1
|
Nardos R, Kowalski TJ, Houpt TA. Increased independent ingestion in Anorexia (anx) mutant mice. Physiol Behav 2025; 295:114908. [PMID: 40203962 DOI: 10.1016/j.physbeh.2025.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/15/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Anorexia mutant mice (anx/anx) stop gaining weight by postnatal day 14 and die from starvation within 3-4 weeks. Their defect is not conclusively identified: a point mutation in Tyro3 is present and modulates the phenotype. The behavioral or physiological mechanisms causing starvation are unknown. To determine if anx causes decreased independent ingestion, pups were given short-term access to half-and-half on postnatal days 14 and 19. The anx mutants ingested similar or larger amounts than wildtype on both days. The anx/anx mutation may decrease growth not by hypophagia per se, but as result of other complications such as decreased maternally-dependent suckling or failure to transition to independent ingestion.
Collapse
Affiliation(s)
- Rahel Nardos
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.
| | | | - Thomas A Houpt
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.
| |
Collapse
|
2
|
Guzmán-Ruíz MA, Guerrero Vargas NN, Ramírez-Carreto RJ, González-Orozco JC, Torres-Hernández BA, Valle-Rodríguez M, Guevara-Guzmán R, Chavarría A. Microglia in physiological conditions and the importance of understanding their homeostatic functions in the arcuate nucleus. Front Immunol 2024; 15:1392077. [PMID: 39295865 PMCID: PMC11408222 DOI: 10.3389/fimmu.2024.1392077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Microglia are highly dynamic cells that have been mainly studied under pathological conditions. The present review discusses the possible implication of microglia as modulators of neuronal electrical responses in physiological conditions and hypothesizes how these cells might modulate hypothalamic circuits in health and during obesity. Microglial cells studied under physiological conditions are highly diverse, depending on the developmental stage and brain region. The evidence also suggests that neuronal electrical activity modulates microglial motility to control neuronal excitability. Additionally, we show that the expression of genes associated with neuron-microglia interaction is down-regulated in obese mice compared to control-fed mice, suggesting an alteration in the contact-dependent mechanisms that sustain hypothalamic arcuate-median eminence neuronal function. We also discuss the possible implication of microglial-derived signals for the excitability of hypothalamic neurons during homeostasis and obesity. This review emphasizes the importance of studying the physiological interplay between microglia and neurons to maintain proper neuronal circuit function. It aims to elucidate how disruptions in the normal activities of microglia can adversely affect neuronal health.
Collapse
Affiliation(s)
- Mara A Guzmán-Ruíz
- Programa de Becas Post-doctorales, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Natalí N Guerrero Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ricardo Jair Ramírez-Carreto
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Michelle Valle-Rodríguez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Salvi J, Andreoletti P, Audinat E, Balland E, Ben Fradj S, Cherkaoui-Malki M, Heurtaux T, Liénard F, Nédélec E, Rovère C, Savary S, Véjux A, Trompier D, Benani A. Microgliosis: a double-edged sword in the control of food intake. FEBS J 2024; 291:615-631. [PMID: 35880408 DOI: 10.1111/febs.16583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 02/16/2024]
Abstract
Maintaining energy balance is essential for survival and health. This physiological function is controlled by the brain, which adapts food intake to energy needs. Indeed, the brain constantly receives a multitude of biological signals that are derived from digested foods or that originate from the gastrointestinal tract, energy stores (liver and adipose tissues) and other metabolically active organs (muscles). These signals, which include circulating nutrients, hormones and neuronal inputs from the periphery, collectively provide information on the overall energy status of the body. In the brain, several neuronal populations can specifically detect these signals. Nutrient-sensing neurons are found in discrete brain areas and are highly enriched in the hypothalamus. In turn, specialized brain circuits coordinate homeostatic responses acting mainly on appetite, peripheral metabolism, activity and arousal. Accumulating evidence shows that hypothalamic microglial cells located at the vicinity of these circuits can influence the brain control of energy balance. However, microglial cells could have opposite effects on energy balance, that is homeostatic or detrimental, and the conditions for this shift are not totally understood yet. One hypothesis relies on the extent of microglial activation, and nutritional lipids can considerably change it.
Collapse
Affiliation(s)
- Juliette Salvi
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Pierre Andreoletti
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Etienne Audinat
- IGF, Université de Montpellier, CNRS, Inserm, Montpellier, France
| | - Eglantine Balland
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Notting Hill, Australia
| | - Selma Ben Fradj
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | | | - Tony Heurtaux
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Fabienne Liénard
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Emmanuelle Nédélec
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Carole Rovère
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Stéphane Savary
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Anne Véjux
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Alexandre Benani
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
4
|
Plasma Concentrations of Short-Chain Fatty Acids in Active and Recovered Anorexia Nervosa. Nutrients 2022; 14:nu14245247. [PMID: 36558405 PMCID: PMC9781195 DOI: 10.3390/nu14245247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Anorexia nervosa (AN) is one of the most lethal psychiatric disorders. To date, we lack adequate knowledge about the (neuro)biological mechanisms of this disorder to inform evidence-based pharmacological treatment. Gut dysbiosis is a trending topic in mental health, including AN. Communication between the gut microbiota and the brain is partly mediated by metabolites produced by the gut microbiota such as short-chain fatty acids (SCFA). Previous research has suggested a role of SCFA in weight regulation (e.g., correlations between specific SCFA-producing bacteria and BMI have been demonstrated). Moreover, fecal SCFA concentrations are reported to be altered in active AN. However, data concerning SCFA concentrations in individuals who have recovered from AN are limited. In the present study, we analyzed and compared the plasma concentrations of seven SCFA (acetic-, butyric-, formic-, isobutyric-, isovaleric-, propionic-, and succinic acid) in females with active AN (n = 109), recovered from AN (AN-REC, n = 108), and healthy-weight age-matched controls (CTRL, n = 110), and explored correlations between SCFA concentrations and BMI. Significantly lower plasma concentrations of butyric, isobutyric-, and isovaleric acid were detected in AN as well as AN-REC compared with CTRL. We also show significant correlations between plasma concentrations of SCFA and BMI. These results encourage studies evaluating whether interventions directed toward altering gut microbiota and SCFA could support weight restoration in AN.
Collapse
|
5
|
Mavlyutov TA, Myrah JJ, Chauhan AK, Liu Y, McDowell CM. Fibronectin extra domain A (FN-EDA) causes glaucomatous trabecular meshwork, retina, and optic nerve damage in mice. Cell Biosci 2022; 12:72. [PMID: 35619185 PMCID: PMC9137085 DOI: 10.1186/s13578-022-00800-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Elevated intraocular pressure (IOP) is a major risk factor for the development and progression of primary open angle glaucoma and is due to trabecular meshwork (TM) damage. Here, we investigate the role of an endogenous Toll-like receptor 4 (TLR4) ligand, FN-EDA, in the development of glaucoma utilizing a transgenic mouse strain (B6.EDA+/+) that constitutively expresses only FN containing the EDA isoform. METHODS Eyes from C57BL6/J (wild-type), B6.EDA+/+ (constitutively active EDA), B6.EDA-/- (EDA null) mice were processed for electron microscopy and consecutive images of the entire length of the TM and Schlemm's canal (SC) from anterior to posterior were collected and montaged into a single image. ECM accumulation, basement membrane length, and size and number of giant vacuoles were quantified by ImageJ analysis. Tlr4 and Iba1 expression in the TM and ONH cells was conducted using RNAscope in situ hybridization and immunohistochemistry protocols. IOP was measured using a rebound tonometer, ON damage assessed by PPD stain, and RGC loss quantified in RBPMS labeled retina flat mounts. RESULTS Ultrastructure analyses show the TM of B6.EDA+/+ mice have significantly increased accumulation of ECM between TM beams with few empty spaces compared to C57BL/6 J mice (p < 0.05). SC basement membrane is thicker and more continuous in B6.EDA+/+ mice compared to C57BL/6 J. No significant structural differences are detected in the TM of EDA null mice. Tlr4 and Iba1 expression is increased in the TM of B6.EDA+/+ mice compared to C57BL/6 J eyes (p < 0.05). IOP is significantly higher in B6.EDA+/+ mice compared to C57BL/6 J eyes (p < 0.001), and significant ON damage (p < 0.001) and RGC loss (p < 0.05) detected at 1 year of age. Tlr4 mRNA is expressed in mouse ONH cells, and is present in ganglion cell axons, microglia, and astrocytes. There is a significant increase in the area occupied by Iba-1 positive microglia cells in the ONH of B6.EDA+/+ mice compared to C57BL/6 J control eyes (p < 0.01). CONCLUSIONS B6.EDA+/+ mice have increased ECM accumulation in the TM, elevated IOP, enhanced proinflammatory changes in the ONH, loss of RGCs, and ONH damage. These data suggest B6.EDA+/+ mice recapitulate many aspects of glaucomatous damage.
Collapse
Affiliation(s)
- Timur A. Mavlyutov
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Justin J. Myrah
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Anil K. Chauhan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA USA
| | - Yang Liu
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
6
|
Duriez P, Nilsson IAK, Le Thuc O, Alexandre D, Chartrel N, Rovere C, Chauveau C, Gorwood P, Tolle V, Viltart O. Exploring the Mechanisms of Recovery in Anorexia Nervosa through a Translational Approach: From Original Ecological Measurements in Human to Brain Tissue Analyses in Mice. Nutrients 2021; 13:nu13082786. [PMID: 34444945 PMCID: PMC8401511 DOI: 10.3390/nu13082786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022] Open
Abstract
Anorexia nervosa (AN) is a severe eating disorder where caloric restriction, excessive physical activity and metabolic alterations lead to life-threatening situations. Despite weight restoration after treatment, a significant part of patients experience relapses. In this translational study, we combined clinical and preclinical approaches. We describe preliminary data about the effect of weight gain on the symptomatology of patients suffering from acute AN (n = 225) and partially recovered (n = 41). We measured more precisely physical activity with continuous cardiac monitoring in a sub-group (n = 68). Using a mouse model, we investigated whether a long-term food restriction followed by nutritional recovery associated or not with physical activity may differentially impact peripheral and central homeostatic regulation. We assessed the plasma concentration of acyl ghrelin, desacyl ghrelin and leptin and the mRNA expression of hypothalamic neuropeptides and their receptors. Our data show an effect of undernutrition history on the level of physical activity in AN. The preclinical model supports an important role of physical activity in the recovery process and points out the leptin system as one factor that can drive a reliable restoration of metabolic variables through the hypothalamic regulation of neuropeptides involved in feeding behavior.
Collapse
Affiliation(s)
- Philibert Duriez
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
- GHU Paris Psychiatry and Neurosciences, Hospital Sainte-Anne, F-75014 Paris, France
| | - Ida A. K. Nilsson
- Department of Molecular Medicine & Surgery, Karolinska Institutet, Centre for Eating Disorders Innovation (CEDI), Medical University, Karolinska Institutet, S-17176 Stockholm, Sweden;
| | - Ophelia Le Thuc
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), University of Nice-Sophia Antipolis, F-06560 Valbonne, France; (O.L.T.); (C.R.)
| | - David Alexandre
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Normandie, UNIROUEN, F-76821 Mont-Saint-Aignan, France; (D.A.); (N.C.)
| | - Nicolas Chartrel
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Normandie, UNIROUEN, F-76821 Mont-Saint-Aignan, France; (D.A.); (N.C.)
| | - Carole Rovere
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), University of Nice-Sophia Antipolis, F-06560 Valbonne, France; (O.L.T.); (C.R.)
| | - Christophe Chauveau
- Marrow Adiposity and Bone Laboratory (MABLab), University of Littoral Côté d’Opale, CHRU Lille, F-62327 Boulogne sur Mer, France;
- Faculty of Sciences and Technologies, University of Lille, F-59650 Villeneuve d’Ascq, France
| | - Philip Gorwood
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
- GHU Paris Psychiatry and Neurosciences, Hospital Sainte-Anne, F-75014 Paris, France
| | - Virginie Tolle
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
| | - Odile Viltart
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
- Faculty of Sciences and Technologies, University of Lille, F-59650 Villeneuve d’Ascq, France
- Correspondence: ; Tel.: +33-6-76-88-05-06
| |
Collapse
|
7
|
Butler MJ, Perrini AA, Eckel LA. The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders. Nutrients 2021; 13:nu13020500. [PMID: 33546416 PMCID: PMC7913528 DOI: 10.3390/nu13020500] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 12/23/2022] Open
Abstract
There is a growing recognition that both the gut microbiome and the immune system are involved in a number of psychiatric illnesses, including eating disorders. This should come as no surprise, given the important roles of diet composition, eating patterns, and daily caloric intake in modulating both biological systems. Here, we review the evidence that alterations in the gut microbiome and immune system may serve not only to maintain and exacerbate dysregulated eating behavior, characterized by caloric restriction in anorexia nervosa and binge eating in bulimia nervosa and binge eating disorder, but may also serve as biomarkers of increased risk for developing an eating disorder. We focus on studies examining gut dysbiosis, peripheral inflammation, and neuroinflammation in each of these eating disorders, and explore the available data from preclinical rodent models of anorexia and binge-like eating that may be useful in providing a better understanding of the biological mechanisms underlying eating disorders. Such knowledge is critical to developing novel, highly effective treatments for these often intractable and unremitting eating disorders.
Collapse
Affiliation(s)
- Michael J. Butler
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Alexis A. Perrini
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
| | - Lisa A. Eckel
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
- Correspondence: ; Tel.: +1-850-644-3480
| |
Collapse
|
8
|
Chudtong M, Gaetano AD. A mathematical model of food intake. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1238-1279. [PMID: 33757185 DOI: 10.3934/mbe.2021067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metabolic, hormonal and psychological determinants of the feeding behavior in humans are numerous and complex. A plausible model of the initiation, continuation and cessation of meals taking into account the most relevant such determinants would be very useful in simulating food intake over hours to days, thus providing input into existing models of nutrient absorption and metabolism. In the present work, a meal model is proposed, incorporating stomach distension, glycemic variations, ghrelin dynamics, cultural habits and influences on the initiation and continuation of meals, reflecting a combination of hedonic and appetite components. Given a set of parameter values (portraying a single subject), the timing and size of meals are stochastic. The model parameters are calibrated so as to reflect established medical knowledge on data of food intake from the National Health and Nutrition Examination Survey (NHANES) database during years 2015 and 2016.
Collapse
Affiliation(s)
- Mantana Chudtong
- Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence in Mathematics, the Commission on Higher Education, Si Ayutthaya Rd., Bangkok 10400, Thailand
| | - Andrea De Gaetano
- Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica (CNR-IRIB), Palermo, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica "A. Ruberti" (CNR-IASI), Rome, Italy
| |
Collapse
|
9
|
Zhang J, Dulawa SC. The Utility of Animal Models for Studying the Metabo-Psychiatric Origins of Anorexia Nervosa. Front Psychiatry 2021; 12:711181. [PMID: 34721100 PMCID: PMC8551379 DOI: 10.3389/fpsyt.2021.711181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/17/2021] [Indexed: 11/15/2022] Open
Abstract
Anorexia nervosa (AN) is a severe eating disorder that primarily affects young women and girls, and is characterized by abnormal restrictive feeding and a dangerously low body-mass index. AN has one of the highest mortality rates of any psychiatric disorder, and no approved pharmacological treatments exist. Current psychological and behavioral treatments are largely ineffective, and relapse is common. Relatively little basic research has examined biological mechanisms that underlie AN compared to other major neuropsychiatric disorders. A recent large-scale genome-wide association study (GWAS) revealed that the genetic architecture of AN has strong metabolic as well as psychiatric origins, suggesting that AN should be reconceptualized as a metabo-psychiatric disorder. Therefore, identifying the metabo-psychiatric mechanisms that contribute to AN may be essential for developing effective treatments. This review focuses on animal models for studying the metabo-psychiatric mechanisms that may contribute to AN, with a focus on the activity-based anorexia (ABA) paradigm. We also highlight recent work using modern circuit-dissecting neuroscience techniques to uncover metabolic mechanisms that regulate ABA, and encourage further work to ultimately identify novel treatment strategies for AN.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Stephanie C Dulawa
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
10
|
Nilsson IAK, Hökfelt T, Schalling M. The Anorectic Phenotype of the anx/anx Mouse Is Associated with Hypothalamic Dysfunction. NEUROMETHODS 2021:297-317. [DOI: 10.1007/978-1-0716-0924-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Tolle V, Ramoz N, Epelbaum J. Is there a hypothalamic basis for anorexia nervosa? HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:405-424. [PMID: 34238474 DOI: 10.1016/b978-0-12-820683-6.00030-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypothalamus has long been known to control food intake and energy metabolism through a complex network of primary and secondary neurons and glial cells. Anorexia nervosa being a complex disorder characterized by abnormal feeding behavior and food aversion, it is thus quite surprising that not much is known concerning potential hypothalamic modifications in this disorder. In this chapter, we review the recent advances in the fields of genetics, epigenetics, structural and functional imaging, and brain connectivity, as well as neuroendocrine findings and emerging animal models, which have begun to unravel the importance of hypothalamic adaptive processes to our understanding of the pathology of eating disorders.
Collapse
|
12
|
Pinto B, Morelli G, Rastogi M, Savardi A, Fumagalli A, Petretto A, Bartolucci M, Varea E, Catelani T, Contestabile A, Perlini LE, Cancedda L. Rescuing Over-activated Microglia Restores Cognitive Performance in Juvenile Animals of the Dp(16) Mouse Model of Down Syndrome. Neuron 2020; 108:887-904.e12. [PMID: 33027640 PMCID: PMC7736620 DOI: 10.1016/j.neuron.2020.09.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/16/2020] [Accepted: 09/04/2020] [Indexed: 01/01/2023]
Abstract
Microglia are brain-resident immune cells and regulate mechanisms essential for cognitive functions. Down syndrome (DS), the most frequent cause of genetic intellectual disability, is caused by a supernumerary chromosome 21, containing also genes related to the immune system. In the hippocampus of the Dp(16) mouse model of DS and DS individuals, we found activated microglia, as assessed by their morphology; activation markers; and, for DS mice, electrophysiological profile. Accordingly, we found increased pro-inflammatory cytokine levels and altered interferon signaling in Dp(16) hippocampi. DS mice also showed decreased spine density and activity of hippocampal neurons and hippocampus-dependent cognitive behavioral deficits. Depletion of defective microglia or treatment with a commonly used anti-inflammatory drug rescued the neuronal spine and activity impairments and cognitive deficits in juvenile Dp(16) mice. Our results suggest an involvement of microglia in Dp(16)-mouse cognitive deficits and identify a new potential therapeutic approach for cognitive disabilities in DS individuals. DS mice display microglia alterations and cognitive impairment Depletion of microglia rescues cognitive impairment in DS mice Acetaminophen treatment rescues microglia and cognitive impairments in DS mice Brain samples of DS people recapitulate microglia alterations observed in DS mice
Collapse
Affiliation(s)
- Bruno Pinto
- BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Giovanni Morelli
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Mohit Rastogi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Amos Fumagalli
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Andrea Petretto
- Core Facilities - Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Martina Bartolucci
- Core Facilities - Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Emilio Varea
- Cellular Biology Department, University of Valencia, Valencia, Spain
| | - Tiziano Catelani
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Andrea Contestabile
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Laura E Perlini
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy; Dulbecco Telethon Institute, Rome, Italy.
| |
Collapse
|
13
|
Kim JS, Kirkland RA, Lee SH, Cawthon CR, Rzepka KW, Minaya DM, de Lartigue G, Czaja K, de La Serre CB. Gut microbiota composition modulates inflammation and structure of the vagal afferent pathway. Physiol Behav 2020; 225:113082. [PMID: 32682966 DOI: 10.1016/j.physbeh.2020.113082] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
Vagal afferent neurons (VAN), located in the nodose ganglion (NG) innervate the gut and terminate in the nucleus of solitary tract (NTS) in the brainstem. They are the primary sensory neurons integrating gut-derived signals to regulate meal size. Chronic high-fat diet (HFD) consumption impairs vagally mediated satiety, resulting in overfeeding. There is evidence that HFD consumption leads to alterations in both vagal nerve function and structural integrity. HFD also leads to marked gut microbiota dysbiosis; in rodent models, dysbiosis is sufficient to induce weight gain. In this study, we investigated the effect of microbiota dysbiosis on gut-brain vagal innervation independently of diet. To do so, we recolonized microbiota-depleted rats with gastrointestinal (GI) contents isolated from donor animals fed either a HFD (45 or 60% fat) or a low fat diet (LFD, 13% fat). We used two different depletion models while maintaining the animals on LFD: 1) conventionally raised Fischer and Wistar rats that underwent a depletion paradigm using an antibiotic cocktail and 2) germ free (GF) raised Fischer rats. Following recolonization, receiver animals were designated as ConvLF and ConvHF. Fecal samples were collected throughout these studies and analyzed via 16S Illumina sequencing. In both models, bacteria that were identified as characteristic of HFD were successfully transferred to recipient animals. Three weeks post-colonization, ConvHF rats showed significant increases in ionized calcium-binding adapter molecule-1 (Iba1) positive immune cells in the NG compared to ConvLF animals. Additionally, using isolectin B4 (IB4) staining to identify c-fibers, we found that, compared to ConvLF animals, ConvHF rats displayed decreased innervation at the level of the medial NTS; c-fibers at this level are believed to be primarily of vagal origin. This alteration in vagal structure was associated with a loss in satiety induced by the gut peptide cholecystokinin (CCK). Increased presence of immunocompetent Iba1+ cells along the gut-brain axis and alterations in NTS innervation were still evident in ConvHF rats compared to ConvLF animals 12 weeks post-colonization and were associated with increases in food intake and body weight (BW). We conclude from these data that microbiota dysbiosis can alter gut-brain vagal innervation, potentially via recruitment and/or activation of immune cells.
Collapse
Affiliation(s)
- J S Kim
- Dept. of Foods and Nutrition, USA
| | | | - S H Lee
- Dept. of Foods and Nutrition, USA
| | | | - K W Rzepka
- Dept. of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, USA
| | - D M Minaya
- Dept. of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, USA
| | - G de Lartigue
- Dept. of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - K Czaja
- Dept. of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
14
|
Howard D, Negraes P, Voineskos AN, Kaplan AS, Muotri AR, Duvvuri V, French L. Molecular neuroanatomy of anorexia nervosa. Sci Rep 2020; 10:11411. [PMID: 32651428 PMCID: PMC7351758 DOI: 10.1038/s41598-020-67692-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Anorexia nervosa is a complex eating disorder with genetic, metabolic, and psychosocial underpinnings. Using genome-wide methods, recent studies have associated many genes with the disorder. We characterized these genes by projecting them into reference transcriptomic atlases of the prenatal and adult human brain to determine where these genes are expressed in fine detail. We found that genes from an induced stem cell study of anorexia nervosa cases are expressed at higher levels in the lateral parabrachial nucleus. Although weaker, expression enrichment of the adult lateral parabrachial is also found with genes from independent genetic studies. Candidate causal genes from the largest genetic study of anorexia nervosa to date were enriched for expression in the arcuate nucleus of the hypothalamus. We also found an enrichment of anorexia nervosa associated genes in the adult and fetal raphe and ventral tegmental areas. Motivated by enrichment of these feeding circuits, we tested if these genes respond to fasting in mice hypothalami, which highlighted the differential expression of Rps26 and Dalrd3. This work improves our understanding of the neurobiology of anorexia nervosa by suggesting disturbances in subcortical appetitive circuits.
Collapse
Affiliation(s)
- Derek Howard
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Priscilla Negraes
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute for Medical Science, University of Toronto, Toronto, Canada.,Slaight Family Centre for Youth in Transition, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Allan S Kaplan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute for Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Alysson R Muotri
- Department of Pediatrics/Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA.,Rady Children's Hospital, San Diego, CA, USA
| | - Vikas Duvvuri
- Department of Pediatrics and Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Leon French
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada. .,Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Institute for Medical Science, University of Toronto, Toronto, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
15
|
Méquinion M, Foldi CJ, Andrews ZB. The Ghrelin-AgRP Neuron Nexus in Anorexia Nervosa: Implications for Metabolic and Behavioral Adaptations. Front Nutr 2020; 6:190. [PMID: 31998738 PMCID: PMC6962137 DOI: 10.3389/fnut.2019.00190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/11/2019] [Indexed: 11/13/2022] Open
Abstract
Anorexia Nervosa (AN) is viewed as primarily a psychiatric disorder owing to the considerable behavioral and genetic overlap with mood disorders and other psychiatric traits. However, the recent reconceptualization of AN as one of both psychiatric and metabolic etiology suggests that metabolic circuits conveying hunger, or sensitive to signals of hunger, may be a critical nexus linking metabolic dysfunction to mood disturbances. Within the brain, hunger is primarily percieved by Agouti-related (AgRP) neurons and hunger increases plasma concentrations of the hormone ghrelin, which targets ghrelin receptors on AgRP neurons to facilitate metabolic adaptations to low energy availability. However, beyond the fundamental role in maintaining hunger signaling, AgRP neurons regulate a diverse range of behaviors such as motivation, locomotor activity, negative reinforcement, anxiety, and obsession and a key factor involved in the manifestation of these behavioral changes in response to activation is the presence or absence of food availability. These changes can be considered adaptive in that they promote affective food-seeking strategies in environments with limited food availability. However, it also suggests that these neurons, so well-studied for their metabolic control, shape mood-related behaviors in a context-dependent manner and dysfunctional control leads not only to metabolic problems but also potentially mood-related problems. The purpose of this review is to underline the potential role of AgRP neurons and ghrelin signaling in both the metabolic and behavioral changes observed in anorexia nervosa. We aim to highlight the most recent studies on AgRP neurons and ghrelin signaling and integrate their metabolic and behavioral roles in normal function and highlight how dysfunction may contribute to the development of AN.
Collapse
Affiliation(s)
| | | | - Zane B. Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
16
|
Maussion G, Demirova I, Gorwood P, Ramoz N. Induced Pluripotent Stem Cells; New Tools for Investigating Molecular Mechanisms in Anorexia Nervosa. Front Nutr 2019; 6:118. [PMID: 31457016 PMCID: PMC6700384 DOI: 10.3389/fnut.2019.00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Anorexia nervosa (AN) is a dramatic psychiatric disorder characterized by dysregulations in food intake and reward processing, involving molecular and cellular changes in several peripheral cell types and central neuronal networks. Genomic and epigenomic analyses have allowed the identification of multiple genetic and epigenetic modifications highlighting the complex pathophysiology of AN. Behavioral and genetic rodent models have been used to recapitulate and investigate, with some limitations, the cellular and molecular changes that potentially underlie eating disorders. In the last 5 years, the use of induced pluripotent stem cells (IPSCs), combined with CRISPR-Cas9 technology, has led to the generation of specific neuronal cell subtypes engineered from human somatic samples, representing a powerful tool to complement observations made in human samples and data collected from animal models. Systems biology using IPSCs has indeed proved to be a valuable approach for the study of metabolic disorders, in addition to neurodevelopmental and psychiatric disorders. The manuscript, while reviewing the main findings related to the genetic, epigenetic, and cellular bases of AN, will present how new studies published, or to be performed, in the field of IPSC-derived cells should improve our current understanding of the pathophysiology of AN and provide potential therapeutic strategies addressing specific endophenotypes.
Collapse
Affiliation(s)
- Gilles Maussion
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Iveta Demirova
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Philip Gorwood
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France.,Hôpital Sainte-Anne (CMME), University Paris-Descartes, Paris, France
| | - Nicolas Ramoz
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| |
Collapse
|
17
|
Nilsson IAK. The anx/anx Mouse - A Valuable Resource in Anorexia Nervosa Research. Front Neurosci 2019; 13:59. [PMID: 30804742 PMCID: PMC6370726 DOI: 10.3389/fnins.2019.00059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 01/31/2023] Open
Abstract
Animal models are invaluable resources in research concerning the neurobiology of anorexia nervosa (AN), to a large extent since valid clinical samples are rare. None of the existing models can capture all aspects of AN but they are able to mirror the core features of the disorder e.g., elective starvation, emaciation and premature death. The anorectic anx/anx mouse is of particular value for the understanding of the abnormal response to negative energy balance seen in AN. These mice appear normal at birth but gradually develops starvation and emaciation despite full access to food, and die prematurely around three weeks of age. Several changes in hypothalamic neuropeptidergic and -transmitter systems involved in regulating food intake and metabolism have been documented in the anx/anx mouse. These changes are accompanied by signs of inflammation and degeneration in the same hypothalamic regions; including activation of microglia cells and expression of major histocompatibility complex I by microglia and selective neuronal populations. These aberrances are likely related to the dysfunction of complex I (CI) in the oxidative phosphorylation system of the mitochondria, and subsequent increased oxidative stress, which also has been revealed in the hypothalamus of these mice. Interestingly, a similar CI dysfunction has been shown in leukocytes from patients with AN. In addition, a higher expression of the Neurotrophic Receptor Tyrosine Kinase 3 gene has been shown in the anx/anx hypothalamus. This agrees with AN being associated with specific variants of the genes for brain derived neurotrophic factor and Neurotrophic Receptor Tyrosine Kinase 2. The anx/anx mouse is also glucose intolerant and display pancreatic dysfunction related to increased levels of circulating free fatty acids (FFA) and pancreatic inflammation. An increased incidence of eating disorders has been reported for young diabetic women, and as well has increased levels of circulating FFAs in AN. Also similar to individuals with AN, the anx/anx mouse has reduced leptin and increased cholesterol levels in serum. Thus, the anx/anx mouse shares several characteristics with patients with AN, including emaciation, starvation, premature death, diabetic features, increased FFA and low leptin, and is therefore a unique resource in research on the (neuro)biology of AN.
Collapse
Affiliation(s)
- Ida A K Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.,Centre for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Alpár A, Harkany T. Novel insights into the spatial and temporal complexity of hypothalamic organization through precision methods allowing nanoscale resolution. J Intern Med 2018; 284:568-580. [PMID: 30027599 DOI: 10.1111/joim.12815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mammalian hypothalamus contains an astounding heterogeneity of neurons to achieve its role in coordinating central responses to virtually any environmental stressor over the life-span of an individual. Therefore, while core features of intrahypothalamic neuronal modalities and wiring patterns are stable during vertebrate evolution, integration of the hypothalamus into hierarchical brain-wide networks evolved to coordinate its output with emotionality, cognition and conscious decision-making. The advent of single-cell technologies represents a recent milestone in the study of hypothalamic organization by allowing the dissection of cellular heterogeneity and establishing causality between opto- and chemogenetic activity modulation of molecularly-resolved neuronal contingents and specific behaviours. Thus, organizational rules to accumulate an unprecedented variety of hierarchical neuroendocrine command networks into a minimal brain volume are being unravelled. Here, we review recent understanding at nanoscale resolution on how neuronal heterogeneity in the mammalian hypothalamus underpins the diversification of hormonal and synaptic output and keeps those sufficiently labile for continuous adaptation to meet environmental demands. Particular emphasis is directed towards the dissection of neuronal circuitry for aggression and food intake. Mechanistic data encompass cell identities, synaptic connectivity within and outside the hypothalamus to link vegetative and conscious levels of innate behaviours, and context- and circadian rhythm-dependent rules of synaptic neurophysiology to distinguish hypothalamic foci that either tune the body's metabolic set-point or specify behaviours. Consequently, novel insights emerge to explain the evolutionary advantages of non-laminar organization for neuroendocrine circuits coincidently using fast neurotransmitters and neuropeptides. These are then accrued into novel therapeutic principles that meet therapeutic criteria for human metabolic diseases.
Collapse
Affiliation(s)
- A Alpár
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - T Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
19
|
Viltart O, Duriez P, Tolle V. Metabolic and neuroendocrine adaptations to undernutrition in anorexia nervosa: from a clinical to a basic research point of view. Horm Mol Biol Clin Investig 2018; 36:hmbci-2018-0010. [PMID: 29804101 DOI: 10.1515/hmbci-2018-0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
The exact mechanisms linking metabolic and neuroendocrine adaptations to undernutrition and the pathophysiology of anorexia nervosa (AN) are not fully understood. AN is a psychiatric disorder of complex etiology characterized by extreme starvation while the disease is progressing into a chronic state. Metabolic and endocrine alterations associated to this disorder are part of a powerful response to maintain whole body energy homeostasis. But these modifications may also contribute to associated neuropsychiatric symptoms (reward abnormalities, anxiety, depression) and thus participate to sustain the disease. The current review presents data with both a clinical and basic research point of view on the role of nutritional and energy sensors with neuroendocrine actions in the pathophysiology of the disease, as they modulate metabolic responses, reproductive functions, stress responses as well as physical activity. While clinical data present a full description of changes occurring in AN, animal models that integrate either spontaneous genetic mutations or experimentally-induced food restriction with hyperactivity and/or social stress recapitulate the main metabolic and endocrine alterations of AN and provide mechanistic information between undernutrition state and symptoms of the disease. Further progress on the central and peripheral mechanism involved in the pathophysiology of eating disorders partly relies on the development and/or refinement of existing animal models to include recently identified genetic traits and better mimic the complex and multifactorial dimensions of the disease.
Collapse
Affiliation(s)
- Odile Viltart
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université de Lille (Sciences et technologies), Lille, France
| | - Philibert Duriez
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Clinique des Maladies Mentales et de l'Encéphale (CMME), Hôpital Sainte-Anne, Paris, France
| | - Virginie Tolle
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
20
|
Johnson CS, Bains JS, Watts AG. Neurotransmitter diversity in pre-synaptic terminals located in the parvicellular neuroendocrine paraventricular nucleus of the rat and mouse hypothalamus. J Comp Neurol 2018; 526:1287-1306. [PMID: 29424419 DOI: 10.1002/cne.24407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 02/02/2023]
Abstract
Virtually all rodent neuroendocrine corticotropin-releasing-hormone (CRH) neurons are in the dorsal medial parvicellular (mpd) part of the paraventricular nucleus of the hypothalamus (PVH). They form the final common pathway for adrenocortical stress responses. Their activity is controlled by sets of GABA-, glutamate-, and catecholamine-containing inputs arranged in an interactive pre-motor network. Defining the nature and arrangement of these inputs can help clarify how stressor type and intensity information is conveyed to neuroendocrine neurons. Here we use immunohistochemistry with high-resolution 3-dimensional image analyses to examine the arrangement of single- and co-occurring GABA, glutamate, and catecholamine markers in synaptophysin-defined pre-synaptic terminals in the PVHmpd of unstressed rats and Crh-IRES-Cre;Ai14 transgenic mice: respectively, vesicular glutamate transporter 2 (VGluT2), vesicular GABA transporter (VGAT), dopamine β-hydroxylase (DBH), and phenylethanolamine n-methyltransferase (PNMT). Just over half of all PVHmpd pre-synaptic terminals contain VGAT, with slightly less containing VGluT2. The vast majority of terminal appositions with mouse CRH neurons occur non-somatically. However, there are significantly more somatic VGAT than VGluT2 appositions. In the rat PVHmpd, about five times as many pre-synaptic terminals contain PNMT than DBH only. However, because epinephrine release has never been detected in the PVH, PNMT terminals may functionally be noradrenergic not adrenergic. PNMT and VGluT2 co-occur in some pre-synaptic terminals indicating the potential for co-transmission of glutamate and norepinephrine. Collectively, these results provide a structural basis for how GABA/glutamate/catecholamine interactions enable adrenocortical responses to fast-onset interosensory stimuli, and more broadly, how combinations of PVH neurotransmitters and neuromodulators interact dynamically to control adrenocortical activity.
Collapse
Affiliation(s)
- Caroline S Johnson
- The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, and Neuroscience, Graduate Program, University of Southern California, Los Angeles, California
| | - Jaideep S Bains
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | - Alan G Watts
- The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, and Neuroscience, Graduate Program, University of Southern California, Los Angeles, California
| |
Collapse
|
21
|
Kamitakahara A, Bouyer K, Wang CH, Simerly R. A critical period for the trophic actions of leptin on AgRP neurons in the arcuate nucleus of the hypothalamus. J Comp Neurol 2017; 526:133-145. [PMID: 28891045 DOI: 10.1002/cne.24327] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
Abstract
In the developing hypothalamus, the fat-derived hormone leptin stimulates the growth of axons from the arcuate nucleus of the hypothalamus (ARH) to other regions that control energy balance. These projections are significantly reduced in leptin deficient (Lepob/ob ) mice and this phenotype is largely rescued by neonatal leptin treatments. However, treatment of mature Lepob/ob mice is ineffective, suggesting that the trophic action of leptin is limited to a developmental critical period. To temporally delineate closure of this critical period for leptin-stimulated growth, we treated Lepob/ob mice with exogenous leptin during a variety of discrete time periods, and measured the density of Agouti-Related Peptide (AgRP) containing projections from the ARH to the ventral part of the dorsomedial nucleus of the hypothalamus (DMHv), and to the medial parvocellular part of the paraventricular nucleus (PVHmp). The results indicate that leptin loses its neurotrophic potential at or near postnatal day 28. The duration of leptin exposure appears to be important, with 9- or 11-day treatments found to be more effective than shorter (5-day) treatments. Furthermore, leptin treatment for 9 days or more was sufficient to restore AgRP innervation to both the PVHmp and DMHv in Lepob/ob females, but only to the DMHv in Lepob/ob males. Together, these findings reveal that the trophic actions of leptin are contingent upon timing and duration of leptin exposure, display both target and sex specificity, and that modulation of leptin-dependent circuit formation by each of these factors may carry enduring consequences for feeding behavior, metabolism, and obesity risk.
Collapse
Affiliation(s)
- Anna Kamitakahara
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Program in Neuroscience, University of Southern California, Los Angeles, California
| | - Karine Bouyer
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Chien-Hua Wang
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Program in Neuroscience, University of Southern California, Los Angeles, California
| | - Richard Simerly
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
22
|
Liver ERα regulates AgRP neuronal activity in the arcuate nucleus of female mice. Sci Rep 2017; 7:1194. [PMID: 28446774 PMCID: PMC5430776 DOI: 10.1038/s41598-017-01393-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/27/2017] [Indexed: 01/22/2023] Open
Abstract
Recent work revealed the major role played by liver Estrogen Receptor α (ERα) in the regulation of metabolic and reproductive functions. By using mutant mice with liver-specific ablation of Erα, we here demonstrate that the hepatic ERα is essential for the modulation of the activity of Agouti Related Protein (AgRP) neurons in relation to the reproductive cycle and diet. Our results suggest that the alterations of hepatic lipid metabolism due to the lack of liver ERα activity are responsible for a neuroinflammatory status that induces refractoriness of AgRP neurons to reproductive and dietary stimuli. The study therefore points to the liver ERα as a necessary sensor for the coordination of systemic energy metabolism and reproductive functions.
Collapse
|
23
|
Bergström U, Lindfors C, Svedberg M, Johansen JE, Häggkvist J, Schalling M, Wibom R, Katz A, Nilsson IAK. Reduced metabolism in the hypothalamus of the anorectic anx/anx mouse. J Endocrinol 2017; 233:15-24. [PMID: 28130409 DOI: 10.1530/joe-16-0383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 12/13/2022]
Abstract
The anorectic anx/anx mouse exhibits a mitochondrial complex I dysfunction that is related to aberrant expression of hypothalamic neuropeptides and transmitters regulating food intake. Hypothalamic activity, i.e. neuronal firing and transmitter release, is dependent on glucose utilization and energy metabolism. To better understand the role of hypothalamic activity in anorexia, we assessed carbohydrate and high-energy phosphate metabolism, in vivo and in vitro, in the anx/anx hypothalamus. In the fasted state, hypothalamic glucose uptake in the anx/anx mouse was reduced by ~50% of that seen in wild-type (wt) mice (P < 0.05). Under basal conditions, anx/anx hypothalamus ATP and glucose 6-P contents were similar to those in wt hypothalamus, whereas phosphocreatine was elevated (~2-fold; P < 0.001) and lactate was reduced (~35%; P < 0.001). The anx/anx hypothalamus had elevated total AMPK (~25%; P < 0.05) and GLUT4 (~60%; P < 0.01) protein contents, whereas GLUT1 and GLUT3 were similar to that of wt hypothalamus. Interestingly, the activation state of AMPK (ratio of phosphorylated AMPK/total AMPK) was significantly decreased in hypothalamus of the anx/anx mouse (~60% of that in wt; P < 0.05). Finally, during metabolic stress (ischemia), accumulation of lactate (measure of glycolysis) and IMP and AMP (breakdown products of ATP) were ~50% lower in anx/anx vs wt hypothalamus. These data demonstrate that carbohydrate and high-energy phosphate utilization in the anx/anx hypothalamus are diminished under basal and stress conditions. The decrease in hypothalamic metabolism may contribute to the anorectic behavior of the anx/anx mouse, i.e. its inability to regulate food intake in accordance with energy status.
Collapse
Affiliation(s)
- Ulrika Bergström
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Stockholm, Sweden
- Center for Molecular MedicineKarolinska University Hospital, Stockholm, Sweden
| | - Charlotte Lindfors
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Stockholm, Sweden
- Center for Molecular MedicineKarolinska University Hospital, Stockholm, Sweden
| | - Marie Svedberg
- Department of Clinical NeuroscienceCenter for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Jeanette E Johansen
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Stockholm, Sweden
- Center for Molecular MedicineKarolinska University Hospital, Stockholm, Sweden
| | - Jenny Häggkvist
- Department of Clinical NeuroscienceCenter for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Stockholm, Sweden
- Center for Molecular MedicineKarolinska University Hospital, Stockholm, Sweden
| | - Rolf Wibom
- Department of Medical Biochemistry and BiophysicsKarolinska Institutet, Stockholm, Sweden
| | - Abram Katz
- Department of Physical TherapyAriel University, Ariel, Israel
| | - Ida A K Nilsson
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Stockholm, Sweden
- Center for Molecular MedicineKarolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Mosley M, Shah C, Morse KA, Miloro SA, Holmes MM, Ahern TH, Forger NG. Patterns of cell death in the perinatal mouse forebrain. J Comp Neurol 2017; 525:47-64. [PMID: 27199256 PMCID: PMC5116296 DOI: 10.1002/cne.24041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022]
Abstract
The importance of cell death in brain development has long been appreciated, but many basic questions remain, such as what initiates or terminates the cell death period. One obstacle has been the lack of quantitative data defining exactly when cell death occurs. We recently created a "cell death atlas," using the detection of activated caspase-3 (AC3) to quantify apoptosis in the postnatal mouse ventral forebrain and hypothalamus, and found that the highest rates of cell death were seen at the earliest postnatal ages in most regions. Here we have extended these analyses to prenatal ages and additional brain regions. We quantified cell death in 16 forebrain regions across nine perinatal ages from embryonic day (E) 17 to postnatal day (P) 11 and found that cell death peaks just after birth in most regions. We found greater cell death in several regions in offspring delivered vaginally on the day of parturition compared with those of the same postconception age but still in utero at the time of collection. We also found massive cell death in the oriens layer of the hippocampus on P1 and in regions surrounding the anterior crossing of the corpus callosum on E18 as well as the persistence of large numbers of cells in those regions in adult mice lacking the pro-death Bax gene. Together these findings suggest that birth may be an important trigger of neuronal cell death and identify transient cell groups that may undergo wholesale elimination perinatally. J. Comp. Neurol. 525:47-64, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Morgan Mosley
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, 30302
| | - Charisma Shah
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, 30302
| | - Kiriana A Morse
- Department of Psychology, Center for Behavioral Neuroscience, Quinnipiac University, Hamden, Connecticut, 06518
| | - Stephen A Miloro
- Department of Psychology, Center for Behavioral Neuroscience, Quinnipiac University, Hamden, Connecticut, 06518
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Todd H Ahern
- Department of Psychology, Center for Behavioral Neuroscience, Quinnipiac University, Hamden, Connecticut, 06518
| | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, 30302
| |
Collapse
|
25
|
Vay SU, Blaschke S, Klein R, Fink GR, Schroeter M, Rueger MA. Minocycline mitigates the gliogenic effects of proinflammatory cytokines on neural stem cells. J Neurosci Res 2015; 94:149-60. [DOI: 10.1002/jnr.23686] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/25/2015] [Accepted: 10/12/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Sabine Ulrike Vay
- Department of Neurology; University Hospital of Cologne; Cologne Germany
| | - Stefan Blaschke
- Department of Neurology; University Hospital of Cologne; Cologne Germany
| | - Rebecca Klein
- Department of Neurology; University Hospital of Cologne; Cologne Germany
| | - Gereon Rudolf Fink
- Department of Neurology; University Hospital of Cologne; Cologne Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich; Juelich Germany
| | - Michael Schroeter
- Department of Neurology; University Hospital of Cologne; Cologne Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich; Juelich Germany
| | - Maria Adele Rueger
- Department of Neurology; University Hospital of Cologne; Cologne Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich; Juelich Germany
| |
Collapse
|
26
|
Lindfors C, Katz A, Selander L, Johansen JE, Marconi G, Schalling M, Hökfelt T, Berggren PO, Zaitsev S, Nilsson IAK. Glucose intolerance and pancreatic β-cell dysfunction in the anorectic anx/anx mouse. Am J Physiol Endocrinol Metab 2015; 309:E418-27. [PMID: 26126683 DOI: 10.1152/ajpendo.00081.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022]
Abstract
Inflammation and impaired mitochondrial oxidative phosphorylation are considered key players in the development of several metabolic disorders, including diabetes. We have previously shown inflammation and mitochondrial dysfunction in the hypothalamus of an animal model for anorexia, the anx/anx mouse. Moreover, increased incidence of eating disorders, e.g., anorexia nervosa, has been observed in diabetic individuals. In the present investigation we evaluated whether impaired mitochondrial phosphorylation and inflammation also occur in endocrine pancreas of anorectic mice, and if glucose homeostasis is disturbed. We show that anx/anx mice exhibit marked glucose intolerance associated with reduced insulin release following an intraperitoneal injection of glucose. In contrast, insulin release from isolated anx/anx islets is increased after stimulation with glucose or KCl. In isolated anx/anx islets there is a strong downregulation of the mitochondrial complex I (CI) assembly factor, NADH dehydrogenase (ubiquinone) 1α subcomplex, assembly factor 1 (Ndufaf1), and a reduced CI activity. In addition, we show elevated concentrations of free fatty acids (FFAs) in anx/anx serum and increased macrophage infiltration (indicative of inflammation) in anx/anx islets. However, isolated islets from anx/anx mice cultured in the absence of FFAs do not exhibit increased inflammation. We conclude that the phenotype of the endocrine pancreas of the anx/anx mouse is characterized by increased levels of circulating FFAs, as well as inflammation, which can inhibit insulin secretion in vivo. The anx/anx mouse may represent a useful tool for studying molecular mechanisms underlying the association between diabetes and eating disorders.
Collapse
Affiliation(s)
- Charlotte Lindfors
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Abram Katz
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden; Ariel University, Department of Physical Therapy, Ariel, Israel
| | - Lars Selander
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jeanette E Johansen
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Giulia Marconi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; and
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sergei Zaitsev
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ida A K Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden;
| |
Collapse
|
27
|
Méquinion M, Chauveau C, Viltart O. The use of animal models to decipher physiological and neurobiological alterations of anorexia nervosa patients. Front Endocrinol (Lausanne) 2015; 6:68. [PMID: 26042085 PMCID: PMC4436882 DOI: 10.3389/fendo.2015.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
Extensive studies were performed to decipher the mechanisms regulating feeding due to the worldwide obesity pandemy and its complications. The data obtained might be adapted to another disorder related to alteration of food intake, the restrictive anorexia nervosa. This multifactorial disease with a complex and unknown etiology is considered as an awful eating disorder since the chronic refusal to eat leads to severe, and sometimes, irreversible complications for the whole organism, until death. There is an urgent need to better understand the different aspects of the disease to develop novel approaches complementary to the usual psychological therapies. For this purpose, the use of pertinent animal models becomes a necessity. We present here the various rodent models described in the literature that might be used to dissect central and peripheral mechanisms involved in the adaptation to deficient energy supplies and/or the maintenance of physiological alterations on the long term. Data obtained from the spontaneous or engineered genetic models permit to better apprehend the implication of one signaling system (hormone, neuropeptide, neurotransmitter) in the development of several symptoms observed in anorexia nervosa. As example, mutations in the ghrelin, serotonin, dopamine pathways lead to alterations that mimic the phenotype, but compensatory mechanisms often occur rendering necessary the use of more selective gene strategies. Until now, environmental animal models based on one or several inducing factors like diet restriction, stress, or physical activity mimicked more extensively central and peripheral alterations decribed in anorexia nervosa. They bring significant data on feeding behavior, energy expenditure, and central circuit alterations. Animal models are described and criticized on the basis of the criteria of validity for anorexia nervosa.
Collapse
Affiliation(s)
- Mathieu Méquinion
- INSERM UMR-S1172, Development and Plasticity of Postnatal Brain, Lille, France
| | - Christophe Chauveau
- Pathophysiology of Inflammatory Bone Diseases, EA 4490, University of the Littoral Opal Coast, Boulogne sur Mer, France
| | - Odile Viltart
- INSERM UMR-S1172, Early stages of Parkinson diseases, University Lille 1, Lille, France
| |
Collapse
|
28
|
Radler ME, Wright BJ, Walker FR, Hale MW, Kent S. Calorie restriction increases lipopolysaccharide-induced neuropeptide Y immunolabeling and reduces microglial cell area in the arcuate hypothalamic nucleus. Neuroscience 2014; 285:236-47. [PMID: 25446356 DOI: 10.1016/j.neuroscience.2014.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/20/2014] [Accepted: 11/04/2014] [Indexed: 11/30/2022]
Abstract
Calorie restriction (CR) increases longevity and elicits many health promoting benefits including delaying immunosenescence and reducing the incidence of age-related diseases. Although the mechanisms underlying the health-enhancing effects of CR are not known, a likely contributing factor is alterations in immune system functioning. CR suppresses lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines, blocks LPS-induced fever, and shifts hypothalamic signaling pathways to an anti-inflammatory bias. Furthermore, we have recently shown that CR attenuates LPS-stimulated microglial activation in the hypothalamic arcuate nucleus (ARC), a brain region containing neurons that synthesize neuropeptide Y (NPY), an orexigenic neuropeptide that is upregulated by a CR diet and has anti-inflammatory properties. To determine if increased NPY expression in the ARC following CR was associated with changes in microglial activation, a set of brain sections from mice that were exposed to 50% CR or ad libitum feeding for 28 days before being injected with LPS were immunostained for NPY. The density of NPY-immunolabeling was assessed across the rostrocaudal extent of the ARC and hypothalamic paraventricular nucleus (PVN). An adjacent set of sections were immunostained for ionized calcium-binding adapter molecule-1 (Iba1) and immunostained microglia in the ARC were digitally reconstructed to investigate the effects of CR on microglial morphology. We demonstrated that exposure to CR increased NPY expression in the ARC, but not the PVN. Digital reconstruction of microglia revealed that LPS increased Iba1 intensity in ad libitum fed mice but had no effect on Iba1 intensity in CR mice. CR also decreased the size of ARC microglial cells following LPS. Correlational analyses revealed strong associations between NPY and body temperature, and body temperature and microglia area. Together these results suggest that CR-induced changes in NPY are not directly involved in the suppression of LPS-induced microglial activation, however, NPY may indirectly affect microglial morphology through changes in body temperature.
Collapse
Affiliation(s)
- M E Radler
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - B J Wright
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - F R Walker
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - M W Hale
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - S Kent
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
29
|
Li Z, Ma L, Kulesskaya N, Võikar V, Tian L. Microglia are polarized to M1 type in high-anxiety inbred mice in response to lipopolysaccharide challenge. Brain Behav Immun 2014; 38:237-48. [PMID: 24561490 DOI: 10.1016/j.bbi.2014.02.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 12/11/2022] Open
Abstract
Immune activation in the brain has been shown to contribute to neurodevelopmental and pathological progression of mental disorders, and microglia play a central role in these processes. But how genetic predisposition and environmental risk factors may act in combination to affect microglial activation and the underlying molecular mechanisms are largely unclear. In this work, we studied the inflammatory profile of microglia across four inbred strains of mice with different anxiety traits: C57BL/6J, FVB/N, DBA/2J, and 129S2/Sv. Importantly, we found that a high-anxiety strain, naïve DBA/2J mice, had significantly more M1 (MHCII(+)CD206(-))-polarized microglia, whereas another high-anxiety strain, naïve 129S2/Sv mice, expressed significantly more activated (MHCII(+)) perivascular macrophages than the other strains. After a systemic LPS challenge, polarization to M1 microglia in DBA/2J and 129S2/Sv mice was even more prominent than in C57BL/6J and FVB/N mice, and was correlated with their anxiety-like behaviors. Macrophage M1/M2 polarization in the spleen showed a similar pattern in DBA/2J and 129S2/Sv mice in response to LPS stimulation. Furthermore, DBA/2J mice expressed higher mRNA levels of Il1b, Il6, and Tnf, and higher Nos2/Arg1 ratio but lower Chi3l3 level in the hypothalamus before and after LPS stimulation, respectively. In comparison, 129S1/Sv, a sibling line of 129S2/Sv, expressed significantly higher levels of other immune-related genes in the brain. We further discovered a group of myeloid transcription factors that may underpin the strain-specific differences in microglial activation. We conclude that proinflammatory microglial activation reflects anxiety traits in mice, especially after a peripheral innate immune challenge. Our work sheds new light in understanding the potential molecular mechanisms of stress-induced microglial activation and polarization.
Collapse
Affiliation(s)
- Zhilin Li
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Li Ma
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | | | - Vootele Võikar
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Laboratory Animal Center, University of Helsinki, Helsinki, Finland
| | - Li Tian
- Neuroscience Center, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
30
|
Shrivastava K, Gonzalez P, Acarin L. The immune inhibitory complex CD200/CD200R is developmentally regulated in the mouse brain. J Comp Neurol 2013; 520:2657-75. [PMID: 22323214 DOI: 10.1002/cne.23062] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The CD200/CD200R inhibitory immune ligand-receptor system regulates microglial activation/quiescence in adult brain. Here, we investigated CD200/CD200R at different stages of postnatal development, when microglial maturation takes place. We characterized the spatiotemporal, cellular, and quantitative expression pattern of CD200 and CD200R in the developing and adult C57/BL6 mice brain by immunofluorescent labeling and Western blotting. CD200 expression increased from postnatal day 1 (P1) to P5-P7, when maximum levels were found, and decreased to adulthood. CD200 was located surrounding neuronal bodies, and very prominently in cortical layer I, where CD200(+) structures included glial fibrillary acidic protein (GFAP)(+) astrocytes until P7. In the hippocampus, CD200 was mainly observed in the hippocampal fissure, where GFAP(+) /CD200(+) astrocytes were also found until P7. CD200(+) endothelium was seen in the hippocampal fissure and cortical blood vessels, notably from P14, showing maximum vascular CD200 in adults. CD200R(+) cells were a population of ameboid/pseudopodic Iba1(+) microglia/macrophages observed at all ages, but significantly decreasing with increasing age. CD200R(+) /Iba1(+) macrophages were prominent in the pial meninges and ventricle lining, mainly at P1-P5. CD200R(+) /Iba1(+) perivascular macrophages were observed in cortical and hippocampal fissure blood vessels, showing maximum density at P7, but being prominent until adulthood. CD200R(+) /Iba1(+) ameboid microglia in the cingulum at P1-P5 were the only CD200R(+) cells in the nervous tissue. In conclusion, the main sites of CD200/CD200R interaction seem to include the molecular layer and pial surface in neonates and blood vessels from P7 until adulthood, highlighting the possible role of the CD200/CD200R system in microglial development and renewal.
Collapse
Affiliation(s)
- Kalpana Shrivastava
- Medical Histology, Institute of Neuroscience, Department of Cell Biology, Physiology, and Immunology, Universitat Autonoma Barcelona, Bellaterra 08193, Barcelona, Spain.
| | | | | |
Collapse
|
31
|
|
32
|
Coquerel Q, Sinno MH, Boukhettala N, Coëffier M, Terashi M, Bole-Feysot C, Breuillé D, Déchelotte P, Fetissov SO. Intestinal inflammation influences α-MSH reactive autoantibodies: relevance to food intake and body weight. Psychoneuroendocrinology 2012; 37:94-106. [PMID: 21641724 DOI: 10.1016/j.psyneuen.2011.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/04/2011] [Accepted: 05/09/2011] [Indexed: 02/08/2023]
Abstract
Autoantibodies reacting with alpha-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide, are involved in regulation of feeding. In this work we studied if intestinal inflammation (mucositis) may influence α-MSH autoantibodies production relevant to food intake and body weight. Mucositis and anorexia were produced in Sprague-Dawley rats by methotrexate (MTX, 2.5mg/kg/day, for three days, subcutaneously). Plasma levels of total IgG and of α-MSH autoantibodies were measured during and after MTX-induced mucositis and were compared with pair-fed and ad libitum-fed controls. Effects of intraperitoneal injections of rabbit anti-α-MSH IgG (3 or 10 μg/day/rat) on MTX-induced anorexia and on plasma α-MSH peptide concentration were separately studied. Here we show that in MTX rats, intestinal mucositis and anorexia were accompanied by decreased plasma levels of both total IgG and of α-MSH autoantibodies while refeeding was characterized by their elevated levels. In spite of similar food intake in MTX and pair-fed rats, recovery of body weight was delayed by at least 1 week in the MTX group. During refeeding and body weight deficit in MTX rats, α-MSH IgG autoantibody levels correlated negatively with food to water intake ratios. Injections of anti-α-MSH IgG induced a dose-dependent attenuation of food intake and body weight regain in MTX-treated rats accompanied by increased concentrations of α-MSH peptide which correlated positively with plasma levels of α-MSH autoantibodies. These data show that intestinal inflammation, independently from food restriction, affects general humoral immune response which may influence food intake and body weight control via modulation of α-MSH plasma concentration by α-MSH reactive autoantibodies.
Collapse
Affiliation(s)
- Quentin Coquerel
- Digestive System & Nutrition Laboratory (ADEN EA4311), Institute of Medical Research and Innovation, Rouen University, IFR23, Rouen 76183, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hypothalamic mitochondrial dysfunction associated with anorexia in the anx/anx mouse. Proc Natl Acad Sci U S A 2011; 108:18108-13. [PMID: 22025706 DOI: 10.1073/pnas.1114863108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The anorectic anx/anx mouse exhibits disturbed feeding behavior and aberrances, including neurodegeneration, in peptidergic neurons in the appetite regulating hypothalamic arcuate nucleus. Poor feeding in infants, as well as neurodegeneration, are common phenotypes in human disorders caused by dysfunction of the mitochondrial oxidative phosphorylation system (OXPHOS). We therefore hypothesized that the anorexia and degenerative phenotypes in the anx/anx mouse could be related to defects in the OXPHOS. In this study, we found reduced efficiency of hypothalamic OXPHOS complex I assembly and activity in the anx/anx mouse. We also recorded signs of increased oxidative stress in anx/anx hypothalamus, possibly as an effect of the decreased hypothalamic levels of fully assembled complex I, that were demonstrated by native Western blots. Furthermore, the Ndufaf1 gene, encoding a complex I assembly factor, was genetically mapped to the anx interval and found to be down-regulated in anx/anx mice. These results suggest that the anorexia and hypothalamic neurodegeneration of the anx/anx mouse are associated with dysfunction of mitochondrial complex I.
Collapse
|
34
|
Bosco A, Steele MR, Vetter ML. Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol 2011; 519:599-620. [PMID: 21246546 DOI: 10.1002/cne.22516] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Changes in microglial cell activation and distribution are associated with neuronal decline in the central nervous system (CNS), particularly under pathological conditions. Activated microglia converge on the initial site of axonal degeneration in human glaucoma, yet their part in its pathophysiology remains unresolved. To begin with, it is unknown whether microglia activation precedes or is a late consequence of retinal ganglion cell (RGC) neurodegeneration. Here we address this critical element in DBA/2J (D2) mice, an established model of chronic inherited glaucoma, using as a control the congenic substrain DBA/2J Gpnmb(+/SjJ) (D2G), which is not affected by glaucoma. We analyzed the spatial distribution and timecourse of microglial changes in the retina, as well as within the proximal optic nerve prior to and throughout ages when neurodegeneration has been reported. Exclusively in D2 mice, we detected early microglia clustering in the inner central retina and unmyelinated optic nerve regions, with microglia activation peaking by 3 months of age. Between 5 and 8 months of age, activated microglia persisted and concentrated in the optic disc, but also localized to the retinal periphery. Collectively, our findings suggest microglia activation is an early alteration in the retina and optic nerve in D2 glaucoma, potentially contributing to disease onset or progression. Ultimately, detection of microglial activation may have value in early disease diagnosis, while modulation of microglial responses may alter disease progression.
Collapse
Affiliation(s)
- Alejandra Bosco
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | |
Collapse
|
35
|
Sinno MH, Coquerel Q, Boukhettala N, Coëffier M, Gallas S, Terashi M, Ibrahim A, Breuillé D, Déchelotte P, Fetissov SO. Chemotherapy-induced anorexia is accompanied by activation of brain pathways signaling dehydration. Physiol Behav 2010; 101:639-48. [DOI: 10.1016/j.physbeh.2010.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/17/2010] [Accepted: 09/22/2010] [Indexed: 02/07/2023]
|
36
|
Nilsson IAK, Thams S, Lindfors C, Bergstrand A, Cullheim S, Hökfelt T, Johansen JE. Evidence of hypothalamic degeneration in the anorectic anx/anx mouse. Glia 2010; 59:45-57. [DOI: 10.1002/glia.21075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 08/08/2010] [Accepted: 08/11/2010] [Indexed: 12/28/2022]
|
37
|
Brooks B, Brooks C, MacKerell A, Nilsson L, Petrella R, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner A, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor R, Post C, Pu J, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York D, Karplus M. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30:1545-614. [PMID: 19444816 PMCID: PMC2810661 DOI: 10.1002/jcc.21287] [Citation(s) in RCA: 6383] [Impact Index Per Article: 398.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estimators, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numerous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983.
Collapse
Affiliation(s)
- B.R. Brooks
- Laboratory of Computational Biology, National Heart, Lung, and
Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - C.L. Brooks
- Departments of Chemistry & Biophysics, University of
Michigan, Ann Arbor, MI 48109
| | - A.D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy,
University of Maryland, Baltimore, MD, 21201
| | - L. Nilsson
- Karolinska Institutet, Department of Biosciences and Nutrition,
SE-141 57, Huddinge, Sweden
| | - R.J. Petrella
- Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA 02138
- Department of Medicine, Harvard Medical School, Boston, MA
02115
| | - B. Roux
- Department of Biochemistry and Molecular Biology, University of
Chicago, Gordon Center for Integrative Science, Chicago, IL 60637
| | - Y. Won
- Department of Chemistry, Hanyang University, Seoul
133–792 Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - M. Karplus
- Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA 02138
- Laboratoire de Chimie Biophysique, ISIS, Université de
Strasbourg, 67000 Strasbourg France
| |
Collapse
|
38
|
Hökfelt T, Stanic D, Sanford SD, Gatlin JC, Nilsson I, Paratcha G, Ledda F, Fetissov S, Lindfors C, Herzog H, Johansen JE, Ubink R, Pfenninger KH. NPY and its involvement in axon guidance, neurogenesis, and feeding. Nutrition 2009; 24:860-8. [PMID: 18725084 DOI: 10.1016/j.nut.2008.06.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 06/09/2008] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The role of neuropeptides in nervous system function is still in many cases undefined. In the present study we examined a possible role of the 36-amino acid neuropeptide Y (NPY) with regard to three functions: axon guidance and attraction/repulsion, adult neurogenesis, and control of food intake. METHODS Growth cones from embryonic dorsal root ganglion neurons were studied in culture during asymmetrical gradient application of NPY. Growth cones were monitored over a 60-min period, and final turning angle and growth rate were recorded. In the second part the NPY Y(1) and Y(2) receptors were studied in the subventricular zone, the rostral migratory stream, and the olfactory bulb in normal mice and mice with genetically deleted NPY Y(1) or Y(2) receptors. In the third part an anorectic mouse was analyzed with immunohistochemistry. RESULTS 1) NPY elicited an attractive turning response and an increase in growth rate, effects exerted via the NPY Y(1) receptor. 2) The NPY Y(1) receptor was expressed in neuroblasts in the anterior rostral migratory stream. Mice deficient in the Y(1) or Y(2) receptor had fewer proliferating precursor cells and neuroblasts in the subventricular zone and rostral migratory stream and fewer neurons in the olfactory bulb expressing calbindin, calretinin or tyrosine hydroxylase. 3) In the anorectic mouse markers for microglia were strongly upregulated in the arcuate nucleus and in projection areas of the NPY/agouti gene-related protein arcuate system. CONCLUSION NPY participates in several mechanisms involved in the development of the nervous system and is of importance in the control of food intake.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mercader JM, Lozano JJ, Sumoy L, Dierssen M, Visa J, Gratacòs M, Estivill X. Hypothalamus transcriptome profile suggests an anorexia-cachexia syndrome in the anx/anx mouse model. Physiol Genomics 2008; 35:341-50. [DOI: 10.1152/physiolgenomics.90255.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The anx/anx mouse displays poor appetite and lean appearance and is considered a good model for the study of anorexia nervosa. To identify new genes involved in feeding behavior and body weight regulation we performed an expression profiling in the hypothalamus of the anx/anx mice. Using commercial microarrays we detected 156 differentially expressed genes and validated 92 of those using TaqMan low-density arrays. The expression of a set of 87 candidate genes selected based on literature evidences was also quantified by TaqMan low-density arrays. Our results showed enrichment in deregulated genes involved in cell death, cell morphology, and cancer, as well as an alteration of several signaling circuits involved in energy balance including neuropeptide Y and melanocortin signaling. The expression profile along with the phenotype led us to conclude that anx/anx mice resemble the anorexia-cachexia syndrome typically observed in cancer, infection with human immunodeficiency virus or chronic diseases, rather than starvation, and that anx/anx mice could be considered a good model for the treatment and investigation of this condition.
Collapse
Affiliation(s)
- Josep Maria Mercader
- Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), Barcelona, Catalonia, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
| | - Juan José Lozano
- Bioinformatics and Genomics Program, CRG-UPF, Barcelona, Catalonia, Spain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Lauro Sumoy
- Bioinformatics and Genomics Program, CRG-UPF, Barcelona, Catalonia, Spain
| | - Mara Dierssen
- Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), Barcelona, Catalonia, Spain
- CIBER de Enfermedades Raras (CIBERER), Barcelona, Catalonia, Spain
| | - Joana Visa
- Servei Estabulari, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Mònica Gratacòs
- Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), Barcelona, Catalonia, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
| | - Xavier Estivill
- Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), Barcelona, Catalonia, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
- Experimental and Health Sciences Department, Pompeu Fabra University, Barcelona, Catalonia, Spain
| |
Collapse
|
40
|
Abstract
The Agouti-Related Protein (AgRP) is a powerful orexigenic peptide that increases food intake when ubiquitously overexpressed or when administered centrally. AgRP-deficiency, on the other hand, leads to increased metabolic rate and a longer lifespan when mice consume a high fat diet. In humans, AgRP polymorphisms have been consistently associated with resistance to fatness in Blacks and Whites and resistance to the development of type-2 diabetes in African Blacks. Systemically administered AgRP accumulates in the liver, the adrenal gland and fat tissue while recent findings suggest that AgRP may also have inverse agonist effects, both centrally and peripherally. AgRP could thus modulate energy balance via different actions. Its absence or reduced functionality may offer a benefit both in terms of bringing about negative energy balance in obesigenic environments, as well as leading to an increased lifespan.
Collapse
Affiliation(s)
- O. Ilnytska
- Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, 70809 USA
| | - G. Argyropoulos
- Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, 70809 USA
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Anorexia nervosa remains a disease of unknown etiology. This situation explains the failure to develop effective therapy and emphasizes the fact that the neurobiological mechanisms of appetite and emotion are still incompletely understood. The present review is the first summary of recent research assigning to the immune system a new role in energy and emotional regulation by the production of autoantibodies directed against neuropeptides. The results of this research are promising to shed light on the etiology of eating disorders and open new fields for biological diagnosis and follow-up as well as designing new therapeutic strategies. RECENT FINDINGS Following the initial identification of autoantibodies against alpha-melanocyte-stimulating hormone, a key neuropeptide involved in the regulation of satiety and mood, in the plasma of patients with anorexia and bulimia nervosa, it has been further found that the serum levels of these autoantibodies correlated with psychopathological traits in individuals with eating disorders. Furthermore, recent findings show that autoantibodies against alpha-melanocyte-stimulating hormone and against some other appetite-regulating peptide hormones are normally present in the blood of humans and rats and their production may be influenced by stress and the gut microflora. SUMMARY Novel data provide evidence that autoantibodies against neuropeptides can be involved in the regulation of appetite and emotion and that alteration in autoantibody-mediated signaling pathways may be responsible for the development of eating disorders.
Collapse
Affiliation(s)
- Sergueï O Fetissov
- Digestive System & Nutrition Laboratory (ADEN EA3234), Institute of Biomedical Research, Rouen University Hospital and IFRMP23, Rouen, France.
| | | |
Collapse
|