1
|
Le Breton T, Lyons M, Ignacio B, Auld TD, Ooi M. Conceptual model for assessing a science-policy-management framework for threat mitigation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14413. [PMID: 39467091 DOI: 10.1111/cobi.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 10/30/2024]
Abstract
Fire regimes are changing globally, leading to an increased need for management interventions to protect human lives and interests, potentially conflicting with biodiversity conservation. We conceptualized 5 major aspects of the process required to address threats to flora and used this conceptual model to examine and identify areas for improvement. We focused on threat identification, policy design, and action implementation. We illustrated the application of the conceptual model through a case study in southeastern Australia, where policies have been designed to prevent hazard reduction burns from exposing threatened flora to high-frequency fire (HFF). We examined whether threatened species have been accurately identified as threatened by HFF, species were accounted for in key policies, and implementation of the policy reduced the incidence of HFF for target species. Species were mostly identified accurately as being threatened by HFF, and, broadly, the policy effectively minimized the threat from HFF. However, 96 species did not have HFF identified as a threat, and another 36 were missing from the policy entirely. Outcomes regarding the reduction of threat from HFF since policy introduction were species specific, despite an average increase in fire interval of 2 years. Despite the policy, over half (55%) the species studied have been affected by HFF since the policy was introduced. Although relatively minor improvements could optimize threat identification and policy design, the mixed success of action implementation highlights limitations that warrant further investigation. Our conceptual model enabled us to make clear and targeted recommendations for how different aspects of the policy could be improved and where further work is needed. We propose the conceptual model can be useful in a variety of contexts.
Collapse
Affiliation(s)
- Tom Le Breton
- Centre for Ecosystem Science, School of Biological Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Mitchell Lyons
- Centre for Ecosystem Science, School of Biological Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Bettina Ignacio
- Centre for Ecosystem Science, School of Biological Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Tony D Auld
- Centre for Ecosystem Science, School of Biological Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Mark Ooi
- Centre for Ecosystem Science, School of Biological Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Karimi N, Mahler P, Beverly JL. Optimizing fuel treatments for community wildfire mitigation planning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122325. [PMID: 39243641 DOI: 10.1016/j.jenvman.2024.122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Fuel management is undertaken to mitigate the adverse consequences of wildfire. Finite mitigation budgets demand selective prioritization of forest stands for targeted fuel reduction treatments. A range of modeling methods have been used to identifiy optimal fuel treatment plans at various spatial and temporal scales of investigation; however, strategic analysis of fuel management alternatives can involve a range of limitations and challenges, including the prevalence of one-time solutions, static models lacking dynamic adaptability, and challenges in accounting for the stochastic nature of fire behaviour. To navigate these complexities, our study combines remote sensing-based analysis with a random search optimization algorithm to inform strategic fuel management and wildfire mitigation planning. For two communities in Alberta, Whitecourt and Hinton, we assessed landscape fire exposure within and around the built environment and rated hazardous fuels by the number of buildings they exposed (i.e., Building Exposure load, BEL). Through the assessment of BEL and the outcomes of the optimization algorithm, our model identified key areas for intervention, enabling a more informed allocation of mitigation resources. We found good alignment between expert-derived fuel treatment areas and our model-derived fuel reduction areas, PFRs, confirming the utility and relevance of our findings. The methodology is adaptable to diverse regional fuel characteristics and it also offers a phased implementation to assisting communities with financial constraints. The suggested systematic approach aids communities that lack local expertise in developing proactive fuel treatment strategies. Additionally, this study emphasizes the need to combine fuel treatment prioritization with community involvement, acknowledgment of potential local limitations, and financial planning to enhance its effectiveness and adaptability.
Collapse
Affiliation(s)
- Nima Karimi
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada
| | - Patrick Mahler
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada
| | - Jennifer L Beverly
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada.
| |
Collapse
|
3
|
Hanson CT, Chi TY, Baker BC, Khosla M, Dorsey MK. Postfire reproduction of a serotinous conifer, the giant sequoia, in the Nelder Grove, California. Ecol Evol 2024; 14:e11213. [PMID: 38571806 PMCID: PMC10990047 DOI: 10.1002/ece3.11213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
The giant sequoia, a serotinous conifer naturally occurring in mixed-conifer forests of the southern and central Sierra Nevada, California, USA, is the world's largest tree species. Giant sequoia reproduction has been severely lacking over the past century, due to fire exclusion, creating a significant conservation threat. Previous research on postfire sequoia reproduction in high-severity fire areas, relative to low- and moderate-severity areas, is limited. At 6 years postfire, we investigated giant sequoia reproduction in a high-severity fire area, and nearby low-/mixed-severity fire areas, in the Nelder Grove, which burned in 2017 in the Railroad fire. Postfire giant sequoia reproduction was positively correlated with fire severity in terms of density, height (growth), and proportion (relative to other conifer species), and sequoia seedling/sapling density was positively correlated with percent shrub cover. There was no correlation between distance to live sequoia seed source and density of sequoia reproduction. More research is needed in other mixed-severity fire areas, with larger high-severity fire patches, to determine whether a similar postfire response occurs elsewhere.
Collapse
Affiliation(s)
| | | | | | | | - Michael K. Dorsey
- Rob and Melani Walton Sustainability Solutions ServiceArizona State UniversityTempeArizonaUSA
| |
Collapse
|
4
|
Hood SM, Crotteau JS, Cleveland CC. Long-term efficacy of fuel reduction and restoration treatments in Northern Rockies dry forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2940. [PMID: 38212051 DOI: 10.1002/eap.2940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/12/2023] [Accepted: 10/28/2023] [Indexed: 01/13/2024]
Abstract
Fuel and restoration treatments seeking to mitigate the likelihood of uncharacteristic high-severity wildfires in forests with historically frequent, low-severity fire regimes are increasingly common, but long-term treatment effects on fuels, aboveground carbon, plant community structure, ecosystem resilience, and other ecosystem attributes are understudied. We present 20-year responses to thinning and prescribed burning treatments commonly used in dry, low-elevation forests of the western United States from a long-term study site in the Northern Rockies that is part of the National Fire and Fire Surrogate Study. We provide a comprehensive synthesis of short-term (<4 years) and mid-term (<14 years) results from previous findings. We then place these results in the context of a mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak that impacted the site 5-10 years post-treatment and describe 20-year responses to assess the longevity of restoration and fuel reduction treatments in light of the MPB outbreak. Thinning treatments had persistently lower forest density and higher tree growth, but effects were more pronounced when thinning was combined with prescribed fire. The thinning+prescribed fire treatment had the additional benefit of maintaining the highest proportion of ponderosa pine (Pinus ponderosa) for overstory and regeneration. No differences in understory native plant cover and richness or exotic species cover remained after 20 years, but exotic species richness, while low relative to native species, was still higher in the thinning+prescribed fire treatment than the control. Aboveground live carbon stocks in thinning treatments recovered to near control and prescribed fire treatment levels by 20 years. The prescribed fire treatment and control had higher fuel loads than thinning treatments due to interactions with the MPB outbreak. The MPB-induced changes to forest structure and fuels increased the fire hazard 20 years post-treatment in the control and prescribed fire treatment. Should a wildfire occur now, the thinning+prescribed fire treatment would likely have the lowest intensity fire and highest tree survival and stable carbon stocks. Our findings show broad support that thinning and prescribed fire increase ponderosa pine forest resilience to both wildfire and bark beetles for up to 20 years, but efficacy is waning and additional fuel treatments are needed to maintain resilience.
Collapse
Affiliation(s)
- Sharon M Hood
- USDA Forest Service, Rocky Mountain Research Station, Missoula, Montana, USA
| | - Justin S Crotteau
- USDA Forest Service, Rocky Mountain Research Station, Missoula, Montana, USA
| | - Cory C Cleveland
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| |
Collapse
|
5
|
Steel ZL, Jones GM, Collins BM, Green R, Koltunov A, Purcell KL, Sawyer SC, Slaton MR, Stephens SL, Stine P, Thompson C. Mega-disturbances cause rapid decline of mature conifer forest habitat in California. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2763. [PMID: 36264047 DOI: 10.1002/eap.2763] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Mature forests provide important wildlife habitat and support critical ecosystem functions globally. Within the dry conifer forests of the western United States, past management and fire exclusion have contributed to forest conditions that are susceptible to increasingly severe wildfire and drought. We evaluated declines in conifer forest cover in the southern Sierra Nevada of California during a decade of record disturbance by using spatially comprehensive forest structure estimates, wildfire perimeter data, and the eDaRT forest disturbance tracking algorithm. Primarily due to the combination of wildfires, drought, and drought-associated beetle epidemics, 30% of the region's conifer forest extent transitioned to nonforest vegetation during 2011-2020. In total, 50% of mature forest habitat and 85% of high density mature forests either transitioned to lower density forest or nonforest vegetation types. California spotted owl protected activity centers (PAC) experienced greater canopy cover decline (49% of 2011 cover) than non-PAC areas (42% decline). Areas with high initial canopy cover and without tall trees were most vulnerable to canopy cover declines, likely explaining the disproportionate declines of mature forest habitat and within PACs. Drought and beetle attack caused greater cumulative declines than areas where drought and wildfire mortality overlapped, and both types of natural disturbance far outpaced declines attributable to mechanical activities. Drought mortality that disproportionately affects large conifers is particularly problematic to mature forest specialist species reliant on large trees. However, patches of degraded forests within wildfire perimeters were larger with greater core area than those outside burned areas, and remnant forest habitats were more fragmented within burned perimeters than those affected by drought and beetle mortality alone. The percentage of mature forest that survived and potentially benefited from lower severity wildfire increased over time as the total extent of mature forest declined. These areas provide some opportunity for improved resilience to future disturbances, but strategic management interventions are likely also necessary to mitigate worsening mega-disturbances. Remaining dry mature forest habitat in California may be susceptible to complete loss in the coming decades without a rapid transition from a conservation paradigm that attempts to maintain static conditions to one that manages for sustainable disturbance dynamics.
Collapse
Affiliation(s)
| | - Gavin M Jones
- USFS Rocky Mountain Research Station, Albuquerque, New Mexico, USA
- University of New Mexico, Albuquerque, New Mexico, USA
| | - Brandon M Collins
- University of California, Berkeley, California, USA
- USFS Pacific Southwest Research Station, Davis, California, USA
| | - Rebecca Green
- Sequoia & Kings Canyon National Park, Three Rivers, California, USA
| | - Alexander Koltunov
- USFS Pacific Southwest Region, McClellan, California, USA
- University of California, Davis, California, USA
| | - Kathryn L Purcell
- USFS Pacific Southwest Research Station, Coarsegold, California, USA
| | | | | | | | - Peter Stine
- Stine Wildland Resources Science, Sacramento, California, USA
| | - Craig Thompson
- USFS Pacific Southwest Research Station, Fresno, California, USA
| |
Collapse
|
6
|
Lindenmayer DB, Bowd EJ, Gibbons P. Forest restoration in a time of fire: perspectives from tall, wet eucalypt forests subject to stand-replacing wildfires. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210082. [PMID: 36373929 PMCID: PMC9661950 DOI: 10.1098/rstb.2021.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Wildfires have the potential to add considerably to the already significant challenge of achieving effective forest restoration in the UN Decade on Ecosystem Restoration. While fire can sometimes promote forest restoration (e.g. by creating otherwise rare, early successional habitats), it can thwart it in others (e.g. by depleting key patch types and stand structures). Here we outline key considerations in facilitating restoration of some tall wet temperate forest ecosystems and some boreal forest ecosystems where the typical fire regime is rare high-severity stand-replacing fire. Some of these ecosystems are experiencing altered fire regimes such as increased fire extent, severity and/or frequency. Achieving good restoration outcomes in such ecosystems demands understanding fire regimes and their impacts on vegetation and other elements of biodiversity and then selecting ecosystem-appropriate management interventions. Potential actions range from doing nothing (as the ecosystem already maintains full post-fire regenerative capacity) to interventions prior to a conflagration like prescribed burning to limit the risks of high-severity fire, excluding activities that impair post-fire recovery (e.g. post-fire logging), and artificial seeding where natural regeneration fails. The most ecologically effective actions will be ecosystem-specific and context-specific and informed by knowledge of the ecosystem in question (such as plant life-history attributes) and inter-relationships with attributes like vegetation condition at the time it is burnt (e.g. young versus old forest). This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
Collapse
Affiliation(s)
- David B. Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia
| | - Elle J. Bowd
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia
| | - Philip Gibbons
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
7
|
Williams JN, Safford HD, Enstice N, Steel ZL, Paulson AK. High‐severity burned area and proportion exceed historic conditions in Sierra Nevada, California, and adjacent ranges. Ecosphere 2023. [DOI: 10.1002/ecs2.4397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- J. N. Williams
- Department of Environmental Science and Policy University of California Davis California USA
| | - H. D. Safford
- Department of Environmental Science and Policy University of California Davis California USA
- Vibrant Planet Incline Village Nevada USA
| | - N. Enstice
- California Department of Conservation Sacramento California USA
- California Sierra Nevada Conservancy Auburn California USA
| | - Z. L. Steel
- USDA Forest Service Rocky Mountain Research Station Fort Collins Colorado USA
| | - A. K. Paulson
- USDA Forest Service, Humboldt‐Toiyabe National Forest Sparks Nevada USA
| |
Collapse
|
8
|
Too hot, too cold, or just right: Can wildfire restore dry forests of the interior Pacific Northwest? PLoS One 2023; 18:e0281927. [PMID: 36848330 PMCID: PMC9970105 DOI: 10.1371/journal.pone.0281927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
As contemporary wildfire activity intensifies across the western United States, there is increasing recognition that a variety of forest management activities are necessary to restore ecosystem function and reduce wildfire hazard in dry forests. However, the pace and scale of current, active forest management is insufficient to address restoration needs. Managed wildfire and landscape-scale prescribed burns hold potential to achieve broad-scale goals but may not achieve desired outcomes where fire severity is too high or too low. To explore the potential for fire alone to restore dry forests, we developed a novel method to predict the range of fire severities most likely to restore historical forest basal area, density, and species composition in forests across eastern Oregon. First, we developed probabilistic tree mortality models for 24 species based on tree characteristics and remotely sensed fire severity from burned field plots. We applied these estimates to unburned stands in four national forests to predict post-fire conditions using multi-scale modeling in a Monte Carlo framework. We compared these results to historical reconstructions to identify fire severities with the highest restoration potential. Generally, we found basal area and density targets could be achieved by a relatively narrow range of moderate-severity fire (roughly 365-560 RdNBR). However, single fire events did not restore species composition in forests that were historically maintained by frequent, low-severity fire. Restorative fire severity ranges for stand basal area and density were strikingly similar for ponderosa pine (Pinus ponderosa) and dry mixed-conifer forests across a broad geographic range, in part due to relatively high fire tolerance of large grand (Abies grandis) and white fir (Abies concolor). Our results suggest historical forest conditions created by recurrent fire are not readily restored by single fires and landscapes have likely passed thresholds that preclude the effectiveness of managed wildfire alone as a restoration tool.
Collapse
|
9
|
D’Evelyn SM, Jung J, Alvarado E, Baumgartner J, Caligiuri P, Hagmann RK, Henderson SB, Hessburg PF, Hopkins S, Kasner EJ, Krawchuk MA, Krenz JE, Lydersen JM, Marlier ME, Masuda YJ, Metlen K, Mittelstaedt G, Prichard SJ, Schollaert CL, Smith EB, Stevens JT, Tessum CW, Reeb-Whitaker C, Wilkins JL, Wolff NH, Wood LM, Haugo RD, Spector JT. Wildfire, Smoke Exposure, Human Health, and Environmental Justice Need to be Integrated into Forest Restoration and Management. Curr Environ Health Rep 2022; 9:366-385. [PMID: 35524066 PMCID: PMC9076366 DOI: 10.1007/s40572-022-00355-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Increasing wildfire size and severity across the western United States has created an environmental and social crisis that must be approached from a transdisciplinary perspective. Climate change and more than a century of fire exclusion and wildfire suppression have led to contemporary wildfires with more severe environmental impacts and human smoke exposure. Wildfires increase smoke exposure for broad swaths of the US population, though outdoor workers and socially disadvantaged groups with limited adaptive capacity can be disproportionally exposed. Exposure to wildfire smoke is associated with a range of health impacts in children and adults, including exacerbation of existing respiratory diseases such as asthma and chronic obstructive pulmonary disease, worse birth outcomes, and cardiovascular events. Seasonally dry forests in Washington, Oregon, and California can benefit from ecological restoration as a way to adapt forests to climate change and reduce smoke impacts on affected communities. RECENT FINDINGS Each wildfire season, large smoke events, and their adverse impacts on human health receive considerable attention from both the public and policymakers. The severity of recent wildfire seasons has state and federal governments outlining budgets and prioritizing policies to combat the worsening crisis. This surging attention provides an opportunity to outline the actions needed now to advance research and practice on conservation, economic, environmental justice, and public health interests, as well as the trade-offs that must be considered. Scientists, planners, foresters and fire managers, fire safety, air quality, and public health practitioners must collaboratively work together. This article is the result of a series of transdisciplinary conversations to find common ground and subsequently provide a holistic view of how forest and fire management intersect with human health through the impacts of smoke and articulate the need for an integrated approach to both planning and practice.
Collapse
Affiliation(s)
- Savannah M. D’Evelyn
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | - Jihoon Jung
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | - Ernesto Alvarado
- School of Environmental and Forest Sciences, University of Washington, Seattle, USA
| | - Jill Baumgartner
- Dept of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Canada
| | | | - R. Keala Hagmann
- School of Environmental and Forest Sciences, University of Washington, Seattle, USA
- Applegate Forestry, LLC, Corvallis, USA
| | | | - Paul F. Hessburg
- School of Environmental and Forest Sciences, University of Washington, Seattle, USA
- USDA Forest Service, Pacific Northwest Research Station, Wenatchee, WA USA
| | - Sean Hopkins
- Washington State Department of Ecology, Lacey, USA
| | - Edward J. Kasner
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | - Meg A. Krawchuk
- Dept. of Forest Ecosystems and Society, Oregon State University, Corvallis, USA
| | - Jennifer E. Krenz
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | - Jamie M. Lydersen
- California Department of Forestry and Fire Protection, Sacramento, USA
| | - Miriam E. Marlier
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, USA
| | | | | | | | - Susan J. Prichard
- School of Environmental and Forest Sciences, University of Washington, Seattle, USA
| | - Claire L. Schollaert
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | | | - Jens T. Stevens
- Department of Biology, University of New Mexico, Albuquerque, NM USA
| | - Christopher W. Tessum
- Dept. of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, USA
| | - Carolyn Reeb-Whitaker
- Safety & Health Assessment & Research for Prevention Program, Washington State Department of Labor and Industries, Tumwater, USA
| | - Joseph L. Wilkins
- School of Environmental and Forest Sciences, University of Washington, Seattle, USA
- Interdisciplinary Studies Department, Howard University, Washington, DC USA
| | | | - Leah M. Wood
- Evan’s School of Public Policy and Governance and The Department of Global Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | | | - June T. Spector
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| |
Collapse
|
10
|
High and Low Air Temperatures and Natural Wildfire Ignitions in the Sierra Nevada Region. ENVIRONMENTS 2022. [DOI: 10.3390/environments9080096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Sierra Nevada region has experienced substantial wildfire impacts. Uncertainty pertaining to fire risk may be reduced by better understanding how air temperature (Ta: °C) influences wildfire ignitions independently of other factors. We linked lightning-ignited wildfires to Ta patterns across the region from 1992 to 2015 and compared monthly high- and low-air-temperature patterns between ignition and non-ignition locations at local scales (4 km). Regionally, more ignitions occurred in springs with a greater number of high-Ta months and fewer cool Ta months (analyzed separately) and in summers with fewer cool Ta months. Locally, summer ignition locations experienced warmer summer months on a normalized scale than non-ignition locations. The probability of a wildfire ignition was positively associated with a greater number of high-Ta months during and prior to fire seasons. Regionally, springs with a greater number of high-Ta months had more wildfire ignitions. Locally, as individual locations in the region experienced a greater number of high-Ta months preceding and including the fire season, they exhibited substantial increases in spring (+1446%), summer (+365%), and fall (+248%) ignitions. Thus, the frequent occurrence of high-Ta months is positively associated with lightning-ignited wildfires in the Sierra Nevada region.
Collapse
|
11
|
Comparing Geography and Severity of Managed Wildfires in California and the Southwest USA before and after the Implementation of the 2009 Policy Guidance. FORESTS 2022. [DOI: 10.3390/f13050793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Managed wildfires, i.e., naturally ignited wildfires that are managed for resource benefits, have the potential to reduce fuel loads, minimize the effects of future wildfires, and restore critical natural processes across many forest landscapes. In the United States, the 2009 federal wildland fire policy guidance was designed to provide greater flexibility in the use of managed wildfires, but the effects of this policy on wildfires in the western US are not yet fully understood. Our goal was to compare managed and full suppression wildfires and to also analyze the differences between managed wildfires across space (Arizona/New Mexico and California) and time (before and after 2009) using four metrics for each wildfire: (1) distance to wilderness, (2) distance to the wildland–urban interface (WUI), (3) the percentage of area burned with high severity, and (4) the number of land management agencies. Across the study area, we found that managed wildfires were significantly closer to wilderness areas, were farther from the WUI, had a lower percentage of area that was burned at high severity, and had fewer agencies involved in managing the fire compared to full suppression wildfires. In California, managed wildfires occurred closer to wilderness and had a larger percentage of high-severity burn area compared to those in the southwest US (Arizona and New Mexico). Within each region, however, there were no significant geographic differences between managed wildfires before and after the implementation of the 2009 policy guidance. Despite the greater flexibility of the 2009 policy guidance, the basic geographic properties of managed wildfires in these two regions have not changed. As the climate warms and droughts intensify, the use of managed wildfires will need to expand during favorable weather conditions in order to address the threat of large and uncharacteristic wildfires to people and ecosystems.
Collapse
|
12
|
LiDAR as a Tool for Assessing Change in Vertical Fuel Continuity Following Restoration. FORESTS 2022. [DOI: 10.3390/f13040503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The need for fuel reduction treatments and the restoration of ecosystem resilience has become widespread in forest management given fuel accumulation across many forested landscapes and a growing risk of high-intensity wildfire. However, there has been little research on methods of assessing the effectiveness of those treatments at landscape scales. Most research has involved small-scale opportunistic case studies focused on incidents where wildland fires encountered recent restoration projects. It is important to assess whether restoration practices are successful at a landscape scale so improvements may be made as treatments are expanded and their individual effectiveness ages. This study used LiDAR acquisitions taken before and after a large-scale forest restoration project in the Malheur National Forest in eastern Oregon to broadly assess changes in fuel structure. The results showed some areas where treatments appeared effective, and other areas where treatments appeared less effective. While some aspects could be modified to improve accuracy, the methods investigated in this study offer forest managers a new option for evaluating the effectiveness of fuel reduction treatments in reducing potential damage due to wildland fire.
Collapse
|
13
|
Das AJ, Slaton MR, Mallory J, Asner GP, Martin RE, Hardwick P. Empirically validated drought vulnerability mapping in the mixed conifer forests of the Sierra Nevada. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2514. [PMID: 35094444 DOI: 10.1002/eap.2514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 06/14/2023]
Abstract
Severe droughts are predicted to become more frequent in the future, and the consequences of such droughts on forests can be dramatic, resulting in massive tree mortality, rapid change in forest structure and composition, and substantially increased risk of catastrophic fire. Forest managers have tools at their disposal to try to mitigate these effects but are often faced with limited resources, forcing them to make choices about which parts of the landscape to target for treatment. Such planning can greatly benefit from landscape vulnerability assessments, but many existing vulnerability analyses are unvalidated and not grounded in robust empirical datasets. We combined robust sets of ground-based plot and remote sensing data, collected during the 2012-2016 California drought, to develop rigorously validated tools for assessing forest vulnerability to drought-related canopy tree mortality for the mixed conifer forests of the Sequoia and Kings Canyon national parks and potentially for mixed conifer forests in the Sierra Nevada as a whole. Validation was carried out using a large external dataset. The best models included normalized difference vegetation index (NDVI), elevation, and species identity. Models indicated that tree survival probability decreased with greenness (as measured by NDVI) and elevation, particularly if trees were growing slowly. Overall, models showed good calibration and validation, especially for Abies concolor, which comprise a large majority of the trees in many mixed conifer forests in the Sierra Nevada. Our models tended to overestimate mortality risk for Calocedrus decurrens and underestimate risk for pine species, in the latter case probably due to pine bark beetle outbreak dynamics. Validation results indicated dangers of overfitting, as well as showing that the inclusion of trees already under attack by bark beetles at the time of sampling can give false confidence in model strength, while also biasing predictions. These vulnerability tools should be useful to forest managers trying to assess which parts of their landscape were vulnerable during the 2012-2016 drought, and, with additional validation, may prove useful for ongoing assessments and predictions of future forest vulnerability.
Collapse
Affiliation(s)
- Adrian J Das
- U.S. Geological Survey, Western Ecological Research Center, Sequoia and Kings Canyon Field Station, Three Rivers, California, USA
| | - Michèle R Slaton
- USDA Forest Service, Pacific Southwest Region, Remote Sensing Laboratory, McClellan, California, USA
| | - Jeffrey Mallory
- USDA Forest Service, Pacific Southwest Region, Remote Sensing Laboratory, McClellan, California, USA
| | - Gregory P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, Arizona, USA
| | - Roberta E Martin
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, Arizona, USA
| | - Paul Hardwick
- Division of Resources Management and Science, Sequoia and Kings Canyon National Parks, Three Rivers, California, USA
| |
Collapse
|
14
|
Prichard SJ, Hessburg PF, Hagmann RK, Povak NA, Dobrowski SZ, Hurteau MD, Kane VR, Keane RE, Kobziar LN, Kolden CA, North M, Parks SA, Safford HD, Stevens JT, Yocom LL, Churchill DJ, Gray RW, Huffman DW, Lake FK, Khatri‐Chhetri P. Adapting western North American forests to climate change and wildfires: 10 common questions. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02433. [PMID: 34339088 PMCID: PMC9285930 DOI: 10.1002/eap.2433] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 05/22/2023]
Abstract
We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include the following: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great? Can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? And (10) is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep pace with changing climatic and wildfire regimes and declining forest heterogeneity after severe wildfires. Science-based adaptation options include the use of managed wildfire, prescribed burning, and coupled mechanical thinning and prescribed burning as is consistent with land management allocations and forest conditions. Although some current models of fire management in wNA are averse to short-term risks and uncertainties, the long-term environmental, social, and cultural consequences of wildfire management primarily grounded in fire suppression are well documented, highlighting an urgency to invest in intentional forest management and restoration of active fire regimes.
Collapse
Affiliation(s)
- Susan J. Prichard
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
| | - Paul F. Hessburg
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
- U.S. Forest Service PNW Research StationWenatcheeWashington98801USA
| | - R. Keala Hagmann
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
- Applegate Forestry LLCCorvallisOregon97330USA
| | - Nicholas A. Povak
- U.S. Forest ServicePacific Southwest Research StationInstitute of Forest Genetics2480 Carson RoadPlacervilleCalifornia95667USA
| | - Solomon Z. Dobrowski
- University of Montana College of Forestry and ConservationMissoulaMontana59812USA
| | - Matthew D. Hurteau
- University of New Mexico Biology DepartmentAlbuquerqueNew Mexico87131‐0001USA
| | - Van R. Kane
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
| | - Robert E. Keane
- U.S. Forest Service Rocky Mountain Research StationMissoula Fire Sciences LaboratoryMissoulaMontana59808USA
| | - Leda N. Kobziar
- Department of Natural Resources and SocietyUniversity of IdahoMoscowIdaho83844USA
| | - Crystal A. Kolden
- School of EngineeringUniversity of California MercedMercedCalifornia95343USA
| | - Malcolm North
- U.S. Forest Service Pacific Southwest Research Station1731 Research ParkDavisCalifornia95618USA
| | - Sean A. Parks
- U.S. Forest Service Aldo Leopold Wilderness Research InstituteMissoulaMontana59801USA
| | - Hugh D. Safford
- U.S. Forest Service Pacific Southwest Research StationAlbanyCalifornia94710USA
| | - Jens T. Stevens
- U.S. Geological Survey Fort Collins Science CenterNew Mexico Landscapes Field StationSanta FeNew Mexico87544USA
| | - Larissa L. Yocom
- Department of Wildland Resources and Ecology CenterUtah State University College of Agriculture and Applied SciencesLoganUtah84322USA
| | - Derek J. Churchill
- Washington State Department of Natural Resources Forest Health ProgramOlympiaWashington98504USA
| | - Robert W. Gray
- R.W. Gray ConsultingChilliwackBritish ColumbiaV2R2N2Canada
| | - David W. Huffman
- Northern Arizona University Ecological Restoration InstituteFlagstaffArizona86011USA
| | - Frank K. Lake
- U.S. Forest Service Pacific Southwest Research StationArcataCalifornia95521USA
| | - Pratima Khatri‐Chhetri
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
| |
Collapse
|
15
|
Hagmann RK, Hessburg PF, Prichard SJ, Povak NA, Brown PM, Fulé PZ, Keane RE, Knapp EE, Lydersen JM, Metlen KL, Reilly MJ, Sánchez Meador AJ, Stephens SL, Stevens JT, Taylor AH, Yocom LL, Battaglia MA, Churchill DJ, Daniels LD, Falk DA, Henson P, Johnston JD, Krawchuk MA, Levine CR, Meigs GW, Merschel AG, North MP, Safford HD, Swetnam TW, Waltz AEM. Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02431. [PMID: 34339067 PMCID: PMC9285092 DOI: 10.1002/eap.2431] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 05/06/2023]
Abstract
Implementation of wildfire- and climate-adaptation strategies in seasonally dry forests of western North America is impeded by numerous constraints and uncertainties. After more than a century of resource and land use change, some question the need for proactive management, particularly given novel social, ecological, and climatic conditions. To address this question, we first provide a framework for assessing changes in landscape conditions and fire regimes. Using this framework, we then evaluate evidence of change in contemporary conditions relative to those maintained by active fire regimes, i.e., those uninterrupted by a century or more of human-induced fire exclusion. The cumulative results of more than a century of research document a persistent and substantial fire deficit and widespread alterations to ecological structures and functions. These changes are not necessarily apparent at all spatial scales or in all dimensions of fire regimes and forest and nonforest conditions. Nonetheless, loss of the once abundant influence of low- and moderate-severity fires suggests that even the least fire-prone ecosystems may be affected by alteration of the surrounding landscape and, consequently, ecosystem functions. Vegetation spatial patterns in fire-excluded forested landscapes no longer reflect the heterogeneity maintained by interacting fires of active fire regimes. Live and dead vegetation (surface and canopy fuels) is generally more abundant and continuous than before European colonization. As a result, current conditions are more vulnerable to the direct and indirect effects of seasonal and episodic increases in drought and fire, especially under a rapidly warming climate. Long-term fire exclusion and contemporaneous social-ecological influences continue to extensively modify seasonally dry forested landscapes. Management that realigns or adapts fire-excluded conditions to seasonal and episodic increases in drought and fire can moderate ecosystem transitions as forests and human communities adapt to changing climatic and disturbance regimes. As adaptation strategies are developed, evaluated, and implemented, objective scientific evaluation of ongoing research and monitoring can aid differentiation of warranted and unwarranted uncertainties.
Collapse
Affiliation(s)
- R. K. Hagmann
- College of the Environment‐SEFSUniversity of WashingtonSeattleWashington98195USA
- Applegate Forestry LLCCorvallisOregon97330USA
| | - P. F. Hessburg
- College of the Environment‐SEFSUniversity of WashingtonSeattleWashington98195USA
- USDA‐FS, Forestry Sciences LaboratoryPacific Northwest Research StationWenatcheeWashington98801USA
| | - S. J. Prichard
- College of the Environment‐SEFSUniversity of WashingtonSeattleWashington98195USA
| | - N. A. Povak
- USDA‐FS, Forestry Sciences LaboratoryPacific Northwest Research StationWenatcheeWashington98801USA
- USDA‐FS, Pacific Southwest Research StationPlacervilleCalifornia95667USA
| | - P. M. Brown
- Rocky Mountain Tree‐Ring ResearchFort CollinsColorado80526USA
| | - P. Z. Fulé
- School of ForestryNorthern Arizona UniversityFlagstaffArizona86011USA
| | - R. E. Keane
- Missoula Fire Sciences LaboratoryUSDA‐FS, Rocky Mountain Research StationMissoulaMontana59808USA
| | - E. E. Knapp
- USDA‐FS, Pacific Southwest Research StationReddingCalifornia96002USA
| | - J. M. Lydersen
- Fire and Resource Assessment ProgramCalifornia Department of Forestry and Fire ProtectionSacramentoCalifornia94244USA
| | | | - M. J. Reilly
- USDA‐FS, Pacific Northwest Research StationCorvallisOregon97333USA
| | - A. J. Sánchez Meador
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizona86011USA
| | - S. L. Stephens
- Department of Environmental Science, Policy, and ManagementUniversity of California–BerkeleyBerkeleyCalifornia94720USA
| | - J. T. Stevens
- U.S. Geological SurveyFort Collins Science CenterNew Mexico Landscapes Field StationSanta FeNew Mexico87508USA
| | - A. H. Taylor
- Department of Geography, Earth and Environmental Systems InstituteThe Pennsylvania State UniversityUniversity ParkPennsylvania16802USA
| | - L. L. Yocom
- Department of Wildland Resources and the Ecology CenterUtah State UniversityLoganUtah84322USA
| | - M. A. Battaglia
- USDA‐FS, Rocky Mountain Research StationFort CollinsColorado80526USA
| | - D. J. Churchill
- Washington State Department of Natural ResourcesOlympiaWashington98504USA
| | - L. D. Daniels
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
| | - D. A. Falk
- School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonArizona85721USA
- Laboratory of Tree‐Ring ResearchUniversity of ArizonaTucsonArizona85721USA
| | - P. Henson
- Oregon Fish and Wildlife OfficeUSDI Fish & Wildlife ServicePortlandOregon97232USA
| | - J. D. Johnston
- College of ForestryOregon State UniversityCorvallisOregon97333USA
| | - M. A. Krawchuk
- College of ForestryOregon State UniversityCorvallisOregon97333USA
| | - C. R. Levine
- Spatial Informatics GroupPleasantonCalifornia94566USA
| | - G. W. Meigs
- Washington State Department of Natural ResourcesOlympiaWashington98504USA
| | - A. G. Merschel
- College of ForestryOregon State UniversityCorvallisOregon97333USA
| | - M. P. North
- USDA‐FS, Pacific Southwest Research StationMammoth LakesCalifornia93546USA
| | - H. D. Safford
- USDA‐FS, Pacific Southwest RegionVallejoCalifornia94592USA
| | - T. W. Swetnam
- Laboratory of Tree‐Ring ResearchUniversity of ArizonaTucsonArizona85721USA
| | - A. E. M. Waltz
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizona86011USA
| |
Collapse
|
16
|
Brookes W, Daniels LD, Copes-Gerbitz K, Baron JN, Carroll AL. A Disrupted Historical Fire Regime in Central British Columbia. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.676961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the 2017 and 2018, 2.55 million hectares burned across British Columbia, Canada, including unanticipated large and high-severity fires in many dry forests. To transform forest and fire management to achieve resilience to future megafires requires improved understanding historical fire frequency, severity, and spatial patterns. Our dendroecological reconstructions of 35 plots in a 161-hectare study area in a dry Douglas-fir forest revealed historical fires that burned at a wide range of frequencies and severities at both the plot- and study-area scales. The 23 fires between 1619 and 1943 burned at intervals of 10–30 years, primarily at low- to moderate-severity that scarred trees but generated few cohorts. In contrast, current fire-free intervals of 70–180 years exceed historical maximum intervals. Of the six widespread fires from 1790 to 1905, the 1863 fire affected 86% of plots and was moderate in severity with patches of higher severity that generated cohorts at fine scales only. These results indicate the severity of fires varied at fine spatial scales, and offer little support for the common assertion that periodic, high-severity, stand-initiating events were a component of the mixed-severity fire regime in these forest types. Many studies consider fires in the late 1800s relatively severe because they generated new cohorts of trees, and thus, emphasize the importance of high-severity fires in a mixed-severity fire regime. In our study area, the most widespread and severe fire was not a stand-initiating fire. Rather, the post-1863 cohorts persisted due disruption of the fire regime in the twentieth century when land-use shifted from Indigenous fire stewardship and early European settler fires to fire exclusion and suppression. In absence of low- to moderate-severity fires, contemporary forests are dense with closed canopies that are vulnerable to high-severity fire. Future management should reduce forest densities and to restore stand- and landscape-level heterogeneity and increase forest resilience. The timing and size of repeat treatments such as thinning of subcanopy trees and prescribed burning, including Indigenous fire stewardship, can be guided by our refined understanding of the mixed-severity fire regime that was historically dominated by low- to moderate-severity fires in this dry forest ecosystem.
Collapse
|
17
|
Merschel AG, Beedlow PA, Shaw DC, Woodruff DR, Lee EH, Cline SP, Comeleo RL, Hagmann RK, Reilly MJ. An Ecological Perspective on Living with Fire in Ponderosa Pine Forests of Oregon and Washington: Resistance, Gone but not Forgotten. TREES, FORESTS AND PEOPLE 2021; 4:10.1016/j.tfp.2021.100074. [PMID: 34017963 PMCID: PMC8128712 DOI: 10.1016/j.tfp.2021.100074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Wildland fires (WLF) have become more frequent, larger, and severe with greater impacts to society and ecosystems and dramatic increases in firefighting costs. Forests throughout the range of ponderosa pine in Oregon and Washington are jeopardized by the interaction of anomalously dense forest structure, a warming and drying climate, and an expanding human population. These forests evolved with frequent interacting disturbances including low-severity surface fires, droughts, and biological disturbance agents (BDAs). Chronic low-severity disturbances were, and still are, critical to maintaining disturbance resistance, the property of an ecosystem to withstand disturbance while maintaining its structure and ecological function. Restoration of that historical resistance offers multiple social and ecological benefits. Moving forward, we need a shared understanding of the ecology of ponderosa pine forests to appreciate how restoring resistance can reduce the impacts of disturbances. Given contemporary forest conditions, a warming climate, and growing human populations, we predict continued elevation of tree mortality from drought, BDAs, and the large high-severity WLFs that threaten lives and property as well as ecosystem functions and services. We recommend more comprehensive planning to promote greater use of prescribed fire and management of reported fires for ecological benefits, plus increased responsibility and preparedness of local agencies, communities and individual homeowners for WLF and smoke events. Ultimately, by more effectively preparing for fire in the wildland urban interface, and by increasing the resistance of ponderosa pine forests, we can greatly enhance our ability to live with fire and other disturbances.
Collapse
Affiliation(s)
- Andrew G Merschel
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, 3180 SW Jefferson Way, Corvallis, OR. 97331, USA
| | - Peter A Beedlow
- U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA
| | - David C Shaw
- Department of Forest Engineering, Resources, and Management, Oregon State University, 216 Peavy Hall, 3100 SW Jefferson Way, Corvallis, OR 97331, USA
| | - David R Woodruff
- USDA Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97333, USA
| | - E Henry Lee
- U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA
| | - Steven P Cline
- U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA
| | - Randy L Comeleo
- U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA
| | - R Keala Hagmann
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- Applegate Forestry LLC, Corvallis, OR 97330, USA
| | - Matthew J Reilly
- USDA Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97333, USA
| |
Collapse
|
18
|
Abstract
Pyrodiversity or variation in spatio-temporal fire patterns is increasingly recognized as an important determinant of ecological pattern and process, yet no consensus surrounds how best to quantify the phenomenon and its drivers remain largely untested. We present a generalizable functional diversity approach for measuring pyrodiversity, which incorporates multiple fire regime traits and can be applied across scales. Further, we tested the socioecological drivers of pyrodiversity among forests of the western United States. Largely mediated by burn activity, pyrodiversity was positively associated with actual evapotranspiration, climate water deficit, wilderness designation, elevation and topographic roughness but negatively with human population density. These results indicate pyrodiversity is highest in productive areas with pronounced annual dry periods and minimal fire suppression. This work can facilitate future pyrodiversity studies including whether and how it begets biodiversity among taxa, regions and fire regimes.
Collapse
Affiliation(s)
- Zachary L Steel
- Department of Environmental Science, Policy and Management, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Brandon M Collins
- Center for Fire Research and Outreach, University of California, Berkeley, CA 94720, USA.,USDA Forest Service, Pacific Southwest Research Station, Davis, CA 95618, USA
| | - David B Sapsis
- California Department of Forestry and Fire Protection, Sacramento, CA 95814, USA
| | - Scott L Stephens
- Department of Environmental Science, Policy and Management, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
19
|
Chambers JC, Urza AK, Board DI, Miller RF, Pyke DA, Roundy BA, Schupp EW, Tausch RJ. Sagebrush recovery patterns after fuel treatments mediated by disturbance type and plant functional group interactions. Ecosphere 2021. [DOI: 10.1002/ecs2.3450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
| | - Alexandra K. Urza
- Rocky Mountain Research Station USDA Forest Service Reno Nevada89512USA
| | - David I. Board
- Rocky Mountain Research Station USDA Forest Service Reno Nevada89512USA
| | - Richard F. Miller
- Department of Range and Animal Science Oregon State University Corvallis Oregon97331USA
| | - David A. Pyke
- Forest & Rangeland Ecosystem Science Center U.S. Geological Survey Corvallis Oregon97331USA
| | - Bruce A. Roundy
- Department of Plant and Wildlife Sciences Brigham Young University Provo Utah84602USA
| | - Eugene W. Schupp
- Department of Wildland Resources and Ecology Center Utah State University Logan Utah84322USA
| | - Robin J. Tausch
- Rocky Mountain Research Station USDA Forest Service Reno Nevada89512USA
| |
Collapse
|
20
|
A Qualitative Study on the US Forest Service’s Risk Management Assistance Efforts to Improve Wildfire Decision-Making. FORESTS 2021. [DOI: 10.3390/f12030344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To support improved wildfire incident decision-making, in 2017 the US Forest Service (Forest Service) implemented risk-informed tools and processes, together known as Risk Management Assistance (RMA). The Forest Service is developing tools such as RMA to improve wildfire decision-making and implements these tools in complex organizational environments. We assessed the perceived value of RMA and factors that affected its use to inform the literature on decision support for fire management. We sought to answer two questions: (1) What was the perceived value of RMA for line officers who received it?; and (2) What factors affected how RMA was received and used during wildland fire events? We conducted a qualitative study involving semi-structured interviews with decision-makers to understand the contextualized and interrelated factors that affect wildfire decision-making and the uptake of a decision-support intervention such as RMA. We used a thematic coding process to analyze our data according to our questions. RMA increased line officers’ ability to communicate the rationale underlying their decisions more clearly and transparently to their colleagues and partners. Our interviewees generally said that RMA data analytics were valuable but did not lead to changes in their decisions. Line officer personality, pre-season exposure to RMA, local political dynamics and conditions, and decision biases affected the use of RMA. Our findings reveal the complexities of embracing risk management, not only in the context of US federal fire management, but also in other similar emergency management contexts. Attention will need to be paid to existing decision biases, integration of risk management approaches in the interagency context, and the importance of knowledge brokers to connect across internal organizational groups. Our findings contribute to the literature on managing change in public organizations, specifically in emergency decision-making contexts such as fire management.
Collapse
|
21
|
Wan X, Li C, Parikh SJ. Chemical composition of soil-associated ash from the southern California Thomas Fire and its potential inhalation risks to farmworkers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111570. [PMID: 33129023 DOI: 10.1016/j.jenvman.2020.111570] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
The increasing frequency and severity of wildfires poses human health risks, especially for those within burnt regions. The potential health effects of fire ash on farmworkers in orchards via inhalation exposure after fire is rarely studied. After the 2017 Thomas Fire, in Ventura County (California, USA), fire ash and corresponding soil samples were collected from several impacted orchards and analyzed for eight trace elements (TEs) and 16 polycyclic aromatic hydrocarbons (PAHs). Results indicate that except for mercury (Hg), the concentrations of TEs and PAHs were higher in ash samples compared with the corresponding soil samples. In general, ash samples showed greater potential to expose farmworkers to health risks than the corresponding soil samples. One site had particularly high concentrations of As (778 mg kg-1), Cr (629 mg kg-1), and Cu (499 mg kg-1) in the ash. This location corresponds to a house which was burned during the Thomas Fire, which might have contained chromated copper arsenate as a wood preservative. Therefore, the existence of construction materials in orchards could add hazardous materials to ash deposited on soil. Furthermore, a monitored dust generation experiment was designed to obtain the particle emission factors (PEF) of soil and ash, which is an essential parameter for the calculation of inhalation health risks. A two-fold difference in the PEFs was found between ash and the corresponding soil sample. Hence, health risks through inhalation exposure from fire ash may be underestimated if the default PEF suggested by the US Environmental Protection Agency is used.
Collapse
Affiliation(s)
- Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA.
| | - Chongyang Li
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| | - Sanjai J Parikh
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| |
Collapse
|
22
|
Ziegler JP, Hoffman CM, Collins BM, Knapp EE, Mell W(R. Pyric tree spatial patterning interactions in historical and contemporary mixed conifer forests, California, USA. Ecol Evol 2021; 11:820-834. [PMID: 33520169 PMCID: PMC7820164 DOI: 10.1002/ece3.7084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/23/2020] [Accepted: 11/12/2020] [Indexed: 11/30/2022] Open
Abstract
Tree spatial patterns in dry coniferous forests of the western United States, and analogous ecosystems globally, were historically aggregated, comprising a mixture of single trees and groups of trees. Modern forests, in contrast, are generally more homogeneous and overstocked than their historical counterparts. As these modern forests lack regular fire, pattern formation and maintenance is generally attributed to fire. Accordingly, fires in modern forests may not yield historically analogous patterns. However, direct observations on how selective tree mortality among pre-existing forest structure shapes tree spatial patterns is limited. In this study, we (a) simulated fires in historical and contemporary counterpart plots in a Sierra Nevadan mixed-conifer forest, (b) estimated tree mortality, and (c) examined tree spatial patterns of live trees before and after fire, and of fire-killed trees. Tree mortality in the historical period was clustered and density-dependent, because trees were aggregated and segregated by tree size before fire. Thus, fires maintained an aggregated distribution of tree groups. Tree mortality in the contemporary period was widespread, except for dispersed large trees, because most trees were a part of large, interconnected tree groups. Thus, postfire tree patterns were more uniform and devoid of moderately sized tree groups. Postfire tree patterns in the historical period, unlike the contemporary period, were within the historical range of variability identified for the western United States. This divergence suggests that decades of forest dynamics without significant disturbances have altered the historical means of pyric pattern formation. Our results suggest that ecological silvicultural treatments, such as forest restoration thinnings, which emulate qualities of historical forests may facilitate the reintroduction of fire as a means to reinforce forest structural heterogeneity.
Collapse
Affiliation(s)
- Justin P. Ziegler
- Department of Forest & Rangeland StewardshipColorado State UniversityFort CollinsCOUSA
| | - Chad M. Hoffman
- Department of Forest & Rangeland StewardshipColorado State UniversityFort CollinsCOUSA
| | - Brandon M. Collins
- Center for Fire Research & OutreachUniversity of CaliforniaBerkeleyCAUSA
- Pacific Southwest Research StationUS Forest ServiceDavisCAUSA
| | - Eric E. Knapp
- Pacific Southwest Research StationUS Forest ServiceReddingCAUSA
| | | |
Collapse
|
23
|
Stephens SL, Battaglia MA, Churchill DJ, Collins BM, Coppoletta M, Hoffman CM, Lydersen JM, North MP, Parsons RA, Ritter SM, Stevens JT. Forest Restoration and Fuels Reduction: Convergent or Divergent? Bioscience 2020. [DOI: 10.1093/biosci/biaa134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
For over 20 years, forest fuel reduction has been the dominant management action in western US forests. These same actions have also been associated with the restoration of highly altered frequent-fire forests. Perhaps the vital element in the compatibility of these treatments is that both need to incorporate the salient characteristics that frequent fire produced—variability in vegetation structure and composition across landscapes and the inability to support large patches of high-severity fire. These characteristics can be achieved with both fire and mechanical treatments. The possible key to convergence of fuel reduction and forest restoration strategies is integrated planning that permits treatment design flexibility and a longer-term focus on fire reintroduction for maintenance. With changing climate conditions, long-term forest conservation will probably need to be focused on keeping tree density low enough (i.e., in the lower range of historic variation) for forest conditions to adapt to emerging disturbance patterns and novel ecological processes.
Collapse
Affiliation(s)
- Scott L Stephens
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, in Berkeley, California
| | - Mike A Battaglia
- US Department of Agriculture (USDA), Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado
| | - Derek J Churchill
- Forest Health and Resiliency Division of the Washington Department of Natural Resources, Olympia, Washington
| | - Brandon M Collins
- Fire Research and Outreach at the University of California, Berkeley, Berkeley, California, and with the USDA Forest Service, Pacific Southwest Research Station, Davis, California
| | - Michelle Coppoletta
- USDA Forest Service, Sierra Cascade Province Ecology Program, Quincy, California
| | - Chad M Hoffman
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado
| | - Jamie M Lydersen
- California Department of Forestry and Fire Protection, Fire and Resource Assessment Program, Sacramento, California
| | - Malcolm P North
- USDA Forest Service, PSW Research Station, Mammoth Lakes, California, and with the Department of Plant Sciences, University of California, Davis, Davis, California
| | | | - Scott M Ritter
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado
| | - Jens T Stevens
- US Geological Survey, New Mexico Landscapes Field Station, Santa Fe, New Mexico
| |
Collapse
|
24
|
Manzano S, Julier ACM, Dirk CJ, Razafimanantsoa AHI, Samuels I, Petersen H, Gell P, Hoffman M, Gillson L. Using the past to manage the future: the role of palaeoecological and long‐term data in ecological restoration. Restor Ecol 2020. [DOI: 10.1111/rec.13285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Saúl Manzano
- Plant Conservation Unit, Department of Biological Sciences University of Cape Town HW Pearson Building, Private Bag X3, Rondebosch Cape Town 7701 South Africa
| | - Adele C. M. Julier
- Plant Conservation Unit, Department of Biological Sciences University of Cape Town HW Pearson Building, Private Bag X3, Rondebosch Cape Town 7701 South Africa
| | - Cherie J. Dirk
- Plant Conservation Unit, Department of Biological Sciences University of Cape Town HW Pearson Building, Private Bag X3, Rondebosch Cape Town 7701 South Africa
| | - Andriantsilavo H. I. Razafimanantsoa
- Plant Conservation Unit, Department of Biological Sciences University of Cape Town HW Pearson Building, Private Bag X3, Rondebosch Cape Town 7701 South Africa
| | - Igshaan Samuels
- Agricultural Research Council‐Animal Production University of the Western Cape Private Bag X17, Bellville Cape Town 7535 South Africa
| | - Hana Petersen
- Plant Conservation Unit, Department of Biological Sciences University of Cape Town HW Pearson Building, Private Bag X3, Rondebosch Cape Town 7701 South Africa
| | - Peter Gell
- School of Health and Life Sciences Federation University Australia Mt Helen Victoria 3350 Australia
| | - M.Timm Hoffman
- Plant Conservation Unit, Department of Biological Sciences University of Cape Town HW Pearson Building, Private Bag X3, Rondebosch Cape Town 7701 South Africa
| | - Lindsey Gillson
- Plant Conservation Unit, Department of Biological Sciences University of Cape Town HW Pearson Building, Private Bag X3, Rondebosch Cape Town 7701 South Africa
| |
Collapse
|
25
|
Sullivan DJ, McEntire KD, Cohen BS, Collier BA, Chamberlain MJ. Spatial Scale and Shape of Prescribed Fires Influence Use by Wild Turkeys. J Wildl Manage 2020. [DOI: 10.1002/jwmg.21944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel J. Sullivan
- Warnell School of Forestry and Natural Resources University of Georgia Athens GA 30602 USA
| | - Kira D. McEntire
- Department of Biology, Center for the Sciences and Innovation Trinity University San Antonio TX 78212 USA
| | - Bradley S. Cohen
- College of Arts and Sciences Tennessee Technological University Cookeville TN 38505 USA
| | - Bret A. Collier
- School of Renewable Natural Resources Louisiana State University Agricultural Center Baton Rouge LA 70803 USA
| | - Michael J. Chamberlain
- Warnell School of Forestry and Natural Resources University of Georgia Athens GA 30602 USA
| |
Collapse
|
26
|
Sullivan DJ, McEntire KD, Cohen BS, Collier BA, Chamberlain MJ. Spatial Scale and Shape of Prescribed Fires Influence Use by Wild Turkeys. J Wildl Manage 2020. [DOI: 10.1002/jwmg.21944 10.1002/jwmg.21944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daniel J. Sullivan
- Warnell School of Forestry and Natural Resources University of Georgia Athens GA 30602 USA
| | - Kira D. McEntire
- Department of Biology, Center for the Sciences and Innovation Trinity University San Antonio TX 78212 USA
| | - Bradley S. Cohen
- College of Arts and Sciences Tennessee Technological University Cookeville TN 38505 USA
| | - Bret A. Collier
- School of Renewable Natural Resources Louisiana State University Agricultural Center Baton Rouge LA 70803 USA
| | - Michael J. Chamberlain
- Warnell School of Forestry and Natural Resources University of Georgia Athens GA 30602 USA
| |
Collapse
|
27
|
Emergence of and Learning Processes in a Civic Group Resuming Prescribed Burning in Norway. SUSTAINABILITY 2020. [DOI: 10.3390/su12145668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Coastal Norwegian heathlands have been regularly managed by burning for about 5000 years. This practice, supporting sustainable herbivore production, did, however, seize in the 1950s and was virtually absent for 60–70 years. Loss of biodiversity, increased fire hazard due to biomass accumulation and loss of visual landscape qualities recently propelled new interest in traditional landscape management. Loss of know-how makes this a dangerous activity. The present study focuses on the emergence and learning processes of a civic group established for resuming prescribed burning in Northern Rogaland in order to possibly assist similar initiatives elsewhere. Methods: Study of written information, interviews with core prescribed burners and participant observation have been undertaken. The topics at four annual prescribed burning seminars, arranged by the studied civic group, have been analyzed. Participant observation at civic group winter meetings, debriefing sessions and field work has also been undertaken. Results: Pioneers who, without guidance, resumed prescribed burning relied on experience gained as part-time firefighters and relations to farming, in particular sheep grazing. Building good relations with local fire brigades and support by local and regional environmental authorities (especially the local agricultural advisory office) enhanced the practice. Short weather window, assembling a big enough burner group on the working days, as well as possible liability issues were identified as challenges. They were self-taught through “learning by doing” and open to new technologies/artifacts, i.e., leaf blowers for fire control. Their use of artifacts, together with supporting the fire brigades during a wildfire, strengthened their group identity. A connection to academia improved the focus on safe and effective prescribed burning through deeper insight into the physical parameters that govern burning in the terrain. Conclusions: The study provides valuable insight into favorable preconditions and possible key personnel for resuming prescribed burning in other areas in Norway and elsewhere. Content and teaching methods for a possible future standardized prescribed heathland burning course are suggested.
Collapse
|
28
|
Ager AA, Barros AM, Houtman R, Seli R, Day MA. Modelling the effect of accelerated forest management on long-term wildfire activity. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.108962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Crotteau JS, Keyes CR, Hood SM, Larson AJ. Vegetation dynamics following compound disturbance in a dry pine forest: fuel treatment then bark beetle outbreak. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02023. [PMID: 31628705 DOI: 10.1002/eap.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
In the western United States, restoration of forests with historically frequent, low-severity fire regimes often includes fuel reduction that reestablish open, early-seral conditions while reducing fuel continuity and loading. Between 2001 and 2016, fuel reduction (e.g., thinning, prescribed burning, etc.) was implemented on over 26 million hectares of federal lands alone in the United States, reflecting the urgency to mitigate risk from high-severity wildfire. However, between 2001 and 2012, nearly 20 million hectares in the United States were impacted by mountain pine beetle (MPB; Dendroctonus ponderosae), compounding restoration effects in wildfire-hazard-treated stands. Knowledge of the effects of treatments followed by natural disturbance on long-term forest structure and communities is needed, especially considering that fuel treatments are increasingly being implemented and warming climate is predicted to exacerbate disturbance frequency and severity. We tested the interacting effects of treatments designed to reduce high-severity wildfire hazard in stands subsequently challenged by MPB outbreak on vegetation dynamics using a factorial experimental design (control, thin only, burn only, thin + burn) in a ponderosa pine (Pinus ponderosa)-dominated forest. Stands were treated by 2002, then impacted by MPB outbreak from 2005 to 2012. We assessed change in overstory and understory forest community structure, composition, and diversity over time. There were distinct thinning, burning, and year effects. Thinning immediately reduced overstory density; pine density then declined 4.5 times more in unthinned than thinned treatments due to MPB. Burning immediately reduced graminoid, shrub, and total understory cover by as much as 52%, resulting in greater species evenness than unburned treatments, but differences disappeared by 2016 due to growth and MPB outbreak. Similarly, multivariate analyses indicated forest communities were starkly different after treatment but became more similar over time, though key understory and overstory attributes still distinguish control and thin + burn. This study shows the value of long-term silvicultural experiments to evaluate treatment longevity and the compounded effects of treatment and natural disturbance. We demonstrate the homogenizing effects of treatment-induced growth coupled with MPB-caused tree mortality on management strategies that just treat the overstory (thinning) or understory (burning), showing that only combined treatments can provide the unique structural and compositional outcomes expected of restoration.
Collapse
Affiliation(s)
- Justin S Crotteau
- Pacific Northwest Research Station, USDA Forest Service, 11175 Auke Lake Way, Juneau, Alaska, 99801, USA
| | - Christopher R Keyes
- WA Franke College of Forestry and Conservation, University of Montana, 32 Campus Drive, Missoula, Montana, 59812, USA
| | - Sharon M Hood
- Rocky Mountain Research Station, Fire, Fuel, and Smoke Science Program, USDA Forest Service, 5775 Highway 10 W., Missoula, Montana, 59808, USA
| | - Andrew J Larson
- WA Franke College of Forestry and Conservation, University of Montana, 32 Campus Drive, Missoula, Montana, 59812, USA
| |
Collapse
|
30
|
|
31
|
Levine CR, Cogbill CV, Collins BM, Larson AJ, Lutz JA, North MP, Restaino CM, Safford HD, Stephens SL, Battles JJ. Estimating historical forest density from land-survey data: a response to Baker and Williams (2018). ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01968. [PMID: 31257657 DOI: 10.1002/eap.1968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/20/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Carrie R Levine
- Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Charles V Cogbill
- Harvard Forest, Harvard University, 324 North Main Street, Petersham, Massachusetts, 01366, USA
| | - Brandon M Collins
- USDA Forest Service, Pacific Southwest Research Station, 1731 Research Park Drive, Davis, California, 95618, USA
- Center for Fire Research and Outreach, College of Natural Resources, University of California, Berkeley, California, 94720-3114, USA
| | - Andrew J Larson
- Department of Forest Management, University of Montana, 32 Campus Drive, Missoula, Montana, 59812, USA
| | - James A Lutz
- S. J. & Jessie E. Quinney College of Natural Resources, Utah State University, 5230 Old Main Hill, Logan, Utah, 84322-5230, USA
| | - Malcolm P North
- USDA Forest Service, Pacific Southwest Research Station, 1731 Research Park Drive, Davis, California, 95618, USA
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | | | - Hugh D Safford
- Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
- USDA Forest Service, Pacific Southwest Region, 1323 Club Drive, Vallejo, California, 94592, USA
| | - Scott L Stephens
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, Berkeley, California, 94720-3114, USA
| | - John J Battles
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, Berkeley, California, 94720-3114, USA
| |
Collapse
|
32
|
Remotely Sensed Water Limitation in Vegetation: Insights from an Experiment with Unmanned Aerial Vehicles (UAVs). REMOTE SENSING 2019. [DOI: 10.3390/rs11161853] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Unmanned aerial vehicles (UAVs) equipped with multispectral sensors present an opportunity to monitor vegetation with on-demand high spatial and temporal resolution. In this study we use multispectral imagery from quadcopter UAVs to monitor the progression of a water manipulation experiment on a common shrub, Baccharis pilularis (coyote brush) at the Blue Oak Ranch Reserve (BORR) ~20 km east of San Jose, California. We recorded multispectral imagery at several altitudes with nearly hourly intervals to explore the relationship between two common spectral indices, NDVI (normalized difference vegetation index) and NDRE (normalized difference red edge index), leaf water content and water potential as physiological metrics of plant water status, across a gradient of water deficit. An examination of the spatial and temporal thresholds at which water limitations were most detectable revealed that the best separation between levels of water deficit were at higher resolution (lower flying height), and in the morning (NDVI) and early morning (NDRE). We found that both measures were able to identify moisture deficit across treatments; however, NDVI was better able to distinguish between treatments than NDRE and was more positively correlated with field measurements of leaf water content. Finally, we explored how relationships between spectral indices and water status changed when the imagery was scaled to courser resolutions provided by satellite-based imagery (PlanetScope).We found that PlanetScope data was able to capture the overall trend in treatments but unable to capture subtle changes in water content. These kinds of experiments that evaluate the relationship between direct field measurements and UAV camera sensitivity are needed to enable translation of field-based physiology measurements to landscape or regional scales.
Collapse
|
33
|
|
34
|
Hessburg PF, Miller CL, Parks SA, Povak NA, Taylor AH, Higuera PE, Prichard SJ, North MP, Collins BM, Hurteau MD, Larson AJ, Allen CD, Stephens SL, Rivera-Huerta H, Stevens-Rumann CS, Daniels LD, Gedalof Z, Gray RW, Kane VR, Churchill DJ, Hagmann RK, Spies TA, Cansler CA, Belote RT, Veblen TT, Battaglia MA, Hoffman C, Skinner CN, Safford HD, Salter RB. Climate, Environment, and Disturbance History Govern Resilience of Western North American Forests. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00239] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Twidwell D, Wonkka CL, Wang HH, Grant WE, Allen CR, Fuhlendorf SD, Garmestani AS, Angeler DG, Taylor CA, Kreuter UP, Rogers WE. Coerced resilience in fire management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 240:368-373. [PMID: 30953990 PMCID: PMC7388029 DOI: 10.1016/j.jenvman.2019.02.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/20/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Mechanisms underlying the loss of ecological resilience and a shift to an alternate regime with lower ecosystem service provisioning continues to be a leading debate in ecology, particularly in cases where evidence points to human actions and decision-making as the primary drivers of resilience loss and regime change. In this paper, we introduce the concept of coerced resilience as a way to explore the interplay among social power, ecological resilience, and fire management, and to better understand the unintended and undesired regime changes that often surprise ecosystem managers and governing officials. Philosophically, coercion is the opposite of freedom, and uses influence or force to gain compliance among local actors. The coercive force imposed by societal laws and policies can either enhance or reduce the potential to manage for essential structures and functions of ecological systems and, therefore, can greatly alter resilience. Using a classical fire-dependent regime shift from North America (tallgrass prairie to juniper woodland), and given that coercion is widespread in fire management today, we quantify relative differences in resilience that emerge in a policy-coerced fire system compared to a theoretical, policy-free fire system. Social coercion caused large departures in the fire conditions associated with alternative grassland and juniper woodland states, and the potential for a grassland state to emerge to dominance became increasingly untenable with fire as juniper cover increased. In contrast, both a treeless, grassland regime and a co-dominated grass-tree regime emerged across a wide range of fire conditions in the absence of policy controls. The severe coercive forcing present in fire management in the Great Plains, and corresponding erosion of grassland resilience, points to the need for transformative environmental governance and the rethinking of social power structures in modern fire policies.
Collapse
Affiliation(s)
- Dirac Twidwell
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA.
| | - Carissa L Wonkka
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Hsiao-Hsuan Wang
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - William E Grant
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Craig R Allen
- School of Natural Resources, University of Nebraska, Lincoln, NE, 68583, USA
| | - Samuel D Fuhlendorf
- Department of Natural Resource Ecology and Management, Oklahoma State University, 008C Agricultural Hall, Stillwater, OK, 74078, USA
| | - Ahjond S Garmestani
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, USA
| | - David G Angeler
- Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, 750 07, Uppsala, Sweden
| | - Charles A Taylor
- Texas A&M Agrilife Research Center, Texas A&M University, P.O. Box 918, Sonora, TX, 76950, USA
| | - Urs P Kreuter
- Department of Ecosystem Science and Management, Texas A&M University, 2138 TAMU, College Station, TX, 77843, USA
| | - William E Rogers
- Department of Ecosystem Science and Management, Texas A&M University, 2138 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
36
|
Restaino C, Young DJN, Estes B, Gross S, Wuenschel A, Meyer M, Safford H. Forest structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USA. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01902. [PMID: 31020735 DOI: 10.1002/eap.1902] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/09/2019] [Accepted: 02/01/2019] [Indexed: 05/25/2023]
Abstract
Extreme drought stress and associated bark beetle population growth contributed to an extensive tree mortality event in California, USA, resulting in more than 129 million trees dying between 2012 and 2016. Although drought is an important driver of this mortality event, past and ongoing fire suppression and the consequent densification of forests may have contributed. In some areas, land management agencies have worked to reduce stand density through mechanical treatments and prescribed fire to restore forests to less dense, more open conditions that are presumably more resilient to disturbance and changing climate. Here, we evaluate if stand structural conditions associated with treated (e.g., thinned and prescribed burned) forests in the Sierra Nevada of California conferred more resistance to the bark beetle epidemic and drought event of 2012-2016. We found that, compared to untreated units, treated units had lower stand densities, larger average tree diameters, and greater dominance of pines (Pinus), the historically dominant trees. For all tree species studied, mortality was substantially greater in climatically drier areas (i.e., lower elevations and latitudes). Both pine species studied (ponderosa pine [Pinus ponderosa] and sugar pine [Pinus lambertiana]) had greater mortality in areas where their diameters were larger, suggesting a size preference for their insect mortality agents. For ponderosa pine, the tree species experiencing greatest mortality, individual-tree mortality probability (for a given tree diameter) was significantly lower in treated stands. Ponderosa pine mortality was also positively related to density of medium- to large-sized conspecific trees, especially in areas with lower precipitation, suggesting that abundance of nearby host trees for insect mortality agents was an important determinant of pine mortality. Mortality of incense cedar (Calocedrus decurrens) and white fir (Abies concolor) was positively associated with basal area, suggesting sensitivity to competition during drought, but overall mortality was lower, likely because the most prevalent and effective mortality agents (the bark beetles Dendroctonus brevicomis and D. ponderosae) are associated specifically with pine species within our study region. Our findings suggest that forest thinning treatments are effective in reducing drought-related tree mortality in forests, and they underscore the important interaction between water and forest density in mediating bark beetle-caused mortality.
Collapse
Affiliation(s)
- Christina Restaino
- Department of Environmental Science and Policy, University of California, Davis, Davis, California, 95615, USA
| | - Derek J N Young
- Department of Environmental Science and Policy, University of California, Davis, Davis, California, 95616, USA
| | - Becky Estes
- USDA Forest Service, Pacific Southwest Region, Central Sierra Province, Placerville, California, 95667, USA
| | - Shana Gross
- USDA Forest Service, Pacific Southwest Region, Central Sierra Province, South Lake Tahoe, California, 96150, USA
| | - Amarina Wuenschel
- USDA Forest Service, Pacific Southwest Region, Southern Sierra Province, Clovis, California, 93611, USA
| | - Marc Meyer
- USDA Forest Service, Pacific Southwest Region, Southern Sierra Province, Bishop, California, 93514, USA
| | - Hugh Safford
- Department of Environmental Science and Policy, University of California, Davis, Davis, California, 95616, USA
- USDA Forest Service, Pacific Southwest Region, Vallejo, California, 94592, USA
| |
Collapse
|
37
|
Keane RE, Loehman RA, Holsinger LM, Falk DA, Higuera P, Hood SM, Hessburg PF. Use of landscape simulation modeling to quantify resilience for ecological applications. Ecosphere 2018. [DOI: 10.1002/ecs2.2414] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Robert E. Keane
- USDA Forest Service; Rocky Mountain Research Station; Missoula Fire Sciences Laboratory; 5775 Highway 10 West Missoula Montana 59808 USA
| | - Rachel A. Loehman
- US Geological Survey; Alaska Science Center; 4210 University Drive Anchorage Alaska 99508 USA
| | - Lisa M. Holsinger
- USDA Forest Service; Rocky Mountain Research Station; Missoula Fire Sciences Laboratory; 5775 Highway 10 West Missoula Montana 59808 USA
| | - Donald A. Falk
- School of Natural Resources and the Environment; Environment and Natural Resources II; University of Arizona; Tucson Arizona 85721 USA
| | - Philip Higuera
- W.A. Franke College of Forestry & Conservation; University of Montana; 32 Campus Drive Missoula Montana 59812 USA
| | - Sharon M. Hood
- USDA Forest Service; Rocky Mountain Research Station; Missoula Fire Sciences Laboratory; 5775 Highway 10 West Missoula Montana 59808 USA
| | - Paul F. Hessburg
- USDA Forest Service; Pacific Northwest Research Station; Forestry Sciences Laboratory; 1133 N. Western Avenue Wenatchee Washington 98801 USA
| |
Collapse
|
38
|
Ager AA, Barros AM, Day MA, Preisler HK, Spies TA, Bolte J. Analyzing fine-scale spatiotemporal drivers of wildfire in a forest landscape model. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Shive KL, Preisler HK, Welch KR, Safford HD, Butz RJ, O'Hara KL, Stephens SL. From the stand scale to the landscape scale: predicting the spatial patterns of forest regeneration after disturbance. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1626-1639. [PMID: 29809291 DOI: 10.1002/eap.1756] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Shifting disturbance regimes can have cascading effects on many ecosystems processes. This is particularly true when the scale of the disturbance no longer matches the regeneration strategy of the dominant vegetation. In the yellow pine and mixed conifer forests of California, over a century of fire exclusion and the warming climate are increasing the incidence and extent of stand-replacing wildfire; such changes in severity patterns are altering regeneration dynamics by dramatically increasing the distance from live tree seed sources. This has raised concerns about limitations to natural reforestation and the potential for conversion to non-forested vegetation types, which in turn has implications for shifts in many ecological processes and ecosystem services. We used a California region-wide data set with 1,848 plots across 24 wildfires in yellow pine and mixed conifer forests to build a spatially explicit habitat suitability model for forecasting postfire forest regeneration. To model the effect of seed availability, the critical initial biological filter for regeneration, we used a novel approach to predicting spatial patterns of seed availability by estimating annual seed production from existing basal area and burn severity maps. The probability of observing any conifer seedling in a 60-m2 area (the field plot scale) was highly dependent on 30-yr average annual precipitation, burn severity, and seed availability. We then used this model to predict regeneration probabilities across the entire extent of a "new" fire (the 2014 King Fire), which highlights the spatial variability inherent in postfire regeneration patterns. Such forecasts of postfire regeneration patterns are of importance to land managers and conservationists interested in maintaining forest cover on the landscape. Our tool can also help anticipate shifts in ecosystem properties, supporting researchers interested in investigating questions surrounding alternative stable states, and the interaction of altered disturbance regimes and the changing climate.
Collapse
Affiliation(s)
- Kristen L Shive
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94703, USA
| | - Haiganoush K Preisler
- USDA Forest Service, Pacific Southwest Research Station, Albany, California, 94710, USA
| | - Kevin R Welch
- Department of Environmental Science and Policy, University of California, Davis, California, 95616, USA
| | - Hugh D Safford
- USDA Forest Service, Pacific Southwest Region, Vallejo, California, 94592, USA
- Department of Environmental Science and Policy, University of California, Davis, California, 95616, USA
| | - Ramona J Butz
- USDA Forest Service, Pacific Southwest Region, Vallejo, California, 94592, USA
- Department of Forestry and Wildland Resources, Humboldt State University, Arcata, California, 95521, USA
| | - Kevin L O'Hara
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94703, USA
| | - Scott L Stephens
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94703, USA
| |
Collapse
|
40
|
Johnston JD, Dunn CJ, Vernon MJ, Bailey JD, Morrissette BA, Morici KE. Restoring historical forest conditions in a diverse inland Pacific Northwest landscape. Ecosphere 2018. [DOI: 10.1002/ecs2.2400] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- James D. Johnston
- College of Forestry; Oregon State University; 140 Peavy Hall, 3100 SW Jefferson Way Corvallis Oregon 97333 USA
| | - Christopher J. Dunn
- College of Forestry; Oregon State University; 140 Peavy Hall, 3100 SW Jefferson Way Corvallis Oregon 97333 USA
| | - Michael J. Vernon
- Department of Forestry and Wildland Resources; Humboldt State University; 1 Harpst Street Arcata California 95521 USA
| | - John D. Bailey
- College of Forestry; Oregon State University; 140 Peavy Hall, 3100 SW Jefferson Way Corvallis Oregon 97333 USA
| | - Brett A. Morrissette
- College of Forestry; Oregon State University; 140 Peavy Hall, 3100 SW Jefferson Way Corvallis Oregon 97333 USA
| | - Kat E. Morici
- Department of Forest and Rangeland Stewardship; Colorado Forest Restoration Institute; Colorado State University; 1472 Campus Delivery Fort Collins Colorado 80523 USA
| |
Collapse
|
41
|
Can Air Quality Management Drive Sustainable Fuels Management at the Temperate Wildland-Urban Interface? FIRE-SWITZERLAND 2018; 1:27. [PMID: 32123806 DOI: 10.3390/fire1020027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sustainable fire management has eluded all industrial societies. Given the growing number and magnitude of wildfire events, prescribed fire is being increasingly promoted as the key to reducing wildfire risk. However, smoke from prescribed fires can adversely affect public health and breach air quality standards. Here we propose that air quality standards can lead to the development and adoption of sustainable fire management approaches that lower the risk of economically and ecologically damaging wildfires while improving air quality and reducing climate-forcing emissions. For example, green fire breaks at the wildland-urban interface (WUI) can resist the spread of wildfires into urban areas. These could be created through mechanical thinning of trees, and then maintained by targeted prescribed fire to create biodiverse and aesthetically pleasing landscapes. The harvested woody debris could be used for pellets and other forms of bioenergy in residential space heating and electricity generation. Collectively, such an approach would reduce the negative health impacts of smoke pollution from wildfires, prescribed fires, and combustion of wood for domestic heating. We illustrate such possibilities by comparing current and potential fire management approaches in the environmentally similar landscapes of Vancouver Island in British Columbia, Canada and the island state of Tasmania in Australia.
Collapse
|
42
|
Lalonde SJ, Mach KJ, Anderson CM, Francis EJ, Sanchez DL, Stanton CY, Turner PA, Field CB. Forest management in the Sierra Nevada provides limited carbon storage potential: an expert elicitation. Ecosphere 2018. [DOI: 10.1002/ecs2.2321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Seth J. Lalonde
- Carnegie Institution for Science; 260 Panama Street Stanford California 94305 USA
| | | | | | - Emily J. Francis
- Stanford University; 473 Via Ortega Stanford California 94305 USA
| | - Daniel L. Sanchez
- Carnegie Institution for Science; 260 Panama Street Stanford California 94305 USA
| | - Charlotte Y. Stanton
- Carnegie Institution for Science; 260 Panama Street Stanford California 94305 USA
| | - Peter A. Turner
- Carnegie Institution for Science; 260 Panama Street Stanford California 94305 USA
| | | |
Collapse
|
43
|
Baker WL. Transitioning western U.S. dry forests to limited committed warming with bet-hedging and natural disturbances. Ecosphere 2018. [DOI: 10.1002/ecs2.2288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- William L. Baker
- Program in Ecology/Department of Geography; University of Wyoming; Department 3371, 1000 East University Avenue Laramie Wyoming 82081 USA
| |
Collapse
|
44
|
Stambaugh MC, Marschall JM, Abadir ER, Jones BC, Brose PH, Dey DC, Guyette RP. Wave of fire: an anthropogenic signal in historical fire regimes across central Pennsylvania,
USA. Ecosphere 2018. [DOI: 10.1002/ecs2.2222] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Michael C. Stambaugh
- Missouri Tree‐Ring Laboratory School of Natural Resources University of Missouri Columbia Missouri 65211 USA
| | - Joseph M. Marschall
- Missouri Tree‐Ring Laboratory School of Natural Resources University of Missouri Columbia Missouri 65211 USA
| | - Erin R. Abadir
- Missouri Tree‐Ring Laboratory School of Natural Resources University of Missouri Columbia Missouri 65211 USA
| | - Benjamin C. Jones
- Habitat Planning and Development Division Pennsylvania Game Commission Harrisburg Pennsylvania 17110 USA
| | - Patrick H. Brose
- Northern Research Station USDA Forest Service 335 National Forge Road Irvine Pennsylvania 16329 USA
| | - Daniel C. Dey
- Northern Research Station USDA Forest Service University of Missouri 202 ABNR Columbia Missouri 65211 USA
| | - Richard P. Guyette
- Missouri Tree‐Ring Laboratory School of Natural Resources University of Missouri Columbia Missouri 65211 USA
| |
Collapse
|
45
|
Barros AMG, Ager AA, Day MA, Krawchuk MA, Spies TA. Wildfires managed for restoration enhance ecological resilience. Ecosphere 2018. [DOI: 10.1002/ecs2.2161] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Ana M. G. Barros
- College of Forestry, Forest Ecosystems & Society Oregon State University 321 Richardson Hall Corvallis Oregon 97331 USA
| | - Alan A. Ager
- USDA Forest Service Rocky Mountain Research Station Missoula Fire Sciences Laboratory 5775 US Highway 10W Missoula Montana 59808 USA
| | - Michelle A. Day
- College of Forestry Forest Engineering, Resources & Management Oregon State University 280 Peavy Hall Corvallis Oregon 97331 USA
| | - Meg A. Krawchuk
- College of Forestry, Forest Ecosystems & Society Oregon State University 321 Richardson Hall Corvallis Oregon 97331 USA
| | - Thomas A. Spies
- USDA Forest Service, Pacific Northwest Research Station 3200 SW Jefferson Way Corvallis Oregon 97331 USA
| |
Collapse
|
46
|
|
47
|
Parks SA, Parisien MA, Miller C, Holsinger LM, Baggett LS. Fine-scale spatial climate variation and drought mediate the likelihood of reburning. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:573-586. [PMID: 29280248 DOI: 10.1002/eap.1671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
In many forested ecosystems, it is increasingly recognized that the probability of burning is substantially reduced within the footprint of previously burned areas. This self-limiting effect of wildland fire is considered a fundamental emergent property of ecosystems and is partly responsible for structuring landscape heterogeneity (i.e., mosaics of different age classes), thereby reducing the likelihood of uncharacteristically large fires in regions with active fire regimes. However, the strength and longevity of this self-limiting phenomenon is not well understood in most fire-prone ecosystems. In this study, we quantify the self-limiting effect in terms of its strength and longevity for five fire-prone study areas in western North America and investigate how each measure varies along a spatial climatic gradient and according to temporal (i.e., annual) climatic variation. Results indicate that the longevity (i.e., number of years) of the self-limiting effect ranges between 15 yr in the warm and dry study area in the southwestern United States to 33 yr in the cold, northern study areas in located in northwestern Montana and the boreal forest of Canada. We also found that spatial climatic variation has a strong influence on wildland fire's self-limiting capacity. Specifically, the self-limiting effect within each study area was stronger and lasted longer in areas with low mean moisture deficit (i.e., wetter and cooler settings) compared to areas with high mean moisture deficit (warmer and drier settings). Last, our findings show that annual climatic variation influences wildland fire's self-limiting effect: drought conditions weakened the strength and longevity of the self-limiting effect in all study areas, albeit at varying magnitudes. Overall, our study provides support for the idea that wildland fire contributes to spatial heterogeneity in fuel ages that subsequently mediate future fire sizes and effects. However, our findings show that the strength and longevity of the self-limiting effect varies considerably according to spatial and temporal climatic variation, providing land and fire managers relevant information for effective planning and management of fire and highlighting that fire itself is an important factor contributing to fire-free intervals.
Collapse
Affiliation(s)
- Sean A Parks
- Aldo Leopold Wilderness Research Institute, Rocky Mountain Research Station, USDA Forest Service, 790 E. Beckwith Avenue, Missoula, Montana, 59801, USA
| | - Marc-André Parisien
- Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320 122nd Street, Edmonton, Alberta, T5H 3S5, Canada
| | - Carol Miller
- Aldo Leopold Wilderness Research Institute, Rocky Mountain Research Station, USDA Forest Service, 790 E. Beckwith Avenue, Missoula, Montana, 59801, USA
| | - Lisa M Holsinger
- Aldo Leopold Wilderness Research Institute, Rocky Mountain Research Station, USDA Forest Service, 790 E. Beckwith Avenue, Missoula, Montana, 59801, USA
| | - Larry Scott Baggett
- Rocky Mountain Research Station, USDA Forest Service, 240 West Prospect Road, Fort Collins, Colorado, 80526, USA
| |
Collapse
|
48
|
Stephens SL, Collins BM, Fettig CJ, Finney MA, Hoffman CM, Knapp EE, North MP, Safford H, Wayman RB. Drought, Tree Mortality, and Wildfire in Forests Adapted to Frequent Fire. Bioscience 2018. [DOI: 10.1093/biosci/bix146] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Scott L Stephens
- Department of Environmental Science, Policy, and Management at the University of California, in Berkeley
| | - Brandon M Collins
- Center for Fire Research and Outreach at the University of California, in Berkeley
| | - Christopher J Fettig
- US Department of Agriculture (USDA) Forest Service, Pacific Southwest Research Station, in Davis, California
| | - Mark A Finney
- USDA Forest Service, Rocky Mountain Research Station, in Missoula, Montana
| | - Chad M Hoffman
- Department of Forest and Range Stewardship at Colorado State University, in Fort Collins
| | - Eric E Knapp
- USDA Forest Service, Pacific Southwest Research Station, in Redding, California
| | - Malcolm P North
- US Department of Agriculture (USDA) Forest Service, Pacific Southwest Research Station, in Davis, California
| | - Hugh Safford
- Department of Environmental Science and Policy at the University of California, in Davis
- HS is also with the USDA Forest Service, Pacific Southwest Region, in Vallejo, California
| | - Rebecca B Wayman
- Department of Environmental Science and Policy at the University of California, in Davis
| |
Collapse
|
49
|
Impact of Error in Lidar-Derived Canopy Height and Canopy Base Height on Modeled Wildfire Behavior in the Sierra Nevada, California, USA. REMOTE SENSING 2017. [DOI: 10.3390/rs10010010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Collins BM, Fry DL, Lydersen JM, Everett R, Stephens SL. Impacts of different land management histories on forest change. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:2475-2486. [PMID: 28873261 DOI: 10.1002/eap.1622] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/07/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Many western North American forest types have experienced considerable changes in ecosystem structure, composition, and function as a result of both fire exclusion and timber harvesting. These two influences co-occurred over a large portion of dry forests, making it difficult to know the strength of either one on its own or the potential for an interaction between the two. In this study, we used contemporary remeasurements of a systematic historical forest inventory to investigate forest change in the Sierra Nevada. The historical data opportunistically spanned a significant land management agency boundary, which protected part of the inventory area from timber harvesting. This allowed for a robust comparison of forest change between logged and unlogged areas. In addition, we assessed the effects of recent management activities aimed at forest restoration relative to the same areas historically, and to other areas without recent management. Based on analyses of 22,007 trees (historical, 9,573; contemporary, 12,434), live basal area and tree density significantly increased from 1911 to the early 2000s in both logged and unlogged areas. Both shrub cover and the proportion of live basal area occupied by pine species declined from 1911 to the early 2000s in both areas, but statistical significance was inconsistent. The most notable difference between logged and unlogged areas was in the density of large trees, which declined significantly in logged areas, but was unchanged in unlogged areas. Recent management activities had a varied impact on the forest structure and composition variables analyzed. In general, areas with no recent management activities experienced the greatest change from 1911 to the early 2000s. If approximating historical forest conditions is a land management goal the documented changes in forest structure and composition from 1911 to the early 2000s indicate that active restoration, including fire use and mechanical thinning, is needed in many areas.
Collapse
Affiliation(s)
- Brandon M Collins
- Center for Fire Research and Outreach, University of California, Berkeley, California, 94720-3114, USA
| | - Danny L Fry
- Ecosystem Sciences Division, Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, 94720, USA
| | - Jamie M Lydersen
- Pacific Southwest Research Station, USDA Forest Service, Davis, California, 95618, USA
| | - Richard Everett
- Ecosystem Sciences Division, Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, 94720, USA
- Department of Natural Resources, Salish Kootenai College, 58138 Highway 93, P.O. Box 70, Pablo, Montana, 59855, USA
| | - Scott L Stephens
- Ecosystem Sciences Division, Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, 94720, USA
| |
Collapse
|