1
|
McKenna JT, Yang C, Bellio T, Anderson-Chernishof MB, Gamble MC, Hulverson A, McCoy JG, Winston S, Hodges E, Katsuki F, McNally JM, Basheer R, Brown RE. Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior. Brain Struct Funct 2021; 226:1755-1778. [PMID: 33997911 PMCID: PMC8340131 DOI: 10.1007/s00429-021-02288-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 05/05/2021] [Indexed: 12/25/2022]
Abstract
The basal forebrain (BF) is involved in arousal, attention, and reward processing but the role of individual BF neuronal subtypes is still being uncovered. Glutamatergic neurons are the least well-understood of the three main BF neurotransmitter phenotypes. Here we analyzed the distribution, size, calcium-binding protein content and projections of the major group of BF glutamatergic neurons expressing the vesicular glutamate transporter subtype 2 (vGluT2) and tested the functional effect of activating them. Mice expressing Cre recombinase under the control of the vGluT2 promoter were crossed with a reporter strain expressing the red fluorescent protein, tdTomato, to generate vGluT2-cre-tdTomato mice. Immunohistochemical staining for choline acetyltransferase and a cross with mice expressing green fluorescent protein selectively in GABAergic neurons confirmed that cholinergic, GABAergic and vGluT2+ neurons represent distinct BF subpopulations. Subsets of BF vGluT2+ neurons expressed the calcium-binding proteins calbindin or calretinin, suggesting that multiple subtypes of BF vGluT2+ neurons exist. Anterograde tracing using adeno-associated viral vectors expressing channelrhodopsin2-enhanced yellow fluorescent fusion proteins revealed major projections of BF vGluT2+ neurons to neighboring BF cholinergic and parvalbumin neurons, as well as to extra-BF areas involved in the control of arousal or aversive/rewarding behavior such as the lateral habenula and ventral tegmental area. Optogenetic activation of BF vGluT2+ neurons elicited a striking avoidance of the area where stimulation was given, whereas stimulation of BF parvalbumin or cholinergic neurons did not. Together with previous optogenetic findings suggesting an arousal-promoting role, our findings suggest that BF vGluT2 neurons play a dual role in promoting wakefulness and avoidance behavior.
Collapse
Affiliation(s)
- James T McKenna
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Chun Yang
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Thomas Bellio
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
- Stonehill College, Easton, MA, 02357, USA
| | - Marissa B Anderson-Chernishof
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Mackenzie C Gamble
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
- Stonehill College, Easton, MA, 02357, USA
| | - Abigail Hulverson
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
- Stonehill College, Easton, MA, 02357, USA
| | - John G McCoy
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
- Stonehill College, Easton, MA, 02357, USA
| | - Stuart Winston
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Erik Hodges
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Fumi Katsuki
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - James M McNally
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Radhika Basheer
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Ritchie E Brown
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA.
| |
Collapse
|
2
|
Lourenço J, Bacci A. Human-Specific Cortical Synaptic Connections and Their Plasticity: Is That What Makes Us Human? PLoS Biol 2017; 15:e2001378. [PMID: 28103228 PMCID: PMC5245906 DOI: 10.1371/journal.pbio.2001378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
One outstanding difference between Homo sapiens and other mammals is the ability to perform highly complex cognitive tasks and behaviors, such as language, abstract thinking, and cultural diversity. How is this accomplished? According to one prominent theory, cognitive complexity is proportional to the repetition of specific computational modules over a large surface expansion of the cerebral cortex (neocortex). However, the human neocortex was shown to also possess unique features at the cellular and synaptic levels, raising the possibility that expanding the computational module is not the only mechanism underlying complex thinking. In a study published in PLOS Biology, Szegedi and colleagues analyzed a specific cortical circuit from live postoperative human tissue, showing that human-specific, very powerful excitatory connections between principal pyramidal neurons and inhibitory neurons are highly plastic. This suggests that exclusive plasticity of specific microcircuits might be considered among the mechanisms endowing the human neocortex with the ability to perform highly complex cognitive tasks.
Collapse
Affiliation(s)
- Joana Lourenço
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7225, Inserm U1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Alberto Bacci
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7225, Inserm U1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| |
Collapse
|
3
|
Abstract
Mammalian glutaminases catalyze the stoichiometric conversion of L-glutamine to L-glutamate and ammonium ions. In brain, glutaminase is considered the prevailing pathway for synthesis of the neurotransmitter pool of glutamate. Besides neurotransmission, the products of glutaminase reaction also fulfill crucial roles in energy and metabolic homeostasis in mammalian brain. In the last years, new functional roles for brain glutaminases are being uncovered by using functional genomic and proteomic approaches. Glutaminases may act as multifunctional proteins able to perform different tasks: the discovery of multiple transcript variants in neurons and glial cells, novel extramitochondrial localizations, and isoform-specific proteininteracting partners strongly support possible moonlighting functions for these proteins. In this chapter, we present a critical account of essential works on brain glutaminase 80 years after its discovery. We will highlight the impact of recent findings and thoughts in the context of the glutamate/glutamine brain homeostasis.
Collapse
|
4
|
Ramaswamy S, Markram H. Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron. Front Cell Neurosci 2015; 9:233. [PMID: 26167146 PMCID: PMC4481152 DOI: 10.3389/fncel.2015.00233] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/08/2015] [Indexed: 11/13/2022] Open
Abstract
The thick-tufted layer 5 (TTL5) pyramidal neuron is one of the most extensively studied neuron types in the mammalian neocortex and has become a benchmark for understanding information processing in excitatory neurons. By virtue of having the widest local axonal and dendritic arborization, the TTL5 neuron encompasses various local neocortical neurons and thereby defines the dimensions of neocortical microcircuitry. The TTL5 neuron integrates input across all neocortical layers and is the principal output pathway funneling information flow to subcortical structures. Several studies over the past decades have investigated the anatomy, physiology, synaptology, and pathophysiology of the TTL5 neuron. This review summarizes key discoveries and identifies potential avenues of research to facilitate an integrated and unifying understanding on the role of a central neuron in the neocortex.
Collapse
Affiliation(s)
- Srikanth Ramaswamy
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Campus Biotech Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Campus Biotech Geneva, Switzerland
| |
Collapse
|
5
|
Abstract
We have recently developed aged cortical neuron cultures from autopsied human brains with Alzheimer's disease (AD). During the culturing process, we found that glutamatergic cortical neurons from the AD brain lacked a response to glial cell line-derived neurotrophic factor (GDNF), including no axonal regrowth, and were starting to undergo apoptosis. Here we showed that, in cortical neurons from age- and gender-matched cognitively normal control (NC) subjects (NC neurons), GDNF enhanced the expression of GDNF family receptor subtype α1 (GFRα1), but not the other three subtypes (GFRα2, GFRα3, and GFRα4), whereas GDNF failed to induce GFRα1 expression in cortical neurons from the AD brain (AD neurons). The exogenous introduction of GFRα1, but not of its binding partner α1-neural cell adhesion molecule, or RET into AD neurons restored the effect of GDNF on neuronal survival. Moreover, between NC and AD neurons, the AMPA receptor blocker CNQX and the NMDA receptor blocker AP-5 had opposite effects on the GFRα1 expression induced by GDNF. In NC neurons, the presence of glutamate receptors was necessary for GDNF-linked GFRα1 expression, while in AD neurons the absence of glutamate receptors was required for GFRα1 expression by GDNF stimulation. These results suggest that, in AD neurons, specific impairments of GFRα1, which may be linked to glutamatergic neurotransmission, shed light on developing potential therapeutic strategies for AD by upregulation of GFRα1 expression.
Collapse
|
6
|
Glutamate, GABA, and glutamine are synchronously upregulated in the mouse lateral septum during the postpartum period. Brain Res 2014; 1591:53-62. [PMID: 25451092 DOI: 10.1016/j.brainres.2014.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/26/2014] [Accepted: 10/13/2014] [Indexed: 01/12/2023]
Abstract
Dramatic structural and functional remodeling occurs in the postpartum brain for the establishment of maternal care, which is essential for the growth and development of young offspring. Glutamate and GABA signaling are critically important in modulating multiple behavioral performances. Large scale signaling changes occur in the postpartum brain, but it is still not clear to what extent the neurotransmitters glutamate and GABA change and whether the ratio of glutamate/GABA remains balanced. In this study, we examined the glutamate/GABA-glutamine cycle in the lateral septum (LS) of postpartum female mice. In postpartum females (relative to virgins), tissue levels of glutamate and GABA were elevated in LS and increased mRNA was found for the respective enzymes producing glutamate and GABA, glutaminase (Gls) and glutamate decarboxylase 1 and 2 (Gad1 and Gad2). The common precursor, glutamine, was elevated as was the enzyme that produces it, glutamate-ammonia ligase (Glul). Additionally, glutamate, GABA, and glutamine were positively correlated and the glutamate/GABA ratio was almost identical in the postpartum and virgin females. Collectively, these findings indicate that glutamate and GABA signaling are increased and that the ratio of glutamate/GABA is well balanced in the maternal LS. The postpartum brain may provide a useful model system for understanding how glutamate and GABA are linked despite large signaling changes. Given that some mental health disorders, including depression and schizophrenia display dysregulated glutamate/GABA ratio, and there is increased vulnerability to mental disorders in mothers, it is possible that these postpartum disorders emerge when glutamate and GABA changes are not properly coordinated.
Collapse
|
7
|
Cardona C, Sánchez-Mejías E, Dávila JC, Martín-Rufián M, Campos-Sandoval JA, Vitorica J, Alonso FJ, Matés JM, Segura JA, Norenberg MD, Rama Rao KV, Jayakumar AR, Gutiérrez A, Márquez J. Expression of Gls and Gls2 glutaminase isoforms in astrocytes. Glia 2014; 63:365-82. [PMID: 25297978 DOI: 10.1002/glia.22758] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/24/2014] [Indexed: 01/10/2023]
Abstract
The expression of glutaminase in glial cells has been a controversial issue and matter of debate for many years. Actually, glutaminase is essentially considered as a neuronal marker in brain. Astrocytes are endowed with efficient and high capacity transport systems to recapture synaptic glutamate which seems to be consistent with the absence of glutaminase in these glial cells. In this work, a comprehensive study was devised to elucidate expression of glutaminase in neuroglia and, more concretely, in astrocytes. Immunocytochemistry in rat and human brain tissues employing isoform-specific antibodies revealed expression of both Gls and Gls2 glutaminase isozymes in glutamatergic and GABAergic neuronal populations as well as in astrocytes. Nevertheless, there was a different subcellular distribution: Gls isoform was always present in mitochondria while Gls2 appeared in two different locations, mitochondria and nucleus. Confocal microscopy and double immunofluorescence labeling in cultured astrocytes confirmed the same pattern previously seen in brain tissue samples. Astrocytic glutaminase expression was also assessed at the mRNA level, real-time quantitative RT-PCR detected transcripts of four glutaminase isozymes but with marked differences on their absolute copy number: the predominance of Gls isoforms over Gls2 transcripts was remarkable (ratio of 144:1). Finally, we proved that astrocytic glutaminase proteins possess enzymatic activity by in situ activity staining: concrete populations of astrocytes were labeled in the cortex, cerebellum and hippocampus of rat brain demonstrating functional catalytic activity. These results are relevant for the stoichiometry of the Glu/Gln cycle at the tripartite synapse and suggest novel functions for these classical metabolic enzymes.
Collapse
Affiliation(s)
- Carolina Cardona
- Canceromics Lab. Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Yahata N, Asai M, Kitaoka S, Takahashi K, Asaka I, Hioki H, Kaneko T, Maruyama K, Saido TC, Nakahata T, Asada T, Yamanaka S, Iwata N, Inoue H. Anti-Aβ drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer's disease. PLoS One 2011; 6:e25788. [PMID: 21984949 PMCID: PMC3184175 DOI: 10.1371/journal.pone.0025788] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/10/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive memory and cognitive decline during middle to late adult life. The AD brain is characterized by deposition of amyloid β peptide (Aβ), which is produced from amyloid precursor protein by β- and γ-secretase (presenilin complex)-mediated sequential cleavage. Induced pluripotent stem (iPS) cells potentially provide an opportunity to generate a human cell-based model of AD that would be crucial for drug discovery as well as for investigating mechanisms of the disease. METHODOLOGY/PRINCIPAL FINDINGS We differentiated human iPS (hiPS) cells into neuronal cells expressing the forebrain marker, Foxg1, and the neocortical markers, Cux1, Satb2, Ctip2, and Tbr1. The iPS cell-derived neuronal cells also expressed amyloid precursor protein, β-secretase, and γ-secretase components, and were capable of secreting Aβ into the conditioned media. Aβ production was inhibited by β-secretase inhibitor, γ-secretase inhibitor (GSI), and an NSAID; however, there were different susceptibilities to all three drugs between early and late differentiation stages. At the early differentiation stage, GSI treatment caused a fast increase at lower dose (Aβ surge) and drastic decline of Aβ production. CONCLUSIONS/SIGNIFICANCE These results indicate that the hiPS cell-derived neuronal cells express functional β- and γ-secretases involved in Aβ production; however, anti-Aβ drug screening using these hiPS cell-derived neuronal cells requires sufficient neuronal differentiation.
Collapse
Affiliation(s)
- Naoki Yahata
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Masashi Asai
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Shiho Kitaoka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Isao Asaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Hiroyuki Hioki
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takashi Asada
- Department of Neuropsychiatry, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Yamanaka iPS Cell Special Project, Japan Science and Technology Agency, Saitama, Japan
| | - Nobuhisa Iwata
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Yamanaka iPS Cell Special Project, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
10
|
Conti F, Melone M, Fattorini G, Bragina L, Ciappelloni S. A Role for GAT-1 in Presynaptic GABA Homeostasis? Front Cell Neurosci 2011; 5:2. [PMID: 21503156 PMCID: PMC3074441 DOI: 10.3389/fncel.2011.00002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 03/25/2011] [Indexed: 11/13/2022] Open
Abstract
In monoamine-releasing terminals, neurotransmitter transporters – in addition to terminating synaptic transmission by clearing released transmitters from the extracellular space – are the primary mechanism for replenishing transmitter stores and thus regulate presynaptic homeostasis. Here, we analyze whether GAT-1, the main plasma membrane GABA transporter, plays a similar role in GABAergic terminals. Re-examination of existing literature and recent data gathered in our laboratory show that GABA homeostasis in GABAergic terminals is dominated by the activity of the GABA synthesizing enzyme and that GAT-1-mediated GABA transport contributes to cytosolic GABA levels. However, analysis of GAT-1 KO, besides demonstrating the effects of reduced clearance, reveals the existence of changes compatible with an impaired presynaptic function, as miniature IPSCs frequency is reduced by one-third and glutamic acid decarboxylases and phosphate-activated glutaminase levels are significantly up-regulated. Although the changes observed are less robust than those reported in mice with impaired dopamine, noradrenaline, and serotonin plasma membrane transporters, they suggest that in GABAergic terminals GAT-1 impacts on presynaptic GABA homeostasis, and may contribute to the activity-dependent regulation of inhibitory efficacy.
Collapse
Affiliation(s)
- Fiorenzo Conti
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università Politecnica delle Marche Ancona, Italy
| | | | | | | | | |
Collapse
|
11
|
Henjum S, Hassel B. High-affinity glycine and glutamate transport in pig forebrain white and gray matter: A quantitative study. Neurochem Int 2007; 50:696-702. [PMID: 17316904 DOI: 10.1016/j.neuint.2007.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/16/2006] [Accepted: 01/08/2007] [Indexed: 11/18/2022]
Abstract
High-affinity uptake of glycine and glutamate modulates glutamatergic neurotransmission in gray matter. N-Methyl-D-aspartate (NMDA) receptors were recently described on white matter oligodendrocytes, therefore uptake of glutamate and glycine in white matter may also modulate NMDA receptor function. We found that glycine uptake in white structures of pig forebrain (corpus callosum, fimbria, subcortical pyramidal tracts, and occipital subcortical white matter) was similar to that in gray structures (frontal and temporal cortices and hippocampus), and that it was sensitive to sarcosine, a GLYT1 inhibitor (IC(50) 15 microM). Glutamate uptake in white matter was approximately 10% of that in gray; it was sensitive to dihydrokainate, an EAAT2 inhibitor. The levels of glycine and its precursor serine were similar in white and gray matter: approximately 2 and 1 nmol/mg tissue, respectively. The white matter level of glutamate was approximately 7.6 nmol/mg tissue, or approximately 74% of gray matter levels. The activity of serine hydroxymethyl transferase, which converts serine into glycine, was similar in white and gray matter (11-18 pmol/(mg tissue)min), whereas the white matter activity of phosphate-activated glutaminase, which converts glutamine into glutamate, was approximately 100 pmol/(mg tissue)min, or approximately 34% of gray matter activity. The white matter activity of glutamine synthetase, the glial enzyme that converts glutamate into glutamine, was 20-40 nmol/(mg tissue)min in neocortex and 5-6 nmol/(mg tissue)min in white matter. The data show that forebrain white matter is equipped to regulate extracellular levels of glycine and glutamate, functions that may modulate white matter NMDA receptor function.
Collapse
Affiliation(s)
- Solveig Henjum
- Norwegian Defence Research Establishment, 2027 Kjeller, Norway
| | | |
Collapse
|
12
|
Okhotin VE. Cytophysiology of spiny stellate cells in the striate cortex and their role in the excitatory mechanisms of intracortical synaptic circulation. ACTA ACUST UNITED AC 2007; 36:825-36. [PMID: 16964459 DOI: 10.1007/s11055-006-0093-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Indexed: 12/23/2022]
Abstract
Spiny stellate cells (SS) are an exclusive category of cortical interneurons and are the major component of intracolumnar, lateral, and callosal excitation of pyramidal and non-pyramidal neurons in the neocortex. The axons of SS make contact with the apical dendrites of pyramidal neurons, forming cartridge-type en passant synapses with them. SS establish recurrent connections with inhibitory interneurons and other SS, and also form autapses contacts. SS subtypes were identified and descriptions of their structure, neurochemical specialization, and spatial organization in the human and animal neocortex are provided. The results of our own studies, along with published data, are used to form a critical analysis of current concepts of the histophysiology of recurrent excitatory and inhibitory neurocirculation in cortical modules.
Collapse
Affiliation(s)
- V E Okhotin
- Laboratory for Neurogenetics and Developmental Genetics, Institute of Gene Biology, Moscow
| |
Collapse
|
13
|
Cai YL, Ma WL, Li M, Guo JS, Li YQ, Wang LG, Wang WZ. Glutamatergic vestibular neurons express Fos after vestibular stimulation and project to the NTS and the PBN in rats. Neurosci Lett 2007; 417:132-7. [PMID: 17412503 DOI: 10.1016/j.neulet.2007.01.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Revised: 10/09/2006] [Accepted: 01/21/2007] [Indexed: 10/23/2022]
Abstract
In this study, retrograde tracing method combined with phosphate-activated glutaminase (PAG) and Fos immunofluorescence histochemistry was used to identify glutamatergic vestibular nucleus (VN) neurons receiving vestibular inputs and projecting to the nucleus of the solitary tract (NTS) and the parabrachial nucleus (PBN). Conscious animals were subjected to 120 min Ferris-wheel like rotation stimulation. Neuronal activation was assessed by Fos expression in the nucleus of VN neurons. After Fluoro-gold (FG) injection into the caudal NTS, approximately 48% FG-labeled VN neurons were immunoreactive for PAG, and about 14% PAG/FG double-labeled neurons co-existed with Fos. Following FG injection into the PBN, approximately 56% FG-labeled VN neurons were double-labeled with PAG, and about 12% of the PAG/FG double-labeled neurons also expressed Fos. Careful examination of the typology and distribution pattern of these PAG-immunoreactive neurons indicated that the vast majority of these neurons were glutamatergic rather than GABAergic. These results suggest that PAG-immunoreactive VN neurons might constitute excitatory glutamatergic VN-NTS and VN-PBN transmission pathways and these pathways might be involved in vestibulo-autonomic reflexes during vestibular stimulation.
Collapse
Affiliation(s)
- Yi-Ling Cai
- Department of Military Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, PR China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Eid T, Hammer J, Rundén-Pran E, Roberg B, Thomas MJ, Osen K, Davanger S, Laake P, Torgner IA, Lee TSW, Kim JH, Spencer DD, Ottersen OP, de Lanerolle NC. Increased expression of phosphate-activated glutaminase in hippocampal neurons in human mesial temporal lobe epilepsy. Acta Neuropathol 2007; 113:137-52. [PMID: 17115168 DOI: 10.1007/s00401-006-0158-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 10/06/2006] [Accepted: 10/07/2006] [Indexed: 11/25/2022]
Abstract
Patients with mesial temporal lobe epilepsy (MTLE) have increased basal concentrations of extracellular glutamate in the epileptogenic versus the non-epileptogenic hippocampus. Such elevated glutamate levels have been proposed to underlie the initiation and maintenance of recurrent seizures, and a key question is what causes the elevation of glutamate in MTLE. Here, we explore the possibility that neurons in the hippocampal formation contain higher levels of the glutamate synthesizing enzyme phosphate-activated glutaminase (PAG) in patients with MTLE versus patients with other forms of temporal lobe epilepsy (non-MTLE). Increased PAG immunoreactivity was recorded in subpopulations of surviving neurons in the MTLE hippocampal formation, particularly in CA1 and CA3 and in the polymorphic layer of the dentate gyrus. Immunogold analysis revealed that PAG was concentrated in mitochondria. Double-labeling experiments indicated a positive correlation between the mitochondrial contents of PAG protein and glutamate, as well as between PAG enzyme activity and PAG protein as determined by Western blots. These data suggest that the antibodies recognize an enzymatically active pool of PAG. Western blots and enzyme activity assays of hippocampal homogenates revealed no change in PAG between MTLE and non-MTLE, despite a greatly (>50%) reduced number of neurons in the MTLE hippocampal formation compared to non-MTLE. Thus, the MTLE hippocampal formation contains an increased concentration and activity of PAG per neuron compared to non-MTLE. This increase suggests an enhanced capacity for glutamate synthesis-a finding that might contribute to the disrupted glutamate homeostasis in MTLE.
Collapse
Affiliation(s)
- Tore Eid
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208082, New Haven, CT 06520-8082, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
GRITTI I, HENNY P, GALLONI F, MAINVILLE L, MARIOTTI M, JONES BE. Stereological estimates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate transporters. Neuroscience 2006; 143:1051-64. [PMID: 17084984 PMCID: PMC1831828 DOI: 10.1016/j.neuroscience.2006.09.024] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Revised: 09/06/2006] [Accepted: 09/10/2006] [Indexed: 11/24/2022]
Abstract
The basal forebrain (BF) plays an important role in modulating cortical activity and influencing attention, learning and memory. These activities are fulfilled importantly yet not entirely by cholinergic neurons. Noncholinergic neurons also contribute and comprise GABAergic neurons and other possibly glutamatergic neurons. The aim of the present study was to estimate the total number of cells in the BF of the rat and the proportions of that total represented by cholinergic, GABAergic and glutamatergic neurons. For this purpose, cells were counted using unbiased stereological methods within the medial septum, diagonal band, magnocellular preoptic nucleus, substantia innominata and globus pallidus in sections stained for Nissl substance and/or the neurotransmitter enzymes, choline acetyltransferase (ChAT), glutamic acid decarboxylase (GAD) or phosphate-activated glutaminase (PAG). In Nissl-stained sections, the total number of neurons in the BF was estimated as approximately 355,000 and the numbers of ChAT-immuno-positive (+) as approximately 22,000, GAD+ approximately 119,000 and PAG+ approximately 316,000, corresponding to approximately 5%, approximately 35% and approximately 90% of the total. Thus, of the large population of BF neurons, only a small proportion has the capacity to synthesize acetylcholine (ACh), one third to synthesize GABA and the vast majority to synthesize glutamate (Glu). Moreover, through the presence of PAG, a proportion of ACh- and GABA-synthesizing neurons also has the capacity to synthesize Glu. In sections dual fluorescent immunostained for vesicular transporters, vesicular glutamate transporter (VGluT) 3 and not VGluT2 was present in the cell bodies of most PAG+ and ChAT+ and half the GAD+ cells. Given previous results showing that VGluT2 and not VGluT3 was present in BF axon terminals and not colocalized with VAChT or VGAT, we conclude that the BF cell population influences cortical and subcortical regions through neurons which release ACh, GABA or Glu from their terminals but which in part can also synthesize and release Glu from their soma or dendrites.
Collapse
Affiliation(s)
- I. GRITTI
- Dipartimento di Scienze Cliniche Luigi Sacco, Università degli Studi di Milano, Via Giovan Battista Grassi 74, Milan, Italy 20157
| | - P. HENNY
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4
| | - F. GALLONI
- Dipartimento di Scienze Cliniche Luigi Sacco, Università degli Studi di Milano, Via Giovan Battista Grassi 74, Milan, Italy 20157
| | - L. MAINVILLE
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4
| | - M. MARIOTTI
- Dipartimento di Scienze Cliniche Luigi Sacco, Università degli Studi di Milano, Via Giovan Battista Grassi 74, Milan, Italy 20157
| | - B. E. JONES
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4
- *Correspondence author: Tel: 514-398-1913; Fax: 514-398-5871 E-mail address:
| |
Collapse
|
16
|
Abstract
Mechanisms involved in hepatic encephalopathy still remain to be defined. Nonetheless, it is well recognized that ammonia is a major factor in its pathogenesis, and that the astrocyte represents a major target of its CNS toxicity. In vivo and in vitro studies have shown that ammonia evokes oxidative/nitrosative stress, mitochondrial abnormalities (the mitochondrial permeability transition, MPT) and astrocyte swelling, a major component of the brain edema associated with fulminant hepatic failure. How ammonia brings about these changes in astrocytes is not well understood. It has long been accepted that the conversion of glutamate to glutamine, catalyzed by glutamine synthetase, a cytoplasmic enzyme largely localized to astrocytes in brain, represented the principal means of cerebral ammonia detoxification. Yet, the "benign" aspect of glutamine synthesis has been questioned. This article highlights evidence that, at elevated levels, glutamine is indeed a noxious agent. We also propose a mechanism by which glutamine executes its toxic effects in astrocytes, the "Trojan horse" hypothesis. Much of the newly synthesized glutamine is subsequently metabolized in mitochondria by phosphate-activated glutaminase, yielding glutamate and ammonia. In this manner, glutamine (the Trojan horse) is transported in excess from the cytoplasm to mitochondria serving as a carrier of ammonia. We propose that it is the glutamine-derived ammonia within mitochondria that interferes with mitochondrial function giving rise to excessive production of free radicals and induction of the MPT, two phenomena known to bring about astrocyte dysfunction, including cell swelling. Future therapeutic approaches might include controlling excessive transport of newly synthesized glutamine to mitochondria and its subsequent hydrolysis.
Collapse
Affiliation(s)
- Jan Albrecht
- Department of Neurotoxicology, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | |
Collapse
|
17
|
Fisher RS. Co-localization of glutamic acid decarboxylase and phosphate-activated glutaminase in neurons of lateral reticular nucleus in feline thalamus. Neurochem Res 2006; 32:177-86. [PMID: 16927169 DOI: 10.1007/s11064-006-9126-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2006] [Indexed: 11/24/2022]
Abstract
Immunohistochemical methods were used to label singly and/or in combination glutamic acid decarboxylase (GAD, the sole synthesizing enzyme for the inhibitory neurotransmitter gamma-aminobutyric acid) and phosphate-activated glutaminase (GLN, a synthesizing enzyme for glutamate) in neurons of lateral reticular nucleus (LRN) of thalamus of adult cats. (1) GAD- and GLN-immunoreactivity (IR) exhibited matching regional patterns of organization within LRN. (2) GAD- and GLN-IR co-localized within most if not all LRN neuronal cell bodies as shown by light microscopy. (3) GAD- and GLN-IR had distinct subcellular localizations in LRN neurons as shown by correlative light/electron microscopy. LRN neurons are important conceptual models where strongly inhibitory cells receive predominant excitatory glutamatergic afferents (from neocortex). Consistent with known actions of intermediary astrocytes, LRN neurons demonstrate GLN enrichment synergistically coupled with glutamatergic innervation to supplement the glutamate pool for GABA synthesis (via GAD) and for metabolic utilization (via the GABA shunt/tricarboxylic acid cycle) but not, apparently, for excitatory neurotransmission.
Collapse
Affiliation(s)
- Robin Scott Fisher
- Psychiatry and Neurobiology, Mental Retardation Research Center, UCLA Geffen School of Medicine, Room 301 Neuroscience Research Building, 635 Charles Young Drive South, Los Angeles, California 90095, USA.
| |
Collapse
|
18
|
Roth CL, McCormack AL, Lomniczi A, Mungenast AE, Ojeda SR. Quantitative proteomics identifies a change in glial glutamate metabolism at the time of female puberty. Mol Cell Endocrinol 2006; 254-255:51-9. [PMID: 16753258 DOI: 10.1016/j.mce.2006.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mammalian puberty requires activation of luteinizing hormone-releasing hormone (LHRH) neurons. In turn, these neurons are controlled by transsynaptic and glia-to-neuron communication pathways, which employ diverse cellular proteins for proper function. We have now used a high throughput relative quantitative proteomics technique to identify such proteins. We selected the method of two-dimensional liquid chromatography tandem mass spectrometry (2DLC-MS/MS) and cleavable isotope-coded affinity tags (cICAT), to both identify and quantify individual proteins within a complex protein mixture. The proteins used derived from the hypothalamus of juvenile (25-day-old) and peripubertal (first proestrus, LP) female rats, and their identity was established by analyzing their mass spectra via database searching. Five proteins involved in glutamate metabolism were detected and two of them appeared to be differentially expressed. They were selected for further analysis, because of their importance in controlling glutamate synthesis and degradation, and their preferential expression in astroglial cells. One, glutamate dehydrogenase (GDH) catalyzes glutamate synthesis; its hypothalamic content detected by 2DLC-MS/MS increases at first proestrus. The other, glutamine synthetase (GS), catalyzes the metabolism of glutamate to glutamine; its content decreases in proestrus. Western blot analysis verified these results. Because these changes suggested an increased glutamate production at puberty, we measured glutamate release from hypothalamic fragments from juvenile 29-day old rats, and from rats treated with PMSG to induce a premature proestrus surge of luteinizing hormone (LH). To determine the net output of glutamate in the absence of re-uptake we used the excitatory amino acid transporter (EAAT) inhibitor l-trans-pyrrolidine-2,4-dicarboxylic acid (PDC). PDC elicited significantly more glutamate- and LHRH-release from the proestrus hypothalamus. Thus, an increase excitatory drive to the LHRH neuronal network provided by glutamatergic inputs of glial origin, is an event contributing to the pubertal activation of LHRH secretion.
Collapse
Affiliation(s)
- Christian L Roth
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Sciences University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
19
|
Ito T, Iino S, Nojyo Y. A part of cholinergic fibers in mouse superior cervical ganglia contain GABA or glutamate. Brain Res 2005; 1046:234-8. [PMID: 15890315 DOI: 10.1016/j.brainres.2005.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 03/26/2005] [Accepted: 04/01/2005] [Indexed: 11/19/2022]
Abstract
The localizations and functions of glutamate and GABA, the major amino acid neurotransmitters in the central nervous system, are still unclear in the peripheral nervous system. We immunohistochemically double-stained mouse superior cervical ganglia with antibodies for the vesicular acetylcholine transporter (VAchT), GAD65, the vesicular glutamate transporters 1-3 (VGluTs1-3), the marker of the sympathetic preganglionic neuron (SPN), GABAergic, and glutamatergic terminals, respectively. All GAD65-positive terminals showed VAchT immunoreactivity, indicating that GABAergic fibers originate from SPNs. VGluT2-immunoreactive terminals showing colocalization with VAchT were observed, but VGluT1 and 3 immunoreactive terminals were not. Colocalization of GAD65 and VGluT2 was rarely found. All VGluT2-immunopositive terminals were also immunopositive for neuronal nitric oxide synthase (nNOS), a marker for the subpopulation of the SPNs, while about half of the GABA-immunopositive fibers were immunopositive for nNOS. The origin of these fibers was discussed.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Japan.
| | | | | |
Collapse
|
20
|
Hur EE, Zaborszky L. Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization study [corrected]. J Comp Neurol 2005; 483:351-73. [PMID: 15682395 DOI: 10.1002/cne.20444] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamate transmission is critical for controlling cortical activity, but the specific contribution of the different isoforms of vesicular glutamate transporters in subcortical pathways to the neocortex is largely unknown. To determine the distribution and neocortical projections of vesicular glutamate transporter2 (Vglut2)-containing neurons, we used in situ hybridization and injections of the retrograde tracer Fluoro-Gold into the medial prefrontal and primary somatosensory cortices. The thalamus contains the majority of Vglut2 cells projecting to the neocortex (approximately 90% for the medial prefrontal cortex and 96% for the primary somatosensory cortex) followed by the hypothalamus and basal forebrain, the claustrum, and the brainstem. There are significantly more Vglut2 neurons projecting to the medial prefrontal cortex than to the primary somatosensory cortex. The medial prefrontal cortex also receives a higher percentage of Vglut2 projection from the hypothalamus than the primary somatosensory cortex. About 50% of thalamic Vglut2 projection to the medial prefrontal cortex and as much as 80% of the thalamic projection to primary somatosensory cortex originate in various relay thalamic nuclei. The remainder arise from different midline and intralaminar nuclei traditionally thought to provide nonspecific or diffuse projection to the cortex. The extrathalamic Vglut2 corticopetal projections, together with the thalamic intralaminar-midline Vglut2 corticopetal projections, may participate in diffuse activation of the neocortex.
Collapse
Affiliation(s)
- Elizabeth E Hur
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, USA
| | | |
Collapse
|
21
|
Van der Gucht E, Clerens S, Jacobs S, Arckens L. Light-induced Fos expression in phosphate-activated glutaminase- and neurofilament protein-immunoreactive neurons in cat primary visual cortex. Brain Res 2005; 1035:60-6. [PMID: 15713277 DOI: 10.1016/j.brainres.2004.11.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2004] [Indexed: 02/05/2023]
Abstract
Previous double-stainings in the cat visual cortex [E. Van der Gucht, S. Clerens, K. Cromphout, F. Vandesande, L. Arckens, Differential expression of c-fos in subtypes of GABAergic cells following sensory stimulation in the cat primary visual cortex, Eur. J. Neurosci. 16 (2002) 1620-1626] showed that a minority of Fos-immunoreactive nuclei was located in distinct subclasses of inhibitory neurons following sensory stimulation. This report describes double-stainings between Fos and phosphate-activated glutaminase (PAG) or Fos and neurofilament protein (SMI-32) revealing that, following a short-term visual experience, Fos is also expressed in neurochemically distinct subpopulations of non-GABAergic, pyramidal neurons in supra- and infragranular layers of cat area 17.
Collapse
Affiliation(s)
- Estel Van der Gucht
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
22
|
Van der Gucht E, Jacobs S, Kaneko T, Vandesande F, Arckens L. Distribution and morphological characterization of phosphate-activated glutaminase-immunoreactive neurons in cat visual cortex. Brain Res 2003; 988:29-42. [PMID: 14519524 DOI: 10.1016/s0006-8993(03)03332-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phosphate-activated glutaminase (PAG) is the major enzyme involved in the synthesis of the excitatory neurotransmitter glutamate in cortical neurons of the mammalian cerebral cortex. In this study, the distribution and morphology of glutamatergic neurons in cat visual cortex was monitored through immunocytochemistry for PAG. We first determined the specificity of the anti-rat brain PAG polyclonal antibody for cat brain PAG. We then examined the laminar expression profile and the phenotype of PAG-immunopositive neurons in area 17 and 18 of cat visual cortex. Neuronal cell bodies with moderate to intense PAG immunoreactivity were distributed throughout cortical layers II-VI and near the border with the white matter of both visual areas. The largest and most intensely labeled cells were mainly restricted to cortical layers III and V. Careful examination of the typology of PAG-immunoreactive cells based on the size and shape of the cell body together with the dendritic pattern indicated that the vast majority of these cells were pyramidal neurons. However, PAG immunoreactivity was also observed in a paucity of non-pyramidal neurons in cortical layers IV and VI of both visual areas. To further characterize the PAG-immunopositive neuronal population we performed double-stainings between PAG and three calcium-binding proteins, parvalbumin, calbindin and calretinin, to determine whether GABAergic non-pyramidal cells can express PAG, and neurofilament protein, a marker for a subset of pyramidal neurons in mammalian neocortex. We here present PAG as a neurochemical marker to map excitatory cortical neurons that use the amino acid glutamate as their neurotransmitter in cat visual cortex.
Collapse
Affiliation(s)
- Estel Van der Gucht
- Laboratory for Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
23
|
Hassel B, Boldingh KA, Narvesen C, Iversen EG, Skrede KK. Glutamate transport, glutamine synthetase and phosphate-activated glutaminase in rat CNS white matter. A quantitative study. J Neurochem 2003; 87:230-7. [PMID: 12969269 DOI: 10.1046/j.1471-4159.2003.01984.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glutamatergic signal transduction occurs in CNS white matter, but quantitative data on glutamate uptake and metabolism are lacking. We report that the level of the astrocytic glutamate transporter GLT in rat fimbria and corpus callosum was approximately 35% of that in parietal cortex; uptake of [3H]glutamate was 24 and 43%, respectively, of the cortical value. In fimbria and corpus callosum levels of synaptic proteins, synapsin I and synaptophysin were 15-20% of those in cortex; the activities of glutamine synthetase and phosphate-activated glutaminase, enzymes involved in metabolism of transmitter glutamate, were 11-25% of cortical values, and activities of aspartate and alanine aminotransferases were 50-70% of cortical values. The glutamate level in fimbria and corpus callosum was 5-6 nmol/mg tissue, half the cortical value. These data suggest a certain capacity for glutamatergic neurotransmission. In optic and trigeminal nerves, [3H]glutamate uptake was < 10% of the cortical uptake. Formation of [14C]glutamate from [U-14C]glucose in fimbria and corpus callosum of awake rats was 30% of cortical values, in optic nerve it was 13%, illustrating extensive glutamate metabolism in white matter in vivo. Glutamate transporters in brain white matter may be important both physiologically and during energy failure when reversal of glutamate uptake may contribute to excitotoxicity.
Collapse
Affiliation(s)
- Bjørnar Hassel
- Norwegian Defence Research Establishment, Kjeller, Norway.
| | | | | | | | | |
Collapse
|
24
|
Gritti I, Manns ID, Mainville L, Jones BE. Parvalbumin, calbindin, or calretinin in cortically projecting and GABAergic, cholinergic, or glutamatergic basal forebrain neurons of the rat. J Comp Neurol 2003; 458:11-31. [PMID: 12577320 DOI: 10.1002/cne.10505] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The basal forebrain (BF) plays an important role in modulating cortical activity and facilitating processes of attention, learning, and memory. This role is subserved by cholinergic neurons but also requires the participation of other noncholinergic neurons. Noncholinergic neurons include gamma-amino butyric acidergic (GABAergic) neurons, some of which project in parallel with the cholinergic cells to the cerebral cortex, others of which project caudally or locally. With the original aim of distinguishing different subgroups of GABAergic neurons, we examined immunostaining for the calcium binding proteins (CBPs) parvalbumin (Parv), calbindin (Calb), and calretinin (Calret) in the rat. Although the CBP(+) cell groups were distributed in a coextensive manner with the GABAergic cells, they were collectively more numerous. Of cells retrogradely labeled with cholera toxin (CT) from the prefrontal or parietal cortex, Parv(+) and Calb(+) cells, but not Calret(+) cells, represented substantial proportions ( approximately 35-45% each) that collectively were greater than that of GABAergic projection neurons. From dual immunostaining for the CBPs and glutamic acid decarboxylase (GAD), it appeared that the vast majority (>90%) of the Parv(+) group was GAD(+), whereas only a small minority (<10%) of the Calb(+) or Calret(+) group was GAD(+). Significant proportions of Calb(+) (>40%) and Calret(+) (>80%) neurons were immunopositive for phosphate-activated glutaminase, the synthetic enzyme for transmitter glutamate. The results suggested that, whereas Calret(+) cells predominantly comprise caudally or locally projecting, possibly glutamatergic BF neurons, Parv(+) cells likely comprise the cortically projecting GABAergic BF neurons and Calb(+) cells the cortically projecting, possibly glutamatergic BF neurons that would collectively participate with the cholinergic cells in the modulation of cortical activity.
Collapse
Affiliation(s)
- Ivana Gritti
- Dipartimento di Scienze Cliniche L. Sacco, Università degli Studi di Milano, 20157 Milan, Italy
| | | | | | | |
Collapse
|
25
|
Manns ID, Alonso A, Jones BE. Rhythmically discharging basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells. J Neurophysiol 2003; 89:1057-66. [PMID: 12574480 DOI: 10.1152/jn.00938.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The basal forebrain plays important roles in arousal, learning, and memory by stimulating cortical activation characterized by rhythmic slow theta and high-frequency beta-gamma activities. Although cholinergic neurons play a significant part in these roles, other, including GABAergic, neurons appear to contribute. Using juxtacellular labeling with neurobiotin of neurons recorded within the magnocellular preoptic-substantia innominata area in urethan-anesthetized rats, we show that in addition to cells that are cholinergic or GABAergic, other cells that are neither fire rhythmically in correlation with stimulation-induced rhythmic slow activity on the cortex. Neurons with the characteristics of the noncholinergic/nonGABAergic cells contain phosphate-activated glutaminase (PAG), the synthetic enzyme for transmitter glutamate and may thus be glutamatergic. Within their oscillatory spike trains, putative glutamatergic neurons fire at a lower frequency (~20 Hz) than the GABAergic neurons (~40 Hz) and the cholinergic neurons (average: 75 Hz), whose spike trains include high-frequency bursts. The three groups all discharge rhythmically at a slow frequency in correlation with rhythmic slow activity recorded on the prefrontal, entorhinal, piriform and olfactory bulb cortices. The predominant slow frequency corresponds to the respiratory-olfactory rhythm, which is commonly slower than, yet can be as fast as, the hippocampal theta rhythm during certain coordinated behaviors, such as sniffing-whisking. While stimulating higher frequency beta-gamma activities, putative glutamatergic together with GABAergic and cholinergic cells may thus collectively modulate rhythmic slow activity and thereby promote coherent processing and plasticity across distributed cortical networks during coordinated behaviors and states.
Collapse
Affiliation(s)
- Ian D Manns
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | | | | |
Collapse
|
26
|
Konishi Y, Lindholm K, Yang LB, Li R, Shen Y. Isolation of living neurons from human elderly brains using the immunomagnetic sorting DNA-linker system. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1567-76. [PMID: 12414505 PMCID: PMC1850778 DOI: 10.1016/s0002-9440(10)64435-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2002] [Indexed: 11/28/2022]
Abstract
Isolation and culture of mature neurons from affected brain regions during diseased states provide a well-suited in vitro model system to study age-related neurodegeneration under dynamic conditions at cellular levels. We have developed a novel technique to isolate living neurons from rapidly autopsied human elderly brains, and have succeeded in keeping them alive in vitro. Specifically, the parietal cortex blocks were fractionated by density gradients and further enriched for neurons by an immunomagnetic sorting DNA-linker technique. The postmortem interval averaged 2.6 hours. After isolation and purification of neurons using this technology, the cells were maintained in vitro for 2 weeks. Our evaluation revealed that 80% of the isolated cells were neurons and they exhibited neurotransmitter phenotypes (glutamate and gamma-aminobutyric acid) as well as glutamate receptors. Studies on cell viability and calcium influx suggest that these isolated living cortical neurons still retain their typical neuronal functions. Our present study demonstrates that neurons isolated from human elderly brain autopsies can survive in vitro and maintain their functional properties. Our study has opened an opportunity to apply such neurons to dynamic pharmacological studies of neurological disorders at the single-cell level.
Collapse
Affiliation(s)
- Yoshihiro Konishi
- Haldeman Laboratory of Molecular and Cellular Neurobiology, Sun Health Research Institute, Sun City, AZ 85351, USA
| | | | | | | | | |
Collapse
|
27
|
Gundersen V, Ottersen OP, Storm-Mathisen J. Aspartate- and Glutamate-like Immunoreactivities in Rat Hippocampal Slices: Depolarization-induced Redistribution and Effects of Precursors. Eur J Neurosci 2002; 3:1281-1299. [PMID: 12106226 DOI: 10.1111/j.1460-9568.1991.tb00061.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The light microscopic localization of aspartate-like immunoreactivity (Asp-LI) was compared to that of glutamate-like immunoreactivity (Glu-LI) in hippocampal slices by means of specific polyclonal antibodies recognizing the amino acids fixed by glutaraldehyde. After incubation in Krebs' solution with normal (5 mM) or depolarizing concentrations of K+, and various additives, the slices were fixed with glutaraldehyde, resectioned and processed according to the peroxidase - antiperoxidase procedure. At 5 mM K+, Glu-LI was localized in nerve-terminal like dots with a conspicuous laminar distribution, the highest Glu-LI concentrations coinciding with the terminal fields of major excitatory pathways thought to use glutamate or aspartate as transmitters. The localization of Asp-LI showed some similarity to that of Glu-LI, but the laminar distribution was less differentiated and the immunoreactivity was much weaker. At 40 and 55 mM K+ the nerve terminal localizations of Glu-LI and Asp-LI were strongly reduced. Concomitantly, both immunoreactivities appeared in astroglial cells. These changes were Ca2+-dependent. The nerve ending staining patterns of Asp-LI and Glu-LI could be sustained during depolarization if the medium was supplemented with glutamine (0.5 mM). Under these conditions Asp-LI became more intense and its distribution approached that of Glu-LI. This suggests that, when stimulated, some nerve endings can increase their reservoir of releasable aspartate. The presence of glutamine during depolarization strongly reduced glial Asp-LI and Glu-LI, possibly due to its providing nitrogen for conversion of glutamate to glutamine. alpha-Ketoglutarate, another glia-derived precursor of neuronal glutamate, was virtually ineffective in supporting Glu-LI and Asp-LI in nerve endings, and did not suppress Glu-LI or Asp-LI in glia. Our findings provide morphological support for the view that excitatory nerve endings under certain conditions can contain high levels of both aspartate and glutamate (possibly in the same terminals), and that aspartate as well as glutamate can be released synaptically. Further, they underline the importance of the glial supply of the nerve endings with precursor glutamine, which allows them to build up and sustain high concentrations of transmitter amino acids during release.
Collapse
Affiliation(s)
- V. Gundersen
- Anatomical Institute, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo 3, Norway
| | | | | |
Collapse
|
28
|
Manns ID, Mainville L, Jones BE. Evidence for glutamate, in addition to acetylcholine and GABA, neurotransmitter synthesis in basal forebrain neurons projecting to the entorhinal cortex. Neuroscience 2002; 107:249-63. [PMID: 11731099 DOI: 10.1016/s0306-4522(01)00302-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Basal forebrain neurons play important parts in processes of cortical activation and memory that have been attributed to the cortically projecting, cholinergic neurons. Yet, non-cholinergic neurons also project to the cerebral cortex and also appear to participate in processes of cortical modulation and plasticity. GABAergic neurons compose a portion of the cortically projecting cell group, but do not fully account for the non-cholinergic cell contingent. In the present study in the rat, we investigated whether the non-cholinergic, non-GABAergic cell component might be composed of glutamatergic neurons. We examined afferents to the entorhinal cortex, which is known to be modulated by basal forebrain neurons and to be critically involved in memory. Dual immunofluorescent staining was performed for cholera toxin, as retrograde tracer, and phosphate-activated glutaminase, the synthetic enzyme for the neurotransmitter pool of glutamate. The retrogradely labeled cells were distributed across the basal forebrain through the medial septum, diagonal band, magnocellular preoptic area and substantia innominata. The major proportion (approximately 80%) of the retrogradely labeled cells was found to be immunopositive for phosphate-activated glutaminase. Equal minor proportions (approximately 40%) were immunopositive for choline acetyltransferase and glutamic acid decarboxylase. In other material dual-immunostained for neurotransmitter enzymes, approximately 95% of choline acetyltransferase- and approximately 60% of glutamic acid decarboxylase-immunopositive neurons were also immunopositive for phosphate-activated glutaminase. From these results it appears that a significant proportion of these cell groups, including their cortically projecting contingents, could synthesize glutamate together with acetylcholine or GABA as neurotransmitters and another proportion of cells could synthesize glutamate alone. Accordingly, as either co-transmitter or primary transmitter within basalocortical afferents, glutamate could have the capacity to modulate the entorhinal cortex and promote its role in memory.
Collapse
Affiliation(s)
- I D Manns
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, QC, Canada H3A 2B4
| | | | | |
Collapse
|
29
|
Patel AB, Rothman DL, Cline GW, Behar KL. Glutamine is the major precursor for GABA synthesis in rat neocortex in vivo following acute GABA-transaminase inhibition. Brain Res 2001; 919:207-20. [PMID: 11701133 DOI: 10.1016/s0006-8993(01)03015-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The objective of the present study was to assess the degree to which astrocytic glutamine provides carbon for net synthesis of GABA in the rat neocortex in vivo. Isotopic labeling of GABA and glutamate from astrocytic glutamine was followed in halothane anesthetized and ventilated rats during an intravenous infusion of [2-(13)C]glucose. A net increase in GABA was achieved by administration of the GABA-transaminase inhibitor, gabaculine to suppress catabolism of GABA and recycling of (13)C label. (13)C Percentage enrichments of GABA, glutamate and glutamine were assessed in tissue extracts using (13)C-edited (1)H nuclear magnetic resonance at 8.4 T. GABA levels increased 2.6 micromol/g at 2 h and 6.1 micromol/g at 5 h after gabaculine, whereas glutamate and glutamine decreased in toto by 5.6 micromol/g at 2 h and 3.1 micromol/g at 5 h. Selective enrichment of glutamine, glutamate, and GABA C3's over other carbon positions was observed consistent with a precursor role for astrocytic glutamine. Between 1 h (control) and 3 h (gabaculine-treated) of [2-(13)C]glucose infusion, (13)C percentage enrichment increased in glutamine C3 (from 3.2+/-0.5 to 7.0+/-0.9%), glutamate C3 (from 1.8+/-0.5 to 3.4+/-0.9%), and GABA C3 (from 2.7+/-1.6 to 4.8+/-0.4%). The measured incremental [3-(13)C]GABA concentration (0.15 micromol/g) was close to the predicted value (0.13 micromol/g) that would be expected if the increase in GABA were produced entirely from glutamine compared to glutamate (0.07 micromol/g) based on the average precursor enrichments between 1 and 3 h. We conclude that glutamine is the major source of GABA carbon in the rat neocortex produced acutely following GABA-T inhibition by gabaculine in vivo.
Collapse
Affiliation(s)
- A B Patel
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
30
|
Hassel B, Iversen EG, Gjerstad L, Taubøll E. Up-regulation of hippocampal glutamate transport during chronic treatment with sodium valproate. J Neurochem 2001; 77:1285-92. [PMID: 11389179 DOI: 10.1046/j.1471-4159.2001.00349.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Excessive glutamatergic neurotransmission has been implicated in some neurodegenerative disorders. It would be of value to know whether glutamate transport, which terminates the glutamate signal, can be up-regulated pharmacologically. Here we show that chronic treatment of rats with the anti-epileptic drug sodium valproate (200 mg or 400 mg/kg bodyweight, twice per day for 90 days) leads to a dose-dependent increase in hippocampal glutamate uptake capacity as measured by uptake of [(3)H]glutamate into proteoliposomes. The level of glutamate transporters EAAT1 and EAAT2 in hippocampus also increased dose-dependently. No effect of sodium valproate on glutamate transport was seen in frontal or parietal cortices or in cerebellum. The hippocampal levels of glial fibrillary acidic protein and glutamine synthetase were unaffected by valproate treatment, whereas the levels of synapsin I and phosphate-activated glutaminase were reduced by valproate treatment, suggesting that the increase in glutamate transporters was not caused by astrocytosis or increased synaptogenesis. A direct effect of sodium valproate on the glutamate transporters could be excluded. The results show that hippocampal glutamate transport is an accessible target for pharmacological intervention and that sodium valproate may have a role in the treatment of excitotoxic states in the hippocampus.
Collapse
Affiliation(s)
- B Hassel
- Norwegian Defence Research Establishment, Kjeller, Norway Neurological Department, National Hospital, Oslo, Norway.
| | | | | | | |
Collapse
|
31
|
Yamada H, Otsuka M, Hayashi M, Nakatsuka S, Hamaguchi K, Yamamoto A, Moriyama Y. Ca2+-dependent exocytosis of L-glutamate by alphaTC6, clonal mouse pancreatic alpha-cells. Diabetes 2001; 50:1012-20. [PMID: 11334403 DOI: 10.2337/diabetes.50.5.1012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pancreatic islet cells express receptors and transporters for L-glutamate and are thus believed to use L-glutamate as an intercellular signaling molecule. However, the mechanism by which L-glutamate appears in the islets is unknown. In the present study, we investigated whether L-glutamate is secreted through exocytosis by alphaTC6 cells (clonal mouse pancreatic alpha-cells). An appreciable amount of L-glutamate was released from cultured cells after the addition of KCl or A23187 in the presence of Ca2+ and 10 mmol/l glucose in the medium. The KCl-induced glutamate release was significantly reduced when assayed in the absence of Ca2+ or when the cells were pretreated with EGTA-AM. The KCl-induced Ca2+-dependent glutamate release was inhibited approximately 40% by voltage-gated Ca2+ channel blockers, such as nifedipine at 20 micromol/l. The degree of KCl-induced Ca2+-dependent glutamate release was correlated with an increase in intracellular [Ca2+], as monitored by fura-2 fluorescence. Botulinum neurotoxin type E inhibited 55% of the KCl-induced Ca2+-dependent glutamate release, followed by specific cleavage of 25 kDa synaptosomal-associated protein. Furthermore, bafilomycin A1, a specific inhibitor of vacuolar H+-ATPase, inhibited 40% of the KCl-induced Ca2+-dependent glutamate release. Immunoelectronmicroscopy with antibodies against synaptophysin, a marker for neuronal synaptic vesicles and endocrine synaptic-like microvesicles, revealed a large number of synaptophysin-positive clear vesicles in cells. Digitonin-permeabilized cells took up L-glutamate only in the presence of MgATP, which is sensitive to bafilomycin A1 or 3,5-di-tert-butyl-4-hydroxybenzylidene-malononitrile (a proton conductor) but insensitive to either oligomycin or vanadate. From these results, it was concluded that alphaTC6 cells accumulate L-glutamate in the synaptophysin-containing vesicles in an ATP-dependent manner and secrete it through a Ca2+-dependent exocytic mechanism. The Ca2+-dependent glutamate release was also triggered when cells were transferred in the medium containing 1 mmol/l glucose, suggesting that low glucose treatment stimulates the release of glutamate. Our results are consistent with the idea that L-glutamate is secreted by alpha-cells through Ca2+-dependent regulated exocytosis.
Collapse
Affiliation(s)
- H Yamada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Kaneko T. Chapter VII Enzymes responsible for glutamate synthesis and degradation. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
33
|
Broman J, Hassel B, Rinvik E, Ottersen O. Chapter 1 Biochemistry and anatomy of transmitter glutamate. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
34
|
Okhotin VE, Kalinichenko SG, Motavkin PA. Cholinergic neurons in the motor areas of the human cerebral cortex. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1999; 29:227-31. [PMID: 10432514 DOI: 10.1007/bf02465331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- V E Okhotin
- Department of Histology, Vladivostok State Medical University
| | | | | |
Collapse
|
35
|
Dyuizen IV, Okhotin VE, Kalinichenko SG, Motavkin PA. Neurochemical characteristics of neurons of the human hippocampal formation. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1998; 28:94-100. [PMID: 9513985 DOI: 10.1007/bf02461919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- I V Dyuizen
- Department of Histology, Vladivostok State Medical University
| | | | | | | |
Collapse
|
36
|
Pilowsky P, Sun QJ, Llewellyn-Smith I, Arnolda L, Chalmers J, Minson J. Phosphate-activated glutaminase immunoreactivity in brainstem respiratory neurons. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1997; 63:85-90. [PMID: 9089543 DOI: 10.1016/s0165-1838(96)00136-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of this study was to determine if immunoreactivity for phosphate activated glutaminase (PAG), an enzyme involved in the biosynthesis of glutamate and a putative marker for neurons that use glutamate as a neurotransmitter, is present within respiratory neurons in the ventrolateral medulla oblongata. Intracellular recordings were obtained from neurons in the ventrolateral medulla of adult anaesthetised Sprague-Dawley rats. Neurons with a respiratory-related modulation of their membrane potential were filled with Neurobiotin (Vector, CA). After histochemical processing, sections of brainstem were examined by fluorescence and light microscopy. Some PAG immunoreactivity was found in all of the four types of respiratory neurons examined. PAG immunoreactivity was graded as strong or weak. (1) Of six inspiratory neurons in the rostral ventral respiratory group five were strongly PAG immunoreactive and one was weakly PAG immunoreactive. (2) Of six expiratory neurons in the caudal ventral respiratory group five were strongly PAG immunoreactive while one was weak. (3) Seven motoneurons in the nucleus ambiguous were all strongly PAG immunoreactive. (4) Five neurons in the Bötzinger area were examined. Four were weakly PAG immunoreactive while one contained strong PAG immunoreactivity. These data demonstrate a heterogeneity of PAG immunoreactivity amongst brainstem respiratory neurons.
Collapse
Affiliation(s)
- P Pilowsky
- Department of Medicine, Flinders University, Bedford Park, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Pattern recognition of amino acid signals partitions virtually all of the macaque retina into 16 separable biochemical theme classes, some further divisible by additional criteria. The photoreceptor-->bipolar cell-->ganglion cell pathway is composed of six separable theme classes, each possessing a characteristic glutamate signature. Neuronal aspartate and glutamine levels are always positively correlated with glutamate signals, implying that they largely represent glutamate precursor pools. Amacrine cells may be parsed into four glycine-dominated (including one glycine/GABA immunoreactive population) and four GABA-dominated populations. Horizontal cells in central retina possess a distinctive GABA signature, although their GABA content is constitutively lower than that of amacrine cells and shows both regional and sample variability. Finally, a taurine-glutamine signature defines Müller's cells. We thus have established the fundamental biochemical signatures of the primate retina along with multiple metabolic subtypes for each neurochemical class and demonstrated that virtually all neuronal space can be accounted for by cells bearing characteristic glutamate, GABA, or glycine signatures.
Collapse
|
38
|
Aspartatergic pyramidal neurons of Betz in the cat motor cortex. Bull Exp Biol Med 1996. [DOI: 10.1007/bf02446039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Abstract
Glutamate (E) is the putative amino acid neurotransmitter used by ganglion cells, photoreceptors, and bipolar cells. Aspartate (D) and glutamine (Q) are potential precursors of glutamate, and glutamate-utilizing neurons may use one or more of these amino acids to sustain production of glutamate. We used post-embedding immunocytochemistry for several amino acid neurotransmitters to characterize the amino acid signatures for displaced ganglion cells of the avian retina. We found two neurochemical signatures for displaced ganglion cells, EQ and EDQ, in mid-peripheral and far-peripheral retina, respectively. Differences in neurochemical signatures cannot be explained by the existence of two ganglion cell populations, and we propose that the two signature categories for the large-diameter displaced ganglion cells reflect variations in the aspartate precursor pool. The transamination reaction involved in glutamate production, aspartate/oxaloacetate and alpha-ketoglutarate/glutamate, requires an active TCA cycle, since the carbon skeleton of glutamate is derived from alpha-ketoglutarate, a TCA intermediary. We hypothesized that aspartate levels vary in the normal chicken retina because eccentricity-dependent differences in oxygen availability result in changes of alpha-ketoglutarate levels, and hence, alterations in the equilibrium of the transamination reaction. We tested this hypothesis by incubating isolated chicken retinas in anaerobic conditions and found elevated aspartate immunoreactivity in subpopulations of glutamate-utilizing neurons in the central retina. Under aerobic conditions, or in retinas placed directly into fixative, retinal samples from the central edge of the pecten did not show differential cellular staining for aspartate. We have, therefore, identified differences in neurochemical signatures for retinal neurons involving changes in active maintenance of precursor pools.
Collapse
Affiliation(s)
- M Kalloniatis
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
40
|
Abstract
Much is known about modular organization in the cerebral cortex, but this knowledge is skewed markedly toward primary sensory areas, and in fact, it has been difficult to demonstrate elsewhere. In this report, we test the hypothesis that a unique form of modules exists in the entorhinal area of the human cortex (Brodmann's area 28). We examined this issue using classic cyto- and myeloarchitectonic stains, immunolabeling for various neurochemicals, and histochemistry for certain enzymes. The findings reveal that the entorhinal cortex in the human is formed by a mosaic of cellular aggregates whose most conspicuous elements are the cell islands of layer II and myelinated fibers around the cell islands, the disposition of glutamic acid decarboxylase-positive neurons and processes, cytochrome oxidase staining, and the pattern of cholinergic afferent fibers. The neuropathology of Alzheimer's disease cases highlights the modules, but inversely so, by destroying their features. The findings are of interest because 1) anatomically defined modules are shown to be present in areas other than the sensory and motor cortices, 2) the modules are morphological entities likely to reflect functions of the entorhinal cortex, and 3) the destruction of entorhinal cortex modules may account disproportionately for the severity of memory impairments in Alzheimer's disease.
Collapse
Affiliation(s)
- A Solodkin
- Department of Anatomy, University of Iowa College of Medicine, Iowa City 52242, USA.
| | | |
Collapse
|
41
|
|
42
|
Takatsuna Y, Chiba T, Adachi-Usami E, Kaneko T. Distribution of phosphate-activated glutaminase-like immunoreactivity in the retina of rodents. Curr Eye Res 1994; 13:629-37. [PMID: 7805393 DOI: 10.3109/02713689408999898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distribution of phosphate-activated glutaminase-like immunoreactivity was examined in the retinas of rodents. Intense glutaminase immunoreactivity was observed in many neuronal perikarya in the ganglion cell layer and inner nuclear layer including those of ganglion, bipolar and amacrine cells and possibly horizontal cells. Almost all bipolar cells containing protein kinase C were immunoreactive for glutaminase, suggesting that the majority of glutaminase immunoreactive bipolar cells were of the ON type. Intense glutaminase immunoreactivity was also found in the neuropil of the inner and outer plexiform layers and around the outer limiting membrane. Weak to moderate immunoreactivity was seen in the outer nuclear layer and photoreceptor inner and outer segments. Under electron microscopy, glutaminase immunoreactivity was seen in bipolar cell axons and amacrine cell processes in the inner plexiform layer. In the outer plexiform layer, immunoreactivity was found in the Müller cell processes, but not in the photoreceptor cell terminals. These results indicate that ganglion cells and ON type bipolar cells use glutaminase to produce transmitter glutamate and suggest glutaminase has additional roles in Müller cells. A population of amacrine cells and horizontal cells showed immunoreactivity to glutaminase.
Collapse
Affiliation(s)
- Y Takatsuna
- Department of Ophthalmology, Chiba University School of Medicine, Japan
| | | | | | | |
Collapse
|
43
|
Kaneko T, Mizuno N. Glutamate-synthesizing enzymes in GABAergic neurons of the neocortex: a double immunofluorescence study in the rat. Neuroscience 1994; 61:839-49. [PMID: 7838383 DOI: 10.1016/0306-4522(94)90407-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
L-Glutamate is the immediate precursor of the inhibitory transmitter GABA, and considered to be supplied from alpha-ketoglutarate through a transamination reaction or from glutamine through a glutaminase reaction. In the present study, the localization of aspartate aminotransferase and glutaminase in GABAergic neurons was investigated in the rat neocortex by a double immunofluorescence method. Immunoreactivities for both soluble and mitochondrial aspartate aminotransferases were detected in more than 90% of GABA-positive neurons, whereas glutaminase immunoreactivity was not found in GABA-positive neurons. All neocortical neurons with soluble aspartate aminotransferase immunoreactivity were immunopositive for GABA, but none for glutaminase. Neurons with mitochondrial aspartate aminotransferase immunoreactivity showed either glutaminase or GABA immunoreactivity. Under confocal laser scan microscopy, immunoreactivity for soluble aspartate aminotransferase was observed in many axons and axon terminals showing immunoreactivity for glutamic acid decarboxylase, whereas immunoreactivity for mitochondrial aspartate aminotransferase was seen in only a few axons displaying immunoreactivity for glutamic acid decarboxylase. The present results indicate that soluble aspartate aminotransferase is selectively localized to cell bodies and axon terminals of GABAergic non-pyramidal neurons in the cerebral neocortex. This suggests that glutamate is supplied from alpha-ketoglutarate via transamination and works as the immediate precursor for GABA in axon terminals of GABAergic neurons. The absence of glutaminase immunoreactivity in GABAergic neurons indicates that glutamine is a "metabolically remote" precursor for GABA. Mitochondrial aspartate aminotransferase was located in perikarya, rather than in axon terminals of GABAergic neurons, suggesting a transmitter-irrelevant role of this enzyme in neurons.
Collapse
Affiliation(s)
- T Kaneko
- Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | |
Collapse
|
44
|
Kalloniatis M, Tomisich G, Marc RE. Neurochemical signatures revealed by glutamine labeling in the chicken retina. Vis Neurosci 1994; 11:793-804. [PMID: 7918229 DOI: 10.1017/s0952523800003096] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Postembedding immunocytochemistry was used to determine the retinal distribution of the amino acid glutamine, and characterize amino acid signatures in the avian retinal ganglion cell layer. Glutamine is a potential precursor of glutamate and some glutamatergic neurons may use this amino acid to sustain production of glutamate for neurotransmission. Ganglion cells, cells in the inner nuclear layer, and some photoreceptors exhibited glutamine immunoreactivity of varying intensity. Ganglion cells demonstrated the highest level of immunoreactivity which indicates either slow glutamine turnover or active maintenance of a large standing glutamine pool relative to other glutamatergic neurons. Müller's cells in the avian retina are involved in glutamate uptake and carbon recycling by the rapid conversion of glutamate to glutamine, thus explaining the low glutamate and high glutamine immunoreactivity found throughout Müller's cells. Most chicken retinal ganglion cells are glutamate (E) and glutamine (Q) immunoreactive but display diverse signatures with presumed functional subsets of cells displaying admixtures of E and Q with GABA (gamma) and/or glycine (G). The four major ganglion cell signatures are (1) EQ; (2) EQ gamma; (3) EQG; and (4) EQ gamma G.
Collapse
Affiliation(s)
- M Kalloniatis
- Department of Optometry, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
45
|
Kugler P. Enzymes involved in glutamatergic and GABAergic neurotransmission. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 147:285-336. [PMID: 7901176 DOI: 10.1016/s0074-7696(08)60771-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Kugler
- Department of Anatomy, University of Würzburg, Germany
| |
Collapse
|
46
|
Kaneko T, Nakaya Y, Mizuno N. Paucity of glutaminase-immunoreactive nonpyramidal neurons in the rat cerebral cortex. J Comp Neurol 1992; 322:181-90. [PMID: 1381731 DOI: 10.1002/cne.903220204] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glutaminase has been considered to be a synthesizing enzyme of transmitter glutamate in pyramidal neurons of the cerebral cortex. In the present study, an attempt was made to examine with a double immunofluorescence method whether or not nonpyramidal neurons of the cerebral cortex are immunoreactive for glutaminase. Glutaminase was stained with mouse anti-glutaminase IgM and FITC-labeled anti-[mouse IgM] antibody. In the same section, parvalbumin (PA), calbindin (CB), choline acetyltransferase (CAT), vasoactive intestinal polypeptide (VIP), corticotropin releasing factor (CRF), cholecystokinin (CCK), somatostatin (SS), or neuropeptide Y (NPY) was visualized as a marker for nonpyramidal neurons with an antibody to each substance, biotinylated secondary antibody and Texas Red-labeled avidin. Virtually no glutaminase immunoreactivity was seen in PA-, CB-, CAT-, VIP-, CRF-, CCK-, SS-, or NPY-immunoreactive neuronal perikarya in the neocortex and mesocortex (cingulate and retrosplenial cortices), although it was detected in a few PA-, CB-, VIP-, CCK-, SS-, or NPY-immunoreactive nonpyramidal neurons in the piriform, entorhinal, and hippocampal cortices. PA- and CB-positive neurons have been reported to constitute the major population of GABAergic neurons in the cerebral cortex. Thus, the present results, together with the previous reports, suggest that most GABAergic, cholinergic and peptidergic nonpyramidal neurons in the neo- and mesocortex do not contain glutaminase.
Collapse
Affiliation(s)
- T Kaneko
- Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
47
|
Kaneko T, Mizuno N. Mosaic distribution of phosphate-activated glutaminase-like immunoreactivity in the rat striatum. Neuroscience 1992; 49:329-45. [PMID: 1436471 DOI: 10.1016/0306-4522(92)90100-g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The dorsal and ventral striatum of mammals has been known to be organized in a mosaic manner, referred to as "patches" and "matrix" of the caudatoputamen. The present study was primarily attempted in order to reveal the relationship of glutamatergic neuronal components to the mosaic organization in the rat striatum by using a monoclonal antibody to phosphate-activated glutaminase, a major synthetic enzyme of transmitter glutamate. Antibodies against glutamate decarboxylase and choline acetyltransferase were also used as the markers for GABAergic and cholinergic neuronal components, respectively. Glutaminase immunoreactivity was seen in a number of large- and a few medium-sized neurons in the caudatoputamen, nucleus accumbens and olfactory tubercle. The large neurons with glutaminase immunoreactivity were observed in the neuropil of the caudatoputamen and nucleus accumbens; glutaminase immunoreactivity was particularly marked in the neuropil of island-like patchy areas although it was seen throughout the neuropil of the nuclei. In the caudatoputamen, island-like areas with marked glutaminase immunoreactivity exhibited less marked choline acetyltransferase immunoreactivity than the surrounding background region, and were thus considered to correspond to the patches. The mosaic distribution of glutamate decarboxylase immunoreactivity in the caudatoputamen seemed identical with that of glutaminase immunoreactivity. However, in the nucleus accumbens, the mosaic pattern of neuropil labeling for glutaminase was neither consistent with that for glutamate decarboxylase nor that for choline acetyltransferase, suggesting the presence of non-GABAergic glutaminase-containing nerve terminals in the nucleus. In an attempt to clarify the origin of neuropil labeling for glutaminase in the striatum, lesions were made in the regions sending projection fibers to the caudatoputamen and nucleus accumbens. After placing lesions in the cerebral cortex, glutaminase immunoreactivity was decreased in neuropil of the caudatoputamen, but the mosaic pattern remained. Lesions which were placed in the intralaminar thalamic nuclei, amygdaloid body, globus pallidus or substantia nigra produced no substantial change in glutaminase immunoreactivity in the caudatoputamen and nucleus accumbens. After injection of kainic acid into the caudatoputamen or nucleus accumbens, glutaminase immunoreactivity in the neuropil of the affected regions was decreased to lose the mosaic pattern, indicating that neuronal components with glutaminase immunoreactivity in the neuropil of the patches were mainly of intrinsic origin. In summary, possible axon terminals containing glutaminase were observed with mosaic patterns in the caudatoputamen and nucleus accumbens, in which large cholinergic and medium-sized non-cholinergic neurons were immunoreactive for glutaminase. In the caudatoputamen, glutaminase immunoreactivity in neuropil was more marked in the patches than in the matrix.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T Kaneko
- Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | |
Collapse
|
48
|
Waniewski RA. Physiological levels of ammonia regulate glutamine synthesis from extracellular glutamate in astrocyte cultures. J Neurochem 1992; 58:167-74. [PMID: 1345764 DOI: 10.1111/j.1471-4159.1992.tb09292.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of ammonia on glutamate accumulation and metabolism was examined in astrocyte cultures prepared from neonatal rat cortices. Intact astrocytes were incubated with 70 microM L-[14C(U)]glutamate and varying amounts of ammonium chloride. The media and cells were analyzed separately by HPLC for amino acids and labelled metabolites. Extracellular glutamate was reduced to 8 microM by 60 min. Removal of glutamate from the extracellular space was not altered by addition of ammonia. The rate of glutamine synthesis was increased from 3.6 to 9.3 nmol/mg of protein/min by addition of 100 microM ammonia, and intracellular glutamate was reduced from 262 to 86 nmol/mg of protein after 30 min. The metabolism of accumulated glutamate was matched nearly perfectly by the synthesis of glutamine, and both processes were proportional to the amount of added ammonia. The transamination and deamination products of glutamate were minor metabolites that either decreased or remained unchanged with increasing ammonia. Thus, ammonia addition stimulates the conversion of glutamate to glutamine in intact astrocyte cultures. At physiological concentrations of ammonia, glutamine synthesis appears to be limited by the rate of glutamate accumulation and the activity of competing reactions and not by the activity of glutamine synthetase.
Collapse
Affiliation(s)
- R A Waniewski
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509
| |
Collapse
|
49
|
Tieman SB, Neale JH, Tieman DG. N-acetylaspartylglutamate immunoreactivity in neurons of the monkey's visual pathway. J Comp Neurol 1991; 313:45-64. [PMID: 1662235 DOI: 10.1002/cne.903130105] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The acidic dipeptide N-acetylaspartylglutamate (NAAG) was identified immunohistochemically within neurons of the visual pathways of two adult macaque monkeys which had undergone midsagittal sectioning of the optic chiasm 6 or 9 years earlier. In both temporal and nasal retinae, amacrine cells, including some displaced amacrine cells, expressed NAAG immunoreactivity. In temporal but not nasal retina, retinal ganglion cells were stained, as were their dendrites in the inner plexiform layer, and their axons in the optic nerve fiber layer. In nasal retina, the ganglion cells had degenerated because they were axotomized by the optic chiasm section. In the target regions of the retinal ganglion cells, the superior colliculus and the lateral geniculate nucleus (LGN), both neuropil and cell bodies were stained. In LGN, staining was confined to layers 2, 3, and 5, that is, to the layers innervated by the intact ipsilateral pathway. Immunoreactivity was also seen in the cells of layers 2, 3A, 4B, 5, and 6 of area 17 and layers 3 and 5 of area 18. The neuropil was stained in all layers of area 17, but more heavily in layers 1, 2, 4B, the bottom of 4C beta, 5B, and 6B. Within 4C the staining was patchy; in tangential sections there were alternating bands of light and dark label which matched the ocular dominance bands demonstrated by cytochrome oxidase histochemistry in adjacent sections. This banding pattern is consistent with the presence of NAAG in geniculocortical terminals of the intact ipsilateral pathway and the absence of such terminals for the contralateral pathway, which had undergone transneuronal degeneration due to the optic chiasm sectioning. Overall, our results for monkey are very similar to those in cat and suggest that NAAG or a structurally related molecule may have a prominent role in the communication of visual signals at retinal, thalamic, and cortical levels.
Collapse
Affiliation(s)
- S B Tieman
- Neurobiology Research Center, State University of New York, Albany 12222
| | | | | |
Collapse
|