1
|
Amaral AC, Lister JP, Rueckemann JW, Wojnarowicz MW, McGaughy JA, Mokler DJ, Galler JR, Rosene DL, Rushmore RJ. Prenatal protein malnutrition decreases neuron numbers in the parahippocampal region but not prefrontal cortex in adult rats. Nutr Neurosci 2024:1-14. [PMID: 39088448 DOI: 10.1080/1028415x.2024.2371256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
OBJECTIVE Prenatal protein malnutrition produces anatomical and functional changes in the developing brain that persist despite immediate postnatal nutritional rehabilitation. Brain networks of prenatally malnourished animals show diminished activation of prefrontal areas and an increased activation of hippocampal regions during an attentional task [1]. While a reduction in cell number has been documented in hippocampal subfield CA1, nothing is known about changes in neuron numbers in the prefrontal or parahippocampal cortices. METHODS In the present study, we used unbiased stereology to investigate the effect of prenatal protein malnutrition on the neuron numbers in the medial prefrontal cortex and the cortices of the parahippocampal region that comprise the larger functional network. RESULTS Results show that prenatal protein malnutrition does not cause changes in the neuronal population in the medial prefrontal cortex of adult rats, indicating that the decrease in functional activation during attentional tasks is not due to a reduction in the number of neurons. Results also show that prenatal protein malnutrition is associated with a reduction in neuron numbers in specific parahippocampal subregions: the medial entorhinal cortex and presubiculum. DISCUSSION The affected regions along with CA1 comprise a tightly interconnected circuit, suggesting that prenatal malnutrition confers a vulnerability to specific hippocampal circuits. These findings are consistent with the idea that prenatal protein malnutrition produces a reorganization of structural and functional networks, which may underlie observed alterations in attentional processes and capabilities.
Collapse
Affiliation(s)
- A C Amaral
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - J P Lister
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - J W Rueckemann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - M W Wojnarowicz
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - J A McGaughy
- Department of Psychology, University of New Hampshire, Durham, NH, USA
| | - D J Mokler
- Department of Biomedical Sciences, University of New England, Biddeford, ME, USA
| | - J R Galler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics & Division of Gastroenterology and Nutrition, MassGeneral Hospital for Children, Boston, MA, USA
| | - D L Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - R J Rushmore
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Grigoletti-Lima GB, Lopes MG, Franco ATB, Damico AM, Boer PA, Rocha Gontijo JA. Severe Gestational Low-Protein Intake Impacts Hippocampal Cellularity, Tau, and Amyloid-β Levels, and Memory Performance in Male Adult Offspring: An Alzheimer-Simile Disease Model? J Alzheimers Dis Rep 2022; 6:17-30. [PMID: 35243209 PMCID: PMC8842744 DOI: 10.3233/adr-210297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Maternal undernutrition has been associated with psychiatric and neurological disorders characterized by learning and memory impairment. OBJECTIVE Considering the lack of evidence, we aimed to analyze the effects of gestational protein restriction on learning and memory function associated with hippocampal cell numbers and neurodegenerative protein content later in life. METHODS Experiments were conducted in gestational low- (LP, 6% casein) or regular-protein (NP, 17% casein) diet intake offspring. Behavioral tests, isolated hippocampal isotropic fractionator cell studies, immunoblotting, and survival lifetime were observed. RESULTS The birthweight of LP males is significantly reduced relative to NP male progeny, and hippocampal mass increased in 88-week-old LP compared to age-matched NP offspring. The results showed an increased proximity measure in 87-week-old LP compared to NP offspring. Also, LP rats exhibited anxiety-like behaviors compared to NP rats at 48 and 86-wk of life. The estimated neuron number was unaltered in LP rats; however, non-neuron cell numbers increased compared to NP progeny. Here, we showed unprecedented hippocampal deposition of brain-derived neurotrophic factor, amyloid-β peptide (Aβ), and tau protein in 88-week-old LP relative to age-matched NP offspring. CONCLUSION To date, no predicted studies showed changes in hippocampal morphological structure in maternal protein-restricted elderly offspring. The current data suggest that gestational protein restriction may accelerate hippocampal function loss, impacting learning/memory performance, and supposedly developing diseases similar to Alzheimer's disease (AD) in elderly offspring. Thus, we propose that maternal protein restriction could be an elegant and novel method for constructing an AD-like model in adult male offspring.
Collapse
Affiliation(s)
- Gabriel Boer Grigoletti-Lima
- Fetal Programming and Hydroelectrolyte MetabolismLaboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at StateUniversity of Campinas, Campinas, SP, Brazil
| | - Marcelo Gustavo Lopes
- Fetal Programming and Hydroelectrolyte MetabolismLaboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at StateUniversity of Campinas, Campinas, SP, Brazil
| | - Ana Tereza Barufi Franco
- Fetal Programming and Hydroelectrolyte MetabolismLaboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at StateUniversity of Campinas, Campinas, SP, Brazil
| | - Aparecida Marcela Damico
- Fetal Programming and Hydroelectrolyte MetabolismLaboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at StateUniversity of Campinas, Campinas, SP, Brazil
| | - Patrìcia Aline Boer
- Fetal Programming and Hydroelectrolyte MetabolismLaboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at StateUniversity of Campinas, Campinas, SP, Brazil
| | - José Antonio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte MetabolismLaboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at StateUniversity of Campinas, Campinas, SP, Brazil
| |
Collapse
|
3
|
Macronutrient Intake in Pregnancy and Child Cognitive and Behavioural Outcomes. CHILDREN-BASEL 2021; 8:children8050425. [PMID: 34065501 PMCID: PMC8161020 DOI: 10.3390/children8050425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022]
Abstract
Prenatal nutrient exposures can impact on brain development and disease susceptibility across the lifespan. It is well established that maternal macronutrient intake during pregnancy influences foetal and infant development. Therefore, we hypothesise that macronutrient intakes during pregnancy are correlated with cognitive development during early childhood. The current study aimed to investigate the relationship between maternal macronutrient intake during pregnancy and child cognitive and behavioural outcomes at age 4 years. We analysed prospective data from a cohort of 64 Australian mother-child dyads. Maternal macronutrient intake was assessed using a validated 74-item food frequency questionnaire at 2 timepoints during pregnancy. Child cognition and behaviour were measured at age 4 years using the validated Wechsler Preschool and Primary Scale of Intelligence, 3rd version (WPPSI-III) and the Child Behaviour Checklist (CBC). Linear regression models were used to quantify statistical relationships and were adjusted for maternal age, education, pre-pregnancy BMI, breastfeeding duration and birthweight. Child Performance IQ was inversely associated with maternal starch intake (b = -11.02, p = 0.03). However, no other associations were found. Further research is needed to explore the association between different types of starch consumed during pregnancy and child cognitive development.
Collapse
|
4
|
Rushmore RJ, McGaughy JA, Amaral AC, Mokler DJ, Morgane PJ, Galler JR, Rosene DL. The neural basis of attentional alterations in prenatally protein malnourished rats. Cereb Cortex 2021; 31:497-512. [PMID: 33099611 PMCID: PMC7947171 DOI: 10.1093/cercor/bhaa239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 11/13/2022] Open
Abstract
Protein malnutrition during gestation alters brain development and produces specific behavioral and cognitive changes that persist into adulthood and increase the risks of neuropsychiatric disorders. Given evidence for the role of the prefrontal cortex in such diseases, it is significant that studies in humans and animal models have shown that prenatal protein malnutrition specifically affects functions associated with prefrontal cortex. However, the neural basis underlying these changes is unclear. In the current study, prenatally malnourished and control rats performed a sustained attention task with an unpredictable distractor, a task that depends on intact prefrontal cortical function. Radiolabeled 2-deoxyglucose was used to measure neural and brain network activity during the task. Results confirmed that adult prenatally malnourished rats were more distractible than controls and exhibited lower functional activity in prefrontal cortices. Thus, prefrontal activity was a predictor of task performance in controls but not prenatally malnourished animals. Instead, prenatally malnourished animals relied on different brain networks involving limbic structures such as the hippocampus. These results provide evidence that protein reduction during brain development has more wide-reaching effects on brain networks than previously appreciated, resulting in the formation of brain networks that may reflect compensatory responses in prenatally malnourished brains.
Collapse
Affiliation(s)
- R J Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston MA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - J A McGaughy
- Department of Psychology, University of New Hampshire, Durham, NH
| | - A C Amaral
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston MA
| | - D J Mokler
- Department of Biomedical Sciences, University of New England, Biddeford ME
| | - P J Morgane
- Department of Biomedical Sciences, University of New England, Biddeford ME
| | - J R Galler
- Department of Psychiatry, Harvard Medical School, Boston, MA
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | - D L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston MA
| |
Collapse
|
5
|
Rushmore RJ, McGaughy JA, Mokler DJ, Rosene DL. The enduring effect of prenatal protein malnutrition on brain anatomy, physiology and behavior. Nutr Neurosci 2020; 25:1392-1399. [PMID: 33314995 DOI: 10.1080/1028415x.2020.1859730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is increasing evidence that the maternal environment exerts enduring influences on the fetal brain. In response to certain environmental stimuli such as reduced protein content, the fetus changes the course of its brain development, which leads to specific and programed changes in brain anatomy and physiology. These alterations produce a brain with a fundamentally altered organization, which then translates to alterations in adult cognitive function. The effects on brain and behavior may be linked, such that a prenatal stimulus relays a signal to alter brain development and encourage the selection and development of brain circuits and behaviors that would be beneficial for the environment in which the animal was anticipated to emerge. At the same time, the signal would deselect behaviors unlikely to be adaptive. We draw on evidence from rodent models to suggest that the brain that develops after a reduction in protein during the prenatal phase is not uniformly dysfunctional, but simply different. This perspective has implications for the role of prenatal factors in the production and expression of behavior, and may account for the elevation of risk factors for neurological and psychiatric illnesses.
Collapse
Affiliation(s)
- R J Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Psychiatric Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA.,Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, USA
| | - J A McGaughy
- Department of Psychology, University of New Hampshire, Durham, NH, USA
| | - D J Mokler
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - D L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
6
|
Morris water maze overtraining increases the density of thorny excrescences in the basal dendrites of CA3 pyramidal neurons. Behav Brain Res 2020; 379:112373. [DOI: 10.1016/j.bbr.2019.112373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/31/2019] [Accepted: 11/19/2019] [Indexed: 01/08/2023]
|
7
|
Barbeito-Andrés J, Castro-Fonseca E, Qiu LR, Bernal V, Lent R, Henkelman M, Lukowiak K, Gleiser PM, Hallgrimsson B, Gonzalez PN. Region-specific changes in Mus musculus brain size and cell composition under chronic nutrient restriction. ACTA ACUST UNITED AC 2019; 222:jeb.204651. [PMID: 31395680 DOI: 10.1242/jeb.204651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/01/2019] [Indexed: 11/20/2022]
Abstract
Nutrition is one of the most influential environmental factors affecting the development of different tissues and organs. It is suggested that under nutrient restriction the growth of the brain is spared as a result of the differential allocation of resources from other organs. However, it is not clear whether this sparing occurs brain-wide. Here, we analyzed morphological changes and cell composition in different regions of the offspring mouse brain after maternal exposure to nutrient restriction during pregnancy and lactation. Using high-resolution magnetic resonance imaging, we found that brain regions were differentially sensitive to maternal protein restriction and exhibited particular patterns of volume reduction. The cerebellum was reduced in absolute and relative volume, while cortex volume was relatively preserved. Alterations in cell composition (examined by the isotropic fractionator method) and organization of white matter (measured by diffusor tensor images) were also region specific. These changes were not related to the metabolic rate of the regions and were only partially explained by their specific growth trajectories. This study is a first step towards understanding the mechanisms of regional brain sparing at microstructural and macrostructural levels resulting from undernutrition.
Collapse
Affiliation(s)
- Jimena Barbeito-Andrés
- Institute for Studies in Neuroscience and Complex Systems Studies, ENyS, CONICET, CP 1888 Buenos Aires, Argentina
| | - Emily Castro-Fonseca
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, CEP 21941-590, Brazil
| | - Lily R Qiu
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Valeria Bernal
- Anthropology Department, School of Natural Sciences, National University of La Plata, CP 1900 Buenos Aires, Argentina
| | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, CEP 21941-590, Brazil
| | - Mark Henkelman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Kenneth Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Pablo M Gleiser
- Medical Physics Department, Bariloche Atomic Centre, Bariloche CP 8400, Río Negro, Argentina
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, McCaig Institute for Bone and Joint Health, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Paula N Gonzalez
- Institute for Studies in Neuroscience and Complex Systems Studies, ENyS, CONICET, CP 1888 Buenos Aires, Argentina
| |
Collapse
|
8
|
Rubio L, Téllez L, Regalado M, Torrero C, Salas M. Effects of perinatal undernutrition on social transmission of food preference in adult male Wistar rats. Int J Dev Neurosci 2018; 71:105-110. [PMID: 30149118 DOI: 10.1016/j.ijdevneu.2018.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022] Open
Abstract
Nutrition plays a fundamental role in learning and memory, and early experimental undernutrition interferes with brain memory processes. Social transmission of food preference (STFP) is a natural olfactory paired-associate learning test that has not been used to assess the effects of early undernutrition on memory consolidation. Male Wistar rats were randomly divided into two groups: control and early undernourished. The underfed rats received different percentages of a balanced diet during gestation. After birth, pups were underfed by alternating every 12 h between two lactating dams, one with ligated nipples. Weaning occurred on PD 25 followed by an ad lib diet until PD 90. Demonstrator rats were given powdered food mixed with cinnamon, followed by a 30-min interaction with an underfed observer. Thereafter, the observer had two choices of food: cinnamon or cocoa. During the food preference test, control and underfed OBS rats preferred the food containing cinnamon. Through social interaction, the UG OBS rats showed latency for head contacts and oral-nasal investigation was higher in the underfed rats; only head contacts and oral-nasal investigation frequency was lower; with the duration lower, but oral-nasal investigation duration was higher (p < 0.05). In the preference phase, the OBS underfed rat latencies for both stimuli were prolonged, the frequency lower only for cocoa, and the duration lower for cinnamon but higher for cocoa (p < 0.05). Findings suggested that early undernutrition interfered with the attentive social transmission to take a decision during the preference phase, but not with the short-term memory consolidation of social food preference.
Collapse
Affiliation(s)
- Lorena Rubio
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Laura Téllez
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Mirelta Regalado
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Carmen Torrero
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Manuel Salas
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
9
|
Cruz-Rizzolo RJ, Limieri LL, de Paiva IR, Ribeiro JOB, Pimenta TF, Pinato L, Ervolino E, Casatti CA, Guissoni Campos LM, Liberti EA. Protein malnutrition during gestation and early life decreases neuronal size in the medial prefrontal cortex of post-pubertal rats. IBRO Rep 2017; 3:65-71. [PMID: 30135943 PMCID: PMC6084879 DOI: 10.1016/j.ibror.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 10/28/2022] Open
Abstract
Retrospective studies in human populations indicate that protein deprivation during pregnancy and early life (early protein malnutrition, EPM) is associated with cognitive impairments, learning disabilities and may represent a risk factor for the late onset of some psychiatric disorders, fundamentally schizophrenia, a condition where the prefrontal cortex plays an important role. The purpose of this study was to analyze whether EPM affects structural aspects of the rat medial prefrontal cortex (mPFC), such as cortical volume, neuronal density and neuronal soma size, which seem altered in patients with schizophrenia. For this, a rat model of EPM (5% casein from conception to postnatal day 60) was adopted and the rat mPFC volume, total number of neurons and average neuronal volume were evaluated on postnatal day 60 (post-pubertal animals) by histo- and immunohistochemical techniques using unbiased stereological analysis. EPM did not alter the number of NeuN+ neurons in the rat mPFC. However, a very significant decrease in mPFC volume and average neuronal size was observed in malnourished rats. Although the present study does not establish causal relationships between malnutrition and schizophrenia, our results may indicate a similar structural phenomenon in these two situations.
Collapse
Affiliation(s)
| | - Laís Leal Limieri
- Department of Basic Sciences, São Paulo State University, Araçatuba, SP, Brazil
| | | | | | | | - Luciana Pinato
- Department of Speech-Language and Hearing Therapy, São Paulo State University, Marilia, SP, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, São Paulo State University, Araçatuba, SP, Brazil
| | | | | | - Edson Aparecido Liberti
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| |
Collapse
|
10
|
Reyes-Castro LA, Padilla-Gómez E, Parga-Martínez NJ, Castro-Rodríguez DC, Quirarte GL, Díaz-Cintra S, Nathanielsz PW, Zambrano E. Hippocampal mechanisms in impaired spatial learning and memory in male offspring of rats fed a low-protein isocaloric diet in pregnancy and/or lactation. Hippocampus 2017; 28:18-30. [PMID: 28843045 DOI: 10.1002/hipo.22798] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Maternal nutritional challenges during fetal and neonatal development result in developmental programming of multiple offspring organ systems including brain maturation and function. A maternal low-protein diet during pregnancy and lactation impairs associative learning and motivation. We evaluated effects of a maternal low-protein diet during gestation and/or lactation on male offspring spatial learning and hippocampal neural structure. Control mothers (C) ate 20% casein and restricted mothers (R) 10% casein, providing four groups: CC, RR, CR, and RC (first letter pregnancy, second lactation diet). We evaluated the behavior of young adult male offspring around postnatal day 110. Corticosterone and ACTH were measured. Males were tested for 2 days in the Morris water maze (MWM). Stratum lucidum mossy fiber (MF) area, total and spine type in basal dendrites of stratum oriens in the hippocampal CA3 field were measured. Corticosterone and ACTH were higher in RR vs. CC. In the MWM acquisition test CC offspring required two, RC three, and CR seven sessions to learn the maze. RR did not learn in eight trials. In a retention test 24 h later, RR, CR, and RC spent more time locating the platform and performed fewer target zone entries than CC. RR and RC offspring spent less time in the target zone than CC. MF area, total, and thin spines were lower in RR, CR, and RC than CC. Mushroom spines were lower in RR and RC than CC. Stubby spines were higher in RR, CR, and RC than CC. We conclude that maternal low-protein diet impairs spatial acquisition and memory retention in male offspring, and that alterations in hippocampal presynaptic (MF), postsynaptic (spines) elements and higher glucocorticoid levels are potential mechanisms to explain these learning and memory deficits.
Collapse
Affiliation(s)
- L A Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - E Padilla-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - N J Parga-Martínez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - D C Castro-Rodríguez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - G L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - S Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - P W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071-3684
| | - E Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| |
Collapse
|
11
|
Honório de Melo Martimiano P, de Sa Braga Oliveira A, Ferchaud-Roucher V, Croyal M, Aguesse A, Grit I, Ouguerram K, Lopes de Souza S, Kaeffer B, Bolaños-Jiménez F. Maternal protein restriction during gestation and lactation in the rat results in increased brain levels of kynurenine and kynurenic acid in their adult offspring. J Neurochem 2016; 140:68-81. [PMID: 27778340 DOI: 10.1111/jnc.13874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022]
Abstract
Early malnutrition is a risk factor for depression and schizophrenia. Since the offspring of malnourished dams exhibit increased brain levels of serotonin (5-HT), a tryptophan-derived neurotransmitter involved in the pathophysiology of these mental disorders, it is believed that the deleterious effects of early malnutrition on brain function are due in large part to altered serotoninergic neurotransmission resulting from impaired tryptophan (Trp) metabolism. However, tryptophan is also metabolized through the kynurenine (KYN) pathway yielding several neuroactive compounds including kynurenic (KA), quinolinic (QA) and xanthurenic (XA) acids. Nevertheless, the impact of perinatal malnutrition on brain kynurenine pathway metabolism has not been examined to date. Here, we used ultra-performance liquid chromatography-tandem mass spectrometry for the simultaneous quantification of tryptophan and a set of seven compounds spanning its metabolism through the serotonin and kynurenine pathways, in the brain of embryos and adult offspring of rat dams fed a protein-restricted (PR) diet. Protein-restricted embryos showed reduced brain levels of Trp, serotonin and KA, but not of KYN, XA, or QA. In contrast, PR adult rats exhibited enhanced levels of Trp in the brainstem and cortex along with increased concentrations of 5-HT, kynurenine and XA. The levels of XA and KA were also increased in the hippocampus of adult PR rats. These results show that early protein deficiency induces selective and long-lasting changes in brain kynurenine metabolism. Given the regulatory role of KYN pathway metabolites on brain development and function, these changes might contribute to the risk of developing psychiatric disorders induced by early malnutrition.
Collapse
Affiliation(s)
- Paula Honório de Melo Martimiano
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France.,Departamento de Anatomia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - André de Sa Braga Oliveira
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France.,Departamento de Anatomia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Véronique Ferchaud-Roucher
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France.,Centre de Recherche en Nutrition Humaine de l'Ouest, Nantes, France
| | - Mikaël Croyal
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France.,Centre de Recherche en Nutrition Humaine de l'Ouest, Nantes, France
| | - Audrey Aguesse
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France.,Centre de Recherche en Nutrition Humaine de l'Ouest, Nantes, France
| | - Isabelle Grit
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France
| | - Khadija Ouguerram
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France
| | - Sandra Lopes de Souza
- Departamento de Anatomia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Bertrand Kaeffer
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France
| | | |
Collapse
|
12
|
Torrero C, Perez E, Regalado M, Salas M. Pattern of Sucking Movements During Artificial Feeding of Neonatally Undernourished Rats. Nutr Neurosci 2016. [DOI: 10.1080/1028415x.2000.11747322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Lima J, de Oliveira L, Almeida S. Effects of Early Concurrent Protein Malnutrition and Environmental Stimulation on the Central Nervous System and Behavior. Nutr Neurosci 2016; 1:439-48. [DOI: 10.1080/1028415x.1998.11747254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
King R, Kemper T, DeBassio W, Blatt G, Ramzan M, Rosene D, Galler J. Effect of Prenatal Protein Malnutrition on Birthdates and Number of Neurons in the Rat Locus Coeruleus. Nutr Neurosci 2016; 2:267-76. [DOI: 10.1080/1028415x.1999.11747283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Pérez-García G, Guzmán-Quevedo O, Da Silva Aragão R, Bolaños-Jiménez F. Early malnutrition results in long-lasting impairments in pattern-separation for overlapping novel object and novel location memories and reduced hippocampal neurogenesis. Sci Rep 2016; 6:21275. [PMID: 26882991 PMCID: PMC4756322 DOI: 10.1038/srep21275] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
Numerous epidemiological studies indicate that malnutrition during in utero development and/or childhood induces long-lasting learning disabilities and enhanced susceptibility to develop psychiatric disorders. However, animal studies aimed to address this question have yielded inconsistent results due to the use of learning tasks involving negative or positive reinforces that interfere with the enduring changes in emotional reactivity and motivation produced by in utero and neonatal malnutrition. Consequently, the mechanisms underlying the learning deficits associated with malnutrition in early life remain unknown. Here we implemented a behavioural paradigm based on the combination of the novel object recognition and the novel object location tasks to define the impact of early protein-restriction on the behavioural, cellular and molecular basis of memory processing. Adult rats born to dams fed a low-protein diet during pregnancy and lactation, exhibited impaired encoding and consolidation of memory resulting from impaired pattern separation. This learning deficit was associated with reduced production of newly born hippocampal neurons and down regulation of BDNF gene expression. These data sustain the existence of a causal relationship between early malnutrition and impaired learning in adulthood and show that decreased adult neurogenesis is associated to the cognitive deficits induced by childhood exposure to poor nutrition.
Collapse
Affiliation(s)
- Georgina Pérez-García
- INRA, UMR1280 Physiologie des Adaptations Nutritionnelles, Université de Nantes, Nantes Atlantique Université, 44096, Nantes, France
| | - Omar Guzmán-Quevedo
- INRA, UMR1280 Physiologie des Adaptations Nutritionnelles, Université de Nantes, Nantes Atlantique Université, 44096, Nantes, France
| | - Raquel Da Silva Aragão
- INRA, UMR1280 Physiologie des Adaptations Nutritionnelles, Université de Nantes, Nantes Atlantique Université, 44096, Nantes, France
| | - Francisco Bolaños-Jiménez
- INRA, UMR1280 Physiologie des Adaptations Nutritionnelles, Université de Nantes, Nantes Atlantique Université, 44096, Nantes, France
| |
Collapse
|
16
|
Torrero C, Regalado M, Rubio L, Ruiz-Marcos A, Salas M. Neonatal Food Restriction Induces Hypoplasia in Developing Facial Motor Neurons of Rats. Nutr Neurosci 2013; 6:317-24. [PMID: 14609318 DOI: 10.1080/10284150310001595618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effects of neonatal food restriction upon the dendritic development of facial nucleus (FN) motor neurons of Wistar rats were analyzed. Rats neonatally underfed by daily (12 h) mother-litter separation in an incubator from 5-30 days after birth exhibited, in brain stem Golgi-Cox sections, significant reductions in the number and extension of stellate, triangular and bipolar FN neuronal dendritic prolongations with negligible effects upon perikarya measurements. Data suggest that in the underfed newborn, the ability of FN neurons to establish synaptic contacts with afferent fibers is reduced, which then interferes with their capacities for the integration and triggering of nerve impulses to modulate facial motor expression in response to sensory cues.
Collapse
Affiliation(s)
- C Torrero
- Department of Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Qro., 76001 México
| | | | | | | | | |
Collapse
|
17
|
Valadares CT, de Sousa Almeida S. Early protein malnutrition changes learning and memory in spaced but not in condensed trials in the Morris water-maze. Nutr Neurosci 2013; 8:39-47. [PMID: 15909766 DOI: 10.1080/10284150500047302] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Early protein malnutrition induces structural, neurochemical and functional changes in the central nervous system leading to alterations in cognitive and behavioral development of rats. The aim of the present study was to investigate the effects of protein malnutrition during lactation on acquisition and retention of spatial information using different training procedures (spaced x condensed trials). Rats treated with 16% (well-nourished) or 6% (malnourished) protein diets during the lactation phase and nutritionally recovered until 70 days of age were tested in the Morris water-maze in procedures of 1 trial/day (spaced trials), 4, 8, 12 trials/day (intermediate density) and 24 trials/day (condensed trials), completing 24 trials at the end of training. Seven and 28 days after the training the animals were tested again in just one trial to assess long-term memory. The results showed that protein malnutrition caused deficits on the spatial learning and memory in spaced but not in intermediate and condensed trials procedure. Seven and 28 days after the training there was an increase in the latency to find the platform but only malnourished animals submitted to 1 trial/day had significantly higher latency as compared with well-nourished controls. One of the possible hypotheses is that the effect protein malnutrition only in the procedure of spaced trials could be due to deficits in memory consolidation. It is suggested that these deficits can be the result of alterations produced by protein malnutrition in the hippocampal formation or in long-lasting emotional and/or motivational aspects of the rat's behavior.
Collapse
Affiliation(s)
- Camila Tavares Valadares
- Laboratory of Nutrition and Behavior, FFCLRP, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP 14040-901, Brazil
| | | |
Collapse
|
18
|
Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci 2013; 36:621-31. [PMID: 23998452 DOI: 10.1016/j.tins.2013.08.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/22/2022]
Abstract
Early-life stress lastingly affects adult cognition and increases vulnerability to psychopathology, but the underlying mechanisms remain elusive. In this Opinion article, we propose that early nutritional input together with stress hormones and sensory stimuli from the mother during the perinatal period act synergistically to program the adult brain, possibly via epigenetic mechanisms. We hypothesize that stress during gestation or lactation affects the intake of macro- and micronutrients, including dietary methyl donors, and/or impairs the dam's metabolism, thereby altering nutrient composition and intake by the offspring. In turn, this may persistently modulate gene expression via epigenetic programming, thus altering hippocampal structure and cognition. Understanding how the combination of stress, nutrition, and epigenetics shapes the adult brain is essential for effective therapies.
Collapse
|
19
|
Valadares C, Fukuda M, Françolin-Silva A, Hernandes A, Almeida S. Effects of postnatal protein malnutrition on learning and memory procedures. Nutr Neurosci 2013; 13:274-82. [DOI: 10.1179/147683010x12611460764769] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Lopes A, Torres DB, Rodrigues AJ, Cerqueira JJ, Pêgo JM, Sousa N, Gontijo JAR, Boer PA. Gestational protein restriction induces CA3 dendritic atrophy in dorsal hippocampal neurons but does not alter learning and memory performance in adult offspring. Int J Dev Neurosci 2012; 31:151-6. [PMID: 23280060 DOI: 10.1016/j.ijdevneu.2012.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 11/29/2022] Open
Abstract
Studies have demonstrated that nutrient deficiency during pregnancy or in early postnatal life results in structural abnormalities in the offspring hippocampus and in cognitive impairment. In an attempt to analyze whether gestational protein restriction might induce learning and memory impairments associated with structural changes in the hippocampus, we carried out a detailed morphometric analysis of the hippocampus of male adult rats together with the behavioral characterization of these animals in the Morris water maze (MWM). Our results demonstrate that gestational protein restriction leads to a decrease in total basal dendritic length and in the number of intersections of CA3 pyramidal neurons whereas the cytoarchitecture of CA1 and dentate gyrus remained unchanged. Despite presenting significant structural rearrangements, we did not observe impairments in the MWM test. Considering the clear dissociation between the behavioral profile and the hippocampus neuronal changes, the functional significance of dendritic remodeling in fetal processing remains undisclosed.
Collapse
Affiliation(s)
- A Lopes
- Fetal Programming Laboratory, Department of Morphology of Biosciences Institute, São Paulo State University, Botucatu, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Alamy M, Bengelloun WA. Malnutrition and brain development: an analysis of the effects of inadequate diet during different stages of life in rat. Neurosci Biobehav Rev 2012; 36:1463-80. [PMID: 22487135 DOI: 10.1016/j.neubiorev.2012.03.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/19/2012] [Accepted: 03/25/2012] [Indexed: 12/22/2022]
Abstract
Protein malnutrition or undernutrition can result in abnormal development of the brain. Depending on type, age at onset and duration, different structural and functional deficits can be observed. In the present review, we discuss the neuroanatomical, behavioral, neurochemical and oxidative status changes associated with protein malnutrition or undernutrition at different ages during prenatal and immediately postnatal periods as well as in adult rat. Analysis of all data suggests that protein malnutrition as well as undernutrition induced impaired learning and retention when imposed during the immediately postnatal period and in adulthood, whereas hyperactivity including increased impulsiveness and greater reactivity to aversive stimuli occurred when malnutrition or undernutrition was imposed either pre or postnatally. This general state of hyperreactivity may be linked essentially to an alteration in dopaminergic system. Hence, the present review shows that in spite of the attention devoted in the literature to prenatal effects, cognitive deficits are more serious following malnutrition or undernutrition after birth. We thus clearly establish a special vulnerability to malnutrition after weaning in rats.
Collapse
Affiliation(s)
- Meryem Alamy
- Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco
| | | |
Collapse
|
22
|
Lister JP, Blatt GJ, Kemper TL, Tonkiss J, DeBassio WA, Galler JR, Rosene DL. Prenatal protein malnutrition alters the proportion but not numbers of parvalbumin-immunoreactive interneurons in the hippocampus of the adult Sprague-Dawley rat. Nutr Neurosci 2012; 14:165-78. [PMID: 21902887 DOI: 10.1179/147683011x13009738172396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Prenatal protein malnutrition alters the structure and function of the adult rat hippocampal formation. The current study examines the effect of prenatal protein malnutrition on numbers of parvalbumin-immunoreactive (PV-IR) GABAergic interneurons, which are important for perisomatic inhibition of hippocampal pyramidal neurons. Brain sections from prenatally protein malnourished and normally nourished rats were stained for parvalbumin and PV-IR neurons were quantified using stereology in the dentate gyrus, CA3/2 and CA1 subfields, and the subiculum for both cerebral hemispheres. Results demonstrated that prenatal malnutrition did not affect the number of PV-IR interneurons in the hippocampus. Since prenatal protein malnutrition reduces total neuron numbers in the CA1 subfield (1), this results in an altered ratio of PV-IR interneurons to total neuronal numbers (from 1:22.9 in controls to 1:20.5 in malnourished rats). Additionally, there was no hemispheric asymmetry of either PV-IR neuron numbers or ratio of PV-IR:total neuron numbers.
Collapse
Affiliation(s)
- James P Lister
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Sanches EF, Arteni NS, Spindler C, Moysés F, Siqueira IR, Perry ML, Netto CA. Effects of pre- and postnatal protein malnutrition in hypoxic-ischemic rats. Brain Res 2011; 1438:85-92. [PMID: 22244305 DOI: 10.1016/j.brainres.2011.12.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 11/17/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HI) is a major cause of nervous system damage and neurological morbidity. Perinatal malnutrition affects morphological, biochemical and behavioral aspects of neural development, including pathophysiological cascades of cell death triggered by ischemic events, so modifying resulting brain damage. Female Wistar rats were subjected to protein restriction during pregnancy and lactation (control group: 25% soybean protein; malnourished group: 7%). Seven days after delivery (PND7), their offspring were submitted to unilateral cerebral HI; rats were then tested for sensorimotor (PND7 and PND60) and memory (PND60) functions. Offspring of malnourished mothers showed marked reduction in body weight starting in lactation and persisting during the entire period of observation. There was a greater sensorimotor deficit after HI in malnourished (M) animals, in righting reflex and in home bedding task, indicating an interaction between diet and hypoxia-ischemia. At PND60, HI rats showed impaired performance when compared to controls in training and test sessions of rota-rod task, however there was no effect of malnutrition per se. In the open field, nourished HI (HI-N) presented an increase in crossings number; this effect was not present in HI-M group. Surprisingly, HI-M rats presented a better performance in inhibitory avoidance task and a smaller hemispheric brain damage as compared to HI-N animals. Our data points to a possible metabolic adaptation in hypoxic-ischemic animals receiving protein malnutrition during pregnancy and lactation; apparently we observed a neuroprotective effect of diet, possibly decreasing the brain energy demand, under a hypoxic-ischemic situation.
Collapse
Affiliation(s)
- Eduardo Farias Sanches
- Programa de Pós-Graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Brazil.
| | | | | | | | | | | | | |
Collapse
|
24
|
Matos R, Orozco-Solís R, Lopes de Souza S, Manhães-de-Castro R, Bolaños-Jiménez F. Nutrient restriction during early life reduces cell proliferation in the hippocampus at adulthood but does not impair the neuronal differentiation process of the new generated cells. Neuroscience 2011; 196:16-24. [DOI: 10.1016/j.neuroscience.2011.08.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/16/2011] [Accepted: 08/31/2011] [Indexed: 01/26/2023]
|
25
|
Brown AS. The environment and susceptibility to schizophrenia. Prog Neurobiol 2011; 93:23-58. [PMID: 20955757 PMCID: PMC3521525 DOI: 10.1016/j.pneurobio.2010.09.003] [Citation(s) in RCA: 451] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/22/2010] [Accepted: 09/30/2010] [Indexed: 02/07/2023]
Abstract
In the present article the putative role of environmental factors in schizophrenia is reviewed and synthesized. Accumulating evidence from recent studies suggests that environmental exposures may play a more significant role in the etiopathogenesis of this disorder than previously thought. This expanding knowledge base is largely a consequence of refinements in the methodology of epidemiologic studies, including birth cohort investigations, and in preclinical research that has been inspired by the evolving literature on animal models of environmental exposures. This paper is divided into four sections. In the first, the descriptive epidemiology of schizophrenia is reviewed. This includes general studies on incidence, prevalence, and differences in these measures by urban-rural, neighborhood, migrant, and season of birth status, as well as time trends. In the second section, we discuss the contribution of environmental risk factors acting during fetal and perinatal life; these include infections [e.g. rubella, influenza, Toxoplasma gondii (T. gondii), herpes simplex virus type 2 (HSV-2)], nutritional deficiencies (e.g., famine, folic acid, iron, vitamin D), paternal age, fetal/neonatal hypoxic and other obstetric insults and complications, maternal stress and other exposures [e.g. lead, rhesus (Rh) incompatibility, maternal stress]. Other putative neurodevelopmental determinants, including cannabis, socioeconomic status, trauma, and infections during childhood and adolescence are also covered. In the third section, these findings are synthesized and their implications for prevention and uncovering biological mechanisms, including oxidative stress, apoptosis, and inflammation, are discussed. Animal models, including maternal immune activation, have yielded evidence suggesting that these exposures cause brain and behavioral phenotypes that are analogous to findings observed in patients with schizophrenia. In the final section, future studies including new, larger, and more rigorous epidemiologic investigations, and research on translational and clinical neuroscience, gene-environment interactions, epigenetics, developmental trajectories and windows of vulnerability, are elaborated upon. These studies are aimed at confirming observed risk factors, identifying new environmental exposures, elucidating developmental mechanisms, and shedding further light on genes and exposures that may not be identified in the absence of these integrated approaches. The study of environmental factors in schizophrenia may have important implications for the identification of causes and prevention of this disorder, and offers the potential to complement, and refine, existing efforts on explanatory neurodevelopmental models.
Collapse
Affiliation(s)
- Alan S Brown
- Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
26
|
Increase of mushroom spine density in CA1 apical dendrites produced by water maze training is prevented by ovariectomy. Brain Res 2010; 1369:119-30. [PMID: 21070752 DOI: 10.1016/j.brainres.2010.10.105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 01/20/2023]
Abstract
Dendritic spine density increases after spatial learning in hippocampal CA1 pyramidal neurons. Gonadal activity also regulates spine density, and abnormally low levels of circulating estrogens are associated with deficits in hippocampus-dependent tasks. To determine if gonadal activity influences behaviorally induced structural changes in CA1, we performed a morphometric analysis on rapid Golgi-stained tissue from ovariectomized (Ovx) and sham-operated (Sham) female rats 7 days after they were given a single water maze (WM) training session (hidden platform procedure) or a swimming session in the tank containing no platform (SC). We evaluated the density of different dendritic spine types (stubby, thin, and mushroom) in three segments (distal, medial, and proximal) of the principal apical dendrite from hippocampal CA1 pyramidal neurons. Performance in the WM task was impaired in Ovx animals compared to Sham controls. Total spine density increased after WM in Sham animals in the proximal and distal CA1 apical dendrite segments but not in the medial. Interestingly, mushroom spine density consistently increased in all CA1 segments after WM. As compared to the Sham group, SC-Ovx rats showed spine pruning in all the segments, but mushroom spine density did not change significantly. In Ovx rats, WM training increased the density of stubby and thin, but not mushroom spines. Thus, ovariectomy alone produces spine pruning, while spatial learning increases spine density in spite of ovariectomy. Finally, the results suggest that mushroom spine production in CA1 after spatial learning requires gonadal activity, whereas this activity is not required for mushroom spine maintenance.
Collapse
|
27
|
Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 2010; 90:285-326. [DOI: 10.1016/j.pneurobio.2009.10.018] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/30/2009] [Accepted: 10/14/2009] [Indexed: 12/17/2022]
|
28
|
Palmer AA, Brown AS, Keegan D, Siska LD, Susser E, Rotrosen J, Butler PD. Prenatal protein deprivation alters dopamine-mediated behaviors and dopaminergic and glutamatergic receptor binding. Brain Res 2008; 1237:62-74. [PMID: 18703024 DOI: 10.1016/j.brainres.2008.07.089] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/23/2008] [Accepted: 07/24/2008] [Indexed: 01/30/2023]
Abstract
Epidemiological evidence indicates that prenatal nutritional deprivation may increase the risk of schizophrenia. The goal of these studies was to use an animal model to examine the effects of prenatal protein deprivation on behaviors and receptor binding with relevance to schizophrenia. We report that prenatally protein deprived (PD) female rats showed an increased stereotypic response to apomorphine and an increased locomotor response to amphetamine in adulthood. These differences were not observed during puberty. No changes in haloperidol-induced catalepsy or MK-801-induced locomotion were seen following PD. In addition, PD female rats showed increased (3)H-MK-801 binding in the striatum and hippocampus, but not in the cortex. PD female rats also showed increased (3)H-haloperidol binding and decreased dopamine transporter binding in striatum. No statistically significant changes in behavior or receptor binding were found in PD males with the exception of increased (3)H-MK-801 binding in cortex. This animal model may be useful to explore the mechanisms by which prenatal nutritional deficiency enhances risk for schizophrenia in humans and may also have implications for developmental processes leading to differential sensitivity to drugs of abuse.
Collapse
Affiliation(s)
- Abraham A Palmer
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Fukuda MTH, Françolin-Silva AL, Hernandes AS, Valadares CT, Almeida SS. Effects of early protein malnutrition and scopolamine on learning and memory in the Morris water maze. Nutr Neurosci 2008; 10:251-9. [PMID: 18284033 DOI: 10.1080/10284150701723818] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The present study investigated the effects of early protein malnutrition on the spatial learning and memory processes. The consequences of malnutrition for the cholinergic system were evaluated by comparing the performance of malnourished and control animals in the Morris water maze after treatment with scopolamine. The learning test consisted of placing the animal in the maze to escape to a submerged platform with 12 trials per day for two consecutive days. After 24 trials, the platform was removed, the rats were placed in the maze and the time spent by them in each quadrant was recorded. After 28 days the animals were tested in a single trial to verify the retention of the spatial information. In the first Experiment, scopolamine (0.0, 0.2, 0.4 and 0.6 mg/kg per ml. i.p.) was administered 20 min before the experimental sessions. In the second experiment, a dose of 0.6 mg/kg was administered after the sessions, during the period in which learning consolidation occurs. In the first experiment, there was a significant effect of the drug, with scopolamine impairing, learning in both nutritional conditions. In the saline condition, control animals presented a better performance when compared with malnourished animals. However, 28 days later, both groups increased their latencies. With 0.2 and 0.4 mg/kg of scopolamine, the performance of both nutritional groups was similar and with 0.6 mg/kg malnourished animals performed better than controls. In the second experiment, malnourished animals were also less reactive to the effects of scopolamine, resulting in lower impairments as compared to control animals. These data suggest long-term changes in learning and memory as the result of changes produced by protein malnutrition in the cholinergic neurotransmitter system.
Collapse
Affiliation(s)
- M T H Fukuda
- Laboratory of Nutrition and Behavior, FFCLRP, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP 14040-901, Brazil
| | | | | | | | | |
Collapse
|
30
|
Díaz-Cintra S, González-Maciel A, Morales MA, Aguilar A, Cintra L, Prado-Alcalá RA. Protein malnutrition differentially alters the number of glutamic acid decarboxylase-67 interneurons in dentate gyrus and CA1–3 subfields of the dorsal hippocampus. Exp Neurol 2007; 208:47-53. [PMID: 17706195 DOI: 10.1016/j.expneurol.2007.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 06/28/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
In 30- and 90-day-old rats, using immunohistochemistry for glutamic acid decarboxylase 67 (GAD-67), we have tested whether malnutrition during different periods of hippocampal development produces deleterious effects on the population of GABA neurons in the dentate gyrus (DG) and cornu Ammonis (CA1-3) of the dorsal hippocampus. Animals were under one of four nutritional conditions: well-nourished controls (Con), prenatal protein malnourished (PreM), postnatal protein malnourished (PostM), and chronic protein malnourished (ChroM). We found that the number of GAD-67-positive (GAD-67+) interneurons was higher in the DG than in the CA1-3 areas of both Con and malnourished groups. Regarding the DG, the number of GAD-67+ interneurons was increased in PreM and PostM and decreased in ChroM at 30 days. At 90 days of age the number of GAD-67+ interneurons was increased in PostM and ChroM and remained unchanged in PreM. With respect to CA1-3, the number of labeled interneurons was decreased in PostM and ChroM at 30 days of age, but no change was found in PreM. At 90 days no changes in the number of these interneurons were found in any of the groups. These observations suggest that 1) the cell death program starting point is delayed in DG GAD-67+ interneurons, and 2) protein malnutrition differentially affects GAD-67+ interneuron development throughout the dorsal hippocampus. Thus, these changes in the number of GAD-67+ interneurons may partly explain the alterations in modulation of dentate granule cell excitability, as well as in the emotional, motivational, and memory disturbances commonly observed in malnourished rats.
Collapse
Affiliation(s)
- Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | | | | | | | | | | |
Collapse
|
31
|
Lister JP, Tonkiss J, Blatt GJ, Kemper TL, DeBassio WA, Galler JR, Rosene DL. Asymmetry of neuron numbers in the hippocampal formation of prenatally malnourished and normally nourished rats: a stereological investigation. Hippocampus 2007; 16:946-58. [PMID: 16983649 DOI: 10.1002/hipo.20221] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is considerable evidence for lateralization of hippocampal function and hemispheric asymmetry in humans. In the rat, studies have reported asymmetries in the thicknesses of layers, the volumes of hippocampal subfields, and the density of cells at specific points along the septotemporal axis. To determine if there is an asymmetry of neuron numbers and whether prenatal malnutrition affects any asymmetries, 90-day old male Sprague-Dawley rats that were either normally nourished or malnourished prenatally were perfused with 4% paraformaldehyde and the brains cut into 30-micro m sections. One interrupted series of sections through the entire hippocampus was analyzed stereologically to estimate the total number of neurons in the hilus of the dentate gyrus, the CA3/CA2 stratum pyramidale (SP), the CA1 SP, and the SP of the prosubiculum/subiculum of both hemispheres. Significant asymmetries (P < 0.05) were found in the CA1 and CA3/CA2 subfields, with the right hemisphere containing 21 and 6% fewer neurons, respectively. Malnutrition reduced neuron numbers in the CA1 subfield by 12%, but did not alter the hemispheric asymmetry. Our findings agree with previous reports of left dominant asymmetries in the rat brain and suggest that this may result from differences in total numbers of neurons.
Collapse
Affiliation(s)
- James P Lister
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Durán P, Galler JR, Cintra L, Tonkiss J. Prenatal malnutrition and sleep states in adult rats: effects of restraint stress. Physiol Behav 2006; 89:156-63. [PMID: 16828813 DOI: 10.1016/j.physbeh.2006.05.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/23/2006] [Accepted: 05/30/2006] [Indexed: 11/26/2022]
Abstract
Independently, prenatal malnutrition and psychological/physical stress have been shown to affect sleep architecture in adult rats. As malnutrition and stress commonly co-exist in malnourished human populations, the objective of the present study was to ascertain the combined effects of these two insults by examining sleep-wake parameters following a brief restraint stress in prenatally protein malnourished rats. The male offspring of rats provided with a protein deficient diet (6% casein) for 5 weeks prior to mating and throughout pregnancy were implanted with recording electrodes beginning at postnatal day 90. Polygraph recordings were obtained to quantify sleep states during the first 4 h of the dark phase of the cycle on 2 consecutive days. The first followed a 24-h habituation session to the recording chamber (baseline). The second occurred at the same time of day but followed 20 min of restraint stress in a Plexiglas tube. During baseline, prenatally malnourished rats spent more time in rapid eye movement sleep (REMS) in the first 2 h after "lights off" (block 1), and greater amounts of wakefulness (W) with a corresponding reduction in slow wave sleep (SWS) in the second two hours (block 2), as compared with controls. Following stress, the sleep architecture of both groups of rats remained unaltered in block 1 relative to their baseline day. In block 2, both groups exhibited significant reductions in SWS and REMS with significantly greater reductions being expressed in the prenatally malnourished group (most dramatically, REMS was completely eliminated). These findings suggest that sleep disturbances may be more severe in those malnourished human populations subjected to acutely stressful experiences.
Collapse
Affiliation(s)
- Pilar Durán
- Instituto de Neurobiología, UNAM, Campus UNAM, Juriquilla Qro., Km 15 Carr Qro-SLP, CP 76230, Mexico
| | | | | | | |
Collapse
|
33
|
Lister JP, Blatt GJ, DeBassio WA, Kemper TL, Tonkiss J, Galler JR, Rosene DL. Effect of prenatal protein malnutrition on numbers of neurons in the principal cell layers of the adult rat hippocampal formation. Hippocampus 2005; 15:393-403. [PMID: 15669101 DOI: 10.1002/hipo.20065] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Malnutrition has been associated with a variety of functional and anatomical impairments of the hippocampal formation. One of the more striking of these is widespread loss of hippocampal neurons in postnatally malnourished rats. In the present study we have investigated the effect of prenatal malnutrition on these same neuronal populations, neurons that are all generated during the period of the dietary restriction. In prenatally protein deprived rats, using design-based stereology, we have measured the regional volume and number of neurons in the hilus of the dentate gyrus and the pyramidal cell layers of CA3, CA2, CA1, and the subiculum of 90-day-old animals. These results demonstrated a statistically significant reduction of 20% in neuron numbers in the CA1 subfield, while numbers in the other subfields were unchanged. There was a corresponding significant reduction of 22% in the volume of the CA1 subfield and a significant 14% decrease in the volume of the pyramidal layer of the subiculum. The change in volume of the pyramidal layer of the subiculum without neuron loss may reflect loss of CA1 afferent input to the pyramidal layer. Although the effect of nutritional deprivation on the neuronal population appears to be different in pre- and postnatal malnutrition, both dietary paradigms highlight the vulnerability of key components of the hippocampal trisynaptic circuit (consisting of the dentate granule cell mossy fibers projection to CA3 pyramids and the CA3 projection to the CA1 pyramids), which is an essential circuit for memory and learning.
Collapse
Affiliation(s)
- James P Lister
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Gomez-Pinilla F, Vaynman S. A “deficient environment” in prenatal life may compromise systems important for cognitive function by affecting BDNF in the hippocampus. Exp Neurol 2005; 192:235-43. [PMID: 15755541 DOI: 10.1016/j.expneurol.2004.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 11/09/2004] [Accepted: 12/01/2004] [Indexed: 10/25/2022]
Abstract
The intrauterine environment has the capacity to mold the prenatal nervous system. Particularly, recent findings show that an adverse prenatal environment produces structural defects of the hippocampus, a critical area sub-serving learning and memory functions. These structural changes are accompanied by a disruption in the normal expression pattern of brain-derived neurotrophic factor (BDNF) and its cognate tyrosine kinase B (TrkB) receptor. The important role that the BDNF system plays in neural modeling and learning and memory processes suggests that fetal exposure to unfavorable intrauterine conditions may compromise proper cognitive function in adult life. These findings have implications for disorders that involve a dysfunction in the BDNF system and are accompanied by cognitive deficits.
Collapse
Affiliation(s)
- F Gomez-Pinilla
- Division of Neurosurgery, Department of Physiology Science, UCLA, 621 Charles E. Young Dr, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
35
|
Granados-Rojas L, Aguilar A, Díaz-Cintra S. The mossy fiber system of the hippocampal formation is decreased by chronic and postnatal but not by prenatal protein malnutrition in rats. Nutr Neurosci 2005; 7:301-8. [PMID: 15682926 DOI: 10.1080/10284150400017306] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We tested in 70-day-old Sprague-Dawley rats, whether malnutrition imposed during different periods of hippocampal development produced deleterious effects on the total reference volume of the mossy fiber system. Animals were treated under four nutritional conditions: (a) well nourished; (b) prenatal protein malnourished; (c) chronic protein malnourished and (d) postnatal protein malnourished. Timm's stained material was used in coronal hippocampal sections (40 microm) to estimate--using the Principle of Cavalieri--the total reference volume of the mossy fiber system in each experimental group. Our results show that chronic and postnatal protein malnourished, but not prenatal malnourished rats, decrease the mossy fiber system and the total reference volume of the mossy fiber system are selectively vulnerable to the type of dietary restriction. Thus, chronic and posnatal protein malnutrition produce deleterious effects, but only rats under prenatal protein malnutrition were able to reorganize synapses in this plexus. These findings raise the possibility that chronic malnutrition, as a long-term stressful factor, might be an important paradigm to test structural hippocampal changes that produce physiological and pathophysiological effects, or the possibility to recover its function for nutritional rehabilitation.
Collapse
Affiliation(s)
- Leticia Granados-Rojas
- Departamento de Neurobiología del Desarrollo y Neurofisiologia, Instituto de Neurobiologia, Universidad Nacional Autónoma de México, Campus UNAM-UAQ Juriquilla, Querétaro, Qro 76001, Mexico
| | | | | |
Collapse
|
36
|
Schweigert ID, de Oliveira DL, Scheibel F, da Costa F, Wofchuk ST, Souza DO, Perry MLS. Gestational and postnatal malnutrition affects sensitivity of young rats to picrotoxin and quinolinic acid and uptake of GABA by cortical and hippocampal slices. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 154:177-85. [PMID: 15707671 DOI: 10.1016/j.devbrainres.2004.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 10/21/2004] [Accepted: 10/24/2004] [Indexed: 11/16/2022]
Abstract
It is widely known that a complex interaction between excitatory and inhibitory systems is required to support the adequate functioning of the brain and that significant alterations induced by early protein restriction are complex, involving many systems. Based on such assumptions, we investigated the effects of maternal protein restriction during pregnancy and lactation followed by offspring protein restriction on some GABAergic and glutamatergic parameters, which mediate inhibitory and excitatory transmission, respectively. The sensitivity of young malnourished rats to convulsant actions of the GABA(A) receptor antagonist picrotoxin (PCT; s.c.) and to N-methyl-d-aspartate (NMDA) receptor agonist quinolinic acid (QA; i.c.v) and also gamma-amino-n-butyric acid (GABA) and glutamate uptake by cortical and hippocampal slices were evaluated in P25 old rats. Early protein malnutrition induced higher sensitivity to picrotoxin, which could be associated with the observed higher GABA uptake by cortical, and hippocampal slices in malnourished rats. In contrast, we observed lower sensitivity to quinolinic acid in spite of unaltered glutamate uptake by the same cerebral structures. Picrotoxin enhanced GABA uptake in hippocampus in well- and malnourished rats; however, it did not affect cortical GABA uptake. Our data corroborate our previous report, showing that malnutrition depresses the glutamatergic activity, and point to altered modulation of GABAergic neurotransmission. Such findings allow us to speculate that malnutrition may affect the excitatory and inhibitory interaction.
Collapse
Affiliation(s)
- Ingrid D Schweigert
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600 anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Vilela MCR, Mendonça JEF, Bittencourt H, Lapa RM, Alessio MLM, Costa MSMO, Guedes RCA, Silva VL, Andrade da Costa BLS. Differential vulnerability of the rat retina, suprachiasmatic nucleus and intergeniculate leaflet to malnutrition induced during brain development. Brain Res Bull 2005; 64:395-408. [PMID: 15607827 DOI: 10.1016/j.brainresbull.2004.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 04/05/2004] [Accepted: 09/06/2004] [Indexed: 11/26/2022]
Abstract
We investigated in young rats the effects of malnutrition on the main structures of the circadian timing system: retina, hypothalamic suprachiasmatic nuclei (SCN), thalamic intergeniculate leaflet, retinohypothalamic- and geniculohypothalamic tracts. Control rats were born from mothers fed a commercial diet since gestation, and malnourished rats from mothers fed a multideficient diet since gestation (GLA group) or lactation (LA group). After weaning, pups received the same diet as their mothers, and were analysed at postnatal days 27, 30-33 and 60-63. Brain sections were processed to visualise in the SCN neuropeptide Y immunoreactivity and terminal labeling after intraocular tracer injections. Nissl staining was used to assess cytoarchitectonic boundaries of the SCN and cell features in retinal whole mounts. Cell counts, morphometric and densitometric analysis were performed. Compared with controls, the total retinal surface was reduced and the topographical distribution of retinal ganglion cells was altered in malnourished rats, with changes in their density. Alterations were also detected in the SCN dimensions in the GLA and LA groups at one and two postnatal months, as well as in the SCN portion occupied by the retinal input in the GLA group at days 30-33, but not in the NPY-containing geniculohypothalamic tract. The present data point to subtle changes, with a low and differential vulnerability to early malnutrition, of structures involved in circadian timing regulation. Furthermore, the present findings suggest that the altered circadian rhythmicity previously documented in malnourished rats cannot be ascribed to impaired development of the retino- and geniculohypothalamic projections to the SCN.
Collapse
Affiliation(s)
- M C R Vilela
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Cidade Universitária 50670901 Recife, PE, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
King RS, DeBassio WA, Kemper TL, Rosene DL, Tonkiss J, Galler JR, Blatt GJ. Effects of prenatal protein malnutrition and acute postnatal stress on granule cell genesis in the fascia dentata of neonatal and juvenile rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 150:9-15. [PMID: 15126033 DOI: 10.1016/j.devbrainres.2004.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/08/2004] [Indexed: 11/20/2022]
Abstract
Although postnatal genesis of granule cells in the hippocampal fascia dentata is known to be influenced by prenatal protein deprivation or by stress, the combined effects of prenatal protein malnutrition and stress on these cells are unknown. This study was designed to examine this combined effect. Well-nourished and prenatally malnourished pups on postnatal day 7 (P7) were stressed by maternal separation and reduction of body temperature and on postnatal day 30 (P30) by immobilization with restraint. Bromodeoxyuridine (BrDU) was injected at the time of stress, and 2 h later, the numbers of immunolabeled cells were quantified by standard stereological techniques. In comparison to controls, prenatally malnourished rats showed a significantly lower number of cells tagged in the fascia dentata on P7 (p < or =0.05), and a significantly higher number of cells (p < or =0.05) on P30. In both age groups, control rats exposed to acute stress showed a significantly decreased number of cells tagged in the fascia dentata (p < or =0.05). In contrast, neurogenesis in malnourished rats was not significantly affected by acute stress at either age. Thus, the pattern of neurogenesis in the fascia dentata and its response to stress has been fundamentally altered by prenatal protein deprivation.
Collapse
Affiliation(s)
- Raymond S King
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 80 East Concord Street, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Palmer AA, Printz DJ, Butler PD, Dulawa SC, Printz MP. Prenatal protein deprivation in rats induces changes in prepulse inhibition and NMDA receptor binding. Brain Res 2004; 996:193-201. [PMID: 14697497 DOI: 10.1016/j.brainres.2003.09.077] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Epidemiological studies suggest that prenatal malnutrition increases the risk of developing schizophrenia. Animal models indicate that prenatal protein deprivation (PPD) affects many aspects of adult brain function. We tested the hypothesis that PPD in rats would alter prepulse inhibition (PPI), which is an operational measure of sensorimotor gating that is deficient in schizophrenia patients. Additionally, we examined dopaminergic and glutaminergic receptor binding in the striatum and hippocampus, which have been suggested to play a role in the etiology of schizophrenia. Rat dams were fed normal (25%) or low (6%) protein diets beginning 5 weeks prior to, and throughout pregnancy. The pups were tested at postnatal days (PND) 35 and 56 for PPI. Striatal and hippocampal NMDA receptor, and striatal dopamine receptor binding were quantified post-mortem in a subset of these rats. Female rats exposed to PPD had reduced levels of PPI at PND 56, but not PND 35, suggesting the emergence of a sensorimotor gating deficit in early adulthood. Striatal NMDA receptor binding was increased in PPD females. A decrease in initial startle response (SR) was also observed in all PPD rats relative to control rats. These results suggest that PPD causes age- and sex-dependent decreases in PPI and increases in NMDA receptor binding. This animal model may be useful for the investigation of neurodevelopmental changes that are associated with schizophrenia in humans.
Collapse
Affiliation(s)
- Abraham A Palmer
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
40
|
Steiger JL, Alexander MJ, Galler JR, Farb DH, Russek SJ. Effects of prenatal malnutrition on GABAA receptor α1, α3 and β2 mRNA levels. Neuroreport 2003; 14:1731-5. [PMID: 14512847 DOI: 10.1097/00001756-200309150-00015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Exposure of pregnant rats to protein malnutrition throughout pregnancy alters the developing hippocampus, leading to increased inhibition and selective changes in hippocampal-mediated behaviors. Given that GABA mediates most inhibitory neurotransmission, we asked whether selective changes in the levels of GABA receptor subunit mRNAs might result. Quantitative RNase protection profiling of 12 GABAA and GABAB receptor subunit mRNAs show that alpha1 and beta2 decrease in the adult (P90) hippocampal formation of prenatally malnourished rats, while the levels of alpha3 are increased. Moreover, the distribution of alpha1, alpha3 and beta2 mRNAs remains unchanged in CA1 and CA3 hippocampal subfields relative to dentate gyrus. The data suggest that prenatal malnutrition produces global changes of certain GABAA, but not GABAB, receptor mRNAs in the hippocampal formation.
Collapse
Affiliation(s)
- Janine L Steiger
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
41
|
Dieni S, Rees S. Dendritic morphology is altered in hippocampal neurons following prenatal compromise. JOURNAL OF NEUROBIOLOGY 2003; 55:41-52. [PMID: 12605458 DOI: 10.1002/neu.10194] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chronic placental insufficiency (CPI), a known cause of intrauterine growth restriction, can lead to structural alterations in the developing brain that might underlie postnatal neurological deficits. We have previously demonstrated significant reductions in the volumes of hippocampal neuropil layers in fetal guinea pig brains following experimentally induced growth restriction. To determine the components of the neuropil affected in the brains of growth restricted (GR) fetuses, the dendritic morphology of CA1 pyramidal neurons and dentate granule cells was examined. CPI was induced by unilateral uterine artery ligation in pregnant guinea pigs at midgestation (term approximately 67 days). Hippocampi from control and GR fetuses were stained using the Rapid Golgi technique and the growth and branching of the dendritic arbors were quantified using the Sholl method. In addition, the density of dendritic spines was determined on the apical arbors of each population. In GR brains (n = 7) compared to controls (n = 7), there was a reduction in dendritic elongation (p < 0.005) and an alteration in the branch point distribution in CA1 basal arbors, and a reduction both in the outgrowth (p < 0.05) and branch point number (p < 0.05) of CA1 apical arbors. Dentate granule cells from GR brains also demonstrated reduced dendritic outgrowth (p < 0.05). There was an increase in dendritic spine density in both neuronal populations; this might be due either to altered synaptic pruning or as a compensatory mechanism for reduced dendritic length. These findings demonstrate that a chronic prenatal insult causes selective changes in the morphology of hippocampal cell dendrites and may lead to alterations in hippocampal function in the postnatal period.
Collapse
Affiliation(s)
- Sandra Dieni
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, 3010, Victoria, Australia.
| | | |
Collapse
|
42
|
Fiacco TA, Rosene DL, Galler JR, Blatt GJ. Increased density of hippocampal kainate receptors but normal density of NMDA and AMPA receptors in a rat model of prenatal protein malnutrition. J Comp Neurol 2003; 456:350-60. [PMID: 12532407 DOI: 10.1002/cne.10531] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The postnatal development of excitatory amino acid receptor types including kainate, N-methyl-D-aspartate (NMDA), and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) was assessed in the hippocampus, entorhinal cortex, and adjacent neocortex in normal and prenatally protein malnourished rats ages 15, 30, 90, and 220 postnatal days by quantitative autoradiography. Tritiated ligands used to measure binding site density were (3)[H]kainate, (3)[H]MK-801, and (3)[H]AMPA, respectively. Kainate receptors showed statistically significant increases in binding density in stratum lucidum of CA3 (hippocampal mossy fiber zone) in 90- and 220-day-old malnourished rats compared with age- and sex-matched controls but not in 15- or 30-day-old malnourished rats. Compared with previous anatomic studies, these results are mostly in agreement with a significantly decreased hippocampal mossy fiber plexus in 15-, 90-, and 220-day-old rats but not in 30-day-old rats. These results suggested that the increased density of postsynaptic kainate receptors located mainly on proximal apical dendrites of CA3 pyramidal cells may be compensatory to decreased glutamate release due to the reduction in mossy fiber plexus. In contrast, the density of putative NMDA and AMPA receptors quantified in prenatally malnourished rats was comparable to the density quantified in age- and sex-matched control rats, as were all three receptor types in entorhinal cortex and adjacent neocortex. Thus, the selectivity of the compensation of (3)[H]kainate-labeled mossy fiber plexus in adult but not in early postnatal developing malnourished rats may help ensure continued breeding and survival of the species under otherwise adverse environmental conditions.
Collapse
Affiliation(s)
- Todd A Fiacco
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
43
|
King RS, Kemper TL, DeBassio WA, Ramzan M, Blatt GJ, Rosene DL, Galler JR. Birthdates and number of neurons in the serotonergic raphe nuclei in the rat with prenatal protein malnutrition. Nutr Neurosci 2002; 5:391-7. [PMID: 12509068 DOI: 10.1080/1028415021000055934] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of prenatal protein deprivation on timing of neurogenesis and on number of neurons generated in the serotonergic dorsal (DR) and median raphe (MR) nuclei of the rat was studied. These neurons are of interest because their neurogenesis occurs during the period of malnutrition and their axonal projections participate in the earliest stages of brain development. In this study, dams were maintained on a 25% casein diet or a 6% casein diet 5 weeks prior to mating and throughout pregnancy. At birth, all pups were cross-fostered to dams on a 25% casein diet. Bromodeoxyuridine, a thymidine analog that is incorporated into nuclear deoxyribonucleic acid during the cell cycle synthetic phase, was used as a marker of neurogenesis. Bromodeoxyuridine was administered on either embryonic day 11, 12, 13 or 14. On postnatal day 30, serial sections of raphe nuclei were processed with bromodeoxyuridine immunocytochemistry to determine the number of raphe cells generated on each day and with Nissl stain to determine the total number of cells generated. There were no significant differences between the two diet groups in timing of generation or in total number of cells generated, indicating that neurogenesis of these early generated neurons appears unaffected by concomitant protein deprivation.
Collapse
Affiliation(s)
- R S King
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 80 E, Concord Street, Boston, MA 02118, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Granados-Rojas L, Larriva-Sahd J, Cintra L, Gutiérrez-Ospina G, Rondán A, Díaz-Cintra S. Prenatal protein malnutrition decreases mossy fibers-CA3 thorny excrescences asymmetrical synapses in adult rats. Brain Res 2002; 933:164-71. [PMID: 11931861 DOI: 10.1016/s0006-8993(02)02314-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Prenatal protein malnutrition has deleterious effects on hippocampal structure and function that likely result from decreased synapse number. We thus evaluated long-term effects of prenatal protein malnutrition on the mossy fibers-CA3 thorny excrescences asymmetrical synapses in 220-day-old rats. Protein malnourished rats born from pregnant dams fed with 6% casein diet were cross-fostered to lactating control rats at birth. Control animals were fed with a 25% casein diet. Timm's stained material was used to estimate the total reference volume of the mossy fiber system suprapyramidal bundle by means of stereology. The mossy fiber-CA3 asymmetrical synapse numerical density was obtained by electron microscopy, using the physical disector method. The total number of mossy fiber-CA3 asymmetrical synapses was determined on the basis of the total reference volume of the mossy fiber system suprapyramidal bundle and the mossy fiber-CA3 asymmetrical synapse numerical density. Prenatal protein malnutrition produced long-lasting, significant decreases in the volume of the mossy fiber system suprapyramidal bundle and in the numerical density of mossy fiber-CA3 asymmetrical synapse, suggesting a reduction in the total number of this synapse type. Hence, prenatal protein malnutrition induces long lasting deleterious effects on the progression of developmental programs controlling synaptogenesis and/or synaptic consolidation, likely by affecting a myriad of cellular processes.
Collapse
Affiliation(s)
- Leticia Granados-Rojas
- División de Medicina Experimental, Instituto Nacional de Pediatría S.S., México, D.F. 04530, Mexico.
| | | | | | | | | | | |
Collapse
|
45
|
Infant Stress, Neuroplasticity, and Behavior. Dev Psychobiol 2001. [DOI: 10.1007/978-1-4615-1209-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Borba JM, Araújo MS, Picanço-Diniz CW, Manhães-de-Castro R, Guedes RC. Permanent and transitory morphometric changes of NADPH-diaphorase-containing neurons in the rat visual cortex after early malnutrition. Brain Res Bull 2000; 53:193-201. [PMID: 11044596 DOI: 10.1016/s0361-9230(00)00334-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the histochemical positivity to NADPH-diaphorase, which reveals nitric oxide synthase activity, in area 17 of rats malnourished early in life, both in the post-weaning period (group M1), and in adulthood after nutritional recovering (group M2). Control pups (C1 and C2 groups) received ad libitum after weaning the same diets as their mothers. Rats of group M2 were nutritionally recovered by receiving the control diet from post-natal day 42 until adulthood. Aldehyde-fixed sections (200-microm thick) through area 17 were processed for NADPH-diaphorase histochemistry following the malic enzyme indirect method. The features of NADPH-diaphorase-containing neurons of area 17 of malnourished young (M1) and adult (M2) rats were analyzed quantitatively in comparison to the matched groups C1 and C2. Permanent changes, represented by increase in the density and dendritic field areas of NADPH-diaphorase-positive cells, and transitory ones, represented by decreased values of soma areas, were observed in area 17 of the M1 and M2 cases. However, some other features, such as dendritic branch angle and number of dendrites per cell in the gray matter, remained unchanged after malnutrition. Thus, the findings indicate a possible relationship between early malnutrition and alterations in nitric oxide synthase-containing cells in the visual cortex. Physiological implications of these data may be related to synaptic plasticity and refinement of developmental brain circuits.
Collapse
Affiliation(s)
- J M Borba
- Laboratório de Fisiologia da Nutrição Naide Teodósio, Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
47
|
Luebke J, St John J, Galler JR. Prenatal protein malnutrition results in increased frequency of miniature inhibitory synaptic currents in rat CA1 pyramidal cells. Synapse 2000; 37:23-31. [PMID: 10842348 DOI: 10.1002/(sici)1098-2396(200007)37:1<23::aid-syn3>3.0.co;2-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is growing evidence for an effect of prenatal protein malnutrition on the GABAergic neurotransmitter system in the rat hippocampus and associated structures. In the present study, we examined the functional electrophysiological consequences of observed alterations in GABA(A) and benzodiazepine receptor systems. Whole-cell patch clamp recordings of spontaneous and of miniature inhibitory postsynaptic currents (mIPSCs) generated by CA1 pyramidal cells were performed in in vitro hippocampal slices prepared from control and prenatally protein malnourished adult male rats. The characteristics of spontaneous synaptic currents were unaltered by the prenatal insult, as were the amplitudes and kinetics of GABA(A) receptor-mediated mIPSCs. The frequency of mIPSCs, however, was significantly increased in CA1 pyramidal cells in slices prepared from prenatally malnourished vs. control rats. The effect of the benzodiazepine receptor agonist chlordiazepoxide on the characteristics of mIPSCs was also examined and found to be the same in cells from both nutritional groups. The increased frequency of mIPSCs together with the lack of a change in amplitude, kinetics, or modulation by benzodiazepines of mIPSCs in response to prenatal protein malnutrition indicate a presynaptic locus of effect of this insult.
Collapse
Affiliation(s)
- J Luebke
- Department of Psychiatry, Boston University School of Medicine, MA 02118, USA.
| | | | | |
Collapse
|
48
|
Benítez-Bribiesca L, De la Rosa-Alvarez I, Mansilla-Olivares A. Dendritic spine pathology in infants with severe protein-calorie malnutrition. Pediatrics 1999; 104:e21. [PMID: 10429139 DOI: 10.1542/peds.104.2.e21] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Experimental undernutrition in animals, during the critical brain development period, produces retardation of brain growth as well as a number of different morphologic and functional abnormalities in neurons, mainly in the dendritic synaptic apparatus. These alterations are the cause of the poor neurointegrative development that occurs in experimental malnutrition. Severe malnutrition during early postnatal life in humans is known to produce similar neurointegrative disorders as well as mental retardation, but there are very few studies describing the morphology of the dendritic apparatus in infants suffering from this condition. OBJECTIVE To study the dendritic spine density and morphology in dendrites from cortical neurons in infants dying from severe malnutrition. METHODOLOGY Brain sections from the somestesic, motor, and occipital cortical areas of 13 infants who died of severe malnutrition and 7 eutrophic infants who died of other causes were studied by means of the rapid Golgi method. Apical dendritic spines from neurons of the fifth cortical layer were studied and counted in all sections. RESULTS Apical dendrites were significantly shorter in malnourished infants than in the control group (581.54 +/- 54.32 microm in severe malnutrition vs 846.3 microm in normal infants). The number of dendritic spines per dendrite was also significantly diminished (185.3 +/- 36.1 in malnourished vs 374.3 +/- 41.6 in eutrophic infants). There were marked morphologic abnormalities in the dendritic spines of infants dying of severe malnutrition that were classified as dysplastic. CONCLUSIONS Short apical dendrites, fewer spines, and dendritic spine abnormalities occur in severe infant malnutrition. These anatomic anomalies might be related to the neuropsychological deficits that occur in these children.
Collapse
Affiliation(s)
- L Benítez-Bribiesca
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional S-XXI, IMSS, México, Distrito Federal, M|xico.
| | | | | |
Collapse
|
49
|
Gressens P, Muaku SM, Besse L, Nsegbe E, Gallego J, Delpech B, Gaultier C, Evrard P, Ketelslegers JM, Maiter D. Maternal protein restriction early in rat pregnancy alters brain development in the progeny. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 103:21-35. [PMID: 9370057 DOI: 10.1016/s0165-3806(97)00109-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We assessed the effects of a dietary protein restriction (5% vs. 20% casein in diet) initiated at conception and imposed during the first 2 weeks of rat gestation on postnatal brain development. At the end of the malnutrition period, protein-restricted animals exhibited significantly smaller fetal body weight and brain cortical thickness than controls. At birth and thereafter, body weight was normalized in the progeny. Similarly, brain weight and cytoarchitecture were normal in postnatal animals. In contrast, we observed, during the first 2 postnatal weeks, several abnormalities of brain development which affected all the studied areas for most of the studied parameters: (i) delayed astrocytogenesis as shown by a reduced GFAP staining; (ii) delayed production of hyaluronan in the extracellular matrix studied with binding of biotinylated hyaluronectin; (iii) abnormal neuronal differentiation as shown by reduced expression of MAP-5 and increased expression of MAP-1; (iv) abnormal synaptogenesis as shown by the increased expression of synaptophysin in the basal ganglia; (v) decreased programmed cell death. In adult prenatally protein-restricted animals, all the above parameters were normalized excepted MAP-1 labeling which remained high. In addition, we observed slight alterations of the ventilatory response to hypoxia in adult animals. The present study demonstrates that early protein malnutrition during embryonic development induces multiple, transient alterations of brain development. However, the almost complete normalization in adults of brain architecture and differentiation as well as our physiological data strongly suggest a remarkable plasticity of the developing brain following an early aggression.
Collapse
Affiliation(s)
- P Gressens
- Laboratoire de Neurobiologie et de Physiologie du Développement, INSERM CRI 96-03, Hôpital Robert-Debré, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Aguilar-Roblero R, Salazar-Juarez A, Rojas-Castañeda J, Escobar C, Cintra L. Organization of circadian rhythmicity and suprachiasmatic nuclei in malnourished rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:R1321-31. [PMID: 9362295 DOI: 10.1152/ajpregu.1997.273.4.r1321] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present study was aimed at characterizing the effects of low-protein malnutrition (6% casein) on the circadian rhythm of drinking behavior and on suprachiasmatic nuclei immunohistochemistry in Sprague-Dawley rats. Recordings were started at 30 days of age under a 12:12-h light-dark (LD) cycle. At age 150 days, recordings were continued under constant dim red light, and finally the latency to entrain to complete and skeleton photoperiods was established. At the end of the recordings rats were processed for histological analysis. Compared with their controls, malnournished rats exhibited 1) splitting of rhythmicity under LD that 2) condensed to one component in constant dim red light, 3) delayed entrainment to skeleton photoperiod, and 4) precocious entrainment under complete photoperiod. Immunohistochemical analysis showed mainly a decrease in the immunohistochemical detection of vasoactive intestinal polypeptide and glial fibrillar acid protein cells in malnourished animals. These results indicate that in malnourished rats there is a decrease 1) in the coupling force among the oscillators and 2) in the strength of the phase lock between the oscillators and the light-dark cycle.
Collapse
Affiliation(s)
- R Aguilar-Roblero
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico DF
| | | | | | | | | |
Collapse
|