1
|
Yeum D, Renier TJ, Carlson DD, Ballarino GA, Lansigan RK, Meyer ML, Loos RJF, Emond JA, Masterson TD, Gilbert-Diamond D. Genetic associations with neural reward responsivity to food cues in children. Front Nutr 2024; 11:1387514. [PMID: 39385774 PMCID: PMC11461328 DOI: 10.3389/fnut.2024.1387514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Objective To test associations of candidate obesity-related single nucleotide polymorphisms (SNPs) and obesity polygenic risk scores (PRS) with neural reward reactivity to food cues. Methods After consuming a pre-load meal, 9-12-year-old children completed a functional magnetic resonance imaging (fMRI) paradigm with exposure to food and non-food commercials. Genetic exposures included FTO rs9939609, MC4R rs571312, and a pediatric-specific obesity PRS. A targeted region-of-interest (ROI) analysis for 7 bilateral reward regions and a whole-brain analysis were conducted. Independent associations between each genetic factor and reward responsivity to food cues in each ROI were evaluated using linear models. Results Analyses included 151 children (M = 10.9 years). Each FTO rs9939609 obesity risk allele was related to a higher food-cue-related response in the right lateral hypothalamus after controlling for covariates including the current BMI Z-score (p < 0.01), however, the association did not remain significant after applying the multiple testing correction. MC4R rs571312 and the PRS were not related to heightened food-cue-related reward responsivity in any examined regions. The whole-brain analysis did not identify additional regions of food-cue-related response related to the examined genetic factors. Conclusion Children genetically at risk for obesity, as indicated by the FTO genotype, may be predisposed to higher food-cue-related reward responsivity in the lateral hypothalamus in the sated state, which, in turn, could contribute to overconsumption. Clinical trial registration https://clinicaltrials.gov/study/NCT03766191, identifier NCT03766191.
Collapse
Affiliation(s)
- Dabin Yeum
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Timothy J. Renier
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Delaina D. Carlson
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Grace A. Ballarino
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Reina K. Lansigan
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Meghan L. Meyer
- Department of Psychology, Columbia University, New York, NY, United States
| | - Ruth J. F. Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty for Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jennifer A. Emond
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Travis D. Masterson
- Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, University Park, PA, United States
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| |
Collapse
|
2
|
Chen XY, Yang W, Xue Y, Xie AM, Sun XR, Chen L. Orexin increases the neuronal excitability of several brain areas associated with maintaining of arousal. J Neurochem 2024; 168:2379-2390. [PMID: 39092633 DOI: 10.1111/jnc.16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Orexin is exclusively produced in neurons localized within the lateral hypothalamic area (LHA) and perifornical area (PFA). Orexin has been identified as a key promotor of arousal. The selective loss of orexinergic neurons results in narcolepsy. It is known that the intrinsic electrophysiological properties are critical for neurons to perform their functions in corresponding brain regions. In addition to hypothalamic orexin, other brain nuclei are involved in the regulation of sleep and wakefulness. Quite a lot of studies focus on elucidating orexin-induced regulation of sleep-wake states and modulation of neuronal electrophysiological properties in several brain regions. Here, we summarize that the orexinergic neurons exhibit spontaneous firing activity which is associated with the states of sleep-wake cycle. Orexin mainly exerts postsynaptic excitatory effects on multiple brain nuclei associated with the process of sleep and wakefulness. This review may provide a background to guide future research about the cellular mechanisms of orexin-induced maintaining of arousal.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wu Yang
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - An-Mu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiang-Rong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Choudhary AG, Awathale SN, Dudhabhate BB, Pawar N, Jadhav G, Upadhya MA, Khedkar T, Gadhikar YA, Sakharkar AJ, Subhedar NK, Kokare DM. Response of nitrergic system in the brain of rat conditioned to intracranial self-stimulation. J Neurochem 2024; 168:1402-1419. [PMID: 38445395 DOI: 10.1111/jnc.16090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
The role of nitrergic system in modulating the action of psychostimulants on reward processing is well established. However, the relevant anatomical underpinnings and scope of the involved interactions with mesolimbic dopaminergic system have not been clarified. Using immunohistochemistry, we track the changes in neuronal nitric oxide synthase (nNOS) containing cell groups in the animals conditioned to intracranial self-stimulation (ICSS) via an electrode implanted in the lateral hypothalamus-medial forebrain bundle (LH-MFB) area. An increase in the nNOS immunoreactivity was noticed in the cells and fibers in the ventral tegmental area (VTA) and nucleus accumbens shell (AcbSh), the primary loci of the reward system. In addition, nNOS was up-regulated in the nucleus accumbens core (AcbC), vertical limb of diagonal band (VDB), locus coeruleus (LC), lateral hypothalamus (LH), superficial gray layer (SuG) of the superior colliculus, and periaqueductal gray (PAG). The brain tissue fragments drawn from these areas showed a change in nNOS mRNA expression, but in opposite direction. Intracerebroventricular (icv) administration of nNOS inhibitor, 7-nitroindazole (7-NI) showed decreased lever press activity in a dose-dependent manner in ICSS task. While an increase in the dopamine (DA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) efflux was noted in the microdialysates collected from the AcbSh of ICSS rats, pre-administration of 7-NI (icv route) attenuated the response. The study identifies nitrergic centers that probably mediate sensory, cognitive, and motor components of the goal-directed behavior.
Collapse
Affiliation(s)
- Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Sanjay N Awathale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Biru B Dudhabhate
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Namrata Pawar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Gouri Jadhav
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Manoj A Upadhya
- Indian Institute of Science Education and Research (IISER), Pune, India
| | - Trupti Khedkar
- Department of Zoology, Nabira Mahavidyalay, Katol, India
| | - Yashashree A Gadhikar
- Department of Zoology, Government Vidarbha Institute of Science and Humanities, Amravati, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | | | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| |
Collapse
|
4
|
Khouma A, Moeini MM, Plamondon J, Richard D, Caron A, Michael NJ. Histaminergic regulation of food intake. Front Endocrinol (Lausanne) 2023; 14:1202089. [PMID: 37448468 PMCID: PMC10338010 DOI: 10.3389/fendo.2023.1202089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Histamine is a biogenic amine that acts as a neuromodulator within the brain. In the hypothalamus, histaminergic signaling contributes to the regulation of numerous physiological and homeostatic processes, including the regulation of energy balance. Histaminergic neurons project extensively throughout the hypothalamus and two histamine receptors (H1R, H3R) are strongly expressed in key hypothalamic nuclei known to regulate energy homeostasis, including the paraventricular (PVH), ventromedial (VMH), dorsomedial (DMH), and arcuate (ARC) nuclei. The activation of different histamine receptors is associated with differential effects on neuronal activity, mediated by their different G protein-coupling. Consequently, activation of H1R has opposing effects on food intake to that of H3R: H1R activation suppresses food intake, while H3R activation mediates an orexigenic response. The central histaminergic system has been implicated in atypical antipsychotic-induced weight gain and has been proposed as a potential therapeutic target for the treatment of obesity. It has also been demonstrated to interact with other major regulators of energy homeostasis, including the central melanocortin system and the adipose-derived hormone leptin. However, the exact mechanisms by which the histaminergic system contributes to the modification of these satiety signals remain underexplored. The present review focuses on recent advances in our understanding of the central histaminergic system's role in regulating feeding and highlights unanswered questions remaining in our knowledge of the functionality of this system.
Collapse
Affiliation(s)
- Axelle Khouma
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Moein Minbashi Moeini
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Julie Plamondon
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Medicine, Université Laval, Québec, QC, Canada
| | - Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Montreal Diabetes Research Center, Montreal, QC, Canada
| | - Natalie Jane Michael
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| |
Collapse
|
5
|
Liu H, Li X, Li P, Hai R, Li J, Fan Q, Wang X, Chen Y, Cao X, Zhang X, Gao R, Wang K, Du C. Glutamatergic melanocortin-4 receptor neurons regulate body weight. FASEB J 2023; 37:e22920. [PMID: 37078546 DOI: 10.1096/fj.202201786r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
The locus coeruleus (LC), enriched in vesicular glutamate transporter 2 (VGlut2) neurons, is a potential homeostasis-regulating hub. However, the identity of melanocortin-4 receptor (MC4R) neurons in the paraventricular nucleus (PVN) of the hypothalamus, PVNVGlut2::MC4R and LCVGlut2::MC4R regulation of body weight, and axonal projections of LCVGlut2 neurons remain unclear. Conditional knockout of MC4R in chimeric mice was used to confirm the effects of VGlut2. Interscapular brown adipose tissue was injected with pseudorabies virus to study the central nervous system projections. We mapped the LCVGlut2 circuitry. Based on the Cre-LoxP recombination system, specific knockdown of MC4R in VGlut2 neurons resulted in weight gain in chimeric mice. Adeno-associated virus-mediated knockdown of MC4R expression in the PVN and LC had potential superimposed effects on weight gain, demonstrating the importance of VGlut2 neurons. Unlike these wide-ranging efferent projections, the PVN, hypothalamic arcuate nucleus, supraoptic nucleus of the lateral olfactory tegmental nuclei, and nucleus tractus solitarius send excitatory projections to LCVGlut2 neurons. The PVN → LC glutamatergic MC4R long-term neural circuit positively affected weight management and could help treat obesity.
Collapse
Affiliation(s)
- Haodong Liu
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaojing Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Penghui Li
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Rihan Hai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Jiacheng Li
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Fan
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xing Wang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yujie Chen
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Xiaojuan Cao
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Xiaoyu Zhang
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Ruifeng Gao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Kun Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang, China
| | - Chenguang Du
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| |
Collapse
|
6
|
Singh U, Saito K, Khan MZ, Jiang J, Toth BA, Rodeghiero SR, Dickey JE, Deng Y, Deng G, Kim YC, Cui H. Collateralizing ventral subiculum melanocortin 4 receptor circuits regulate energy balance and food motivation. Physiol Behav 2023; 262:114105. [PMID: 36736416 PMCID: PMC9981473 DOI: 10.1016/j.physbeh.2023.114105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Hippocampal dysfunction is associated with major depressive disorder, a serious mental illness characterized by not only depressed mood but also appetite disturbance and dysregulated body weight. However, the underlying mechanisms by which hippocampal circuits regulate metabolic homeostasis remain incompletely understood. Here we show that collateralizing melanocortin 4 receptor (MC4R) circuits in the ventral subiculum (vSUB), one of the major output structures of the hippocampal formation, affect food motivation and energy balance. Viral-mediated cell type- and projection-specific input-output circuit mapping revealed that the nucleus accumbens shell (NAcSh)-projecting vSUBMC4R+ neurons send extensive collateral projections of to various hypothalamic nuclei known to be important for energy balance, including the arcuate, ventromedial and dorsomedial nuclei, and receive monosynaptic inputs mainly from the ventral CA1 and the anterior paraventricular nucleus of thalamus. Chemogenetic activation of NAcSh-projecting vSUBMC4R+neurons lead to increase in motivation to obtain palatable food without noticeable effect on homeostatic feeding. Viral-mediated restoration of MC4R signaling in the vSUB partially restores obesity in MC4R-null mice without affecting anxiety- and depression-like behaviors. Collectively, these results delineate vSUBMC4R+ circuits to the unprecedented level of precision and identify the vSUBMC4R signaling as a novel regulator of food reward and energy balance.
Collapse
Affiliation(s)
- Uday Singh
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kenji Saito
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Michael Z. Khan
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Brandon A. Toth
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Samuel R. Rodeghiero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jacob E. Dickey
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Young-Cho Kim
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
7
|
Deng Y, Dickey JE, Saito K, Deng G, Singh U, Jiang J, Toth BA, Zhu Z, Zingman LV, Resch JM, Grobe JL, Cui H. Elucidating the role of Rgs2 expression in the PVN for metabolic homeostasis in mice. Mol Metab 2022; 66:101622. [PMID: 36307046 PMCID: PMC9638802 DOI: 10.1016/j.molmet.2022.101622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE RGS2 is a GTPase activating protein that modulates GPCR-Gα signaling and mice lacking RGS2 globally exhibit metabolic alterations. While RGS2 is known to be broadly expressed throughout the body including the brain, the relative contribution of brain RGS2 to metabolic homeostasis remains unknown. The purpose of this study was to characterize RGS2 expression in the paraventricular nucleus of hypothalamus (PVN) and test its role in metabolic homeostasis. METHODS We used a combination of RNAscope in situ hybridization (ISH), immunohistochemistry, and bioinformatic analyses to characterize the pattern of Rgs2 expression in the PVN. We then created mice lacking Rgs2 either prenatally or postnatally in the PVN and evaluated their metabolic consequences. RESULTS RNAscope ISH analysis revealed a broad but regionally enriched Rgs2 mRNA expression throughout the mouse brain, with the highest expression being observed in the PVN along with several other brain regions, such as the arcuate nucleus of hypothalamus and the dorsal raphe nucleus. Within the PVN, we found that Rgs2 is specifically enriched in CRH+ endocrine neurons and is further increased by calorie restriction. Functionally, although Sim1-Cre-mediated prenatal deletion of Rgs2 in PVN neurons had no major effects on metabolic homeostasis, AAV-mediated adult deletion of Rgs2 in the PVN led to significantly increased food intake, body weight (both fat and fat-free masses), body length, and blood glucose levels in both male and female mice. Strikingly, we found that prolonged postnatal loss of Rgs2 leads to neuronal cell death in the PVN, while rapid body weight gain in the early phase of viral-mediated PVN Rgs2 deletion is independent of PVN neuronal loss. CONCLUSIONS Our results provide the first evidence to show that PVN Rgs2 expression is not only sensitive to metabolic challenge but also critically required for PVN endocrine neurons to function and maintain metabolic homeostasis.
Collapse
Affiliation(s)
- Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jacob E Dickey
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kenji Saito
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Uday Singh
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Brandon A Toth
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Zhiyong Zhu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Leonid V Zingman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
8
|
Claflin KE, Sullivan AI, Naber MC, Flippo KH, Morgan DA, Neff TJ, Jensen-Cody SO, Zhu Z, Zingman LV, Rahmouni K, Potthoff MJ. Pharmacological FGF21 signals to glutamatergic neurons to enhance leptin action and lower body weight during obesity. Mol Metab 2022; 64:101564. [PMID: 35944896 PMCID: PMC9403559 DOI: 10.1016/j.molmet.2022.101564] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Fibroblast growth factor 21 (FGF21) is a peripherally-derived endocrine hormone that acts on the central nervous system (CNS) to regulate whole body energy homeostasis. Pharmacological administration of FGF21 promotes weight loss in obese animal models and human subjects with obesity. However, the central targets mediating these effects are incompletely defined. METHODS To explore the mechanism for FGF21's effects to lower body weight, we pharmacologically administer FGF21 to genetic animal models lacking the obligate FGF21 co-receptor, β-klotho (KLB), in either glutamatergic (Vglut2-Cre) or GABAergic (Vgat-Cre) neurons. In addition, we abolish FGF21 signaling to leptin receptor (LepR-Cre) positive cells. Finally, we examine the synergistic effects of FGF21 and leptin to lower body weight and explore the importance of physiological leptin levels in FGF21-mediated regulation of body weight. RESULTS Here we show that FGF21 signaling to glutamatergic neurons is required for FGF21 to modulate energy expenditure and promote weight loss. In addition, we demonstrate that FGF21 signals to leptin receptor-expressing cells to regulate body weight, and that central leptin signaling is required for FGF21 to fully stimulate body weight loss during obesity. Interestingly, co-administration of FGF21 and leptin synergistically leads to robust weight loss. CONCLUSIONS These data reveal an important endocrine crosstalk between liver- and adipose-derived signals which integrate in the CNS to modulate energy homeostasis and body weight regulation.
Collapse
Affiliation(s)
- Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Meghan C Naber
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tate J Neff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zhiyong Zhu
- Department of Internal Medicine, Iowa City, IA 52242, USA
| | | | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Department of Internal Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA.
| |
Collapse
|
9
|
Molecular profile and response to energy deficit of leptin-receptor neurons in the lateral hypothalamus. Sci Rep 2022; 12:13374. [PMID: 35927440 PMCID: PMC9352899 DOI: 10.1038/s41598-022-16492-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/11/2022] [Indexed: 11/12/2022] Open
Abstract
Leptin exerts its effects on energy balance by inhibiting food intake and increasing energy expenditure via leptin receptors in the hypothalamus. While LepR neurons in the arcuate nucleus of the hypothalamus, the primary target of leptin, have been extensively studied, LepR neurons in other hypothalamic nuclei remain understudied. LepR neurons in the lateral hypothalamus contribute to leptin's effects on food intake and reward, but due to the low abundance of this population it has been difficult to study their molecular profile and responses to energy deficit. We here explore the transcriptome of LepR neurons in the LH and their response to energy deficit. Male LepR-Cre mice were injected in the LH with an AAV carrying Cre-dependent L10:GFP. Few weeks later the hypothalami from fed and food-restricted (24-h) mice were dissected and the TRAP protocol was performed, for the isolation of translating mRNAs from LepR cells in the LH, followed by RNA sequencing. After mapping and normalization, differential expression analysis was performed with DESeq2. We confirm that the isolated mRNA is enriched in LepR transcripts and other known neuropeptide markers of LepRLH neurons, of which we investigate the localization patterns in the LH. We identified novel markers of LepRLH neurons with association to energy balance and metabolic disease, such as Acvr1c, Npy1r, Itgb1, and genes that are differentially regulated by food deprivation, such as Fam46a and Rrad. Our dataset provides a reliable and extensive resource of the molecular makeup of LH LepR neurons and their response to food deprivation.
Collapse
|
10
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
11
|
Yousefvand S, Hamidi F. Role of Lateral Hypothalamus Area in the Central Regulation of Feeding. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Singh U, Jiang J, Saito K, Toth BA, Dickey JE, Rodeghiero SR, Deng Y, Deng G, Xue B, Zhu Z, Zingman LV, Geerling JC, Cui H. Neuroanatomical organization and functional roles of PVN MC4R pathways in physiological and behavioral regulations. Mol Metab 2022; 55:101401. [PMID: 34823066 PMCID: PMC8689242 DOI: 10.1016/j.molmet.2021.101401] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The paraventricular nucleus of hypothalamus (PVN), an integrative center in the brain, orchestrates a wide range of physiological and behavioral responses. While the PVN melanocortin 4 receptor (MC4R) signaling (PVNMC4R+) is involved in feeding regulation, the neuroanatomical organization of PVNMC4R+ connectivity and its role in other physiological regulations are incompletely understood. Here we aimed to better characterize the input-output organization of PVNMC4R+ neurons and test their physiological functions beyond feeding. METHODS Using a combination of viral tools, we mapped PVNMC4R+ circuits and tested the effects of chemogenetic activation of PVNMC4R+ neurons on thermoregulation, cardiovascular control, and other behavioral responses beyond feeding. RESULTS We found that PVNMC4R+ neurons innervate many different brain regions that are known to be important not only for feeding but also for neuroendocrine and autonomic control of thermoregulation and cardiovascular function, including but not limited to the preoptic area, median eminence, parabrachial nucleus, pre-locus coeruleus, nucleus of solitary tract, ventrolateral medulla, and thoracic spinal cord. Contrary to these broad efferent projections, PVNMC4R+ neurons receive monosynaptic inputs mainly from other hypothalamic nuclei (preoptic area, arcuate and dorsomedial hypothalamic nuclei, supraoptic nucleus, and premammillary nucleus), the circumventricular organs (subfornical organ and vascular organ of lamina terminalis), the bed nucleus of stria terminalis, and the parabrachial nucleus. Consistent with their broad efferent projections, chemogenetic activation of PVNMC4R+ neurons not only suppressed feeding but also led to an apparent increase in heart rate, blood pressure, and brown adipose tissue temperature. These physiological changes accompanied acute transient hyperactivity followed by hypoactivity and resting-like behavior. CONCLUSIONS Our results elucidate the neuroanatomical organization of PVNMC4R+ circuits and shed new light on the roles of PVNMC4R+ pathways in autonomic control of thermoregulation, cardiovascular function, and biphasic behavioral activation.
Collapse
Affiliation(s)
- Uday Singh
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kenji Saito
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Brandon A Toth
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jacob E Dickey
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Samuel R Rodeghiero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Zhiyong Zhu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Leonid V Zingman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Joel C Geerling
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
13
|
Suzuki Y, Takagishi K, Kurose Y. Circadian rhythm in hypothalamic leptin receptor (Ob-Rb) mRNA expressions and cerebrospinal fluid and circulating glucose and leptin levels in lactating rats. Biochem Biophys Rep 2021; 28:101129. [PMID: 34541341 PMCID: PMC8435991 DOI: 10.1016/j.bbrep.2021.101129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022] Open
Abstract
In lactating animals, the food consumption increases several-fold for milk supply to the pups. The present study was conducted to clarify the relationship between the hyperphagia during lactation and hypothalamic leptin receptor (Ob-Rb) mRNA expression, cerebrospinal fluid (CSF) and circulating leptin and glucose levels. Food intakes significantly higher in lactation than in non-lactation at all time points (3 points: light phase, 4 points: dark phase) of the day. However, the expression of the hypothalamic Ob-Rb mRNA showed similar circadian rhythms in both the non-lactation and lactation, with only slight differences between the two groups. CSF leptin and glucose levels were constant throughout the day in both non-lactation and lactation, and there was almost no difference between the two groups at each time point. Circulating leptin and glucose levels showed circadian rhythms only in the non-lactating period, and were lower in lactation than in non-lactation, especially in the dark phase. In conclusion, the present study provides evidence that Ob-Rb mRNA expression fluctuates in the lactation period as well as in the non-lactation period, suggesting that the expression profile of whole hypothalamic Ob-Rb may not contribute to the difference in food consumption between lactation and non-lactation, and that chronic decrease in blood glucose levels may be associated with the increase in food consumption during lactation. There was no difference in CSF leptin levels between lactating and non-lactating rats. Hypothalamic Ob-Rb mRNA expressions showed different circadian rhythms between non-lactation and lactation. Chronic decrease in blood glucose levels may be associated with the elevation of food consumption in lactating rats.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kiyohiko Takagishi
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Yohei Kurose
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
14
|
Han D, Shi Y, Han F. The effects of orexin-A and orexin receptors on anxiety- and depression-related behaviors in a male rat model of post-traumatic stress disorder. J Comp Neurol 2021; 530:592-606. [PMID: 34387361 DOI: 10.1002/cne.25231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orexin neurons play an important role in stress-related mental disorders including post-traumatic stress disorder (PTSD). Anxiety- and depression-related symptoms commonly occur in combination with PTSD. However, the role of the orexin system in mediating alterations in these affective symptoms remains unclear. The medial prefrontal cortex (mPFC) is implicated in both cognitive and emotional processing. In the present study, we investigated anxiety- and depression-related behavioral changes using the elevated plus maze, the sucrose preference test, and the open field test in male rats with single prolonged stress (SPS) induced-PTSD. The expression of orexin-A in the hypothalamus and orexin receptors (OX1R and OX2R) in the mPFC was detected and quantified by immunohistochemistry, western blotting, and real-time polymerase chain reaction. We found that the SPS rats exhibited enhanced levels of anxiety, reduced exploratory activities, and anhedonia. Furthermore, SPS resulted in reductions in the expression of orexin-A in the hypothalamus and the increased the expression of OX1R in the mPFC. The intracerebroventricular administration of orexin-A alleviated behavioral changes in SPS rats and partly restored the increased levels of OX1R in the mPFC. These results suggest that the orexin system plays a role in the anxiety- and depression-related symptoms observed in PTSD.
Collapse
Affiliation(s)
- Dan Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China.,Department of Neonatology, The First Hospital of China Medical University, Shenyang, China
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China
| | - Fang Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Hsieh YW, Tsai YW, Lai HH, Lai CY, Lin CY, Her GM. Depletion of Alpha-Melanocyte-Stimulating Hormone Induces Insatiable Appetite and Gains in Energy Reserves and Body Weight in Zebrafish. Biomedicines 2021; 9:941. [PMID: 34440144 PMCID: PMC8392443 DOI: 10.3390/biomedicines9080941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
The functions of anorexigenic neurons secreting proopiomelanocortin (POMC)/alpha-melanocyte-stimulating hormone (α-MSH) of the melanocortin system in the hypothalamus in vertebrates are energy homeostasis, food intake, and body weight regulation. However, the mechanisms remain elusive. This article reports on zebrafish that have been genetically engineered to produce α-MSH mutants, α-MSH-7aa and α-MSH-8aa, selectively lacking 7 and 8 amino acids within the α-MSH region, but retaining most of the other normal melanocortin-signaling (Pomc-derived) peptides. The α-MSH mutants exhibited hyperphagic phenotypes leading to body weight gain, as observed in human patients and mammalian models. The actions of several genes regulating appetite in zebrafish are similar to those in mammals when analyzed using gene expression analysis. These include four selected orexigenic genes: Promelanin-concentrating hormone (pmch), agouti-related protein 2 (agrp2), neuropeptide Y (npy), and hypothalamic hypocretin/orexin (hcrt). We also study five selected anorexigenic genes: Brain-derived neurotrophic factor (bdnf), single-minded homolog 1-a (sim1a), corticotropin-releasing hormone b (crhb), thyrotropin-releasing hormone (trh), and prohormone convertase 2 (pcsk2). The orexigenic actions of α-MSH mutants are rescued completely after hindbrain ventricle injection with a synthetic analog of α-MSH and a melanocortin receptor agonist, Melanotan II. We evaluate the adverse effects of MSH depletion on energy balance using the Alamar Blue metabolic rate assay. Our results show that α-MSH is a key regulator of POMC signaling in appetite regulation and energy expenditure, suggesting that it might be a potential therapeutic target for treating human obesity.
Collapse
Affiliation(s)
- Yang-Wen Hsieh
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (Y.-W.H.); (C.-Y.L.); (C.-Y.L.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Yi-Wen Tsai
- Department of Family Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsin-Hung Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chi-Yu Lai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (Y.-W.H.); (C.-Y.L.); (C.-Y.L.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chiu-Ya Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (Y.-W.H.); (C.-Y.L.); (C.-Y.L.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| |
Collapse
|
16
|
Ramirez-Virella J, Leinninger GM. The Role of Central Neurotensin in Regulating Feeding and Body Weight. Endocrinology 2021; 162:6144574. [PMID: 33599716 PMCID: PMC7951050 DOI: 10.1210/endocr/bqab038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/16/2022]
Abstract
The small peptide neurotensin (Nts) is implicated in myriad processes including analgesia, thermoregulation, reward, arousal, blood pressure, and modulation of feeding and body weight. Alterations in Nts have recently been described in individuals with obesity or eating disorders, suggesting that disrupted Nts signaling may contribute to body weight disturbance. Curiously, Nts mediates seemingly opposing regulation of body weight via different tissues. Peripherally acting Nts promotes fat absorption and weight gain, whereas central Nts signaling suppresses feeding and weight gain. Thus, because Nts is pleiotropic, a location-based approach must be used to understand its contributions to disordered body weight and whether the Nts system might be leveraged to improve metabolic health. Here we review the role of Nts signaling in the brain to understand the sites, receptors, and mechanisms by which Nts can promote behaviors that modify body weight. New techniques permitting site-specific modulation of Nts and Nts receptor-expressing cells suggest that, even in the brain, not all Nts circuitry exerts the same function. Intriguingly, there may be dedicated brain regions and circuits via which Nts specifically suppresses feeding behavior and weight gain vs other Nts-attributed physiology. Defining the central mechanisms by which Nts signaling modifies body weight may suggest strategies to correct disrupted energy balance, as needed to address overweight, obesity, and eating disorders.
Collapse
Affiliation(s)
- Jariel Ramirez-Virella
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
- Correspondence: Gina M. Leinninger, PhD, Department of Physiology, Michigan State University, 5400 ISTB, 766 Service Rd, East Lansing, MI 48824, USA.
| |
Collapse
|
17
|
Jiang J, Morgan DA, Cui H, Rahmouni K. Activation of hypothalamic AgRP and POMC neurons evokes disparate sympathetic and cardiovascular responses. Am J Physiol Heart Circ Physiol 2020; 319:H1069-H1077. [PMID: 32946297 DOI: 10.1152/ajpheart.00411.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The arcuate nucleus of the hypothalamus (ARC) plays a key role in linking peripheral metabolic status to the brain melanocortin system, which influences a wide range of physiological processes including the sympathetic nervous system and blood pressure. The importance of the activity of agouti-related peptide (AgRP)- and proopiomelanocortin (POMC)-expressing neurons, two molecularly distinct populations of ARC neurons, for metabolic regulation is well established, but their relevance for sympathetic and cardiovascular control remains unclear. We used designer receptors exclusively activated by designer drug (DREADD) technology to study how activation of AgRP and POMC neurons affect renal sympathetic nerve traffic and blood pressure. In addition to the drastic feeding-stimulatory effect, DREADD-mediated activation of AgRP, but not POMC neurons, induced an acute reduction in renal sympathetic nerve activity in conscious mice. Paradoxically, however, DREADD-mediated chronic activation of AgRP neurons caused a significant increase in blood pressure specifically in the inactive light phase. On the other hand, chronic activation of POMC neurons led to a significant reduction in blood pressure. These results bring new insights to a previously unappreciated role of ARC AgRP and POMC neuronal activity in autonomic and cardiovascular regulation.NEW & NOTEWORTHY Agouti-related peptide (AgRP)- and proopiomelanocortin (POMC)-expressing neurons of the arcuate nucleus are essential components of the brain melanocortin system that controls various physiological processes. Here, we tested the metabolic and cardiovascular effects of direct activation of these two populations of neurons. Our findings show that, in addition to stimulation of food intake, chemogenetic mediated activation of hypothalamic arcuate nucleus AgRP, but not POMC, neurons reduce renal sympathetic traffic. Despite this, chronic activation of AgRP neurons increased blood pressure. However, chronic activation of POMC neurons led to a significant reduction in blood pressure. Our findings highlight the importance of arcuate nucleus AgRP and POMC neuronal activity in autonomic and cardiovascular regulation.
Collapse
Affiliation(s)
- Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Veterans Affairs Health Care System, Iowa City, Iowa
| |
Collapse
|
18
|
Wang K, Mao W, Zhang X, Zhao Y, Fan K, Pan D, Liu H, Li P, Hai R, Du C. Neuroanatomy of melanocortin-4 receptor pathway in the mouse brain. Open Life Sci 2020; 15:580-587. [PMID: 33817246 PMCID: PMC7874588 DOI: 10.1515/biol-2020-0063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/30/2022] Open
Abstract
Objective Melanocortin-4 receptors (MC4Rs) are key regulators of energy homeostasis and adipose deposition in the central nervous system. Considering that MC4R expression regions and function-related research mainly focus on the paraventricular nucleus (PVN), little is known about their distribution throughout the mouse brain, although its messenger RNA distribution has been analyzed in the rat. Therefore, MC4R protein localization in mouse neurons was the focus of this study. Methods MC4R protein distribution was assessed in mice through immunofluorescence and Western blotting. Results MC4R was differentially expressed throughout the arcuate nucleus (ARC), nucleus of the solitary tract (NTS), raphe pallidus (RPa), medial cerebellar nucleus, intermediolateral nucleus, and brainstem. The highest MC4R protein levels were found in the ARC and ventromedial hypothalamic nucleus, while they were significantly lower in the parabrachial nucleus and NTS. The lowest MC4R protein levels were found in the PVN; there was no difference in the protein levels between the area postrema and RPa. Conclusions These data provide a basic characterization of MC4R-expressing neurons and protein distribution in the mouse brain and may aid further research on its role in energy homeostasis.
Collapse
Affiliation(s)
- Kun Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050000, China
| | - Wei Mao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoyu Zhang
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Yufei Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.,Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
| | - Kuikui Fan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.,Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
| | - Deng Pan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.,Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
| | - Haodong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.,Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
| | - Penghui Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.,Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
| | - Rihan Hai
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Chenguang Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.,Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China.,Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
| |
Collapse
|
19
|
Michael NJ, Caron A, Lee CE, Castorena CM, Lee S, Zigman JM, Williams KW, Elmquist JK. Melanocortin regulation of histaminergic neurons via perifornical lateral hypothalamic melanocortin 4 receptors. Mol Metab 2020; 35:100956. [PMID: 32244183 PMCID: PMC7082550 DOI: 10.1016/j.molmet.2020.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Histaminergic neurons of the tuberomammillary nucleus (TMN) are wake-promoting and contribute to the regulation of energy homeostasis. Evidence indicates that melanocortin 4 receptors (MC4R) are expressed within the TMN. However, whether the melanocortin system influences the activity and function of TMN neurons expressing histidine decarboxylase (HDC), the enzyme required for histamine synthesis, remains undefined. METHODS We utilized Hdc-Cre mice in combination with whole-cell patch-clamp electrophysiology and in vivo chemogenetic techniques to determine whether HDC neurons receive metabolically relevant information via the melanocortin system. RESULTS We found that subsets of HDC-expressing neurons were excited by melanotan II (MTII), a non-selective melanocortin receptor agonist. Use of melanocortin receptor selective agonists (THIQ, [D-Trp8]-γ-MSH) and inhibitors of synaptic transmission (TTX, CNQX, AP5) indicated that the effect was mediated specifically by MC4Rs and involved a glutamatergic dependent presynaptic mechanism. MTII enhanced evoked excitatory post-synaptic currents (EPSCs) originating from electrical stimulation of the perifornical lateral hypothalamic area (PeFLH), supportive of melanocortin effects on the glutamatergic PeFLH projection to the TMN. Finally, in vivo chemogenetic inhibition of HDC neurons strikingly enhanced the anorexigenic effects of intracerebroventricular administration of MTII, suggesting that MC4R activation of histaminergic neurons may restrain the anorexigenic effects of melanocortin system activation. CONCLUSIONS These experiments identify a functional interaction between the melanocortin and histaminergic systems and suggest that HDC neurons act naturally to restrain the anorexigenic effect of melanocortin system activation. These findings may have implications for the control of arousal and metabolic homeostasis, especially in the context of obesity, in which both processes are subjected to alterations.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Eating/drug effects
- Excitatory Postsynaptic Potentials/drug effects
- Histamine/metabolism
- Histidine Decarboxylase/genetics
- Histidine Decarboxylase/metabolism
- Hypothalamic Area, Lateral/cytology
- Hypothalamic Area, Lateral/metabolism
- Locomotion/drug effects
- Male
- Melanocortins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neurons/drug effects
- Neurons/metabolism
- Peptides, Cyclic/pharmacology
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- Natalie J Michael
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Alexandre Caron
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Charlotte E Lee
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Carlos M Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Syann Lee
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA.
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA.
| |
Collapse
|
20
|
Ni RJ, Wang J, Shu YM, Xu L, Zhou JN. Mapping of c-Fos expression in male tree shrew forebrain. Neurosci Lett 2019; 714:134603. [PMID: 31693931 DOI: 10.1016/j.neulet.2019.134603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/05/2023]
Abstract
The tree shrew is susceptible to stimuli. However, mapping of c-Fos expression in male tree shrew forebrain has not been explored. The present results provided the first detailed mapping of c-Fos expression in the forebrain of the tree shrew (Tupaia belangeri chinensis). Acute restraint stress rapidly increased the density of c-Fos-immunoreactive (-ir) neurons in the medial orbital cortex (MO), infralimbic cortex, intermediate part of the lateral septal nucleus (LSi), ventral part of the lateral septal nucleus (LSv), anterior part of the bed nucleus of the stria terminalis, posterior part of the bed nucleus of the stria terminalis (STP), paraventricular nucleus of the hypothalamus, supraoptic nucleus, lateral hypothalamic area, ventromedial hypothalamic nucleus (VMH), and medial amygdaloid nucleus (MeA). Furthermore, a significant increase in c-Fos expression was observed in the MO, LSi, LSv, STP, VMH, arcuate hypothalamic nucleus, anterior amygdaloid area, MeA, and cortical amygdaloid nucleus immediately after acute footshock stress. In addition, the distinct patterns of c-Fos expression in the forebrain were shown in context-, restraint-, or footshock-treated tree shrews. In general, the present study provides the first detailed maps of c-Fos expression in male tree shrew forebrain immediately after various stimuli.
Collapse
Affiliation(s)
- Rong-Jun Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China; Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jing Wang
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yu-Mian Shu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610041, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jiang-Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
21
|
Godfrey N, Borgland SL. Diversity in the lateral hypothalamic input to the ventral tegmental area. Neuropharmacology 2019; 154:4-12. [DOI: 10.1016/j.neuropharm.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/15/2019] [Accepted: 05/13/2019] [Indexed: 12/29/2022]
|
22
|
Li X, Fan K, Li Q, Pan D, Hai R, Du C. Melanocortin 4 receptor-mediated effects of amylin on thermogenesis and regulation of food intake. Diabetes Metab Res Rev 2019; 35:e3149. [PMID: 30851142 DOI: 10.1002/dmrr.3149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 02/02/2023]
Abstract
AIMS Amylin, a pancreatic hormone cosecreted with insulin, exerts important anorexic and weight-loss effects. Melanocortin 4 receptor (MC4R) signalling plays a critical role in energy homeostasis; however, its role on amylin-dependent regulation of food intake and adaptive thermogenesis of interscapular brown adipose tissue (IBAT) are unclear. In this study, we examined the effects of amylin on food intake and thermogenesis on IBAT via the MC4R pathway in mice. MATERIALS AND METHODS Acute food consumption and thermogenesis in IBAT were measured in male wild-type (WT) and MC4R-deficient mice following intraperitoneal injection of amylin and SHU9119, an MC3R/4R antagonist, to determine the role of the central melanocortin system on the hypothalamus and IBAT. RESULTS Amylin (50 μg/kg) suppressed feeding and stimulated thermogenesis on IBAT via activation of the MC4R system in mice. Pharmacological blockade of MC4R using SHU9119 (50 μg/kg) attenuated amylin-induced inhibition of feeding and stimulation of thermogenesis in IBAT. No changes were observed when SHU9119 was injected alone. Moreover, amylin significantly increased MC4R expression and c-Fos neuronal signals in the arcuate nucleus and significantly increased acetyl-CoA carboxylase (ACC) phosphorylation in the hypothalamus and IBAT and uncoupling protein-1 (UCP1) expression in the IBAT of WT mice via the MC4R pathway. CONCLUSION The melanocortin system was involved in amylin-induced suppression of food intake and activation of thermogenesis in both the hypothalamus and IBAT via modulation of ACC phosphorylation and UCP1 expression.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, China
| | - Kuikui Fan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Qiang Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Deng Pan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Rihan Hai
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Chenguang Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| |
Collapse
|
23
|
Saito K, Davis KC, Morgan DA, Toth BA, Jiang J, Singh U, Berglund ED, Grobe JL, Rahmouni K, Cui H. Celastrol Reduces Obesity in MC4R Deficiency and Stimulates Sympathetic Nerve Activity Affecting Metabolic and Cardiovascular Functions. Diabetes 2019; 68:1210-1220. [PMID: 30894367 PMCID: PMC6610022 DOI: 10.2337/db18-1167] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
Abstract
Leptin resistance is a hallmark of obesity with unclear etiology. Celastrol, a compound found in the roots of the Tripterygium wilfordii and known to reduce endoplasmic reticulum (ER) stress, has recently emerged as a promising candidate to treat obesity by improving leptin sensitivity. However, the underlying neural mechanisms by which celastrol reduces obesity remain unclear. Using three different mouse models of obesity-diet-induced obesity (DIO), leptin receptor (LepR)-null, and melanocortin 4 receptor (MC4R)-null mice-in this study, we show that systemic celastrol administration substantially reduces food intake and body weight in MC4R-null comparable to DIO, proving the MC4R-independent antiobesity effect of celastrol. Body weight reduction was due to decreases in both fat and lean mass, and modest but significant body weight reduction was also observed in nonobese wild-type and LepR-null mice. Unexpectedly, celastrol upregulated proinflammatory cytokines without affecting genes involved in ER stress. Importantly, celastrol steadily increased sympathetic nerve activity to the brown fat and kidney with concordant increases of resting metabolic rate and arterial pressure. Our results suggest a previously unappreciated mechanism of action of celastrol in the regulation of energy homeostasis and highlight the need for careful consideration of its development as a safe antiobesity medication.
Collapse
Affiliation(s)
- Kenji Saito
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Kevin C Davis
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Brandon A Toth
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jingwei Jiang
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Uday Singh
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Eric D Berglund
- Advanced Imaging Research Center and Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
- Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
- Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Huxing Cui
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
- Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
24
|
Mickelsen LE, Bolisetty M, Chimileski BR, Fujita A, Beltrami EJ, Costanzo JT, Naparstek JR, Robson P, Jackson AC. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat Neurosci 2019; 22:642-656. [PMID: 30858605 DOI: 10.1038/s41593-019-0349-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
Abstract
The lateral hypothalamic area (LHA) coordinates an array of fundamental behaviors, including sleeping, waking, feeding, stress and motivated behavior. The wide spectrum of functions ascribed to the LHA may be explained by a heterogeneous population of neurons, the full diversity of which is poorly understood. We employed a droplet-based single-cell RNA-sequencing approach to develop a comprehensive census of molecularly distinct cell types in the mouse LHA. Neuronal populations were classified based on fast neurotransmitter phenotype and expression of neuropeptides, transcription factors and synaptic proteins, among other gene categories. We define 15 distinct populations of glutamatergic neurons and 15 of GABAergic neurons, including known and novel cell types. We further characterize a novel population of somatostatin-expressing neurons through anatomical and behavioral approaches, identifying a role for these neurons in specific forms of innate locomotor behavior. This study lays the groundwork for better understanding the circuit-level underpinnings of LHA function.
Collapse
Affiliation(s)
- Laura E Mickelsen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, USA
| | - Mohan Bolisetty
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Bristol-Myers Squibb, Pennington, NJ, USA
| | - Brock R Chimileski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Akie Fujita
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Eric J Beltrami
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - James T Costanzo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jacob R Naparstek
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. .,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA. .,Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| | - Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA. .,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, USA. .,Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
25
|
Berrendero F, Flores Á, Robledo P. When orexins meet cannabinoids: Bidirectional functional interactions. Biochem Pharmacol 2018; 157:43-50. [PMID: 30171834 DOI: 10.1016/j.bcp.2018.08.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/23/2018] [Indexed: 01/11/2023]
|
26
|
López-Gambero AJ, Martínez F, Salazar K, Cifuentes M, Nualart F. Brain Glucose-Sensing Mechanism and Energy Homeostasis. Mol Neurobiol 2018; 56:769-796. [PMID: 29796992 DOI: 10.1007/s12035-018-1099-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/25/2018] [Indexed: 01/02/2023]
Abstract
The metabolic and energy state of the organism depends largely on the availability of substrates, such as glucose for ATP production, necessary for maintaining physiological functions. Deregulation in glucose levels leads to the appearance of pathological signs that result in failures in the cardiovascular system and various diseases, such as diabetes, obesity, nephropathy, and neuropathy. Particularly, the brain relies on glucose as fuel for the normal development of neuronal activity. Regions adjacent to the cerebral ventricles, such as the hypothalamus and brainstem, exercise central control in energy homeostasis. These centers house nuclei of neurons whose excitatory activity is sensitive to changes in glucose levels. Determining the different detection mechanisms, the phenotype of neurosecretion, and neural connections involving glucose-sensitive neurons is essential to understanding the response to hypoglycemia through modulation of food intake, thermogenesis, and activation of sympathetic and parasympathetic branches, inducing glucagon and epinephrine secretion and other hypothalamic-pituitary axis-dependent counterregulatory hormones, such as glucocorticoids and growth hormone. The aim of this review focuses on integrating the current understanding of various glucose-sensing mechanisms described in the brain, thereby establishing a relationship between neuroanatomy and control of physiological processes involved in both metabolic and energy balance. This will advance the understanding of increasingly prevalent diseases in the modern world, especially diabetes, and emphasize patterns that regulate and stimulate intake, thermogenesis, and the overall synergistic effect of the neuroendocrine system.
Collapse
Affiliation(s)
- A J López-Gambero
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, BIONAND, Andalusian Center for Nanomedicine and Biotechnology and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Málaga, Spain
| | - F Martínez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - K Salazar
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - M Cifuentes
- Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, BIONAND, Andalusian Center for Nanomedicine and Biotechnology and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Málaga, Spain.
| | - F Nualart
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile. .,Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
27
|
Zhang B, Nakata M, Lu M, Nakae J, Okada T, Ogawa W, Yada T. Protective role of AgRP neuron's PDK1 against salt-induced hypertension. Biochem Biophys Res Commun 2018; 500:910-916. [PMID: 29705701 DOI: 10.1016/j.bbrc.2018.04.192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
Abstract
In the hypothalamic arcuate nucleus (ARC), orexigenic agouti-related peptide (AgRP) neurons regulate feeding behavior and energy homeostasis. The 3-phosphoinositide-dependent protein kinase-1 (PDK1) in AgRP neurons serves as a major signaling molecule for leptin and insulin, the hormones regulating feeding behavior, energy homeostasis and circulation. However, it is unclear whether PDK1 in AGRP neurons is also involved in regulation of blood pressure. This study explored it by generating and analyzing AgRP neuron-specific PDK1 knockout (Agrp-Pdk1flox/flox) mice and effect of high salt diet on blood pressure in KO and WT mice was analyzed. Under high salt diet feeding, systolic blood pressure (SBP) of Agrp-Pdk1flox/flox mice was significantly elevated compared to Agrp-Cre mice. When the high salt diet was switched to control low salt diet, SBP of Agrp-Pdk1flox/flox mice returned to the basal level observed in Agrp-Cre mice within 1 week. In Agrp-Pdk1flox/flox mice, urinary noradrenalin excretion and NUCB2 mRNA expression in hypothalamic paraventricular nucleus (PVN) were markedly upregulated. Moreover, silencing of NUCB2 in the PVN counteracted the rises in urinary noradrenalin excretions and SBP. These results demonstrate a novel role of PDK1 in AgRP neurons to counteract the high salt diet-induced hypertension by preventing hyperactivation of PVN nesfatin-1 neurons.
Collapse
Affiliation(s)
- Boyang Zhang
- Department of Physiology, Jichi Medical University, School of Medicine, Japan
| | - Masanori Nakata
- Department of Physiology, Jichi Medical University, School of Medicine, Japan; Department of Physiology, Wakayama Medical University School of Medicine, Japan.
| | - Ming Lu
- Department of Physiology, Jichi Medical University, School of Medicine, Japan
| | - Jun Nakae
- Frontier Medicine on Metabolic Syndrome, Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan
| | - Toshihiko Yada
- Department of Physiology, Jichi Medical University, School of Medicine, Japan; Center for Integrative Physiology, Division of Integrative Physiology, Kansai Electric Power Medical Research Institute, Japan.
| |
Collapse
|
28
|
Morselli LL, Claflin KE, Cui H, Grobe JL. Control of Energy Expenditure by AgRP Neurons of the Arcuate Nucleus: Neurocircuitry, Signaling Pathways, and Angiotensin. Curr Hypertens Rep 2018; 20:25. [PMID: 29556733 DOI: 10.1007/s11906-018-0824-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Here, we review the current understanding of the functional neuroanatomy of neurons expressing Agouti-related peptide (AgRP) and the angiotensin 1A receptor (AT1A) within the arcuate nucleus (ARC) in the control of energy balance. RECENT FINDINGS The development and maintenance of obesity involves suppression of resting metabolic rate (RMR). RMR control is integrated via AgRP and proopiomelanocortin neurons within the ARC. Their projections to other hypothalamic and extrahypothalamic nuclei contribute to RMR control, though relatively little is known about the contributions of individual projections and the neurotransmitters involved. Recent studies highlight a role for AT1A, localized to AgRP neurons, but the specific function of AT1A within these cells remains unclear. AT1A functions within AgRP neurons to control RMR, but additional work is required to clarify its role within subpopulations of AgRP neurons projecting to distinct second-order nuclei, and the molecular mediators of its signaling within these cells.
Collapse
Affiliation(s)
- Lisa L Morselli
- Department of Pharmacology, University of Iowa, 51 Newton Rd., 2-307 BSB, Iowa City, IA, 52242, USA.,Department of Internal Medicine, Division of Endocrinology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kristin E Claflin
- Department of Pharmacology, University of Iowa, 51 Newton Rd., 2-307 BSB, Iowa City, IA, 52242, USA
| | - Huxing Cui
- Department of Pharmacology, University of Iowa, 51 Newton Rd., 2-307 BSB, Iowa City, IA, 52242, USA.,Center for Hypertension Research, University of Iowa, Iowa City, IA, 52242, USA.,Obesity Research & Education Initiative, University of Iowa, Iowa City, IA, 52242, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa, 51 Newton Rd., 2-307 BSB, Iowa City, IA, 52242, USA. .,Center for Hypertension Research, University of Iowa, Iowa City, IA, 52242, USA. .,Obesity Research & Education Initiative, University of Iowa, Iowa City, IA, 52242, USA. .,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA. .,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA. .,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
29
|
Understanding melanocortin-4 receptor control of neuronal circuits: Toward novel therapeutics for obesity syndrome. Pharmacol Res 2018; 129:10-19. [DOI: 10.1016/j.phrs.2018.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 01/25/2023]
|
30
|
González JA, Prehn JH. Orexin-A/hypocretin-1 Immunoreactivity in the Lateral Hypothalamus is Reduced in Genetically Obese but not in Diet-induced Obese Mice. Neuroscience 2018; 369:183-191. [DOI: 10.1016/j.neuroscience.2017.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/12/2017] [Accepted: 11/04/2017] [Indexed: 11/26/2022]
|
31
|
Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis. eNeuro 2017; 4:eN-NWR-0013-17. [PMID: 28966976 PMCID: PMC5617207 DOI: 10.1523/eneuro.0013-17.2017] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/14/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023] Open
Abstract
The lateral hypothalamic area (LHA) lies at the intersection of multiple neural and humoral systems and orchestrates fundamental aspects of behavior. Two neuronal cell types found in the LHA are defined by their expression of hypocretin/orexin (Hcrt/Ox) and melanin-concentrating hormone (MCH) and are both important regulators of arousal, feeding, and metabolism. Conflicting evidence suggests that these cell populations have a more complex signaling repertoire than previously appreciated, particularly in regard to their coexpression of other neuropeptides and the machinery for the synthesis and release of GABA and glutamate. Here, we undertook a single-cell expression profiling approach to decipher the neurochemical phenotype, and heterogeneity therein, of Hcrt/Ox and MCH neurons. In transgenic mouse lines, we used single-cell quantitative polymerase chain reaction (qPCR) to quantify the expression of 48 key genes, which include neuropeptides, fast neurotransmitter components, and other key markers, which revealed unexpected neurochemical diversity. We found that single MCH and Hcrt/Ox neurons express transcripts for multiple neuropeptides and markers of both excitatory and inhibitory fast neurotransmission. Virtually all MCH and approximately half of the Hcrt/Ox neurons sampled express both the machinery for glutamate release and GABA synthesis in the absence of a vesicular GABA release pathway. Furthermore, we found that this profile is characteristic of a subpopulation of LHA glutamatergic neurons but contrasts with a broad population of LHA GABAergic neurons. Identifying the neurochemical diversity of Hcrt/Ox and MCH neurons will further our understanding of how these populations modulate postsynaptic excitability through multiple signaling mechanisms and coordinate diverse behavioral outputs.
Collapse
|
32
|
Goforth PB, Myers MG. Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism. Curr Top Behav Neurosci 2017; 33:137-156. [PMID: 27909992 DOI: 10.1007/7854_2016_51] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The neuropeptide hypocretin is also commonly referred to as orexin, since its orexigenic action was recognized early. Orexin/hypocretin (OX) neurons project widely throughout the brain and the physiologic and behavioral functions of OX are much more complex than initially conceived based upon the stimulation of feeding. OX most notably controls functions relevant to attention, alertness, and motivation. OX also plays multiple crucial roles in the control of food intake, metabolism, and overall energy balance in mammals. OX signaling not only promotes food-seeking behavior upon short-term fasting to increase food intake and defend body weight, but, conversely, OX signaling also supports energy expenditure to protect against obesity. Furthermore, OX modulates the autonomic nervous system to control glucose metabolism, including during the response to hypoglycemia. Consistently, a variety of nutritional cues (including the hormones leptin and ghrelin) and metabolites (e.g., glucose, amino acids) control OX neurons. In this chapter, we review the control of OX neurons by nutritional/metabolic cues, along with our current understanding of the mechanisms by which OX and OX neurons contribute to the control of energy balance and metabolism.
Collapse
Affiliation(s)
- Paulette B Goforth
- Department of Pharmacology, University of Michigan, 1000 Wall St, 5131 Brehm Tower, Ann Arbor, MI, 48105, USA
| | - Martin G Myers
- Departments of Internal Medicine, and Molecular and Integrative Physiology, University of Michigan, 1000 Wall St, 6317 Brehm Tower, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
33
|
Melanocortin 4 receptor ligands modulate energy homeostasis through urocortin 1 neurons of the centrally projecting Edinger-Westphal nucleus. Neuropharmacology 2017; 118:26-37. [DOI: 10.1016/j.neuropharm.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/15/2017] [Accepted: 03/02/2017] [Indexed: 11/24/2022]
|
34
|
Claflin KE, Sandgren JA, Lambertz AM, Weidemann BJ, Littlejohn NK, Burnett CML, Pearson NA, Morgan DA, Gibson-Corley KN, Rahmouni K, Grobe JL. Angiotensin AT1A receptors on leptin receptor-expressing cells control resting metabolism. J Clin Invest 2017; 127:1414-1424. [PMID: 28263184 DOI: 10.1172/jci88641] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
Leptin contributes to the control of resting metabolic rate (RMR) and blood pressure (BP) through its actions in the arcuate nucleus (ARC). The renin-angiotensin system (RAS) and angiotensin AT1 receptors within the brain are also involved in the control of RMR and BP, but whether this regulation overlaps with leptin's actions is unclear. Here, we have demonstrated the selective requirement of the AT1A receptor in leptin-mediated control of RMR. We observed that AT1A receptors colocalized with leptin receptors (LEPRs) in the ARC. Cellular coexpression of AT1A and LEPR was almost exclusive to the ARC and occurred primarily within neurons expressing agouti-related peptide (AgRP). Mice lacking the AT1A receptor specifically in LEPR-expressing cells failed to show an increase in RMR in response to a high-fat diet and deoxycorticosterone acetate-salt (DOCA-salt) treatments, but BP control remained intact. Accordingly, loss of RMR control was recapitulated in mice lacking AT1A in AgRP-expressing cells. We conclude that angiotensin activates divergent mechanisms to control BP and RMR and that the brain RAS functions as a major integrator for RMR control through its actions at leptin-sensitive AgRP cells of the ARC.
Collapse
|
35
|
Navarro M. The Role of the Melanocortin System in Drug and Alcohol Abuse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:121-150. [DOI: 10.1016/bs.irn.2017.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Romanova IV, Mikhrina AL, Shpakov AO. Localization of the dopamine receptors of types 1 and 2 on the bodies of POMC-expressing neurons of the arcuate nucleus of the hypothalamus in mice and rats. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2017; 472:11-14. [PMID: 28429261 DOI: 10.1134/s0012496617010082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Indexed: 06/07/2023]
Abstract
Using immunofluorescent techniques, we have demonstrated the presence of two main types of dopamine receptors, D1 and D2, on the bodies of neurons of the arcuate nucleus of the hypothalamus expressing the precursor of peptides of the melanocortin family proopiomelanocortin in C57Bl/6J mice and Wistar rats. These data show close functional relationship between the dopamine and melanocortin systems of the brain and involvement of dopamine in the control of synthesis and secretion of peptides of the melanocortin family.
Collapse
Affiliation(s)
- I V Romanova
- Sechenov Institute of Evolutionary Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - A L Mikhrina
- Sechenov Institute of Evolutionary Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A O Shpakov
- Sechenov Institute of Evolutionary Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
37
|
Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016; 594:6443-6462. [PMID: 27302606 DOI: 10.1113/jp271946] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/31/2016] [Indexed: 12/13/2022] Open
Abstract
The hypothalamus is among the most phylogenetically conserved regions in the vertebrate brain, reflecting its critical role in maintaining physiological and behavioural homeostasis. By integrating signals arising from both the brain and periphery, it governs a litany of behaviourally important functions essential for survival. In particular, the lateral hypothalamic area (LHA) is central to the orchestration of sleep-wake states, feeding, energy balance and motivated behaviour. Underlying these diverse functions is a heterogeneous assembly of cell populations typically defined by neurochemical markers, such as the well-described neuropeptides hypocretin/orexin and melanin-concentrating hormone. However, anatomical and functional evidence suggests a rich diversity of other cell populations with complex neurochemical profiles that include neuropeptides, receptors and components of fast neurotransmission. Collectively, the LHA acts as a hub for the integration of diverse central and peripheral signals and, through complex local and long-range output circuits, coordinates adaptive behavioural responses to the environment. Despite tremendous progress in our understanding of the LHA, defining the identity of functionally discrete LHA cell types, and their roles in driving complex behaviour, remain significant challenges in the field. In this review, we discuss advances in our understanding of the neurochemical and cellular heterogeneity of LHA neurons and the recent application of powerful new techniques, such as opto- and chemogenetics, in defining the role of LHA circuits in feeding, reward, arousal and stress. From pioneering work to recent developments, we review how the interrogation of LHA cells and circuits is contributing to a mechanistic understanding of how the LHA coordinates complex behaviour.
Collapse
Affiliation(s)
- Patricia Bonnavion
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB)-UNI, 1050, Brussels, Belgium
| | - Laura E Mickelsen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Akie Fujita
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioural Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
38
|
Abstract
The marked (18)F-flurodeoxyglucose uptake by brown adipose tissue (BAT) enabled its identification in human positron emission tomography imaging studies. In this Perspective, we discuss how glucose extraction by BAT and beige adipose tissue (BeAT) sufficiently impacts on glycemic control. We then present a unique overview of the central circuits modulated by gluco-regulatory hormones, temperature, and glucose itself, which converge on sympathetic preganglionic neurons and whose activation syphon circulating glucose into BAT/BeAT. Targeted stimulation of the sympathetic nervous system at specific nodes to selectively recruit BAT/BeAT may represent a safe and effective means of treating diabetes.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Integrated Research and Treatment Centre for Adiposity Diseases, Department of Medicine, University of Leipzig, Leipzig, Saxony 04103, Germany.
| | - Michael A Cowley
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Wiebke K Fenske
- Integrated Research and Treatment Centre for Adiposity Diseases, Department of Medicine, University of Leipzig, Leipzig, Saxony 04103, Germany
| |
Collapse
|
39
|
Sprow GM, Rinker JA, Lowery-Gointa EG, Sparrow AM, Navarro M, Thiele TE. Lateral hypothalamic melanocortin receptor signaling modulates binge-like ethanol drinking in C57BL/6J mice. Addict Biol 2016; 21:835-46. [PMID: 25975524 DOI: 10.1111/adb.12264] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Binge ethanol drinking is a highly pervasive and destructive behavior yet the underlying neurobiological mechanisms remain poorly understood. Recent work suggests that overlapping neurobiological mechanisms modulate feeding disorders and excessive ethanol intake, and converging evidence indicates that the melanocortin (MC) system may be a promising candidate. The aims of the present work were to examine how repeated binge-like ethanol drinking, using the 'drinking in the dark' (DID) protocol, impacts key peptides within the MC system and if site-specific manipulation of MC receptor (MCR) signaling modulates binge-like ethanol drinking. Male C57BL/6J mice were exposed to one, three or six cycles of binge-like ethanol, sucrose or water drinking, after which brain tissue was processed via immunohistochemistry (IHC) for analysis of key MC peptides, including alpha-melanocyte stimulating hormone (α-MSH) and agouti-related protein (AgRP). Results indicated that α-MSH expression was selectively decreased, while AgRP expression was selectively increased, within specific hypothalamic subregions following repeated binge-like ethanol drinking. To further explore this relationship, we used site-directed drug delivery techniques to agonize or antagonize MCRs within the lateral hypothalamus (LH). We found that the nonselective MCR agonist melanotan-II (MTII) blunted, while the nonselective MCR antagonist AgRP augmented, binge-like ethanol consumption when delivered into the LH. As these effects were region-specific, the present results suggest that a more thorough understanding of the MC neurocircuitry within the hypothalamus will help provide novel insight into the mechanisms that modulate excessive binge-like ethanol intake and may help uncover new therapeutic targets aimed at treating alcohol abuse disorders.
Collapse
Affiliation(s)
- Gretchen M. Sprow
- Department of Psychology and Neuroscience; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Jennifer A. Rinker
- Department of Psychology and Neuroscience; University of North Carolina at Chapel Hill; Chapel Hill NC USA
- Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Emily G. Lowery-Gointa
- Department of Psychology and Neuroscience; University of North Carolina at Chapel Hill; Chapel Hill NC USA
- Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Angela M. Sparrow
- Department of Psychology and Neuroscience; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Montserrat Navarro
- Department of Psychology and Neuroscience; University of North Carolina at Chapel Hill; Chapel Hill NC USA
- Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Todd E. Thiele
- Department of Psychology and Neuroscience; University of North Carolina at Chapel Hill; Chapel Hill NC USA
- Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| |
Collapse
|
40
|
Sohn JW, Oh Y, Kim KW, Lee S, Williams KW, Elmquist JK. Leptin and insulin engage specific PI3K subunits in hypothalamic SF1 neurons. Mol Metab 2016; 5:669-679. [PMID: 27656404 PMCID: PMC5021675 DOI: 10.1016/j.molmet.2016.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 11/21/2022] Open
Abstract
Objective The ventromedial hypothalamic nucleus (VMH) regulates energy balance and glucose homeostasis. Leptin and insulin exert metabolic effects via their cognate receptors expressed by the steroidogenic factor 1 (SF1) neurons within the VMH. However, detailed cellular mechanisms involved in the regulation of these neurons by leptin and insulin remain to be identified. Methods We utilized genetically-modified mouse models and performed patch-clamp electrophysiology experiments to resolve this issue. Results We identified distinct populations of leptin-activated and leptin-inhibited SF1 neurons. In contrast, insulin uniformly inhibited SF1 neurons. Notably, we found that leptin-activated, leptin-inhibited, and insulin-inhibited SF1 neurons are distinct subpopulations within the VMH. Leptin depolarization of SF1 neuron also required the PI3K p110β catalytic subunit. This effect was mediated by the putative transient receptor potential C (TRPC) channel. On the other hand, hyperpolarizing responses of SF1 neurons by leptin and insulin required either of the p110α or p110β catalytic subunits, and were mediated by the putative ATP-sensitive K+ (KATP) channel. Conclusions Our results demonstrate that specific PI3K catalytic subunits are responsible for the acute effects of leptin and insulin on VMH SF1 neurons, and provide insights into the cellular mechanisms of leptin and insulin action on VMH SF1 neurons that regulate energy balance and glucose homeostasis. Leptin recruits p110β/TRPC channels to depolarize/activate SF1 neurons. Leptin recruits p110α/p110β/KATP channels to hyperpolarize/inhibit SF1 neurons. Insulin recruits p110α/p110β/KATP channels to hyperpolarize/inhibit SF1 neurons. Acute leptin and insulin responses are segregated to distinct subsets of VMH SF1 neurons.
Collapse
Affiliation(s)
- Jong-Woo Sohn
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| | - Youjin Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Ki Woo Kim
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Pharmacology, Yonsei University Wonju College of Medicine, Wonju, 26426, South Korea
| | - Syann Lee
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kevin W Williams
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
41
|
Liu Y, Huang Y, Liu T, Wu H, Cui H, Gautron L. Lipopolysacharide Rapidly and Completely Suppresses AgRP Neuron-Mediated Food Intake in Male Mice. Endocrinology 2016; 157:2380-92. [PMID: 27111742 PMCID: PMC4891783 DOI: 10.1210/en.2015-2081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although Agouti-related peptide (AgRP) neurons play a key role in the regulation of food intake, their contribution to the anorexia caused by proinflammatory insults has yet to be identified. Using a combination of neuroanatomical and pharmacogenetics experiments, this study sought to investigate the importance of AgRP neurons and downstream targets in the anorexia caused by the peripheral administration of a moderate dose of lipopolysaccharide (LPS) (100 μg/kg, ip). First, in the C57/Bl6 mouse, we demonstrated that LPS induced c-fos in select AgRP-innervated brain sites involved in feeding but not in any arcuate proopiomelanocortin neurons. Double immunohistochemistry further showed that LPS selectively induced c-Fos in a large subset of melanocortin 4 receptor-expressing neurons in the lateral parabrachial nucleus. Secondly, we used pharmacogenetics to stimulate the activity of AgRP neurons during the course of LPS-induced anorexia. In AgRP-Cre mice expressing the designer receptor hM3Dq-Gq only in AgRP neurons, the administration of the designer drug clozapine-N-oxide (CNO) induced robust food intake. Strikingly, CNO-mediated food intake was rapidly and completely blunted by the coadministration of LPS. Neuroanatomical experiments further indicated that LPS did not interfere with the ability of CNO to stimulate c-Fos in AgRP neurons. In summary, our findings combined together support the view that the stimulation of select AgRP-innervated brain sites and target neurons, rather than the inhibition of AgRP neurons themselves, is likely to contribute to the rapid suppression of food intake observed during acute bacterial endotoxemia.
Collapse
Affiliation(s)
- Yang Liu
- Division of Hypothalamic Research and Department of Internal Medicine (Y.L., Y.H., T.L., L.G.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Orthopedics (Y.L., H.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030; and Department of Pharmacology (H.C.), Center for Hypertension Research, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Ying Huang
- Division of Hypothalamic Research and Department of Internal Medicine (Y.L., Y.H., T.L., L.G.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Orthopedics (Y.L., H.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030; and Department of Pharmacology (H.C.), Center for Hypertension Research, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Tiemin Liu
- Division of Hypothalamic Research and Department of Internal Medicine (Y.L., Y.H., T.L., L.G.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Orthopedics (Y.L., H.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030; and Department of Pharmacology (H.C.), Center for Hypertension Research, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Hua Wu
- Division of Hypothalamic Research and Department of Internal Medicine (Y.L., Y.H., T.L., L.G.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Orthopedics (Y.L., H.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030; and Department of Pharmacology (H.C.), Center for Hypertension Research, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Huxing Cui
- Division of Hypothalamic Research and Department of Internal Medicine (Y.L., Y.H., T.L., L.G.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Orthopedics (Y.L., H.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030; and Department of Pharmacology (H.C.), Center for Hypertension Research, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine (Y.L., Y.H., T.L., L.G.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Orthopedics (Y.L., H.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030; and Department of Pharmacology (H.C.), Center for Hypertension Research, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| |
Collapse
|
42
|
Anderson EJP, Çakir I, Carrington SJ, Cone RD, Ghamari-Langroudi M, Gillyard T, Gimenez LE, Litt MJ. 60 YEARS OF POMC: Regulation of feeding and energy homeostasis by α-MSH. J Mol Endocrinol 2016; 56:T157-74. [PMID: 26939593 PMCID: PMC5027135 DOI: 10.1530/jme-16-0014] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Abstract
The melanocortin peptides derived from pro-opiomelanocortin (POMC) were originally understood in terms of the biological actions of α-melanocyte-stimulating hormone (α-MSH) on pigmentation and adrenocorticotrophic hormone on adrenocortical glucocorticoid production. However, the discovery of POMC mRNA and melanocortin peptides in the CNS generated activities directed at understanding the direct biological actions of melanocortins in the brain. Ultimately, discovery of unique melanocortin receptors expressed in the CNS, the melanocortin-3 (MC3R) and melanocortin-4 (MC4R) receptors, led to the development of pharmacological tools and genetic models leading to the demonstration that the central melanocortin system plays a critical role in the regulation of energy homeostasis. Indeed, mutations in MC4R are now known to be the most common cause of early onset syndromic obesity, accounting for 2-5% of all cases. This review discusses the history of these discoveries, as well as the latest work attempting to understand the molecular and cellular basis of regulation of feeding and energy homeostasis by the predominant melanocortin peptide in the CNS, α-MSH.
Collapse
Affiliation(s)
- Erica J P Anderson
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Isin Çakir
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sheridan J Carrington
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roger D Cone
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Masoud Ghamari-Langroudi
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taneisha Gillyard
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA Meharry Medical CollegeDepartment of Neuroscience and Pharmacology, Nashville, Tennessee, USA
| | - Luis E Gimenez
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael J Litt
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
43
|
Boersma GJ, Liang NC, Lee RS, Albertz JD, Kastelein A, Moody LA, Aryal S, Moran TH, Tamashiro KL. Failure to upregulate Agrp and Orexin in response to activity based anorexia in weight loss vulnerable rats characterized by passive stress coping and prenatal stress experience. Psychoneuroendocrinology 2016; 67:171-81. [PMID: 26907996 PMCID: PMC4808341 DOI: 10.1016/j.psyneuen.2016.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 02/02/2023]
Abstract
We hypothesize that anorexia nervosa (AN) poses a physiological stress. Therefore, the way an individual copes with stress may affect AN vulnerability. Since prenatal stress (PNS) exposure alters stress responsivity in offspring this may increase their risk of developing AN. We tested this hypothesis using the activity based anorexia (ABA) rat model in control and PNS rats that were characterized by either proactive or passive stress-coping behavior. We found that PNS passively coping rats ate less and lost more weight during the ABA paradigm. Exposure to ABA resulted in higher baseline corticosterone and lower insulin levels in all groups. However, leptin levels were only decreased in rats with a proactive stress-coping style. Similarly, ghrelin levels were increased only in proactively coping ABA rats. Neuropeptide Y (Npy) expression was increased and proopiomelanocortin (Pomc) expression was decreased in all rats exposed to ABA. In contrast, agouti-related peptide (Agrp) and orexin (Hctr) expression were increased in all but the PNS passively coping ABA rats. Furthermore, DNA methylation of the orexin gene was increased after ABA in proactive coping rats and not in passive coping rats. Overall our study suggests that passive PNS rats have innate impairments in leptin and ghrelin in responses to starvation combined with prenatal stress associated impairments in Agrp and orexin expression in response to starvation. These impairments may underlie decreased food intake and associated heightened body weight loss during ABA in the passively coping PNS rats.
Collapse
|
44
|
He ZG, Liu BW, Xiang HB. Cross interaction of melanocortinergic and dopaminergic systems in neural modulation. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2015; 7:152-157. [PMID: 26823964 PMCID: PMC4697671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Melanocortinergic and dopaminergic systems are widely distributed in the CNS and have been established as a crucial regulatory component in diverse physiological functions. The pharmacology of both melanocortinergic and dopaminergic systems including their individual receptors, signaling mechanisms, agonists and antagonists has been extensively studied. Several lines of evidence showed that there existed a cross interaction between the receptors of melanocortinergic and dopaminergic systems. The data available at present had expanded our understanding of melanocortinergic and dopaminergic system interaction in neural modulation, which will be main discussed in this paper.
Collapse
Affiliation(s)
- Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, PR China
| | - Bao-Wen Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, PR China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, PR China
| |
Collapse
|
45
|
Yoon YR, Baik JH. Melanocortin 4 Receptor and Dopamine D2 Receptor Expression in Brain Areas Involved in Food Intake. Endocrinol Metab (Seoul) 2015; 30:576-83. [PMID: 26790386 PMCID: PMC4722414 DOI: 10.3803/enm.2015.30.4.576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/19/2015] [Accepted: 10/15/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The melanocortin 4 receptor (MC4R) is involved in the regulation of homeostatic energy balance by the hypothalamus. Recent reports showed that MC4R can also control the motivation for food in association with a brain reward system, such as dopamine. We investigated the expression levels of MC4R and the dopamine D2 receptor (D2R), which is known to be related to food rewards, in both the hypothalamus and brain regions involved in food rewards. METHODS We examined the expression levels of D2R and MC4R by dual immunofluorescence histochemistry in hypothalamic regions and in the bed nucleus of the stria terminalis (BNST), the central amygdala, and the ventral tegmental area of transgenic mice expressing enhanced green fluorescent protein under the control of the D2R gene. RESULTS In the hypothalamic area, significant coexpression of MC4R and D2R was observed in the arcuate nucleus. We observed a significant coexpression of D2R and MC4R in the BNST, which has been suggested to be an important site for food reward. CONCLUSION We suggest that MC4R and D2R function in the hypothalamus for control of energy homeostasis and that within the brain regions related with rewards, such as the BNST, the melanocortin system works synergistically with dopamine for the integration of food motivation in the control of feeding behaviors.
Collapse
Affiliation(s)
- Ye Ran Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Ja Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea.
| |
Collapse
|
46
|
Shukla C, Koch LG, Britton SL, Cai M, Hruby VJ, Bednarek M, Novak CM. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats. Neuroscience 2015; 310:252-67. [PMID: 26404873 DOI: 10.1016/j.neuroscience.2015.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/13/2022]
Abstract
Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of MC peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT.
Collapse
Affiliation(s)
- C Shukla
- Department of Biological Sciences, Kent State University, Kent, OH, United States; Harvard Medical School - VA Boston Healthcare System, Boston, MA, United States.
| | - L G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - S L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - M Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - V J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - M Bednarek
- MedImmune Limited, Cambridge, United Kingdom
| | - C M Novak
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
47
|
Bartness TJ, Garretson JT. Editorial on Ding et al. 'Adipose afferent reflex responses to insulin is mediated by melanocortin 4 type receptors in the paraventricular nucleus in insulin resistance rats'. Acta Physiol (Oxf) 2015; 214:432-5. [PMID: 26086720 DOI: 10.1111/apha.12541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- T J Bartness
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA, USA.
| | - J T Garretson
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
48
|
Dopamine release in the lateral hypothalamus is stimulated by α-MSH in both the anticipatory and consummatory phases of feeding. Psychoneuroendocrinology 2015; 56:79-87. [PMID: 25805178 DOI: 10.1016/j.psyneuen.2015.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 12/14/2022]
Abstract
α-Melanocyte-stimulating hormone (α-MSH), is a hypothalamic neuropeptide signaling satiation, but it is not known if α-MSH may stimulate dopamine release in a feeding control brain region of the lateral hypothalamic area (LHA), during the anticipatory and consummatory phases of feeding behavior. To address these questions, dynamics of dopamine release were measured in 15 min microdialysis samples simultaneously from the LHA and the nucleus accumbens (NAc) during consecutive exposure and provision of food and 1% sucrose in Wistar rats after overnight food deprivation. α-MSH was infused via the microdialysis probe either into the LHA or NAc starting before food exposure. Food, sucrose and water intakes were automatically monitored and analyzed concomitantly with microdialysis samples. We found that LHA-α-MSH-infused rats stopped eating earlier and consumed less food and sucrose as compared to control and NAc-α-MSH-infused rats. Exposure to food produced a peak of LHA dopamine in both LHA-α-MSH and NAc-α-MSH-infused rats but not in the controls. During food provision, LHA dopamine levels were strongly elevated in LHA-α-MSH infused rats, while delivery of α-MSH into the NAc induced a less intense increase of dopamine in both NAc and LHA. In all rats, LHA dopamine levels correlated inversely with sucrose intake. In conclusion, our study showed that α-MSH stimulates dopamine release in the LHA during both the anticipatory and consummatory phases of feeding, decreases food intake and inhibits sucrose intake. These data suggest that LHA dopamine release can be involved in α-MSH anorexigenic effects.
Collapse
|
49
|
Morgan DA, McDaniel LN, Yin T, Khan M, Jiang J, Acevedo MR, Walsh SA, Ponto LLB, Norris AW, Lutter M, Rahmouni K, Cui H. Regulation of glucose tolerance and sympathetic activity by MC4R signaling in the lateral hypothalamus. Diabetes 2015; 64:1976-87. [PMID: 25605803 PMCID: PMC4439564 DOI: 10.2337/db14-1257] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/10/2015] [Indexed: 02/06/2023]
Abstract
Melanocortin 4 receptor (MC4R) signaling mediates diverse physiological functions, including energy balance, glucose homeostasis, and autonomic activity. Although the lateral hypothalamic area (LHA) is known to express MC4Rs and to receive input from leptin-responsive arcuate proopiomelanocortin neurons, the physiological functions of MC4Rs in the LHA are incompletely understood. We report that MC4R(LHA) signaling regulates glucose tolerance and sympathetic nerve activity. Restoring expression of MC4Rs specifically in the LHA improves glucose intolerance in obese MC4R-null mice without affecting body weight or circulating insulin levels. Fluorodeoxyglucose-mediated tracing of whole-body glucose uptake identifies the interscapular brown adipose tissue (iBAT) as a primary source where glucose uptake is increased in MC4R(LHA) mice. Direct multifiber sympathetic nerve recording further reveals that sympathetic traffic to iBAT is significantly increased in MC4R(LHA) mice, which accompanies a significant elevation of Glut4 expression in iBAT. Finally, bilateral iBAT denervation prevents the glucoregulatory effect of MC4R(LHA) signaling. These results identify a novel role for MC4R(LHA) signaling in the control of sympathetic nerve activity and glucose tolerance independent of energy balance.
Collapse
Affiliation(s)
- Donald A Morgan
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Latisha N McDaniel
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Terry Yin
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Michael Khan
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Jingwei Jiang
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Michael R Acevedo
- Small Animal Imaging Core, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Susan A Walsh
- Small Animal Imaging Core, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Laura L Boles Ponto
- Department of Radiology, University of Iowa, Carver College of Medicine, Iowa City, IA Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Andrew W Norris
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Michael Lutter
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, IA Obesity Research and Education Initiative, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, IA Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, IA Obesity Research and Education Initiative, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Huxing Cui
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, IA Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, IA
| |
Collapse
|
50
|
Cui H, Lu Y, Khan MZ, Anderson RM, McDaniel L, Wilson HE, Yin TC, Radley JJ, Pieper AA, Lutter M. Behavioral disturbances in estrogen-related receptor alpha-null mice. Cell Rep 2015; 11:344-50. [PMID: 25865889 PMCID: PMC4440329 DOI: 10.1016/j.celrep.2015.03.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/24/2015] [Accepted: 03/12/2015] [Indexed: 11/24/2022] Open
Abstract
Eating disorders, such as anorexia nervosa and bulimia nervosa, are common and severe mental illnesses of unknown etiology. Recently, we identified a rare missense mutation in the transcription factor estrogen-related receptor alpha (ESRRA) that is associated with the development of eating disorders. However, little is known about ESRRA function in the brain. Here, we report that Esrra is expressed in the mouse brain and demonstrate that Esrra levels are regulated by energy reserves. Esrra-null female mice display a reduced operant response to a high-fat diet, compulsivity/behavioral rigidity, and social deficits. Selective Esrra knockdown in the prefrontal and orbitofrontal cortices of adult female mice recapitulates reduced operant response and increased compulsivity, respectively. These results indicate that Esrra deficiency in the mouse brain impairs behavioral responses in multiple functional domains.
Collapse
Affiliation(s)
- Huxing Cui
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Yuan Lu
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Michael Z Khan
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Rachel M Anderson
- Department of Psychology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Latisha McDaniel
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Hannah E Wilson
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Terry C Yin
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jason J Radley
- Department of Psychology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Neuroscience Program, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew A Pieper
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neurology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Neuroscience Program, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Michael Lutter
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Neuroscience Program, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|