely prevalent within our everyday environments that warrant further evaluation for possible breast cancer risk. IMPACT STATEMENT Most environmental studies on breast cancer have focused on evaluating relationships between individual, well-known chemicals and breast cancer risk. This study set out to expand this research field by identifying understudied chemicals and mixtures that may occur in everyday environments due to their patterns of commercial use. Analyses focused on those that co-occur alongside chemicals associated with breast cancer, based upon in silico chemical database querying and analysis. Particularly in instances when understudied chemicals share physicochemical properties and structural features with carcinogens, these chemical mixtures represent conditions that should be studied in future clinical, epidemiological, and toxicological studies.
Collapse
Affiliation(s)
- Lauren E Koval
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathie L Dionisio
- Immediate Office of the Assistant Administrator, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kristin K Isaacs
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Damilos S, Saliakas S, Kokkinopoulos I, Karayannis P, Karamitrou M, Trompeta AF, Charitidis C, Koumoulos EP. Occupational Safety Analysis for COVID-Instigated Repurposed Manufacturing Lines: Use of Nanomaterials in Injection Moulding. Polymers (Basel) 2022; 14:polym14122418. [PMID: 35745994 PMCID: PMC9228191 DOI: 10.3390/polym14122418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/05/2022] Open
Abstract
The COVID-19 pandemic instigated massive production of critical medical supplies and personal protective equipment. Injection moulding (IM) is considered the most prominent thermoplastic part manufacturing technique, offering the use of a large variety of feedstocks and rapid production capacity. Within the context of the European Commission-funded imPURE project, the benefits of IM have been exploited in repurposed IM lines to accommodate the use of nanocomposites and introduce the unique properties of nanomaterials. However, these amendments in the manufacturing lines highlighted the need for targeted and thorough occupational risk analysis due to the potential exposure of workers to airborne nanomaterials and fumes, as well as the introduction of additional occupational hazards. In this work, a safety-oriented failure mode and effects analysis (FMEA) was implemented to evaluate the main hazards in repurposed IM lines using acrylonitrile butadiene styrene (ABS) matrix and silver nanoparticles (AgNPs) as additives. Twenty-eight failure modes were identified, with the upper quartile including the seven failure modes presenting the highest risk priority numbers (RPN), signifying a need for immediate control action. Additionally, a nanosafety control-banding tool allowed hazard classification and the identification of control actions required for mitigation of occupation risks due to the released airborne silver nanoparticles.
Collapse
Affiliation(s)
- Spyridon Damilos
- Innovation in Research & Engineering Solutions (IRES), 1780 Wemmel, Belgium; (S.D.); (S.S.); (I.K.); (P.K.)
| | - Stratos Saliakas
- Innovation in Research & Engineering Solutions (IRES), 1780 Wemmel, Belgium; (S.D.); (S.S.); (I.K.); (P.K.)
| | - Ioannis Kokkinopoulos
- Innovation in Research & Engineering Solutions (IRES), 1780 Wemmel, Belgium; (S.D.); (S.S.); (I.K.); (P.K.)
| | - Panagiotis Karayannis
- Innovation in Research & Engineering Solutions (IRES), 1780 Wemmel, Belgium; (S.D.); (S.S.); (I.K.); (P.K.)
| | - Melpo Karamitrou
- Research Lab of Advanced, Composites, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, Zographos, 15780 Athens, Greece; (M.K.); (A.-F.T.); (C.C.)
| | - Aikaterini-Flora Trompeta
- Research Lab of Advanced, Composites, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, Zographos, 15780 Athens, Greece; (M.K.); (A.-F.T.); (C.C.)
| | - Costas Charitidis
- Research Lab of Advanced, Composites, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, Zographos, 15780 Athens, Greece; (M.K.); (A.-F.T.); (C.C.)
| | - Elias P. Koumoulos
- Innovation in Research & Engineering Solutions (IRES), 1780 Wemmel, Belgium; (S.D.); (S.S.); (I.K.); (P.K.)
- Correspondence:
| |
Collapse
|
18
|
Lai CH, Chen YC, Lin KYA, Lin YX, Lee TH, Lin CH. Adverse pulmonary impacts of environmental concentrations of oil mist particulate matter in normal human bronchial epithelial cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151119. [PMID: 34757100 DOI: 10.1016/j.scitotenv.2021.151119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Airborne oil mist particulate matter (OMPM) is generated during industrial processes such as metalworking and may be associated with pulmonary dysfunction. In this study, we employed the normal human bronchial epithelial BEAS-2B cell line to elucidate the association between pulmonary toxicity and OMPM of 2.5-10 μm, 1.0-2.5 μm and <1.0 μm particle sizes (OMPM10-2.5, OMPM2.5-1.0 and OMPM1.0). We measured OMPM concentrations at a precision machinery factory to estimate lung deposition rates and select realistic environmental concentrations for testing. All OMPMs (1-50 μg/cm2) significantly decreased BEAS-2B cell viability (>38% of control), except for low-dose OMPM1.0 (1 μg/cm2). OMPM10-2.5 and OMPM2.5-1.0, but not OMPM1.0, induced oxidative stress (1.5-4-fold increase compared with the control) and increased the production of proinflammatory cytokines (1.5-3-fold). However, only OMPM1.0 induced pulmonary epithelial barrier dysfunction via depletion of zonula occludens (0.65-0.8-fold) and α1-antitrypsin proteins (0.65-0.8-fold). In conclusion, a higher risk of lung disease was associated with smaller particle size OMPM. Exposure to OMPM1.0 may be a potential risk factor for chronic obstructive pulmonary disease. The evidence also demonstrates that occupational exposure to OMPM may cause pulmonary disease at very low concentrations.
Collapse
Affiliation(s)
- Chia-Hsiang Lai
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Yi-Chun Chen
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Xian Lin
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan.
| |
Collapse
|
19
|
Beckman S, Silver E, Weinberg JL, Hurley S, Frederick M, Chan J, Reynolds P, Harrison R. Development of a Data Visualization Tool for Occupational Exposure to Chemicals of Concern for Breast Cancer Among California Working Women, 2010-2014. New Solut 2022; 31:400-412. [PMID: 34325565 DOI: 10.1177/10482911211032971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We identified the occupations that employ California women and a list of chemicals of concern for breast cancer. We evaluated the likelihood of on-the-job exposure to the categories of chemicals by occupation among formally and informally employed women. We selected 145 occupations representing more than 6.6 million women (85% of California working women), along with an additional sixteen occupations for informal workers only. We organized 1012 chemicals (including mammary gland carcinogens, developmental toxicants, and endocrine-disrupting chemicals) into twenty-five categories. More than 80 percent of occupations investigated had possible or probable exposure to at least one category of chemicals. This is the first categorization of occupational exposure to chemicals of concern for breast cancer among California working women. Our investigation revealed significant data gaps, which could be improved by policy changes resulting in enhanced collection of data on occupation and chemical exposure.
Collapse
Affiliation(s)
| | | | | | | | - Matt Frederick
- California Department of Public Health, Richmond, CA, USA
| | | | | | | |
Collapse
|
20
|
Wang X, Ha D, Yoshitake R, Chan YS, Sadava D, Chen S. Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers: Emerging Methods and Concepts. Int J Mol Sci 2021; 22:8798. [PMID: 34445499 PMCID: PMC8395949 DOI: 10.3390/ijms22168798] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022] Open
Abstract
Xenoestrogens and phytoestrogens are referred to as "foreign estrogens" that are produced outside of the human body and have been shown to exert estrogen-like activity. Xenoestrogens are synthetic industrial chemicals, whereas phytoestrogens are chemicals present in the plant. Considering that these environmental estrogen mimics potentially promote hormone-related cancers, an understanding of how they interact with estrogenic pathways in human cells is crucial to resolve their possible impacts in cancer. Here, we conducted an extensive literature evaluation on the origins of these chemicals, emerging research techniques, updated molecular mechanisms, and ongoing clinical studies of estrogen mimics in human cancers. In this review, we describe new applications of patient-derived xenograft (PDX) models and single-cell RNA sequencing (scRNA-seq) techniques in shaping the current knowledge. At the molecular and cellular levels, we provide comprehensive and up-to-date insights into the mechanism of xenoestrogens and phytoestrogens in modulating the hallmarks of cancer. At the systemic level, we bring the emerging concept of window of susceptibility (WOS) into focus. WOS is the critical timing during the female lifespan that includes the prenatal, pubertal, pregnancy, and menopausal transition periods, during which the mammary glands are more sensitive to environmental exposures. Lastly, we reviewed 18 clinical trials on the application of phytoestrogens in the prevention or treatment of different cancers, conducted from 2002 to the present, and provide evidence-based perspectives on the clinical applications of phytoestrogens in cancers. Further research with carefully thought-through concepts and advanced methods on environmental estrogens will help to improve understanding for the identification of environmental influences, as well as provide novel mechanisms to guide the development of prevention and therapeutic approaches for human cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (X.W.); (D.H.); (R.Y.); (Y.S.C.); (D.S.)
| |
Collapse
|
21
|
Cardona B, Rudel RA. Application of an in Vitro Assay to Identify Chemicals That Increase Estradiol and Progesterone Synthesis and Are Potential Breast Cancer Risk Factors. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:77003. [PMID: 34287026 PMCID: PMC8293912 DOI: 10.1289/ehp8608] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Established breast cancer risk factors, such as hormone replacement therapy and reproductive history, are thought to act by increasing estrogen and progesterone (P4) activity. OBJECTIVE We aimed to use in vitro screening data to identify chemicals that increase the synthesis of estradiol (E2) or P4 and evaluate potential risks. METHOD Using data from a high-throughput (HT) in vitro steroidogenesis assay developed for the U.S. Environmental Protection Agency (EPA) ToxCast program, we identified chemicals that increased estradiol (E2-up) or progesterone (P4-up) in human H295R adrenocortical carcinoma cells. We prioritized chemicals by their activity. We compiled in vivo studies and assessments about carcinogenicity and reproductive/developmental (repro/dev) toxicity. We identified exposure sources and predicted intakes from the U.S. EPA's ExpoCast. RESULTS We found 296 chemicals increased E2 (182) or P4 (185), with 71 chemicals increasing both. In vivo data often showed effects consistent with this mechanism. Of the E2- and P4-up chemicals, about 30% were likely repro/dev toxicants or carcinogens, whereas only 5-13% were classified as unlikely. However, most of the chemicals had insufficient in vivo data to evaluate their effects. Of 45 chemicals associated with mammary gland effects, and also tested in the H294R assay, 29 increased E2 or P4, including the well-known mammary carcinogen 7,12-dimethylbenz(a)anthracene. E2- and P4-up chemicals include pesticides, consumer product ingredients, food additives, and drinking water contaminants. DISCUSSION The U.S. EPA's in vitro screening data identified several hundred chemicals that should be considered as potential risk factors for breast cancer because they increased E2 or P4 synthesis. In vitro data is a helpful addition to current toxicity assessments, which are not sensitive to mammary gland effects. Relevant effects on the mammary gland are often not noticed or are dismissed, including for 2,4-dichlorophenol and cyfluthrin. Fifty-three active E2-up and 59 active P4-up chemicals that are in consumer products, food, pesticides, or drugs have not been evaluated for carcinogenic potential and are priorities for study and exposure reduction. https://doi.org/10.1289/EHP8608.
Collapse
|
22
|
Türkez H, Arslan ME, Sönmez E, Tatar A, Geyikoğlu F, Açikyildiz M, Mardinoğlu A. Safety Assessments of Nickel Boride Nanoparticles on the Human Pulmonary Alveolar Cells by Using Cell Viability and Gene Expression Analyses. Biol Trace Elem Res 2021; 199:2602-2611. [PMID: 32909113 DOI: 10.1007/s12011-020-02374-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Nickel boride is generally used in the steel industry as a melting accelerator due to its feature of creating a protective and stable attribute at high temperatures. It is also used to improve the hardenability of the steel with boron addition in the production. Thus, safety studies and biocompatibility analysis of nickel boride should be performed comprehensively to understand the limitations of use in various areas. In the present study, nickel boride nanoparticles (Ni2B NPs) were synthesized by a single-step method and molecule characterizations were performed via the use of X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analyses. Cytotoxicity properties of Ni2B NPs were identified on human pulmonary alveolar epithelial cells (HPAEpiC) by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red (NR), and lactate dehydrogenase (LDH) assays. Illumina human ht-12 v4.0 whole-genome microarray analysis was conducted to investigate NiB2 NPs effects on gene expression regulations of HPAEpiC cells. The database for annotation, visualization, and integrated discovery (DAVID) analysis was performed to reveal the relationship between Ni2B NP application and cellular pathway alterations. According to cytotoxicity analysis, the IC50 value for Ni2B NP application was found as 81.99 mg/L concentration. Microarray analysis of Ni2B NP application was shown for the first time that 693 gene expression changes (FC ≥ 2) occurred significantly over 40.000 gene probes and Ni2B NPs were observed to affect microtubule regulation, centrosome organization, and phosphoprotein synthesis.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Erdal Sönmez
- Advanced Materials Research Laboratory, Department of Nanoscience & Nanoengineering, Graduate School of Natural and Applied Sciences, Ataturk University, Erzurum, Turkey
| | - Abdulgani Tatar
- Department of Medical Genetics, Medical Faculty, Atatürk University, Erzurum, Turkey
| | - Fatime Geyikoğlu
- Department of Biology, Faculty of Arts and Sciences, Atatürk University, Erzurum, Turkey
| | - Metin Açikyildiz
- Department of Chemistry, Faculty of Science and Art, Kilis 7 Aralık University, Kilis, Turkey
| | - Adil Mardinoğlu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
23
|
Mueller S, Dennison G, Liu S. An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6930. [PMID: 34203568 PMCID: PMC8297295 DOI: 10.3390/ijerph18136930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/13/2021] [Indexed: 12/23/2022]
Abstract
Although cancer is traditionally considered a genetic disease, the epigenetic abnormalities, including DNA hypermethylation, histone deacetylation, and/or microRNA dysregulation, have been demonstrated as a hallmark of cancer. Compared with gene mutations, aberrant epigenetic changes occur more frequently, and cellular epigenome is more susceptible to change by environmental factors. Excess cancer risks are positively associated with exposure to occupational and environmental chemical carcinogens, including those from gasoline combustion exhausted in vehicles. Of note, previous studies proposed particulate matter index (PMI) as a measure for gasoline sooting tendency, and showed that, compared with the other molecules in gasoline, 1,2,4-Trimethylbenzene, 2-methylnaphthalene and toluene significantly contribute to PMI of the gasoline blends. Mechanistically, both epigenome and genome are important in carcinogenicity, and the genotoxicity of chemical agents has been thoroughly studied. However, less effort has been put into studying the epigenotoxicity. Moreover, as the blending of ethanol into gasoline substitutes for carcinogens, like benzene, toluene, xylene, butadiene, and polycyclic aromatic hydrocarbons, etc., a reduction of secondary aromatics has been achieved in the atmosphere. This may lead to diminished cancer initiation and progression through altered cellular epigenetic landscape. The present review summarizes the most important findings in the literature on the association between exposures to carcinogens from gasoline combustion, cancer epigenetics and the potential epigenetic impacts of biofuels.
Collapse
Affiliation(s)
- Steffen Mueller
- Energy Resources Center, The University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gail Dennison
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| |
Collapse
|
24
|
Al-Kawaz A, Miligy IM, Toss MS, Mohammed OJ, Green AR, Madhusudan S, Rakha EA. The prognostic significance of Flap Endonuclease 1 (FEN1) in breast ductal carcinoma in situ. Breast Cancer Res Treat 2021; 188:53-63. [PMID: 34117958 PMCID: PMC8233293 DOI: 10.1007/s10549-021-06271-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Background Impaired DNA repair mechanism is one of the cancer hallmarks. Flap Endonuclease 1 (FEN1) is essential for genomic integrity. FEN1 has key roles during base excision repair (BER) and replication. We hypothesised a role for FEN1 in breast cancer pathogenesis. This study aims to assess the role of FEN1 in breast ductal carcinoma in situ (DCIS). Methods Expression of FEN1 protein was evaluated in a large (n = 1015) well-characterised cohort of DCIS, comprising pure (n = 776) and mixed (DCIS coexists with invasive breast cancer (IBC); n = 239) using immunohistochemistry (IHC). Results FEN1 high expression in DCIS was associated with aggressive and high-risk features including higher nuclear grade, larger tumour size, comedo type necrosis, hormonal receptors negativity, higher proliferation index and triple-negative phenotype. DCIS coexisting with invasive BC showed higher FEN1 nuclear expression compared to normal breast tissue and pure DCIS but revealed significantly lower expression when compared to the invasive component. However, FEN1 protein expression in DCIS was not an independent predictor of local recurrence-free interval. Conclusion High FEN1 expression is linked to features of aggressive tumour behaviour and may play a role in the direct progression of DCIS to invasive disease. Further studies are warranted to evaluate its mechanistic roles in DCIS progression and prognosis. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06271-y.
Collapse
Affiliation(s)
- Abdulbaqi Al-Kawaz
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Pathology, College of Dentistry, Al Mustansiriya University, Baghdad, Iraq
| | - Islam M Miligy
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Srinivasan Madhusudan
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Oncology, Nottingham University Hospitals, Nottingham, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK. .,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
25
|
Cazzolla Gatti R. Why We Will Continue to Lose Our Battle with Cancers If We Do Not Stop Their Triggers from Environmental Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6107. [PMID: 34198930 PMCID: PMC8201328 DOI: 10.3390/ijerph18116107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Besides our current health concerns due to COVID-19, cancer is a longer-lasting and even more dramatic pandemic that affects almost a third of the human population worldwide. Most of the emphasis on its causes has been posed on genetic predisposition, chance, and wrong lifestyles (mainly, obesity and smoking). Moreover, our medical weapons against cancers have not improved too much during the last century, although research is in progress. Once diagnosed with a malignant tumour, we still rely on surgery, radiotherapy, and chemotherapy. The main problem is that we have focused on fighting a difficult battle instead of preventing it by controlling its triggers. Quite the opposite, our knowledge of the links between environmental pollution and cancer has surged from the 1980s. Carcinogens in water, air, and soil have continued to accumulate disproportionally and grow in number and dose, bringing us to today's carnage. Here, a synthesis and critical review of the state of the knowledge of the links between cancer and environmental pollution in the three environmental compartments is provided, research gaps are briefly discussed, and some future directions are indicated. New evidence suggests that it is relevant to take into account not only the dose but also the time when we are exposed to carcinogens. The review ends by stressing that more dedication should be put into studying the environmental causes of cancers to prevent and avoid curing them, that the precautionary approach towards environmental pollutants must be much more reactionary, and that there is an urgent need to leave behind the outdated petrochemical-based industry and goods production.
Collapse
Affiliation(s)
- Roberto Cazzolla Gatti
- Konrad Lorenz Institute for Evolution and Cognition Research, 3400 Klosterneuburg, Austria;
- Biological Institute, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
26
|
Gabet S, Lemarchand C, Guénel P, Slama R. Breast Cancer Risk in Association with Atmospheric Pollution Exposure: A Meta-Analysis of Effect Estimates Followed by a Health Impact Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57012. [PMID: 34038220 PMCID: PMC8153692 DOI: 10.1289/ehp8419] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/08/2021] [Accepted: 05/04/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND The epidemiological literature of associations between atmospheric pollutant exposure and breast cancer incidence has recently strongly evolved. OBJECTIVES We aimed to perform a) a meta-analysis of studies considering this relationship, correcting for publication bias and taking menopausal status and cancer hormone responsiveness into account; and b) for the pollutants most likely to affect breast cancer, an assessment of the corresponding number of attributable cases in France and of the related economic costs. METHODS We conducted a literature review and random-effects meta-analyses of epidemiological studies examining the association of fine particulate matter with aerodynamic diameter less than or equal to 2.5μm (PM2.5), particulate matter with aerodynamic diameter less than or equal to 10 μm (PM10), and NO2 long-term exposure with breast cancer incidence; additional analyses were stratified on menopausal status and on tumor hormone responsiveness status. The resulting dose-response functions were combined with modeled atmospheric pollutant exposures in 2013 for France, cancer treatments costs, lost productivity, and years of life lost, to estimate the number of breast cancers attributable to atmospheric pollution and related economic costs in France. RESULTS The review identified 32, 27, and 36 effect estimates for PM2.5, PM10, and NO2, respectively. The meta-analytical relative risk estimates of breast cancer corrected for publication bias were 1.006 [95% confidence interval (CI): 0.941, 1.076], 1.047 (95% CI: 0.984, 1.113), and 1.023 (95% CI: 1.005, 1.041), respectively. NO2 estimated effects appeared higher in premenopausal than in postmenopausal women and higher for hormone responsive positive (ER+/PR+) than negative (ER-/PR-) breast cancers. Assuming a causal effect of NO2, we estimated that 1,677 (95% CI: 374, 2,914) new breast cancer cases were attributable to NO2 annually in France, or 3.15% (95% CI: 0.70, 5.48) of the incident cases. The corresponding tangible and intangible costs were estimated to be €825 million (low, high: 570, 1,080) per year. CONCLUSION These findings suggest that decreasing long-term NO2 exposure or correlated air pollutant exposures could lower breast cancer risk. https://doi.org/10.1289/EHP8419.
Collapse
Affiliation(s)
- Stephan Gabet
- Institut national de la santé et de la recherche médicale (Inserm), Le Centre national de la recherche scientifique (CNRS), Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, Université Grenoble Alpes, Grenoble, France
| | - Clémentine Lemarchand
- Inserm, Exposome and Heredity, Centre de recherche en Épidémiologie et Santé des Populations (CESP), Université Paris-Saclay, Villejuif, France
| | - Pascal Guénel
- Inserm, Exposome and Heredity, Centre de recherche en Épidémiologie et Santé des Populations (CESP), Université Paris-Saclay, Villejuif, France
| | - Rémy Slama
- Institut national de la santé et de la recherche médicale (Inserm), Le Centre national de la recherche scientifique (CNRS), Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
27
|
Bessonneau V, Gerona RR, Trowbridge J, Grashow R, Lin T, Buren H, Morello-Frosch R, Rudel RA. Gaussian graphical modeling of the serum exposome and metabolome reveals interactions between environmental chemicals and endogenous metabolites. Sci Rep 2021; 11:7607. [PMID: 33828161 PMCID: PMC8027000 DOI: 10.1038/s41598-021-87070-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Given the complex exposures from both exogenous and endogenous sources that an individual experiences during life, exposome-wide association studies that interrogate levels of small molecules in biospecimens have been proposed for discovering causes of chronic diseases. We conducted a study to explore associations between environmental chemicals and endogenous molecules using Gaussian graphical models (GGMs) of non-targeted metabolomics data measured in a cohort of California women firefighters and office workers. GGMs revealed many exposure-metabolite associations, including that exposures to mono-hydroxyisononyl phthalate, ethyl paraben and 4-ethylbenzoic acid were associated with metabolites involved in steroid hormone biosynthesis, and perfluoroalkyl substances were linked to bile acids-hormones that regulate cholesterol and glucose metabolism-and inflammatory signaling molecules. Some hypotheses generated from these findings were confirmed by analysis of data from the National Health and Nutrition Examination Survey. Taken together, our findings demonstrate a novel approach to discovering associations between chemical exposures and biological processes of potential relevance for disease causation.
Collapse
Affiliation(s)
- Vincent Bessonneau
- Silent Spring Institute, 320 Nevada Street, Newton, MA, 02460, USA
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement Et Travail) - UMR_S 1085, Univ. Rennes, 35000, Rennes, France
| | - Roy R Gerona
- Clinical Toxicology and Environmental Biomonitoring Lab, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Jessica Trowbridge
- School of Public Health, University of California, 130 Mulford, Hall #3144, Berkeley, CA, 94720, USA
| | - Rachel Grashow
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Thomas Lin
- Clinical Toxicology and Environmental Biomonitoring Lab, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | | | - Rachel Morello-Frosch
- School of Public Health, University of California, 130 Mulford, Hall #3144, Berkeley, CA, 94720, USA.
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Newton, MA, 02460, USA.
| |
Collapse
|
28
|
Cardona B, Rudel RA. US EPA's regulatory pesticide evaluations need clearer guidelines for considering mammary gland tumors and other mammary gland effects. Mol Cell Endocrinol 2020; 518:110927. [PMID: 32645345 PMCID: PMC9183204 DOI: 10.1016/j.mce.2020.110927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 01/05/2023]
Abstract
Breast cancer risk from pesticides may be missed if effects on mammary gland are not assessed in toxicology studies required for registration. Using US EPA's registration documents, we identified pesticides that cause mammary tumors or alter development, and evaluated how those findings were considered in risk assessment. Of 28 pesticides that produced mammary tumors, EPA's risk assessment acknowledges those tumors for nine and dismisses the remaining cases. For five pesticides that alter mammary gland development, the implications for lactation and cancer risk are not assessed. Many of the mammary-active pesticides activate pathways related to endocrine disruption: altering steroid synthesis in H295R cells, activating nuclear receptors, or affecting xenobiotic metabolizing enzymes. Clearer guidelines based on breast cancer biology would strengthen assessment of mammary gland effects, including sensitive histology and hormone measures. Potential cancer risks from several common pesticides should be re-evaluated, including: malathion, triclopyr, atrazine, propylene oxide, and 3-iodo-2-propynyl butylcarbamate (IPBC).
Collapse
|
29
|
Pedersen JE, Strandberg-Larsen K, Andersson M, Hansen J. Occupational exposure to specific organic solvents and risk of subtypes of breast cancer in a large population of Danish women, 1964-2016. Occup Environ Med 2020; 78:oemed-2020-106865. [PMID: 33093237 DOI: 10.1136/oemed-2020-106865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/09/2020] [Accepted: 09/26/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To explore associations between occupational exposure to four specific organic solvents, respectively, and female breast cancer, including subtypes. METHODS Using the Danish Cancer Registry, we identified 38 375 women under age 70 years with primary breast cancer. Five randomly selected breast-cancer-free controls per case matched on year of birth were retrieved from the Danish Civil Registration System . A nationwide pension fund was used to retrieve full employment history, and exposure to 1,1,1-trichloroethane, trichloroethylene (TCE), benzene and toluene was assessed using a job exposure matrix. ORs were estimated using conditional logistic regression with adjustment for reproductive factors and socioeconomic status. RESULTS Overall results indicated no noteworthy associations between the specific organic solvents and breast cancer before and after age 50 years, except for a small increased risk after age 50 in women exposed to TCE (OR=1.15, 95% CI: 0.97-1.36). After age 50 years, exposure to TCE was associated with a small increased risk in women with over 20 years of latency (OR=1.26, 95% CI: 1.02-1.56). Further, an increased risk of oestrogen receptor positive (ER+) tumours was also observed (OR=1.21, 95% CI: 1.01-1.47), and high cumulative exposure and longer latency also increased the risk of this subtype. CONCLUSION This study provides limited evidence supporting the association between occupational exposure to each of the four organic solvents and breast cancer. The risk of ER+ breast tumours after age 50 years may be increased in women with TCE exposure, and this possible association therefore needs further attention in future studies.
Collapse
Affiliation(s)
| | | | | | - Johnni Hansen
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
30
|
Otero C, Arredondo C, Echeverría-Vega A, Gordillo-Fuenzalida F. Penicillium spp. mycotoxins found in food and feed and their health effects. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by fungi. These compounds have different structures and target different organs, acting at different steps of biological processes inside the cell. Around 32 mycotoxins have been identified in fungal Penicillium spp. isolated from food and feed. Some of these species are important pathogens which contaminate food, such as maize, cereals, soybeans, sorghum, peanuts, among others. These microorganisms can be present in different steps of the food production process, such as plant growth, harvest, drying, elaboration, transport, and packaging. Although some Penicillium spp. are pathogens, some of them are used in elaboration of processed foods, such as cheese and sausages. This review summarises the Penicillium spp. mycotoxin toxicity, focusing mainly on the subgenus Penicillium, frequently found in food and feed. Toxicity is reviewed both in animal models and cultured cells. Finally, some aspects of their regulations are discussed.
Collapse
Affiliation(s)
- C. Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago, Chile
| | - C. Arredondo
- Laboratorio de Neuroepigenética, Instituto de Ciencias Biomédicas (ICB), Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago, Chile
| | - A. Echeverría-Vega
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - F. Gordillo-Fuenzalida
- Centro de Biotecnología de los Recursos Naturales (CENBIO), Laboratorio de Microbiología Aplicada, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel 3605, Talca, Chile
| |
Collapse
|
31
|
Werder EJ, Engel LS, Satagopan J, Blair A, Koutros S, Lerro CC, Alavanja MC, Sandler DP, Beane Freeman LE. Herbicide, fumigant, and fungicide use and breast cancer risk among farmers' wives. Environ Epidemiol 2020; 4:e097. [PMID: 32613154 PMCID: PMC7289136 DOI: 10.1097/ee9.0000000000000097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Evidence from epidemiologic and laboratory studies relating pesticides to breast cancer risk is inconsistent. Women engaging in agricultural work or living in agricultural areas may experience appreciable exposures to a wide range of pesticides, including herbicides, fumigants, and fungicides. METHODS We examined exposure to herbicides, fumigants, and fungicides in relation to breast cancer risk among farmers' wives with no prior history of breast cancer in the Agricultural Health Study. Women provided information on pesticide use, demographics, and reproductive history at enrollment (1993-1997) and at a 5-year follow-up interview. We used Cox proportional hazards regression to estimate associations (hazard ratios [HRs] and 95% confidence intervals [CIs]) between the women's and their husbands' self-reported use of individual pesticides and incident breast cancer risk. RESULTS Out of 30,594 women, 38% reported using herbicides, fumigants, or fungicides and 1,081 were diagnosed with breast cancer during a median 15.3 years of follow-up. We found elevated risk in relation to women's ever use of the fungicide benomyl (HR = 1.6; 95% CI = 0.9, 2.7) and the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) (HR = 1.6; 95% CI = 0.8, 3.1) and to their husbands' use of the herbicide 2-(2,4,5-trichlorophenoxy) propionic acid (2,4,5-TP) (HR = 1.5; 95% CI = 0.9, 2.7). We observed few other chemical associations and little evidence of differential risk by tumor estrogen receptor status or linear exposure-response relationships. CONCLUSION We did not observe clear excesses between use of specific pesticides and breast cancer risk across exposure metrics, although we did observe elevated risk associated with women's use of benomyl and 2,4,5-T and husbands' use of 2,4,5-TP.
Collapse
Affiliation(s)
- Emily J. Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence S. Engel
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Jaya Satagopan
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers-The State University of New Jersey, Piscataway, New Jersey
| | - Aaron Blair
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland
| | - Catherine C. Lerro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland
| | - Michael C. Alavanja
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina
| | - Laura E. Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland
| |
Collapse
|
32
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020. [PMID: 32399610 DOI: 10.1007/s00204-020-02752-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
33
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
34
|
Grashow R, Bessonneau V, Gerona RR, Wang A, Trowbridge J, Lin T, Buren H, Rudel RA, Morello-Frosch R. Integrating Exposure Knowledge and Serum Suspect Screening as a New Approach to Biomonitoring: An Application in Firefighters and Office Workers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4344-4355. [PMID: 31971370 PMCID: PMC7182169 DOI: 10.1021/acs.est.9b04579] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 05/18/2023]
Abstract
Firefighters (FF) are exposed to recognized and probable carcinogens, yet there are few studies of chemical exposures and associated health concerns in women FFs, such as breast cancer. Biomonitoring often requires a priori selection of compounds to be measured, and so, it may not detect relevant, lesser known, exposures. The Women FFs Biomonitoring Collaborative (WFBC) created a biological sample archive and conducted a general suspect screen (GSS) to address this data gap. Using liquid chromatography-quadrupole time-of-flight tandem mass spectrometry, we sought to identify candidate chemicals of interest in serum samples from 83 women FFs and 79 women office workers (OW) in San Francisco. We identified chemical peaks by matching accurate mass from serum samples against a custom chemical database of 722 slightly polar phenolic and acidic compounds, including many of relevance to firefighting or breast cancer etiology. We then selected tentatively identified chemicals for confirmation based on the following criteria: (1) detection frequency or peak area differences between OW and FF; (2) evidence of mammary carcinogenicity, estrogenicity, or genotoxicity; and (3) not currently measured in large biomonitoring studies. We detected 620 chemicals that matched 300 molecular formulas in the WFBC database, including phthalate metabolites, phosphate flame-retardant metabolites, phenols, pesticides, nitro and nitroso compounds, and per- and polyfluoroalkyl substances. Of the 20 suspect chemicals selected for validation, 8 were confirmed-including two alkylphenols, ethyl paraben, BPF, PFOSAA, benzophenone-3, benzyl p-hydroxybenzoate, and triphenyl phosphate-by running a matrix spike of the reference standards and using m/z, retention time, and the confirmation of at least two fragment ions as criteria for matching. GSS provides a powerful high-throughput approach to identify and prioritize novel chemicals for biomonitoring and health studies.
Collapse
Affiliation(s)
- Rachel Grashow
- Silent
Spring Institute, Newton, Massachusetts 02460, United States
| | | | - Roy R. Gerona
- Clinical
Toxicology and Environmental Biomonitoring Lab, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California San Francisco, San
Francisco, California 94143, United States
| | - Aolin Wang
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology and Reproductive Sciences & Bakar Computational Health
Sciences Institute, University of California
San Francisco, San Francisco, California 94143, United States
| | - Jessica Trowbridge
- School
of Public Health, University of California
Berkeley, Berkeley, California 94720, United States
| | - Thomas Lin
- Clinical
Toxicology and Environmental Biomonitoring Lab, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California San Francisco, San
Francisco, California 94143, United States
| | - Heather Buren
- United Fire
Service Women, San Francisco, California 94143, United States
| | - Ruthann A. Rudel
- Silent
Spring Institute, Newton, Massachusetts 02460, United States
- E-mail: . Phone: 617-332-4288 (R.A.R.)
| | - Rachel Morello-Frosch
- School
of Public Health, University of California
Berkeley, Berkeley, California 94720, United States
- Department
of Environmental Science, Policy and Management
University of California Berkeley, Berkeley, California 94720, United States
- E-mail: , Phone: 510-643-6358 (R.M.-F.)
| |
Collapse
|
35
|
An Expanded Agenda for the Primary Prevention of Breast Cancer: Charting a Course for the Future. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030714. [PMID: 31979073 PMCID: PMC7036784 DOI: 10.3390/ijerph17030714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Advances in breast cancer science, early detection, and treatment have resulted in improvements in breast cancer survival but not in breast cancer incidence. After skin cancer, breast cancer is the most common cancer diagnosis in the United States. Each year, nearly a quarter million U.S. women receive a breast cancer diagnosis, and the number continues to rise each year with the growth in the population of older women. Although much remains to be understood about breast cancer origins and prevention, action can be taken on the existing scientific knowledge to address the systemic factors that drive breast cancer risk at the population level. The California Breast Cancer Research Program funded a team at Breast Cancer Prevention Partners (BCPP) to convene leaders in advocacy, policy, and research related to breast cancer prevention from across the state of California. The objective was the development of a strategic plan to direct collective efforts toward specific and measurable objectives to reduce the incidence of breast cancer. The structured, innovative approach used by BCPP to integrate scientific evidence with community perspectives provides a model for other states to consider, to potentially change the future trajectory of breast cancer incidence in the United States.
Collapse
|
36
|
Khalis M, El Rhazi K, Fort E, Chajès V, Charaka H, Huybrechts I, Moskal A, Biessy C, Romieu I, Abbass F, El Marnissi B, Mellas N, Nejjari C, Soliman AS, Charbotel B. Occupation and risk of female breast cancer: A case-control study in Morocco. Am J Ind Med 2019; 62:838-846. [PMID: 31380573 DOI: 10.1002/ajim.23027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Breast cancer is the most frequent cancer among Moroccan women. Environmental and occupational factors may play a role in breast cancer etiology. This study aimed to investigate the association between occupation, industry, and breast cancer risk among Moroccan women. METHODS A total of 300 breast cancer cases and 300 controls (matched by age and area of residence) were included in this study. Full occupational history was collected, with a detailed description of each job held for at least 6 months. Occupations were coded according to the International Standard Classification of Occupations (ISCO 08) and the Moroccan Analytical Classification of Professions (2001). Industries were coded according to the Statistical Classification of Economic Activities in the European Community (2008). Odds ratios (ORs) and 95% confidence intervals (CIs), adjusted for potential confounders were estimated by using conditional logistic regression. RESULTS An overall decreased risk of breast cancer was observed among women doing only household work (OR = 0.32; 95% CI = 0.18-0.55). An increased risk of breast cancer was observed among women in agricultural occupations, particularly those employed as agricultural laborers (ISCO 08 code: 921; OR = 2.91; 95% CI = 1.51-5.60) and the risk increased with duration of employment (P trend = .01). Analyses by industry corroborated these findings. CONCLUSIONS Our findings suggest that occupational exposures may be associated with increased risk of breast cancer among female agricultural workers in this population. Further investigations, with advanced methods of occupational exposure assessment, are warranted to clarify the role of chemicals involved in this high-risk occupation and to suggest preventive actions and screening.
Collapse
Affiliation(s)
- Mohamed Khalis
- Department of Epidemiology, Faculty of Medicine and Pharmacy, Fez, Morocco
- IFSTTAR, UMRESTTE, UCBL, University of Lyon, Lyon, France
| | - Karima El Rhazi
- Department of Epidemiology, Faculty of Medicine and Pharmacy, Fez, Morocco
| | - Emmanuel Fort
- IFSTTAR, UMRESTTE, UCBL, University of Lyon, Lyon, France
| | - Véronique Chajès
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Hafida Charaka
- Department of Research and Development, Hassan II University Hospital of Fez, Fez, Morocco
| | - Inge Huybrechts
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Aurélie Moskal
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Carine Biessy
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Isabelle Romieu
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Fouad Abbass
- Department of Research and Development, Hassan II University Hospital of Fez, Fez, Morocco
| | - Boujemaa El Marnissi
- Department of Research and Development, Hassan II University Hospital of Fez, Fez, Morocco
| | - Nawfel Mellas
- Department of Oncology, Hassan II University Hospital of Fez, Fez, Morocco
| | - Chakib Nejjari
- Department of Public Health, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Amr S Soliman
- Department of Community Health and Social Medicine, City University of New York, New York, New York
| | | |
Collapse
|
37
|
Niehoff NM, Gammon MD, Keil AP, Nichols HB, Engel LS, Sandler DP, White AJ. Airborne mammary carcinogens and breast cancer risk in the Sister Study. ENVIRONMENT INTERNATIONAL 2019; 130:104897. [PMID: 31226564 PMCID: PMC6679994 DOI: 10.1016/j.envint.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Potentially carcinogenic hazardous air pollutants (air toxics) have been inconsistently associated with breast cancer. Whether metabolic factors modify these associations is unknown. We studied 29 non-metallic air toxics classified as mammary gland carcinogens in animal studies in relation to breast cancer risk. METHODS Participants included 49,718 women from the Sister Study. Census tract air toxic concentration estimates from the 2005 National Air Toxics Assessment were linked to enrollment residential addresses. Adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for individual air toxics were estimated using Cox regression. Body mass index (BMI) was considered a potential modifier. Relevant mixtures were identified using classification trees. RESULTS Over follow-up (average = 8.4 years), 2975 women were newly diagnosed with breast cancer (invasive or ductal carcinoma in situ). Several air toxics, including methylene chloride, polycyclic organic matter, propylene dichloride, and styrene, were associated with increased risk. Of these, methylene chloride was most consistently associated with risk across multiple analyses. It was associated with overall (HRquintile 4vs1 = 1.21 (95%CI = 1.07-1.38)) and estrogen receptor positive (ER+) invasive breast cancer (HRquintile 4vs1 = 1.28 (95%CI = 1.08-1.52)) in individual pollutant models, although no dose-response was observed. Associations were stronger among overweight/obese (vs. non-overweight/obese) women (p < 0.05) for six air toxics. The classification tree identified combinations of age, methylene chloride, BMI, and four other toxics (propylene dichloride, ethylene dibromide, ethylidene dichloride, styrene) related to overall breast cancer. CONCLUSIONS Some non-metallic air toxics, particularly methylene chloride, were associated with the hazard for overall and ER+ breast cancer. Overweight/obese women may be particularly susceptible to air toxics.
Collapse
Affiliation(s)
- Nicole M Niehoff
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America.
| | - Marilie D Gammon
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Alexander P Keil
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Hazel B Nichols
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America
| |
Collapse
|
38
|
Niehoff NM, Gammon MD, Keil AP, Nichols HB, Engel LS, Taylor JA, White AJ, Sandler DP. Hazardous air pollutants and telomere length in the Sister Study. Environ Epidemiol 2019; 3:e053. [PMID: 32984752 PMCID: PMC7517667 DOI: 10.1097/ee9.0000000000000053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Telomeres are vital for genomic integrity and telomere length has been linked to many adverse health outcomes. Some hazardous air pollutants, or air toxics, increase oxidative stress and inflammation, two possible determinants of shortened telomere length. No studies have examined air toxic-telomere length associations in a non-occupational setting. METHODS This study included 731 Sister Study participants (enrolled 2003-2007) who were randomly selected to assess telomere length in baseline blood samples. Multiplex qPCR was used to determine telomere to single copy gene (T/S) ratios. Census tract concentration estimates of 29 air toxics from the 2005 National Air Toxics Assessment were linked to baseline residential addresses. Air toxics were classified into tertile-based categories of the exposure. Multivariable linear regression was used to estimate β coefficients and 95% confidence intervals (CI) in single pollutant models. Multipollutant groups were identified with regression trees. RESULTS The average T/S ratio was 1.24. Benzidine (T3vsT1 β= -0.08; 95% CI: -0.14, -0.01) and 1,4-dioxane (T3vsT1 β= -0.06; 95% CI: -0.13, 0.00) in particular, as well as carbon tetrachloride, chloroprene, ethylene dibromide, and propylene dichloride, were associated with shorter relative telomere length. Benzidine (p=0.02) and 1,4-dioxane (p=0.06) demonstrated some evidence of a monotonic trend. The regression tree identified age, BMI, physical activity, ethylene oxide, acrylonitrile, ethylidene dichloride, propylene dichloride, and styrene in multipollutant groups related to telomere length. CONCLUSIONS In this first study of air toxics and telomere length in a non-occupational setting, several air toxics, particularly 1,4-dioxane and benzidine, were associated with shorter relative telomere length.
Collapse
Affiliation(s)
- Nicole M. Niehoff
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Marilie D. Gammon
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Alexander P. Keil
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Hazel B. Nichols
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence S. Engel
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Jack A. Taylor
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
39
|
DeMatteo R, DeMatteo D. Workers' Fight for Justice: A Retrospective Exposure Profile Study of the GE Factory in Peterborough, Ontario. New Solut 2019; 29:138-166. [PMID: 31142206 DOI: 10.1177/1048291119850779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Occupational disease recognition is often hampered by lack of historical exposure data. This paper describes research documenting major chemical exposures of Canadian General Electric workers in a plant in Peterborough between 1945 and 2000. Workers’ experiences with diseases over forty years, and their frustration with the continual denial that these were work-related, drove this study. Researchers used qualitative methods, participatory action research, hazard mapping, and risk assessment. A report that incorporates this study’s findings documents extremely toxic exposures that placed Canadian General Electric workers at a disproportionate risk of occupational diseases. Since the report’s release, the Ontario Workplace Safety and Insurance Board reconsidered 233 previously denied claims in the light of “new evidence” and overturned one half of those it reviewed. The retrospective exposure profile methods used in this study may serve as a useful model for workers and their organization when plants close.
Collapse
Affiliation(s)
- Robert DeMatteo
- 1 Occupational Health Clinic for Ontario Workers, Toronto, ON, Canada
| | - Dale DeMatteo
- 1 Occupational Health Clinic for Ontario Workers, Toronto, ON, Canada
| |
Collapse
|
40
|
Deciphering the Molecular Mechanisms Sustaining the Estrogenic Activity of the Two Major Dietary Compounds Zearalenone and Apigenin in ER-Positive Breast Cancer Cell Lines. Nutrients 2019; 11:nu11020237. [PMID: 30678243 PMCID: PMC6412274 DOI: 10.3390/nu11020237] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
The flavone apigenin and the mycotoxin zearalenone are two major compounds found in the human diet which bind estrogen receptors (ERs), and therefore influence ER activity. However, the underlying mechanisms are not well known. To unravel the molecular mechanisms that could explain the differential effect of zearalenone and apigenin on ER-positive breast cancer cell proliferation, gene-reporter assays, chromatin immunoprecipitation (ChIP) experiments, proliferation assays and transcriptomic analysis were performed. We found that zearalenone and apigenin transactivated ERs and promoted the expression of estradiol (E2)-responsive genes. However, zearalenone clearly enhanced cellular proliferation, while apigenin appeared to be antiestrogenic in the presence of E2 in both ER-positive breast cancer cell lines, MCF-7 and T47D. The transcriptomic analysis showed that both compounds regulate gene expression in the same way, but with differences in intensity. Two major sets of genes were identified; one set was linked to the cell cycle and the other set was linked to stress response and growth arrest. Our results show that the transcription dynamics in gene regulation induced by apigenin were somehow different with zearalenone and E2 and may explain the differential effect of these compounds on the phenotype of the breast cancer cell. Together, our results confirmed the potential health benefit effect of apigenin, while zearalenone appeared to be a true endocrine-disrupting compound.
Collapse
|
41
|
Gilbertson M, Brophy J. Causality Advocacy: Workers' Compensation Cases as Resources for Identifying and Preventing Diseases of Modernity. New Solut 2018; 28:704-725. [PMID: 30463468 DOI: 10.1177/1048291118810900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An appeal process for an injured worker compensation case is a unique opportunity to debate and integrate evidence concerning a potential causal relationship between observations of occupational disease and exposures to various putative risk factors that may also be of significance in public health protection. Through application of Hill's indicia to the evidence presented in a recent appeal process concerning a breast cancer case for a female border guard, a novel epidemic, tentatively called "occupational BRCAness" has been identified and a causal relationship with exposures to traffic-related air pollution and shift work and possibly secondhand tobacco smoke is inferred. Application of the audit method by worker advocates to other compensation appeals processes for other diseases might similarly yield causal relations with exposures to occupational risk factors with relevance to public health.
Collapse
Affiliation(s)
- Michael Gilbertson
- 1 Occupational and Environmental Health Research Group, Centre for Public Health and Population Health Research, University of Stirling, Scotland, UK
| | - James Brophy
- 1 Occupational and Environmental Health Research Group, Centre for Public Health and Population Health Research, University of Stirling, Scotland, UK.,2 Department of Sociology, Anthropology, and Criminology, University of Windsor, Ontario, Canada
| |
Collapse
|
42
|
Affiliation(s)
- Robert A. Hiatt
- Department of Epidemiology and Biostatistics and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
43
|
Hart JE, Bertrand KA, DuPre N, James P, Vieira VM, VoPham T, Mittleman MR, Tamimi RM, Laden F. Exposure to hazardous air pollutants and risk of incident breast cancer in the nurses' health study II. Environ Health 2018; 17:28. [PMID: 29587753 PMCID: PMC5870204 DOI: 10.1186/s12940-018-0372-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/13/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Findings from a recent prospective cohort study in California suggested increased risk of breast cancer associated with higher exposure to certain carcinogenic and estrogen-disrupting hazardous air pollutants (HAPs). However, to date, no nationwide studies have evaluated these possible associations. Our objective was to examine the impacts of mammary carcinogen and estrogen disrupting HAPs on risk of invasive breast cancer in a nationwide cohort. METHODS We assigned HAPs from the US Environmental Protection Agency's 2002 National Air Toxics Assessment to 109,239 members of the nationwide, prospective Nurses' Health Study II (NHSII). Risk of overall invasive, estrogen receptor (ER)-positive (ER+), and ER-negative (ER-) breast cancer with increasing quartiles of exposure were assessed in time-varying multivariable proportional hazards models, adjusted for traditional breast cancer risk factors. RESULTS A total of 3321 invasive cases occurred (2160 ER+, 558 ER-) during follow-up 1989-2011. Overall, there was no consistent pattern of elevated risk of the HAPs with risk of breast cancer. Suggestive elevations were only seen with increasing 1,2-dibromo-3-chloropropane exposures (multivariable adjusted HR of overall breast cancer = 1.12, 95% CI: 0.98-1.29; ER+ breast cancer HR = 1.09; 95% CI: 0.92, 1.30; ER- breast cancer HR = 1.14; 95% CI: 0.81, 1.61; each in the top exposure quartile compared to the lowest). CONCLUSIONS Exposures to HAPs during adulthood were not consistently associated with an increased risk of overall or estrogen-receptor subtypes of invasive breast cancer in this nationwide cohort of women.
Collapse
Affiliation(s)
- Jaime E. Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA 02215 USA
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | | | - Natalie DuPre
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Peter James
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
| | | | - Trang VoPham
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA 02215 USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Maggie R. Mittleman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA 02215 USA
| | - Rulla M. Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA 02215 USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA 02215 USA
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
44
|
Hart JE, Bertrand KA, DuPre N, James P, Vieira VM, VoPham T, Mittleman MR, Tamimi RM, Laden F. Exposure to hazardous air pollutants and risk of incident breast cancer in the nurses' health study II. Environ Health 2018. [PMID: 29587753 DOI: 10.1186/sl2940-018-0372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Findings from a recent prospective cohort study in California suggested increased risk of breast cancer associated with higher exposure to certain carcinogenic and estrogen-disrupting hazardous air pollutants (HAPs). However, to date, no nationwide studies have evaluated these possible associations. Our objective was to examine the impacts of mammary carcinogen and estrogen disrupting HAPs on risk of invasive breast cancer in a nationwide cohort. METHODS We assigned HAPs from the US Environmental Protection Agency's 2002 National Air Toxics Assessment to 109,239 members of the nationwide, prospective Nurses' Health Study II (NHSII). Risk of overall invasive, estrogen receptor (ER)-positive (ER+), and ER-negative (ER-) breast cancer with increasing quartiles of exposure were assessed in time-varying multivariable proportional hazards models, adjusted for traditional breast cancer risk factors. RESULTS A total of 3321 invasive cases occurred (2160 ER+, 558 ER-) during follow-up 1989-2011. Overall, there was no consistent pattern of elevated risk of the HAPs with risk of breast cancer. Suggestive elevations were only seen with increasing 1,2-dibromo-3-chloropropane exposures (multivariable adjusted HR of overall breast cancer = 1.12, 95% CI: 0.98-1.29; ER+ breast cancer HR = 1.09; 95% CI: 0.92, 1.30; ER- breast cancer HR = 1.14; 95% CI: 0.81, 1.61; each in the top exposure quartile compared to the lowest). CONCLUSIONS Exposures to HAPs during adulthood were not consistently associated with an increased risk of overall or estrogen-receptor subtypes of invasive breast cancer in this nationwide cohort of women.
Collapse
Affiliation(s)
- Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA, 02215, USA.
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | | | - Natalie DuPre
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter James
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | | | - Trang VoPham
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA, 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Maggie R Mittleman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA, 02215, USA
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA, 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA, 02215, USA
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
45
|
Garcia E, Bradshaw PT, Eisen EA. Breast Cancer Incidence and Exposure to Metalworking Fluid in a Cohort of Female Autoworkers. Am J Epidemiol 2018; 187:539-547. [PMID: 29020170 PMCID: PMC11460202 DOI: 10.1093/aje/kwx264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/20/2017] [Indexed: 11/14/2022] Open
Abstract
Breast cancer is the leading cancer diagnosed among women, and environmental studies have produced few leads on modifiable risk factors for breast cancer. Following an Institute of Medicine recommendation for occupational studies of women highly exposed to potential breast cancer risk factors, we took advantage of an existing cohort of 4,503 female autoworkers in Michigan exposed to metalworking fluid (MWF), complex mixtures of oils and chemicals widely used in metal manufacturing worldwide. Cox proportional hazards models were fit to estimate hazard ratios for incident breast cancer (follow-up, 1985-2013) and cumulative exposure (20-year lag) to straight mineral oils (a known human carcinogen) and water-based soluble and synthetic MWF. Because the state cancer registry began decades after the cohort was defined, we restricted our analyses to subcohorts of women hired closer to the start of follow-up. Among those hired after 1969, the hazard ratio associated with a 1 interquartile-range increase in straight MWF exposure was 1.13 (95% confidence interval: 1.03, 1.23). In separate analyses of premenopausal breast cancer, defined by age at diagnosis, the hazard ratio was elevated for exposure to synthetic MWF (chemical lubricants with no oil content), possibly suggesting a different mechanism in the younger women with breast cancer. This study adds to the limited literature regarding quantitative chemical exposures and breast cancer risk.
Collapse
Affiliation(s)
- Erika Garcia
- Environmental Health Sciences Division, School of Public Health, University of California at Berkeley, Berkeley, California
| | - Patrick T Bradshaw
- Epidemiology Division, School of Public Health, University of California at Berkeley, Berkeley, California
| | - Ellen A Eisen
- Environmental Health Sciences Division, School of Public Health, University of California at Berkeley, Berkeley, California
| |
Collapse
|
46
|
Sapouckey SA, Kassotis CD, Nagel SC, Vandenberg LN. Prenatal Exposure to Unconventional Oil and Gas Operation Chemical Mixtures Altered Mammary Gland Development in Adult Female Mice. Endocrinology 2018; 159:1277-1289. [PMID: 29425295 PMCID: PMC5809159 DOI: 10.1210/en.2017-00866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
Unconventional oil and gas (UOG) operations, which combine hydraulic fracturing (fracking) and directional drilling, involve the use of hundreds of chemicals, including many with endocrine-disrupting properties. Two previous studies examined mice exposed during early development to a 23-chemical mixture of UOG compounds (UOG-MIX) commonly used or produced in the process. Both male and female offspring exposed prenatally to one or more doses of UOG-MIX displayed alterations to endocrine organ function and serum hormone concentrations. We hypothesized that prenatal UOG-MIX exposure would similarly disrupt development of the mouse mammary gland. Female C57Bl/6 mice were exposed to ~3, ~30, ~ 300, or ~3000 μg/kg/d UOG-MIX from gestational day 11 to birth. Although no effects were observed on the mammary glands of these females before puberty, in early adulthood, females exposed to 300 or 3000 μg/kg/d UOG-MIX developed more dense mammary epithelial ducts; females exposed to 3 μg/kg/d UOG-MIX had an altered ratio of apoptosis to proliferation in the mammary epithelium. Furthermore, adult females from all UOG-MIX-treated groups developed intraductal hyperplasia that resembled terminal end buds (i.e., highly proliferative structures typically seen at puberty). These results suggest that the mammary gland is sensitive to mixtures of chemicals used in UOG production at exposure levels that are environmentally relevant. The effect of these findings on the long-term health of the mammary gland, including its lactational capacity and its risk of cancer, should be evaluated in future studies.
Collapse
Affiliation(s)
- Sarah A. Sapouckey
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Christopher D. Kassotis
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri 65211
| | - Susan C. Nagel
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri 65211
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
47
|
Grashow RG, De La Rosa VY, Watford SM, Ackerman JM, Rudel RA. BCScreen: A gene panel to test for breast carcinogenesis in chemical safety screening. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 5:16-24. [PMID: 31218268 PMCID: PMC6583811 DOI: 10.1016/j.comtox.2017.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Targeted gene lists have been used in clinical settings to specify breast tumor type, and to predict breast cancer prognosis and response to treatment. Separately, panels have been curated to predict systemic toxicity and xenoestrogen activity as a part of chemical screening strategies. However, currently available panels do not specifically target biological processes relevant to breast development and carcinogenesis. We have developed a gene panel called the Breast Carcinogen Screen (BCScreen) as a tool to identify potential breast carcinogens and characterize mechanisms of toxicity. First, we used four seminal reviews to identify 14 key characteristics of breast carcinogenesis, such as apoptosis, immunomodulation, and genotoxicity. Then, using a hybrid data and knowledge-driven framework, we systematically combined information from whole transcriptome data from genomic databases, biomedical literature, the CTD chemical-gene interaction database, and primary literature review to generate a panel of 500 genes relevant to breast carcinogenesis. We used normalized pointwise mutual information (NPMI) to rank genes that frequently co-occurred with key characteristics in biomedical literature. We found that many genes identified for BCScreen were not included in prognostic breast cancer or systemic toxicity panels. For example, more than half of BCScreen genes were not included in the Tox21 S1500+ general toxicity gene list. Of the 230 that did overlap between the two panels, representation varied across characteristics of carcinogenesis ranging from 21% for genes associated with epigenetics to 82% for genes associated with xenobiotic metabolism. Enrichment analysis of BCScreen identified pathways and processes including response to steroid hormones, cancer, cell cycle, apoptosis, DNA damage and breast cancer. The biologically-based systematic approach to gene prioritization demonstrated here provides a flexible framework for creating disease-focused gene panels to support discovery related to etiology. With validation, BCScreen may also be useful for toxicological screening relevant to breast carcinogenesis.
Collapse
Affiliation(s)
- Rachel G. Grashow
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States
| | - Vanessa Y. De La Rosa
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA, United States
| | - Sean M. Watford
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, NC, United States
| | - Janet M. Ackerman
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States
| | - Ruthann A. Rudel
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States
| |
Collapse
|
48
|
Costantini AS, Gorini G, Consonni D, Miligi L, Giovannetti L, Quinn M. Exposure to Benzene and Risk of Breast Cancer among Shoe Factory Workers in Italy. TUMORI JOURNAL 2018; 95:8-12. [DOI: 10.1177/030089160909500102] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aims and background Evidence of the association between leukemia and benzene exposure has been provided by several epidemiological studies. An increased risk of breast cancer among women exposed to benzene has also been suggested. The aim of this study was to analyze breast cancer risk in a cohort of 1,002 women exposed to benzene in a shoe factory in Florence, Italy, where an excess of leukemia in men was reported. Methods The cohort of women at work on January 1st, 1950, was followed from 1950 to 2003 for mortality and from 1985 to 2000 for incidence of breast cancer. For a sub-cohort of 797 women, cumulative exposure to benzene was available. Results Standardized mortality ratios were obtained for the 797 women for whom information on cumulative exposure was available. For those with <30 years of latency the standardized mortality ratio was 58.5 (95% CI, 18.9–181.2, based on 3 deaths) and 151.1 (95% CI, 78.6–290.3, based on 9 deaths) for ≥30 years of latency. In the >40 ppm-year and ≥30 year latency period category, the standardized mortality ratio was 166.0 (95% CI, 62.3–442.2, based on 4 deaths). The standardized incidence ratio for women with a latency period <30 years was 140.9 (95% CI, 75.8–261.9, based on 10 cases) and 108.2 (95% CI, 64.1–182.7) for a latency period ≥30 years. For cumulative exposure >40 ppm-years and a latency period <30 years, the standardized incidence ratio was 211.9 (95% CI, 29.9–1504.1, based on 1 case). Conclusions The study moderately supports the hypothesis that benzene represents a risk factor for breast cancer.
Collapse
Affiliation(s)
- Adele Seniori Costantini
- Occupational and Environmental Epidemiology Unit, ISPO Cancer Prevention and Research Institute, Florence, Italy
| | - Giuseppe Gorini
- Occupational and Environmental Epidemiology Unit, ISPO Cancer Prevention and Research Institute, Florence, Italy
| | - Dario Consonni
- Department of Occupational Health, Istituti Clinici di Perfezionamento, Milano, Italy
| | - Lucia Miligi
- Occupational and Environmental Epidemiology Unit, ISPO Cancer Prevention and Research Institute, Florence, Italy
| | - Lucia Giovannetti
- Occupational and Environmental Epidemiology Unit, ISPO Cancer Prevention and Research Institute, Florence, Italy
| | - Margaret Quinn
- Department of Work Environment, University of Massachusetts, Lowell, MA, USA
| |
Collapse
|
49
|
Rodgers KM, Udesky JO, Rudel RA, Brody JG. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. ENVIRONMENTAL RESEARCH 2018; 160:152-182. [PMID: 28987728 DOI: 10.1016/j.envres.2017.08.045] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Many common environmental chemicals are mammary gland carcinogens in animal studies, activate relevant hormonal pathways, or enhance mammary gland susceptibility to carcinogenesis. Breast cancer's long latency and multifactorial etiology make evaluation of these chemicals in humans challenging. OBJECTIVE For chemicals previously identified as mammary gland toxicants, we evaluated epidemiologic studies published since our 2007 review. We assessed whether study designs captured relevant exposures and disease features suggested by toxicological and biological evidence of genotoxicity, endocrine disruption, tumor promotion, or disruption of mammary gland development. METHODS We systematically searched the PubMed database for articles with breast cancer outcomes published in 2006-2016 using terms for 134 environmental chemicals, sources, or biomarkers of exposure. We critically reviewed the articles. RESULTS We identified 158 articles. Consistent with experimental evidence, a few key studies suggested higher risk for exposures during breast development to dichlorodiphenyltrichloroethane (DDT), dioxins, perfluorooctane-sulfonamide (PFOSA), and air pollution (risk estimates ranged from 2.14 to 5.0), and for occupational exposure to solvents and other mammary carcinogens, such as gasoline components (risk estimates ranged from 1.42 to 3.31). Notably, one 50-year cohort study captured exposure to DDT during several critical windows for breast development (in utero, adolescence, pregnancy) and when this chemical was still in use. Most other studies did not assess exposure during a biologically relevant window or specify the timing of exposure. Few studies considered genetic variation, but the Long Island Breast Cancer Study Project reported higher breast cancer risk for polycyclic aromatic hydrocarbons (PAHs) in women with certain genetic variations, especially in DNA repair genes. CONCLUSIONS New studies that targeted toxicologically relevant chemicals and captured biological hypotheses about genetic variants or windows of breast susceptibility added to evidence of links between environmental chemicals and breast cancer. However, many biologically relevant chemicals, including current-use consumer product chemicals, have not been adequately studied in humans. Studies are challenged to reconstruct exposures that occurred decades before diagnosis or access biological samples stored that long. Other problems include measuring rapidly metabolized chemicals and evaluating exposure to mixtures.
Collapse
Affiliation(s)
- Kathryn M Rodgers
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| | - Julia O Udesky
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| | - Julia Green Brody
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| |
Collapse
|
50
|
|