1
|
Perez-Caballero L, Guillot de Suduiraut I, Romero LR, Grosse J, Sandi C, Andero R. Corticosterone administration immediately after peripuberty stress exposure does not prevent protracted stress-induced behavioral alterations. Psychoneuroendocrinology 2024; 170:107164. [PMID: 39146600 DOI: 10.1016/j.psyneuen.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/11/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
Stress-related disorders are commonly associated with abnormalities in hypothalamic-pituitary-adrenal (HPA) axis activity. Preliminary studies with cortisol administration in the aftermath of trauma suggest that this HPA axis hormone can potentially prevent maladaptive behavioral and biological stress responses. However, the efficacy of glucocorticoid administration during the peripuberty period has not been tested yet, although this lifetime is a critical time window in brain development and is highly sensitive to the harmful effects of stress. To further examine the short and long-lasting impact of glucocorticoids treatment given during the post-peripubertal stress period, the present study utilized a rat model of peripubertal stress-induced psychopathology and animals were subjected to a battery of tests to assess anxiety-like behaviors, exploratory behavior and reactivity to novelty at late adolescence and sociability, anhedonia and stress coping behaviors at adulthood. All the experiments were performed in males and females to evaluate the potential behavioral sex differences. Overall, our results demonstrated that rats exposed to peripubertal stress show decreased sociability in adulthood without differences in anxiety and depression-like behaviors. Moreover, this study shows that the administration of corticosterone after stress exposure at peripuberty does not prevent stress-induced behavioral alterations. However, we observed that some stress-induced behavioural alterations and corticosterone responses are sex-specific. Thus, the data obtained highlight that delineating sex differences in stress-related studies may ultimately contribute to the development of effective therapeutic interventions for each sex.
Collapse
Affiliation(s)
- Laura Perez-Caballero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Isabelle Guillot de Suduiraut
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Leire R Romero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Raul Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid 28029, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; ICREA, Pg Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
2
|
Pande A, Kinkade CW, Prout N, Chowdhury SF, Rivera-Núñez Z, Barrett ES. Prenatal exposure to synthetic chemicals in relation to HPA axis activity: A systematic review of the epidemiological literature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177300. [PMID: 39488279 DOI: 10.1016/j.scitotenv.2024.177300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Pregnant people are widely exposed to numerous synthetic chemicals with known endocrine-disrupting properties (e.g., phthalates, phenols, per- and poly-fluoroalkyl substances (PFAS)). To date, most epidemiological research on how endocrine-disrupting chemicals (EDCs) disrupt hormone pathways has focused on estrogens, androgens, and thyroid hormones. Far less research has examined the impact of EDCs on the hypothalamic-pituitary-adrenal (HPA) axis, despite its central role in the physiologic stress response and metabolic function. OBJECTIVE To systematically review the epidemiological literature on prenatal synthetic EDC exposures in relation to HPA axis hormones (e.g., corticotropin-releasing hormone, adrenocorticotropic hormone, cortisol, cortisone) in pregnant people and their offspring. METHODS A literature search of PubMed, Scopus, and Embase was conducted. Primary research studies were selected for inclusion by two independent reviewers and risk of bias was assessed using the Office of Health Assessment and Translation guidelines established by the National Toxicology Program with customization for the specific research topic. Data were extracted from each study and included in a qualitative synthesis. RESULTS 22 published studies met the inclusion criteria. Phthalates were the most prevalent EDC studied, followed by PFAS, phenols, and parabens, with fewer studies considering other synthetic chemicals. Offspring glucocorticoids were the most commonly considered outcome, followed by maternal glucocorticoids and placental corticotropin-releasing hormone. There was considerable heterogeneity in methods across studies, particularly in HPA axis outcome measures and matrices, making cross-study comparisons challenging. Numerous studies suggested disruption of HPA axis hormones and sex differences in association, but results varied considerably across studies and EDC classes. CONCLUSIONS The limited literature to date suggests the HPA axis may be vulnerable to disruption by synthetic EDCs. Carefully designed studies that prioritize biospecimen collection specific to HPA axis hormones are needed along with greater standardization of biospecimen collection and analysis protocols to facilitate cross-study comparisons and interpretation.
Collapse
Affiliation(s)
- Anushka Pande
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Nashae Prout
- Wynne Center for Family Research, University of Rochester, Rochester, NY 14642, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, USA
| | - Sadia F Chowdhury
- Wynne Center for Family Research, University of Rochester, Rochester, NY 14642, USA; Translational Biomedical Sciences Program, University of Rochester, Rochester, NY 14642, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA.
| |
Collapse
|
3
|
Turner MB, Dalmasso C, Loria AS. The adipose tissue keeps the score: priming of the adrenal-adipose tissue axis by early life stress predisposes women to obesity and cardiometabolic risk. Front Endocrinol (Lausanne) 2024; 15:1481923. [PMID: 39493777 PMCID: PMC11527639 DOI: 10.3389/fendo.2024.1481923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Adverse Childhood Experiences (ACEs) refer to early life stress events, including abuse, neglect, and other psychosocial childhood traumas that can have long-lasting effects on a wide range of physiological functions. ACEs provoke sex-specific effects, whereas women have been shown to display a strong positive correlation with obesity and cardiometabolic disease. Notably, rodent models of chronic behavioral stress during postnatal life recapitulate several effects of ACEs in a sex-specific fashion. In this review, we will discuss the potential mechanisms uncovered by models of early life stress that may explain the greater susceptibility of females to obesity and metabolic risk compared with their male counterparts. We highlight the early life stress-induced neuroendocrine shaping of the adrenal-adipose tissue axis as a primary event conferring sex-dependent heightened sensitivity to obesity.
Collapse
Affiliation(s)
| | | | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Demichelis OP, Fowler JA, Young T. Better emotion regulation mediates gratitude and increased stress in undergraduate students across a university semester. Stress Health 2024; 40:e3417. [PMID: 38728433 DOI: 10.1002/smi.3417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
It is well established that university students are vulnerable to poor mental health. Although increased gratitude has been shown to reduce stress among students, a clearer understanding of key mechanisms underpinning this relationship are needed to better inform theoretical models and potential interventions targeted at improving well-being in university students. The present study provides the first direct test of whether capacity for emotion regulation mediates the relationship of gratitude with stress at the beginning and middle of the academic semester. This study is also the first to assess this relationship in a cross-lagged panel mediation model. We used a repeated measures design and a total of 343 undergraduate students completed two online surveys with validated measures of gratitude, stress, and emotion regulation-one at the beginning and the second in the middle of the academic semester. Results showed that emotion regulation mediated the relationship between gratitude and stress at the beginning of semester, and again 6 weeks later. A Clogg's z-score test suggested that the strength of the indirect effect significantly increased across the two time points. A post-hoc cross-lagged panel model found that high gratitude at the beginning of the semester predicted low stress in the middle of the semester via emotion regulation. These data provide novel evidence that emotion regulation may serve as a key protective factor against undergraduate stress. The results provide evidence to support leading theories on how gratitude can reduce stress and promote well-being in university students. They also highlight the practical importance of strengthening emotion regulation abilities in university students and can be used to inform future targeted interventions to improve well-being in university students.
Collapse
Affiliation(s)
- Olivia P Demichelis
- The University of Queensland, Faculty of Health and Behavioral Sciences, School of Psychology, Brisbane, Queensland, Australia
| | - James A Fowler
- The University of Queensland, Faculty of Medicine, School of Public Health, Brisbane, Queensland, Australia
| | - Tarli Young
- The University of Queensland, Faculty of Health and Behavioral Sciences, School of Psychology, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Armario A, Nadal R, Fuentes S, Visa J, Belda X, Serrano S, Labad J. Prenatal immune activation in rats and adult exposure to inescapable shocks reveal sex-dependent effects on fear conditioning that might be relevant for schizophrenia. Psychiatry Res 2024; 342:116219. [PMID: 39388806 DOI: 10.1016/j.psychres.2024.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Prenatal infection is considered a relevant factor for neurodevelopmental alterations and psychiatric diseases. Administration of bacterial and viral components during pregnancy in rodents results in maternal immune activation (MIA), leading to schizophrenia-like neurochemical and behavioral changes. Despite some evidence for abnormal fear conditioning in schizophrenia, only a few animal studies have focused on this issue. Therefore, we addressed the impact of the administration of the viral mimetic polyI:C to pregnant Long-Evans rats on the adult offspring response to inescapable shocks (IS) and contextual fear conditioning. In males, polyI:C induced a greater endocrine (plasma ACTH) response to IS and both polyI:C and IS enhanced fear conditioning and generalization to a completely different novel environment (hole-board), with no additive effects, probably due to a ceiling effect. In contrast, a modest impact of polyI:C and a lower impact of IS on contextual fear conditioning and generalization was observed in females. Thus, the present results demonstrate that polyI:C dramatically affected fear response to IS in adult males and support the hypothesis that males are more sensitive than females to this treatment. This model might allow to explore neurobiological mechanisms underlying abnormal responsiveness to fear conditioning and stressors in schizophrenia.
Collapse
Affiliation(s)
- Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, Faculty of Biosciences, Department of Cellular Biology, Physiology and Imunology, Universitat Autònoma de Barcelona, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain.
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Deparment of Psychobiology and Methodology of Health Sciences, Faculty of Psychology, Universitat Autònoma de Barcelona, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain
| | - Silvia Fuentes
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Deparment of Psychobiology and Methodology of Health Sciences, Faculty of Psychology, Universitat Autònoma de Barcelona, Spain
| | - Joan Visa
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, Faculty of Biosciences, Department of Cellular Biology, Physiology and Imunology, Universitat Autònoma de Barcelona, Spain
| | - Sara Serrano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, Faculty of Biosciences, Department of Cellular Biology, Physiology and Imunology, Universitat Autònoma de Barcelona, Spain
| | - Javier Labad
- Department of Mental Health and Addictions, Consorci Sanitari del Maresme, Mataró, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain
| |
Collapse
|
6
|
Sommers V, Gentenaar M, David K, Narinx N, Dubois V, Kroon J, Claessens F, Meijer OC. Androgens Suppress Corticosteroid Binding Globulin in Male Mice, Affecting the Endocrine Stress Response. Endocrinology 2024; 165:bqae119. [PMID: 39240718 PMCID: PMC11420631 DOI: 10.1210/endocr/bqae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/08/2024]
Abstract
Biological sex affects the activity of the hypothalamus-pituitary-adrenal (HPA) axis. However, how androgen deprivation affects this axis remains largely unknown. In this study, we investigated the effect of androgen status on different components of the HPA axis in male mice. Two weeks of androgen deprivation did not affect total plasma corticosterone levels but led to increased pituitary ACTH levels. Stress-induced total plasma corticosterone levels were increased, whereas the suppression of corticosterone after dexamethasone treatment under basal conditions was attenuated. Androgen-deprived mice displayed a 2-fold increase in plasma levels of corticosteroid binding globulin (CBG). A similar increase in CBG was observed in global androgen receptor knock-out animals, compared to wild-type littermates. Androgen deprivation was associated with a 6-fold increase in CBG mRNA in the liver and enhanced transcriptional activity at CBG regulatory regions, as evidenced by increased H3K27 acetylation. We propose that the induction of CBG as a consequence of androgen deprivation, together with the unaltered total corticosterone levels, results in lower free corticosterone levels in plasma. This is further supported by mRNA levels of androgen-independent GR target genes in the liver. The reduction in negative feedback on the HPA axis under basal condition would suffice to explain the enhanced stress reactivity after androgen deprivation. Overall, our data demonstrate that, in mice, tonic androgen receptor activation affects CBG levels in conjunction with effects on gene expression and HPA-axis reactivity.
Collapse
Affiliation(s)
- Vera Sommers
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg ON1 Herestraat 49 - Box 901, 3000 Leuven, Belgium
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
| | - Max Gentenaar
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
| | - Karel David
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, ON1bis Herestraat 49 - Box 902, 3000 Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, 30000 Leuven, Belgium
| | - Nick Narinx
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, ON1bis Herestraat 49 - Box 902, 3000 Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Vanessa Dubois
- Laboratory of Basic and Translational Endocrinology, Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Kroon
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg ON1 Herestraat 49 - Box 901, 3000 Leuven, Belgium
| | - Onno C Meijer
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
| |
Collapse
|
7
|
Milosevic A, Milosevic K, Zivkovic A, Lavrnja I, Savic D, Bjelobaba I, Janjic MM. Alterations in the Hypothalamic-Pituitary-Adrenal Axis as a Response to Experimental Autoimmune Encephalomyelitis in Dark Agouti Rats of Both Sexes. Biomolecules 2024; 14:1020. [PMID: 39199407 PMCID: PMC11352252 DOI: 10.3390/biom14081020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease that affects the central nervous system, usually diagnosed during the reproductive period. Both MS and its commonly used animal model, experimental autoimmune encephalomyelitis (EAE), exhibit sex-specific features regarding disease progression and disturbances in the neuroendocrine and endocrine systems. This study investigates the hypothalamic-pituitary-adrenal (HPA) axis response of male and female Dark Agouti rats during EAE. At the onset of EAE, Crh expression in the hypothalamus of both sexes is decreased, while males show reduced plasma adrenocorticotropic hormone levels. Adrenal gland activity is increased during EAE in both males and females, as evidenced by enlarged adrenal glands and increased StAR gene and protein expression. However, only male rats show increased serum and adrenal corticosterone levels, and an increased volume of the adrenal cortex. Adrenal 3β-HSD protein and progesterone levels are elevated in males only. Serum progesterone levels of male rats are also increased, although testicular progesterone levels are decreased during the disease, implying that the adrenal gland is the source of elevated serum progesterone levels in males. Our results demonstrate a sex difference in the response of the HPA axis at the adrenal level, with male rats showing a more pronounced induction during EAE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marija M. Janjic
- Department for Neurobiology, Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (A.M.); (K.M.); (A.Z.); (I.L.); (D.S.); (I.B.)
| |
Collapse
|
8
|
Küstermann F, Busse K, Orthgieß J, Stoppe M, Haars S, Then Bergh F. Mineralocorticoid Receptor Signaling in Peripheral Blood Cells in Patients with Multiple Sclerosis. Int J Mol Sci 2024; 25:8883. [PMID: 39201568 PMCID: PMC11354852 DOI: 10.3390/ijms25168883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Multiple sclerosis (MS) is associated with alterations in neuroendocrine function, primarily the hypothalamic-pituitary-adrenal axis, including lower expression of the glucocorticoid receptor (GR) and its target genes in peripheral blood mononuclear cells (PBMC) or full blood. We previously found reduced mineralocorticoid receptor (MR) expression in MS patients' peripheral blood. MS is being treated with a widening variety of disease-modifying treatments (DMT), some of which have similar efficacy but different mechanisms of action; body-fluid biomarkers to support the choice of the optimal initial DMT and/or to indicate an unsatisfactory response before clinical activity are unavailable. Using cell culture of volunteers' PBMCs and subsequent gene expression analysis (microarray and qPCR validation), we identified the mRNA expression of OTUD1 to represent MR signaling. The MR and MR target gene expression levels were then measured in full blood samples. In 119 MS (or CIS) patients, the expression of both MR and OTUD1 was lower than in 42 controls. The expression pattern was related to treatment, with the MR expression being particularly low in patients treated with fingolimod. While MR signaling may be involved in the therapeutic effects of some disease-modifying treatments, MR and OTUD1 expression can complement the neuroendocrine assessment of MS disease course. If confirmed, such assessment may support clinical decision-making.
Collapse
Affiliation(s)
- Franziska Küstermann
- Klinik und Poliklinik für Neurologie, University of Leipzig, 04103 Leipzig, Germany; (F.K.); (K.B.); or (J.O.)
| | - Kathy Busse
- Klinik und Poliklinik für Neurologie, University of Leipzig, 04103 Leipzig, Germany; (F.K.); (K.B.); or (J.O.)
- Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Johannes Orthgieß
- Klinik und Poliklinik für Neurologie, University of Leipzig, 04103 Leipzig, Germany; (F.K.); (K.B.); or (J.O.)
| | - Muriel Stoppe
- Klinik und Poliklinik für Neurologie, University of Leipzig, 04103 Leipzig, Germany; (F.K.); (K.B.); or (J.O.)
| | - Sarah Haars
- Klinik und Poliklinik für Neurologie, University of Leipzig, 04103 Leipzig, Germany; (F.K.); (K.B.); or (J.O.)
| | - Florian Then Bergh
- Klinik und Poliklinik für Neurologie, University of Leipzig, 04103 Leipzig, Germany; (F.K.); (K.B.); or (J.O.)
| |
Collapse
|
9
|
Sheng JA, Tobet SA. Maternal immune activation with toll-like receptor 7 agonist during mid-gestation alters juvenile and adult developmental milestones and behavior. J Neuroendocrinol 2024; 36:e13417. [PMID: 38822791 PMCID: PMC11296912 DOI: 10.1111/jne.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Infections during pregnancy are associated with increased risk for adult neuropsychiatric disease, such as major depressive disorder, schizophrenia, and autism spectrum disorder. In mouse models of maternal immune activation (MIA), different toll-like receptors (TLRs) are stimulated to initiate inflammatory responses in mother and fetus. The goal of this study was to determine sex-dependent aspects of MIA using a TLR7/8 agonist, Resiquimod (RQ), on neurodevelopment. RQ was administered to timed-pregnant mice on embryonic day (E) 12.5. At E15, maternal/fetal plasma cytokines were measured by enzyme-linked immunosorbent assay (ELISA). Maternal cytokines interleukin (IL)-6 and IL-10 were higher while tumor necrosis factor (TNF)-α and IL-17 were lower in pregnant dams exposed to RQ. Fetal cytokines (E15) were altered at the same timepoint with fetal plasma IL-6 and IL-17 greater after RQ compared to vehicle, while IL-10 and TNF-α were higher in male fetuses but not female. Other timed-pregnant dams were allowed to give birth. MIA with RQ did not alter the female to male ratio of offspring born per litter. Body weights were reduced significantly in both sexes at birth, and over the next 5 weeks. Offspring from RQ-injected mothers opened their eyes 5 days later than controls. Similarly, female offspring from RQ-injected mothers exhibited pubertal delay based on vaginal opening 2-3 days later than control females. On the behavioral side, juvenile and adult male and female MIA offspring exhibited less social-like behavior in a social interaction test. Anhedonia-like behavior was greater in MIA adult female mice. This study provides support for sex-dependent influences of fetal antecedents for altered brain development and behavioral outputs that could be indicative of increased susceptibility for adult disorders through immune mechanisms. Future studies are needed to determine neural cellular and molecular mechanisms for such programming effects.
Collapse
Affiliation(s)
| | - Stuart A. Tobet
- Biomedical Sciences, Colorado State University, Fort Collins, CO
- Department of Psychiatry, Mass General Hospital, Harvard Medical School, Boston, MA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO
- Innovation Center on Sex Differences in Medicine, Mass General Hospital
| |
Collapse
|
10
|
Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev 2024; 45:593-624. [PMID: 38551091 PMCID: PMC11244253 DOI: 10.1210/endrev/bnae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 07/13/2024]
Abstract
Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.
Collapse
Affiliation(s)
- Jack Lockett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Warrick J Inder
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
| |
Collapse
|
11
|
Rosário NSA, do Santos GSE, Batista AL, de Assis AD, Nórte CE, Mocaiber I, Volchan E, Pereira GS, Pereira MG, de Oliveira L, Meireles AL, Bearzoti E, Souza GGL. Exploring the effects of COVID-19-related traumatic events on the mental health of university students in Brazil: A cross-sectional investigation. Acta Psychol (Amst) 2024; 247:104300. [PMID: 38733745 DOI: 10.1016/j.actpsy.2024.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
University students are vulnerable to mental health issues during their academic lives. During the COVID-19 pandemic, university students faced mental distress due to lockdowns and the transition to e-learning. However, it is not known whether these students were also affected specifically by COVID-19-related traumatic events. This study examined the impact of COVID-19-related traumatic events on 2277 university students from two federal institutions of higher education in Brazil. The university students completed an online questionnaire covering demographics, lifestyle habits, health characteristics, COVID-19-related traumatic events, and depression, anxiety, and stress symptoms. The results showed that an increased intensity of COVID-19-related traumatic events was positively associated with stress, anxiety, and depressive symptoms, and each specific type of event was associated with these symptoms. In addition, we found a negative association between these symptoms and male sex and age and a positive association with having or having had a history of cardiovascular, respiratory, neurological, or mental disorders or another disease diagnosed by a physician. In conclusion, this study emphasizes the heightened risk of mental health issues in university students in the face of COVID-19-related traumatic events. Women, young people and people who have or have had a history of disease were the most vulnerable to mental health issues during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Nacha Samadi Andrade Rosário
- Psychophysiology Laboratory, Department of Biological Sciences, Federal University of Ouro Preto (Universidade Federal de Ouro Preto - UFOP), Ouro Preto, Minas Gerais (MG), Brazil
| | - Gabriel Soares Emiliano do Santos
- Psychophysiology Laboratory, Department of Biological Sciences, Federal University of Ouro Preto (Universidade Federal de Ouro Preto - UFOP), Ouro Preto, Minas Gerais (MG), Brazil
| | - Ana Luiza Batista
- Psychophysiology Laboratory, Department of Biological Sciences, Federal University of Ouro Preto (Universidade Federal de Ouro Preto - UFOP), Ouro Preto, Minas Gerais (MG), Brazil
| | - Aisllan Diego de Assis
- School of Medicine, Department of Family Medicine and Mental and Public Health, Federal University of Ouro Preto (Universidade Federal de Ouro Preto - UFOP), Ouro Preto, MG, Brazil
| | - Carlos Eduardo Nórte
- Department of Cognition and Development, Institute of Psychology, Rio de Janeiro State University (Universidade do Estado do Rio de Janeiro - UERJ), Rio de Janeiro, Rio de Janeiro (RJ), Brazil
| | - Izabela Mocaiber
- Department of Natural Sciences, Institute of Humanities and Health, Fluminense Federal University (Universidade Federal Fluminense - UFF), Rio das Ostras, RJ, Brazil
| | - Eliane Volchan
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (Universidade Federal do Rio de Janeiro - UFRJ), Rio de Janeiro, RJ, Brazil
| | - Grace Schenatto Pereira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Belo Horizonte, MG, Brazil
| | - Mirtes Garcia Pereira
- Department of Physiology and Pharmacology, Fluminense Federal University (Universidade Federal Fluminense - UFF), Niterói, RJ, Brazil
| | - Letícia de Oliveira
- Department of Physiology and Pharmacology, Fluminense Federal University (Universidade Federal Fluminense - UFF), Niterói, RJ, Brazil
| | - Adriana Lúcia Meireles
- Department of Clinical and Social Nutrition, Federal University of Ouro Preto (Universidade Federal de Ouro Preto - UFOP), Ouro Preto, MG, Brazil
| | - Eduardo Bearzoti
- Department of Statistics, Federal University of Ouro Preto (Universidade Federal de Ouro Preto - UFOP), Ouro Preto, MG, Brazil
| | - Gabriela Guerra Leal Souza
- Psychophysiology Laboratory, Department of Biological Sciences, Federal University of Ouro Preto (Universidade Federal de Ouro Preto - UFOP), Ouro Preto, Minas Gerais (MG), Brazil.
| |
Collapse
|
12
|
Anderson ME, Wind EJ, Robison LS. Exploring the neuroprotective role of physical activity in cerebral small vessel disease. Brain Res 2024; 1833:148884. [PMID: 38527712 DOI: 10.1016/j.brainres.2024.148884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Cerebral small vessel disease (cSVD) is a common neurological finding characterized by abnormalities of the small blood vessels in the brain. Previous research has established a strong connection between cSVD and stroke, as well as neurodegenerative disorders, notably Alzheimer's disease (AD) and other dementias. As the search for effective interventions continues, physical activity (PA) has emerged as a potential preventative and therapeutic avenue. This review synthesizes the human and animal literature on the influence of PA on cSVD, highlighting the importance of determining optimal exercise protocols, considering aspects such as intensity, duration, timing, and exercise type. Furthermore, the necessity of widening the age bracket in research samples is discussed, ensuring a holistic understanding of the interventions across varying pathological stages of the disease. The review also suggests the potential of exploring diverse biomarkers and risk profiles associated with clinically significant outcomes. Moreover, we review findings demonstrating the beneficial effects of PA in various rodent models of cSVD, which have uncovered numerous mechanisms of neuroprotection, including increases in neuroplasticity and integrity of the vasculature and white matter; decreases in inflammation, oxidative stress, and mitochondrial dysfunction; and alterations in amyloid processing and neurotransmitter signaling. In conclusion, this review highlights the potential of physical activity as a preventive strategy for addressing cSVD, offering insights into the need for refining exercise parameters, diversifying research populations, and exploring novel biomarkers, while shedding light on the intricate mechanisms through which exercise confers neuroprotection in both humans and animal models.
Collapse
Affiliation(s)
- Maria E Anderson
- Department of Psychology, Family, and Justice Studies, University of Saint Joseph, 1678 Asylum Ave, West Hartford, CT 06117, USA
| | - Eleanor J Wind
- Department of Psychology and Neuroscience, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL 33328, USA
| | - Lisa S Robison
- Department of Psychology and Neuroscience, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
13
|
Liria Sánchez-Lafuente C, Martinez-Verbo L, Johnston JN, Floyd J, Esteller M, Kalynchuk LE, Ausió J, Caruncho HJ. Chronic corticosterone exposure in rats induces sex-specific alterations in hypothalamic reelin fragments, MeCP2, and DNMT3a protein levels. Neurosci Lett 2024; 830:137770. [PMID: 38616004 DOI: 10.1016/j.neulet.2024.137770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Women are disproportionately affected by stress-related disorders like depression. In our prior research, we discovered that females exhibit lower basal hypothalamic reelin levels, and these levels are differentially influenced by chronic stress induced through repeated corticosterone (CORT) injections. Although epigenetic mechanisms involving DNA methylation and the formation of repressor complexes by DNA methyl-transferases (DNMTs) and Methyl-CpG binding protein 2 (MeCP2) have been recognized as regulators of reelin expression in vitro, there is limited understanding of the impact of stress on the epigenetic regulation of reelin in vivo and whether sex differences exist in these mechanisms. To address these questions, we conducted various biochemical analyses on hypothalamic brain samples obtained from male and female rats previously treated with either 21 days of CORT (40 mg/kg) or vehicle (0.9 % saline) subcutaneous injections. Upon chronic CORT treatment, a reduction in reelin fragment NR2 was noted in males, while the full-length molecule remained unaffected. This decrease paralleled with an elevation in MeCP2 and a reduction in DNMT3a protein levels only in males. Importantly, sex differences in baseline and CORT-induced reelin protein levels were not associated with changes in the methylation status of the Reln promoter. These findings suggest that CORT-induced reelin decreases in the hypothalamus may be a combination of alterations in downstream processes beyond gene transcription. This research brings novel insights into the sexually distinct consequences of chronic stress, an essential aspect to understand, particularly concerning its role in the development of depression.
Collapse
Affiliation(s)
| | - Laura Martinez-Verbo
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Jenessa N Johnston
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Jennifer Floyd
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Juan Ausió
- Biochemistry and Microbiology Department, University of Victoria, Victoria, British Columbia, Canada.
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
14
|
Lotzin A, Stahlmann K, Acquarini E, Ajdukovic D, Ajdukovic M, Anastassiou-Hadjicharalambous X, Ardino V, Bondjers K, Bragesjö M, Böttche M, Dragan M, Figueiredo-Braga M, Gelezelyte O, Grajewski P, Javakhishvili JD, Kazlauskas E, Lenferink L, Lioupi C, Lueger-Schuster B, Mooren T, Sales L, Tsiskarishvili L, Novakovic IZ, Schäfer I. A longitudinal study of risk and protective factors for symptoms of adjustment disorder during the COVID-19 pandemic. Eur J Psychotraumatol 2024; 15:2318944. [PMID: 38644753 PMCID: PMC11036902 DOI: 10.1080/20008066.2024.2318944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/28/2023] [Indexed: 04/23/2024] Open
Abstract
Background: The COVID-19 pandemic caused multiple stressors that may lead to symptoms of adjustment disorder.Objective: We longitudinally examined relationships between risk and protective factors, pandemic-related stressors and symptoms of adjustment disorder during the COVID-19 pandemic, as well as whether these relationships differed by the time of assessment.Method: The European Society for Traumatic Stress Studies (ESTSS) ADJUST Study included N = 15,169 participants aged 18 years and above. Participants from 11 European countries were recruited and screened three times at 6-month intervals from June 2020 to January 2022. Associations between risk and protective factors (e.g. gender), stressors (e.g. fear of infection), and symptoms of adjustment disorder (AjD, ADNM-8) and their interaction with time of assessment were examined using mixed linear regression.Results: The following predictors were significantly associated with higher AjD symptom levels: female or diverse gender; older age; pandemic-related news consumption >30 min a day; a current or previous mental health disorder; trauma exposure before or during the pandemic; a good, satisfactory or poor health status (vs. very good); burden related to governmental crisis management and communication; fear of infection; restricted social contact; work-related problems; restricted activity; and difficult housing conditions. The following predictors were associated with lower AjD levels: self-employment or retirement; working in healthcare; and face-to-face contact ≥ once a week with loved ones or friends. The effects of the following predictors on AjD symptoms differed by the time of assessment in the course of the pandemic: a current or previous mental disorder; burden related to governmental crisis management; income reduction; and a current trauma exposure.Conclusions: We identified risk factors and stressors predicting AjD symptom levels at different stages of the pandemic. For some predictors, the effects on mental health may change at different stages of a pandemic.
Collapse
Affiliation(s)
- Annett Lotzin
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
| | - Katharina Stahlmann
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Dean Ajdukovic
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Marina Ajdukovic
- Department of Social Work, Faculty of Law, University of Zagreb, Zagreb, Croatia
| | | | | | - Kristina Bondjers
- National Centre for Disaster Psychiatry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- National Centre for Violence and Traumatic Stress Studies, Oslo, Norway
| | - Maria Bragesjö
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Maria Böttche
- Division of Clinical Psychological Intervention, Freie Universität Berlin, Berlin, Germany
| | | | - Margarida Figueiredo-Braga
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Porto, Portugal
- Trauma Observatory, Centre for Social Studies (CES), University of Coimbra, Coimbra, Portugal
| | - Odeta Gelezelyte
- Center for Psychotraumatology, Institute of Psychology, Vilnius University, Vilnius, Lithuania
| | | | | | - Evaldas Kazlauskas
- Center for Psychotraumatology, Institute of Psychology, Vilnius University, Vilnius, Lithuania
| | - Lonneke Lenferink
- Department of Psychology, Health, & Technology, Faculty of Behavioural, Management, and Social Sciences, University of Twente, Enschede, the Netherlands
| | - Chrysanthi Lioupi
- Psychology Program, School of Ηumanities, Social Sciences and Law, University of Nicosia, Nicosia, Cyprus
| | - Brigitte Lueger-Schuster
- Unit of Psychotraumatology, Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Trudy Mooren
- Department of Clinical Psychology, Utrecht University, Utrecht, The Netherlands
| | - Luisa Sales
- Trauma Observatory, Centre for Social Studies (CES), University of Coimbra, Coimbra, Portugal
- Unit of Psychiatry, Hospital Militar, Coimbra, Portugal
| | | | - Irina Zrnic Novakovic
- Unit of Psychotraumatology, Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Ingo Schäfer
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - ADJUST Study Consortium
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Pan N, Yang C, Suo X, Shekara A, Hu S, Gong Q, Wang S. Sex differences in the relationship between brain gray matter volume and psychological resilience in late adolescence. Eur Child Adolesc Psychiatry 2024; 33:1057-1066. [PMID: 37212908 DOI: 10.1007/s00787-023-02231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Psychological resilience reflects an individual's ability to adapt and cope successfully in adverse environments and situations, making it a crucial trait in resisting stress-linked mental disorders and physical diseases. Although prior literature has consistently shown that males are more resilient than females, the sex-linked neuroanatomical correlates of psychological resilience are largely unknown. This study aims to explore the sex-specific relation between psychological resilience and brain gray matter volume (GMV) in adolescents via structural magnetic resonance imaging (s-MRI). A cohort of 231 healthy adolescents (121/110 females/males), aged 16 to 20 completed brain s-MRI scanning and Connor-Davidson Resilience Scale (CD-RISC) and other controlling behavioral tests. With s-MRI data, an optimized voxel-based morphometry method was used to estimate regional GMV, and a whole-brain condition-by-covariate interaction analysis was performed to identify the brain regions showing sex effects on the relation between psychological resilience and GMV. Male adolescents scored significantly higher than females on the CD-RISC. The association of psychological resilience with GMV differed between the two sex groups in the left ventrolateral prefrontal cortex extending to the adjacent anterior insula, with a positive correlation among males and a negative correlation among females. The sex-specific association between psychological resilience and GMV might be linked to sex differences in the hypothalamic-pituitary-adrenal axis and brain maturation during adolescence. This study may be novel in revealing the sex-linked neuroanatomical basis of psychological resilience, highlighting the need for a more thorough investigation of the role of sex in future studies of psychological resilience and stress-related illness.
Collapse
Affiliation(s)
- Nanfang Pan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cheng Yang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Aniruddha Shekara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Samantha Hu
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
16
|
Larson KR, Jayakrishnan D, Soto Sauza KA, Goodson ML, Chaffin AT, Davidyan A, Pathak S, Fang Y, Gonzalez Magaña D, Miller BF, Ryan KK. FGF21 Induces Skeletal Muscle Atrophy and Increases Amino Acids in Female Mice: A Potential Role for Glucocorticoids. Endocrinology 2024; 165:bqae004. [PMID: 38244215 PMCID: PMC10849119 DOI: 10.1210/endocr/bqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/27/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Fibroblast growth factor-21 (FGF21) is an intercellular signaling molecule secreted by metabolic organs, including skeletal muscle, in response to intracellular stress. FGF21 crosses the blood-brain barrier and acts via the nervous system to coordinate aspects of the adaptive starvation response, including increased lipolysis, gluconeogenesis, fatty acid oxidation, and activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Given its beneficial effects for hepatic lipid metabolism, pharmaceutical FGF21 analogues are used in clinical trials treatment of fatty liver disease. We predicted pharmacologic treatment with FGF21 increases HPA axis activity and skeletal muscle glucocorticoid signaling and induces skeletal muscle atrophy in mice. Here we found a short course of systemic FGF21 treatment decreased muscle protein synthesis and reduced tibialis anterior weight; this was driven primarily by its effect in female mice. Similarly, intracerebroventricular FGF21 reduced tibialis anterior muscle fiber cross-sectional area; this was more apparent among female mice than male littermates. In agreement with the reduced muscle mass, the topmost enriched metabolic pathways in plasma collected from FGF21-treated females were related to amino acid metabolism, and the relative abundance of plasma proteinogenic amino acids was increased up to 3-fold. FGF21 treatment increased hypothalamic Crh mRNA, plasma corticosterone, and adrenal weight, and increased expression of glucocorticoid receptor target genes known to reduce muscle protein synthesis and/or promote degradation. Given the proposed use of FGF21 analogues for the treatment of metabolic disease, the study is both physiologically relevant and may have important clinical implications.
Collapse
Affiliation(s)
- Karlton R Larson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Devi Jayakrishnan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Karla A Soto Sauza
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Michael L Goodson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Aki T Chaffin
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Arik Davidyan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA 95819, USA
| | - Suraj Pathak
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Yanbin Fang
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Diego Gonzalez Magaña
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Benjamin F Miller
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
17
|
Tao Y, Shen W, Zhou H, Li Z, Pi T, Wu H, Shi H, Huang F, Wu X. Sex differences in a corticosterone-induced depression model in mice: Behavioral, neurochemical, and molecular insights. Brain Res 2024; 1823:148678. [PMID: 37979605 DOI: 10.1016/j.brainres.2023.148678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Depression is characterized by a significant sex disparity, with higher rates observed in women compared to men. This study aimed to investigate the impact of sex on depressive behaviors and explore the underlying mechanisms using a corticosterone (CORT)-induced depression model in mice. Behavioral tests, Nissl staining, UPLC-MS/MS, and Western blot analysis were performed to assess behavioral changes, as well as neuronal alterations, neurotransmitter levels, and protein expressions in the hippocampus. The mice in the model group exhibited sex-specific anxiety- and depression-like behaviors. Nissl staining revealed structural abnormalities in the CA3 region of the hippocampus in females. Neurotransmitter analysis indicated decreased serotonin and norepinephrine levels in both sexes, while glutamate levels were elevated in females. Furthermore, female mice demonstrated elevated serum CORT levels. Western blot analysis revealed sex-specific alterations in specific protein expression. Female mice exhibited downregulated glucocorticoid receptor and brain-derived neurotrophic factor expression, whereas male mice showed minimal changes. Additionally, female mice displayed reduced phosphorylated AKT, phosphorylated PI3K, and phosphorylated mTOR levels. These findings enhance our understanding of sex-specific differences in the CORT-induced depression model and provide insights into the underlying mechanisms of depression. This research emphasizes sex in depression studies and supports tailored interventions.
Collapse
Affiliation(s)
- Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Wei Shen
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Ting Pi
- Kunming Yan'an Hospital Chenggong Hospital, PR China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
18
|
Ernst M, Cogo-Moreira H, Desai J, Merke DP. Sexual dimorphism in anxiety is programmed in-utero by sex-steroids: Proof of concept using a disease-model and stress responses to COVID pandemic. Psychiatry Res 2024; 331:115623. [PMID: 38064910 PMCID: PMC10872369 DOI: 10.1016/j.psychres.2023.115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/16/2023] [Accepted: 11/20/2023] [Indexed: 01/02/2024]
Abstract
Sex differences in the psychological impact of the COVID-19 pandemic have been consistently reported, showing disproportionally high rates of anxiety/distress in women relative to men. The mechanisms underlying this sexual dimorphism remain unclear. The present study queries the potential protective role of early hyperandrogenism on brain development. A natural model of sex-steroids abnormality, classic congenital adrenal hyperplasia (CAH), was used to test this question. CAH is characterized by adrenal androgen overproduction in utero (prenatal) through the neonatal critical developmental period. An online survey collected information on subjective responses to the COVID-19 pandemic. Matched on demographic variables, 60 adults carrying a diagnosis of classic CAH and 240 adults from the general population (non-CAH) were compared on levels of anxiety/distress in the first year of the COVID-19 pandemic (May 2020-April 2021). Structural Equation Modeling was used to test the modulation by CAH status of Sex effects on anxiety/distress. Results revealed lower levels of anxiety/distress in the female CAH group compared to the other 3 groups (male CAH, female non-CAH, and male non-CAH). This finding suggests that pre-neonatal hyperandrogenism might impact the development of neural circuits underlying anxiety processes, in a way that enhances resilience to chronic stress.
Collapse
Affiliation(s)
- Monique Ernst
- National Institute of Mental Health, Bethesda, MD, USA.
| | - Hugo Cogo-Moreira
- Department of Education, ICT and Learning, Østfold University College, Norway
| | - Jay Desai
- National Institutes of Health Clinical Center US, USA
| | - Deborah P Merke
- National Institute of Mental Health, Bethesda, MD, USA; National Institutes of Health Clinical Center US, USA; Eunice Kennedy Shriver National Institute of Child Health and Human Development US, USA.
| |
Collapse
|
19
|
Ravaglia IC, Jasodanand V, Bhatnagar S, Grafe LA. Sex differences in body temperature and neural power spectra in response to repeated restraint stress. Stress 2024; 27:2320780. [PMID: 38414377 PMCID: PMC10989713 DOI: 10.1080/10253890.2024.2320780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Repeated stress is associated with an increased risk of developing psychiatric illnesses such as post-traumatic stress disorder (PTSD), which is more common in women, yet the neurobiology behind this sex difference is unknown. Habituation to repeated stress is impaired in PTSD, and recent preclinical studies have shown that female rats do not habituate as fully as male rats to repeated stress, which leads to impairments in cognition and sleep. Further research should examine sex differences after repeated stress in other relevant measures, such as body temperature and neural activity. In this study, we analyzed core body temperature and EEG power spectra in adult male and female rats during restraint, as well as during sleep transitions following stress. We found that core body temperature of male rats habituated to repeated restraint more fully than female rats. Additionally, we found that females had a higher average beta band power than males on both days of restraint, indicating higher levels of arousal. Lastly, we observed that females had lower delta band power than males during sleep transitions on Day 1 of restraint, however, females demonstrated higher delta band power than males by Day 5 of restraint. This suggests that it may take females longer to initiate sleep recovery compared with males. These findings indicate that there are differences in the physiological and neural processes of males and females after repeated stress. Understanding the way that the stress response is regulated in both sexes can provide insight into individualized treatment for stress-related disorders.
Collapse
Affiliation(s)
- IC Ravaglia
- Bryn Mawr College, Department of Psychology, Bryn Mawr, PA, USA
| | - V Jasodanand
- Bryn Mawr College, Department of Psychology, Bryn Mawr, PA, USA
| | - S Bhatnagar
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - LA Grafe
- Bryn Mawr College, Department of Psychology, Bryn Mawr, PA, USA
| |
Collapse
|
20
|
Aizpurua-Perez I, Arregi A, Gonzalez D, Macia P, Ugartemendia G, Labaka A, Zabalza N, Perez-Tejada J. Resilience in Newly Diagnosed Breast Cancer Women: The Predictive Role of Diurnal Cortisol and Social Support. Biol Res Nurs 2024; 26:68-77. [PMID: 37477294 DOI: 10.1177/10998004231190074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
BACKGROUND Breast cancer is currently the most prevalent malignancy among women. Psychological resilience is an important factor that diminishes the stress-related emotional and psychosocial disturbances triggered when receiving the diagnosis. Furthermore, resilience appears to be associated with cortisol, the hormonal end-product of the hypothalamic-pituitary-adrenal axis; however, further studies are needed due to the mixed results reported. Thus, we aim to examine the predictive role of social support and cortisol in resilience among breast cancer patients. METHODS A total of 132 women with primary breast cancer completed the Medical Outcomes Study-Social Support Survey (MOS-SSS) and the Resilience Scale (RS-14) and provided four salivary samples for the estimation of participants' total daily cortisol production, for which the formula of the area under the curve with respect to the ground (AUCg) was applied. Moderation analyses were performed to study the influence of social support and AUCg on psychological resilience levels. RESULTS The regression analyses showed a direct significant effect for the emotional support subscale of MOS-SSS on resilience and the interaction between emotional support and AUCg was also found to be statistically significant. Specifically, the conditional effect of emotional support on resilience was found to be significant at middle (M = 3.08; p < .05) and low levels (M = .59; p < .001) of AUCg. CONCLUSIONS Our results suggest that newly diagnosed breast cancer women with middle and low diurnal cortisol profiles may benefit more from emotional support based-interventions while women with high diurnal cortisol may need more individualized therapies.
Collapse
Affiliation(s)
- Ibane Aizpurua-Perez
- Department of Basic Psychological Processes and Their Development, University of the Basque Country, San Sebastian, Spain
| | - Amaia Arregi
- Department of Basic Psychological Processes and Their Development, University of the Basque Country, San Sebastian, Spain
| | | | - Patricia Macia
- Department of Basic Psychological Processes and Their Development, University of the Basque Country, San Sebastian, Spain
| | | | - Ainitze Labaka
- Department of Nursing II, University of the Basque Country, San Sebastian, Spain
| | - Nerea Zabalza
- Oncologic Center (Onkologikoa), San Sebastian, Spain
| | | |
Collapse
|
21
|
Van Loh BM, Yaw AM, Breuer JA, Jackson B, Nguyen D, Jang K, Ramos F, Ho EV, Cui LJ, Gillette DLM, Sempere LF, Gorman MR, Tonsfeldt KJ, Mellon PL, Hoffmann HM. The transcription factor VAX1 in VIP neurons of the suprachiasmatic nucleus impacts circadian rhythm generation, depressive-like behavior, and the reproductive axis in a sex-specific manner in mice. Front Endocrinol (Lausanne) 2023; 14:1269672. [PMID: 38205198 PMCID: PMC10777845 DOI: 10.3389/fendo.2023.1269672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Background The suprachiasmatic nucleus (SCN) within the hypothalamus is a key brain structure required to relay light information to the body and synchronize cell and tissue level rhythms and hormone release. Specific subpopulations of SCN neurons, defined by their peptide expression, regulate defined SCN output. Here we focus on the vasoactive intestinal peptide (VIP) expressing neurons of the SCN. SCN VIP neurons are known to regulate circadian rhythms and reproductive function. Methods To specifically study SCN VIP neurons, we generated a novel knock out mouse line by conditionally deleting the SCN enriched transcription factor, Ventral Anterior Homeobox 1 (Vax1), in VIP neurons (Vax1Vip; Vax1fl/fl:VipCre). Results We found that Vax1Vip females presented with lengthened estrous cycles, reduced circulating estrogen, and increased depressive-like behavior. Further, Vax1Vip males and females presented with a shortened circadian period in locomotor activity and ex vivo SCN circadian period. On a molecular level, the shortening of the SCN period was driven, at least partially, by a direct regulatory role of VAX1 on the circadian clock genes Bmal1 and Per2. Interestingly, Vax1Vip females presented with increased expression of arginine vasopressin (Avp) in the paraventricular nucleus, which resulted in increased circulating corticosterone. SCN VIP and AVP neurons regulate the reproductive gonadotropin-releasing hormone (GnRH) and kisspeptin neurons. To determine how the reproductive neuroendocrine network was impacted in Vax1Vip mice, we assessed GnRH sensitivity to a kisspeptin challenge in vivo. We found that GnRH neurons in Vax1Vip females, but not males, had an increased sensitivity to kisspeptin, leading to increased luteinizing hormone release. Interestingly, Vax1Vip males showed a small, but significant increase in total sperm and a modest delay in pubertal onset. Both male and female Vax1Vip mice were fertile and generated litters comparable in size and frequency to controls. Conclusion Together, these data identify VAX1 in SCN VIP neurons as a neurological overlap between circadian timekeeping, female reproduction, and depressive-like symptoms in mice, and provide novel insight into the role of SCN VIP neurons.
Collapse
Affiliation(s)
- Brooke M. Van Loh
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Alexandra M. Yaw
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Joseph A. Breuer
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Brooke Jackson
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Duong Nguyen
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Krystal Jang
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Fabiola Ramos
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Emily V. Ho
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Laura J. Cui
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Dominique L. M. Gillette
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Lorenzo F. Sempere
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Michael R. Gorman
- Department of Psychology, University of California, San Diego, La Jolla, CA, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Karen J. Tonsfeldt
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Pamela L. Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Hanne M. Hoffmann
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
22
|
Xu FR, Wei ZH, Xu XX, Zhang XG, Wei CJ, Qi XM, Li YH, Gao XL, Wu Y. The hypothalamic steroidogenic pathway mediates susceptibility to inflammation-evoked depression in female mice. J Neuroinflammation 2023; 20:293. [PMID: 38062440 PMCID: PMC10704691 DOI: 10.1186/s12974-023-02976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Depression is two-to-three times more frequent among women. The hypothalamus, a sexually dimorphic area, has been implicated in the pathophysiology of depression. Neuroinflammation-induced hypothalamic dysfunction underlies behaviors associated with depression. The lipopolysaccharide (LPS)-induced mouse model of depression has been well-validated in numerous laboratories, including our own, and is widely used to investigate the relationship between neuroinflammation and depression. However, the sex-specific differences in metabolic alterations underlying depression-associated hypothalamic neuroinflammation remain unknown. METHODS Here, we employed the LPS-induced mouse model of depression to investigate hypothalamic metabolic changes in both male and female mice using a metabolomics approach. Through bioinformatics analysis, we confirmed the molecular pathways and biological processes associated with the identified metabolites. Furthermore, we employed quantitative real-time PCR, enzyme-linked immunosorbent assay, western blotting, and pharmacological interventions to further elucidate the underlying mechanisms. RESULTS A total of 124 and 61 differential metabolites (DMs) were detected in male and female mice with depressive-like behavior, respectively, compared to their respective sex-matched control groups. Moreover, a comparison between female and male model mice identified 37 DMs. We capitalized on biochemical clustering and functional enrichment analyses to define the major metabolic changes in these DMs. More than 55% of the DMs clustered into lipids and lipid-like molecules, and an imbalance in lipids metabolism was presented in the hypothalamus. Furthermore, steroidogenic pathway was confirmed as a potential sex-specific pathway in the hypothalamus of female mice with depression. Pregnenolone, an upstream component of the steroid hormone biosynthesis pathway, was downregulated in female mice with depressive-like phenotypes but not in males and had considerable relevance to depressive-like behaviors in females. Moreover, exogenous pregnenolone infusion reversed depressive-like behaviors in female mice with depression. The 5α-reductase type I (SRD5A1), a steroidogenic hub enzyme involved in pregnenolone metabolism, was increased in the hypothalamus of female mice with depression. Its inhibition increased hypothalamic pregnenolone levels and ameliorated depressive-like behaviors in female mice with depression. CONCLUSIONS Our study findings demonstrate a marked sexual dimorphism at the metabolic level in depression, particularly in hypothalamic steroidogenic metabolism, identifying a potential sex-specific pathway in female mice with depressive-like behaviors.
Collapse
Affiliation(s)
- Fu-Rong Xu
- Department of Nursing, The Second People's Hospital of Wuwei, Wuwei, 733000, China
| | - Zhen-Hong Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiao-Xia Xu
- Department of Nursing, People's Hospital of Wuwei, Wuwei, 733000, China
| | - Xiao-Gang Zhang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chao-Jun Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiao-Ming Qi
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Yong-Hong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China.
| | - Xiao-Ling Gao
- The Clinical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570100, China.
| | - Yu Wu
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China.
- School of Psychology, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
23
|
Seo JH, Kim ST, Jeon S, Kang JI, Kim SJ. Sex-dependent association of DNA methylation of HPA axis-related gene FKBP5 with obsessive-compulsive disorder. Psychoneuroendocrinology 2023; 158:106404. [PMID: 37769537 DOI: 10.1016/j.psyneuen.2023.106404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
AIMS Although hypothalamic-pituitary-adrenal (HPA) axis dysregulation in obsessive-compulsive disorder (OCD) has been reported, epigenetic changes in HPA axis-related genes have not been well studied in OCD. The present study investigated whether the epigenetic regulation of FK506-binding protein 51 gene (FKBP5) intron 7 is associated with OCD status in each sex. In addition, relationships among the DNA methylation levels of FKBP5 intron 7, OCD status and early-life trauma were explored. METHODS A total of 267 patients with OCD and 201 controls aged between 18 and 40 years were recruited. Demographic and clinical assessment, FKBP5 rs1360780 genotyping, and pyrosequencing of FKBP5 intron 7 were conducted. DNA was extracted from peripheral blood leucocytes. First, multivariate analysis of covariance for differential DNA methylation levels between OCD patients and controls was conducted with adjustment for FKBP5 rs1360780 genotype, early-life trauma, depressive symptoms, and age as covariates in each sex. Next, path analysis was conducted to determine the mediation effects of DNA methylation levels of FKBP5 between early-life trauma and OCD status. In addition, sensitivity analyses for medication and lifetime major depression were also performed. RESULTS DNA methylation at the FKBP5 intron 7 CpG site was significantly lower in men with OCD, compared to controls (mean difference -1.33%, 95% CI -2.11 to -0.55, p < 0.001). The results remained significant for drug naïve or free subjects (mean difference -1.27%, 95% CI -2.18 to -0.37, p = 0.006, in men) and for subjects without lifetime major depressive disorder (mean difference -1.60%, 95% CI -2.54 to -0.66, p < 0.001, in men). The mediation effect of DNA methylation levels was not significant between early-life trauma and OCD status. CONCLUSION These findings suggest that epigenetic factors of HPA axis-related gene FKBP5 may play a role in the pathogenesis of OCD. Further studies are needed to determine how altered DNA methylation of FKBP5 intron 7 and HPA axis function are involved in OCD.
Collapse
Affiliation(s)
- Jun Ho Seo
- Department of Psychiatry, Yonsei University Wonju College of Medicine, Wonju, South Korea; Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Shin Tae Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea; Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sumoa Jeon
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jee In Kang
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea; Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| | - Se Joo Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea; Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
24
|
Aizpurua-Perez I, Arregi A, Labaka A, Martinez-Villar A, Perez-Tejada J. Psychological resilience and cortisol levels in adults: A systematic review. Am J Hum Biol 2023; 35:e23954. [PMID: 37395446 DOI: 10.1002/ajhb.23954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
Resilience or the capacity to "bend but not break" refers to the ability to maintain or regain psychobiological equilibrium during or after exposure to stressful life events. Specifically, resilience has been proposed as a potential resource for staving off pathological states that often emerge after exposure to repeated stress and that are related to alterations in circulating cortisol. The aim of this systematic review of the literature was to gather evidence related to the relationship between psychological resilience and cortisol levels in adult humans. An extensive systematic search was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method in the PubMed and Web of Science databases. In total, 1256 articles were identified and, of these, 35 peer-reviewed articles were included in the systematic review. We categorized findings according to (1) the short and long-term secretion period covered by the cortisol matrices selected by studies and also according to (2) the differentiated diurnal, phasic (acute), and tonic (basal) components of the HPA output to which they refer and their relationships with resilience. Reported relationships between psychological resilience and distinct cortisol output parameters varied widely across studies, finding positive, negative, and null associations between the two variables. Notably, several of the studies that found no relationship between resilience and cortisol used a single morning saliva or plasma sample as their assessment of HPA axis activity. Despite limitations such as the great variability of the instruments and methods used by the studies to measure both resilience and cortisol, together with their high heterogeneity and small sample sizes, the evidence found in this systematic review points to the potential of resilience as a modifiable key factor to modulate the physiological response to stress. Therefore, further exploration of the interaction between the two variables is necessary for the eventual development of future interventions aimed at promoting resilience as an essential component of health prevention.
Collapse
Affiliation(s)
- Ibane Aizpurua-Perez
- Department of Basic Psychological Processes and their Development, University of the Basque Country, San Sebastian, Spain
| | - Amaia Arregi
- Department of Basic Psychological Processes and their Development, University of the Basque Country, San Sebastian, Spain
| | - Ainitze Labaka
- Department of Nursing II, University of the Basque Country, San Sebastian, Spain
| | | | | |
Collapse
|
25
|
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, Hallal EM, Gilman TL. Heterotypic stressors unmask behavioral influences of PMAT deficiency in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555632. [PMID: 37693400 PMCID: PMC10491137 DOI: 10.1101/2023.08.30.555632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors - fear conditioning, and swim stress - in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map on to any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.
Collapse
Affiliation(s)
- Brady L Weber
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Marissa M Nicodemus
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Allianna K Hite
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Isabella R Spalding
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Jasmin N Beaver
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Lauren R Scrimshaw
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Sarah K Kassis
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Julie M Reichert
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Matthew T Ford
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Cameron N Russell
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Elayna M Hallal
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - T Lee Gilman
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
26
|
Szenczi P, Jiménez Gallardo A, Urrutia A, Hudson R, Muñoz-Delgado J, Bánszegi O. Non-invasive, real-time stress measurement: Vocalization compared with thermal imaging in kittens of the domestic cat in response to social separation. Behav Processes 2023; 213:104955. [PMID: 37805083 DOI: 10.1016/j.beproc.2023.104955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Finding tools to assess the stress response which can be easily applied, are non-invasive, reliable and measured in real time is still a relevant topic in many areas of biology. Vocal characteristics and temperature of certain body areas have been suggested to reflect HPA axis and ANS activation. We hypothesized that changes in vocalizations and peripheral body temperature will show the magnitude of the stress response, and that the change in these will covary. Our aim was to measure the change in vocal characteristics and eye and nasal temperature of kittens (n = 43 from nine litters of seven mixed-breed mothers) during a potentially stressful event and to test how these correlated. We found change in several vocal and thermal parameters during a short social separation. Our findings indicate that arousal due to ANS activation in kittens of the domestic cat resulted in an increasing number of vocalisations of longer duration and higher intensity, and in lower and a wider range in fundamental frequency. Calls also became less tonal with more jitter. Change in temperature was generally negative in the lacrimal caruncle as well as in the rhinarium, but with great variance across individuals. Change in eye temperature positively correlated with the intensity of the calls and the change in nose temperature positively correlated with the change in call length. The results suggest the continued difficulty in interpreting both physiological and behavioural data to assess an individual´s stress response.
Collapse
Affiliation(s)
- Péter Szenczi
- CONACYT - Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Unidad Psicopatología y Desarrollo, Calz. México-Xochimilco 101, CP 14370 Ciudad de México, Mexico
| | - Alejandro Jiménez Gallardo
- CONACYT - Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Unidad Psicopatología y Desarrollo, Calz. México-Xochimilco 101, CP 14370 Ciudad de México, Mexico
| | - Andrea Urrutia
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1er Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, CP 04510 Ciudad de México, Mexico
| | - Robyn Hudson
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, CP 04510 Ciudad de México, Mexico
| | - Jairo Muñoz-Delgado
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Laboratorio de Cronoecología y Etología Humana, Calz. México-Xochimilco 101, CP 14370 Ciudad de México, Mexico
| | - Oxána Bánszegi
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, CP 04510 Ciudad de México, Mexico.
| |
Collapse
|
27
|
Mueller B. Episodic Migraine and POTS. Curr Pain Headache Rep 2023; 27:757-763. [PMID: 37804458 DOI: 10.1007/s11916-023-01173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/09/2023]
Abstract
PURPOSE OF REVIEW Migraine is prevalent in patients with postural orthostatic tachycardia syndrome (POTS). The purpose of this review is to summarize and interpret studies that examine stress response systems in patients with migraine, focusing on their relevance to the pathologies associated with POTS. Important structural and functional components of the stress response network are also reviewed. RECENT FINDINGS In patients with migraine, studies examining the autonomic nervous system have demonstrated interictal sympathetic hypofunction and ictal sympathetic hyperfunction, while those focusing on the hypothalamic-pituitary-adrenal axis have demonstrated elevated responsivity. There is evidence that activation of these stress response systems during a migraine episode may exacerbate vascular dysfunction and play a role in the development of central sensitization. Activation of the stress response systems during an episode of migraine has the potential to exacerbate the pathology of POTS. Treatment approaches for the patient with comorbid episodic migraine and POTS should consider the etiology of POTS.
Collapse
Affiliation(s)
- Bridget Mueller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5 East 98th Street, Box 1139, New York, NY, 10029, USA.
| |
Collapse
|
28
|
Daoust AR, Green H, Vandermeer MRJ, Liu P, Stanton K, Harkness KL, Hayden EP. Total cortisol output during an acute stressor predicts youths' internalizing symptoms during the COVID-19 pandemic. Biol Psychol 2023; 184:108714. [PMID: 37839519 DOI: 10.1016/j.biopsycho.2023.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Individual differences in cortisol output may influence adolescents' adjustment to the COVID-19 pandemic; however, boys and girls may differ in terms of associations between cortisol output and internalizing symptoms in the context of COVID-19-related stress. We examined whether pre-pandemic cortisol output during an acute stressor, assessed approximately three years prior to the pandemic, predicted change in adolescents' internalizing symptoms early during the COVID-19 pandemic. Consistent with previous work on other life stressors, girls' cortisol output was positively associated with anxious and somatic symptoms early in the pandemic. Conversely, cortisol output and depressive symptoms were negatively associated for boys; boys with higher cortisol had depressive symptoms which significantly decreased over time. Findings suggest that hypothalamic-pituitary-adrenal axis stress functioning plays a role in shaping differences between adolescent boys' and girls' adjustment during the experience of a ubiquitous chronic stressor.
Collapse
Affiliation(s)
- Andrew R Daoust
- Department of Psychology, Western University, London, Ontario, Canada.
| | - Haley Green
- Department of Psychology, Western University, London, Ontario, Canada
| | - Matthew R J Vandermeer
- Anxiety Treatment & Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Pan Liu
- Department of Psychology, North Dakota State University, Fargo, ND, USA
| | - Kasey Stanton
- Department of Psychology, University of Wyoming, Laramie, WY, USA
| | - Kate L Harkness
- Department of Psychology, Queens University, Kingston, Ontario, Canada
| | | |
Collapse
|
29
|
Ismail A, Tengku Ismail TA, Mohamad Marzuki MF. Stress Among the Adult Population During COVID-19 Pandemic in Kedah, Malaysia: Association Between Sociodemographics and the Movement Control Order Period. Cureus 2023; 15:e47619. [PMID: 38022193 PMCID: PMC10667625 DOI: 10.7759/cureus.47619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background The COVID-19 pandemic has led to a significant increase in the prevalence of stress worldwide. However, the extent and factors associated with psychological distress during COVID-19 among the local population in Kedah, Malaysia, have not been adequately explored. This study aimed to determine the prevalence and factors associated with stress among the adult population in Kedah, Malaysia, during the COVID-19 pandemic. Materials and methods We conducted a cross-sectional study using a retrospective record review. A simple random sampling was applied among the adult population of Kedah who were screened for mental health well-being from January 2021 until March 2022. A proforma checklist that consists of sociodemographic and clinical factors and the date of screening was used to collect the data. A descriptive and multiple logistic regression was conducted, and analysis was done by SPSS version 26 (IBM Inc., Armonk, New York). The dependent variables were the presence of stress incorporated self-reported symptoms ranging from mild to very severe. The independent variables were sociodemographic, clinical factors, and movement control order period, which refers to the period when the state of Kedah experienced all the different phases of movement control order (MCO), which were from 1 January 2021 until 28 June 2021. Results In total, 562 adults were included. The mean age was 31.75 years, and the majority were female (69.6%). The prevalence of stress was 45.7% (95% CI 41.6%, 49.8%), with a total of 257 people. The majority of them did not have stress, consisting of 305 people (54.3%), followed by 69 people (12.3%) who reported severe stress, 67 people (11.9%) who reported moderate, 66 people (11.7%) who reported mild, and 55 people (9.8%) who reported very severe stress. The significant factor associated with stress among the adult population in Kedah, Malaysia, during the COVID-19 pandemic was the female gender (Adj OR 3.035 95% CI: 2.007 to 4.591, p-value <0.001). Being unemployed (Adj OR 2.171 95% CI: 1.480 to 3.185, p-value <0.001) and being under movement control order period was also associated with stress (Adj OR 0.383 95% CI: 0.264 to 0.555, p-value <0.001). Conclusion The prevalence of stress among the adult population during the COVID-19 pandemic in Kedah was 45.7%, with a total of 257 people, higher than other studies. Being female and unemployed was associated with stress, while the movement control order period was a protective factor against stress. Preventive strategies should be tailored based on the vulnerabilities of these groups, such as the development of more effective community-based interventions for safeguarding the mental health of the general public during future pandemics.
Collapse
Affiliation(s)
- Amalina Ismail
- Department of Community Medicine, Universiti Sains Malaysia, Kubang Kerian, MYS
| | | | | |
Collapse
|
30
|
Lai CW, Chang CH. Pharmacological activation of the amygdala, but not single prolonged footshock-induced acute stress, interferes with cue-induced motivation toward food rewards in rats. Front Behav Neurosci 2023; 17:1252868. [PMID: 37781505 PMCID: PMC10538645 DOI: 10.3389/fnbeh.2023.1252868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
In the face of threats, animals adapt their behaviors to cope with the situation. Under such circumstances, irrelevant behaviors are usually suppressed. In this study, we examined whether food-seeking motivation would decrease under activation of the amygdala, an important nucleus in the regulation of stress response in the central nervous system, or after a physical acute stress session. In Experiment 1, we pharmacologically activated the basolateral nucleus (BLA) or the central nucleus of the amygdala (CeA) before a cue-induced reinstatement test in rats. Our results showed that activation of the BLA or the CeA abolished cue-induced motivation toward food rewards, while locomotor activity and free food intake were not affected. In Experiments 2 and 3, we further assessed anxiety and despair levels, as well as cue-induced reinstatement, after a single prolonged footshock-induced acute stress in rats. Behaviorally, acute stress did not affect anxiety level, despair level, or cue-induced motivation toward food rewards. Physiologically, there was no difference in cellular activities of the amygdala immediately after acute stress. To conclude, our results suggested that pharmacological activation of the amygdala decreased cue-induced motivation toward food reward. However, physiological acute stress did not immediately interfere with the negative emotions, motivation, or amygdala activities of the animals.
Collapse
Affiliation(s)
- Chien-Wen Lai
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-hui Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
31
|
Wright J, Buch K, Beattie UK, Gormally BMG, Romero LM, Fefferman N. A mathematical representation of the reactive scope model. J Math Biol 2023; 87:51. [PMID: 37648794 PMCID: PMC10468437 DOI: 10.1007/s00285-023-01983-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/15/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Researchers have long sought to understand and predict an animal's response to stressful stimuli. Since the introduction of the concept of homeostasis, a variety of model frameworks have been proposed to describe what is necessary for an animal to remain within this stable physiological state and the ramifications of leaving it. Romero et al. (Horm Behav 55(3):375-389, 2009) introduced the reactive scope model to provide a novel conceptual framework for the stress response that assumes an animal's ability to tolerate a stressful stimulus may degrade over time in response to the stimulus. We provide a mathematical formulation for the reactive scope model using a system of ordinary differential equations and show that this model is capable of recreating existing experimental data. We also provide an experimental method that may be used to verify the model as well as several potential additions to the model. If future experimentation provides the necessary data to estimate the model's parameters, the model presented here may be used to make quantitative predictions about physiological mediator levels during a stress response and predict the onset of homeostatic overload.
Collapse
Affiliation(s)
- Justin Wright
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, 569 Dabney, Knoxville, 37996 TN USA
- National Institute of Mathematical and Biological Synthesis, Knoxville, TN 37996 USA
| | - Kelly Buch
- Department of Mathematics and Statistics, Austin Peay State University, Maynard Mathematics and Computer Science Building Room 205, Clarksville, TN 37044 USA
| | - Ursula K. Beattie
- Department of Biology, Tufts University, 200 Boston Ave #4700, Medford, MA 02155 USA
| | - Brenna M. G. Gormally
- Department of Biology, Tufts University, 200 Boston Ave #4700, Medford, MA 02155 USA
| | - L. Michael Romero
- Department of Biology, Tufts University, 200 Boston Ave #4700, Medford, MA 02155 USA
| | - Nina Fefferman
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, 569 Dabney, Knoxville, 37996 TN USA
- National Institute of Mathematical and Biological Synthesis, Knoxville, TN 37996 USA
| |
Collapse
|
32
|
Brivio E, Kos A, Ulivi AF, Karamihalev S, Ressle A, Stoffel R, Hirsch D, Stelzer G, Schmidt MV, Lopez JP, Chen A. Sex shapes cell-type-specific transcriptional signatures of stress exposure in the mouse hypothalamus. Cell Rep 2023; 42:112874. [PMID: 37516966 DOI: 10.1016/j.celrep.2023.112874] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/19/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Stress-related psychiatric disorders and the stress system show prominent differences between males and females, as well as strongly divergent transcriptional changes. Despite several proposed mechanisms, we still lack the understanding of the molecular processes at play. Here, we explore the contribution of cell types to transcriptional sex dimorphism using single-cell RNA sequencing. We identify cell-type-specific signatures of acute restraint stress in the paraventricular nucleus of the hypothalamus, a central hub of the stress response, in male and female mice. Further, we show that a history of chronic mild stress alters these signatures in a sex-specific way, and we identify oligodendrocytes as a major target for these sex-specific effects. This dataset, which we provide as an online interactive app, offers the transcriptomes of thousands of individual cells as a molecular resource for an in-depth dissection of the interplay between cell types and sex on the mechanisms of the stress response.
Collapse
Affiliation(s)
- Elena Brivio
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aron Kos
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | - Stoyo Karamihalev
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Andrea Ressle
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Rainer Stoffel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Dana Hirsch
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gil Stelzer
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
33
|
Robison LS, Gannon OJ, Salinero AE, Abi-Ghanem C, Kelly RD, Riccio DA, Mansour FM, Zuloaga KL. Sex differences in metabolic phenotype and hypothalamic inflammation in the 3xTg-AD mouse model of Alzheimer's disease. Biol Sex Differ 2023; 14:51. [PMID: 37559092 PMCID: PMC10410820 DOI: 10.1186/s13293-023-00536-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is notably associated with cognitive decline resulting from impaired function of hippocampal and cortical areas; however, several other domains and corresponding brain regions are affected. One such brain region is the hypothalamus, shown to atrophy and develop amyloid and tau pathology in AD patients. The hypothalamus controls several functions necessary for survival, including energy and glucose homeostasis. Changes in appetite and body weight are common in AD, often seen several years prior to the onset of cognitive symptoms. Therefore, altered metabolic processes may serve as a biomarker for AD, as well as a target for treatment, considering they are likely both a result of pathological changes and contributor to disease progression. Previously, we reported sexually dimorphic metabolic disturbances in ~ 7-month-old 3xTg-AD mice, accompanied by differences in systemic and hypothalamic inflammation. METHODS In the current study, we investigated metabolic outcomes and hypothalamic inflammation in 3xTg-AD males and females at 3, 6, 9, and 12 months of age to determine when these sex differences emerge. RESULTS In agreement with our previous study, AD males displayed less weight gain and adiposity, as well as reduced blood glucose levels following a glucose challenge, compared to females. These trends were apparent by 6-9 months of age, coinciding with increased expression of inflammatory markers (Iba1, GFAP, TNF-α, and IL-1β) in the hypothalamus of AD males. CONCLUSIONS These findings provide additional evidence for sex-dependent effects of AD pathology on energy and glucose homeostasis, which may be linked to hypothalamic inflammation.
Collapse
Affiliation(s)
- Lisa S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
- Department of Psychology and Neuroscience, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328, USA.
| | - Olivia J Gannon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Abigail E Salinero
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Charly Abi-Ghanem
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Richard D Kelly
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - David A Riccio
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Febronia M Mansour
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
34
|
Prazeres F, Maricoto T, Lima IS, Simões P, Simões JA. COVID-19 or threat of a nuclear war in Europe? A cross-sectional study of anxiety levels in adults living in Portugal. Front Public Health 2023; 11:1159172. [PMID: 37583890 PMCID: PMC10423817 DOI: 10.3389/fpubh.2023.1159172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/23/2023] [Indexed: 08/17/2023] Open
Abstract
Background Since 2019, Europe has experienced ongoing stressors with the emergence of the COVID-19 pandemic and the Russian-Ukrainian War, which have had social, financial, physical, and psychological impacts. Studies suggest that anxiety, fear, post-traumatic stress disorder, depression, and other psychological disorders are common in such situations, and there is a need for more research on the impact of the war on mental health in Portugal. The main goal of the present study was to assess the impact of the fear of COVID-19 and anxiety related to nuclear war on the general anxiety levels of adult individuals living in Portugal. Methods A cross-sectional study was conducted from May to July 2022 using an online questionnaire built on the Google Forms platform. Portuguese-speaking male and female individuals aged 18 years or older, who provided informed consent and agreed to participate, were included. The outcome variable was defined using the Portuguese version of the GAD-7 scale, while the main predictors were the FCV-19S and the NWA Scale in Portuguese. Linear and logistic regression models were used to test associations between predictors and outcome variable. Results The study included 1,182 participants, with a mean age of 46.5 (±11.7) years, mostly women (80.6%). The global mean GAD-7 score was 5.8 (±4.5) points, and 17.9% of the participants scored above the 10-point cutoff. Higher scores were found in both the FCV-19S and the NWA scale among participants with anxiety, as measured by both a 10-point cutoff (p < 0.001), and GAD-7 scale mean scores (p < 0.001). The study showed that fear of COVID-19 [OR of 1.133 (95%CI: 1.097-1.170)] and, at a lesser extent, nuclear war anxiety [OR of 1.020 (95%CI, 1.009-1.031)] contribute to anxiety in the general population. This is also true for those with a personal history of anxiety, revealed by multiple regression. Discussion This study contributes to the research on COVID-19's impact on anxiety and provides the first comprehensive assessment of nuclear war anxiety in Portugal. Results highlight the need for long-term care for anxiety, as prevalence is expected to increase due to the pandemic and war, even in non-conflict areas like Portugal.
Collapse
Affiliation(s)
- Filipe Prazeres
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- Family Health Unit Beira Ria, Gafanha da Nazaré, Portugal
- CINTESIS@RISE, MEDCIDS, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Tiago Maricoto
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- Family Health Unit Beira Ria, Gafanha da Nazaré, Portugal
| | | | - Pedro Simões
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- Personalized Health Care Unit Fundão, Fundão, Portugal
| | - José Augusto Simões
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- CINTESIS@RISE, MEDCIDS, Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
35
|
Duncan PJ, Romanò N, Nair SV, Murray JF, Le Tissier P, Shipston MJ. Sex differences in pituitary corticotroph excitability. Front Physiol 2023; 14:1205162. [PMID: 37534368 PMCID: PMC10391550 DOI: 10.3389/fphys.2023.1205162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Stress-related illness represents a major burden on health and society. Sex differences in stress-related disorders are well documented, with women having twice the lifetime rate of depression compared to men and most anxiety disorders. Anterior pituitary corticotrophs are central components of the hypothalamic-pituitary-adrenal (HPA) axis, receiving input from hypothalamic neuropeptides corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP), while regulating glucocorticoid output from the adrenal cortex. The dynamic control of electrical excitability by CRH/AVP and glucocorticoids is critical for corticotroph function; however, whether corticotrophs contribute to sexually differential responses of the HPA axis, which might underlie differences in stress-related disorders, is very poorly understood. Using perforated patch clamp electrophysiology in corticotrophs from mice expressing green fluorescent protein under the control of the Pomc promoter, we characterized basal and secretagogue-evoked excitability. Both male and female corticotrophs show predominantly single-spike action potentials under basal conditions; however, males predominantly display spikes with small-amplitude (<20 mV) afterhyperpolarizations (B-type), whereas females displayed a mixture of B-type spikes and spikes with a large-amplitude (>25 mV) afterhyperpolarization (A-type). In response to CRH, or CRH/AVP, male cells almost exclusively transition to a predominantly pseudo-plateau bursting, whereas only female B-type cells display bursting in response to CRH±AVP. Treatment of male or female corticotrophs with 1 nM estradiol (E2) for 24-72 h has no effect on the proportion of cells with A- or B-type spikes in either sex. However, E2 results in the cessation of CRH-induced bursting in both male and female corticotrophs, which can be partially reversed by adding a BK current using a dynamic clamp. RNA-seq analysis of purified corticotrophs reveals extensive differential gene expression at the transcriptional level, including more than 71 mRNAs encoding ion channel subunits. Interestingly, there is a two-fold lower level (p < 0.01) of BK channel pore-forming subunit (Kcnma1) expression in females compared to males, which may partially explain the decrease in CRH-induced bursting. This study identified sex differences at the level of the anterior pituitary corticotroph ion channel landscape and control of both spontaneous and CRH-evoked excitability. Determining the mechanisms of sex differences of corticotroph and HPA activity at the cellular level could be an important step for better understanding, diagnosing, and treating stress-related disorders.
Collapse
|
36
|
Smith KB, Murack M, Ismail N. The sex-dependent and enduring impact of pubertal stress on health and disease. Brain Res Bull 2023; 200:110701. [PMID: 37422090 DOI: 10.1016/j.brainresbull.2023.110701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Illness is often predicated long before the manifestation of its symptoms. Exposure to stressful experiences particularly during critical periods of development, such as puberty and adolescence, can induce various physical and mental illnesses. Puberty is a critical period of maturation for neuroendocrine systems, such as the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes. Exposure to adverse experiences during puberty can impede normal brain reorganizing and remodelling and result in enduring consequences on brain functioning and behaviour. Stress responsivity differs between the sexes during the pubertal period. This sex difference is partly due to differences in circulating sex hormones between males and females, impacting stress and immune responses differently. The effects of stress during puberty on physical and mental health remains under-examined. The purpose of this review is to summarize the most recent findings pertaining to age and sex differences in HPA axis, HPG axis, and immune system development, and describe how disruption in the functioning of these systems can propagate disease. Lastly, we delve into the notable neuroimmune contributions, sex differences, and the mediating role of the gut microbiome on stress and health outcomes. Understanding the enduring consequences of adverse experiences during puberty on physical and mental health will allow a greater proficiency in treating and preventing stress-related diseases early in development.
Collapse
Affiliation(s)
- Kevin B Smith
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Michael Murack
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Nafissa Ismail
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada; LIFE Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
37
|
Schloesser L, Lotter LD, Offermann J, Borucki K, Biemann R, Seitz J, Konrad K, Herpertz-Dahlmann B. Sex-dependent clinical presentation, body image, and endocrine status in long-term remitted anorexia nervosa. EUROPEAN EATING DISORDERS REVIEW 2023. [PMID: 37319038 DOI: 10.1002/erv.2997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Although anorexia nervosa (AN) in males has recently gained attention, knowledge of its psychological and physiological outcomes is still scarce. We explore sex-specific characteristics of long-term remitted AN with respect to residual eating disorder (ED) psychopathology, body image, and endocrinology. METHOD We recruited 33 patients with AN in remission for at least 18 months (24 women, 9 men) and 36 matched healthy controls (HCs). Eating disorder psychopathology and body image ideals were assessed via clinical interviews, questionnaires, and an interactive 3D body morphing tool. Plasma levels of leptin, free triiodothyronine, cortisol, and sex hormones were quantified. Univariate models controlled for age and weight were used to test for the effects of diagnosis and sex. RESULTS Both patient groups showed residual ED psychopathology but normal weight and hormone levels relative to HCs. Male remitted patients demonstrated significantly stronger muscularity-focused body image ideals, evident in interviews, self-reports, and behavioural data, than both female patients and HCs. CONCLUSIONS Sex-specific body image characteristics in patients with remitted AN point towards the need to adjust test instruments and diagnostic criteria to male-specific psychopathology. In the future, sufficiently powered studies should evaluate the risk of men with AN developing muscle dysmorphia in the long term.
Collapse
Affiliation(s)
- Louisa Schloesser
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Leon D Lotter
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Jülich Research Centre, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Jan Offermann
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Katrin Borucki
- Institute for Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ronald Biemann
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, Jülich Research Centre, Jülich, Germany
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
38
|
Lyraki R, Grabek A, Tison A, Weerasinghe Arachchige LC, Peitzsch M, Bechmann N, Youssef SA, de Bruin A, Bakker ERM, Claessens F, Chaboissier MC, Schedl A. Crosstalk between androgen receptor and WNT/β-catenin signaling causes sex-specific adrenocortical hyperplasia in mice. Dis Model Mech 2023; 16:dmm050053. [PMID: 37102205 PMCID: PMC10184674 DOI: 10.1242/dmm.050053] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Female bias is highly prevalent in conditions such as adrenal cortex hyperplasia and neoplasia, but the reasons behind this phenomenon are poorly understood. In this study, we show that overexpression of the secreted WNT agonist R-spondin 1 (RSPO1) leads to ectopic activation of WNT/β-catenin signaling and causes sex-specific adrenocortical hyperplasia in mice. Although female adrenals show ectopic proliferation, male adrenals display excessive immune system activation and cortical thinning. Using a combination of genetic manipulations and hormonal treatment, we show that gonadal androgens suppress ectopic proliferation in the adrenal cortex and determine the selective regulation of the WNT-related genes Axin2 and Wnt4. Notably, genetic removal of androgen receptor (AR) from adrenocortical cells restores the mitogenic effect of WNT/β-catenin signaling. This is the first demonstration that AR activity in the adrenal cortex determines susceptibility to canonical WNT signaling-induced hyperplasia.
Collapse
Affiliation(s)
- Rodanthi Lyraki
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| | - Anaëlle Grabek
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| | - Amélie Tison
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| | | | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Sameh A. Youssef
- Dutch Molecular Pathology Center, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
- Janssen Research and Development, 2340 Beerse, Belgium
| | - Alain de Bruin
- Dutch Molecular Pathology Center, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, the Netherlands
| | - Elvira R. M. Bakker
- Department of Pathology, University Medical Center Utrecht, 3508 AB, Utrecht, the Netherlands
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | | | - Andreas Schedl
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| |
Collapse
|
39
|
Gräfe EL, Reid HMO, Shkolnikov I, Conway K, Kit A, Acosta C, Christie BR. Women are Taking the Hit: Examining the Unique Consequences of Cannabis Use Across the Female Lifespan. Front Neuroendocrinol 2023; 70:101076. [PMID: 37217080 DOI: 10.1016/j.yfrne.2023.101076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Cannabis use has risen dramatically in recent years due to global decriminalization and a resurgence in the interest of potential therapeutic benefits. While emerging research is shaping our understanding of the benefits and harms of cannabis, there remains a paucity of data specifically focused on how cannabis affects the female population. The female experience of cannabis use is unique, both in the societal context and because of the biological ramifications. This is increasingly important given the rise in cannabis potency, as well as the implications this has for the prevalence of Cannabis Use Disorder (CUD). Therefore, this scoping review aims to discuss the prevalence of cannabis use and CUD in women throughout their lifespan and provide a balanced prospective on the positive and negative consequences of cannabis use. In doing so, this review will highlight the necessity for continued research that goes beyond sex differences.
Collapse
Affiliation(s)
- E L Gräfe
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - H M O Reid
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - I Shkolnikov
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - K Conway
- Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada
| | - A Kit
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - C Acosta
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - B R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.
| |
Collapse
|
40
|
Wongsaengchan C, McCafferty DJ, Evans NP, McKeegan DEF, Nager RG. Body surface temperature of rats reveals both magnitude and sex differences in the acute stress response. Physiol Behav 2023; 264:114138. [PMID: 36871696 DOI: 10.1016/j.physbeh.2023.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
Understanding how biological markers of stress relate to stressor magnitude is much needed and can be used in welfare assessment. Changes in body surface temperature can be measured using infrared thermography (IRT) as a marker of a physiological response to acute stress. While an avian study has shown that changes in body surface temperature can reflect the intensity of acute stress, little is known about surface temperature responses to stressors of different magnitudes and its sex-specificity in mammals, and how they correlate with hormonal and behavioural responses. We used IRT to collect continuous surface temperature measurements of tail and eye of adult male and female rats (Rattus norvegicus), for 30 minutes after exposure to one of three stressors (small cage, encircling handling or rodent restraint cone) for one minute, and cross-validated the thermal response with plasma corticosterone (CORT) and behavioural assessment. To obtain individual baseline temperatures and thermal responses to stress, rats were imaged in a test arena (to which they were habituated) for 30 seconds before and 30 minutes after being exposed to the stressor. In response to the three stressors, tail temperature initially decreased and then recovered to, or overshot the baseline temperature. Tail temperature dynamics differed between stressors; being restrained in the small cage was associated with the smallest drop in temperature, in male rats, and the fastest thermal recovery, in both sexes. Increases in eye temperature only distinguished between stressors early in the response and only in females. The post stressor increase in eye temperature was greater in the right eye of males and the left eye of females. In both sexes encircling may have been associated with the fastest increase in CORT. These results were in line with observed behavioural changes, with greater movement in rats exposed to the small cage and higher immobility after encircling. The female tail and eye temperature, as well as the CORT concentrations did not return to pre-stressor levels in the observation period, in conjunction with the greater occurrence of escape-related behaviours in female rats. These results suggest that female rats are more vulnerable to acute restraint stress compared to male rats and emphasise the importance of using both sexes in future investigations of stressor magnitude. This study demonstrates that acute stress induced changes in mammalian surface temperature measured with IRT relate to the magnitude of restraint stress, indicate sex differences and correlate with hormonal and behavioural responses. Thus, IRT has the potential to become a non-invasive method of continuous welfare assessment in unrestrained mammals.
Collapse
Affiliation(s)
- Chanakarn Wongsaengchan
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, KY16 9JP, United Kingdom
| | - Dominic J McCafferty
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Scottish Centre for Ecology and the Natural Environment, Rowardennan, G63 0AW, United Kingdom
| | - Neil P Evans
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Jarrett Building, Glasgow, G61 1QH, United Kingdom
| | - Dorothy E F McKeegan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Jarrett Building, Glasgow, G61 1QH, United Kingdom
| | - Ruedi G Nager
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
41
|
Molina P, Andero R, Armario A. Restraint or immobilization: a comparison of methodologies for restricting free movement in rodents and their potential impact on physiology and behavior. Neurosci Biobehav Rev 2023; 151:105224. [PMID: 37156310 DOI: 10.1016/j.neubiorev.2023.105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Restriction of free movement has historically been used as a model for inducing acute and chronic stress in laboratory animals. This paradigm is one of the most widely employed experimental procedures for basic research studies of stress-related disorders. It is easy to implement, and it rarely involves any physical harm to the animal. Many different restraint methods have been developed with variations in the apparatuses used and the degree of limitation of movement. Unfortunately, very few studies directly compare the differential impact of the distinct protocols. Additionally, restraint and immobilization terms are not differentiated and are sometimes used interchangeably in the literature. This review offers evidence of great physiological differences in the impact of distinct restraint procedures in rats and mice and emphasizes the need for a standardized language on this topic. Moreover, it illustrates the necessity of additional systematic studies that compare the effects of the distinct restraint methodologies, which would help to decide better which procedure should be used depending on the objectives of each particular study.
Collapse
Affiliation(s)
- Patricia Molina
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | - Raül Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Deparment of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain; ICREA, Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
42
|
Wright CJ, Milosavljevic S, Pocivavsek A. The stress of losing sleep: Sex-specific neurobiological outcomes. Neurobiol Stress 2023; 24:100543. [PMID: 37252645 PMCID: PMC10209346 DOI: 10.1016/j.ynstr.2023.100543] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Sleep is a vital and evolutionarily conserved process, critical to daily functioning and homeostatic balance. Losing sleep is inherently stressful and leads to numerous detrimental physiological outcomes. Despite sleep disturbances affecting everyone, women and female rodents are often excluded or underrepresented in clinical and pre-clinical studies. Advancing our understanding of the role of biological sex in the responses to sleep loss stands to greatly improve our ability to understand and treat health consequences of insufficient sleep. As such, this review discusses sex differences in response to sleep deprivation, with a focus on the sympathetic nervous system stress response and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We review sex differences in several stress-related consequences of sleep loss, including inflammation, learning and memory deficits, and mood related changes. Focusing on women's health, we discuss the effects of sleep deprivation during the peripartum period. In closing, we present neurobiological mechanisms, including the contribution of sex hormones, orexins, circadian timing systems, and astrocytic neuromodulation, that may underlie potential sex differences in sleep deprivation responses.
Collapse
Affiliation(s)
- Courtney J. Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
43
|
Asimakopoulos LO. Investigating the relationship between temperature and suicides during a period of 38 years in the prefecture of Attiki, Greece. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2023; 16:127-128. [PMID: 38591718 DOI: 10.1016/j.rpsm.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Lampros Orion Asimakopoulos
- Laboratory of Neurophysiology, Faculty of Medicine, School of Health Sciences, Democritus University of Thrace (DUTH), Thrace, Greece.
| |
Collapse
|
44
|
Associations of stressful life events with subthreshold depressive symptoms and major depressive disorder: The moderating role of gender. J Affect Disord 2023; 325:588-595. [PMID: 36657495 DOI: 10.1016/j.jad.2023.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Stressful life events (SLEs) are high-risk factors for subthreshold depressive symptoms (SDS) and major depressive disorder (MDD). This study sought to assess the association of SLEs with SDS and MDD, with a focus on gender effects. METHODS A total of 4132 participants were recruited from 34 primary health care settings. The Stressful Life Events Screening Questionnaire (SLESQ) was used to measure SLEs that participants had experienced in the past time. The Patient Health Questionnaire 9 (PHQ-9) was used to assess SDS, and the Mini-International Neuropsychiatry Interview (MINI) depression module was used to assess the diagnosis of MDD by trained psychiatrists. RESULTS In our sample (N = 4132), exposure to any SLEs was more common in individuals with SDS and MDD than in non-depressed population, and the proportion of emotional abuse was relatively high (SDS: 10.6 %; MDD: 33.9 %). After adjusting for control variables, people who experienced SLEs were at a higher risk of SDS and MDD. For males, those experiencing only one event were not at a higher risk of SDS (P = 0.061). For individuals who had experienced multiple SLEs, the association between SLEs and SDS was stronger in females than males. However, the association between SLEs and MDD was stronger in males than females. LIMITATIONS The cross-sectional study design and self-reported SLEs. CONCLUSIONS SLEs were associated with the increased risks of SDS and MDD. The associations of SLEs with SDS were more robust for females than males. In contrast, the association between SLEs and MDD was stronger in males than females.
Collapse
|
45
|
Shi T, Xu LL, Chen L, He J, Wang YK, Chen F, Chen Y, Giesy JP, Wang YT, Wu QH, Xu WL, Chen J, Xie P. Acute exposure to microcystins affects hypothalamic-pituitary axes of male rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120843. [PMID: 36509348 DOI: 10.1016/j.envpol.2022.120843] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Microcystins (MCs) produced by some cyanobacteria can cause toxicity in animals and humans. In recent years, growing evidence suggests that MCs can act as endocrine disruptors. This research systematically investigated effects of microcystin-LR (MC-LR) on endocrine organs, biosynthesis of hormones and positive/negative feedback of the endocrine system in rats. Male, Sprague-Dawley rats were acutely administrated MC-LR by a single intraperitoneal injection at doses of 45, 67.5 or 90 μg MC-LR/kg body mass (bm), and then euthanized 24 h after exposure. In exposed rats, histological damage of hypothalamus, pituitary, adrenal, testis and thyroid were observed. Serum concentrations of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT), expressions of genes and proteins for biosynthesis of hormones were lesser, which indicated an overall suppression of the hypothalamus-pituitary-adrenal (HPA) axis. Along the hypothalamus-pituitary-gonadal (HPG) axis, lesser concentrations of gonadotropin-releasing hormone (GnRH) and testosterone (T), but greater concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and estradiol (E2) were observed. Except for greater transcription of cyp19a1 in testes, transcriptions of genes and proteins for T and E2 biosynthesis along the HPG axis were lesser. As for the hypothalamus-pituitary-thyroid (HPT) axis, after MCs treatment, greater concentrations of thyroid-stimulating hormone (TSH), but lesser concentrations of free tri-iodothyronine (fT3) were observed in serum. Concentrations of free tetra-iodothyronine (fT4) were greater in rats dosed with 45 μg MCs/kg, bm, but lesser in rats dosed with 67.5 or 90 μg MCs/kg, bm. Transcripts of genes for biosynthesis of hormones and receptors along the HPT axis and expressions of proteins for biosynthesis of tetra-iodothyronine (T4) and tri-iodothyronine (T3) in thyroid were significantly altered. Cross-talk among the HPA, HPG and HPT axes probably occurred. It was concluded that MCs caused an imbalance of positive and negative feedback of hormonal regulatory axes, blocked biosynthesis of key hormones and exhibited endocrine-disrupting effects.
Collapse
Affiliation(s)
- Ting Shi
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Lin-Lin Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ye-Ke Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Feng Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Yang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane Road, East Lansing, MI, USA; Department of Environmental Sciences, Baylor University, Waco, TX, 76706, USA
| | - Yu-Ting Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Qian-Hui Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Wen-Li Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| |
Collapse
|
46
|
Abstract
Depression and anxiety disorders carry a tremendous worldwide burden and emerge as a significant cause of disability among western societies. Both disorders are known to disproportionally affect women, as they are twice more likely to be diagnosed and moreover, they are also prone to suffer from female-specific mood disorders. Importantly, the prevalence of these affective disorders has notably risen after the COVID pandemic, especially in women. In this chapter, we describe factors that are possibly contributing to the expression of such sex differences in depression and anxiety. For this, we overview the effect of transcriptomic and genetic factors, the immune system, neuroendocrine aspects, and cognition. Furthermore, we also provide evidence of sex differences in antidepressant response and their causes. Finally, we emphasize the importance to consider sex as a biological variable in preclinical and clinical research, which may facilitate the discovery and development of new and more efficacious antidepressant and anxiolytic pharmacotherapies for both women and men.
Collapse
Affiliation(s)
- Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
47
|
Berretz G, Packheiser J, Wolf OT, Ocklenburg S. A single dose of hydrocortisone does not alter interhemispheric transfer of information or transcallosal integration. Front Psychiatry 2023; 14:1054168. [PMID: 37143785 PMCID: PMC10151494 DOI: 10.3389/fpsyt.2023.1054168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Stress has been suggested as a factor that may explain the link between altered functional lateralization and psychopathology. Modulation of the function of the corpus callosum via stress hormones may be crucial in this regard. Interestingly, there is evidence that interhemispheric integration and hemispheric asymmetries are modifiable by endocrinological influences. In previous studies, our group could show an enhancing effect of acute stress on interhemispheric integration. To investigate if this effect can be attributed to an increase in the stress hormone cortisol, 50 male participants received 20 mg hydrocortisone or a placebo in a double-blind crossover design. In each test session, we collected EEG data while participants completed a lexical decision task and a Poffenberger paradigm. In the lexical decision task, we found shorter latencies of the N1 ERP component for contralateral compared to ipsilateral presentation of lexical stimuli. Similarly, we replicated the classical Poffenberger effect with shorter ERP latencies for stimuli presented in the contralateral visual field compared to the ipsilateral visual field. However, no effect of cortisol on latency differences between hemispheres could be detected. These results suggest that a temporary increase in cortisol alone might not be enough to affect the interhemispheric transfer of information via the corpus callosum. Together with previous results from our group, this suggests that chronically elevated stress hormone levels play a more central role in the relationship between altered hemispheric asymmetries and a variety of mental disorders.
Collapse
Affiliation(s)
- Gesa Berretz
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Gesa Berretz,
| | - Julian Packheiser
- Netherlands Institute for Neuroscience, Social Brain Lab, Amsterdam, Netherlands
| | - Oliver T. Wolf
- Department of Cognitive Psychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
48
|
Raff H, Glaeser BL, Szabo A, Olsen CM, Everson CA. Sleep restriction during opioid abstinence affects the hypothalamic-pituitary-adrenal (HPA) axis in male and female rats. Stress 2023; 26:2185864. [PMID: 36856367 PMCID: PMC10339708 DOI: 10.1080/10253890.2023.2185864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dynamics are disrupted by opioids and may be involved in substance abuse; this persists during withdrawal and abstinence and is associated with co-morbid sleep disruption leading to vulnerability to relapse. We hypothesized that chronic sleep restriction (SR) alters the HPA axis diurnal rhythm and the sexually dimorphic response to acute stressor during opioid abstinence. We developed a rat model to evaluate the effect of persistent sleep loss during opioid abstinence on HPA axis dynamics in male and female rats. Plasma ACTH and corticosterone were measured diurnally and in response to acute restraint stress in rats Before (control) compared to During subsequent opioid abstinence without or with SR. Abstinence, regardless of sleep state, led to an increase in plasma ACTH and corticosterone in the morning in males. There was a tendency for higher PM plasma ACTH during abstinence in SR males (p = 0.076). ACTH and corticosterone responses to restraint were reduced in male SR rats whereas there was a failure to achieve the post-restraint nadir in female SR rats. There was no effect of the treatments or interventions on adrenal weight normalized to body weight. SR resulted in a dramatic increase in hypothalamic PVN AVP mRNA and plasma copeptin in male but not female rats. This corresponded to the attenuation of the HPA axis stress response in SR males during opioid abstinence. We have identified a potentially unique, sexually dimorphic role for magnocellular vasopressin in the control of the HPA axis during opioid abstinence and sleep restriction.
Collapse
Affiliation(s)
- Hershel Raff
- Department of Medicine (Endocrinology and Molecular Medicine), Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Advocate Aurora Research Institute, Milwaukee, Wisconsin, USA
| | - Breanna L. Glaeser
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher M. Olsen
- Departments of Pharmacology & Toxicology and Neurosurgery, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Carol A. Everson
- Department of Medicine (Endocrinology and Molecular Medicine) and Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
49
|
Zhou Y, Wang Y, Huang M, Wang C, Pan Y, Ye J, Wu S, Wu C, Wang H, Wang T, Xiao A, Yu L. Psychological stress and psychological support of Chinese nurses during severe public health events. BMC Psychiatry 2022; 22:800. [PMID: 36536383 PMCID: PMC9761629 DOI: 10.1186/s12888-022-04451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
The domestic health care system has been facing a difficult task, especially in medical care, and Chinese nurses are under tremendous psychological pressure. Psychological support is a protective factor to relieve stress. This study examined the stress level and characteristics of Chinese nurses with different psychological support-seeking behaviours. Data from online questionnaires for this cross-sectional study were collected between January 2020 and February 2020 and yielded 2248 valid questionnaires for analysis with a response rate of 99.8%. General information of the respondents was also collected. The nurses' stress levels were assessed using the Perceived Stress Scale (PSS-10). T tests, chi-square tests, and linear regression were used to examine the relationships among the factors. The results of this survey showed that between January and February 2020, 26.9% of nurses received psychological counselling, and the proportion was higher among men and nurses with lower education. The PSS-10 was related to gender, age group, provincial severity, and confidence in the control of the epidemic. The results showed that psychological support can effectively improve the confidence of domestic nurses in the face of arduous work and effectively relieve the psychological pressure caused by a heavy workload.
Collapse
Affiliation(s)
- Yufang Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China
| | - Youtian Wang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China
| | - Meilian Huang
- The Third People's Hospital of North Guangdong, Shaoguan, China
| | - Chen Wang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China
| | - Yuanxin Pan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China
| | - Junrong Ye
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China
| | - Shengwei Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China
| | - Chenxin Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China
| | - Haoyun Wang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China
| | - Ting Wang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China
| | - Aixiang Xiao
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Rd, Liwan District, Guangzhou, 510370, China.
| | - Lin Yu
- The Affiliated TCM Hospital of Guangzhou Medical University, 16 Zhuji Rd, Liwan District, Guangzhou, 510310, China.
| |
Collapse
|
50
|
Chen Y, Zeng X, Tao L, Chen J, Wang Y. The influence of arts engagement on the mental health of isolated college students during the COVID-19 outbreak in China. Front Public Health 2022; 10:1021642. [PMID: 36457314 PMCID: PMC9706106 DOI: 10.3389/fpubh.2022.1021642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives The COVID-19 pandemic significantly impacted the mental health of college students. This study aimed to investigate the buffering effect of arts engagement on anxiety and resilience in college students during the COVID-19 pandemic. Study design A cross-sectional study. Methods The data were collected via an online survey during a wave of SARS-CoV-2 infections in Shanghai (March 15 to April 15, 2022). In total, 2,453 college students throughout China reported general anxiety symptom levels (according to the GAD-7), resilience (according to the Connor-Davidson Resilience Scale), frequency of receptive arts engagement in the previous year, exposure to risk situations, and behavioral changes due to the pandemic. Results During the current stage of the pandemic, 43.7% of college students suffered from varying degrees of anxiety, and 2.6% showed severe anxiety. Gender and learning stage were not associated with anxiety. Hierarchical regression analysis showed that the decision to return to academic institution, the degree of exposure to COVID-19, and the frequency of accepting art participation and resilience could significantly predict the anxiety level of college students. Gender, study stage, behavioral changes arising from COVID-19, and exposure to COVID-19 significantly predict the resilience level of college students. There was an association between high frequency music activities, reading activities and low anxiety level (p < 0.001). There was an association between high frequency digital art, music activities, reading and high resilience (p < 0.01). Conclusions Arts engagement appears to help students cope with mental health problems and those at risk. Policymakers should encourage college students to participate in art activities, especially in the context of social distancing.
Collapse
Affiliation(s)
- Yanying Chen
- Department of Industrial Design, School of Architecture and Art, Central South University, Changsha, China
| | - Xue Zeng
- Department of Industrial Design, School of Architecture and Art, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Junxiang Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya Medical College, Central South University, Changsha, China
| | - Yuhui Wang
- Department of Industrial Design, School of Architecture and Art, Central South University, Changsha, China
| |
Collapse
|